at v6.15 130 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/pgalloc_tag.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/atomic.h> 14#include <linux/debug_locks.h> 15#include <linux/mm_types.h> 16#include <linux/mmap_lock.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/percpu-refcount.h> 20#include <linux/bit_spinlock.h> 21#include <linux/shrinker.h> 22#include <linux/resource.h> 23#include <linux/page_ext.h> 24#include <linux/err.h> 25#include <linux/page-flags.h> 26#include <linux/page_ref.h> 27#include <linux/overflow.h> 28#include <linux/sizes.h> 29#include <linux/sched.h> 30#include <linux/pgtable.h> 31#include <linux/kasan.h> 32#include <linux/memremap.h> 33#include <linux/slab.h> 34#include <linux/cacheinfo.h> 35#include <linux/rcuwait.h> 36 37struct mempolicy; 38struct anon_vma; 39struct anon_vma_chain; 40struct user_struct; 41struct pt_regs; 42struct folio_batch; 43 44void arch_mm_preinit(void); 45void mm_core_init(void); 46void init_mm_internals(void); 47 48extern atomic_long_t _totalram_pages; 49static inline unsigned long totalram_pages(void) 50{ 51 return (unsigned long)atomic_long_read(&_totalram_pages); 52} 53 54static inline void totalram_pages_inc(void) 55{ 56 atomic_long_inc(&_totalram_pages); 57} 58 59static inline void totalram_pages_dec(void) 60{ 61 atomic_long_dec(&_totalram_pages); 62} 63 64static inline void totalram_pages_add(long count) 65{ 66 atomic_long_add(count, &_totalram_pages); 67} 68 69extern void * high_memory; 70 71#ifdef CONFIG_SYSCTL 72extern int sysctl_legacy_va_layout; 73#else 74#define sysctl_legacy_va_layout 0 75#endif 76 77#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 78extern const int mmap_rnd_bits_min; 79extern int mmap_rnd_bits_max __ro_after_init; 80extern int mmap_rnd_bits __read_mostly; 81#endif 82#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 83extern const int mmap_rnd_compat_bits_min; 84extern const int mmap_rnd_compat_bits_max; 85extern int mmap_rnd_compat_bits __read_mostly; 86#endif 87 88#ifndef DIRECT_MAP_PHYSMEM_END 89# ifdef MAX_PHYSMEM_BITS 90# define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 91# else 92# define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 93# endif 94#endif 95 96#include <asm/page.h> 97#include <asm/processor.h> 98 99#ifndef __pa_symbol 100#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 101#endif 102 103#ifndef page_to_virt 104#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 105#endif 106 107#ifndef lm_alias 108#define lm_alias(x) __va(__pa_symbol(x)) 109#endif 110 111/* 112 * To prevent common memory management code establishing 113 * a zero page mapping on a read fault. 114 * This macro should be defined within <asm/pgtable.h>. 115 * s390 does this to prevent multiplexing of hardware bits 116 * related to the physical page in case of virtualization. 117 */ 118#ifndef mm_forbids_zeropage 119#define mm_forbids_zeropage(X) (0) 120#endif 121 122/* 123 * On some architectures it is expensive to call memset() for small sizes. 124 * If an architecture decides to implement their own version of 125 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 126 * define their own version of this macro in <asm/pgtable.h> 127 */ 128#if BITS_PER_LONG == 64 129/* This function must be updated when the size of struct page grows above 96 130 * or reduces below 56. The idea that compiler optimizes out switch() 131 * statement, and only leaves move/store instructions. Also the compiler can 132 * combine write statements if they are both assignments and can be reordered, 133 * this can result in several of the writes here being dropped. 134 */ 135#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 136static inline void __mm_zero_struct_page(struct page *page) 137{ 138 unsigned long *_pp = (void *)page; 139 140 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 141 BUILD_BUG_ON(sizeof(struct page) & 7); 142 BUILD_BUG_ON(sizeof(struct page) < 56); 143 BUILD_BUG_ON(sizeof(struct page) > 96); 144 145 switch (sizeof(struct page)) { 146 case 96: 147 _pp[11] = 0; 148 fallthrough; 149 case 88: 150 _pp[10] = 0; 151 fallthrough; 152 case 80: 153 _pp[9] = 0; 154 fallthrough; 155 case 72: 156 _pp[8] = 0; 157 fallthrough; 158 case 64: 159 _pp[7] = 0; 160 fallthrough; 161 case 56: 162 _pp[6] = 0; 163 _pp[5] = 0; 164 _pp[4] = 0; 165 _pp[3] = 0; 166 _pp[2] = 0; 167 _pp[1] = 0; 168 _pp[0] = 0; 169 } 170} 171#else 172#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 173#endif 174 175/* 176 * Default maximum number of active map areas, this limits the number of vmas 177 * per mm struct. Users can overwrite this number by sysctl but there is a 178 * problem. 179 * 180 * When a program's coredump is generated as ELF format, a section is created 181 * per a vma. In ELF, the number of sections is represented in unsigned short. 182 * This means the number of sections should be smaller than 65535 at coredump. 183 * Because the kernel adds some informative sections to a image of program at 184 * generating coredump, we need some margin. The number of extra sections is 185 * 1-3 now and depends on arch. We use "5" as safe margin, here. 186 * 187 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 188 * not a hard limit any more. Although some userspace tools can be surprised by 189 * that. 190 */ 191#define MAPCOUNT_ELF_CORE_MARGIN (5) 192#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 193 194extern int sysctl_max_map_count; 195 196extern unsigned long sysctl_user_reserve_kbytes; 197extern unsigned long sysctl_admin_reserve_kbytes; 198 199#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 200#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 201#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 202#else 203#define nth_page(page,n) ((page) + (n)) 204#define folio_page_idx(folio, p) ((p) - &(folio)->page) 205#endif 206 207/* to align the pointer to the (next) page boundary */ 208#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 209 210/* to align the pointer to the (prev) page boundary */ 211#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 212 213/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 214#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 215 216static inline struct folio *lru_to_folio(struct list_head *head) 217{ 218 return list_entry((head)->prev, struct folio, lru); 219} 220 221void setup_initial_init_mm(void *start_code, void *end_code, 222 void *end_data, void *brk); 223 224/* 225 * Linux kernel virtual memory manager primitives. 226 * The idea being to have a "virtual" mm in the same way 227 * we have a virtual fs - giving a cleaner interface to the 228 * mm details, and allowing different kinds of memory mappings 229 * (from shared memory to executable loading to arbitrary 230 * mmap() functions). 231 */ 232 233struct vm_area_struct *vm_area_alloc(struct mm_struct *); 234struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 235void vm_area_free(struct vm_area_struct *); 236 237#ifndef CONFIG_MMU 238extern struct rb_root nommu_region_tree; 239extern struct rw_semaphore nommu_region_sem; 240 241extern unsigned int kobjsize(const void *objp); 242#endif 243 244/* 245 * vm_flags in vm_area_struct, see mm_types.h. 246 * When changing, update also include/trace/events/mmflags.h 247 */ 248#define VM_NONE 0x00000000 249 250#define VM_READ 0x00000001 /* currently active flags */ 251#define VM_WRITE 0x00000002 252#define VM_EXEC 0x00000004 253#define VM_SHARED 0x00000008 254 255/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 256#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 257#define VM_MAYWRITE 0x00000020 258#define VM_MAYEXEC 0x00000040 259#define VM_MAYSHARE 0x00000080 260 261#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 262#ifdef CONFIG_MMU 263#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 264#else /* CONFIG_MMU */ 265#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 266#define VM_UFFD_MISSING 0 267#endif /* CONFIG_MMU */ 268#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 269#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 270 271#define VM_LOCKED 0x00002000 272#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 273 274 /* Used by sys_madvise() */ 275#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 276#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 277 278#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 279#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 280#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 281#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 282#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 283#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 284#define VM_SYNC 0x00800000 /* Synchronous page faults */ 285#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 286#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 287#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 288 289#ifdef CONFIG_MEM_SOFT_DIRTY 290# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 291#else 292# define VM_SOFTDIRTY 0 293#endif 294 295#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 296#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 297#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 298#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 299 300#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 301#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 302#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 303#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 304#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 305#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 306#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 307#define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 308#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 309#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 310#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 311#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 312#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 313#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 314#define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 315#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 316 317#ifdef CONFIG_ARCH_HAS_PKEYS 318# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 319# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 320# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 321# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 322#if CONFIG_ARCH_PKEY_BITS > 3 323# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 324#else 325# define VM_PKEY_BIT3 0 326#endif 327#if CONFIG_ARCH_PKEY_BITS > 4 328# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 329#else 330# define VM_PKEY_BIT4 0 331#endif 332#endif /* CONFIG_ARCH_HAS_PKEYS */ 333 334#ifdef CONFIG_X86_USER_SHADOW_STACK 335/* 336 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 337 * support core mm. 338 * 339 * These VMAs will get a single end guard page. This helps userspace protect 340 * itself from attacks. A single page is enough for current shadow stack archs 341 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 342 * for more details on the guard size. 343 */ 344# define VM_SHADOW_STACK VM_HIGH_ARCH_5 345#endif 346 347#if defined(CONFIG_ARM64_GCS) 348/* 349 * arm64's Guarded Control Stack implements similar functionality and 350 * has similar constraints to shadow stacks. 351 */ 352# define VM_SHADOW_STACK VM_HIGH_ARCH_6 353#endif 354 355#ifndef VM_SHADOW_STACK 356# define VM_SHADOW_STACK VM_NONE 357#endif 358 359#if defined(CONFIG_X86) 360# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 361#elif defined(CONFIG_PPC64) 362# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 363#elif defined(CONFIG_PARISC) 364# define VM_GROWSUP VM_ARCH_1 365#elif defined(CONFIG_SPARC64) 366# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 367# define VM_ARCH_CLEAR VM_SPARC_ADI 368#elif defined(CONFIG_ARM64) 369# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 370# define VM_ARCH_CLEAR VM_ARM64_BTI 371#elif !defined(CONFIG_MMU) 372# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 373#endif 374 375#if defined(CONFIG_ARM64_MTE) 376# define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 377# define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 378#else 379# define VM_MTE VM_NONE 380# define VM_MTE_ALLOWED VM_NONE 381#endif 382 383#ifndef VM_GROWSUP 384# define VM_GROWSUP VM_NONE 385#endif 386 387#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 388# define VM_UFFD_MINOR_BIT 41 389# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 390#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 391# define VM_UFFD_MINOR VM_NONE 392#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 393 394/* 395 * This flag is used to connect VFIO to arch specific KVM code. It 396 * indicates that the memory under this VMA is safe for use with any 397 * non-cachable memory type inside KVM. Some VFIO devices, on some 398 * platforms, are thought to be unsafe and can cause machine crashes 399 * if KVM does not lock down the memory type. 400 */ 401#ifdef CONFIG_64BIT 402#define VM_ALLOW_ANY_UNCACHED_BIT 39 403#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 404#else 405#define VM_ALLOW_ANY_UNCACHED VM_NONE 406#endif 407 408#ifdef CONFIG_64BIT 409#define VM_DROPPABLE_BIT 40 410#define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 411#elif defined(CONFIG_PPC32) 412#define VM_DROPPABLE VM_ARCH_1 413#else 414#define VM_DROPPABLE VM_NONE 415#endif 416 417#ifdef CONFIG_64BIT 418/* VM is sealed, in vm_flags */ 419#define VM_SEALED _BITUL(63) 420#endif 421 422/* Bits set in the VMA until the stack is in its final location */ 423#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 424 425#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 426 427/* Common data flag combinations */ 428#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 429 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 430#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 431 VM_MAYWRITE | VM_MAYEXEC) 432#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 433 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 434 435#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 436#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 437#endif 438 439#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 440#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 441#endif 442 443#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 444 445#ifdef CONFIG_STACK_GROWSUP 446#define VM_STACK VM_GROWSUP 447#define VM_STACK_EARLY VM_GROWSDOWN 448#else 449#define VM_STACK VM_GROWSDOWN 450#define VM_STACK_EARLY 0 451#endif 452 453#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 454 455/* VMA basic access permission flags */ 456#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 457 458 459/* 460 * Special vmas that are non-mergable, non-mlock()able. 461 */ 462#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 463 464/* This mask prevents VMA from being scanned with khugepaged */ 465#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 466 467/* This mask defines which mm->def_flags a process can inherit its parent */ 468#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 469 470/* This mask represents all the VMA flag bits used by mlock */ 471#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 472 473/* Arch-specific flags to clear when updating VM flags on protection change */ 474#ifndef VM_ARCH_CLEAR 475# define VM_ARCH_CLEAR VM_NONE 476#endif 477#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 478 479/* 480 * mapping from the currently active vm_flags protection bits (the 481 * low four bits) to a page protection mask.. 482 */ 483 484/* 485 * The default fault flags that should be used by most of the 486 * arch-specific page fault handlers. 487 */ 488#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 489 FAULT_FLAG_KILLABLE | \ 490 FAULT_FLAG_INTERRUPTIBLE) 491 492/** 493 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 494 * @flags: Fault flags. 495 * 496 * This is mostly used for places where we want to try to avoid taking 497 * the mmap_lock for too long a time when waiting for another condition 498 * to change, in which case we can try to be polite to release the 499 * mmap_lock in the first round to avoid potential starvation of other 500 * processes that would also want the mmap_lock. 501 * 502 * Return: true if the page fault allows retry and this is the first 503 * attempt of the fault handling; false otherwise. 504 */ 505static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 506{ 507 return (flags & FAULT_FLAG_ALLOW_RETRY) && 508 (!(flags & FAULT_FLAG_TRIED)); 509} 510 511#define FAULT_FLAG_TRACE \ 512 { FAULT_FLAG_WRITE, "WRITE" }, \ 513 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 514 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 515 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 516 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 517 { FAULT_FLAG_TRIED, "TRIED" }, \ 518 { FAULT_FLAG_USER, "USER" }, \ 519 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 520 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 521 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 522 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 523 524/* 525 * vm_fault is filled by the pagefault handler and passed to the vma's 526 * ->fault function. The vma's ->fault is responsible for returning a bitmask 527 * of VM_FAULT_xxx flags that give details about how the fault was handled. 528 * 529 * MM layer fills up gfp_mask for page allocations but fault handler might 530 * alter it if its implementation requires a different allocation context. 531 * 532 * pgoff should be used in favour of virtual_address, if possible. 533 */ 534struct vm_fault { 535 const struct { 536 struct vm_area_struct *vma; /* Target VMA */ 537 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 538 pgoff_t pgoff; /* Logical page offset based on vma */ 539 unsigned long address; /* Faulting virtual address - masked */ 540 unsigned long real_address; /* Faulting virtual address - unmasked */ 541 }; 542 enum fault_flag flags; /* FAULT_FLAG_xxx flags 543 * XXX: should really be 'const' */ 544 pmd_t *pmd; /* Pointer to pmd entry matching 545 * the 'address' */ 546 pud_t *pud; /* Pointer to pud entry matching 547 * the 'address' 548 */ 549 union { 550 pte_t orig_pte; /* Value of PTE at the time of fault */ 551 pmd_t orig_pmd; /* Value of PMD at the time of fault, 552 * used by PMD fault only. 553 */ 554 }; 555 556 struct page *cow_page; /* Page handler may use for COW fault */ 557 struct page *page; /* ->fault handlers should return a 558 * page here, unless VM_FAULT_NOPAGE 559 * is set (which is also implied by 560 * VM_FAULT_ERROR). 561 */ 562 /* These three entries are valid only while holding ptl lock */ 563 pte_t *pte; /* Pointer to pte entry matching 564 * the 'address'. NULL if the page 565 * table hasn't been allocated. 566 */ 567 spinlock_t *ptl; /* Page table lock. 568 * Protects pte page table if 'pte' 569 * is not NULL, otherwise pmd. 570 */ 571 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 572 * vm_ops->map_pages() sets up a page 573 * table from atomic context. 574 * do_fault_around() pre-allocates 575 * page table to avoid allocation from 576 * atomic context. 577 */ 578}; 579 580/* 581 * These are the virtual MM functions - opening of an area, closing and 582 * unmapping it (needed to keep files on disk up-to-date etc), pointer 583 * to the functions called when a no-page or a wp-page exception occurs. 584 */ 585struct vm_operations_struct { 586 void (*open)(struct vm_area_struct * area); 587 /** 588 * @close: Called when the VMA is being removed from the MM. 589 * Context: User context. May sleep. Caller holds mmap_lock. 590 */ 591 void (*close)(struct vm_area_struct * area); 592 /* Called any time before splitting to check if it's allowed */ 593 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 594 int (*mremap)(struct vm_area_struct *area); 595 /* 596 * Called by mprotect() to make driver-specific permission 597 * checks before mprotect() is finalised. The VMA must not 598 * be modified. Returns 0 if mprotect() can proceed. 599 */ 600 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 601 unsigned long end, unsigned long newflags); 602 vm_fault_t (*fault)(struct vm_fault *vmf); 603 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 604 vm_fault_t (*map_pages)(struct vm_fault *vmf, 605 pgoff_t start_pgoff, pgoff_t end_pgoff); 606 unsigned long (*pagesize)(struct vm_area_struct * area); 607 608 /* notification that a previously read-only page is about to become 609 * writable, if an error is returned it will cause a SIGBUS */ 610 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 611 612 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 613 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 614 615 /* called by access_process_vm when get_user_pages() fails, typically 616 * for use by special VMAs. See also generic_access_phys() for a generic 617 * implementation useful for any iomem mapping. 618 */ 619 int (*access)(struct vm_area_struct *vma, unsigned long addr, 620 void *buf, int len, int write); 621 622 /* Called by the /proc/PID/maps code to ask the vma whether it 623 * has a special name. Returning non-NULL will also cause this 624 * vma to be dumped unconditionally. */ 625 const char *(*name)(struct vm_area_struct *vma); 626 627#ifdef CONFIG_NUMA 628 /* 629 * set_policy() op must add a reference to any non-NULL @new mempolicy 630 * to hold the policy upon return. Caller should pass NULL @new to 631 * remove a policy and fall back to surrounding context--i.e. do not 632 * install a MPOL_DEFAULT policy, nor the task or system default 633 * mempolicy. 634 */ 635 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 636 637 /* 638 * get_policy() op must add reference [mpol_get()] to any policy at 639 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 640 * in mm/mempolicy.c will do this automatically. 641 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 642 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 643 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 644 * must return NULL--i.e., do not "fallback" to task or system default 645 * policy. 646 */ 647 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 648 unsigned long addr, pgoff_t *ilx); 649#endif 650 /* 651 * Called by vm_normal_page() for special PTEs to find the 652 * page for @addr. This is useful if the default behavior 653 * (using pte_page()) would not find the correct page. 654 */ 655 struct page *(*find_special_page)(struct vm_area_struct *vma, 656 unsigned long addr); 657}; 658 659#ifdef CONFIG_NUMA_BALANCING 660static inline void vma_numab_state_init(struct vm_area_struct *vma) 661{ 662 vma->numab_state = NULL; 663} 664static inline void vma_numab_state_free(struct vm_area_struct *vma) 665{ 666 kfree(vma->numab_state); 667} 668#else 669static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 670static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 671#endif /* CONFIG_NUMA_BALANCING */ 672 673#ifdef CONFIG_PER_VMA_LOCK 674static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) 675{ 676#ifdef CONFIG_DEBUG_LOCK_ALLOC 677 static struct lock_class_key lockdep_key; 678 679 lockdep_init_map(&vma->vmlock_dep_map, "vm_lock", &lockdep_key, 0); 680#endif 681 if (reset_refcnt) 682 refcount_set(&vma->vm_refcnt, 0); 683 vma->vm_lock_seq = UINT_MAX; 684} 685 686static inline bool is_vma_writer_only(int refcnt) 687{ 688 /* 689 * With a writer and no readers, refcnt is VMA_LOCK_OFFSET if the vma 690 * is detached and (VMA_LOCK_OFFSET + 1) if it is attached. Waiting on 691 * a detached vma happens only in vma_mark_detached() and is a rare 692 * case, therefore most of the time there will be no unnecessary wakeup. 693 */ 694 return refcnt & VMA_LOCK_OFFSET && refcnt <= VMA_LOCK_OFFSET + 1; 695} 696 697static inline void vma_refcount_put(struct vm_area_struct *vma) 698{ 699 /* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */ 700 struct mm_struct *mm = vma->vm_mm; 701 int oldcnt; 702 703 rwsem_release(&vma->vmlock_dep_map, _RET_IP_); 704 if (!__refcount_dec_and_test(&vma->vm_refcnt, &oldcnt)) { 705 706 if (is_vma_writer_only(oldcnt - 1)) 707 rcuwait_wake_up(&mm->vma_writer_wait); 708 } 709} 710 711/* 712 * Try to read-lock a vma. The function is allowed to occasionally yield false 713 * locked result to avoid performance overhead, in which case we fall back to 714 * using mmap_lock. The function should never yield false unlocked result. 715 * False locked result is possible if mm_lock_seq overflows or if vma gets 716 * reused and attached to a different mm before we lock it. 717 * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got 718 * detached. 719 */ 720static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, 721 struct vm_area_struct *vma) 722{ 723 int oldcnt; 724 725 /* 726 * Check before locking. A race might cause false locked result. 727 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 728 * ACQUIRE semantics, because this is just a lockless check whose result 729 * we don't rely on for anything - the mm_lock_seq read against which we 730 * need ordering is below. 731 */ 732 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence)) 733 return NULL; 734 735 /* 736 * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire() 737 * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET. 738 * Acquire fence is required here to avoid reordering against later 739 * vm_lock_seq check and checks inside lock_vma_under_rcu(). 740 */ 741 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, 742 VMA_REF_LIMIT))) { 743 /* return EAGAIN if vma got detached from under us */ 744 return oldcnt ? NULL : ERR_PTR(-EAGAIN); 745 } 746 747 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); 748 /* 749 * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result. 750 * False unlocked result is impossible because we modify and check 751 * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq 752 * modification invalidates all existing locks. 753 * 754 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 755 * racing with vma_end_write_all(), we only start reading from the VMA 756 * after it has been unlocked. 757 * This pairs with RELEASE semantics in vma_end_write_all(). 758 */ 759 if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) { 760 vma_refcount_put(vma); 761 return NULL; 762 } 763 764 return vma; 765} 766 767/* 768 * Use only while holding mmap read lock which guarantees that locking will not 769 * fail (nobody can concurrently write-lock the vma). vma_start_read() should 770 * not be used in such cases because it might fail due to mm_lock_seq overflow. 771 * This functionality is used to obtain vma read lock and drop the mmap read lock. 772 */ 773static inline bool vma_start_read_locked_nested(struct vm_area_struct *vma, int subclass) 774{ 775 int oldcnt; 776 777 mmap_assert_locked(vma->vm_mm); 778 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, 779 VMA_REF_LIMIT))) 780 return false; 781 782 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); 783 return true; 784} 785 786/* 787 * Use only while holding mmap read lock which guarantees that locking will not 788 * fail (nobody can concurrently write-lock the vma). vma_start_read() should 789 * not be used in such cases because it might fail due to mm_lock_seq overflow. 790 * This functionality is used to obtain vma read lock and drop the mmap read lock. 791 */ 792static inline bool vma_start_read_locked(struct vm_area_struct *vma) 793{ 794 return vma_start_read_locked_nested(vma, 0); 795} 796 797static inline void vma_end_read(struct vm_area_struct *vma) 798{ 799 vma_refcount_put(vma); 800} 801 802/* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 803static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq) 804{ 805 mmap_assert_write_locked(vma->vm_mm); 806 807 /* 808 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 809 * mm->mm_lock_seq can't be concurrently modified. 810 */ 811 *mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence; 812 return (vma->vm_lock_seq == *mm_lock_seq); 813} 814 815void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq); 816 817/* 818 * Begin writing to a VMA. 819 * Exclude concurrent readers under the per-VMA lock until the currently 820 * write-locked mmap_lock is dropped or downgraded. 821 */ 822static inline void vma_start_write(struct vm_area_struct *vma) 823{ 824 unsigned int mm_lock_seq; 825 826 if (__is_vma_write_locked(vma, &mm_lock_seq)) 827 return; 828 829 __vma_start_write(vma, mm_lock_seq); 830} 831 832static inline void vma_assert_write_locked(struct vm_area_struct *vma) 833{ 834 unsigned int mm_lock_seq; 835 836 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 837} 838 839static inline void vma_assert_locked(struct vm_area_struct *vma) 840{ 841 unsigned int mm_lock_seq; 842 843 VM_BUG_ON_VMA(refcount_read(&vma->vm_refcnt) <= 1 && 844 !__is_vma_write_locked(vma, &mm_lock_seq), vma); 845} 846 847/* 848 * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these 849 * assertions should be made either under mmap_write_lock or when the object 850 * has been isolated under mmap_write_lock, ensuring no competing writers. 851 */ 852static inline void vma_assert_attached(struct vm_area_struct *vma) 853{ 854 WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt)); 855} 856 857static inline void vma_assert_detached(struct vm_area_struct *vma) 858{ 859 WARN_ON_ONCE(refcount_read(&vma->vm_refcnt)); 860} 861 862static inline void vma_mark_attached(struct vm_area_struct *vma) 863{ 864 vma_assert_write_locked(vma); 865 vma_assert_detached(vma); 866 refcount_set_release(&vma->vm_refcnt, 1); 867} 868 869void vma_mark_detached(struct vm_area_struct *vma); 870 871static inline void release_fault_lock(struct vm_fault *vmf) 872{ 873 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 874 vma_end_read(vmf->vma); 875 else 876 mmap_read_unlock(vmf->vma->vm_mm); 877} 878 879static inline void assert_fault_locked(struct vm_fault *vmf) 880{ 881 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 882 vma_assert_locked(vmf->vma); 883 else 884 mmap_assert_locked(vmf->vma->vm_mm); 885} 886 887struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 888 unsigned long address); 889 890#else /* CONFIG_PER_VMA_LOCK */ 891 892static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) {} 893static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, 894 struct vm_area_struct *vma) 895 { return NULL; } 896static inline void vma_end_read(struct vm_area_struct *vma) {} 897static inline void vma_start_write(struct vm_area_struct *vma) {} 898static inline void vma_assert_write_locked(struct vm_area_struct *vma) 899 { mmap_assert_write_locked(vma->vm_mm); } 900static inline void vma_assert_attached(struct vm_area_struct *vma) {} 901static inline void vma_assert_detached(struct vm_area_struct *vma) {} 902static inline void vma_mark_attached(struct vm_area_struct *vma) {} 903static inline void vma_mark_detached(struct vm_area_struct *vma) {} 904 905static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 906 unsigned long address) 907{ 908 return NULL; 909} 910 911static inline void vma_assert_locked(struct vm_area_struct *vma) 912{ 913 mmap_assert_locked(vma->vm_mm); 914} 915 916static inline void release_fault_lock(struct vm_fault *vmf) 917{ 918 mmap_read_unlock(vmf->vma->vm_mm); 919} 920 921static inline void assert_fault_locked(struct vm_fault *vmf) 922{ 923 mmap_assert_locked(vmf->vma->vm_mm); 924} 925 926#endif /* CONFIG_PER_VMA_LOCK */ 927 928extern const struct vm_operations_struct vma_dummy_vm_ops; 929 930static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 931{ 932 memset(vma, 0, sizeof(*vma)); 933 vma->vm_mm = mm; 934 vma->vm_ops = &vma_dummy_vm_ops; 935 INIT_LIST_HEAD(&vma->anon_vma_chain); 936 vma_lock_init(vma, false); 937} 938 939/* Use when VMA is not part of the VMA tree and needs no locking */ 940static inline void vm_flags_init(struct vm_area_struct *vma, 941 vm_flags_t flags) 942{ 943 ACCESS_PRIVATE(vma, __vm_flags) = flags; 944} 945 946/* 947 * Use when VMA is part of the VMA tree and modifications need coordination 948 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 949 * it should be locked explicitly beforehand. 950 */ 951static inline void vm_flags_reset(struct vm_area_struct *vma, 952 vm_flags_t flags) 953{ 954 vma_assert_write_locked(vma); 955 vm_flags_init(vma, flags); 956} 957 958static inline void vm_flags_reset_once(struct vm_area_struct *vma, 959 vm_flags_t flags) 960{ 961 vma_assert_write_locked(vma); 962 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 963} 964 965static inline void vm_flags_set(struct vm_area_struct *vma, 966 vm_flags_t flags) 967{ 968 vma_start_write(vma); 969 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 970} 971 972static inline void vm_flags_clear(struct vm_area_struct *vma, 973 vm_flags_t flags) 974{ 975 vma_start_write(vma); 976 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 977} 978 979/* 980 * Use only if VMA is not part of the VMA tree or has no other users and 981 * therefore needs no locking. 982 */ 983static inline void __vm_flags_mod(struct vm_area_struct *vma, 984 vm_flags_t set, vm_flags_t clear) 985{ 986 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 987} 988 989/* 990 * Use only when the order of set/clear operations is unimportant, otherwise 991 * use vm_flags_{set|clear} explicitly. 992 */ 993static inline void vm_flags_mod(struct vm_area_struct *vma, 994 vm_flags_t set, vm_flags_t clear) 995{ 996 vma_start_write(vma); 997 __vm_flags_mod(vma, set, clear); 998} 999 1000static inline void vma_set_anonymous(struct vm_area_struct *vma) 1001{ 1002 vma->vm_ops = NULL; 1003} 1004 1005static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1006{ 1007 return !vma->vm_ops; 1008} 1009 1010/* 1011 * Indicate if the VMA is a heap for the given task; for 1012 * /proc/PID/maps that is the heap of the main task. 1013 */ 1014static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 1015{ 1016 return vma->vm_start < vma->vm_mm->brk && 1017 vma->vm_end > vma->vm_mm->start_brk; 1018} 1019 1020/* 1021 * Indicate if the VMA is a stack for the given task; for 1022 * /proc/PID/maps that is the stack of the main task. 1023 */ 1024static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 1025{ 1026 /* 1027 * We make no effort to guess what a given thread considers to be 1028 * its "stack". It's not even well-defined for programs written 1029 * languages like Go. 1030 */ 1031 return vma->vm_start <= vma->vm_mm->start_stack && 1032 vma->vm_end >= vma->vm_mm->start_stack; 1033} 1034 1035static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 1036{ 1037 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1038 1039 if (!maybe_stack) 1040 return false; 1041 1042 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1043 VM_STACK_INCOMPLETE_SETUP) 1044 return true; 1045 1046 return false; 1047} 1048 1049static inline bool vma_is_foreign(struct vm_area_struct *vma) 1050{ 1051 if (!current->mm) 1052 return true; 1053 1054 if (current->mm != vma->vm_mm) 1055 return true; 1056 1057 return false; 1058} 1059 1060static inline bool vma_is_accessible(struct vm_area_struct *vma) 1061{ 1062 return vma->vm_flags & VM_ACCESS_FLAGS; 1063} 1064 1065static inline bool is_shared_maywrite(vm_flags_t vm_flags) 1066{ 1067 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 1068 (VM_SHARED | VM_MAYWRITE); 1069} 1070 1071static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 1072{ 1073 return is_shared_maywrite(vma->vm_flags); 1074} 1075 1076static inline 1077struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1078{ 1079 return mas_find(&vmi->mas, max - 1); 1080} 1081 1082static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1083{ 1084 /* 1085 * Uses mas_find() to get the first VMA when the iterator starts. 1086 * Calling mas_next() could skip the first entry. 1087 */ 1088 return mas_find(&vmi->mas, ULONG_MAX); 1089} 1090 1091static inline 1092struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1093{ 1094 return mas_next_range(&vmi->mas, ULONG_MAX); 1095} 1096 1097 1098static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1099{ 1100 return mas_prev(&vmi->mas, 0); 1101} 1102 1103static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1104 unsigned long start, unsigned long end, gfp_t gfp) 1105{ 1106 __mas_set_range(&vmi->mas, start, end - 1); 1107 mas_store_gfp(&vmi->mas, NULL, gfp); 1108 if (unlikely(mas_is_err(&vmi->mas))) 1109 return -ENOMEM; 1110 1111 return 0; 1112} 1113 1114/* Free any unused preallocations */ 1115static inline void vma_iter_free(struct vma_iterator *vmi) 1116{ 1117 mas_destroy(&vmi->mas); 1118} 1119 1120static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1121 struct vm_area_struct *vma) 1122{ 1123 vmi->mas.index = vma->vm_start; 1124 vmi->mas.last = vma->vm_end - 1; 1125 mas_store(&vmi->mas, vma); 1126 if (unlikely(mas_is_err(&vmi->mas))) 1127 return -ENOMEM; 1128 1129 vma_mark_attached(vma); 1130 return 0; 1131} 1132 1133static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1134{ 1135 mas_pause(&vmi->mas); 1136} 1137 1138static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1139{ 1140 mas_set(&vmi->mas, addr); 1141} 1142 1143#define for_each_vma(__vmi, __vma) \ 1144 while (((__vma) = vma_next(&(__vmi))) != NULL) 1145 1146/* The MM code likes to work with exclusive end addresses */ 1147#define for_each_vma_range(__vmi, __vma, __end) \ 1148 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1149 1150#ifdef CONFIG_SHMEM 1151/* 1152 * The vma_is_shmem is not inline because it is used only by slow 1153 * paths in userfault. 1154 */ 1155bool vma_is_shmem(struct vm_area_struct *vma); 1156bool vma_is_anon_shmem(struct vm_area_struct *vma); 1157#else 1158static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1159static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1160#endif 1161 1162int vma_is_stack_for_current(struct vm_area_struct *vma); 1163 1164/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1165#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1166 1167struct mmu_gather; 1168struct inode; 1169 1170extern void prep_compound_page(struct page *page, unsigned int order); 1171 1172static inline unsigned int folio_large_order(const struct folio *folio) 1173{ 1174 return folio->_flags_1 & 0xff; 1175} 1176 1177#ifdef NR_PAGES_IN_LARGE_FOLIO 1178static inline long folio_large_nr_pages(const struct folio *folio) 1179{ 1180 return folio->_nr_pages; 1181} 1182#else 1183static inline long folio_large_nr_pages(const struct folio *folio) 1184{ 1185 return 1L << folio_large_order(folio); 1186} 1187#endif 1188 1189/* 1190 * compound_order() can be called without holding a reference, which means 1191 * that niceties like page_folio() don't work. These callers should be 1192 * prepared to handle wild return values. For example, PG_head may be 1193 * set before the order is initialised, or this may be a tail page. 1194 * See compaction.c for some good examples. 1195 */ 1196static inline unsigned int compound_order(struct page *page) 1197{ 1198 struct folio *folio = (struct folio *)page; 1199 1200 if (!test_bit(PG_head, &folio->flags)) 1201 return 0; 1202 return folio_large_order(folio); 1203} 1204 1205/** 1206 * folio_order - The allocation order of a folio. 1207 * @folio: The folio. 1208 * 1209 * A folio is composed of 2^order pages. See get_order() for the definition 1210 * of order. 1211 * 1212 * Return: The order of the folio. 1213 */ 1214static inline unsigned int folio_order(const struct folio *folio) 1215{ 1216 if (!folio_test_large(folio)) 1217 return 0; 1218 return folio_large_order(folio); 1219} 1220 1221/** 1222 * folio_reset_order - Reset the folio order and derived _nr_pages 1223 * @folio: The folio. 1224 * 1225 * Reset the order and derived _nr_pages to 0. Must only be used in the 1226 * process of splitting large folios. 1227 */ 1228static inline void folio_reset_order(struct folio *folio) 1229{ 1230 if (WARN_ON_ONCE(!folio_test_large(folio))) 1231 return; 1232 folio->_flags_1 &= ~0xffUL; 1233#ifdef NR_PAGES_IN_LARGE_FOLIO 1234 folio->_nr_pages = 0; 1235#endif 1236} 1237 1238#include <linux/huge_mm.h> 1239 1240/* 1241 * Methods to modify the page usage count. 1242 * 1243 * What counts for a page usage: 1244 * - cache mapping (page->mapping) 1245 * - private data (page->private) 1246 * - page mapped in a task's page tables, each mapping 1247 * is counted separately 1248 * 1249 * Also, many kernel routines increase the page count before a critical 1250 * routine so they can be sure the page doesn't go away from under them. 1251 */ 1252 1253/* 1254 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1255 */ 1256static inline int put_page_testzero(struct page *page) 1257{ 1258 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1259 return page_ref_dec_and_test(page); 1260} 1261 1262static inline int folio_put_testzero(struct folio *folio) 1263{ 1264 return put_page_testzero(&folio->page); 1265} 1266 1267/* 1268 * Try to grab a ref unless the page has a refcount of zero, return false if 1269 * that is the case. 1270 * This can be called when MMU is off so it must not access 1271 * any of the virtual mappings. 1272 */ 1273static inline bool get_page_unless_zero(struct page *page) 1274{ 1275 return page_ref_add_unless(page, 1, 0); 1276} 1277 1278static inline struct folio *folio_get_nontail_page(struct page *page) 1279{ 1280 if (unlikely(!get_page_unless_zero(page))) 1281 return NULL; 1282 return (struct folio *)page; 1283} 1284 1285extern int page_is_ram(unsigned long pfn); 1286 1287enum { 1288 REGION_INTERSECTS, 1289 REGION_DISJOINT, 1290 REGION_MIXED, 1291}; 1292 1293int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1294 unsigned long desc); 1295 1296/* Support for virtually mapped pages */ 1297struct page *vmalloc_to_page(const void *addr); 1298unsigned long vmalloc_to_pfn(const void *addr); 1299 1300/* 1301 * Determine if an address is within the vmalloc range 1302 * 1303 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1304 * is no special casing required. 1305 */ 1306#ifdef CONFIG_MMU 1307extern bool is_vmalloc_addr(const void *x); 1308extern int is_vmalloc_or_module_addr(const void *x); 1309#else 1310static inline bool is_vmalloc_addr(const void *x) 1311{ 1312 return false; 1313} 1314static inline int is_vmalloc_or_module_addr(const void *x) 1315{ 1316 return 0; 1317} 1318#endif 1319 1320/* 1321 * How many times the entire folio is mapped as a single unit (eg by a 1322 * PMD or PUD entry). This is probably not what you want, except for 1323 * debugging purposes or implementation of other core folio_*() primitives. 1324 */ 1325static inline int folio_entire_mapcount(const struct folio *folio) 1326{ 1327 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1328 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) 1329 return 0; 1330 return atomic_read(&folio->_entire_mapcount) + 1; 1331} 1332 1333static inline int folio_large_mapcount(const struct folio *folio) 1334{ 1335 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1336 return atomic_read(&folio->_large_mapcount) + 1; 1337} 1338 1339/** 1340 * folio_mapcount() - Number of mappings of this folio. 1341 * @folio: The folio. 1342 * 1343 * The folio mapcount corresponds to the number of present user page table 1344 * entries that reference any part of a folio. Each such present user page 1345 * table entry must be paired with exactly on folio reference. 1346 * 1347 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1348 * exactly once. 1349 * 1350 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1351 * references the entire folio counts exactly once, even when such special 1352 * page table entries are comprised of multiple ordinary page table entries. 1353 * 1354 * Will report 0 for pages which cannot be mapped into userspace, such as 1355 * slab, page tables and similar. 1356 * 1357 * Return: The number of times this folio is mapped. 1358 */ 1359static inline int folio_mapcount(const struct folio *folio) 1360{ 1361 int mapcount; 1362 1363 if (likely(!folio_test_large(folio))) { 1364 mapcount = atomic_read(&folio->_mapcount) + 1; 1365 if (page_mapcount_is_type(mapcount)) 1366 mapcount = 0; 1367 return mapcount; 1368 } 1369 return folio_large_mapcount(folio); 1370} 1371 1372/** 1373 * folio_mapped - Is this folio mapped into userspace? 1374 * @folio: The folio. 1375 * 1376 * Return: True if any page in this folio is referenced by user page tables. 1377 */ 1378static inline bool folio_mapped(const struct folio *folio) 1379{ 1380 return folio_mapcount(folio) >= 1; 1381} 1382 1383/* 1384 * Return true if this page is mapped into pagetables. 1385 * For compound page it returns true if any sub-page of compound page is mapped, 1386 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1387 */ 1388static inline bool page_mapped(const struct page *page) 1389{ 1390 return folio_mapped(page_folio(page)); 1391} 1392 1393static inline struct page *virt_to_head_page(const void *x) 1394{ 1395 struct page *page = virt_to_page(x); 1396 1397 return compound_head(page); 1398} 1399 1400static inline struct folio *virt_to_folio(const void *x) 1401{ 1402 struct page *page = virt_to_page(x); 1403 1404 return page_folio(page); 1405} 1406 1407void __folio_put(struct folio *folio); 1408 1409void split_page(struct page *page, unsigned int order); 1410void folio_copy(struct folio *dst, struct folio *src); 1411int folio_mc_copy(struct folio *dst, struct folio *src); 1412 1413unsigned long nr_free_buffer_pages(void); 1414 1415/* Returns the number of bytes in this potentially compound page. */ 1416static inline unsigned long page_size(struct page *page) 1417{ 1418 return PAGE_SIZE << compound_order(page); 1419} 1420 1421/* Returns the number of bits needed for the number of bytes in a page */ 1422static inline unsigned int page_shift(struct page *page) 1423{ 1424 return PAGE_SHIFT + compound_order(page); 1425} 1426 1427/** 1428 * thp_order - Order of a transparent huge page. 1429 * @page: Head page of a transparent huge page. 1430 */ 1431static inline unsigned int thp_order(struct page *page) 1432{ 1433 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1434 return compound_order(page); 1435} 1436 1437/** 1438 * thp_size - Size of a transparent huge page. 1439 * @page: Head page of a transparent huge page. 1440 * 1441 * Return: Number of bytes in this page. 1442 */ 1443static inline unsigned long thp_size(struct page *page) 1444{ 1445 return PAGE_SIZE << thp_order(page); 1446} 1447 1448#ifdef CONFIG_MMU 1449/* 1450 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1451 * servicing faults for write access. In the normal case, do always want 1452 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1453 * that do not have writing enabled, when used by access_process_vm. 1454 */ 1455static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1456{ 1457 if (likely(vma->vm_flags & VM_WRITE)) 1458 pte = pte_mkwrite(pte, vma); 1459 return pte; 1460} 1461 1462vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1463void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1464 struct page *page, unsigned int nr, unsigned long addr); 1465 1466vm_fault_t finish_fault(struct vm_fault *vmf); 1467#endif 1468 1469/* 1470 * Multiple processes may "see" the same page. E.g. for untouched 1471 * mappings of /dev/null, all processes see the same page full of 1472 * zeroes, and text pages of executables and shared libraries have 1473 * only one copy in memory, at most, normally. 1474 * 1475 * For the non-reserved pages, page_count(page) denotes a reference count. 1476 * page_count() == 0 means the page is free. page->lru is then used for 1477 * freelist management in the buddy allocator. 1478 * page_count() > 0 means the page has been allocated. 1479 * 1480 * Pages are allocated by the slab allocator in order to provide memory 1481 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1482 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1483 * unless a particular usage is carefully commented. (the responsibility of 1484 * freeing the kmalloc memory is the caller's, of course). 1485 * 1486 * A page may be used by anyone else who does a __get_free_page(). 1487 * In this case, page_count still tracks the references, and should only 1488 * be used through the normal accessor functions. The top bits of page->flags 1489 * and page->virtual store page management information, but all other fields 1490 * are unused and could be used privately, carefully. The management of this 1491 * page is the responsibility of the one who allocated it, and those who have 1492 * subsequently been given references to it. 1493 * 1494 * The other pages (we may call them "pagecache pages") are completely 1495 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1496 * The following discussion applies only to them. 1497 * 1498 * A pagecache page contains an opaque `private' member, which belongs to the 1499 * page's address_space. Usually, this is the address of a circular list of 1500 * the page's disk buffers. PG_private must be set to tell the VM to call 1501 * into the filesystem to release these pages. 1502 * 1503 * A page may belong to an inode's memory mapping. In this case, page->mapping 1504 * is the pointer to the inode, and page->index is the file offset of the page, 1505 * in units of PAGE_SIZE. 1506 * 1507 * If pagecache pages are not associated with an inode, they are said to be 1508 * anonymous pages. These may become associated with the swapcache, and in that 1509 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1510 * 1511 * In either case (swapcache or inode backed), the pagecache itself holds one 1512 * reference to the page. Setting PG_private should also increment the 1513 * refcount. The each user mapping also has a reference to the page. 1514 * 1515 * The pagecache pages are stored in a per-mapping radix tree, which is 1516 * rooted at mapping->i_pages, and indexed by offset. 1517 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1518 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1519 * 1520 * All pagecache pages may be subject to I/O: 1521 * - inode pages may need to be read from disk, 1522 * - inode pages which have been modified and are MAP_SHARED may need 1523 * to be written back to the inode on disk, 1524 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1525 * modified may need to be swapped out to swap space and (later) to be read 1526 * back into memory. 1527 */ 1528 1529/* 127: arbitrary random number, small enough to assemble well */ 1530#define folio_ref_zero_or_close_to_overflow(folio) \ 1531 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1532 1533/** 1534 * folio_get - Increment the reference count on a folio. 1535 * @folio: The folio. 1536 * 1537 * Context: May be called in any context, as long as you know that 1538 * you have a refcount on the folio. If you do not already have one, 1539 * folio_try_get() may be the right interface for you to use. 1540 */ 1541static inline void folio_get(struct folio *folio) 1542{ 1543 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1544 folio_ref_inc(folio); 1545} 1546 1547static inline void get_page(struct page *page) 1548{ 1549 struct folio *folio = page_folio(page); 1550 if (WARN_ON_ONCE(folio_test_slab(folio))) 1551 return; 1552 folio_get(folio); 1553} 1554 1555static inline __must_check bool try_get_page(struct page *page) 1556{ 1557 page = compound_head(page); 1558 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1559 return false; 1560 page_ref_inc(page); 1561 return true; 1562} 1563 1564/** 1565 * folio_put - Decrement the reference count on a folio. 1566 * @folio: The folio. 1567 * 1568 * If the folio's reference count reaches zero, the memory will be 1569 * released back to the page allocator and may be used by another 1570 * allocation immediately. Do not access the memory or the struct folio 1571 * after calling folio_put() unless you can be sure that it wasn't the 1572 * last reference. 1573 * 1574 * Context: May be called in process or interrupt context, but not in NMI 1575 * context. May be called while holding a spinlock. 1576 */ 1577static inline void folio_put(struct folio *folio) 1578{ 1579 if (folio_put_testzero(folio)) 1580 __folio_put(folio); 1581} 1582 1583/** 1584 * folio_put_refs - Reduce the reference count on a folio. 1585 * @folio: The folio. 1586 * @refs: The amount to subtract from the folio's reference count. 1587 * 1588 * If the folio's reference count reaches zero, the memory will be 1589 * released back to the page allocator and may be used by another 1590 * allocation immediately. Do not access the memory or the struct folio 1591 * after calling folio_put_refs() unless you can be sure that these weren't 1592 * the last references. 1593 * 1594 * Context: May be called in process or interrupt context, but not in NMI 1595 * context. May be called while holding a spinlock. 1596 */ 1597static inline void folio_put_refs(struct folio *folio, int refs) 1598{ 1599 if (folio_ref_sub_and_test(folio, refs)) 1600 __folio_put(folio); 1601} 1602 1603void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1604 1605/* 1606 * union release_pages_arg - an array of pages or folios 1607 * 1608 * release_pages() releases a simple array of multiple pages, and 1609 * accepts various different forms of said page array: either 1610 * a regular old boring array of pages, an array of folios, or 1611 * an array of encoded page pointers. 1612 * 1613 * The transparent union syntax for this kind of "any of these 1614 * argument types" is all kinds of ugly, so look away. 1615 */ 1616typedef union { 1617 struct page **pages; 1618 struct folio **folios; 1619 struct encoded_page **encoded_pages; 1620} release_pages_arg __attribute__ ((__transparent_union__)); 1621 1622void release_pages(release_pages_arg, int nr); 1623 1624/** 1625 * folios_put - Decrement the reference count on an array of folios. 1626 * @folios: The folios. 1627 * 1628 * Like folio_put(), but for a batch of folios. This is more efficient 1629 * than writing the loop yourself as it will optimise the locks which need 1630 * to be taken if the folios are freed. The folios batch is returned 1631 * empty and ready to be reused for another batch; there is no need to 1632 * reinitialise it. 1633 * 1634 * Context: May be called in process or interrupt context, but not in NMI 1635 * context. May be called while holding a spinlock. 1636 */ 1637static inline void folios_put(struct folio_batch *folios) 1638{ 1639 folios_put_refs(folios, NULL); 1640} 1641 1642static inline void put_page(struct page *page) 1643{ 1644 struct folio *folio = page_folio(page); 1645 1646 if (folio_test_slab(folio)) 1647 return; 1648 1649 folio_put(folio); 1650} 1651 1652/* 1653 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1654 * the page's refcount so that two separate items are tracked: the original page 1655 * reference count, and also a new count of how many pin_user_pages() calls were 1656 * made against the page. ("gup-pinned" is another term for the latter). 1657 * 1658 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1659 * distinct from normal pages. As such, the unpin_user_page() call (and its 1660 * variants) must be used in order to release gup-pinned pages. 1661 * 1662 * Choice of value: 1663 * 1664 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1665 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1666 * simpler, due to the fact that adding an even power of two to the page 1667 * refcount has the effect of using only the upper N bits, for the code that 1668 * counts up using the bias value. This means that the lower bits are left for 1669 * the exclusive use of the original code that increments and decrements by one 1670 * (or at least, by much smaller values than the bias value). 1671 * 1672 * Of course, once the lower bits overflow into the upper bits (and this is 1673 * OK, because subtraction recovers the original values), then visual inspection 1674 * no longer suffices to directly view the separate counts. However, for normal 1675 * applications that don't have huge page reference counts, this won't be an 1676 * issue. 1677 * 1678 * Locking: the lockless algorithm described in folio_try_get_rcu() 1679 * provides safe operation for get_user_pages(), folio_mkclean() and 1680 * other calls that race to set up page table entries. 1681 */ 1682#define GUP_PIN_COUNTING_BIAS (1U << 10) 1683 1684void unpin_user_page(struct page *page); 1685void unpin_folio(struct folio *folio); 1686void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1687 bool make_dirty); 1688void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1689 bool make_dirty); 1690void unpin_user_pages(struct page **pages, unsigned long npages); 1691void unpin_user_folio(struct folio *folio, unsigned long npages); 1692void unpin_folios(struct folio **folios, unsigned long nfolios); 1693 1694static inline bool is_cow_mapping(vm_flags_t flags) 1695{ 1696 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1697} 1698 1699#ifndef CONFIG_MMU 1700static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1701{ 1702 /* 1703 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1704 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1705 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1706 * underlying memory if ptrace is active, so this is only possible if 1707 * ptrace does not apply. Note that there is no mprotect() to upgrade 1708 * write permissions later. 1709 */ 1710 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1711} 1712#endif 1713 1714#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1715#define SECTION_IN_PAGE_FLAGS 1716#endif 1717 1718/* 1719 * The identification function is mainly used by the buddy allocator for 1720 * determining if two pages could be buddies. We are not really identifying 1721 * the zone since we could be using the section number id if we do not have 1722 * node id available in page flags. 1723 * We only guarantee that it will return the same value for two combinable 1724 * pages in a zone. 1725 */ 1726static inline int page_zone_id(struct page *page) 1727{ 1728 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1729} 1730 1731#ifdef NODE_NOT_IN_PAGE_FLAGS 1732int page_to_nid(const struct page *page); 1733#else 1734static inline int page_to_nid(const struct page *page) 1735{ 1736 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1737} 1738#endif 1739 1740static inline int folio_nid(const struct folio *folio) 1741{ 1742 return page_to_nid(&folio->page); 1743} 1744 1745#ifdef CONFIG_NUMA_BALANCING 1746/* page access time bits needs to hold at least 4 seconds */ 1747#define PAGE_ACCESS_TIME_MIN_BITS 12 1748#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1749#define PAGE_ACCESS_TIME_BUCKETS \ 1750 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1751#else 1752#define PAGE_ACCESS_TIME_BUCKETS 0 1753#endif 1754 1755#define PAGE_ACCESS_TIME_MASK \ 1756 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1757 1758static inline int cpu_pid_to_cpupid(int cpu, int pid) 1759{ 1760 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1761} 1762 1763static inline int cpupid_to_pid(int cpupid) 1764{ 1765 return cpupid & LAST__PID_MASK; 1766} 1767 1768static inline int cpupid_to_cpu(int cpupid) 1769{ 1770 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1771} 1772 1773static inline int cpupid_to_nid(int cpupid) 1774{ 1775 return cpu_to_node(cpupid_to_cpu(cpupid)); 1776} 1777 1778static inline bool cpupid_pid_unset(int cpupid) 1779{ 1780 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1781} 1782 1783static inline bool cpupid_cpu_unset(int cpupid) 1784{ 1785 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1786} 1787 1788static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1789{ 1790 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1791} 1792 1793#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1794#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1795static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1796{ 1797 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1798} 1799 1800static inline int folio_last_cpupid(struct folio *folio) 1801{ 1802 return folio->_last_cpupid; 1803} 1804static inline void page_cpupid_reset_last(struct page *page) 1805{ 1806 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1807} 1808#else 1809static inline int folio_last_cpupid(struct folio *folio) 1810{ 1811 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1812} 1813 1814int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1815 1816static inline void page_cpupid_reset_last(struct page *page) 1817{ 1818 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1819} 1820#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1821 1822static inline int folio_xchg_access_time(struct folio *folio, int time) 1823{ 1824 int last_time; 1825 1826 last_time = folio_xchg_last_cpupid(folio, 1827 time >> PAGE_ACCESS_TIME_BUCKETS); 1828 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1829} 1830 1831static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1832{ 1833 unsigned int pid_bit; 1834 1835 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1836 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1837 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1838 } 1839} 1840 1841bool folio_use_access_time(struct folio *folio); 1842#else /* !CONFIG_NUMA_BALANCING */ 1843static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1844{ 1845 return folio_nid(folio); /* XXX */ 1846} 1847 1848static inline int folio_xchg_access_time(struct folio *folio, int time) 1849{ 1850 return 0; 1851} 1852 1853static inline int folio_last_cpupid(struct folio *folio) 1854{ 1855 return folio_nid(folio); /* XXX */ 1856} 1857 1858static inline int cpupid_to_nid(int cpupid) 1859{ 1860 return -1; 1861} 1862 1863static inline int cpupid_to_pid(int cpupid) 1864{ 1865 return -1; 1866} 1867 1868static inline int cpupid_to_cpu(int cpupid) 1869{ 1870 return -1; 1871} 1872 1873static inline int cpu_pid_to_cpupid(int nid, int pid) 1874{ 1875 return -1; 1876} 1877 1878static inline bool cpupid_pid_unset(int cpupid) 1879{ 1880 return true; 1881} 1882 1883static inline void page_cpupid_reset_last(struct page *page) 1884{ 1885} 1886 1887static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1888{ 1889 return false; 1890} 1891 1892static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1893{ 1894} 1895static inline bool folio_use_access_time(struct folio *folio) 1896{ 1897 return false; 1898} 1899#endif /* CONFIG_NUMA_BALANCING */ 1900 1901#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1902 1903/* 1904 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1905 * setting tags for all pages to native kernel tag value 0xff, as the default 1906 * value 0x00 maps to 0xff. 1907 */ 1908 1909static inline u8 page_kasan_tag(const struct page *page) 1910{ 1911 u8 tag = KASAN_TAG_KERNEL; 1912 1913 if (kasan_enabled()) { 1914 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1915 tag ^= 0xff; 1916 } 1917 1918 return tag; 1919} 1920 1921static inline void page_kasan_tag_set(struct page *page, u8 tag) 1922{ 1923 unsigned long old_flags, flags; 1924 1925 if (!kasan_enabled()) 1926 return; 1927 1928 tag ^= 0xff; 1929 old_flags = READ_ONCE(page->flags); 1930 do { 1931 flags = old_flags; 1932 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1933 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1934 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1935} 1936 1937static inline void page_kasan_tag_reset(struct page *page) 1938{ 1939 if (kasan_enabled()) 1940 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1941} 1942 1943#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1944 1945static inline u8 page_kasan_tag(const struct page *page) 1946{ 1947 return 0xff; 1948} 1949 1950static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1951static inline void page_kasan_tag_reset(struct page *page) { } 1952 1953#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1954 1955static inline struct zone *page_zone(const struct page *page) 1956{ 1957 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1958} 1959 1960static inline pg_data_t *page_pgdat(const struct page *page) 1961{ 1962 return NODE_DATA(page_to_nid(page)); 1963} 1964 1965static inline struct zone *folio_zone(const struct folio *folio) 1966{ 1967 return page_zone(&folio->page); 1968} 1969 1970static inline pg_data_t *folio_pgdat(const struct folio *folio) 1971{ 1972 return page_pgdat(&folio->page); 1973} 1974 1975#ifdef SECTION_IN_PAGE_FLAGS 1976static inline void set_page_section(struct page *page, unsigned long section) 1977{ 1978 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1979 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1980} 1981 1982static inline unsigned long page_to_section(const struct page *page) 1983{ 1984 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1985} 1986#endif 1987 1988/** 1989 * folio_pfn - Return the Page Frame Number of a folio. 1990 * @folio: The folio. 1991 * 1992 * A folio may contain multiple pages. The pages have consecutive 1993 * Page Frame Numbers. 1994 * 1995 * Return: The Page Frame Number of the first page in the folio. 1996 */ 1997static inline unsigned long folio_pfn(const struct folio *folio) 1998{ 1999 return page_to_pfn(&folio->page); 2000} 2001 2002static inline struct folio *pfn_folio(unsigned long pfn) 2003{ 2004 return page_folio(pfn_to_page(pfn)); 2005} 2006 2007static inline bool folio_has_pincount(const struct folio *folio) 2008{ 2009 if (IS_ENABLED(CONFIG_64BIT)) 2010 return folio_test_large(folio); 2011 return folio_order(folio) > 1; 2012} 2013 2014/** 2015 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 2016 * @folio: The folio. 2017 * 2018 * This function checks if a folio has been pinned via a call to 2019 * a function in the pin_user_pages() family. 2020 * 2021 * For small folios, the return value is partially fuzzy: false is not fuzzy, 2022 * because it means "definitely not pinned for DMA", but true means "probably 2023 * pinned for DMA, but possibly a false positive due to having at least 2024 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 2025 * 2026 * False positives are OK, because: a) it's unlikely for a folio to 2027 * get that many refcounts, and b) all the callers of this routine are 2028 * expected to be able to deal gracefully with a false positive. 2029 * 2030 * For most large folios, the result will be exactly correct. That's because 2031 * we have more tracking data available: the _pincount field is used 2032 * instead of the GUP_PIN_COUNTING_BIAS scheme. 2033 * 2034 * For more information, please see Documentation/core-api/pin_user_pages.rst. 2035 * 2036 * Return: True, if it is likely that the folio has been "dma-pinned". 2037 * False, if the folio is definitely not dma-pinned. 2038 */ 2039static inline bool folio_maybe_dma_pinned(struct folio *folio) 2040{ 2041 if (folio_has_pincount(folio)) 2042 return atomic_read(&folio->_pincount) > 0; 2043 2044 /* 2045 * folio_ref_count() is signed. If that refcount overflows, then 2046 * folio_ref_count() returns a negative value, and callers will avoid 2047 * further incrementing the refcount. 2048 * 2049 * Here, for that overflow case, use the sign bit to count a little 2050 * bit higher via unsigned math, and thus still get an accurate result. 2051 */ 2052 return ((unsigned int)folio_ref_count(folio)) >= 2053 GUP_PIN_COUNTING_BIAS; 2054} 2055 2056/* 2057 * This should most likely only be called during fork() to see whether we 2058 * should break the cow immediately for an anon page on the src mm. 2059 * 2060 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 2061 */ 2062static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 2063 struct folio *folio) 2064{ 2065 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 2066 2067 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 2068 return false; 2069 2070 return folio_maybe_dma_pinned(folio); 2071} 2072 2073/** 2074 * is_zero_page - Query if a page is a zero page 2075 * @page: The page to query 2076 * 2077 * This returns true if @page is one of the permanent zero pages. 2078 */ 2079static inline bool is_zero_page(const struct page *page) 2080{ 2081 return is_zero_pfn(page_to_pfn(page)); 2082} 2083 2084/** 2085 * is_zero_folio - Query if a folio is a zero page 2086 * @folio: The folio to query 2087 * 2088 * This returns true if @folio is one of the permanent zero pages. 2089 */ 2090static inline bool is_zero_folio(const struct folio *folio) 2091{ 2092 return is_zero_page(&folio->page); 2093} 2094 2095/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2096#ifdef CONFIG_MIGRATION 2097static inline bool folio_is_longterm_pinnable(struct folio *folio) 2098{ 2099#ifdef CONFIG_CMA 2100 int mt = folio_migratetype(folio); 2101 2102 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2103 return false; 2104#endif 2105 /* The zero page can be "pinned" but gets special handling. */ 2106 if (is_zero_folio(folio)) 2107 return true; 2108 2109 /* Coherent device memory must always allow eviction. */ 2110 if (folio_is_device_coherent(folio)) 2111 return false; 2112 2113 /* 2114 * Filesystems can only tolerate transient delays to truncate and 2115 * hole-punch operations 2116 */ 2117 if (folio_is_fsdax(folio)) 2118 return false; 2119 2120 /* Otherwise, non-movable zone folios can be pinned. */ 2121 return !folio_is_zone_movable(folio); 2122 2123} 2124#else 2125static inline bool folio_is_longterm_pinnable(struct folio *folio) 2126{ 2127 return true; 2128} 2129#endif 2130 2131static inline void set_page_zone(struct page *page, enum zone_type zone) 2132{ 2133 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2134 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2135} 2136 2137static inline void set_page_node(struct page *page, unsigned long node) 2138{ 2139 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2140 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2141} 2142 2143static inline void set_page_links(struct page *page, enum zone_type zone, 2144 unsigned long node, unsigned long pfn) 2145{ 2146 set_page_zone(page, zone); 2147 set_page_node(page, node); 2148#ifdef SECTION_IN_PAGE_FLAGS 2149 set_page_section(page, pfn_to_section_nr(pfn)); 2150#endif 2151} 2152 2153/** 2154 * folio_nr_pages - The number of pages in the folio. 2155 * @folio: The folio. 2156 * 2157 * Return: A positive power of two. 2158 */ 2159static inline long folio_nr_pages(const struct folio *folio) 2160{ 2161 if (!folio_test_large(folio)) 2162 return 1; 2163 return folio_large_nr_pages(folio); 2164} 2165 2166/* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2167#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2168#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2169#else 2170#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2171#endif 2172 2173/* 2174 * compound_nr() returns the number of pages in this potentially compound 2175 * page. compound_nr() can be called on a tail page, and is defined to 2176 * return 1 in that case. 2177 */ 2178static inline long compound_nr(struct page *page) 2179{ 2180 struct folio *folio = (struct folio *)page; 2181 2182 if (!test_bit(PG_head, &folio->flags)) 2183 return 1; 2184 return folio_large_nr_pages(folio); 2185} 2186 2187/** 2188 * thp_nr_pages - The number of regular pages in this huge page. 2189 * @page: The head page of a huge page. 2190 */ 2191static inline long thp_nr_pages(struct page *page) 2192{ 2193 return folio_nr_pages((struct folio *)page); 2194} 2195 2196/** 2197 * folio_next - Move to the next physical folio. 2198 * @folio: The folio we're currently operating on. 2199 * 2200 * If you have physically contiguous memory which may span more than 2201 * one folio (eg a &struct bio_vec), use this function to move from one 2202 * folio to the next. Do not use it if the memory is only virtually 2203 * contiguous as the folios are almost certainly not adjacent to each 2204 * other. This is the folio equivalent to writing ``page++``. 2205 * 2206 * Context: We assume that the folios are refcounted and/or locked at a 2207 * higher level and do not adjust the reference counts. 2208 * Return: The next struct folio. 2209 */ 2210static inline struct folio *folio_next(struct folio *folio) 2211{ 2212 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2213} 2214 2215/** 2216 * folio_shift - The size of the memory described by this folio. 2217 * @folio: The folio. 2218 * 2219 * A folio represents a number of bytes which is a power-of-two in size. 2220 * This function tells you which power-of-two the folio is. See also 2221 * folio_size() and folio_order(). 2222 * 2223 * Context: The caller should have a reference on the folio to prevent 2224 * it from being split. It is not necessary for the folio to be locked. 2225 * Return: The base-2 logarithm of the size of this folio. 2226 */ 2227static inline unsigned int folio_shift(const struct folio *folio) 2228{ 2229 return PAGE_SHIFT + folio_order(folio); 2230} 2231 2232/** 2233 * folio_size - The number of bytes in a folio. 2234 * @folio: The folio. 2235 * 2236 * Context: The caller should have a reference on the folio to prevent 2237 * it from being split. It is not necessary for the folio to be locked. 2238 * Return: The number of bytes in this folio. 2239 */ 2240static inline size_t folio_size(const struct folio *folio) 2241{ 2242 return PAGE_SIZE << folio_order(folio); 2243} 2244 2245/** 2246 * folio_maybe_mapped_shared - Whether the folio is mapped into the page 2247 * tables of more than one MM 2248 * @folio: The folio. 2249 * 2250 * This function checks if the folio maybe currently mapped into more than one 2251 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single 2252 * MM ("mapped exclusively"). 2253 * 2254 * For KSM folios, this function also returns "mapped shared" when a folio is 2255 * mapped multiple times into the same MM, because the individual page mappings 2256 * are independent. 2257 * 2258 * For small anonymous folios and anonymous hugetlb folios, the return 2259 * value will be exactly correct: non-KSM folios can only be mapped at most once 2260 * into an MM, and they cannot be partially mapped. KSM folios are 2261 * considered shared even if mapped multiple times into the same MM. 2262 * 2263 * For other folios, the result can be fuzzy: 2264 * #. For partially-mappable large folios (THP), the return value can wrongly 2265 * indicate "mapped shared" (false positive) if a folio was mapped by 2266 * more than two MMs at one point in time. 2267 * #. For pagecache folios (including hugetlb), the return value can wrongly 2268 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2269 * cover the same file range. 2270 * 2271 * Further, this function only considers current page table mappings that 2272 * are tracked using the folio mapcount(s). 2273 * 2274 * This function does not consider: 2275 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2276 * pagecache, temporary unmapping for migration). 2277 * #. If the folio is mapped differently (VM_PFNMAP). 2278 * #. If hugetlb page table sharing applies. Callers might want to check 2279 * hugetlb_pmd_shared(). 2280 * 2281 * Return: Whether the folio is estimated to be mapped into more than one MM. 2282 */ 2283static inline bool folio_maybe_mapped_shared(struct folio *folio) 2284{ 2285 int mapcount = folio_mapcount(folio); 2286 2287 /* Only partially-mappable folios require more care. */ 2288 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2289 return mapcount > 1; 2290 2291 /* 2292 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... 2293 * simply assume "mapped shared", nobody should really care 2294 * about this for arbitrary kernel allocations. 2295 */ 2296 if (!IS_ENABLED(CONFIG_MM_ID)) 2297 return true; 2298 2299 /* 2300 * A single mapping implies "mapped exclusively", even if the 2301 * folio flag says something different: it's easier to handle this 2302 * case here instead of on the RMAP hot path. 2303 */ 2304 if (mapcount <= 1) 2305 return false; 2306 return folio_test_large_maybe_mapped_shared(folio); 2307} 2308 2309#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2310static inline int arch_make_folio_accessible(struct folio *folio) 2311{ 2312 return 0; 2313} 2314#endif 2315 2316/* 2317 * Some inline functions in vmstat.h depend on page_zone() 2318 */ 2319#include <linux/vmstat.h> 2320 2321#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2322#define HASHED_PAGE_VIRTUAL 2323#endif 2324 2325#if defined(WANT_PAGE_VIRTUAL) 2326static inline void *page_address(const struct page *page) 2327{ 2328 return page->virtual; 2329} 2330static inline void set_page_address(struct page *page, void *address) 2331{ 2332 page->virtual = address; 2333} 2334#define page_address_init() do { } while(0) 2335#endif 2336 2337#if defined(HASHED_PAGE_VIRTUAL) 2338void *page_address(const struct page *page); 2339void set_page_address(struct page *page, void *virtual); 2340void page_address_init(void); 2341#endif 2342 2343static __always_inline void *lowmem_page_address(const struct page *page) 2344{ 2345 return page_to_virt(page); 2346} 2347 2348#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2349#define page_address(page) lowmem_page_address(page) 2350#define set_page_address(page, address) do { } while(0) 2351#define page_address_init() do { } while(0) 2352#endif 2353 2354static inline void *folio_address(const struct folio *folio) 2355{ 2356 return page_address(&folio->page); 2357} 2358 2359/* 2360 * Return true only if the page has been allocated with 2361 * ALLOC_NO_WATERMARKS and the low watermark was not 2362 * met implying that the system is under some pressure. 2363 */ 2364static inline bool page_is_pfmemalloc(const struct page *page) 2365{ 2366 /* 2367 * lru.next has bit 1 set if the page is allocated from the 2368 * pfmemalloc reserves. Callers may simply overwrite it if 2369 * they do not need to preserve that information. 2370 */ 2371 return (uintptr_t)page->lru.next & BIT(1); 2372} 2373 2374/* 2375 * Return true only if the folio has been allocated with 2376 * ALLOC_NO_WATERMARKS and the low watermark was not 2377 * met implying that the system is under some pressure. 2378 */ 2379static inline bool folio_is_pfmemalloc(const struct folio *folio) 2380{ 2381 /* 2382 * lru.next has bit 1 set if the page is allocated from the 2383 * pfmemalloc reserves. Callers may simply overwrite it if 2384 * they do not need to preserve that information. 2385 */ 2386 return (uintptr_t)folio->lru.next & BIT(1); 2387} 2388 2389/* 2390 * Only to be called by the page allocator on a freshly allocated 2391 * page. 2392 */ 2393static inline void set_page_pfmemalloc(struct page *page) 2394{ 2395 page->lru.next = (void *)BIT(1); 2396} 2397 2398static inline void clear_page_pfmemalloc(struct page *page) 2399{ 2400 page->lru.next = NULL; 2401} 2402 2403/* 2404 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2405 */ 2406extern void pagefault_out_of_memory(void); 2407 2408#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2409#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2410#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2411 2412/* 2413 * Parameter block passed down to zap_pte_range in exceptional cases. 2414 */ 2415struct zap_details { 2416 struct folio *single_folio; /* Locked folio to be unmapped */ 2417 bool even_cows; /* Zap COWed private pages too? */ 2418 bool reclaim_pt; /* Need reclaim page tables? */ 2419 zap_flags_t zap_flags; /* Extra flags for zapping */ 2420}; 2421 2422/* 2423 * Whether to drop the pte markers, for example, the uffd-wp information for 2424 * file-backed memory. This should only be specified when we will completely 2425 * drop the page in the mm, either by truncation or unmapping of the vma. By 2426 * default, the flag is not set. 2427 */ 2428#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2429/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2430#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2431 2432#ifdef CONFIG_SCHED_MM_CID 2433void sched_mm_cid_before_execve(struct task_struct *t); 2434void sched_mm_cid_after_execve(struct task_struct *t); 2435void sched_mm_cid_fork(struct task_struct *t); 2436void sched_mm_cid_exit_signals(struct task_struct *t); 2437static inline int task_mm_cid(struct task_struct *t) 2438{ 2439 return t->mm_cid; 2440} 2441#else 2442static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2443static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2444static inline void sched_mm_cid_fork(struct task_struct *t) { } 2445static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2446static inline int task_mm_cid(struct task_struct *t) 2447{ 2448 /* 2449 * Use the processor id as a fall-back when the mm cid feature is 2450 * disabled. This provides functional per-cpu data structure accesses 2451 * in user-space, althrough it won't provide the memory usage benefits. 2452 */ 2453 return raw_smp_processor_id(); 2454} 2455#endif 2456 2457#ifdef CONFIG_MMU 2458extern bool can_do_mlock(void); 2459#else 2460static inline bool can_do_mlock(void) { return false; } 2461#endif 2462extern int user_shm_lock(size_t, struct ucounts *); 2463extern void user_shm_unlock(size_t, struct ucounts *); 2464 2465struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2466 pte_t pte); 2467struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2468 pte_t pte); 2469struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2470 unsigned long addr, pmd_t pmd); 2471struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2472 pmd_t pmd); 2473 2474void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2475 unsigned long size); 2476void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2477 unsigned long size, struct zap_details *details); 2478static inline void zap_vma_pages(struct vm_area_struct *vma) 2479{ 2480 zap_page_range_single(vma, vma->vm_start, 2481 vma->vm_end - vma->vm_start, NULL); 2482} 2483void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2484 struct vm_area_struct *start_vma, unsigned long start, 2485 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2486 2487struct mmu_notifier_range; 2488 2489void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2490 unsigned long end, unsigned long floor, unsigned long ceiling); 2491int 2492copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2493int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2494 void *buf, int len, int write); 2495 2496struct follow_pfnmap_args { 2497 /** 2498 * Inputs: 2499 * @vma: Pointer to @vm_area_struct struct 2500 * @address: the virtual address to walk 2501 */ 2502 struct vm_area_struct *vma; 2503 unsigned long address; 2504 /** 2505 * Internals: 2506 * 2507 * The caller shouldn't touch any of these. 2508 */ 2509 spinlock_t *lock; 2510 pte_t *ptep; 2511 /** 2512 * Outputs: 2513 * 2514 * @pfn: the PFN of the address 2515 * @addr_mask: address mask covering pfn 2516 * @pgprot: the pgprot_t of the mapping 2517 * @writable: whether the mapping is writable 2518 * @special: whether the mapping is a special mapping (real PFN maps) 2519 */ 2520 unsigned long pfn; 2521 unsigned long addr_mask; 2522 pgprot_t pgprot; 2523 bool writable; 2524 bool special; 2525}; 2526int follow_pfnmap_start(struct follow_pfnmap_args *args); 2527void follow_pfnmap_end(struct follow_pfnmap_args *args); 2528 2529extern void truncate_pagecache(struct inode *inode, loff_t new); 2530extern void truncate_setsize(struct inode *inode, loff_t newsize); 2531void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2532void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2533int generic_error_remove_folio(struct address_space *mapping, 2534 struct folio *folio); 2535 2536struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2537 unsigned long address, struct pt_regs *regs); 2538 2539#ifdef CONFIG_MMU 2540extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2541 unsigned long address, unsigned int flags, 2542 struct pt_regs *regs); 2543extern int fixup_user_fault(struct mm_struct *mm, 2544 unsigned long address, unsigned int fault_flags, 2545 bool *unlocked); 2546void unmap_mapping_pages(struct address_space *mapping, 2547 pgoff_t start, pgoff_t nr, bool even_cows); 2548void unmap_mapping_range(struct address_space *mapping, 2549 loff_t const holebegin, loff_t const holelen, int even_cows); 2550#else 2551static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2552 unsigned long address, unsigned int flags, 2553 struct pt_regs *regs) 2554{ 2555 /* should never happen if there's no MMU */ 2556 BUG(); 2557 return VM_FAULT_SIGBUS; 2558} 2559static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2560 unsigned int fault_flags, bool *unlocked) 2561{ 2562 /* should never happen if there's no MMU */ 2563 BUG(); 2564 return -EFAULT; 2565} 2566static inline void unmap_mapping_pages(struct address_space *mapping, 2567 pgoff_t start, pgoff_t nr, bool even_cows) { } 2568static inline void unmap_mapping_range(struct address_space *mapping, 2569 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2570#endif 2571 2572static inline void unmap_shared_mapping_range(struct address_space *mapping, 2573 loff_t const holebegin, loff_t const holelen) 2574{ 2575 unmap_mapping_range(mapping, holebegin, holelen, 0); 2576} 2577 2578static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2579 unsigned long addr); 2580 2581extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2582 void *buf, int len, unsigned int gup_flags); 2583extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2584 void *buf, int len, unsigned int gup_flags); 2585 2586#ifdef CONFIG_BPF_SYSCALL 2587extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 2588 void *buf, int len, unsigned int gup_flags); 2589#endif 2590 2591long get_user_pages_remote(struct mm_struct *mm, 2592 unsigned long start, unsigned long nr_pages, 2593 unsigned int gup_flags, struct page **pages, 2594 int *locked); 2595long pin_user_pages_remote(struct mm_struct *mm, 2596 unsigned long start, unsigned long nr_pages, 2597 unsigned int gup_flags, struct page **pages, 2598 int *locked); 2599 2600/* 2601 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2602 */ 2603static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2604 unsigned long addr, 2605 int gup_flags, 2606 struct vm_area_struct **vmap) 2607{ 2608 struct page *page; 2609 struct vm_area_struct *vma; 2610 int got; 2611 2612 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2613 return ERR_PTR(-EINVAL); 2614 2615 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2616 2617 if (got < 0) 2618 return ERR_PTR(got); 2619 2620 vma = vma_lookup(mm, addr); 2621 if (WARN_ON_ONCE(!vma)) { 2622 put_page(page); 2623 return ERR_PTR(-EINVAL); 2624 } 2625 2626 *vmap = vma; 2627 return page; 2628} 2629 2630long get_user_pages(unsigned long start, unsigned long nr_pages, 2631 unsigned int gup_flags, struct page **pages); 2632long pin_user_pages(unsigned long start, unsigned long nr_pages, 2633 unsigned int gup_flags, struct page **pages); 2634long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2635 struct page **pages, unsigned int gup_flags); 2636long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2637 struct page **pages, unsigned int gup_flags); 2638long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2639 struct folio **folios, unsigned int max_folios, 2640 pgoff_t *offset); 2641int folio_add_pins(struct folio *folio, unsigned int pins); 2642 2643int get_user_pages_fast(unsigned long start, int nr_pages, 2644 unsigned int gup_flags, struct page **pages); 2645int pin_user_pages_fast(unsigned long start, int nr_pages, 2646 unsigned int gup_flags, struct page **pages); 2647void folio_add_pin(struct folio *folio); 2648 2649int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2650int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2651 struct task_struct *task, bool bypass_rlim); 2652 2653struct kvec; 2654struct page *get_dump_page(unsigned long addr, int *locked); 2655 2656bool folio_mark_dirty(struct folio *folio); 2657bool folio_mark_dirty_lock(struct folio *folio); 2658bool set_page_dirty(struct page *page); 2659int set_page_dirty_lock(struct page *page); 2660 2661int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2662 2663/* 2664 * Flags used by change_protection(). For now we make it a bitmap so 2665 * that we can pass in multiple flags just like parameters. However 2666 * for now all the callers are only use one of the flags at the same 2667 * time. 2668 */ 2669/* 2670 * Whether we should manually check if we can map individual PTEs writable, 2671 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2672 * PTEs automatically in a writable mapping. 2673 */ 2674#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2675/* Whether this protection change is for NUMA hints */ 2676#define MM_CP_PROT_NUMA (1UL << 1) 2677/* Whether this change is for write protecting */ 2678#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2679#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2680#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2681 MM_CP_UFFD_WP_RESOLVE) 2682 2683bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2684 pte_t pte); 2685extern long change_protection(struct mmu_gather *tlb, 2686 struct vm_area_struct *vma, unsigned long start, 2687 unsigned long end, unsigned long cp_flags); 2688extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2689 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2690 unsigned long start, unsigned long end, unsigned long newflags); 2691 2692/* 2693 * doesn't attempt to fault and will return short. 2694 */ 2695int get_user_pages_fast_only(unsigned long start, int nr_pages, 2696 unsigned int gup_flags, struct page **pages); 2697 2698static inline bool get_user_page_fast_only(unsigned long addr, 2699 unsigned int gup_flags, struct page **pagep) 2700{ 2701 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2702} 2703/* 2704 * per-process(per-mm_struct) statistics. 2705 */ 2706static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2707{ 2708 return percpu_counter_read_positive(&mm->rss_stat[member]); 2709} 2710 2711void mm_trace_rss_stat(struct mm_struct *mm, int member); 2712 2713static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2714{ 2715 percpu_counter_add(&mm->rss_stat[member], value); 2716 2717 mm_trace_rss_stat(mm, member); 2718} 2719 2720static inline void inc_mm_counter(struct mm_struct *mm, int member) 2721{ 2722 percpu_counter_inc(&mm->rss_stat[member]); 2723 2724 mm_trace_rss_stat(mm, member); 2725} 2726 2727static inline void dec_mm_counter(struct mm_struct *mm, int member) 2728{ 2729 percpu_counter_dec(&mm->rss_stat[member]); 2730 2731 mm_trace_rss_stat(mm, member); 2732} 2733 2734/* Optimized variant when folio is already known not to be anon */ 2735static inline int mm_counter_file(struct folio *folio) 2736{ 2737 if (folio_test_swapbacked(folio)) 2738 return MM_SHMEMPAGES; 2739 return MM_FILEPAGES; 2740} 2741 2742static inline int mm_counter(struct folio *folio) 2743{ 2744 if (folio_test_anon(folio)) 2745 return MM_ANONPAGES; 2746 return mm_counter_file(folio); 2747} 2748 2749static inline unsigned long get_mm_rss(struct mm_struct *mm) 2750{ 2751 return get_mm_counter(mm, MM_FILEPAGES) + 2752 get_mm_counter(mm, MM_ANONPAGES) + 2753 get_mm_counter(mm, MM_SHMEMPAGES); 2754} 2755 2756static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2757{ 2758 return max(mm->hiwater_rss, get_mm_rss(mm)); 2759} 2760 2761static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2762{ 2763 return max(mm->hiwater_vm, mm->total_vm); 2764} 2765 2766static inline void update_hiwater_rss(struct mm_struct *mm) 2767{ 2768 unsigned long _rss = get_mm_rss(mm); 2769 2770 if ((mm)->hiwater_rss < _rss) 2771 (mm)->hiwater_rss = _rss; 2772} 2773 2774static inline void update_hiwater_vm(struct mm_struct *mm) 2775{ 2776 if (mm->hiwater_vm < mm->total_vm) 2777 mm->hiwater_vm = mm->total_vm; 2778} 2779 2780static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2781{ 2782 mm->hiwater_rss = get_mm_rss(mm); 2783} 2784 2785static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2786 struct mm_struct *mm) 2787{ 2788 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2789 2790 if (*maxrss < hiwater_rss) 2791 *maxrss = hiwater_rss; 2792} 2793 2794#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2795static inline int pte_special(pte_t pte) 2796{ 2797 return 0; 2798} 2799 2800static inline pte_t pte_mkspecial(pte_t pte) 2801{ 2802 return pte; 2803} 2804#endif 2805 2806#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2807static inline bool pmd_special(pmd_t pmd) 2808{ 2809 return false; 2810} 2811 2812static inline pmd_t pmd_mkspecial(pmd_t pmd) 2813{ 2814 return pmd; 2815} 2816#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2817 2818#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2819static inline bool pud_special(pud_t pud) 2820{ 2821 return false; 2822} 2823 2824static inline pud_t pud_mkspecial(pud_t pud) 2825{ 2826 return pud; 2827} 2828#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2829 2830#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2831static inline int pte_devmap(pte_t pte) 2832{ 2833 return 0; 2834} 2835#endif 2836 2837extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2838 spinlock_t **ptl); 2839static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2840 spinlock_t **ptl) 2841{ 2842 pte_t *ptep; 2843 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2844 return ptep; 2845} 2846 2847#ifdef __PAGETABLE_P4D_FOLDED 2848static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2849 unsigned long address) 2850{ 2851 return 0; 2852} 2853#else 2854int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2855#endif 2856 2857#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2858static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2859 unsigned long address) 2860{ 2861 return 0; 2862} 2863static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2864static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2865 2866#else 2867int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2868 2869static inline void mm_inc_nr_puds(struct mm_struct *mm) 2870{ 2871 if (mm_pud_folded(mm)) 2872 return; 2873 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2874} 2875 2876static inline void mm_dec_nr_puds(struct mm_struct *mm) 2877{ 2878 if (mm_pud_folded(mm)) 2879 return; 2880 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2881} 2882#endif 2883 2884#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2885static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2886 unsigned long address) 2887{ 2888 return 0; 2889} 2890 2891static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2892static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2893 2894#else 2895int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2896 2897static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2898{ 2899 if (mm_pmd_folded(mm)) 2900 return; 2901 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2902} 2903 2904static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2905{ 2906 if (mm_pmd_folded(mm)) 2907 return; 2908 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2909} 2910#endif 2911 2912#ifdef CONFIG_MMU 2913static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2914{ 2915 atomic_long_set(&mm->pgtables_bytes, 0); 2916} 2917 2918static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2919{ 2920 return atomic_long_read(&mm->pgtables_bytes); 2921} 2922 2923static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2924{ 2925 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2926} 2927 2928static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2929{ 2930 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2931} 2932#else 2933 2934static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2935static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2936{ 2937 return 0; 2938} 2939 2940static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2941static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2942#endif 2943 2944int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2945int __pte_alloc_kernel(pmd_t *pmd); 2946 2947#if defined(CONFIG_MMU) 2948 2949static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2950 unsigned long address) 2951{ 2952 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2953 NULL : p4d_offset(pgd, address); 2954} 2955 2956static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2957 unsigned long address) 2958{ 2959 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2960 NULL : pud_offset(p4d, address); 2961} 2962 2963static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2964{ 2965 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2966 NULL: pmd_offset(pud, address); 2967} 2968#endif /* CONFIG_MMU */ 2969 2970static inline struct ptdesc *virt_to_ptdesc(const void *x) 2971{ 2972 return page_ptdesc(virt_to_page(x)); 2973} 2974 2975static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2976{ 2977 return page_to_virt(ptdesc_page(pt)); 2978} 2979 2980static inline void *ptdesc_address(const struct ptdesc *pt) 2981{ 2982 return folio_address(ptdesc_folio(pt)); 2983} 2984 2985static inline bool pagetable_is_reserved(struct ptdesc *pt) 2986{ 2987 return folio_test_reserved(ptdesc_folio(pt)); 2988} 2989 2990/** 2991 * pagetable_alloc - Allocate pagetables 2992 * @gfp: GFP flags 2993 * @order: desired pagetable order 2994 * 2995 * pagetable_alloc allocates memory for page tables as well as a page table 2996 * descriptor to describe that memory. 2997 * 2998 * Return: The ptdesc describing the allocated page tables. 2999 */ 3000static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 3001{ 3002 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 3003 3004 return page_ptdesc(page); 3005} 3006#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 3007 3008/** 3009 * pagetable_free - Free pagetables 3010 * @pt: The page table descriptor 3011 * 3012 * pagetable_free frees the memory of all page tables described by a page 3013 * table descriptor and the memory for the descriptor itself. 3014 */ 3015static inline void pagetable_free(struct ptdesc *pt) 3016{ 3017 struct page *page = ptdesc_page(pt); 3018 3019 __free_pages(page, compound_order(page)); 3020} 3021 3022#if defined(CONFIG_SPLIT_PTE_PTLOCKS) 3023#if ALLOC_SPLIT_PTLOCKS 3024void __init ptlock_cache_init(void); 3025bool ptlock_alloc(struct ptdesc *ptdesc); 3026void ptlock_free(struct ptdesc *ptdesc); 3027 3028static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3029{ 3030 return ptdesc->ptl; 3031} 3032#else /* ALLOC_SPLIT_PTLOCKS */ 3033static inline void ptlock_cache_init(void) 3034{ 3035} 3036 3037static inline bool ptlock_alloc(struct ptdesc *ptdesc) 3038{ 3039 return true; 3040} 3041 3042static inline void ptlock_free(struct ptdesc *ptdesc) 3043{ 3044} 3045 3046static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3047{ 3048 return &ptdesc->ptl; 3049} 3050#endif /* ALLOC_SPLIT_PTLOCKS */ 3051 3052static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3053{ 3054 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 3055} 3056 3057static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3058{ 3059 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 3060 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 3061 return ptlock_ptr(virt_to_ptdesc(pte)); 3062} 3063 3064static inline bool ptlock_init(struct ptdesc *ptdesc) 3065{ 3066 /* 3067 * prep_new_page() initialize page->private (and therefore page->ptl) 3068 * with 0. Make sure nobody took it in use in between. 3069 * 3070 * It can happen if arch try to use slab for page table allocation: 3071 * slab code uses page->slab_cache, which share storage with page->ptl. 3072 */ 3073 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 3074 if (!ptlock_alloc(ptdesc)) 3075 return false; 3076 spin_lock_init(ptlock_ptr(ptdesc)); 3077 return true; 3078} 3079 3080#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3081/* 3082 * We use mm->page_table_lock to guard all pagetable pages of the mm. 3083 */ 3084static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3085{ 3086 return &mm->page_table_lock; 3087} 3088static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3089{ 3090 return &mm->page_table_lock; 3091} 3092static inline void ptlock_cache_init(void) {} 3093static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 3094static inline void ptlock_free(struct ptdesc *ptdesc) {} 3095#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3096 3097static inline void __pagetable_ctor(struct ptdesc *ptdesc) 3098{ 3099 struct folio *folio = ptdesc_folio(ptdesc); 3100 3101 __folio_set_pgtable(folio); 3102 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3103} 3104 3105static inline void pagetable_dtor(struct ptdesc *ptdesc) 3106{ 3107 struct folio *folio = ptdesc_folio(ptdesc); 3108 3109 ptlock_free(ptdesc); 3110 __folio_clear_pgtable(folio); 3111 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3112} 3113 3114static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 3115{ 3116 pagetable_dtor(ptdesc); 3117 pagetable_free(ptdesc); 3118} 3119 3120static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 3121{ 3122 if (!ptlock_init(ptdesc)) 3123 return false; 3124 __pagetable_ctor(ptdesc); 3125 return true; 3126} 3127 3128pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3129static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 3130 pmd_t *pmdvalp) 3131{ 3132 pte_t *pte; 3133 3134 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3135 return pte; 3136} 3137static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3138{ 3139 return __pte_offset_map(pmd, addr, NULL); 3140} 3141 3142pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3143 unsigned long addr, spinlock_t **ptlp); 3144static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3145 unsigned long addr, spinlock_t **ptlp) 3146{ 3147 pte_t *pte; 3148 3149 __cond_lock(RCU, __cond_lock(*ptlp, 3150 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3151 return pte; 3152} 3153 3154pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3155 unsigned long addr, spinlock_t **ptlp); 3156pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3157 unsigned long addr, pmd_t *pmdvalp, 3158 spinlock_t **ptlp); 3159 3160#define pte_unmap_unlock(pte, ptl) do { \ 3161 spin_unlock(ptl); \ 3162 pte_unmap(pte); \ 3163} while (0) 3164 3165#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3166 3167#define pte_alloc_map(mm, pmd, address) \ 3168 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3169 3170#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3171 (pte_alloc(mm, pmd) ? \ 3172 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3173 3174#define pte_alloc_kernel(pmd, address) \ 3175 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3176 NULL: pte_offset_kernel(pmd, address)) 3177 3178#if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3179 3180static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3181{ 3182 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3183 return virt_to_page((void *)((unsigned long) pmd & mask)); 3184} 3185 3186static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3187{ 3188 return page_ptdesc(pmd_pgtable_page(pmd)); 3189} 3190 3191static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3192{ 3193 return ptlock_ptr(pmd_ptdesc(pmd)); 3194} 3195 3196static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3197{ 3198#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3199 ptdesc->pmd_huge_pte = NULL; 3200#endif 3201 return ptlock_init(ptdesc); 3202} 3203 3204#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3205 3206#else 3207 3208static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3209{ 3210 return &mm->page_table_lock; 3211} 3212 3213static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3214 3215#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3216 3217#endif 3218 3219static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3220{ 3221 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3222 spin_lock(ptl); 3223 return ptl; 3224} 3225 3226static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3227{ 3228 if (!pmd_ptlock_init(ptdesc)) 3229 return false; 3230 ptdesc_pmd_pts_init(ptdesc); 3231 __pagetable_ctor(ptdesc); 3232 return true; 3233} 3234 3235/* 3236 * No scalability reason to split PUD locks yet, but follow the same pattern 3237 * as the PMD locks to make it easier if we decide to. The VM should not be 3238 * considered ready to switch to split PUD locks yet; there may be places 3239 * which need to be converted from page_table_lock. 3240 */ 3241static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3242{ 3243 return &mm->page_table_lock; 3244} 3245 3246static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3247{ 3248 spinlock_t *ptl = pud_lockptr(mm, pud); 3249 3250 spin_lock(ptl); 3251 return ptl; 3252} 3253 3254static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3255{ 3256 __pagetable_ctor(ptdesc); 3257} 3258 3259static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3260{ 3261 __pagetable_ctor(ptdesc); 3262} 3263 3264static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3265{ 3266 __pagetable_ctor(ptdesc); 3267} 3268 3269extern void __init pagecache_init(void); 3270extern void free_initmem(void); 3271 3272/* 3273 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3274 * into the buddy system. The freed pages will be poisoned with pattern 3275 * "poison" if it's within range [0, UCHAR_MAX]. 3276 * Return pages freed into the buddy system. 3277 */ 3278extern unsigned long free_reserved_area(void *start, void *end, 3279 int poison, const char *s); 3280 3281extern void adjust_managed_page_count(struct page *page, long count); 3282 3283extern void reserve_bootmem_region(phys_addr_t start, 3284 phys_addr_t end, int nid); 3285 3286/* Free the reserved page into the buddy system, so it gets managed. */ 3287void free_reserved_page(struct page *page); 3288 3289static inline void mark_page_reserved(struct page *page) 3290{ 3291 SetPageReserved(page); 3292 adjust_managed_page_count(page, -1); 3293} 3294 3295static inline void free_reserved_ptdesc(struct ptdesc *pt) 3296{ 3297 free_reserved_page(ptdesc_page(pt)); 3298} 3299 3300/* 3301 * Default method to free all the __init memory into the buddy system. 3302 * The freed pages will be poisoned with pattern "poison" if it's within 3303 * range [0, UCHAR_MAX]. 3304 * Return pages freed into the buddy system. 3305 */ 3306static inline unsigned long free_initmem_default(int poison) 3307{ 3308 extern char __init_begin[], __init_end[]; 3309 3310 return free_reserved_area(&__init_begin, &__init_end, 3311 poison, "unused kernel image (initmem)"); 3312} 3313 3314static inline unsigned long get_num_physpages(void) 3315{ 3316 int nid; 3317 unsigned long phys_pages = 0; 3318 3319 for_each_online_node(nid) 3320 phys_pages += node_present_pages(nid); 3321 3322 return phys_pages; 3323} 3324 3325/* 3326 * Using memblock node mappings, an architecture may initialise its 3327 * zones, allocate the backing mem_map and account for memory holes in an 3328 * architecture independent manner. 3329 * 3330 * An architecture is expected to register range of page frames backed by 3331 * physical memory with memblock_add[_node]() before calling 3332 * free_area_init() passing in the PFN each zone ends at. At a basic 3333 * usage, an architecture is expected to do something like 3334 * 3335 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3336 * max_highmem_pfn}; 3337 * for_each_valid_physical_page_range() 3338 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3339 * free_area_init(max_zone_pfns); 3340 */ 3341void free_area_init(unsigned long *max_zone_pfn); 3342unsigned long node_map_pfn_alignment(void); 3343extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3344 unsigned long end_pfn); 3345extern void get_pfn_range_for_nid(unsigned int nid, 3346 unsigned long *start_pfn, unsigned long *end_pfn); 3347 3348#ifndef CONFIG_NUMA 3349static inline int early_pfn_to_nid(unsigned long pfn) 3350{ 3351 return 0; 3352} 3353#else 3354/* please see mm/page_alloc.c */ 3355extern int __meminit early_pfn_to_nid(unsigned long pfn); 3356#endif 3357 3358extern void mem_init(void); 3359extern void __init mmap_init(void); 3360 3361extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3362static inline void show_mem(void) 3363{ 3364 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3365} 3366extern long si_mem_available(void); 3367extern void si_meminfo(struct sysinfo * val); 3368extern void si_meminfo_node(struct sysinfo *val, int nid); 3369 3370extern __printf(3, 4) 3371void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3372 3373extern void setup_per_cpu_pageset(void); 3374 3375/* nommu.c */ 3376extern atomic_long_t mmap_pages_allocated; 3377extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3378 3379/* interval_tree.c */ 3380void vma_interval_tree_insert(struct vm_area_struct *node, 3381 struct rb_root_cached *root); 3382void vma_interval_tree_insert_after(struct vm_area_struct *node, 3383 struct vm_area_struct *prev, 3384 struct rb_root_cached *root); 3385void vma_interval_tree_remove(struct vm_area_struct *node, 3386 struct rb_root_cached *root); 3387struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3388 unsigned long start, unsigned long last); 3389struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3390 unsigned long start, unsigned long last); 3391 3392#define vma_interval_tree_foreach(vma, root, start, last) \ 3393 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3394 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3395 3396void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3397 struct rb_root_cached *root); 3398void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3399 struct rb_root_cached *root); 3400struct anon_vma_chain * 3401anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3402 unsigned long start, unsigned long last); 3403struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3404 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3405#ifdef CONFIG_DEBUG_VM_RB 3406void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3407#endif 3408 3409#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3410 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3411 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3412 3413/* mmap.c */ 3414extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3415extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3416extern void exit_mmap(struct mm_struct *); 3417int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3418bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3419 unsigned long addr, bool write); 3420 3421static inline int check_data_rlimit(unsigned long rlim, 3422 unsigned long new, 3423 unsigned long start, 3424 unsigned long end_data, 3425 unsigned long start_data) 3426{ 3427 if (rlim < RLIM_INFINITY) { 3428 if (((new - start) + (end_data - start_data)) > rlim) 3429 return -ENOSPC; 3430 } 3431 3432 return 0; 3433} 3434 3435extern int mm_take_all_locks(struct mm_struct *mm); 3436extern void mm_drop_all_locks(struct mm_struct *mm); 3437 3438extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3439extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3440extern struct file *get_mm_exe_file(struct mm_struct *mm); 3441extern struct file *get_task_exe_file(struct task_struct *task); 3442 3443extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3444extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3445 3446extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3447 const struct vm_special_mapping *sm); 3448extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3449 unsigned long addr, unsigned long len, 3450 unsigned long flags, 3451 const struct vm_special_mapping *spec); 3452 3453unsigned long randomize_stack_top(unsigned long stack_top); 3454unsigned long randomize_page(unsigned long start, unsigned long range); 3455 3456unsigned long 3457__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3458 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3459 3460static inline unsigned long 3461get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3462 unsigned long pgoff, unsigned long flags) 3463{ 3464 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3465} 3466 3467extern unsigned long do_mmap(struct file *file, unsigned long addr, 3468 unsigned long len, unsigned long prot, unsigned long flags, 3469 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3470 struct list_head *uf); 3471extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3472 unsigned long start, size_t len, struct list_head *uf, 3473 bool unlock); 3474int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3475 struct mm_struct *mm, unsigned long start, 3476 unsigned long end, struct list_head *uf, bool unlock); 3477extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3478 struct list_head *uf); 3479extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3480 3481#ifdef CONFIG_MMU 3482extern int __mm_populate(unsigned long addr, unsigned long len, 3483 int ignore_errors); 3484static inline void mm_populate(unsigned long addr, unsigned long len) 3485{ 3486 /* Ignore errors */ 3487 (void) __mm_populate(addr, len, 1); 3488} 3489#else 3490static inline void mm_populate(unsigned long addr, unsigned long len) {} 3491#endif 3492 3493/* This takes the mm semaphore itself */ 3494extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3495extern int vm_munmap(unsigned long, size_t); 3496extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3497 unsigned long, unsigned long, 3498 unsigned long, unsigned long); 3499 3500struct vm_unmapped_area_info { 3501#define VM_UNMAPPED_AREA_TOPDOWN 1 3502 unsigned long flags; 3503 unsigned long length; 3504 unsigned long low_limit; 3505 unsigned long high_limit; 3506 unsigned long align_mask; 3507 unsigned long align_offset; 3508 unsigned long start_gap; 3509}; 3510 3511extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3512 3513/* truncate.c */ 3514extern void truncate_inode_pages(struct address_space *, loff_t); 3515extern void truncate_inode_pages_range(struct address_space *, 3516 loff_t lstart, loff_t lend); 3517extern void truncate_inode_pages_final(struct address_space *); 3518 3519/* generic vm_area_ops exported for stackable file systems */ 3520extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3521extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3522 pgoff_t start_pgoff, pgoff_t end_pgoff); 3523extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3524 3525extern unsigned long stack_guard_gap; 3526/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3527int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3528struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3529 3530/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3531extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3532extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3533 struct vm_area_struct **pprev); 3534 3535/* 3536 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3537 * NULL if none. Assume start_addr < end_addr. 3538 */ 3539struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3540 unsigned long start_addr, unsigned long end_addr); 3541 3542/** 3543 * vma_lookup() - Find a VMA at a specific address 3544 * @mm: The process address space. 3545 * @addr: The user address. 3546 * 3547 * Return: The vm_area_struct at the given address, %NULL otherwise. 3548 */ 3549static inline 3550struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3551{ 3552 return mtree_load(&mm->mm_mt, addr); 3553} 3554 3555static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3556{ 3557 if (vma->vm_flags & VM_GROWSDOWN) 3558 return stack_guard_gap; 3559 3560 /* See reasoning around the VM_SHADOW_STACK definition */ 3561 if (vma->vm_flags & VM_SHADOW_STACK) 3562 return PAGE_SIZE; 3563 3564 return 0; 3565} 3566 3567static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3568{ 3569 unsigned long gap = stack_guard_start_gap(vma); 3570 unsigned long vm_start = vma->vm_start; 3571 3572 vm_start -= gap; 3573 if (vm_start > vma->vm_start) 3574 vm_start = 0; 3575 return vm_start; 3576} 3577 3578static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3579{ 3580 unsigned long vm_end = vma->vm_end; 3581 3582 if (vma->vm_flags & VM_GROWSUP) { 3583 vm_end += stack_guard_gap; 3584 if (vm_end < vma->vm_end) 3585 vm_end = -PAGE_SIZE; 3586 } 3587 return vm_end; 3588} 3589 3590static inline unsigned long vma_pages(struct vm_area_struct *vma) 3591{ 3592 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3593} 3594 3595/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3596static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3597 unsigned long vm_start, unsigned long vm_end) 3598{ 3599 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3600 3601 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3602 vma = NULL; 3603 3604 return vma; 3605} 3606 3607static inline bool range_in_vma(struct vm_area_struct *vma, 3608 unsigned long start, unsigned long end) 3609{ 3610 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3611} 3612 3613#ifdef CONFIG_MMU 3614pgprot_t vm_get_page_prot(unsigned long vm_flags); 3615void vma_set_page_prot(struct vm_area_struct *vma); 3616#else 3617static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3618{ 3619 return __pgprot(0); 3620} 3621static inline void vma_set_page_prot(struct vm_area_struct *vma) 3622{ 3623 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3624} 3625#endif 3626 3627void vma_set_file(struct vm_area_struct *vma, struct file *file); 3628 3629#ifdef CONFIG_NUMA_BALANCING 3630unsigned long change_prot_numa(struct vm_area_struct *vma, 3631 unsigned long start, unsigned long end); 3632#endif 3633 3634struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3635 unsigned long addr); 3636int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3637 unsigned long pfn, unsigned long size, pgprot_t); 3638int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3639 unsigned long pfn, unsigned long size, pgprot_t prot); 3640int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3641int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3642 struct page **pages, unsigned long *num); 3643int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3644 unsigned long num); 3645int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3646 unsigned long num); 3647vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 3648 bool write); 3649vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3650 unsigned long pfn); 3651vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3652 unsigned long pfn, pgprot_t pgprot); 3653vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3654 pfn_t pfn); 3655vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3656 unsigned long addr, pfn_t pfn); 3657int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3658 3659static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3660 unsigned long addr, struct page *page) 3661{ 3662 int err = vm_insert_page(vma, addr, page); 3663 3664 if (err == -ENOMEM) 3665 return VM_FAULT_OOM; 3666 if (err < 0 && err != -EBUSY) 3667 return VM_FAULT_SIGBUS; 3668 3669 return VM_FAULT_NOPAGE; 3670} 3671 3672#ifndef io_remap_pfn_range 3673static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3674 unsigned long addr, unsigned long pfn, 3675 unsigned long size, pgprot_t prot) 3676{ 3677 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3678} 3679#endif 3680 3681static inline vm_fault_t vmf_error(int err) 3682{ 3683 if (err == -ENOMEM) 3684 return VM_FAULT_OOM; 3685 else if (err == -EHWPOISON) 3686 return VM_FAULT_HWPOISON; 3687 return VM_FAULT_SIGBUS; 3688} 3689 3690/* 3691 * Convert errno to return value for ->page_mkwrite() calls. 3692 * 3693 * This should eventually be merged with vmf_error() above, but will need a 3694 * careful audit of all vmf_error() callers. 3695 */ 3696static inline vm_fault_t vmf_fs_error(int err) 3697{ 3698 if (err == 0) 3699 return VM_FAULT_LOCKED; 3700 if (err == -EFAULT || err == -EAGAIN) 3701 return VM_FAULT_NOPAGE; 3702 if (err == -ENOMEM) 3703 return VM_FAULT_OOM; 3704 /* -ENOSPC, -EDQUOT, -EIO ... */ 3705 return VM_FAULT_SIGBUS; 3706} 3707 3708static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3709{ 3710 if (vm_fault & VM_FAULT_OOM) 3711 return -ENOMEM; 3712 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3713 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3714 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3715 return -EFAULT; 3716 return 0; 3717} 3718 3719/* 3720 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3721 * a (NUMA hinting) fault is required. 3722 */ 3723static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3724 unsigned int flags) 3725{ 3726 /* 3727 * If callers don't want to honor NUMA hinting faults, no need to 3728 * determine if we would actually have to trigger a NUMA hinting fault. 3729 */ 3730 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3731 return true; 3732 3733 /* 3734 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3735 * 3736 * Requiring a fault here even for inaccessible VMAs would mean that 3737 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3738 * refuses to process NUMA hinting faults in inaccessible VMAs. 3739 */ 3740 return !vma_is_accessible(vma); 3741} 3742 3743typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3744extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3745 unsigned long size, pte_fn_t fn, void *data); 3746extern int apply_to_existing_page_range(struct mm_struct *mm, 3747 unsigned long address, unsigned long size, 3748 pte_fn_t fn, void *data); 3749 3750#ifdef CONFIG_PAGE_POISONING 3751extern void __kernel_poison_pages(struct page *page, int numpages); 3752extern void __kernel_unpoison_pages(struct page *page, int numpages); 3753extern bool _page_poisoning_enabled_early; 3754DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3755static inline bool page_poisoning_enabled(void) 3756{ 3757 return _page_poisoning_enabled_early; 3758} 3759/* 3760 * For use in fast paths after init_mem_debugging() has run, or when a 3761 * false negative result is not harmful when called too early. 3762 */ 3763static inline bool page_poisoning_enabled_static(void) 3764{ 3765 return static_branch_unlikely(&_page_poisoning_enabled); 3766} 3767static inline void kernel_poison_pages(struct page *page, int numpages) 3768{ 3769 if (page_poisoning_enabled_static()) 3770 __kernel_poison_pages(page, numpages); 3771} 3772static inline void kernel_unpoison_pages(struct page *page, int numpages) 3773{ 3774 if (page_poisoning_enabled_static()) 3775 __kernel_unpoison_pages(page, numpages); 3776} 3777#else 3778static inline bool page_poisoning_enabled(void) { return false; } 3779static inline bool page_poisoning_enabled_static(void) { return false; } 3780static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3781static inline void kernel_poison_pages(struct page *page, int numpages) { } 3782static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3783#endif 3784 3785DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3786static inline bool want_init_on_alloc(gfp_t flags) 3787{ 3788 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3789 &init_on_alloc)) 3790 return true; 3791 return flags & __GFP_ZERO; 3792} 3793 3794DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3795static inline bool want_init_on_free(void) 3796{ 3797 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3798 &init_on_free); 3799} 3800 3801extern bool _debug_pagealloc_enabled_early; 3802DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3803 3804static inline bool debug_pagealloc_enabled(void) 3805{ 3806 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3807 _debug_pagealloc_enabled_early; 3808} 3809 3810/* 3811 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3812 * or when a false negative result is not harmful when called too early. 3813 */ 3814static inline bool debug_pagealloc_enabled_static(void) 3815{ 3816 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3817 return false; 3818 3819 return static_branch_unlikely(&_debug_pagealloc_enabled); 3820} 3821 3822/* 3823 * To support DEBUG_PAGEALLOC architecture must ensure that 3824 * __kernel_map_pages() never fails 3825 */ 3826extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3827#ifdef CONFIG_DEBUG_PAGEALLOC 3828static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3829{ 3830 if (debug_pagealloc_enabled_static()) 3831 __kernel_map_pages(page, numpages, 1); 3832} 3833 3834static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3835{ 3836 if (debug_pagealloc_enabled_static()) 3837 __kernel_map_pages(page, numpages, 0); 3838} 3839 3840extern unsigned int _debug_guardpage_minorder; 3841DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3842 3843static inline unsigned int debug_guardpage_minorder(void) 3844{ 3845 return _debug_guardpage_minorder; 3846} 3847 3848static inline bool debug_guardpage_enabled(void) 3849{ 3850 return static_branch_unlikely(&_debug_guardpage_enabled); 3851} 3852 3853static inline bool page_is_guard(struct page *page) 3854{ 3855 if (!debug_guardpage_enabled()) 3856 return false; 3857 3858 return PageGuard(page); 3859} 3860 3861bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3862static inline bool set_page_guard(struct zone *zone, struct page *page, 3863 unsigned int order) 3864{ 3865 if (!debug_guardpage_enabled()) 3866 return false; 3867 return __set_page_guard(zone, page, order); 3868} 3869 3870void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3871static inline void clear_page_guard(struct zone *zone, struct page *page, 3872 unsigned int order) 3873{ 3874 if (!debug_guardpage_enabled()) 3875 return; 3876 __clear_page_guard(zone, page, order); 3877} 3878 3879#else /* CONFIG_DEBUG_PAGEALLOC */ 3880static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3881static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3882static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3883static inline bool debug_guardpage_enabled(void) { return false; } 3884static inline bool page_is_guard(struct page *page) { return false; } 3885static inline bool set_page_guard(struct zone *zone, struct page *page, 3886 unsigned int order) { return false; } 3887static inline void clear_page_guard(struct zone *zone, struct page *page, 3888 unsigned int order) {} 3889#endif /* CONFIG_DEBUG_PAGEALLOC */ 3890 3891#ifdef __HAVE_ARCH_GATE_AREA 3892extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3893extern int in_gate_area_no_mm(unsigned long addr); 3894extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3895#else 3896static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3897{ 3898 return NULL; 3899} 3900static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3901static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3902{ 3903 return 0; 3904} 3905#endif /* __HAVE_ARCH_GATE_AREA */ 3906 3907extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3908 3909void drop_slab(void); 3910 3911#ifndef CONFIG_MMU 3912#define randomize_va_space 0 3913#else 3914extern int randomize_va_space; 3915#endif 3916 3917const char * arch_vma_name(struct vm_area_struct *vma); 3918#ifdef CONFIG_MMU 3919void print_vma_addr(char *prefix, unsigned long rip); 3920#else 3921static inline void print_vma_addr(char *prefix, unsigned long rip) 3922{ 3923} 3924#endif 3925 3926void *sparse_buffer_alloc(unsigned long size); 3927unsigned long section_map_size(void); 3928struct page * __populate_section_memmap(unsigned long pfn, 3929 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3930 struct dev_pagemap *pgmap); 3931pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3932p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3933pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3934pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3935pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3936 struct vmem_altmap *altmap, unsigned long ptpfn, 3937 unsigned long flags); 3938void *vmemmap_alloc_block(unsigned long size, int node); 3939struct vmem_altmap; 3940void *vmemmap_alloc_block_buf(unsigned long size, int node, 3941 struct vmem_altmap *altmap); 3942void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3943void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3944 unsigned long addr, unsigned long next); 3945int vmemmap_check_pmd(pmd_t *pmd, int node, 3946 unsigned long addr, unsigned long next); 3947int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3948 int node, struct vmem_altmap *altmap); 3949int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3950 int node, struct vmem_altmap *altmap); 3951int vmemmap_populate(unsigned long start, unsigned long end, int node, 3952 struct vmem_altmap *altmap); 3953int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, 3954 unsigned long headsize); 3955int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, 3956 unsigned long headsize); 3957void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, 3958 unsigned long headsize); 3959void vmemmap_populate_print_last(void); 3960#ifdef CONFIG_MEMORY_HOTPLUG 3961void vmemmap_free(unsigned long start, unsigned long end, 3962 struct vmem_altmap *altmap); 3963#endif 3964 3965#ifdef CONFIG_SPARSEMEM_VMEMMAP 3966static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3967{ 3968 /* number of pfns from base where pfn_to_page() is valid */ 3969 if (altmap) 3970 return altmap->reserve + altmap->free; 3971 return 0; 3972} 3973 3974static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3975 unsigned long nr_pfns) 3976{ 3977 altmap->alloc -= nr_pfns; 3978} 3979#else 3980static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3981{ 3982 return 0; 3983} 3984 3985static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3986 unsigned long nr_pfns) 3987{ 3988} 3989#endif 3990 3991#define VMEMMAP_RESERVE_NR 2 3992#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3993static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3994 struct dev_pagemap *pgmap) 3995{ 3996 unsigned long nr_pages; 3997 unsigned long nr_vmemmap_pages; 3998 3999 if (!pgmap || !is_power_of_2(sizeof(struct page))) 4000 return false; 4001 4002 nr_pages = pgmap_vmemmap_nr(pgmap); 4003 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 4004 /* 4005 * For vmemmap optimization with DAX we need minimum 2 vmemmap 4006 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 4007 */ 4008 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 4009} 4010/* 4011 * If we don't have an architecture override, use the generic rule 4012 */ 4013#ifndef vmemmap_can_optimize 4014#define vmemmap_can_optimize __vmemmap_can_optimize 4015#endif 4016 4017#else 4018static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 4019 struct dev_pagemap *pgmap) 4020{ 4021 return false; 4022} 4023#endif 4024 4025enum mf_flags { 4026 MF_COUNT_INCREASED = 1 << 0, 4027 MF_ACTION_REQUIRED = 1 << 1, 4028 MF_MUST_KILL = 1 << 2, 4029 MF_SOFT_OFFLINE = 1 << 3, 4030 MF_UNPOISON = 1 << 4, 4031 MF_SW_SIMULATED = 1 << 5, 4032 MF_NO_RETRY = 1 << 6, 4033 MF_MEM_PRE_REMOVE = 1 << 7, 4034}; 4035int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 4036 unsigned long count, int mf_flags); 4037extern int memory_failure(unsigned long pfn, int flags); 4038extern void memory_failure_queue_kick(int cpu); 4039extern int unpoison_memory(unsigned long pfn); 4040extern atomic_long_t num_poisoned_pages __read_mostly; 4041extern int soft_offline_page(unsigned long pfn, int flags); 4042#ifdef CONFIG_MEMORY_FAILURE 4043/* 4044 * Sysfs entries for memory failure handling statistics. 4045 */ 4046extern const struct attribute_group memory_failure_attr_group; 4047extern void memory_failure_queue(unsigned long pfn, int flags); 4048extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4049 bool *migratable_cleared); 4050void num_poisoned_pages_inc(unsigned long pfn); 4051void num_poisoned_pages_sub(unsigned long pfn, long i); 4052#else 4053static inline void memory_failure_queue(unsigned long pfn, int flags) 4054{ 4055} 4056 4057static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4058 bool *migratable_cleared) 4059{ 4060 return 0; 4061} 4062 4063static inline void num_poisoned_pages_inc(unsigned long pfn) 4064{ 4065} 4066 4067static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4068{ 4069} 4070#endif 4071 4072#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4073extern void memblk_nr_poison_inc(unsigned long pfn); 4074extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4075#else 4076static inline void memblk_nr_poison_inc(unsigned long pfn) 4077{ 4078} 4079 4080static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4081{ 4082} 4083#endif 4084 4085#ifndef arch_memory_failure 4086static inline int arch_memory_failure(unsigned long pfn, int flags) 4087{ 4088 return -ENXIO; 4089} 4090#endif 4091 4092#ifndef arch_is_platform_page 4093static inline bool arch_is_platform_page(u64 paddr) 4094{ 4095 return false; 4096} 4097#endif 4098 4099/* 4100 * Error handlers for various types of pages. 4101 */ 4102enum mf_result { 4103 MF_IGNORED, /* Error: cannot be handled */ 4104 MF_FAILED, /* Error: handling failed */ 4105 MF_DELAYED, /* Will be handled later */ 4106 MF_RECOVERED, /* Successfully recovered */ 4107}; 4108 4109enum mf_action_page_type { 4110 MF_MSG_KERNEL, 4111 MF_MSG_KERNEL_HIGH_ORDER, 4112 MF_MSG_DIFFERENT_COMPOUND, 4113 MF_MSG_HUGE, 4114 MF_MSG_FREE_HUGE, 4115 MF_MSG_GET_HWPOISON, 4116 MF_MSG_UNMAP_FAILED, 4117 MF_MSG_DIRTY_SWAPCACHE, 4118 MF_MSG_CLEAN_SWAPCACHE, 4119 MF_MSG_DIRTY_MLOCKED_LRU, 4120 MF_MSG_CLEAN_MLOCKED_LRU, 4121 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4122 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4123 MF_MSG_DIRTY_LRU, 4124 MF_MSG_CLEAN_LRU, 4125 MF_MSG_TRUNCATED_LRU, 4126 MF_MSG_BUDDY, 4127 MF_MSG_DAX, 4128 MF_MSG_UNSPLIT_THP, 4129 MF_MSG_ALREADY_POISONED, 4130 MF_MSG_UNKNOWN, 4131}; 4132 4133#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4134void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4135int copy_user_large_folio(struct folio *dst, struct folio *src, 4136 unsigned long addr_hint, 4137 struct vm_area_struct *vma); 4138long copy_folio_from_user(struct folio *dst_folio, 4139 const void __user *usr_src, 4140 bool allow_pagefault); 4141 4142/** 4143 * vma_is_special_huge - Are transhuge page-table entries considered special? 4144 * @vma: Pointer to the struct vm_area_struct to consider 4145 * 4146 * Whether transhuge page-table entries are considered "special" following 4147 * the definition in vm_normal_page(). 4148 * 4149 * Return: true if transhuge page-table entries should be considered special, 4150 * false otherwise. 4151 */ 4152static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4153{ 4154 return vma_is_dax(vma) || (vma->vm_file && 4155 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4156} 4157 4158#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4159 4160#if MAX_NUMNODES > 1 4161void __init setup_nr_node_ids(void); 4162#else 4163static inline void setup_nr_node_ids(void) {} 4164#endif 4165 4166extern int memcmp_pages(struct page *page1, struct page *page2); 4167 4168static inline int pages_identical(struct page *page1, struct page *page2) 4169{ 4170 return !memcmp_pages(page1, page2); 4171} 4172 4173#ifdef CONFIG_MAPPING_DIRTY_HELPERS 4174unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4175 pgoff_t first_index, pgoff_t nr, 4176 pgoff_t bitmap_pgoff, 4177 unsigned long *bitmap, 4178 pgoff_t *start, 4179 pgoff_t *end); 4180 4181unsigned long wp_shared_mapping_range(struct address_space *mapping, 4182 pgoff_t first_index, pgoff_t nr); 4183#endif 4184 4185#ifdef CONFIG_ANON_VMA_NAME 4186int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4187 unsigned long len_in, 4188 struct anon_vma_name *anon_name); 4189#else 4190static inline int 4191madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4192 unsigned long len_in, struct anon_vma_name *anon_name) { 4193 return 0; 4194} 4195#endif 4196 4197#ifdef CONFIG_UNACCEPTED_MEMORY 4198 4199bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4200void accept_memory(phys_addr_t start, unsigned long size); 4201 4202#else 4203 4204static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4205 unsigned long size) 4206{ 4207 return false; 4208} 4209 4210static inline void accept_memory(phys_addr_t start, unsigned long size) 4211{ 4212} 4213 4214#endif 4215 4216static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4217{ 4218 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4219} 4220 4221void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4222void vma_pgtable_walk_end(struct vm_area_struct *vma); 4223 4224int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4225int reserve_mem_release_by_name(const char *name); 4226 4227#ifdef CONFIG_64BIT 4228int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4229#else 4230static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4231{ 4232 /* noop on 32 bit */ 4233 return 0; 4234} 4235#endif 4236 4237/* 4238 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4239 * be zeroed or not. 4240 */ 4241static inline bool user_alloc_needs_zeroing(void) 4242{ 4243 /* 4244 * for user folios, arch with cache aliasing requires cache flush and 4245 * arc changes folio->flags to make icache coherent with dcache, so 4246 * always return false to make caller use 4247 * clear_user_page()/clear_user_highpage(). 4248 */ 4249 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4250 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4251 &init_on_alloc); 4252} 4253 4254int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4255int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4256int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4257 4258 4259/* 4260 * mseal of userspace process's system mappings. 4261 */ 4262#ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS 4263#define VM_SEALED_SYSMAP VM_SEALED 4264#else 4265#define VM_SEALED_SYSMAP VM_NONE 4266#endif 4267 4268#endif /* _LINUX_MM_H */