at v6.15 70 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/list_nulls.h> 11#include <linux/wait.h> 12#include <linux/bitops.h> 13#include <linux/cache.h> 14#include <linux/threads.h> 15#include <linux/numa.h> 16#include <linux/init.h> 17#include <linux/seqlock.h> 18#include <linux/nodemask.h> 19#include <linux/pageblock-flags.h> 20#include <linux/page-flags-layout.h> 21#include <linux/atomic.h> 22#include <linux/mm_types.h> 23#include <linux/page-flags.h> 24#include <linux/local_lock.h> 25#include <linux/zswap.h> 26#include <asm/page.h> 27 28/* Free memory management - zoned buddy allocator. */ 29#ifndef CONFIG_ARCH_FORCE_MAX_ORDER 30#define MAX_PAGE_ORDER 10 31#else 32#define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 33#endif 34#define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) 35 36#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 37 38#define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) 39 40/* 41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 42 * costly to service. That is between allocation orders which should 43 * coalesce naturally under reasonable reclaim pressure and those which 44 * will not. 45 */ 46#define PAGE_ALLOC_COSTLY_ORDER 3 47 48enum migratetype { 49 MIGRATE_UNMOVABLE, 50 MIGRATE_MOVABLE, 51 MIGRATE_RECLAIMABLE, 52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 54#ifdef CONFIG_CMA 55 /* 56 * MIGRATE_CMA migration type is designed to mimic the way 57 * ZONE_MOVABLE works. Only movable pages can be allocated 58 * from MIGRATE_CMA pageblocks and page allocator never 59 * implicitly change migration type of MIGRATE_CMA pageblock. 60 * 61 * The way to use it is to change migratetype of a range of 62 * pageblocks to MIGRATE_CMA which can be done by 63 * __free_pageblock_cma() function. 64 */ 65 MIGRATE_CMA, 66#endif 67#ifdef CONFIG_MEMORY_ISOLATION 68 MIGRATE_ISOLATE, /* can't allocate from here */ 69#endif 70 MIGRATE_TYPES 71}; 72 73/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 74extern const char * const migratetype_names[MIGRATE_TYPES]; 75 76#ifdef CONFIG_CMA 77# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 78# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 79# define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \ 80 get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK)) 81#else 82# define is_migrate_cma(migratetype) false 83# define is_migrate_cma_page(_page) false 84# define is_migrate_cma_folio(folio, pfn) false 85#endif 86 87static inline bool is_migrate_movable(int mt) 88{ 89 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 90} 91 92/* 93 * Check whether a migratetype can be merged with another migratetype. 94 * 95 * It is only mergeable when it can fall back to other migratetypes for 96 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 97 */ 98static inline bool migratetype_is_mergeable(int mt) 99{ 100 return mt < MIGRATE_PCPTYPES; 101} 102 103#define for_each_migratetype_order(order, type) \ 104 for (order = 0; order < NR_PAGE_ORDERS; order++) \ 105 for (type = 0; type < MIGRATE_TYPES; type++) 106 107extern int page_group_by_mobility_disabled; 108 109#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 110 111#define get_pageblock_migratetype(page) \ 112 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 113 114#define folio_migratetype(folio) \ 115 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 116 MIGRATETYPE_MASK) 117struct free_area { 118 struct list_head free_list[MIGRATE_TYPES]; 119 unsigned long nr_free; 120}; 121 122struct pglist_data; 123 124#ifdef CONFIG_NUMA 125enum numa_stat_item { 126 NUMA_HIT, /* allocated in intended node */ 127 NUMA_MISS, /* allocated in non intended node */ 128 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 130 NUMA_LOCAL, /* allocation from local node */ 131 NUMA_OTHER, /* allocation from other node */ 132 NR_VM_NUMA_EVENT_ITEMS 133}; 134#else 135#define NR_VM_NUMA_EVENT_ITEMS 0 136#endif 137 138enum zone_stat_item { 139 /* First 128 byte cacheline (assuming 64 bit words) */ 140 NR_FREE_PAGES, 141 NR_FREE_PAGES_BLOCKS, 142 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 143 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 144 NR_ZONE_ACTIVE_ANON, 145 NR_ZONE_INACTIVE_FILE, 146 NR_ZONE_ACTIVE_FILE, 147 NR_ZONE_UNEVICTABLE, 148 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 149 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 150 /* Second 128 byte cacheline */ 151 NR_BOUNCE, 152#if IS_ENABLED(CONFIG_ZSMALLOC) 153 NR_ZSPAGES, /* allocated in zsmalloc */ 154#endif 155 NR_FREE_CMA_PAGES, 156#ifdef CONFIG_UNACCEPTED_MEMORY 157 NR_UNACCEPTED, 158#endif 159 NR_VM_ZONE_STAT_ITEMS }; 160 161enum node_stat_item { 162 NR_LRU_BASE, 163 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 164 NR_ACTIVE_ANON, /* " " " " " */ 165 NR_INACTIVE_FILE, /* " " " " " */ 166 NR_ACTIVE_FILE, /* " " " " " */ 167 NR_UNEVICTABLE, /* " " " " " */ 168 NR_SLAB_RECLAIMABLE_B, 169 NR_SLAB_UNRECLAIMABLE_B, 170 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 171 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 172 WORKINGSET_NODES, 173 WORKINGSET_REFAULT_BASE, 174 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 175 WORKINGSET_REFAULT_FILE, 176 WORKINGSET_ACTIVATE_BASE, 177 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 178 WORKINGSET_ACTIVATE_FILE, 179 WORKINGSET_RESTORE_BASE, 180 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 181 WORKINGSET_RESTORE_FILE, 182 WORKINGSET_NODERECLAIM, 183 NR_ANON_MAPPED, /* Mapped anonymous pages */ 184 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 185 only modified from process context */ 186 NR_FILE_PAGES, 187 NR_FILE_DIRTY, 188 NR_WRITEBACK, 189 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 190 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 191 NR_SHMEM_THPS, 192 NR_SHMEM_PMDMAPPED, 193 NR_FILE_THPS, 194 NR_FILE_PMDMAPPED, 195 NR_ANON_THPS, 196 NR_VMSCAN_WRITE, 197 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 198 NR_DIRTIED, /* page dirtyings since bootup */ 199 NR_WRITTEN, /* page writings since bootup */ 200 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 201 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 202 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 203 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 204 NR_KERNEL_STACK_KB, /* measured in KiB */ 205#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 206 NR_KERNEL_SCS_KB, /* measured in KiB */ 207#endif 208 NR_PAGETABLE, /* used for pagetables */ 209 NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ 210#ifdef CONFIG_IOMMU_SUPPORT 211 NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */ 212#endif 213#ifdef CONFIG_SWAP 214 NR_SWAPCACHE, 215#endif 216#ifdef CONFIG_NUMA_BALANCING 217 PGPROMOTE_SUCCESS, /* promote successfully */ 218 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 219#endif 220 /* PGDEMOTE_*: pages demoted */ 221 PGDEMOTE_KSWAPD, 222 PGDEMOTE_DIRECT, 223 PGDEMOTE_KHUGEPAGED, 224 PGDEMOTE_PROACTIVE, 225#ifdef CONFIG_HUGETLB_PAGE 226 NR_HUGETLB, 227#endif 228 NR_BALLOON_PAGES, 229 NR_VM_NODE_STAT_ITEMS 230}; 231 232/* 233 * Returns true if the item should be printed in THPs (/proc/vmstat 234 * currently prints number of anon, file and shmem THPs. But the item 235 * is charged in pages). 236 */ 237static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 238{ 239 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 240 return false; 241 242 return item == NR_ANON_THPS || 243 item == NR_FILE_THPS || 244 item == NR_SHMEM_THPS || 245 item == NR_SHMEM_PMDMAPPED || 246 item == NR_FILE_PMDMAPPED; 247} 248 249/* 250 * Returns true if the value is measured in bytes (most vmstat values are 251 * measured in pages). This defines the API part, the internal representation 252 * might be different. 253 */ 254static __always_inline bool vmstat_item_in_bytes(int idx) 255{ 256 /* 257 * Global and per-node slab counters track slab pages. 258 * It's expected that changes are multiples of PAGE_SIZE. 259 * Internally values are stored in pages. 260 * 261 * Per-memcg and per-lruvec counters track memory, consumed 262 * by individual slab objects. These counters are actually 263 * byte-precise. 264 */ 265 return (idx == NR_SLAB_RECLAIMABLE_B || 266 idx == NR_SLAB_UNRECLAIMABLE_B); 267} 268 269/* 270 * We do arithmetic on the LRU lists in various places in the code, 271 * so it is important to keep the active lists LRU_ACTIVE higher in 272 * the array than the corresponding inactive lists, and to keep 273 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 274 * 275 * This has to be kept in sync with the statistics in zone_stat_item 276 * above and the descriptions in vmstat_text in mm/vmstat.c 277 */ 278#define LRU_BASE 0 279#define LRU_ACTIVE 1 280#define LRU_FILE 2 281 282enum lru_list { 283 LRU_INACTIVE_ANON = LRU_BASE, 284 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 285 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 286 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 287 LRU_UNEVICTABLE, 288 NR_LRU_LISTS 289}; 290 291enum vmscan_throttle_state { 292 VMSCAN_THROTTLE_WRITEBACK, 293 VMSCAN_THROTTLE_ISOLATED, 294 VMSCAN_THROTTLE_NOPROGRESS, 295 VMSCAN_THROTTLE_CONGESTED, 296 NR_VMSCAN_THROTTLE, 297}; 298 299#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 300 301#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 302 303static inline bool is_file_lru(enum lru_list lru) 304{ 305 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 306} 307 308static inline bool is_active_lru(enum lru_list lru) 309{ 310 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 311} 312 313#define WORKINGSET_ANON 0 314#define WORKINGSET_FILE 1 315#define ANON_AND_FILE 2 316 317enum lruvec_flags { 318 /* 319 * An lruvec has many dirty pages backed by a congested BDI: 320 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 321 * It can be cleared by cgroup reclaim or kswapd. 322 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 323 * It can only be cleared by kswapd. 324 * 325 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 326 * reclaim, but not vice versa. This only applies to the root cgroup. 327 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 328 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 329 * by kswapd). 330 */ 331 LRUVEC_CGROUP_CONGESTED, 332 LRUVEC_NODE_CONGESTED, 333}; 334 335#endif /* !__GENERATING_BOUNDS_H */ 336 337/* 338 * Evictable folios are divided into multiple generations. The youngest and the 339 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 340 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 341 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 342 * corresponding generation. The gen counter in folio->flags stores gen+1 while 343 * a folio is on one of lrugen->folios[]. Otherwise it stores 0. 344 * 345 * After a folio is faulted in, the aging needs to check the accessed bit at 346 * least twice before handing this folio over to the eviction. The first check 347 * clears the accessed bit from the initial fault; the second check makes sure 348 * this folio hasn't been used since then. This process, AKA second chance, 349 * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI 350 * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two 351 * generations are considered active; the rest of generations, if they exist, 352 * are considered inactive. See lru_gen_is_active(). 353 * 354 * PG_active is always cleared while a folio is on one of lrugen->folios[] so 355 * that the sliding window needs not to worry about it. And it's set again when 356 * a folio considered active is isolated for non-reclaiming purposes, e.g., 357 * migration. See lru_gen_add_folio() and lru_gen_del_folio(). 358 * 359 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 360 * number of categories of the active/inactive LRU when keeping track of 361 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 362 * in folio->flags, masked by LRU_GEN_MASK. 363 */ 364#define MIN_NR_GENS 2U 365#define MAX_NR_GENS 4U 366 367/* 368 * Each generation is divided into multiple tiers. A folio accessed N times 369 * through file descriptors is in tier order_base_2(N). A folio in the first 370 * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page 371 * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by 372 * PG_workingset. A folio in any other tier (1<N<5) between the first and last 373 * is marked by additional bits of LRU_REFS_WIDTH in folio->flags. 374 * 375 * In contrast to moving across generations which requires the LRU lock, moving 376 * across tiers only involves atomic operations on folio->flags and therefore 377 * has a negligible cost in the buffered access path. In the eviction path, 378 * comparisons of refaulted/(evicted+protected) from the first tier and the rest 379 * infer whether folios accessed multiple times through file descriptors are 380 * statistically hot and thus worth protecting. 381 * 382 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 383 * number of categories of the active/inactive LRU when keeping track of 384 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 385 * folio->flags, masked by LRU_REFS_MASK. 386 */ 387#define MAX_NR_TIERS 4U 388 389#ifndef __GENERATING_BOUNDS_H 390 391#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 392#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 393 394/* 395 * For folios accessed multiple times through file descriptors, 396 * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags 397 * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its 398 * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily 399 * promoted into the second oldest generation in the eviction path. And when 400 * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that 401 * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is 402 * only valid when PG_referenced is set. 403 * 404 * For folios accessed multiple times through page tables, folio_update_gen() 405 * from a page table walk or lru_gen_set_refs() from a rmap walk sets 406 * PG_referenced after the accessed bit is cleared for the first time. 407 * Thereafter, those two paths set PG_workingset and promote folios to the 408 * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears 409 * PG_referenced. Note that for this case, LRU_REFS_MASK is not used. 410 * 411 * For both cases above, after PG_workingset is set on a folio, it remains until 412 * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It 413 * can be set again if lru_gen_test_recent() returns true upon a refault. 414 */ 415#define LRU_REFS_FLAGS (LRU_REFS_MASK | BIT(PG_referenced)) 416 417struct lruvec; 418struct page_vma_mapped_walk; 419 420#ifdef CONFIG_LRU_GEN 421 422enum { 423 LRU_GEN_ANON, 424 LRU_GEN_FILE, 425}; 426 427enum { 428 LRU_GEN_CORE, 429 LRU_GEN_MM_WALK, 430 LRU_GEN_NONLEAF_YOUNG, 431 NR_LRU_GEN_CAPS 432}; 433 434#define MIN_LRU_BATCH BITS_PER_LONG 435#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 436 437/* whether to keep historical stats from evicted generations */ 438#ifdef CONFIG_LRU_GEN_STATS 439#define NR_HIST_GENS MAX_NR_GENS 440#else 441#define NR_HIST_GENS 1U 442#endif 443 444/* 445 * The youngest generation number is stored in max_seq for both anon and file 446 * types as they are aged on an equal footing. The oldest generation numbers are 447 * stored in min_seq[] separately for anon and file types so that they can be 448 * incremented independently. Ideally min_seq[] are kept in sync when both anon 449 * and file types are evictable. However, to adapt to situations like extreme 450 * swappiness, they are allowed to be out of sync by at most 451 * MAX_NR_GENS-MIN_NR_GENS-1. 452 * 453 * The number of pages in each generation is eventually consistent and therefore 454 * can be transiently negative when reset_batch_size() is pending. 455 */ 456struct lru_gen_folio { 457 /* the aging increments the youngest generation number */ 458 unsigned long max_seq; 459 /* the eviction increments the oldest generation numbers */ 460 unsigned long min_seq[ANON_AND_FILE]; 461 /* the birth time of each generation in jiffies */ 462 unsigned long timestamps[MAX_NR_GENS]; 463 /* the multi-gen LRU lists, lazily sorted on eviction */ 464 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 465 /* the multi-gen LRU sizes, eventually consistent */ 466 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 467 /* the exponential moving average of refaulted */ 468 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 469 /* the exponential moving average of evicted+protected */ 470 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 471 /* can only be modified under the LRU lock */ 472 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 473 /* can be modified without holding the LRU lock */ 474 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 475 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 476 /* whether the multi-gen LRU is enabled */ 477 bool enabled; 478 /* the memcg generation this lru_gen_folio belongs to */ 479 u8 gen; 480 /* the list segment this lru_gen_folio belongs to */ 481 u8 seg; 482 /* per-node lru_gen_folio list for global reclaim */ 483 struct hlist_nulls_node list; 484}; 485 486enum { 487 MM_LEAF_TOTAL, /* total leaf entries */ 488 MM_LEAF_YOUNG, /* young leaf entries */ 489 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 490 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 491 NR_MM_STATS 492}; 493 494/* double-buffering Bloom filters */ 495#define NR_BLOOM_FILTERS 2 496 497struct lru_gen_mm_state { 498 /* synced with max_seq after each iteration */ 499 unsigned long seq; 500 /* where the current iteration continues after */ 501 struct list_head *head; 502 /* where the last iteration ended before */ 503 struct list_head *tail; 504 /* Bloom filters flip after each iteration */ 505 unsigned long *filters[NR_BLOOM_FILTERS]; 506 /* the mm stats for debugging */ 507 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 508}; 509 510struct lru_gen_mm_walk { 511 /* the lruvec under reclaim */ 512 struct lruvec *lruvec; 513 /* max_seq from lru_gen_folio: can be out of date */ 514 unsigned long seq; 515 /* the next address within an mm to scan */ 516 unsigned long next_addr; 517 /* to batch promoted pages */ 518 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 519 /* to batch the mm stats */ 520 int mm_stats[NR_MM_STATS]; 521 /* total batched items */ 522 int batched; 523 int swappiness; 524 bool force_scan; 525}; 526 527/* 528 * For each node, memcgs are divided into two generations: the old and the 529 * young. For each generation, memcgs are randomly sharded into multiple bins 530 * to improve scalability. For each bin, the hlist_nulls is virtually divided 531 * into three segments: the head, the tail and the default. 532 * 533 * An onlining memcg is added to the tail of a random bin in the old generation. 534 * The eviction starts at the head of a random bin in the old generation. The 535 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 536 * the old generation, is incremented when all its bins become empty. 537 * 538 * There are four operations: 539 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its 540 * current generation (old or young) and updates its "seg" to "head"; 541 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its 542 * current generation (old or young) and updates its "seg" to "tail"; 543 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old 544 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 545 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the 546 * young generation, updates its "gen" to "young" and resets its "seg" to 547 * "default". 548 * 549 * The events that trigger the above operations are: 550 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 551 * 2. The first attempt to reclaim a memcg below low, which triggers 552 * MEMCG_LRU_TAIL; 553 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size 554 * threshold, which triggers MEMCG_LRU_TAIL; 555 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size 556 * threshold, which triggers MEMCG_LRU_YOUNG; 557 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; 558 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 559 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. 560 * 561 * Notes: 562 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing 563 * of their max_seq counters ensures the eventual fairness to all eligible 564 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 565 * 2. There are only two valid generations: old (seq) and young (seq+1). 566 * MEMCG_NR_GENS is set to three so that when reading the generation counter 567 * locklessly, a stale value (seq-1) does not wraparound to young. 568 */ 569#define MEMCG_NR_GENS 3 570#define MEMCG_NR_BINS 8 571 572struct lru_gen_memcg { 573 /* the per-node memcg generation counter */ 574 unsigned long seq; 575 /* each memcg has one lru_gen_folio per node */ 576 unsigned long nr_memcgs[MEMCG_NR_GENS]; 577 /* per-node lru_gen_folio list for global reclaim */ 578 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 579 /* protects the above */ 580 spinlock_t lock; 581}; 582 583void lru_gen_init_pgdat(struct pglist_data *pgdat); 584void lru_gen_init_lruvec(struct lruvec *lruvec); 585bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 586 587void lru_gen_init_memcg(struct mem_cgroup *memcg); 588void lru_gen_exit_memcg(struct mem_cgroup *memcg); 589void lru_gen_online_memcg(struct mem_cgroup *memcg); 590void lru_gen_offline_memcg(struct mem_cgroup *memcg); 591void lru_gen_release_memcg(struct mem_cgroup *memcg); 592void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 593 594#else /* !CONFIG_LRU_GEN */ 595 596static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 597{ 598} 599 600static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 601{ 602} 603 604static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 605{ 606 return false; 607} 608 609static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 610{ 611} 612 613static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 614{ 615} 616 617static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 618{ 619} 620 621static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 622{ 623} 624 625static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 626{ 627} 628 629static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 630{ 631} 632 633#endif /* CONFIG_LRU_GEN */ 634 635struct lruvec { 636 struct list_head lists[NR_LRU_LISTS]; 637 /* per lruvec lru_lock for memcg */ 638 spinlock_t lru_lock; 639 /* 640 * These track the cost of reclaiming one LRU - file or anon - 641 * over the other. As the observed cost of reclaiming one LRU 642 * increases, the reclaim scan balance tips toward the other. 643 */ 644 unsigned long anon_cost; 645 unsigned long file_cost; 646 /* Non-resident age, driven by LRU movement */ 647 atomic_long_t nonresident_age; 648 /* Refaults at the time of last reclaim cycle */ 649 unsigned long refaults[ANON_AND_FILE]; 650 /* Various lruvec state flags (enum lruvec_flags) */ 651 unsigned long flags; 652#ifdef CONFIG_LRU_GEN 653 /* evictable pages divided into generations */ 654 struct lru_gen_folio lrugen; 655#ifdef CONFIG_LRU_GEN_WALKS_MMU 656 /* to concurrently iterate lru_gen_mm_list */ 657 struct lru_gen_mm_state mm_state; 658#endif 659#endif /* CONFIG_LRU_GEN */ 660#ifdef CONFIG_MEMCG 661 struct pglist_data *pgdat; 662#endif 663 struct zswap_lruvec_state zswap_lruvec_state; 664}; 665 666/* Isolate for asynchronous migration */ 667#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 668/* Isolate unevictable pages */ 669#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 670 671/* LRU Isolation modes. */ 672typedef unsigned __bitwise isolate_mode_t; 673 674enum zone_watermarks { 675 WMARK_MIN, 676 WMARK_LOW, 677 WMARK_HIGH, 678 WMARK_PROMO, 679 NR_WMARK 680}; 681 682/* 683 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists 684 * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list 685 * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. 686 */ 687#ifdef CONFIG_TRANSPARENT_HUGEPAGE 688#define NR_PCP_THP 2 689#else 690#define NR_PCP_THP 0 691#endif 692#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 693#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 694 695/* 696 * Flags used in pcp->flags field. 697 * 698 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the 699 * previous page freeing. To avoid to drain PCP for an accident 700 * high-order page freeing. 701 * 702 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before 703 * draining PCP for consecutive high-order pages freeing without 704 * allocation if data cache slice of CPU is large enough. To reduce 705 * zone lock contention and keep cache-hot pages reusing. 706 */ 707#define PCPF_PREV_FREE_HIGH_ORDER BIT(0) 708#define PCPF_FREE_HIGH_BATCH BIT(1) 709 710struct per_cpu_pages { 711 spinlock_t lock; /* Protects lists field */ 712 int count; /* number of pages in the list */ 713 int high; /* high watermark, emptying needed */ 714 int high_min; /* min high watermark */ 715 int high_max; /* max high watermark */ 716 int batch; /* chunk size for buddy add/remove */ 717 u8 flags; /* protected by pcp->lock */ 718 u8 alloc_factor; /* batch scaling factor during allocate */ 719#ifdef CONFIG_NUMA 720 u8 expire; /* When 0, remote pagesets are drained */ 721#endif 722 short free_count; /* consecutive free count */ 723 724 /* Lists of pages, one per migrate type stored on the pcp-lists */ 725 struct list_head lists[NR_PCP_LISTS]; 726} ____cacheline_aligned_in_smp; 727 728struct per_cpu_zonestat { 729#ifdef CONFIG_SMP 730 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 731 s8 stat_threshold; 732#endif 733#ifdef CONFIG_NUMA 734 /* 735 * Low priority inaccurate counters that are only folded 736 * on demand. Use a large type to avoid the overhead of 737 * folding during refresh_cpu_vm_stats. 738 */ 739 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 740#endif 741}; 742 743struct per_cpu_nodestat { 744 s8 stat_threshold; 745 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 746}; 747 748#endif /* !__GENERATING_BOUNDS.H */ 749 750enum zone_type { 751 /* 752 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 753 * to DMA to all of the addressable memory (ZONE_NORMAL). 754 * On architectures where this area covers the whole 32 bit address 755 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 756 * DMA addressing constraints. This distinction is important as a 32bit 757 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 758 * platforms may need both zones as they support peripherals with 759 * different DMA addressing limitations. 760 */ 761#ifdef CONFIG_ZONE_DMA 762 ZONE_DMA, 763#endif 764#ifdef CONFIG_ZONE_DMA32 765 ZONE_DMA32, 766#endif 767 /* 768 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 769 * performed on pages in ZONE_NORMAL if the DMA devices support 770 * transfers to all addressable memory. 771 */ 772 ZONE_NORMAL, 773#ifdef CONFIG_HIGHMEM 774 /* 775 * A memory area that is only addressable by the kernel through 776 * mapping portions into its own address space. This is for example 777 * used by i386 to allow the kernel to address the memory beyond 778 * 900MB. The kernel will set up special mappings (page 779 * table entries on i386) for each page that the kernel needs to 780 * access. 781 */ 782 ZONE_HIGHMEM, 783#endif 784 /* 785 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 786 * movable pages with few exceptional cases described below. Main use 787 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 788 * likely to succeed, and to locally limit unmovable allocations - e.g., 789 * to increase the number of THP/huge pages. Notable special cases are: 790 * 791 * 1. Pinned pages: (long-term) pinning of movable pages might 792 * essentially turn such pages unmovable. Therefore, we do not allow 793 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 794 * faulted, they come from the right zone right away. However, it is 795 * still possible that address space already has pages in 796 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 797 * touches that memory before pinning). In such case we migrate them 798 * to a different zone. When migration fails - pinning fails. 799 * 2. memblock allocations: kernelcore/movablecore setups might create 800 * situations where ZONE_MOVABLE contains unmovable allocations 801 * after boot. Memory offlining and allocations fail early. 802 * 3. Memory holes: kernelcore/movablecore setups might create very rare 803 * situations where ZONE_MOVABLE contains memory holes after boot, 804 * for example, if we have sections that are only partially 805 * populated. Memory offlining and allocations fail early. 806 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 807 * memory offlining, such pages cannot be allocated. 808 * 5. Unmovable PG_offline pages: in paravirtualized environments, 809 * hotplugged memory blocks might only partially be managed by the 810 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 811 * parts not manged by the buddy are unmovable PG_offline pages. In 812 * some cases (virtio-mem), such pages can be skipped during 813 * memory offlining, however, cannot be moved/allocated. These 814 * techniques might use alloc_contig_range() to hide previously 815 * exposed pages from the buddy again (e.g., to implement some sort 816 * of memory unplug in virtio-mem). 817 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 818 * situations where ZERO_PAGE(0) which is allocated differently 819 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 820 * cannot be migrated. 821 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 822 * memory to the MOVABLE zone, the vmemmap pages are also placed in 823 * such zone. Such pages cannot be really moved around as they are 824 * self-stored in the range, but they are treated as movable when 825 * the range they describe is about to be offlined. 826 * 827 * In general, no unmovable allocations that degrade memory offlining 828 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 829 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 830 * if has_unmovable_pages() states that there are no unmovable pages, 831 * there can be false negatives). 832 */ 833 ZONE_MOVABLE, 834#ifdef CONFIG_ZONE_DEVICE 835 ZONE_DEVICE, 836#endif 837 __MAX_NR_ZONES 838 839}; 840 841#ifndef __GENERATING_BOUNDS_H 842 843#define ASYNC_AND_SYNC 2 844 845struct zone { 846 /* Read-mostly fields */ 847 848 /* zone watermarks, access with *_wmark_pages(zone) macros */ 849 unsigned long _watermark[NR_WMARK]; 850 unsigned long watermark_boost; 851 852 unsigned long nr_reserved_highatomic; 853 unsigned long nr_free_highatomic; 854 855 /* 856 * We don't know if the memory that we're going to allocate will be 857 * freeable or/and it will be released eventually, so to avoid totally 858 * wasting several GB of ram we must reserve some of the lower zone 859 * memory (otherwise we risk to run OOM on the lower zones despite 860 * there being tons of freeable ram on the higher zones). This array is 861 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 862 * changes. 863 */ 864 long lowmem_reserve[MAX_NR_ZONES]; 865 866#ifdef CONFIG_NUMA 867 int node; 868#endif 869 struct pglist_data *zone_pgdat; 870 struct per_cpu_pages __percpu *per_cpu_pageset; 871 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 872 /* 873 * the high and batch values are copied to individual pagesets for 874 * faster access 875 */ 876 int pageset_high_min; 877 int pageset_high_max; 878 int pageset_batch; 879 880#ifndef CONFIG_SPARSEMEM 881 /* 882 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 883 * In SPARSEMEM, this map is stored in struct mem_section 884 */ 885 unsigned long *pageblock_flags; 886#endif /* CONFIG_SPARSEMEM */ 887 888 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 889 unsigned long zone_start_pfn; 890 891 /* 892 * spanned_pages is the total pages spanned by the zone, including 893 * holes, which is calculated as: 894 * spanned_pages = zone_end_pfn - zone_start_pfn; 895 * 896 * present_pages is physical pages existing within the zone, which 897 * is calculated as: 898 * present_pages = spanned_pages - absent_pages(pages in holes); 899 * 900 * present_early_pages is present pages existing within the zone 901 * located on memory available since early boot, excluding hotplugged 902 * memory. 903 * 904 * managed_pages is present pages managed by the buddy system, which 905 * is calculated as (reserved_pages includes pages allocated by the 906 * bootmem allocator): 907 * managed_pages = present_pages - reserved_pages; 908 * 909 * cma pages is present pages that are assigned for CMA use 910 * (MIGRATE_CMA). 911 * 912 * So present_pages may be used by memory hotplug or memory power 913 * management logic to figure out unmanaged pages by checking 914 * (present_pages - managed_pages). And managed_pages should be used 915 * by page allocator and vm scanner to calculate all kinds of watermarks 916 * and thresholds. 917 * 918 * Locking rules: 919 * 920 * zone_start_pfn and spanned_pages are protected by span_seqlock. 921 * It is a seqlock because it has to be read outside of zone->lock, 922 * and it is done in the main allocator path. But, it is written 923 * quite infrequently. 924 * 925 * The span_seq lock is declared along with zone->lock because it is 926 * frequently read in proximity to zone->lock. It's good to 927 * give them a chance of being in the same cacheline. 928 * 929 * Write access to present_pages at runtime should be protected by 930 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 931 * present_pages should use get_online_mems() to get a stable value. 932 */ 933 atomic_long_t managed_pages; 934 unsigned long spanned_pages; 935 unsigned long present_pages; 936#if defined(CONFIG_MEMORY_HOTPLUG) 937 unsigned long present_early_pages; 938#endif 939#ifdef CONFIG_CMA 940 unsigned long cma_pages; 941#endif 942 943 const char *name; 944 945#ifdef CONFIG_MEMORY_ISOLATION 946 /* 947 * Number of isolated pageblock. It is used to solve incorrect 948 * freepage counting problem due to racy retrieving migratetype 949 * of pageblock. Protected by zone->lock. 950 */ 951 unsigned long nr_isolate_pageblock; 952#endif 953 954#ifdef CONFIG_MEMORY_HOTPLUG 955 /* see spanned/present_pages for more description */ 956 seqlock_t span_seqlock; 957#endif 958 959 int initialized; 960 961 /* Write-intensive fields used from the page allocator */ 962 CACHELINE_PADDING(_pad1_); 963 964 /* free areas of different sizes */ 965 struct free_area free_area[NR_PAGE_ORDERS]; 966 967#ifdef CONFIG_UNACCEPTED_MEMORY 968 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ 969 struct list_head unaccepted_pages; 970 971 /* To be called once the last page in the zone is accepted */ 972 struct work_struct unaccepted_cleanup; 973#endif 974 975 /* zone flags, see below */ 976 unsigned long flags; 977 978 /* Primarily protects free_area */ 979 spinlock_t lock; 980 981 /* Pages to be freed when next trylock succeeds */ 982 struct llist_head trylock_free_pages; 983 984 /* Write-intensive fields used by compaction and vmstats. */ 985 CACHELINE_PADDING(_pad2_); 986 987 /* 988 * When free pages are below this point, additional steps are taken 989 * when reading the number of free pages to avoid per-cpu counter 990 * drift allowing watermarks to be breached 991 */ 992 unsigned long percpu_drift_mark; 993 994#if defined CONFIG_COMPACTION || defined CONFIG_CMA 995 /* pfn where compaction free scanner should start */ 996 unsigned long compact_cached_free_pfn; 997 /* pfn where compaction migration scanner should start */ 998 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 999 unsigned long compact_init_migrate_pfn; 1000 unsigned long compact_init_free_pfn; 1001#endif 1002 1003#ifdef CONFIG_COMPACTION 1004 /* 1005 * On compaction failure, 1<<compact_defer_shift compactions 1006 * are skipped before trying again. The number attempted since 1007 * last failure is tracked with compact_considered. 1008 * compact_order_failed is the minimum compaction failed order. 1009 */ 1010 unsigned int compact_considered; 1011 unsigned int compact_defer_shift; 1012 int compact_order_failed; 1013#endif 1014 1015#if defined CONFIG_COMPACTION || defined CONFIG_CMA 1016 /* Set to true when the PG_migrate_skip bits should be cleared */ 1017 bool compact_blockskip_flush; 1018#endif 1019 1020 bool contiguous; 1021 1022 CACHELINE_PADDING(_pad3_); 1023 /* Zone statistics */ 1024 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 1025 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 1026} ____cacheline_internodealigned_in_smp; 1027 1028enum pgdat_flags { 1029 PGDAT_DIRTY, /* reclaim scanning has recently found 1030 * many dirty file pages at the tail 1031 * of the LRU. 1032 */ 1033 PGDAT_WRITEBACK, /* reclaim scanning has recently found 1034 * many pages under writeback 1035 */ 1036 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 1037}; 1038 1039enum zone_flags { 1040 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 1041 * Cleared when kswapd is woken. 1042 */ 1043 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1044 ZONE_BELOW_HIGH, /* zone is below high watermark. */ 1045}; 1046 1047static inline unsigned long wmark_pages(const struct zone *z, 1048 enum zone_watermarks w) 1049{ 1050 return z->_watermark[w] + z->watermark_boost; 1051} 1052 1053static inline unsigned long min_wmark_pages(const struct zone *z) 1054{ 1055 return wmark_pages(z, WMARK_MIN); 1056} 1057 1058static inline unsigned long low_wmark_pages(const struct zone *z) 1059{ 1060 return wmark_pages(z, WMARK_LOW); 1061} 1062 1063static inline unsigned long high_wmark_pages(const struct zone *z) 1064{ 1065 return wmark_pages(z, WMARK_HIGH); 1066} 1067 1068static inline unsigned long promo_wmark_pages(const struct zone *z) 1069{ 1070 return wmark_pages(z, WMARK_PROMO); 1071} 1072 1073static inline unsigned long zone_managed_pages(struct zone *zone) 1074{ 1075 return (unsigned long)atomic_long_read(&zone->managed_pages); 1076} 1077 1078static inline unsigned long zone_cma_pages(struct zone *zone) 1079{ 1080#ifdef CONFIG_CMA 1081 return zone->cma_pages; 1082#else 1083 return 0; 1084#endif 1085} 1086 1087static inline unsigned long zone_end_pfn(const struct zone *zone) 1088{ 1089 return zone->zone_start_pfn + zone->spanned_pages; 1090} 1091 1092static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1093{ 1094 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1095} 1096 1097static inline bool zone_is_initialized(struct zone *zone) 1098{ 1099 return zone->initialized; 1100} 1101 1102static inline bool zone_is_empty(struct zone *zone) 1103{ 1104 return zone->spanned_pages == 0; 1105} 1106 1107#ifndef BUILD_VDSO32_64 1108/* 1109 * The zone field is never updated after free_area_init_core() 1110 * sets it, so none of the operations on it need to be atomic. 1111 */ 1112 1113/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1114#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1115#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1116#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1117#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1118#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1119#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1120#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1121 1122/* 1123 * Define the bit shifts to access each section. For non-existent 1124 * sections we define the shift as 0; that plus a 0 mask ensures 1125 * the compiler will optimise away reference to them. 1126 */ 1127#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1128#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1129#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1130#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1131#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1132 1133/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1134#ifdef NODE_NOT_IN_PAGE_FLAGS 1135#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1136#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1137 SECTIONS_PGOFF : ZONES_PGOFF) 1138#else 1139#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1140#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1141 NODES_PGOFF : ZONES_PGOFF) 1142#endif 1143 1144#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1145 1146#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1147#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1148#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1149#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1150#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1151#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1152 1153static inline enum zone_type page_zonenum(const struct page *page) 1154{ 1155 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1156 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1157} 1158 1159static inline enum zone_type folio_zonenum(const struct folio *folio) 1160{ 1161 return page_zonenum(&folio->page); 1162} 1163 1164#ifdef CONFIG_ZONE_DEVICE 1165static inline bool is_zone_device_page(const struct page *page) 1166{ 1167 return page_zonenum(page) == ZONE_DEVICE; 1168} 1169 1170static inline struct dev_pagemap *page_pgmap(const struct page *page) 1171{ 1172 VM_WARN_ON_ONCE_PAGE(!is_zone_device_page(page), page); 1173 return page_folio(page)->pgmap; 1174} 1175 1176/* 1177 * Consecutive zone device pages should not be merged into the same sgl 1178 * or bvec segment with other types of pages or if they belong to different 1179 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1180 * without scanning the entire segment. This helper returns true either if 1181 * both pages are not zone device pages or both pages are zone device pages 1182 * with the same pgmap. 1183 */ 1184static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1185 const struct page *b) 1186{ 1187 if (is_zone_device_page(a) != is_zone_device_page(b)) 1188 return false; 1189 if (!is_zone_device_page(a)) 1190 return true; 1191 return page_pgmap(a) == page_pgmap(b); 1192} 1193 1194extern void memmap_init_zone_device(struct zone *, unsigned long, 1195 unsigned long, struct dev_pagemap *); 1196#else 1197static inline bool is_zone_device_page(const struct page *page) 1198{ 1199 return false; 1200} 1201static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1202 const struct page *b) 1203{ 1204 return true; 1205} 1206static inline struct dev_pagemap *page_pgmap(const struct page *page) 1207{ 1208 return NULL; 1209} 1210#endif 1211 1212static inline bool folio_is_zone_device(const struct folio *folio) 1213{ 1214 return is_zone_device_page(&folio->page); 1215} 1216 1217static inline bool is_zone_movable_page(const struct page *page) 1218{ 1219 return page_zonenum(page) == ZONE_MOVABLE; 1220} 1221 1222static inline bool folio_is_zone_movable(const struct folio *folio) 1223{ 1224 return folio_zonenum(folio) == ZONE_MOVABLE; 1225} 1226#endif 1227 1228/* 1229 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1230 * intersection with the given zone 1231 */ 1232static inline bool zone_intersects(struct zone *zone, 1233 unsigned long start_pfn, unsigned long nr_pages) 1234{ 1235 if (zone_is_empty(zone)) 1236 return false; 1237 if (start_pfn >= zone_end_pfn(zone) || 1238 start_pfn + nr_pages <= zone->zone_start_pfn) 1239 return false; 1240 1241 return true; 1242} 1243 1244/* 1245 * The "priority" of VM scanning is how much of the queues we will scan in one 1246 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1247 * queues ("queue_length >> 12") during an aging round. 1248 */ 1249#define DEF_PRIORITY 12 1250 1251/* Maximum number of zones on a zonelist */ 1252#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1253 1254enum { 1255 ZONELIST_FALLBACK, /* zonelist with fallback */ 1256#ifdef CONFIG_NUMA 1257 /* 1258 * The NUMA zonelists are doubled because we need zonelists that 1259 * restrict the allocations to a single node for __GFP_THISNODE. 1260 */ 1261 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1262#endif 1263 MAX_ZONELISTS 1264}; 1265 1266/* 1267 * This struct contains information about a zone in a zonelist. It is stored 1268 * here to avoid dereferences into large structures and lookups of tables 1269 */ 1270struct zoneref { 1271 struct zone *zone; /* Pointer to actual zone */ 1272 int zone_idx; /* zone_idx(zoneref->zone) */ 1273}; 1274 1275/* 1276 * One allocation request operates on a zonelist. A zonelist 1277 * is a list of zones, the first one is the 'goal' of the 1278 * allocation, the other zones are fallback zones, in decreasing 1279 * priority. 1280 * 1281 * To speed the reading of the zonelist, the zonerefs contain the zone index 1282 * of the entry being read. Helper functions to access information given 1283 * a struct zoneref are 1284 * 1285 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1286 * zonelist_zone_idx() - Return the index of the zone for an entry 1287 * zonelist_node_idx() - Return the index of the node for an entry 1288 */ 1289struct zonelist { 1290 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1291}; 1292 1293/* 1294 * The array of struct pages for flatmem. 1295 * It must be declared for SPARSEMEM as well because there are configurations 1296 * that rely on that. 1297 */ 1298extern struct page *mem_map; 1299 1300#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1301struct deferred_split { 1302 spinlock_t split_queue_lock; 1303 struct list_head split_queue; 1304 unsigned long split_queue_len; 1305}; 1306#endif 1307 1308#ifdef CONFIG_MEMORY_FAILURE 1309/* 1310 * Per NUMA node memory failure handling statistics. 1311 */ 1312struct memory_failure_stats { 1313 /* 1314 * Number of raw pages poisoned. 1315 * Cases not accounted: memory outside kernel control, offline page, 1316 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1317 * error events, and unpoison actions from hwpoison_unpoison. 1318 */ 1319 unsigned long total; 1320 /* 1321 * Recovery results of poisoned raw pages handled by memory_failure, 1322 * in sync with mf_result. 1323 * total = ignored + failed + delayed + recovered. 1324 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1325 */ 1326 unsigned long ignored; 1327 unsigned long failed; 1328 unsigned long delayed; 1329 unsigned long recovered; 1330}; 1331#endif 1332 1333/* 1334 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1335 * it's memory layout. On UMA machines there is a single pglist_data which 1336 * describes the whole memory. 1337 * 1338 * Memory statistics and page replacement data structures are maintained on a 1339 * per-zone basis. 1340 */ 1341typedef struct pglist_data { 1342 /* 1343 * node_zones contains just the zones for THIS node. Not all of the 1344 * zones may be populated, but it is the full list. It is referenced by 1345 * this node's node_zonelists as well as other node's node_zonelists. 1346 */ 1347 struct zone node_zones[MAX_NR_ZONES]; 1348 1349 /* 1350 * node_zonelists contains references to all zones in all nodes. 1351 * Generally the first zones will be references to this node's 1352 * node_zones. 1353 */ 1354 struct zonelist node_zonelists[MAX_ZONELISTS]; 1355 1356 int nr_zones; /* number of populated zones in this node */ 1357#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1358 struct page *node_mem_map; 1359#ifdef CONFIG_PAGE_EXTENSION 1360 struct page_ext *node_page_ext; 1361#endif 1362#endif 1363#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1364 /* 1365 * Must be held any time you expect node_start_pfn, 1366 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1367 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1368 * init. 1369 * 1370 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1371 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1372 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1373 * 1374 * Nests above zone->lock and zone->span_seqlock 1375 */ 1376 spinlock_t node_size_lock; 1377#endif 1378 unsigned long node_start_pfn; 1379 unsigned long node_present_pages; /* total number of physical pages */ 1380 unsigned long node_spanned_pages; /* total size of physical page 1381 range, including holes */ 1382 int node_id; 1383 wait_queue_head_t kswapd_wait; 1384 wait_queue_head_t pfmemalloc_wait; 1385 1386 /* workqueues for throttling reclaim for different reasons. */ 1387 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1388 1389 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1390 unsigned long nr_reclaim_start; /* nr pages written while throttled 1391 * when throttling started. */ 1392#ifdef CONFIG_MEMORY_HOTPLUG 1393 struct mutex kswapd_lock; 1394#endif 1395 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1396 int kswapd_order; 1397 enum zone_type kswapd_highest_zoneidx; 1398 1399 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1400 1401#ifdef CONFIG_COMPACTION 1402 int kcompactd_max_order; 1403 enum zone_type kcompactd_highest_zoneidx; 1404 wait_queue_head_t kcompactd_wait; 1405 struct task_struct *kcompactd; 1406 bool proactive_compact_trigger; 1407#endif 1408 /* 1409 * This is a per-node reserve of pages that are not available 1410 * to userspace allocations. 1411 */ 1412 unsigned long totalreserve_pages; 1413 1414#ifdef CONFIG_NUMA 1415 /* 1416 * node reclaim becomes active if more unmapped pages exist. 1417 */ 1418 unsigned long min_unmapped_pages; 1419 unsigned long min_slab_pages; 1420#endif /* CONFIG_NUMA */ 1421 1422 /* Write-intensive fields used by page reclaim */ 1423 CACHELINE_PADDING(_pad1_); 1424 1425#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1426 /* 1427 * If memory initialisation on large machines is deferred then this 1428 * is the first PFN that needs to be initialised. 1429 */ 1430 unsigned long first_deferred_pfn; 1431#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1432 1433#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1434 struct deferred_split deferred_split_queue; 1435#endif 1436 1437#ifdef CONFIG_NUMA_BALANCING 1438 /* start time in ms of current promote rate limit period */ 1439 unsigned int nbp_rl_start; 1440 /* number of promote candidate pages at start time of current rate limit period */ 1441 unsigned long nbp_rl_nr_cand; 1442 /* promote threshold in ms */ 1443 unsigned int nbp_threshold; 1444 /* start time in ms of current promote threshold adjustment period */ 1445 unsigned int nbp_th_start; 1446 /* 1447 * number of promote candidate pages at start time of current promote 1448 * threshold adjustment period 1449 */ 1450 unsigned long nbp_th_nr_cand; 1451#endif 1452 /* Fields commonly accessed by the page reclaim scanner */ 1453 1454 /* 1455 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1456 * 1457 * Use mem_cgroup_lruvec() to look up lruvecs. 1458 */ 1459 struct lruvec __lruvec; 1460 1461 unsigned long flags; 1462 1463#ifdef CONFIG_LRU_GEN 1464 /* kswap mm walk data */ 1465 struct lru_gen_mm_walk mm_walk; 1466 /* lru_gen_folio list */ 1467 struct lru_gen_memcg memcg_lru; 1468#endif 1469 1470 CACHELINE_PADDING(_pad2_); 1471 1472 /* Per-node vmstats */ 1473 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1474 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1475#ifdef CONFIG_NUMA 1476 struct memory_tier __rcu *memtier; 1477#endif 1478#ifdef CONFIG_MEMORY_FAILURE 1479 struct memory_failure_stats mf_stats; 1480#endif 1481} pg_data_t; 1482 1483#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1484#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1485 1486#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1487#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1488 1489static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1490{ 1491 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1492} 1493 1494#include <linux/memory_hotplug.h> 1495 1496void build_all_zonelists(pg_data_t *pgdat); 1497void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1498 enum zone_type highest_zoneidx); 1499bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1500 int highest_zoneidx, unsigned int alloc_flags, 1501 long free_pages); 1502bool zone_watermark_ok(struct zone *z, unsigned int order, 1503 unsigned long mark, int highest_zoneidx, 1504 unsigned int alloc_flags); 1505/* 1506 * Memory initialization context, use to differentiate memory added by 1507 * the platform statically or via memory hotplug interface. 1508 */ 1509enum meminit_context { 1510 MEMINIT_EARLY, 1511 MEMINIT_HOTPLUG, 1512}; 1513 1514extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1515 unsigned long size); 1516 1517extern void lruvec_init(struct lruvec *lruvec); 1518 1519static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1520{ 1521#ifdef CONFIG_MEMCG 1522 return lruvec->pgdat; 1523#else 1524 return container_of(lruvec, struct pglist_data, __lruvec); 1525#endif 1526} 1527 1528#ifdef CONFIG_HAVE_MEMORYLESS_NODES 1529int local_memory_node(int node_id); 1530#else 1531static inline int local_memory_node(int node_id) { return node_id; }; 1532#endif 1533 1534/* 1535 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1536 */ 1537#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1538 1539#ifdef CONFIG_ZONE_DEVICE 1540static inline bool zone_is_zone_device(struct zone *zone) 1541{ 1542 return zone_idx(zone) == ZONE_DEVICE; 1543} 1544#else 1545static inline bool zone_is_zone_device(struct zone *zone) 1546{ 1547 return false; 1548} 1549#endif 1550 1551/* 1552 * Returns true if a zone has pages managed by the buddy allocator. 1553 * All the reclaim decisions have to use this function rather than 1554 * populated_zone(). If the whole zone is reserved then we can easily 1555 * end up with populated_zone() && !managed_zone(). 1556 */ 1557static inline bool managed_zone(struct zone *zone) 1558{ 1559 return zone_managed_pages(zone); 1560} 1561 1562/* Returns true if a zone has memory */ 1563static inline bool populated_zone(struct zone *zone) 1564{ 1565 return zone->present_pages; 1566} 1567 1568#ifdef CONFIG_NUMA 1569static inline int zone_to_nid(struct zone *zone) 1570{ 1571 return zone->node; 1572} 1573 1574static inline void zone_set_nid(struct zone *zone, int nid) 1575{ 1576 zone->node = nid; 1577} 1578#else 1579static inline int zone_to_nid(struct zone *zone) 1580{ 1581 return 0; 1582} 1583 1584static inline void zone_set_nid(struct zone *zone, int nid) {} 1585#endif 1586 1587extern int movable_zone; 1588 1589static inline int is_highmem_idx(enum zone_type idx) 1590{ 1591#ifdef CONFIG_HIGHMEM 1592 return (idx == ZONE_HIGHMEM || 1593 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1594#else 1595 return 0; 1596#endif 1597} 1598 1599/** 1600 * is_highmem - helper function to quickly check if a struct zone is a 1601 * highmem zone or not. This is an attempt to keep references 1602 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1603 * @zone: pointer to struct zone variable 1604 * Return: 1 for a highmem zone, 0 otherwise 1605 */ 1606static inline int is_highmem(struct zone *zone) 1607{ 1608 return is_highmem_idx(zone_idx(zone)); 1609} 1610 1611#ifdef CONFIG_ZONE_DMA 1612bool has_managed_dma(void); 1613#else 1614static inline bool has_managed_dma(void) 1615{ 1616 return false; 1617} 1618#endif 1619 1620 1621#ifndef CONFIG_NUMA 1622 1623extern struct pglist_data contig_page_data; 1624static inline struct pglist_data *NODE_DATA(int nid) 1625{ 1626 return &contig_page_data; 1627} 1628 1629#else /* CONFIG_NUMA */ 1630 1631#include <asm/mmzone.h> 1632 1633#endif /* !CONFIG_NUMA */ 1634 1635extern struct pglist_data *first_online_pgdat(void); 1636extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1637extern struct zone *next_zone(struct zone *zone); 1638 1639/** 1640 * for_each_online_pgdat - helper macro to iterate over all online nodes 1641 * @pgdat: pointer to a pg_data_t variable 1642 */ 1643#define for_each_online_pgdat(pgdat) \ 1644 for (pgdat = first_online_pgdat(); \ 1645 pgdat; \ 1646 pgdat = next_online_pgdat(pgdat)) 1647/** 1648 * for_each_zone - helper macro to iterate over all memory zones 1649 * @zone: pointer to struct zone variable 1650 * 1651 * The user only needs to declare the zone variable, for_each_zone 1652 * fills it in. 1653 */ 1654#define for_each_zone(zone) \ 1655 for (zone = (first_online_pgdat())->node_zones; \ 1656 zone; \ 1657 zone = next_zone(zone)) 1658 1659#define for_each_populated_zone(zone) \ 1660 for (zone = (first_online_pgdat())->node_zones; \ 1661 zone; \ 1662 zone = next_zone(zone)) \ 1663 if (!populated_zone(zone)) \ 1664 ; /* do nothing */ \ 1665 else 1666 1667static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1668{ 1669 return zoneref->zone; 1670} 1671 1672static inline int zonelist_zone_idx(struct zoneref *zoneref) 1673{ 1674 return zoneref->zone_idx; 1675} 1676 1677static inline int zonelist_node_idx(struct zoneref *zoneref) 1678{ 1679 return zone_to_nid(zoneref->zone); 1680} 1681 1682struct zoneref *__next_zones_zonelist(struct zoneref *z, 1683 enum zone_type highest_zoneidx, 1684 nodemask_t *nodes); 1685 1686/** 1687 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1688 * @z: The cursor used as a starting point for the search 1689 * @highest_zoneidx: The zone index of the highest zone to return 1690 * @nodes: An optional nodemask to filter the zonelist with 1691 * 1692 * This function returns the next zone at or below a given zone index that is 1693 * within the allowed nodemask using a cursor as the starting point for the 1694 * search. The zoneref returned is a cursor that represents the current zone 1695 * being examined. It should be advanced by one before calling 1696 * next_zones_zonelist again. 1697 * 1698 * Return: the next zone at or below highest_zoneidx within the allowed 1699 * nodemask using a cursor within a zonelist as a starting point 1700 */ 1701static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1702 enum zone_type highest_zoneidx, 1703 nodemask_t *nodes) 1704{ 1705 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1706 return z; 1707 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1708} 1709 1710/** 1711 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1712 * @zonelist: The zonelist to search for a suitable zone 1713 * @highest_zoneidx: The zone index of the highest zone to return 1714 * @nodes: An optional nodemask to filter the zonelist with 1715 * 1716 * This function returns the first zone at or below a given zone index that is 1717 * within the allowed nodemask. The zoneref returned is a cursor that can be 1718 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1719 * one before calling. 1720 * 1721 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1722 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1723 * update due to cpuset modification. 1724 * 1725 * Return: Zoneref pointer for the first suitable zone found 1726 */ 1727static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1728 enum zone_type highest_zoneidx, 1729 nodemask_t *nodes) 1730{ 1731 return next_zones_zonelist(zonelist->_zonerefs, 1732 highest_zoneidx, nodes); 1733} 1734 1735/** 1736 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1737 * @zone: The current zone in the iterator 1738 * @z: The current pointer within zonelist->_zonerefs being iterated 1739 * @zlist: The zonelist being iterated 1740 * @highidx: The zone index of the highest zone to return 1741 * @nodemask: Nodemask allowed by the allocator 1742 * 1743 * This iterator iterates though all zones at or below a given zone index and 1744 * within a given nodemask 1745 */ 1746#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1747 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1748 zone; \ 1749 z = next_zones_zonelist(++z, highidx, nodemask), \ 1750 zone = zonelist_zone(z)) 1751 1752#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1753 for (zone = zonelist_zone(z); \ 1754 zone; \ 1755 z = next_zones_zonelist(++z, highidx, nodemask), \ 1756 zone = zonelist_zone(z)) 1757 1758 1759/** 1760 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1761 * @zone: The current zone in the iterator 1762 * @z: The current pointer within zonelist->zones being iterated 1763 * @zlist: The zonelist being iterated 1764 * @highidx: The zone index of the highest zone to return 1765 * 1766 * This iterator iterates though all zones at or below a given zone index. 1767 */ 1768#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1769 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1770 1771/* Whether the 'nodes' are all movable nodes */ 1772static inline bool movable_only_nodes(nodemask_t *nodes) 1773{ 1774 struct zonelist *zonelist; 1775 struct zoneref *z; 1776 int nid; 1777 1778 if (nodes_empty(*nodes)) 1779 return false; 1780 1781 /* 1782 * We can chose arbitrary node from the nodemask to get a 1783 * zonelist as they are interlinked. We just need to find 1784 * at least one zone that can satisfy kernel allocations. 1785 */ 1786 nid = first_node(*nodes); 1787 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1788 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1789 return (!zonelist_zone(z)) ? true : false; 1790} 1791 1792 1793#ifdef CONFIG_SPARSEMEM 1794#include <asm/sparsemem.h> 1795#endif 1796 1797#ifdef CONFIG_FLATMEM 1798#define pfn_to_nid(pfn) (0) 1799#endif 1800 1801#ifdef CONFIG_SPARSEMEM 1802 1803/* 1804 * PA_SECTION_SHIFT physical address to/from section number 1805 * PFN_SECTION_SHIFT pfn to/from section number 1806 */ 1807#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1808#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1809 1810#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1811 1812#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1813#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1814 1815#define SECTION_BLOCKFLAGS_BITS \ 1816 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1817 1818#if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1819#error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE 1820#endif 1821 1822static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1823{ 1824 return pfn >> PFN_SECTION_SHIFT; 1825} 1826static inline unsigned long section_nr_to_pfn(unsigned long sec) 1827{ 1828 return sec << PFN_SECTION_SHIFT; 1829} 1830 1831#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1832#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1833 1834#define SUBSECTION_SHIFT 21 1835#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1836 1837#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1838#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1839#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1840 1841#if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1842#error Subsection size exceeds section size 1843#else 1844#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1845#endif 1846 1847#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1848#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1849 1850struct mem_section_usage { 1851 struct rcu_head rcu; 1852#ifdef CONFIG_SPARSEMEM_VMEMMAP 1853 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1854#endif 1855 /* See declaration of similar field in struct zone */ 1856 unsigned long pageblock_flags[0]; 1857}; 1858 1859void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1860 1861struct page; 1862struct page_ext; 1863struct mem_section { 1864 /* 1865 * This is, logically, a pointer to an array of struct 1866 * pages. However, it is stored with some other magic. 1867 * (see sparse.c::sparse_init_one_section()) 1868 * 1869 * Additionally during early boot we encode node id of 1870 * the location of the section here to guide allocation. 1871 * (see sparse.c::memory_present()) 1872 * 1873 * Making it a UL at least makes someone do a cast 1874 * before using it wrong. 1875 */ 1876 unsigned long section_mem_map; 1877 1878 struct mem_section_usage *usage; 1879#ifdef CONFIG_PAGE_EXTENSION 1880 /* 1881 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1882 * section. (see page_ext.h about this.) 1883 */ 1884 struct page_ext *page_ext; 1885 unsigned long pad; 1886#endif 1887 /* 1888 * WARNING: mem_section must be a power-of-2 in size for the 1889 * calculation and use of SECTION_ROOT_MASK to make sense. 1890 */ 1891}; 1892 1893#ifdef CONFIG_SPARSEMEM_EXTREME 1894#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1895#else 1896#define SECTIONS_PER_ROOT 1 1897#endif 1898 1899#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1900#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1901#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1902 1903#ifdef CONFIG_SPARSEMEM_EXTREME 1904extern struct mem_section **mem_section; 1905#else 1906extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1907#endif 1908 1909static inline unsigned long *section_to_usemap(struct mem_section *ms) 1910{ 1911 return ms->usage->pageblock_flags; 1912} 1913 1914static inline struct mem_section *__nr_to_section(unsigned long nr) 1915{ 1916 unsigned long root = SECTION_NR_TO_ROOT(nr); 1917 1918 if (unlikely(root >= NR_SECTION_ROOTS)) 1919 return NULL; 1920 1921#ifdef CONFIG_SPARSEMEM_EXTREME 1922 if (!mem_section || !mem_section[root]) 1923 return NULL; 1924#endif 1925 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1926} 1927extern size_t mem_section_usage_size(void); 1928 1929/* 1930 * We use the lower bits of the mem_map pointer to store 1931 * a little bit of information. The pointer is calculated 1932 * as mem_map - section_nr_to_pfn(pnum). The result is 1933 * aligned to the minimum alignment of the two values: 1934 * 1. All mem_map arrays are page-aligned. 1935 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1936 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1937 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1938 * worst combination is powerpc with 256k pages, 1939 * which results in PFN_SECTION_SHIFT equal 6. 1940 * To sum it up, at least 6 bits are available on all architectures. 1941 * However, we can exceed 6 bits on some other architectures except 1942 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1943 * with the worst case of 64K pages on arm64) if we make sure the 1944 * exceeded bit is not applicable to powerpc. 1945 */ 1946enum { 1947 SECTION_MARKED_PRESENT_BIT, 1948 SECTION_HAS_MEM_MAP_BIT, 1949 SECTION_IS_ONLINE_BIT, 1950 SECTION_IS_EARLY_BIT, 1951#ifdef CONFIG_ZONE_DEVICE 1952 SECTION_TAINT_ZONE_DEVICE_BIT, 1953#endif 1954#ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT 1955 SECTION_IS_VMEMMAP_PREINIT_BIT, 1956#endif 1957 SECTION_MAP_LAST_BIT, 1958}; 1959 1960#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1961#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1962#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1963#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1964#ifdef CONFIG_ZONE_DEVICE 1965#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1966#endif 1967#ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT 1968#define SECTION_IS_VMEMMAP_PREINIT BIT(SECTION_IS_VMEMMAP_PREINIT_BIT) 1969#endif 1970#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1971#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1972 1973static inline struct page *__section_mem_map_addr(struct mem_section *section) 1974{ 1975 unsigned long map = section->section_mem_map; 1976 map &= SECTION_MAP_MASK; 1977 return (struct page *)map; 1978} 1979 1980static inline int present_section(struct mem_section *section) 1981{ 1982 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1983} 1984 1985static inline int present_section_nr(unsigned long nr) 1986{ 1987 return present_section(__nr_to_section(nr)); 1988} 1989 1990static inline int valid_section(struct mem_section *section) 1991{ 1992 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1993} 1994 1995static inline int early_section(struct mem_section *section) 1996{ 1997 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1998} 1999 2000static inline int valid_section_nr(unsigned long nr) 2001{ 2002 return valid_section(__nr_to_section(nr)); 2003} 2004 2005static inline int online_section(struct mem_section *section) 2006{ 2007 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 2008} 2009 2010#ifdef CONFIG_ZONE_DEVICE 2011static inline int online_device_section(struct mem_section *section) 2012{ 2013 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 2014 2015 return section && ((section->section_mem_map & flags) == flags); 2016} 2017#else 2018static inline int online_device_section(struct mem_section *section) 2019{ 2020 return 0; 2021} 2022#endif 2023 2024#ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT 2025static inline int preinited_vmemmap_section(struct mem_section *section) 2026{ 2027 return (section && 2028 (section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT)); 2029} 2030 2031void sparse_vmemmap_init_nid_early(int nid); 2032void sparse_vmemmap_init_nid_late(int nid); 2033 2034#else 2035static inline int preinited_vmemmap_section(struct mem_section *section) 2036{ 2037 return 0; 2038} 2039static inline void sparse_vmemmap_init_nid_early(int nid) 2040{ 2041} 2042 2043static inline void sparse_vmemmap_init_nid_late(int nid) 2044{ 2045} 2046#endif 2047 2048static inline int online_section_nr(unsigned long nr) 2049{ 2050 return online_section(__nr_to_section(nr)); 2051} 2052 2053#ifdef CONFIG_MEMORY_HOTPLUG 2054void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 2055void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 2056#endif 2057 2058static inline struct mem_section *__pfn_to_section(unsigned long pfn) 2059{ 2060 return __nr_to_section(pfn_to_section_nr(pfn)); 2061} 2062 2063extern unsigned long __highest_present_section_nr; 2064 2065static inline int subsection_map_index(unsigned long pfn) 2066{ 2067 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 2068} 2069 2070#ifdef CONFIG_SPARSEMEM_VMEMMAP 2071static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2072{ 2073 int idx = subsection_map_index(pfn); 2074 struct mem_section_usage *usage = READ_ONCE(ms->usage); 2075 2076 return usage ? test_bit(idx, usage->subsection_map) : 0; 2077} 2078#else 2079static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2080{ 2081 return 1; 2082} 2083#endif 2084 2085void sparse_init_early_section(int nid, struct page *map, unsigned long pnum, 2086 unsigned long flags); 2087 2088#ifndef CONFIG_HAVE_ARCH_PFN_VALID 2089/** 2090 * pfn_valid - check if there is a valid memory map entry for a PFN 2091 * @pfn: the page frame number to check 2092 * 2093 * Check if there is a valid memory map entry aka struct page for the @pfn. 2094 * Note, that availability of the memory map entry does not imply that 2095 * there is actual usable memory at that @pfn. The struct page may 2096 * represent a hole or an unusable page frame. 2097 * 2098 * Return: 1 for PFNs that have memory map entries and 0 otherwise 2099 */ 2100static inline int pfn_valid(unsigned long pfn) 2101{ 2102 struct mem_section *ms; 2103 int ret; 2104 2105 /* 2106 * Ensure the upper PAGE_SHIFT bits are clear in the 2107 * pfn. Else it might lead to false positives when 2108 * some of the upper bits are set, but the lower bits 2109 * match a valid pfn. 2110 */ 2111 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2112 return 0; 2113 2114 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2115 return 0; 2116 ms = __pfn_to_section(pfn); 2117 rcu_read_lock_sched(); 2118 if (!valid_section(ms)) { 2119 rcu_read_unlock_sched(); 2120 return 0; 2121 } 2122 /* 2123 * Traditionally early sections always returned pfn_valid() for 2124 * the entire section-sized span. 2125 */ 2126 ret = early_section(ms) || pfn_section_valid(ms, pfn); 2127 rcu_read_unlock_sched(); 2128 2129 return ret; 2130} 2131#endif 2132 2133static inline int pfn_in_present_section(unsigned long pfn) 2134{ 2135 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2136 return 0; 2137 return present_section(__pfn_to_section(pfn)); 2138} 2139 2140static inline unsigned long next_present_section_nr(unsigned long section_nr) 2141{ 2142 while (++section_nr <= __highest_present_section_nr) { 2143 if (present_section_nr(section_nr)) 2144 return section_nr; 2145 } 2146 2147 return -1; 2148} 2149 2150#define for_each_present_section_nr(start, section_nr) \ 2151 for (section_nr = next_present_section_nr(start - 1); \ 2152 section_nr != -1; \ 2153 section_nr = next_present_section_nr(section_nr)) 2154 2155/* 2156 * These are _only_ used during initialisation, therefore they 2157 * can use __initdata ... They could have names to indicate 2158 * this restriction. 2159 */ 2160#ifdef CONFIG_NUMA 2161#define pfn_to_nid(pfn) \ 2162({ \ 2163 unsigned long __pfn_to_nid_pfn = (pfn); \ 2164 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2165}) 2166#else 2167#define pfn_to_nid(pfn) (0) 2168#endif 2169 2170void sparse_init(void); 2171#else 2172#define sparse_init() do {} while (0) 2173#define sparse_index_init(_sec, _nid) do {} while (0) 2174#define sparse_vmemmap_init_nid_early(_nid, _use) do {} while (0) 2175#define sparse_vmemmap_init_nid_late(_nid) do {} while (0) 2176#define pfn_in_present_section pfn_valid 2177#define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2178#endif /* CONFIG_SPARSEMEM */ 2179 2180#endif /* !__GENERATING_BOUNDS.H */ 2181#endif /* !__ASSEMBLY__ */ 2182#endif /* _LINUX_MMZONE_H */