at v6.15 41 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 34 * control pages, vmcoreinfo) 35 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 36 * not marked PG_reserved (as they might be in use by somebody else who does 37 * not respect the caching strategy). 38 * - MCA pages on ia64 39 * - Pages holding CPU notes for POWER Firmware Assisted Dump 40 * - Device memory (e.g. PMEM, DAX, HMM) 41 * Some PG_reserved pages will be excluded from the hibernation image. 42 * PG_reserved does in general not hinder anybody from dumping or swapping 43 * and is no longer required for remap_pfn_range(). ioremap might require it. 44 * Consequently, PG_reserved for a page mapped into user space can indicate 45 * the zero page, the vDSO, MMIO pages or device memory. 46 * 47 * The PG_private bitflag is set on pagecache pages if they contain filesystem 48 * specific data (which is normally at page->private). It can be used by 49 * private allocations for its own usage. 50 * 51 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 52 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 53 * is set before writeback starts and cleared when it finishes. 54 * 55 * PG_locked also pins a page in pagecache, and blocks truncation of the file 56 * while it is held. 57 * 58 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 59 * to become unlocked. 60 * 61 * PG_swapbacked is set when a page uses swap as a backing storage. This are 62 * usually PageAnon or shmem pages but please note that even anonymous pages 63 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 64 * a result of MADV_FREE). 65 * 66 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 67 * file-backed pagecache (see mm/vmscan.c). 68 * 69 * PG_arch_1 is an architecture specific page state bit. The generic code 70 * guarantees that this bit is cleared for a page when it first is entered into 71 * the page cache. 72 * 73 * PG_hwpoison indicates that a page got corrupted in hardware and contains 74 * data with incorrect ECC bits that triggered a machine check. Accessing is 75 * not safe since it may cause another machine check. Don't touch! 76 */ 77 78/* 79 * Don't use the pageflags directly. Use the PageFoo macros. 80 * 81 * The page flags field is split into two parts, the main flags area 82 * which extends from the low bits upwards, and the fields area which 83 * extends from the high bits downwards. 84 * 85 * | FIELD | ... | FLAGS | 86 * N-1 ^ 0 87 * (NR_PAGEFLAGS) 88 * 89 * The fields area is reserved for fields mapping zone, node (for NUMA) and 90 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 91 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 92 */ 93enum pageflags { 94 PG_locked, /* Page is locked. Don't touch. */ 95 PG_writeback, /* Page is under writeback */ 96 PG_referenced, 97 PG_uptodate, 98 PG_dirty, 99 PG_lru, 100 PG_head, /* Must be in bit 6 */ 101 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 102 PG_active, 103 PG_workingset, 104 PG_owner_priv_1, /* Owner use. If pagecache, fs may use */ 105 PG_owner_2, /* Owner use. If pagecache, fs may use */ 106 PG_arch_1, 107 PG_reserved, 108 PG_private, /* If pagecache, has fs-private data */ 109 PG_private_2, /* If pagecache, has fs aux data */ 110 PG_reclaim, /* To be reclaimed asap */ 111 PG_swapbacked, /* Page is backed by RAM/swap */ 112 PG_unevictable, /* Page is "unevictable" */ 113 PG_dropbehind, /* drop pages on IO completion */ 114#ifdef CONFIG_MMU 115 PG_mlocked, /* Page is vma mlocked */ 116#endif 117#ifdef CONFIG_MEMORY_FAILURE 118 PG_hwpoison, /* hardware poisoned page. Don't touch */ 119#endif 120#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 121 PG_young, 122 PG_idle, 123#endif 124#ifdef CONFIG_ARCH_USES_PG_ARCH_2 125 PG_arch_2, 126#endif 127#ifdef CONFIG_ARCH_USES_PG_ARCH_3 128 PG_arch_3, 129#endif 130 __NR_PAGEFLAGS, 131 132 PG_readahead = PG_reclaim, 133 134 /* Anonymous memory (and shmem) */ 135 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 136 /* Some filesystems */ 137 PG_checked = PG_owner_priv_1, 138 139 /* 140 * Depending on the way an anonymous folio can be mapped into a page 141 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped 142 * THP), PG_anon_exclusive may be set only for the head page or for 143 * tail pages of an anonymous folio. For now, we only expect it to be 144 * set on tail pages for PTE-mapped THP. 145 */ 146 PG_anon_exclusive = PG_owner_2, 147 148 /* 149 * Set if all buffer heads in the folio are mapped. 150 * Filesystems which do not use BHs can use it for their own purpose. 151 */ 152 PG_mappedtodisk = PG_owner_2, 153 154 /* Two page bits are conscripted by FS-Cache to maintain local caching 155 * state. These bits are set on pages belonging to the netfs's inodes 156 * when those inodes are being locally cached. 157 */ 158 PG_fscache = PG_private_2, /* page backed by cache */ 159 160 /* XEN */ 161 /* Pinned in Xen as a read-only pagetable page. */ 162 PG_pinned = PG_owner_priv_1, 163 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 164 PG_savepinned = PG_dirty, 165 /* Has a grant mapping of another (foreign) domain's page. */ 166 PG_foreign = PG_owner_priv_1, 167 /* Remapped by swiotlb-xen. */ 168 PG_xen_remapped = PG_owner_priv_1, 169 170 /* non-lru isolated movable page */ 171 PG_isolated = PG_reclaim, 172 173 /* Only valid for buddy pages. Used to track pages that are reported */ 174 PG_reported = PG_uptodate, 175 176#ifdef CONFIG_MEMORY_HOTPLUG 177 /* For self-hosted memmap pages */ 178 PG_vmemmap_self_hosted = PG_owner_priv_1, 179#endif 180 181 /* 182 * Flags only valid for compound pages. Stored in first tail page's 183 * flags word. Cannot use the first 8 flags or any flag marked as 184 * PF_ANY. 185 */ 186 187 /* At least one page in this folio has the hwpoison flag set */ 188 PG_has_hwpoisoned = PG_active, 189 PG_large_rmappable = PG_workingset, /* anon or file-backed */ 190 PG_partially_mapped = PG_reclaim, /* was identified to be partially mapped */ 191}; 192 193#define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) 194 195#ifndef __GENERATING_BOUNDS_H 196 197#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 198DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 199 200/* 201 * Return the real head page struct iff the @page is a fake head page, otherwise 202 * return the @page itself. See Documentation/mm/vmemmap_dedup.rst. 203 */ 204static __always_inline const struct page *page_fixed_fake_head(const struct page *page) 205{ 206 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key)) 207 return page; 208 209 /* 210 * Only addresses aligned with PAGE_SIZE of struct page may be fake head 211 * struct page. The alignment check aims to avoid access the fields ( 212 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly) 213 * cold cacheline in some cases. 214 */ 215 if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) && 216 test_bit(PG_head, &page->flags)) { 217 /* 218 * We can safely access the field of the @page[1] with PG_head 219 * because the @page is a compound page composed with at least 220 * two contiguous pages. 221 */ 222 unsigned long head = READ_ONCE(page[1].compound_head); 223 224 if (likely(head & 1)) 225 return (const struct page *)(head - 1); 226 } 227 return page; 228} 229 230static __always_inline bool page_count_writable(const struct page *page, int u) 231{ 232 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key)) 233 return true; 234 235 /* 236 * The refcount check is ordered before the fake-head check to prevent 237 * the following race: 238 * CPU 1 (HVO) CPU 2 (speculative PFN walker) 239 * 240 * page_ref_freeze() 241 * synchronize_rcu() 242 * rcu_read_lock() 243 * page_is_fake_head() is false 244 * vmemmap_remap_pte() 245 * XXX: struct page[] becomes r/o 246 * 247 * page_ref_unfreeze() 248 * page_ref_count() is not zero 249 * 250 * atomic_add_unless(&page->_refcount) 251 * XXX: try to modify r/o struct page[] 252 * 253 * The refcount check also prevents modification attempts to other (r/o) 254 * tail pages that are not fake heads. 255 */ 256 if (atomic_read_acquire(&page->_refcount) == u) 257 return false; 258 259 return page_fixed_fake_head(page) == page; 260} 261#else 262static inline const struct page *page_fixed_fake_head(const struct page *page) 263{ 264 return page; 265} 266 267static inline bool page_count_writable(const struct page *page, int u) 268{ 269 return true; 270} 271#endif 272 273static __always_inline int page_is_fake_head(const struct page *page) 274{ 275 return page_fixed_fake_head(page) != page; 276} 277 278static __always_inline unsigned long _compound_head(const struct page *page) 279{ 280 unsigned long head = READ_ONCE(page->compound_head); 281 282 if (unlikely(head & 1)) 283 return head - 1; 284 return (unsigned long)page_fixed_fake_head(page); 285} 286 287#define compound_head(page) ((typeof(page))_compound_head(page)) 288 289/** 290 * page_folio - Converts from page to folio. 291 * @p: The page. 292 * 293 * Every page is part of a folio. This function cannot be called on a 294 * NULL pointer. 295 * 296 * Context: No reference, nor lock is required on @page. If the caller 297 * does not hold a reference, this call may race with a folio split, so 298 * it should re-check the folio still contains this page after gaining 299 * a reference on the folio. 300 * Return: The folio which contains this page. 301 */ 302#define page_folio(p) (_Generic((p), \ 303 const struct page *: (const struct folio *)_compound_head(p), \ 304 struct page *: (struct folio *)_compound_head(p))) 305 306/** 307 * folio_page - Return a page from a folio. 308 * @folio: The folio. 309 * @n: The page number to return. 310 * 311 * @n is relative to the start of the folio. This function does not 312 * check that the page number lies within @folio; the caller is presumed 313 * to have a reference to the page. 314 */ 315#define folio_page(folio, n) nth_page(&(folio)->page, n) 316 317static __always_inline int PageTail(const struct page *page) 318{ 319 return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page); 320} 321 322static __always_inline int PageCompound(const struct page *page) 323{ 324 return test_bit(PG_head, &page->flags) || 325 READ_ONCE(page->compound_head) & 1; 326} 327 328#define PAGE_POISON_PATTERN -1l 329static inline int PagePoisoned(const struct page *page) 330{ 331 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN; 332} 333 334#ifdef CONFIG_DEBUG_VM 335void page_init_poison(struct page *page, size_t size); 336#else 337static inline void page_init_poison(struct page *page, size_t size) 338{ 339} 340#endif 341 342static const unsigned long *const_folio_flags(const struct folio *folio, 343 unsigned n) 344{ 345 const struct page *page = &folio->page; 346 347 VM_BUG_ON_PGFLAGS(page->compound_head & 1, page); 348 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 349 return &page[n].flags; 350} 351 352static unsigned long *folio_flags(struct folio *folio, unsigned n) 353{ 354 struct page *page = &folio->page; 355 356 VM_BUG_ON_PGFLAGS(page->compound_head & 1, page); 357 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 358 return &page[n].flags; 359} 360 361/* 362 * Page flags policies wrt compound pages 363 * 364 * PF_POISONED_CHECK 365 * check if this struct page poisoned/uninitialized 366 * 367 * PF_ANY: 368 * the page flag is relevant for small, head and tail pages. 369 * 370 * PF_HEAD: 371 * for compound page all operations related to the page flag applied to 372 * head page. 373 * 374 * PF_NO_TAIL: 375 * modifications of the page flag must be done on small or head pages, 376 * checks can be done on tail pages too. 377 * 378 * PF_NO_COMPOUND: 379 * the page flag is not relevant for compound pages. 380 * 381 * PF_SECOND: 382 * the page flag is stored in the first tail page. 383 */ 384#define PF_POISONED_CHECK(page) ({ \ 385 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 386 page; }) 387#define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 388#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 389#define PF_NO_TAIL(page, enforce) ({ \ 390 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 391 PF_POISONED_CHECK(compound_head(page)); }) 392#define PF_NO_COMPOUND(page, enforce) ({ \ 393 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 394 PF_POISONED_CHECK(page); }) 395#define PF_SECOND(page, enforce) ({ \ 396 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 397 PF_POISONED_CHECK(&page[1]); }) 398 399/* Which page is the flag stored in */ 400#define FOLIO_PF_ANY 0 401#define FOLIO_PF_HEAD 0 402#define FOLIO_PF_NO_TAIL 0 403#define FOLIO_PF_NO_COMPOUND 0 404#define FOLIO_PF_SECOND 1 405 406#define FOLIO_HEAD_PAGE 0 407#define FOLIO_SECOND_PAGE 1 408 409/* 410 * Macros to create function definitions for page flags 411 */ 412#define FOLIO_TEST_FLAG(name, page) \ 413static __always_inline bool folio_test_##name(const struct folio *folio) \ 414{ return test_bit(PG_##name, const_folio_flags(folio, page)); } 415 416#define FOLIO_SET_FLAG(name, page) \ 417static __always_inline void folio_set_##name(struct folio *folio) \ 418{ set_bit(PG_##name, folio_flags(folio, page)); } 419 420#define FOLIO_CLEAR_FLAG(name, page) \ 421static __always_inline void folio_clear_##name(struct folio *folio) \ 422{ clear_bit(PG_##name, folio_flags(folio, page)); } 423 424#define __FOLIO_SET_FLAG(name, page) \ 425static __always_inline void __folio_set_##name(struct folio *folio) \ 426{ __set_bit(PG_##name, folio_flags(folio, page)); } 427 428#define __FOLIO_CLEAR_FLAG(name, page) \ 429static __always_inline void __folio_clear_##name(struct folio *folio) \ 430{ __clear_bit(PG_##name, folio_flags(folio, page)); } 431 432#define FOLIO_TEST_SET_FLAG(name, page) \ 433static __always_inline bool folio_test_set_##name(struct folio *folio) \ 434{ return test_and_set_bit(PG_##name, folio_flags(folio, page)); } 435 436#define FOLIO_TEST_CLEAR_FLAG(name, page) \ 437static __always_inline bool folio_test_clear_##name(struct folio *folio) \ 438{ return test_and_clear_bit(PG_##name, folio_flags(folio, page)); } 439 440#define FOLIO_FLAG(name, page) \ 441FOLIO_TEST_FLAG(name, page) \ 442FOLIO_SET_FLAG(name, page) \ 443FOLIO_CLEAR_FLAG(name, page) 444 445#define TESTPAGEFLAG(uname, lname, policy) \ 446FOLIO_TEST_FLAG(lname, FOLIO_##policy) \ 447static __always_inline int Page##uname(const struct page *page) \ 448{ return test_bit(PG_##lname, &policy(page, 0)->flags); } 449 450#define SETPAGEFLAG(uname, lname, policy) \ 451FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 452static __always_inline void SetPage##uname(struct page *page) \ 453{ set_bit(PG_##lname, &policy(page, 1)->flags); } 454 455#define CLEARPAGEFLAG(uname, lname, policy) \ 456FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 457static __always_inline void ClearPage##uname(struct page *page) \ 458{ clear_bit(PG_##lname, &policy(page, 1)->flags); } 459 460#define __SETPAGEFLAG(uname, lname, policy) \ 461__FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 462static __always_inline void __SetPage##uname(struct page *page) \ 463{ __set_bit(PG_##lname, &policy(page, 1)->flags); } 464 465#define __CLEARPAGEFLAG(uname, lname, policy) \ 466__FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 467static __always_inline void __ClearPage##uname(struct page *page) \ 468{ __clear_bit(PG_##lname, &policy(page, 1)->flags); } 469 470#define TESTSETFLAG(uname, lname, policy) \ 471FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy) \ 472static __always_inline int TestSetPage##uname(struct page *page) \ 473{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 474 475#define TESTCLEARFLAG(uname, lname, policy) \ 476FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy) \ 477static __always_inline int TestClearPage##uname(struct page *page) \ 478{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 479 480#define PAGEFLAG(uname, lname, policy) \ 481 TESTPAGEFLAG(uname, lname, policy) \ 482 SETPAGEFLAG(uname, lname, policy) \ 483 CLEARPAGEFLAG(uname, lname, policy) 484 485#define __PAGEFLAG(uname, lname, policy) \ 486 TESTPAGEFLAG(uname, lname, policy) \ 487 __SETPAGEFLAG(uname, lname, policy) \ 488 __CLEARPAGEFLAG(uname, lname, policy) 489 490#define TESTSCFLAG(uname, lname, policy) \ 491 TESTSETFLAG(uname, lname, policy) \ 492 TESTCLEARFLAG(uname, lname, policy) 493 494#define FOLIO_TEST_FLAG_FALSE(name) \ 495static inline bool folio_test_##name(const struct folio *folio) \ 496{ return false; } 497#define FOLIO_SET_FLAG_NOOP(name) \ 498static inline void folio_set_##name(struct folio *folio) { } 499#define FOLIO_CLEAR_FLAG_NOOP(name) \ 500static inline void folio_clear_##name(struct folio *folio) { } 501#define __FOLIO_SET_FLAG_NOOP(name) \ 502static inline void __folio_set_##name(struct folio *folio) { } 503#define __FOLIO_CLEAR_FLAG_NOOP(name) \ 504static inline void __folio_clear_##name(struct folio *folio) { } 505#define FOLIO_TEST_SET_FLAG_FALSE(name) \ 506static inline bool folio_test_set_##name(struct folio *folio) \ 507{ return false; } 508#define FOLIO_TEST_CLEAR_FLAG_FALSE(name) \ 509static inline bool folio_test_clear_##name(struct folio *folio) \ 510{ return false; } 511 512#define FOLIO_FLAG_FALSE(name) \ 513FOLIO_TEST_FLAG_FALSE(name) \ 514FOLIO_SET_FLAG_NOOP(name) \ 515FOLIO_CLEAR_FLAG_NOOP(name) 516 517#define TESTPAGEFLAG_FALSE(uname, lname) \ 518FOLIO_TEST_FLAG_FALSE(lname) \ 519static inline int Page##uname(const struct page *page) { return 0; } 520 521#define SETPAGEFLAG_NOOP(uname, lname) \ 522FOLIO_SET_FLAG_NOOP(lname) \ 523static inline void SetPage##uname(struct page *page) { } 524 525#define CLEARPAGEFLAG_NOOP(uname, lname) \ 526FOLIO_CLEAR_FLAG_NOOP(lname) \ 527static inline void ClearPage##uname(struct page *page) { } 528 529#define __CLEARPAGEFLAG_NOOP(uname, lname) \ 530__FOLIO_CLEAR_FLAG_NOOP(lname) \ 531static inline void __ClearPage##uname(struct page *page) { } 532 533#define TESTSETFLAG_FALSE(uname, lname) \ 534FOLIO_TEST_SET_FLAG_FALSE(lname) \ 535static inline int TestSetPage##uname(struct page *page) { return 0; } 536 537#define TESTCLEARFLAG_FALSE(uname, lname) \ 538FOLIO_TEST_CLEAR_FLAG_FALSE(lname) \ 539static inline int TestClearPage##uname(struct page *page) { return 0; } 540 541#define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \ 542 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname) 543 544#define TESTSCFLAG_FALSE(uname, lname) \ 545 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname) 546 547__PAGEFLAG(Locked, locked, PF_NO_TAIL) 548FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE) 549FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE) 550 FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE) 551 __FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE) 552PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 553 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 554PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 555 TESTCLEARFLAG(LRU, lru, PF_HEAD) 556FOLIO_FLAG(active, FOLIO_HEAD_PAGE) 557 __FOLIO_CLEAR_FLAG(active, FOLIO_HEAD_PAGE) 558 FOLIO_TEST_CLEAR_FLAG(active, FOLIO_HEAD_PAGE) 559PAGEFLAG(Workingset, workingset, PF_HEAD) 560 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 561PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 562 563/* Xen */ 564PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 565 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 566PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 567PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 568PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 569 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 570 571PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 572 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 573 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 574FOLIO_FLAG(swapbacked, FOLIO_HEAD_PAGE) 575 __FOLIO_CLEAR_FLAG(swapbacked, FOLIO_HEAD_PAGE) 576 __FOLIO_SET_FLAG(swapbacked, FOLIO_HEAD_PAGE) 577 578/* 579 * Private page markings that may be used by the filesystem that owns the page 580 * for its own purposes. 581 * - PG_private and PG_private_2 cause release_folio() and co to be invoked 582 */ 583PAGEFLAG(Private, private, PF_ANY) 584FOLIO_FLAG(private_2, FOLIO_HEAD_PAGE) 585 586/* owner_2 can be set on tail pages for anon memory */ 587FOLIO_FLAG(owner_2, FOLIO_HEAD_PAGE) 588 589/* 590 * Only test-and-set exist for PG_writeback. The unconditional operators are 591 * risky: they bypass page accounting. 592 */ 593TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 594 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 595FOLIO_FLAG(mappedtodisk, FOLIO_HEAD_PAGE) 596 597/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 598PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 599 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 600FOLIO_FLAG(readahead, FOLIO_HEAD_PAGE) 601 FOLIO_TEST_CLEAR_FLAG(readahead, FOLIO_HEAD_PAGE) 602 603FOLIO_FLAG(dropbehind, FOLIO_HEAD_PAGE) 604 FOLIO_TEST_CLEAR_FLAG(dropbehind, FOLIO_HEAD_PAGE) 605 __FOLIO_SET_FLAG(dropbehind, FOLIO_HEAD_PAGE) 606 607#ifdef CONFIG_HIGHMEM 608/* 609 * Must use a macro here due to header dependency issues. page_zone() is not 610 * available at this point. 611 */ 612#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 613#define folio_test_highmem(__f) is_highmem_idx(folio_zonenum(__f)) 614#else 615PAGEFLAG_FALSE(HighMem, highmem) 616#endif 617 618/* Does kmap_local_folio() only allow access to one page of the folio? */ 619#ifdef CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP 620#define folio_test_partial_kmap(f) true 621#else 622#define folio_test_partial_kmap(f) folio_test_highmem(f) 623#endif 624 625#ifdef CONFIG_SWAP 626static __always_inline bool folio_test_swapcache(const struct folio *folio) 627{ 628 return folio_test_swapbacked(folio) && 629 test_bit(PG_swapcache, const_folio_flags(folio, 0)); 630} 631 632FOLIO_SET_FLAG(swapcache, FOLIO_HEAD_PAGE) 633FOLIO_CLEAR_FLAG(swapcache, FOLIO_HEAD_PAGE) 634#else 635FOLIO_FLAG_FALSE(swapcache) 636#endif 637 638FOLIO_FLAG(unevictable, FOLIO_HEAD_PAGE) 639 __FOLIO_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE) 640 FOLIO_TEST_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE) 641 642#ifdef CONFIG_MMU 643FOLIO_FLAG(mlocked, FOLIO_HEAD_PAGE) 644 __FOLIO_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE) 645 FOLIO_TEST_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE) 646 FOLIO_TEST_SET_FLAG(mlocked, FOLIO_HEAD_PAGE) 647#else 648FOLIO_FLAG_FALSE(mlocked) 649 __FOLIO_CLEAR_FLAG_NOOP(mlocked) 650 FOLIO_TEST_CLEAR_FLAG_FALSE(mlocked) 651 FOLIO_TEST_SET_FLAG_FALSE(mlocked) 652#endif 653 654#ifdef CONFIG_MEMORY_FAILURE 655PAGEFLAG(HWPoison, hwpoison, PF_ANY) 656TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 657#define __PG_HWPOISON (1UL << PG_hwpoison) 658#else 659PAGEFLAG_FALSE(HWPoison, hwpoison) 660#define __PG_HWPOISON 0 661#endif 662 663#ifdef CONFIG_PAGE_IDLE_FLAG 664#ifdef CONFIG_64BIT 665FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE) 666FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE) 667FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE) 668FOLIO_FLAG(idle, FOLIO_HEAD_PAGE) 669#endif 670/* See page_idle.h for !64BIT workaround */ 671#else /* !CONFIG_PAGE_IDLE_FLAG */ 672FOLIO_FLAG_FALSE(young) 673FOLIO_TEST_CLEAR_FLAG_FALSE(young) 674FOLIO_FLAG_FALSE(idle) 675#endif 676 677/* 678 * PageReported() is used to track reported free pages within the Buddy 679 * allocator. We can use the non-atomic version of the test and set 680 * operations as both should be shielded with the zone lock to prevent 681 * any possible races on the setting or clearing of the bit. 682 */ 683__PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 684 685#ifdef CONFIG_MEMORY_HOTPLUG 686PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY) 687#else 688PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted) 689#endif 690 691/* 692 * On an anonymous folio mapped into a user virtual memory area, 693 * folio->mapping points to its anon_vma, not to a struct address_space; 694 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 695 * 696 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 697 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 698 * bit; and then folio->mapping points, not to an anon_vma, but to a private 699 * structure which KSM associates with that merged page. See ksm.h. 700 * 701 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 702 * page and then folio->mapping points to a struct movable_operations. 703 * 704 * Please note that, confusingly, "folio_mapping" refers to the inode 705 * address_space which maps the folio from disk; whereas "folio_mapped" 706 * refers to user virtual address space into which the folio is mapped. 707 * 708 * For slab pages, since slab reuses the bits in struct page to store its 709 * internal states, the folio->mapping does not exist as such, nor do 710 * these flags below. So in order to avoid testing non-existent bits, 711 * please make sure that folio_test_slab(folio) actually evaluates to 712 * false before calling the following functions (e.g., folio_test_anon). 713 * See mm/slab.h. 714 */ 715#define PAGE_MAPPING_ANON 0x1 716#define PAGE_MAPPING_MOVABLE 0x2 717#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 718#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 719 720static __always_inline bool folio_mapping_flags(const struct folio *folio) 721{ 722 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0; 723} 724 725static __always_inline bool PageMappingFlags(const struct page *page) 726{ 727 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 728} 729 730static __always_inline bool folio_test_anon(const struct folio *folio) 731{ 732 return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0; 733} 734 735static __always_inline bool PageAnonNotKsm(const struct page *page) 736{ 737 unsigned long flags = (unsigned long)page_folio(page)->mapping; 738 739 return (flags & PAGE_MAPPING_FLAGS) == PAGE_MAPPING_ANON; 740} 741 742static __always_inline bool PageAnon(const struct page *page) 743{ 744 return folio_test_anon(page_folio(page)); 745} 746 747static __always_inline bool __folio_test_movable(const struct folio *folio) 748{ 749 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 750 PAGE_MAPPING_MOVABLE; 751} 752 753static __always_inline bool __PageMovable(const struct page *page) 754{ 755 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 756 PAGE_MAPPING_MOVABLE; 757} 758 759#ifdef CONFIG_KSM 760/* 761 * A KSM page is one of those write-protected "shared pages" or "merged pages" 762 * which KSM maps into multiple mms, wherever identical anonymous page content 763 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 764 * anon_vma, but to that page's node of the stable tree. 765 */ 766static __always_inline bool folio_test_ksm(const struct folio *folio) 767{ 768 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 769 PAGE_MAPPING_KSM; 770} 771#else 772FOLIO_TEST_FLAG_FALSE(ksm) 773#endif 774 775u64 stable_page_flags(const struct page *page); 776 777/** 778 * folio_xor_flags_has_waiters - Change some folio flags. 779 * @folio: The folio. 780 * @mask: Bits set in this word will be changed. 781 * 782 * This must only be used for flags which are changed with the folio 783 * lock held. For example, it is unsafe to use for PG_dirty as that 784 * can be set without the folio lock held. It can also only be used 785 * on flags which are in the range 0-6 as some of the implementations 786 * only affect those bits. 787 * 788 * Return: Whether there are tasks waiting on the folio. 789 */ 790static inline bool folio_xor_flags_has_waiters(struct folio *folio, 791 unsigned long mask) 792{ 793 return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0)); 794} 795 796/** 797 * folio_test_uptodate - Is this folio up to date? 798 * @folio: The folio. 799 * 800 * The uptodate flag is set on a folio when every byte in the folio is 801 * at least as new as the corresponding bytes on storage. Anonymous 802 * and CoW folios are always uptodate. If the folio is not uptodate, 803 * some of the bytes in it may be; see the is_partially_uptodate() 804 * address_space operation. 805 */ 806static inline bool folio_test_uptodate(const struct folio *folio) 807{ 808 bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0)); 809 /* 810 * Must ensure that the data we read out of the folio is loaded 811 * _after_ we've loaded folio->flags to check the uptodate bit. 812 * We can skip the barrier if the folio is not uptodate, because 813 * we wouldn't be reading anything from it. 814 * 815 * See folio_mark_uptodate() for the other side of the story. 816 */ 817 if (ret) 818 smp_rmb(); 819 820 return ret; 821} 822 823static inline bool PageUptodate(const struct page *page) 824{ 825 return folio_test_uptodate(page_folio(page)); 826} 827 828static __always_inline void __folio_mark_uptodate(struct folio *folio) 829{ 830 smp_wmb(); 831 __set_bit(PG_uptodate, folio_flags(folio, 0)); 832} 833 834static __always_inline void folio_mark_uptodate(struct folio *folio) 835{ 836 /* 837 * Memory barrier must be issued before setting the PG_uptodate bit, 838 * so that all previous stores issued in order to bring the folio 839 * uptodate are actually visible before folio_test_uptodate becomes true. 840 */ 841 smp_wmb(); 842 set_bit(PG_uptodate, folio_flags(folio, 0)); 843} 844 845static __always_inline void __SetPageUptodate(struct page *page) 846{ 847 __folio_mark_uptodate((struct folio *)page); 848} 849 850static __always_inline void SetPageUptodate(struct page *page) 851{ 852 folio_mark_uptodate((struct folio *)page); 853} 854 855CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 856 857void __folio_start_writeback(struct folio *folio, bool keep_write); 858void set_page_writeback(struct page *page); 859 860#define folio_start_writeback(folio) \ 861 __folio_start_writeback(folio, false) 862#define folio_start_writeback_keepwrite(folio) \ 863 __folio_start_writeback(folio, true) 864 865static __always_inline bool folio_test_head(const struct folio *folio) 866{ 867 return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY)); 868} 869 870static __always_inline int PageHead(const struct page *page) 871{ 872 PF_POISONED_CHECK(page); 873 return test_bit(PG_head, &page->flags) && !page_is_fake_head(page); 874} 875 876__SETPAGEFLAG(Head, head, PF_ANY) 877__CLEARPAGEFLAG(Head, head, PF_ANY) 878CLEARPAGEFLAG(Head, head, PF_ANY) 879 880/** 881 * folio_test_large() - Does this folio contain more than one page? 882 * @folio: The folio to test. 883 * 884 * Return: True if the folio is larger than one page. 885 */ 886static inline bool folio_test_large(const struct folio *folio) 887{ 888 return folio_test_head(folio); 889} 890 891static __always_inline void set_compound_head(struct page *page, struct page *head) 892{ 893 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 894} 895 896static __always_inline void clear_compound_head(struct page *page) 897{ 898 WRITE_ONCE(page->compound_head, 0); 899} 900 901#ifdef CONFIG_TRANSPARENT_HUGEPAGE 902static inline void ClearPageCompound(struct page *page) 903{ 904 BUG_ON(!PageHead(page)); 905 ClearPageHead(page); 906} 907FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE) 908FOLIO_FLAG(partially_mapped, FOLIO_SECOND_PAGE) 909#else 910FOLIO_FLAG_FALSE(large_rmappable) 911FOLIO_FLAG_FALSE(partially_mapped) 912#endif 913 914#define PG_head_mask ((1UL << PG_head)) 915 916#ifdef CONFIG_TRANSPARENT_HUGEPAGE 917/* 918 * PageHuge() only returns true for hugetlbfs pages, but not for 919 * normal or transparent huge pages. 920 * 921 * PageTransHuge() returns true for both transparent huge and 922 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 923 * called only in the core VM paths where hugetlbfs pages can't exist. 924 */ 925static inline int PageTransHuge(const struct page *page) 926{ 927 VM_BUG_ON_PAGE(PageTail(page), page); 928 return PageHead(page); 929} 930 931/* 932 * PageTransCompound returns true for both transparent huge pages 933 * and hugetlbfs pages, so it should only be called when it's known 934 * that hugetlbfs pages aren't involved. 935 */ 936static inline int PageTransCompound(const struct page *page) 937{ 938 return PageCompound(page); 939} 940#else 941TESTPAGEFLAG_FALSE(TransHuge, transhuge) 942TESTPAGEFLAG_FALSE(TransCompound, transcompound) 943#endif 944 945#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 946/* 947 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the 948 * compound page. 949 * 950 * This flag is set by hwpoison handler. Cleared by THP split or free page. 951 */ 952FOLIO_FLAG(has_hwpoisoned, FOLIO_SECOND_PAGE) 953#else 954FOLIO_FLAG_FALSE(has_hwpoisoned) 955#endif 956 957/* 958 * For pages that do not use mapcount, page_type may be used. 959 * The low 24 bits of pagetype may be used for your own purposes, as long 960 * as you are careful to not affect the top 8 bits. The low bits of 961 * pagetype will be overwritten when you clear the page_type from the page. 962 */ 963enum pagetype { 964 /* 0x00-0x7f are positive numbers, ie mapcount */ 965 /* Reserve 0x80-0xef for mapcount overflow. */ 966 PGTY_buddy = 0xf0, 967 PGTY_offline = 0xf1, 968 PGTY_table = 0xf2, 969 PGTY_guard = 0xf3, 970 PGTY_hugetlb = 0xf4, 971 PGTY_slab = 0xf5, 972 PGTY_zsmalloc = 0xf6, 973 PGTY_unaccepted = 0xf7, 974 PGTY_large_kmalloc = 0xf8, 975 976 PGTY_mapcount_underflow = 0xff 977}; 978 979static inline bool page_type_has_type(int page_type) 980{ 981 return page_type < (PGTY_mapcount_underflow << 24); 982} 983 984/* This takes a mapcount which is one more than page->_mapcount */ 985static inline bool page_mapcount_is_type(unsigned int mapcount) 986{ 987 return page_type_has_type(mapcount - 1); 988} 989 990static inline bool page_has_type(const struct page *page) 991{ 992 return page_mapcount_is_type(data_race(page->page_type)); 993} 994 995#define FOLIO_TYPE_OPS(lname, fname) \ 996static __always_inline bool folio_test_##fname(const struct folio *folio) \ 997{ \ 998 return data_race(folio->page.page_type >> 24) == PGTY_##lname; \ 999} \ 1000static __always_inline void __folio_set_##fname(struct folio *folio) \ 1001{ \ 1002 if (folio_test_##fname(folio)) \ 1003 return; \ 1004 VM_BUG_ON_FOLIO(data_race(folio->page.page_type) != UINT_MAX, \ 1005 folio); \ 1006 folio->page.page_type = (unsigned int)PGTY_##lname << 24; \ 1007} \ 1008static __always_inline void __folio_clear_##fname(struct folio *folio) \ 1009{ \ 1010 if (folio->page.page_type == UINT_MAX) \ 1011 return; \ 1012 VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio); \ 1013 folio->page.page_type = UINT_MAX; \ 1014} 1015 1016#define PAGE_TYPE_OPS(uname, lname, fname) \ 1017FOLIO_TYPE_OPS(lname, fname) \ 1018static __always_inline int Page##uname(const struct page *page) \ 1019{ \ 1020 return data_race(page->page_type >> 24) == PGTY_##lname; \ 1021} \ 1022static __always_inline void __SetPage##uname(struct page *page) \ 1023{ \ 1024 if (Page##uname(page)) \ 1025 return; \ 1026 VM_BUG_ON_PAGE(data_race(page->page_type) != UINT_MAX, page); \ 1027 page->page_type = (unsigned int)PGTY_##lname << 24; \ 1028} \ 1029static __always_inline void __ClearPage##uname(struct page *page) \ 1030{ \ 1031 if (page->page_type == UINT_MAX) \ 1032 return; \ 1033 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 1034 page->page_type = UINT_MAX; \ 1035} 1036 1037/* 1038 * PageBuddy() indicates that the page is free and in the buddy system 1039 * (see mm/page_alloc.c). 1040 */ 1041PAGE_TYPE_OPS(Buddy, buddy, buddy) 1042 1043/* 1044 * PageOffline() indicates that the page is logically offline although the 1045 * containing section is online. (e.g. inflated in a balloon driver or 1046 * not onlined when onlining the section). 1047 * The content of these pages is effectively stale. Such pages should not 1048 * be touched (read/write/dump/save) except by their owner. 1049 * 1050 * When a memory block gets onlined, all pages are initialized with a 1051 * refcount of 1 and PageOffline(). generic_online_page() will 1052 * take care of clearing PageOffline(). 1053 * 1054 * If a driver wants to allow to offline unmovable PageOffline() pages without 1055 * putting them back to the buddy, it can do so via the memory notifier by 1056 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 1057 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 1058 * pages (now with a reference count of zero) are treated like free (unmanaged) 1059 * pages, allowing the containing memory block to get offlined. A driver that 1060 * relies on this feature is aware that re-onlining the memory block will 1061 * require not giving them to the buddy via generic_online_page(). 1062 * 1063 * Memory offlining code will not adjust the managed page count for any 1064 * PageOffline() pages, treating them like they were never exposed to the 1065 * buddy using generic_online_page(). 1066 * 1067 * There are drivers that mark a page PageOffline() and expect there won't be 1068 * any further access to page content. PFN walkers that read content of random 1069 * pages should check PageOffline() and synchronize with such drivers using 1070 * page_offline_freeze()/page_offline_thaw(). 1071 */ 1072PAGE_TYPE_OPS(Offline, offline, offline) 1073 1074extern void page_offline_freeze(void); 1075extern void page_offline_thaw(void); 1076extern void page_offline_begin(void); 1077extern void page_offline_end(void); 1078 1079/* 1080 * Marks pages in use as page tables. 1081 */ 1082PAGE_TYPE_OPS(Table, table, pgtable) 1083 1084/* 1085 * Marks guardpages used with debug_pagealloc. 1086 */ 1087PAGE_TYPE_OPS(Guard, guard, guard) 1088 1089FOLIO_TYPE_OPS(slab, slab) 1090 1091/** 1092 * PageSlab - Determine if the page belongs to the slab allocator 1093 * @page: The page to test. 1094 * 1095 * Context: Any context. 1096 * Return: True for slab pages, false for any other kind of page. 1097 */ 1098static inline bool PageSlab(const struct page *page) 1099{ 1100 return folio_test_slab(page_folio(page)); 1101} 1102 1103#ifdef CONFIG_HUGETLB_PAGE 1104FOLIO_TYPE_OPS(hugetlb, hugetlb) 1105#else 1106FOLIO_TEST_FLAG_FALSE(hugetlb) 1107#endif 1108 1109PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc) 1110 1111/* 1112 * Mark pages that has to be accepted before touched for the first time. 1113 * 1114 * Serialized with zone lock. 1115 */ 1116PAGE_TYPE_OPS(Unaccepted, unaccepted, unaccepted) 1117FOLIO_TYPE_OPS(large_kmalloc, large_kmalloc) 1118 1119/** 1120 * PageHuge - Determine if the page belongs to hugetlbfs 1121 * @page: The page to test. 1122 * 1123 * Context: Any context. 1124 * Return: True for hugetlbfs pages, false for anon pages or pages 1125 * belonging to other filesystems. 1126 */ 1127static inline bool PageHuge(const struct page *page) 1128{ 1129 return folio_test_hugetlb(page_folio(page)); 1130} 1131 1132/* 1133 * Check if a page is currently marked HWPoisoned. Note that this check is 1134 * best effort only and inherently racy: there is no way to synchronize with 1135 * failing hardware. 1136 */ 1137static inline bool is_page_hwpoison(const struct page *page) 1138{ 1139 const struct folio *folio; 1140 1141 if (PageHWPoison(page)) 1142 return true; 1143 folio = page_folio(page); 1144 return folio_test_hugetlb(folio) && PageHWPoison(&folio->page); 1145} 1146 1147static inline bool folio_contain_hwpoisoned_page(struct folio *folio) 1148{ 1149 return folio_test_hwpoison(folio) || 1150 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio)); 1151} 1152 1153bool is_free_buddy_page(const struct page *page); 1154 1155PAGEFLAG(Isolated, isolated, PF_ANY); 1156 1157static __always_inline int PageAnonExclusive(const struct page *page) 1158{ 1159 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1160 /* 1161 * HugeTLB stores this information on the head page; THP keeps it per 1162 * page 1163 */ 1164 if (PageHuge(page)) 1165 page = compound_head(page); 1166 return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1167} 1168 1169static __always_inline void SetPageAnonExclusive(struct page *page) 1170{ 1171 VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page); 1172 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1173 set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1174} 1175 1176static __always_inline void ClearPageAnonExclusive(struct page *page) 1177{ 1178 VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page); 1179 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1180 clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1181} 1182 1183static __always_inline void __ClearPageAnonExclusive(struct page *page) 1184{ 1185 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1186 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1187 __clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1188} 1189 1190#ifdef CONFIG_MMU 1191#define __PG_MLOCKED (1UL << PG_mlocked) 1192#else 1193#define __PG_MLOCKED 0 1194#endif 1195 1196/* 1197 * Flags checked when a page is freed. Pages being freed should not have 1198 * these flags set. If they are, there is a problem. 1199 */ 1200#define PAGE_FLAGS_CHECK_AT_FREE \ 1201 (1UL << PG_lru | 1UL << PG_locked | \ 1202 1UL << PG_private | 1UL << PG_private_2 | \ 1203 1UL << PG_writeback | 1UL << PG_reserved | \ 1204 1UL << PG_active | \ 1205 1UL << PG_unevictable | __PG_MLOCKED | LRU_GEN_MASK) 1206 1207/* 1208 * Flags checked when a page is prepped for return by the page allocator. 1209 * Pages being prepped should not have these flags set. If they are set, 1210 * there has been a kernel bug or struct page corruption. 1211 * 1212 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 1213 * alloc-free cycle to prevent from reusing the page. 1214 */ 1215#define PAGE_FLAGS_CHECK_AT_PREP \ 1216 ((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK) 1217 1218/* 1219 * Flags stored in the second page of a compound page. They may overlap 1220 * the CHECK_AT_FREE flags above, so need to be cleared. 1221 */ 1222#define PAGE_FLAGS_SECOND \ 1223 (0xffUL /* order */ | 1UL << PG_has_hwpoisoned | \ 1224 1UL << PG_large_rmappable | 1UL << PG_partially_mapped) 1225 1226#define PAGE_FLAGS_PRIVATE \ 1227 (1UL << PG_private | 1UL << PG_private_2) 1228/** 1229 * folio_has_private - Determine if folio has private stuff 1230 * @folio: The folio to be checked 1231 * 1232 * Determine if a folio has private stuff, indicating that release routines 1233 * should be invoked upon it. 1234 */ 1235static inline int folio_has_private(const struct folio *folio) 1236{ 1237 return !!(folio->flags & PAGE_FLAGS_PRIVATE); 1238} 1239 1240static inline bool folio_test_large_maybe_mapped_shared(const struct folio *folio) 1241{ 1242 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids); 1243} 1244#undef PF_ANY 1245#undef PF_HEAD 1246#undef PF_NO_TAIL 1247#undef PF_NO_COMPOUND 1248#undef PF_SECOND 1249#endif /* !__GENERATING_BOUNDS_H */ 1250 1251#endif /* PAGE_FLAGS_H */