at v6.15 56 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/kref.h> 9#include <linux/list.h> 10#include <linux/spinlock.h> 11#include <linux/rbtree.h> 12#include <linux/maple_tree.h> 13#include <linux/rwsem.h> 14#include <linux/completion.h> 15#include <linux/cpumask.h> 16#include <linux/uprobes.h> 17#include <linux/rcupdate.h> 18#include <linux/page-flags-layout.h> 19#include <linux/workqueue.h> 20#include <linux/seqlock.h> 21#include <linux/percpu_counter.h> 22#include <linux/types.h> 23 24#include <asm/mmu.h> 25 26#ifndef AT_VECTOR_SIZE_ARCH 27#define AT_VECTOR_SIZE_ARCH 0 28#endif 29#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 30 31#define INIT_PASID 0 32 33struct address_space; 34struct mem_cgroup; 35 36/* 37 * Each physical page in the system has a struct page associated with 38 * it to keep track of whatever it is we are using the page for at the 39 * moment. Note that we have no way to track which tasks are using 40 * a page, though if it is a pagecache page, rmap structures can tell us 41 * who is mapping it. 42 * 43 * If you allocate the page using alloc_pages(), you can use some of the 44 * space in struct page for your own purposes. The five words in the main 45 * union are available, except for bit 0 of the first word which must be 46 * kept clear. Many users use this word to store a pointer to an object 47 * which is guaranteed to be aligned. If you use the same storage as 48 * page->mapping, you must restore it to NULL before freeing the page. 49 * 50 * The mapcount field must not be used for own purposes. 51 * 52 * If you want to use the refcount field, it must be used in such a way 53 * that other CPUs temporarily incrementing and then decrementing the 54 * refcount does not cause problems. On receiving the page from 55 * alloc_pages(), the refcount will be positive. 56 * 57 * If you allocate pages of order > 0, you can use some of the fields 58 * in each subpage, but you may need to restore some of their values 59 * afterwards. 60 * 61 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 62 * That requires that freelist & counters in struct slab be adjacent and 63 * double-word aligned. Because struct slab currently just reinterprets the 64 * bits of struct page, we align all struct pages to double-word boundaries, 65 * and ensure that 'freelist' is aligned within struct slab. 66 */ 67#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 68#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 69#else 70#define _struct_page_alignment __aligned(sizeof(unsigned long)) 71#endif 72 73struct page { 74 unsigned long flags; /* Atomic flags, some possibly 75 * updated asynchronously */ 76 /* 77 * Five words (20/40 bytes) are available in this union. 78 * WARNING: bit 0 of the first word is used for PageTail(). That 79 * means the other users of this union MUST NOT use the bit to 80 * avoid collision and false-positive PageTail(). 81 */ 82 union { 83 struct { /* Page cache and anonymous pages */ 84 /** 85 * @lru: Pageout list, eg. active_list protected by 86 * lruvec->lru_lock. Sometimes used as a generic list 87 * by the page owner. 88 */ 89 union { 90 struct list_head lru; 91 92 /* Or, for the Unevictable "LRU list" slot */ 93 struct { 94 /* Always even, to negate PageTail */ 95 void *__filler; 96 /* Count page's or folio's mlocks */ 97 unsigned int mlock_count; 98 }; 99 100 /* Or, free page */ 101 struct list_head buddy_list; 102 struct list_head pcp_list; 103 struct { 104 struct llist_node pcp_llist; 105 unsigned int order; 106 }; 107 }; 108 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 109 struct address_space *mapping; 110 union { 111 pgoff_t index; /* Our offset within mapping. */ 112 unsigned long share; /* share count for fsdax */ 113 }; 114 /** 115 * @private: Mapping-private opaque data. 116 * Usually used for buffer_heads if PagePrivate. 117 * Used for swp_entry_t if swapcache flag set. 118 * Indicates order in the buddy system if PageBuddy. 119 */ 120 unsigned long private; 121 }; 122 struct { /* page_pool used by netstack */ 123 /** 124 * @pp_magic: magic value to avoid recycling non 125 * page_pool allocated pages. 126 */ 127 unsigned long pp_magic; 128 struct page_pool *pp; 129 unsigned long _pp_mapping_pad; 130 unsigned long dma_addr; 131 atomic_long_t pp_ref_count; 132 }; 133 struct { /* Tail pages of compound page */ 134 unsigned long compound_head; /* Bit zero is set */ 135 }; 136 struct { /* ZONE_DEVICE pages */ 137 /* 138 * The first word is used for compound_head or folio 139 * pgmap 140 */ 141 void *_unused_pgmap_compound_head; 142 void *zone_device_data; 143 /* 144 * ZONE_DEVICE private pages are counted as being 145 * mapped so the next 3 words hold the mapping, index, 146 * and private fields from the source anonymous or 147 * page cache page while the page is migrated to device 148 * private memory. 149 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 150 * use the mapping, index, and private fields when 151 * pmem backed DAX files are mapped. 152 */ 153 }; 154 155 /** @rcu_head: You can use this to free a page by RCU. */ 156 struct rcu_head rcu_head; 157 }; 158 159 union { /* This union is 4 bytes in size. */ 160 /* 161 * For head pages of typed folios, the value stored here 162 * allows for determining what this page is used for. The 163 * tail pages of typed folios will not store a type 164 * (page_type == _mapcount == -1). 165 * 166 * See page-flags.h for a list of page types which are currently 167 * stored here. 168 * 169 * Owners of typed folios may reuse the lower 16 bit of the 170 * head page page_type field after setting the page type, 171 * but must reset these 16 bit to -1 before clearing the 172 * page type. 173 */ 174 unsigned int page_type; 175 176 /* 177 * For pages that are part of non-typed folios for which mappings 178 * are tracked via the RMAP, encodes the number of times this page 179 * is directly referenced by a page table. 180 * 181 * Note that the mapcount is always initialized to -1, so that 182 * transitions both from it and to it can be tracked, using 183 * atomic_inc_and_test() and atomic_add_negative(-1). 184 */ 185 atomic_t _mapcount; 186 }; 187 188 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 189 atomic_t _refcount; 190 191#ifdef CONFIG_MEMCG 192 unsigned long memcg_data; 193#elif defined(CONFIG_SLAB_OBJ_EXT) 194 unsigned long _unused_slab_obj_exts; 195#endif 196 197 /* 198 * On machines where all RAM is mapped into kernel address space, 199 * we can simply calculate the virtual address. On machines with 200 * highmem some memory is mapped into kernel virtual memory 201 * dynamically, so we need a place to store that address. 202 * Note that this field could be 16 bits on x86 ... ;) 203 * 204 * Architectures with slow multiplication can define 205 * WANT_PAGE_VIRTUAL in asm/page.h 206 */ 207#if defined(WANT_PAGE_VIRTUAL) 208 void *virtual; /* Kernel virtual address (NULL if 209 not kmapped, ie. highmem) */ 210#endif /* WANT_PAGE_VIRTUAL */ 211 212#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 213 int _last_cpupid; 214#endif 215 216#ifdef CONFIG_KMSAN 217 /* 218 * KMSAN metadata for this page: 219 * - shadow page: every bit indicates whether the corresponding 220 * bit of the original page is initialized (0) or not (1); 221 * - origin page: every 4 bytes contain an id of the stack trace 222 * where the uninitialized value was created. 223 */ 224 struct page *kmsan_shadow; 225 struct page *kmsan_origin; 226#endif 227} _struct_page_alignment; 228 229/* 230 * struct encoded_page - a nonexistent type marking this pointer 231 * 232 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but 233 * with the low bits of the pointer indicating extra context-dependent 234 * information. Only used in mmu_gather handling, and this acts as a type 235 * system check on that use. 236 * 237 * We only really have two guaranteed bits in general, although you could 238 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 239 * for more. 240 * 241 * Use the supplied helper functions to endcode/decode the pointer and bits. 242 */ 243struct encoded_page; 244 245#define ENCODED_PAGE_BITS 3ul 246 247/* Perform rmap removal after we have flushed the TLB. */ 248#define ENCODED_PAGE_BIT_DELAY_RMAP 1ul 249 250/* 251 * The next item in an encoded_page array is the "nr_pages" argument, specifying 252 * the number of consecutive pages starting from this page, that all belong to 253 * the same folio. For example, "nr_pages" corresponds to the number of folio 254 * references that must be dropped. If this bit is not set, "nr_pages" is 255 * implicitly 1. 256 */ 257#define ENCODED_PAGE_BIT_NR_PAGES_NEXT 2ul 258 259static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags) 260{ 261 BUILD_BUG_ON(flags > ENCODED_PAGE_BITS); 262 return (struct encoded_page *)(flags | (unsigned long)page); 263} 264 265static inline unsigned long encoded_page_flags(struct encoded_page *page) 266{ 267 return ENCODED_PAGE_BITS & (unsigned long)page; 268} 269 270static inline struct page *encoded_page_ptr(struct encoded_page *page) 271{ 272 return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page); 273} 274 275static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr) 276{ 277 VM_WARN_ON_ONCE((nr << 2) >> 2 != nr); 278 return (struct encoded_page *)(nr << 2); 279} 280 281static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page) 282{ 283 return ((unsigned long)page) >> 2; 284} 285 286/* 287 * A swap entry has to fit into a "unsigned long", as the entry is hidden 288 * in the "index" field of the swapper address space. 289 */ 290typedef struct { 291 unsigned long val; 292} swp_entry_t; 293 294#if defined(CONFIG_MEMCG) || defined(CONFIG_SLAB_OBJ_EXT) 295/* We have some extra room after the refcount in tail pages. */ 296#define NR_PAGES_IN_LARGE_FOLIO 297#endif 298 299/* 300 * On 32bit, we can cut the required metadata in half, because: 301 * (a) PID_MAX_LIMIT implicitly limits the number of MMs we could ever have, 302 * so we can limit MM IDs to 15 bit (32767). 303 * (b) We don't expect folios where even a single complete PTE mapping by 304 * one MM would exceed 15 bits (order-15). 305 */ 306#ifdef CONFIG_64BIT 307typedef int mm_id_mapcount_t; 308#define MM_ID_MAPCOUNT_MAX INT_MAX 309typedef unsigned int mm_id_t; 310#else /* !CONFIG_64BIT */ 311typedef short mm_id_mapcount_t; 312#define MM_ID_MAPCOUNT_MAX SHRT_MAX 313typedef unsigned short mm_id_t; 314#endif /* CONFIG_64BIT */ 315 316/* We implicitly use the dummy ID for init-mm etc. where we never rmap pages. */ 317#define MM_ID_DUMMY 0 318#define MM_ID_MIN (MM_ID_DUMMY + 1) 319 320/* 321 * We leave the highest bit of each MM id unused, so we can store a flag 322 * in the highest bit of each folio->_mm_id[]. 323 */ 324#define MM_ID_BITS ((sizeof(mm_id_t) * BITS_PER_BYTE) - 1) 325#define MM_ID_MASK ((1U << MM_ID_BITS) - 1) 326#define MM_ID_MAX MM_ID_MASK 327 328/* 329 * In order to use bit_spin_lock(), which requires an unsigned long, we 330 * operate on folio->_mm_ids when working on flags. 331 */ 332#define FOLIO_MM_IDS_LOCK_BITNUM MM_ID_BITS 333#define FOLIO_MM_IDS_LOCK_BIT BIT(FOLIO_MM_IDS_LOCK_BITNUM) 334#define FOLIO_MM_IDS_SHARED_BITNUM (2 * MM_ID_BITS + 1) 335#define FOLIO_MM_IDS_SHARED_BIT BIT(FOLIO_MM_IDS_SHARED_BITNUM) 336 337/** 338 * struct folio - Represents a contiguous set of bytes. 339 * @flags: Identical to the page flags. 340 * @lru: Least Recently Used list; tracks how recently this folio was used. 341 * @mlock_count: Number of times this folio has been pinned by mlock(). 342 * @mapping: The file this page belongs to, or refers to the anon_vma for 343 * anonymous memory. 344 * @index: Offset within the file, in units of pages. For anonymous memory, 345 * this is the index from the beginning of the mmap. 346 * @share: number of DAX mappings that reference this folio. See 347 * dax_associate_entry. 348 * @private: Filesystem per-folio data (see folio_attach_private()). 349 * @swap: Used for swp_entry_t if folio_test_swapcache(). 350 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 351 * find out how many times this folio is mapped by userspace. 352 * @_refcount: Do not access this member directly. Use folio_ref_count() 353 * to find how many references there are to this folio. 354 * @memcg_data: Memory Control Group data. 355 * @pgmap: Metadata for ZONE_DEVICE mappings 356 * @virtual: Virtual address in the kernel direct map. 357 * @_last_cpupid: IDs of last CPU and last process that accessed the folio. 358 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount(). 359 * @_large_mapcount: Do not use directly, call folio_mapcount(). 360 * @_nr_pages_mapped: Do not use outside of rmap and debug code. 361 * @_pincount: Do not use directly, call folio_maybe_dma_pinned(). 362 * @_nr_pages: Do not use directly, call folio_nr_pages(). 363 * @_mm_id: Do not use outside of rmap code. 364 * @_mm_ids: Do not use outside of rmap code. 365 * @_mm_id_mapcount: Do not use outside of rmap code. 366 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h. 367 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h. 368 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h. 369 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head(). 370 * @_deferred_list: Folios to be split under memory pressure. 371 * @_unused_slab_obj_exts: Placeholder to match obj_exts in struct slab. 372 * 373 * A folio is a physically, virtually and logically contiguous set 374 * of bytes. It is a power-of-two in size, and it is aligned to that 375 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 376 * in the page cache, it is at a file offset which is a multiple of that 377 * power-of-two. It may be mapped into userspace at an address which is 378 * at an arbitrary page offset, but its kernel virtual address is aligned 379 * to its size. 380 */ 381struct folio { 382 /* private: don't document the anon union */ 383 union { 384 struct { 385 /* public: */ 386 unsigned long flags; 387 union { 388 struct list_head lru; 389 /* private: avoid cluttering the output */ 390 struct { 391 void *__filler; 392 /* public: */ 393 unsigned int mlock_count; 394 /* private: */ 395 }; 396 /* public: */ 397 struct dev_pagemap *pgmap; 398 }; 399 struct address_space *mapping; 400 union { 401 pgoff_t index; 402 unsigned long share; 403 }; 404 union { 405 void *private; 406 swp_entry_t swap; 407 }; 408 atomic_t _mapcount; 409 atomic_t _refcount; 410#ifdef CONFIG_MEMCG 411 unsigned long memcg_data; 412#elif defined(CONFIG_SLAB_OBJ_EXT) 413 unsigned long _unused_slab_obj_exts; 414#endif 415#if defined(WANT_PAGE_VIRTUAL) 416 void *virtual; 417#endif 418#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 419 int _last_cpupid; 420#endif 421 /* private: the union with struct page is transitional */ 422 }; 423 struct page page; 424 }; 425 union { 426 struct { 427 unsigned long _flags_1; 428 unsigned long _head_1; 429 union { 430 struct { 431 /* public: */ 432 atomic_t _large_mapcount; 433 atomic_t _nr_pages_mapped; 434#ifdef CONFIG_64BIT 435 atomic_t _entire_mapcount; 436 atomic_t _pincount; 437#endif /* CONFIG_64BIT */ 438 mm_id_mapcount_t _mm_id_mapcount[2]; 439 union { 440 mm_id_t _mm_id[2]; 441 unsigned long _mm_ids; 442 }; 443 /* private: the union with struct page is transitional */ 444 }; 445 unsigned long _usable_1[4]; 446 }; 447 atomic_t _mapcount_1; 448 atomic_t _refcount_1; 449 /* public: */ 450#ifdef NR_PAGES_IN_LARGE_FOLIO 451 unsigned int _nr_pages; 452#endif /* NR_PAGES_IN_LARGE_FOLIO */ 453 /* private: the union with struct page is transitional */ 454 }; 455 struct page __page_1; 456 }; 457 union { 458 struct { 459 unsigned long _flags_2; 460 unsigned long _head_2; 461 /* public: */ 462 struct list_head _deferred_list; 463#ifndef CONFIG_64BIT 464 atomic_t _entire_mapcount; 465 atomic_t _pincount; 466#endif /* !CONFIG_64BIT */ 467 /* private: the union with struct page is transitional */ 468 }; 469 struct page __page_2; 470 }; 471 union { 472 struct { 473 unsigned long _flags_3; 474 unsigned long _head_3; 475 /* public: */ 476 void *_hugetlb_subpool; 477 void *_hugetlb_cgroup; 478 void *_hugetlb_cgroup_rsvd; 479 void *_hugetlb_hwpoison; 480 /* private: the union with struct page is transitional */ 481 }; 482 struct page __page_3; 483 }; 484}; 485 486#define FOLIO_MATCH(pg, fl) \ 487 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 488FOLIO_MATCH(flags, flags); 489FOLIO_MATCH(lru, lru); 490FOLIO_MATCH(mapping, mapping); 491FOLIO_MATCH(compound_head, lru); 492FOLIO_MATCH(index, index); 493FOLIO_MATCH(private, private); 494FOLIO_MATCH(_mapcount, _mapcount); 495FOLIO_MATCH(_refcount, _refcount); 496#ifdef CONFIG_MEMCG 497FOLIO_MATCH(memcg_data, memcg_data); 498#endif 499#if defined(WANT_PAGE_VIRTUAL) 500FOLIO_MATCH(virtual, virtual); 501#endif 502#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 503FOLIO_MATCH(_last_cpupid, _last_cpupid); 504#endif 505#undef FOLIO_MATCH 506#define FOLIO_MATCH(pg, fl) \ 507 static_assert(offsetof(struct folio, fl) == \ 508 offsetof(struct page, pg) + sizeof(struct page)) 509FOLIO_MATCH(flags, _flags_1); 510FOLIO_MATCH(compound_head, _head_1); 511FOLIO_MATCH(_mapcount, _mapcount_1); 512FOLIO_MATCH(_refcount, _refcount_1); 513#undef FOLIO_MATCH 514#define FOLIO_MATCH(pg, fl) \ 515 static_assert(offsetof(struct folio, fl) == \ 516 offsetof(struct page, pg) + 2 * sizeof(struct page)) 517FOLIO_MATCH(flags, _flags_2); 518FOLIO_MATCH(compound_head, _head_2); 519#undef FOLIO_MATCH 520#define FOLIO_MATCH(pg, fl) \ 521 static_assert(offsetof(struct folio, fl) == \ 522 offsetof(struct page, pg) + 3 * sizeof(struct page)) 523FOLIO_MATCH(flags, _flags_3); 524FOLIO_MATCH(compound_head, _head_3); 525#undef FOLIO_MATCH 526 527/** 528 * struct ptdesc - Memory descriptor for page tables. 529 * @__page_flags: Same as page flags. Powerpc only. 530 * @pt_rcu_head: For freeing page table pages. 531 * @pt_list: List of used page tables. Used for s390 gmap shadow pages 532 * (which are not linked into the user page tables) and x86 533 * pgds. 534 * @_pt_pad_1: Padding that aliases with page's compound head. 535 * @pmd_huge_pte: Protected by ptdesc->ptl, used for THPs. 536 * @__page_mapping: Aliases with page->mapping. Unused for page tables. 537 * @pt_index: Used for s390 gmap. 538 * @pt_mm: Used for x86 pgds. 539 * @pt_frag_refcount: For fragmented page table tracking. Powerpc only. 540 * @pt_share_count: Used for HugeTLB PMD page table share count. 541 * @_pt_pad_2: Padding to ensure proper alignment. 542 * @ptl: Lock for the page table. 543 * @__page_type: Same as page->page_type. Unused for page tables. 544 * @__page_refcount: Same as page refcount. 545 * @pt_memcg_data: Memcg data. Tracked for page tables here. 546 * 547 * This struct overlays struct page for now. Do not modify without a good 548 * understanding of the issues. 549 */ 550struct ptdesc { 551 unsigned long __page_flags; 552 553 union { 554 struct rcu_head pt_rcu_head; 555 struct list_head pt_list; 556 struct { 557 unsigned long _pt_pad_1; 558 pgtable_t pmd_huge_pte; 559 }; 560 }; 561 unsigned long __page_mapping; 562 563 union { 564 pgoff_t pt_index; 565 struct mm_struct *pt_mm; 566 atomic_t pt_frag_refcount; 567#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 568 atomic_t pt_share_count; 569#endif 570 }; 571 572 union { 573 unsigned long _pt_pad_2; 574#if ALLOC_SPLIT_PTLOCKS 575 spinlock_t *ptl; 576#else 577 spinlock_t ptl; 578#endif 579 }; 580 unsigned int __page_type; 581 atomic_t __page_refcount; 582#ifdef CONFIG_MEMCG 583 unsigned long pt_memcg_data; 584#endif 585}; 586 587#define TABLE_MATCH(pg, pt) \ 588 static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt)) 589TABLE_MATCH(flags, __page_flags); 590TABLE_MATCH(compound_head, pt_list); 591TABLE_MATCH(compound_head, _pt_pad_1); 592TABLE_MATCH(mapping, __page_mapping); 593TABLE_MATCH(index, pt_index); 594TABLE_MATCH(rcu_head, pt_rcu_head); 595TABLE_MATCH(page_type, __page_type); 596TABLE_MATCH(_refcount, __page_refcount); 597#ifdef CONFIG_MEMCG 598TABLE_MATCH(memcg_data, pt_memcg_data); 599#endif 600#undef TABLE_MATCH 601static_assert(sizeof(struct ptdesc) <= sizeof(struct page)); 602 603#define ptdesc_page(pt) (_Generic((pt), \ 604 const struct ptdesc *: (const struct page *)(pt), \ 605 struct ptdesc *: (struct page *)(pt))) 606 607#define ptdesc_folio(pt) (_Generic((pt), \ 608 const struct ptdesc *: (const struct folio *)(pt), \ 609 struct ptdesc *: (struct folio *)(pt))) 610 611#define page_ptdesc(p) (_Generic((p), \ 612 const struct page *: (const struct ptdesc *)(p), \ 613 struct page *: (struct ptdesc *)(p))) 614 615#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 616static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc) 617{ 618 atomic_set(&ptdesc->pt_share_count, 0); 619} 620 621static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc) 622{ 623 atomic_inc(&ptdesc->pt_share_count); 624} 625 626static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc) 627{ 628 atomic_dec(&ptdesc->pt_share_count); 629} 630 631static inline int ptdesc_pmd_pts_count(struct ptdesc *ptdesc) 632{ 633 return atomic_read(&ptdesc->pt_share_count); 634} 635#else 636static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc) 637{ 638} 639#endif 640 641/* 642 * Used for sizing the vmemmap region on some architectures 643 */ 644#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 645 646/* 647 * page_private can be used on tail pages. However, PagePrivate is only 648 * checked by the VM on the head page. So page_private on the tail pages 649 * should be used for data that's ancillary to the head page (eg attaching 650 * buffer heads to tail pages after attaching buffer heads to the head page) 651 */ 652#define page_private(page) ((page)->private) 653 654static inline void set_page_private(struct page *page, unsigned long private) 655{ 656 page->private = private; 657} 658 659static inline void *folio_get_private(struct folio *folio) 660{ 661 return folio->private; 662} 663 664typedef unsigned long vm_flags_t; 665 666/* 667 * freeptr_t represents a SLUB freelist pointer, which might be encoded 668 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 669 */ 670typedef struct { unsigned long v; } freeptr_t; 671 672/* 673 * A region containing a mapping of a non-memory backed file under NOMMU 674 * conditions. These are held in a global tree and are pinned by the VMAs that 675 * map parts of them. 676 */ 677struct vm_region { 678 struct rb_node vm_rb; /* link in global region tree */ 679 vm_flags_t vm_flags; /* VMA vm_flags */ 680 unsigned long vm_start; /* start address of region */ 681 unsigned long vm_end; /* region initialised to here */ 682 unsigned long vm_top; /* region allocated to here */ 683 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 684 struct file *vm_file; /* the backing file or NULL */ 685 686 int vm_usage; /* region usage count (access under nommu_region_sem) */ 687 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 688 * this region */ 689}; 690 691#ifdef CONFIG_USERFAULTFD 692#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 693struct vm_userfaultfd_ctx { 694 struct userfaultfd_ctx *ctx; 695}; 696#else /* CONFIG_USERFAULTFD */ 697#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 698struct vm_userfaultfd_ctx {}; 699#endif /* CONFIG_USERFAULTFD */ 700 701struct anon_vma_name { 702 struct kref kref; 703 /* The name needs to be at the end because it is dynamically sized. */ 704 char name[]; 705}; 706 707#ifdef CONFIG_ANON_VMA_NAME 708/* 709 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should 710 * either keep holding the lock while using the returned pointer or it should 711 * raise anon_vma_name refcount before releasing the lock. 712 */ 713struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma); 714struct anon_vma_name *anon_vma_name_alloc(const char *name); 715void anon_vma_name_free(struct kref *kref); 716#else /* CONFIG_ANON_VMA_NAME */ 717static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 718{ 719 return NULL; 720} 721 722static inline struct anon_vma_name *anon_vma_name_alloc(const char *name) 723{ 724 return NULL; 725} 726#endif 727 728#define VMA_LOCK_OFFSET 0x40000000 729#define VMA_REF_LIMIT (VMA_LOCK_OFFSET - 1) 730 731struct vma_numab_state { 732 /* 733 * Initialised as time in 'jiffies' after which VMA 734 * should be scanned. Delays first scan of new VMA by at 735 * least sysctl_numa_balancing_scan_delay: 736 */ 737 unsigned long next_scan; 738 739 /* 740 * Time in jiffies when pids_active[] is reset to 741 * detect phase change behaviour: 742 */ 743 unsigned long pids_active_reset; 744 745 /* 746 * Approximate tracking of PIDs that trapped a NUMA hinting 747 * fault. May produce false positives due to hash collisions. 748 * 749 * [0] Previous PID tracking 750 * [1] Current PID tracking 751 * 752 * Window moves after next_pid_reset has expired approximately 753 * every VMA_PID_RESET_PERIOD jiffies: 754 */ 755 unsigned long pids_active[2]; 756 757 /* MM scan sequence ID when scan first started after VMA creation */ 758 int start_scan_seq; 759 760 /* 761 * MM scan sequence ID when the VMA was last completely scanned. 762 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq 763 */ 764 int prev_scan_seq; 765}; 766 767/* 768 * This struct describes a virtual memory area. There is one of these 769 * per VM-area/task. A VM area is any part of the process virtual memory 770 * space that has a special rule for the page-fault handlers (ie a shared 771 * library, the executable area etc). 772 * 773 * Only explicitly marked struct members may be accessed by RCU readers before 774 * getting a stable reference. 775 * 776 * WARNING: when adding new members, please update vm_area_init_from() to copy 777 * them during vm_area_struct content duplication. 778 */ 779struct vm_area_struct { 780 /* The first cache line has the info for VMA tree walking. */ 781 782 union { 783 struct { 784 /* VMA covers [vm_start; vm_end) addresses within mm */ 785 unsigned long vm_start; 786 unsigned long vm_end; 787 }; 788 freeptr_t vm_freeptr; /* Pointer used by SLAB_TYPESAFE_BY_RCU */ 789 }; 790 791 /* 792 * The address space we belong to. 793 * Unstable RCU readers are allowed to read this. 794 */ 795 struct mm_struct *vm_mm; 796 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 797 798 /* 799 * Flags, see mm.h. 800 * To modify use vm_flags_{init|reset|set|clear|mod} functions. 801 */ 802 union { 803 const vm_flags_t vm_flags; 804 vm_flags_t __private __vm_flags; 805 }; 806 807#ifdef CONFIG_PER_VMA_LOCK 808 /* 809 * Can only be written (using WRITE_ONCE()) while holding both: 810 * - mmap_lock (in write mode) 811 * - vm_refcnt bit at VMA_LOCK_OFFSET is set 812 * Can be read reliably while holding one of: 813 * - mmap_lock (in read or write mode) 814 * - vm_refcnt bit at VMA_LOCK_OFFSET is set or vm_refcnt > 1 815 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout 816 * while holding nothing (except RCU to keep the VMA struct allocated). 817 * 818 * This sequence counter is explicitly allowed to overflow; sequence 819 * counter reuse can only lead to occasional unnecessary use of the 820 * slowpath. 821 */ 822 unsigned int vm_lock_seq; 823#endif 824 /* 825 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 826 * list, after a COW of one of the file pages. A MAP_SHARED vma 827 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 828 * or brk vma (with NULL file) can only be in an anon_vma list. 829 */ 830 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 831 * page_table_lock */ 832 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 833 834 /* Function pointers to deal with this struct. */ 835 const struct vm_operations_struct *vm_ops; 836 837 /* Information about our backing store: */ 838 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 839 units */ 840 struct file * vm_file; /* File we map to (can be NULL). */ 841 void * vm_private_data; /* was vm_pte (shared mem) */ 842 843#ifdef CONFIG_SWAP 844 atomic_long_t swap_readahead_info; 845#endif 846#ifndef CONFIG_MMU 847 struct vm_region *vm_region; /* NOMMU mapping region */ 848#endif 849#ifdef CONFIG_NUMA 850 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 851#endif 852#ifdef CONFIG_NUMA_BALANCING 853 struct vma_numab_state *numab_state; /* NUMA Balancing state */ 854#endif 855#ifdef CONFIG_PER_VMA_LOCK 856 /* Unstable RCU readers are allowed to read this. */ 857 refcount_t vm_refcnt ____cacheline_aligned_in_smp; 858#ifdef CONFIG_DEBUG_LOCK_ALLOC 859 struct lockdep_map vmlock_dep_map; 860#endif 861#endif 862 /* 863 * For areas with an address space and backing store, 864 * linkage into the address_space->i_mmap interval tree. 865 * 866 */ 867 struct { 868 struct rb_node rb; 869 unsigned long rb_subtree_last; 870 } shared; 871#ifdef CONFIG_ANON_VMA_NAME 872 /* 873 * For private and shared anonymous mappings, a pointer to a null 874 * terminated string containing the name given to the vma, or NULL if 875 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access. 876 */ 877 struct anon_vma_name *anon_name; 878#endif 879 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 880} __randomize_layout; 881 882#ifdef CONFIG_NUMA 883#define vma_policy(vma) ((vma)->vm_policy) 884#else 885#define vma_policy(vma) NULL 886#endif 887 888#ifdef CONFIG_SCHED_MM_CID 889struct mm_cid { 890 u64 time; 891 int cid; 892 int recent_cid; 893}; 894#endif 895 896struct kioctx_table; 897struct iommu_mm_data; 898struct mm_struct { 899 struct { 900 /* 901 * Fields which are often written to are placed in a separate 902 * cache line. 903 */ 904 struct { 905 /** 906 * @mm_count: The number of references to &struct 907 * mm_struct (@mm_users count as 1). 908 * 909 * Use mmgrab()/mmdrop() to modify. When this drops to 910 * 0, the &struct mm_struct is freed. 911 */ 912 atomic_t mm_count; 913 } ____cacheline_aligned_in_smp; 914 915 struct maple_tree mm_mt; 916 917 unsigned long mmap_base; /* base of mmap area */ 918 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 919#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 920 /* Base addresses for compatible mmap() */ 921 unsigned long mmap_compat_base; 922 unsigned long mmap_compat_legacy_base; 923#endif 924 unsigned long task_size; /* size of task vm space */ 925 pgd_t * pgd; 926 927#ifdef CONFIG_MEMBARRIER 928 /** 929 * @membarrier_state: Flags controlling membarrier behavior. 930 * 931 * This field is close to @pgd to hopefully fit in the same 932 * cache-line, which needs to be touched by switch_mm(). 933 */ 934 atomic_t membarrier_state; 935#endif 936 937 /** 938 * @mm_users: The number of users including userspace. 939 * 940 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 941 * drops to 0 (i.e. when the task exits and there are no other 942 * temporary reference holders), we also release a reference on 943 * @mm_count (which may then free the &struct mm_struct if 944 * @mm_count also drops to 0). 945 */ 946 atomic_t mm_users; 947 948#ifdef CONFIG_SCHED_MM_CID 949 /** 950 * @pcpu_cid: Per-cpu current cid. 951 * 952 * Keep track of the currently allocated mm_cid for each cpu. 953 * The per-cpu mm_cid values are serialized by their respective 954 * runqueue locks. 955 */ 956 struct mm_cid __percpu *pcpu_cid; 957 /* 958 * @mm_cid_next_scan: Next mm_cid scan (in jiffies). 959 * 960 * When the next mm_cid scan is due (in jiffies). 961 */ 962 unsigned long mm_cid_next_scan; 963 /** 964 * @nr_cpus_allowed: Number of CPUs allowed for mm. 965 * 966 * Number of CPUs allowed in the union of all mm's 967 * threads allowed CPUs. 968 */ 969 unsigned int nr_cpus_allowed; 970 /** 971 * @max_nr_cid: Maximum number of allowed concurrency 972 * IDs allocated. 973 * 974 * Track the highest number of allowed concurrency IDs 975 * allocated for the mm. 976 */ 977 atomic_t max_nr_cid; 978 /** 979 * @cpus_allowed_lock: Lock protecting mm cpus_allowed. 980 * 981 * Provide mutual exclusion for mm cpus_allowed and 982 * mm nr_cpus_allowed updates. 983 */ 984 raw_spinlock_t cpus_allowed_lock; 985#endif 986#ifdef CONFIG_MMU 987 atomic_long_t pgtables_bytes; /* size of all page tables */ 988#endif 989 int map_count; /* number of VMAs */ 990 991 spinlock_t page_table_lock; /* Protects page tables and some 992 * counters 993 */ 994 /* 995 * With some kernel config, the current mmap_lock's offset 996 * inside 'mm_struct' is at 0x120, which is very optimal, as 997 * its two hot fields 'count' and 'owner' sit in 2 different 998 * cachelines, and when mmap_lock is highly contended, both 999 * of the 2 fields will be accessed frequently, current layout 1000 * will help to reduce cache bouncing. 1001 * 1002 * So please be careful with adding new fields before 1003 * mmap_lock, which can easily push the 2 fields into one 1004 * cacheline. 1005 */ 1006 struct rw_semaphore mmap_lock; 1007 1008 struct list_head mmlist; /* List of maybe swapped mm's. These 1009 * are globally strung together off 1010 * init_mm.mmlist, and are protected 1011 * by mmlist_lock 1012 */ 1013#ifdef CONFIG_PER_VMA_LOCK 1014 struct rcuwait vma_writer_wait; 1015 /* 1016 * This field has lock-like semantics, meaning it is sometimes 1017 * accessed with ACQUIRE/RELEASE semantics. 1018 * Roughly speaking, incrementing the sequence number is 1019 * equivalent to releasing locks on VMAs; reading the sequence 1020 * number can be part of taking a read lock on a VMA. 1021 * Incremented every time mmap_lock is write-locked/unlocked. 1022 * Initialized to 0, therefore odd values indicate mmap_lock 1023 * is write-locked and even values that it's released. 1024 * 1025 * Can be modified under write mmap_lock using RELEASE 1026 * semantics. 1027 * Can be read with no other protection when holding write 1028 * mmap_lock. 1029 * Can be read with ACQUIRE semantics if not holding write 1030 * mmap_lock. 1031 */ 1032 seqcount_t mm_lock_seq; 1033#endif 1034 1035 1036 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 1037 unsigned long hiwater_vm; /* High-water virtual memory usage */ 1038 1039 unsigned long total_vm; /* Total pages mapped */ 1040 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 1041 atomic64_t pinned_vm; /* Refcount permanently increased */ 1042 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 1043 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 1044 unsigned long stack_vm; /* VM_STACK */ 1045 unsigned long def_flags; 1046 1047 /** 1048 * @write_protect_seq: Locked when any thread is write 1049 * protecting pages mapped by this mm to enforce a later COW, 1050 * for instance during page table copying for fork(). 1051 */ 1052 seqcount_t write_protect_seq; 1053 1054 spinlock_t arg_lock; /* protect the below fields */ 1055 1056 unsigned long start_code, end_code, start_data, end_data; 1057 unsigned long start_brk, brk, start_stack; 1058 unsigned long arg_start, arg_end, env_start, env_end; 1059 1060 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 1061 1062 struct percpu_counter rss_stat[NR_MM_COUNTERS]; 1063 1064 struct linux_binfmt *binfmt; 1065 1066 /* Architecture-specific MM context */ 1067 mm_context_t context; 1068 1069 unsigned long flags; /* Must use atomic bitops to access */ 1070 1071#ifdef CONFIG_AIO 1072 spinlock_t ioctx_lock; 1073 struct kioctx_table __rcu *ioctx_table; 1074#endif 1075#ifdef CONFIG_MEMCG 1076 /* 1077 * "owner" points to a task that is regarded as the canonical 1078 * user/owner of this mm. All of the following must be true in 1079 * order for it to be changed: 1080 * 1081 * current == mm->owner 1082 * current->mm != mm 1083 * new_owner->mm == mm 1084 * new_owner->alloc_lock is held 1085 */ 1086 struct task_struct __rcu *owner; 1087#endif 1088 struct user_namespace *user_ns; 1089 1090 /* store ref to file /proc/<pid>/exe symlink points to */ 1091 struct file __rcu *exe_file; 1092#ifdef CONFIG_MMU_NOTIFIER 1093 struct mmu_notifier_subscriptions *notifier_subscriptions; 1094#endif 1095#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1096 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 1097#endif 1098#ifdef CONFIG_NUMA_BALANCING 1099 /* 1100 * numa_next_scan is the next time that PTEs will be remapped 1101 * PROT_NONE to trigger NUMA hinting faults; such faults gather 1102 * statistics and migrate pages to new nodes if necessary. 1103 */ 1104 unsigned long numa_next_scan; 1105 1106 /* Restart point for scanning and remapping PTEs. */ 1107 unsigned long numa_scan_offset; 1108 1109 /* numa_scan_seq prevents two threads remapping PTEs. */ 1110 int numa_scan_seq; 1111#endif 1112 /* 1113 * An operation with batched TLB flushing is going on. Anything 1114 * that can move process memory needs to flush the TLB when 1115 * moving a PROT_NONE mapped page. 1116 */ 1117 atomic_t tlb_flush_pending; 1118#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1119 /* See flush_tlb_batched_pending() */ 1120 atomic_t tlb_flush_batched; 1121#endif 1122 struct uprobes_state uprobes_state; 1123#ifdef CONFIG_PREEMPT_RT 1124 struct rcu_head delayed_drop; 1125#endif 1126#ifdef CONFIG_HUGETLB_PAGE 1127 atomic_long_t hugetlb_usage; 1128#endif 1129 struct work_struct async_put_work; 1130 1131#ifdef CONFIG_IOMMU_MM_DATA 1132 struct iommu_mm_data *iommu_mm; 1133#endif 1134#ifdef CONFIG_KSM 1135 /* 1136 * Represent how many pages of this process are involved in KSM 1137 * merging (not including ksm_zero_pages). 1138 */ 1139 unsigned long ksm_merging_pages; 1140 /* 1141 * Represent how many pages are checked for ksm merging 1142 * including merged and not merged. 1143 */ 1144 unsigned long ksm_rmap_items; 1145 /* 1146 * Represent how many empty pages are merged with kernel zero 1147 * pages when enabling KSM use_zero_pages. 1148 */ 1149 atomic_long_t ksm_zero_pages; 1150#endif /* CONFIG_KSM */ 1151#ifdef CONFIG_LRU_GEN_WALKS_MMU 1152 struct { 1153 /* this mm_struct is on lru_gen_mm_list */ 1154 struct list_head list; 1155 /* 1156 * Set when switching to this mm_struct, as a hint of 1157 * whether it has been used since the last time per-node 1158 * page table walkers cleared the corresponding bits. 1159 */ 1160 unsigned long bitmap; 1161#ifdef CONFIG_MEMCG 1162 /* points to the memcg of "owner" above */ 1163 struct mem_cgroup *memcg; 1164#endif 1165 } lru_gen; 1166#endif /* CONFIG_LRU_GEN_WALKS_MMU */ 1167#ifdef CONFIG_MM_ID 1168 mm_id_t mm_id; 1169#endif /* CONFIG_MM_ID */ 1170 } __randomize_layout; 1171 1172 /* 1173 * The mm_cpumask needs to be at the end of mm_struct, because it 1174 * is dynamically sized based on nr_cpu_ids. 1175 */ 1176 unsigned long cpu_bitmap[]; 1177}; 1178 1179#define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \ 1180 MT_FLAGS_USE_RCU) 1181extern struct mm_struct init_mm; 1182 1183/* Pointer magic because the dynamic array size confuses some compilers. */ 1184static inline void mm_init_cpumask(struct mm_struct *mm) 1185{ 1186 unsigned long cpu_bitmap = (unsigned long)mm; 1187 1188 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 1189 cpumask_clear((struct cpumask *)cpu_bitmap); 1190} 1191 1192/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 1193static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 1194{ 1195 return (struct cpumask *)&mm->cpu_bitmap; 1196} 1197 1198#ifdef CONFIG_LRU_GEN 1199 1200struct lru_gen_mm_list { 1201 /* mm_struct list for page table walkers */ 1202 struct list_head fifo; 1203 /* protects the list above */ 1204 spinlock_t lock; 1205}; 1206 1207#endif /* CONFIG_LRU_GEN */ 1208 1209#ifdef CONFIG_LRU_GEN_WALKS_MMU 1210 1211void lru_gen_add_mm(struct mm_struct *mm); 1212void lru_gen_del_mm(struct mm_struct *mm); 1213void lru_gen_migrate_mm(struct mm_struct *mm); 1214 1215static inline void lru_gen_init_mm(struct mm_struct *mm) 1216{ 1217 INIT_LIST_HEAD(&mm->lru_gen.list); 1218 mm->lru_gen.bitmap = 0; 1219#ifdef CONFIG_MEMCG 1220 mm->lru_gen.memcg = NULL; 1221#endif 1222} 1223 1224static inline void lru_gen_use_mm(struct mm_struct *mm) 1225{ 1226 /* 1227 * When the bitmap is set, page reclaim knows this mm_struct has been 1228 * used since the last time it cleared the bitmap. So it might be worth 1229 * walking the page tables of this mm_struct to clear the accessed bit. 1230 */ 1231 WRITE_ONCE(mm->lru_gen.bitmap, -1); 1232} 1233 1234#else /* !CONFIG_LRU_GEN_WALKS_MMU */ 1235 1236static inline void lru_gen_add_mm(struct mm_struct *mm) 1237{ 1238} 1239 1240static inline void lru_gen_del_mm(struct mm_struct *mm) 1241{ 1242} 1243 1244static inline void lru_gen_migrate_mm(struct mm_struct *mm) 1245{ 1246} 1247 1248static inline void lru_gen_init_mm(struct mm_struct *mm) 1249{ 1250} 1251 1252static inline void lru_gen_use_mm(struct mm_struct *mm) 1253{ 1254} 1255 1256#endif /* CONFIG_LRU_GEN_WALKS_MMU */ 1257 1258struct vma_iterator { 1259 struct ma_state mas; 1260}; 1261 1262#define VMA_ITERATOR(name, __mm, __addr) \ 1263 struct vma_iterator name = { \ 1264 .mas = { \ 1265 .tree = &(__mm)->mm_mt, \ 1266 .index = __addr, \ 1267 .node = NULL, \ 1268 .status = ma_start, \ 1269 }, \ 1270 } 1271 1272static inline void vma_iter_init(struct vma_iterator *vmi, 1273 struct mm_struct *mm, unsigned long addr) 1274{ 1275 mas_init(&vmi->mas, &mm->mm_mt, addr); 1276} 1277 1278#ifdef CONFIG_SCHED_MM_CID 1279 1280enum mm_cid_state { 1281 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */ 1282 MM_CID_LAZY_PUT = (1U << 31), 1283}; 1284 1285static inline bool mm_cid_is_unset(int cid) 1286{ 1287 return cid == MM_CID_UNSET; 1288} 1289 1290static inline bool mm_cid_is_lazy_put(int cid) 1291{ 1292 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT); 1293} 1294 1295static inline bool mm_cid_is_valid(int cid) 1296{ 1297 return !(cid & MM_CID_LAZY_PUT); 1298} 1299 1300static inline int mm_cid_set_lazy_put(int cid) 1301{ 1302 return cid | MM_CID_LAZY_PUT; 1303} 1304 1305static inline int mm_cid_clear_lazy_put(int cid) 1306{ 1307 return cid & ~MM_CID_LAZY_PUT; 1308} 1309 1310/* 1311 * mm_cpus_allowed: Union of all mm's threads allowed CPUs. 1312 */ 1313static inline cpumask_t *mm_cpus_allowed(struct mm_struct *mm) 1314{ 1315 unsigned long bitmap = (unsigned long)mm; 1316 1317 bitmap += offsetof(struct mm_struct, cpu_bitmap); 1318 /* Skip cpu_bitmap */ 1319 bitmap += cpumask_size(); 1320 return (struct cpumask *)bitmap; 1321} 1322 1323/* Accessor for struct mm_struct's cidmask. */ 1324static inline cpumask_t *mm_cidmask(struct mm_struct *mm) 1325{ 1326 unsigned long cid_bitmap = (unsigned long)mm_cpus_allowed(mm); 1327 1328 /* Skip mm_cpus_allowed */ 1329 cid_bitmap += cpumask_size(); 1330 return (struct cpumask *)cid_bitmap; 1331} 1332 1333static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) 1334{ 1335 int i; 1336 1337 for_each_possible_cpu(i) { 1338 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i); 1339 1340 pcpu_cid->cid = MM_CID_UNSET; 1341 pcpu_cid->recent_cid = MM_CID_UNSET; 1342 pcpu_cid->time = 0; 1343 } 1344 mm->nr_cpus_allowed = p->nr_cpus_allowed; 1345 atomic_set(&mm->max_nr_cid, 0); 1346 raw_spin_lock_init(&mm->cpus_allowed_lock); 1347 cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask); 1348 cpumask_clear(mm_cidmask(mm)); 1349} 1350 1351static inline int mm_alloc_cid_noprof(struct mm_struct *mm, struct task_struct *p) 1352{ 1353 mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid); 1354 if (!mm->pcpu_cid) 1355 return -ENOMEM; 1356 mm_init_cid(mm, p); 1357 return 0; 1358} 1359#define mm_alloc_cid(...) alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__)) 1360 1361static inline void mm_destroy_cid(struct mm_struct *mm) 1362{ 1363 free_percpu(mm->pcpu_cid); 1364 mm->pcpu_cid = NULL; 1365} 1366 1367static inline unsigned int mm_cid_size(void) 1368{ 1369 return 2 * cpumask_size(); /* mm_cpus_allowed(), mm_cidmask(). */ 1370} 1371 1372static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) 1373{ 1374 struct cpumask *mm_allowed = mm_cpus_allowed(mm); 1375 1376 if (!mm) 1377 return; 1378 /* The mm_cpus_allowed is the union of each thread allowed CPUs masks. */ 1379 raw_spin_lock(&mm->cpus_allowed_lock); 1380 cpumask_or(mm_allowed, mm_allowed, cpumask); 1381 WRITE_ONCE(mm->nr_cpus_allowed, cpumask_weight(mm_allowed)); 1382 raw_spin_unlock(&mm->cpus_allowed_lock); 1383} 1384#else /* CONFIG_SCHED_MM_CID */ 1385static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { } 1386static inline int mm_alloc_cid(struct mm_struct *mm, struct task_struct *p) { return 0; } 1387static inline void mm_destroy_cid(struct mm_struct *mm) { } 1388 1389static inline unsigned int mm_cid_size(void) 1390{ 1391 return 0; 1392} 1393static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) { } 1394#endif /* CONFIG_SCHED_MM_CID */ 1395 1396struct mmu_gather; 1397extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 1398extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 1399extern void tlb_finish_mmu(struct mmu_gather *tlb); 1400 1401struct vm_fault; 1402 1403/** 1404 * typedef vm_fault_t - Return type for page fault handlers. 1405 * 1406 * Page fault handlers return a bitmask of %VM_FAULT values. 1407 */ 1408typedef __bitwise unsigned int vm_fault_t; 1409 1410/** 1411 * enum vm_fault_reason - Page fault handlers return a bitmask of 1412 * these values to tell the core VM what happened when handling the 1413 * fault. Used to decide whether a process gets delivered SIGBUS or 1414 * just gets major/minor fault counters bumped up. 1415 * 1416 * @VM_FAULT_OOM: Out Of Memory 1417 * @VM_FAULT_SIGBUS: Bad access 1418 * @VM_FAULT_MAJOR: Page read from storage 1419 * @VM_FAULT_HWPOISON: Hit poisoned small page 1420 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 1421 * in upper bits 1422 * @VM_FAULT_SIGSEGV: segmentation fault 1423 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 1424 * @VM_FAULT_LOCKED: ->fault locked the returned page 1425 * @VM_FAULT_RETRY: ->fault blocked, must retry 1426 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 1427 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 1428 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 1429 * fsync() to complete (for synchronous page faults 1430 * in DAX) 1431 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released 1432 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 1433 * 1434 */ 1435enum vm_fault_reason { 1436 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 1437 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 1438 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 1439 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 1440 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 1441 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 1442 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 1443 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 1444 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 1445 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 1446 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 1447 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 1448 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000, 1449 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 1450}; 1451 1452/* Encode hstate index for a hwpoisoned large page */ 1453#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 1454#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 1455 1456#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 1457 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 1458 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 1459 1460#define VM_FAULT_RESULT_TRACE \ 1461 { VM_FAULT_OOM, "OOM" }, \ 1462 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1463 { VM_FAULT_MAJOR, "MAJOR" }, \ 1464 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1465 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1466 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1467 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1468 { VM_FAULT_LOCKED, "LOCKED" }, \ 1469 { VM_FAULT_RETRY, "RETRY" }, \ 1470 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1471 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1472 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }, \ 1473 { VM_FAULT_COMPLETED, "COMPLETED" } 1474 1475struct vm_special_mapping { 1476 const char *name; /* The name, e.g. "[vdso]". */ 1477 1478 /* 1479 * If .fault is not provided, this points to a 1480 * NULL-terminated array of pages that back the special mapping. 1481 * 1482 * This must not be NULL unless .fault is provided. 1483 */ 1484 struct page **pages; 1485 1486 /* 1487 * If non-NULL, then this is called to resolve page faults 1488 * on the special mapping. If used, .pages is not checked. 1489 */ 1490 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 1491 struct vm_area_struct *vma, 1492 struct vm_fault *vmf); 1493 1494 int (*mremap)(const struct vm_special_mapping *sm, 1495 struct vm_area_struct *new_vma); 1496 1497 void (*close)(const struct vm_special_mapping *sm, 1498 struct vm_area_struct *vma); 1499}; 1500 1501enum tlb_flush_reason { 1502 TLB_FLUSH_ON_TASK_SWITCH, 1503 TLB_REMOTE_SHOOTDOWN, 1504 TLB_LOCAL_SHOOTDOWN, 1505 TLB_LOCAL_MM_SHOOTDOWN, 1506 TLB_REMOTE_SEND_IPI, 1507 TLB_REMOTE_WRONG_CPU, 1508 NR_TLB_FLUSH_REASONS, 1509}; 1510 1511/** 1512 * enum fault_flag - Fault flag definitions. 1513 * @FAULT_FLAG_WRITE: Fault was a write fault. 1514 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 1515 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 1516 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 1517 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 1518 * @FAULT_FLAG_TRIED: The fault has been tried once. 1519 * @FAULT_FLAG_USER: The fault originated in userspace. 1520 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 1521 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 1522 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 1523 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a 1524 * COW mapping, making sure that an exclusive anon page is 1525 * mapped after the fault. 1526 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 1527 * We should only access orig_pte if this flag set. 1528 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock. 1529 * 1530 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 1531 * whether we would allow page faults to retry by specifying these two 1532 * fault flags correctly. Currently there can be three legal combinations: 1533 * 1534 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 1535 * this is the first try 1536 * 1537 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 1538 * we've already tried at least once 1539 * 1540 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 1541 * 1542 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 1543 * be used. Note that page faults can be allowed to retry for multiple times, 1544 * in which case we'll have an initial fault with flags (a) then later on 1545 * continuous faults with flags (b). We should always try to detect pending 1546 * signals before a retry to make sure the continuous page faults can still be 1547 * interrupted if necessary. 1548 * 1549 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 1550 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 1551 * applied to mappings that are not COW mappings. 1552 */ 1553enum fault_flag { 1554 FAULT_FLAG_WRITE = 1 << 0, 1555 FAULT_FLAG_MKWRITE = 1 << 1, 1556 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 1557 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 1558 FAULT_FLAG_KILLABLE = 1 << 4, 1559 FAULT_FLAG_TRIED = 1 << 5, 1560 FAULT_FLAG_USER = 1 << 6, 1561 FAULT_FLAG_REMOTE = 1 << 7, 1562 FAULT_FLAG_INSTRUCTION = 1 << 8, 1563 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 1564 FAULT_FLAG_UNSHARE = 1 << 10, 1565 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 1566 FAULT_FLAG_VMA_LOCK = 1 << 12, 1567}; 1568 1569typedef unsigned int __bitwise zap_flags_t; 1570 1571/* Flags for clear_young_dirty_ptes(). */ 1572typedef int __bitwise cydp_t; 1573 1574/* Clear the access bit */ 1575#define CYDP_CLEAR_YOUNG ((__force cydp_t)BIT(0)) 1576 1577/* Clear the dirty bit */ 1578#define CYDP_CLEAR_DIRTY ((__force cydp_t)BIT(1)) 1579 1580/* 1581 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 1582 * other. Here is what they mean, and how to use them: 1583 * 1584 * 1585 * FIXME: For pages which are part of a filesystem, mappings are subject to the 1586 * lifetime enforced by the filesystem and we need guarantees that longterm 1587 * users like RDMA and V4L2 only establish mappings which coordinate usage with 1588 * the filesystem. Ideas for this coordination include revoking the longterm 1589 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 1590 * added after the problem with filesystems was found FS DAX VMAs are 1591 * specifically failed. Filesystem pages are still subject to bugs and use of 1592 * FOLL_LONGTERM should be avoided on those pages. 1593 * 1594 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 1595 * that region. And so, CMA attempts to migrate the page before pinning, when 1596 * FOLL_LONGTERM is specified. 1597 * 1598 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 1599 * but an additional pin counting system) will be invoked. This is intended for 1600 * anything that gets a page reference and then touches page data (for example, 1601 * Direct IO). This lets the filesystem know that some non-file-system entity is 1602 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 1603 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 1604 * a call to unpin_user_page(). 1605 * 1606 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 1607 * and separate refcounting mechanisms, however, and that means that each has 1608 * its own acquire and release mechanisms: 1609 * 1610 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 1611 * 1612 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 1613 * 1614 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 1615 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 1616 * calls applied to them, and that's perfectly OK. This is a constraint on the 1617 * callers, not on the pages.) 1618 * 1619 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 1620 * directly by the caller. That's in order to help avoid mismatches when 1621 * releasing pages: get_user_pages*() pages must be released via put_page(), 1622 * while pin_user_pages*() pages must be released via unpin_user_page(). 1623 * 1624 * Please see Documentation/core-api/pin_user_pages.rst for more information. 1625 */ 1626 1627enum { 1628 /* check pte is writable */ 1629 FOLL_WRITE = 1 << 0, 1630 /* do get_page on page */ 1631 FOLL_GET = 1 << 1, 1632 /* give error on hole if it would be zero */ 1633 FOLL_DUMP = 1 << 2, 1634 /* get_user_pages read/write w/o permission */ 1635 FOLL_FORCE = 1 << 3, 1636 /* 1637 * if a disk transfer is needed, start the IO and return without waiting 1638 * upon it 1639 */ 1640 FOLL_NOWAIT = 1 << 4, 1641 /* do not fault in pages */ 1642 FOLL_NOFAULT = 1 << 5, 1643 /* check page is hwpoisoned */ 1644 FOLL_HWPOISON = 1 << 6, 1645 /* don't do file mappings */ 1646 FOLL_ANON = 1 << 7, 1647 /* 1648 * FOLL_LONGTERM indicates that the page will be held for an indefinite 1649 * time period _often_ under userspace control. This is in contrast to 1650 * iov_iter_get_pages(), whose usages are transient. 1651 */ 1652 FOLL_LONGTERM = 1 << 8, 1653 /* split huge pmd before returning */ 1654 FOLL_SPLIT_PMD = 1 << 9, 1655 /* allow returning PCI P2PDMA pages */ 1656 FOLL_PCI_P2PDMA = 1 << 10, 1657 /* allow interrupts from generic signals */ 1658 FOLL_INTERRUPTIBLE = 1 << 11, 1659 /* 1660 * Always honor (trigger) NUMA hinting faults. 1661 * 1662 * FOLL_WRITE implicitly honors NUMA hinting faults because a 1663 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE 1664 * apply). get_user_pages_fast_only() always implicitly honors NUMA 1665 * hinting faults. 1666 */ 1667 FOLL_HONOR_NUMA_FAULT = 1 << 12, 1668 1669 /* See also internal only FOLL flags in mm/internal.h */ 1670}; 1671 1672/* mm flags */ 1673 1674/* 1675 * The first two bits represent core dump modes for set-user-ID, 1676 * the modes are SUID_DUMP_* defined in linux/sched/coredump.h 1677 */ 1678#define MMF_DUMPABLE_BITS 2 1679#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 1680/* coredump filter bits */ 1681#define MMF_DUMP_ANON_PRIVATE 2 1682#define MMF_DUMP_ANON_SHARED 3 1683#define MMF_DUMP_MAPPED_PRIVATE 4 1684#define MMF_DUMP_MAPPED_SHARED 5 1685#define MMF_DUMP_ELF_HEADERS 6 1686#define MMF_DUMP_HUGETLB_PRIVATE 7 1687#define MMF_DUMP_HUGETLB_SHARED 8 1688#define MMF_DUMP_DAX_PRIVATE 9 1689#define MMF_DUMP_DAX_SHARED 10 1690 1691#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 1692#define MMF_DUMP_FILTER_BITS 9 1693#define MMF_DUMP_FILTER_MASK \ 1694 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 1695#define MMF_DUMP_FILTER_DEFAULT \ 1696 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 1697 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 1698 1699#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 1700# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 1701#else 1702# define MMF_DUMP_MASK_DEFAULT_ELF 0 1703#endif 1704 /* leave room for more dump flags */ 1705#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 1706#define MMF_VM_HUGEPAGE 17 /* set when mm is available for khugepaged */ 1707 1708/* 1709 * This one-shot flag is dropped due to necessity of changing exe once again 1710 * on NFS restore 1711 */ 1712//#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 1713 1714#define MMF_HAS_UPROBES 19 /* has uprobes */ 1715#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 1716#define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */ 1717#define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */ 1718#define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */ 1719#define MMF_DISABLE_THP 24 /* disable THP for all VMAs */ 1720#define MMF_DISABLE_THP_MASK (1 << MMF_DISABLE_THP) 1721#define MMF_OOM_REAP_QUEUED 25 /* mm was queued for oom_reaper */ 1722#define MMF_MULTIPROCESS 26 /* mm is shared between processes */ 1723/* 1724 * MMF_HAS_PINNED: Whether this mm has pinned any pages. This can be either 1725 * replaced in the future by mm.pinned_vm when it becomes stable, or grow into 1726 * a counter on its own. We're aggresive on this bit for now: even if the 1727 * pinned pages were unpinned later on, we'll still keep this bit set for the 1728 * lifecycle of this mm, just for simplicity. 1729 */ 1730#define MMF_HAS_PINNED 27 /* FOLL_PIN has run, never cleared */ 1731 1732#define MMF_HAS_MDWE 28 1733#define MMF_HAS_MDWE_MASK (1 << MMF_HAS_MDWE) 1734 1735 1736#define MMF_HAS_MDWE_NO_INHERIT 29 1737 1738#define MMF_VM_MERGE_ANY 30 1739#define MMF_VM_MERGE_ANY_MASK (1 << MMF_VM_MERGE_ANY) 1740 1741#define MMF_TOPDOWN 31 /* mm searches top down by default */ 1742#define MMF_TOPDOWN_MASK (1 << MMF_TOPDOWN) 1743 1744#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\ 1745 MMF_DISABLE_THP_MASK | MMF_HAS_MDWE_MASK |\ 1746 MMF_VM_MERGE_ANY_MASK | MMF_TOPDOWN_MASK) 1747 1748static inline unsigned long mmf_init_flags(unsigned long flags) 1749{ 1750 if (flags & (1UL << MMF_HAS_MDWE_NO_INHERIT)) 1751 flags &= ~((1UL << MMF_HAS_MDWE) | 1752 (1UL << MMF_HAS_MDWE_NO_INHERIT)); 1753 return flags & MMF_INIT_MASK; 1754} 1755 1756#endif /* _LINUX_MM_TYPES_H */