at v6.15 6.5 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MATH_H 3#define _LINUX_MATH_H 4 5#include <linux/types.h> 6#include <asm/div64.h> 7#include <uapi/linux/kernel.h> 8 9/* 10 * This looks more complex than it should be. But we need to 11 * get the type for the ~ right in round_down (it needs to be 12 * as wide as the result!), and we want to evaluate the macro 13 * arguments just once each. 14 */ 15#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 16 17/** 18 * round_up - round up to next specified power of 2 19 * @x: the value to round 20 * @y: multiple to round up to (must be a power of 2) 21 * 22 * Rounds @x up to next multiple of @y (which must be a power of 2). 23 * To perform arbitrary rounding up, use roundup() below. 24 */ 25#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 26 27/** 28 * round_down - round down to next specified power of 2 29 * @x: the value to round 30 * @y: multiple to round down to (must be a power of 2) 31 * 32 * Rounds @x down to next multiple of @y (which must be a power of 2). 33 * To perform arbitrary rounding down, use rounddown() below. 34 */ 35#define round_down(x, y) ((x) & ~__round_mask(x, y)) 36 37/** 38 * DIV_ROUND_UP_POW2 - divide and round up 39 * @n: numerator 40 * @d: denominator (must be a power of 2) 41 * 42 * Divides @n by @d and rounds up to next multiple of @d (which must be a power 43 * of 2). Avoids integer overflows that may occur with __KERNEL_DIV_ROUND_UP(). 44 * Performance is roughly equivalent to __KERNEL_DIV_ROUND_UP(). 45 */ 46#define DIV_ROUND_UP_POW2(n, d) \ 47 ((n) / (d) + !!((n) & ((d) - 1))) 48 49#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 50 51#define DIV_ROUND_DOWN_ULL(ll, d) \ 52 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 53 54#define DIV_ROUND_UP_ULL(ll, d) \ 55 DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d)) 56 57#if BITS_PER_LONG == 32 58# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 59#else 60# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 61#endif 62 63/** 64 * roundup - round up to the next specified multiple 65 * @x: the value to up 66 * @y: multiple to round up to 67 * 68 * Rounds @x up to next multiple of @y. If @y will always be a power 69 * of 2, consider using the faster round_up(). 70 */ 71#define roundup(x, y) ( \ 72{ \ 73 typeof(y) __y = y; \ 74 (((x) + (__y - 1)) / __y) * __y; \ 75} \ 76) 77/** 78 * rounddown - round down to next specified multiple 79 * @x: the value to round 80 * @y: multiple to round down to 81 * 82 * Rounds @x down to next multiple of @y. If @y will always be a power 83 * of 2, consider using the faster round_down(). 84 */ 85#define rounddown(x, y) ( \ 86{ \ 87 typeof(x) __x = (x); \ 88 __x - (__x % (y)); \ 89} \ 90) 91 92/* 93 * Divide positive or negative dividend by positive or negative divisor 94 * and round to closest integer. Result is undefined for negative 95 * divisors if the dividend variable type is unsigned and for negative 96 * dividends if the divisor variable type is unsigned. 97 */ 98#define DIV_ROUND_CLOSEST(x, divisor)( \ 99{ \ 100 typeof(x) __x = x; \ 101 typeof(divisor) __d = divisor; \ 102 (((typeof(x))-1) > 0 || \ 103 ((typeof(divisor))-1) > 0 || \ 104 (((__x) > 0) == ((__d) > 0))) ? \ 105 (((__x) + ((__d) / 2)) / (__d)) : \ 106 (((__x) - ((__d) / 2)) / (__d)); \ 107} \ 108) 109/* 110 * Same as above but for u64 dividends. divisor must be a 32-bit 111 * number. 112 */ 113#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 114{ \ 115 typeof(divisor) __d = divisor; \ 116 unsigned long long _tmp = (x) + (__d) / 2; \ 117 do_div(_tmp, __d); \ 118 _tmp; \ 119} \ 120) 121 122#define __STRUCT_FRACT(type) \ 123struct type##_fract { \ 124 __##type numerator; \ 125 __##type denominator; \ 126}; 127__STRUCT_FRACT(s8) 128__STRUCT_FRACT(u8) 129__STRUCT_FRACT(s16) 130__STRUCT_FRACT(u16) 131__STRUCT_FRACT(s32) 132__STRUCT_FRACT(u32) 133#undef __STRUCT_FRACT 134 135/* Calculate "x * n / d" without unnecessary overflow or loss of precision. */ 136#define mult_frac(x, n, d) \ 137({ \ 138 typeof(x) x_ = (x); \ 139 typeof(n) n_ = (n); \ 140 typeof(d) d_ = (d); \ 141 \ 142 typeof(x_) q = x_ / d_; \ 143 typeof(x_) r = x_ % d_; \ 144 q * n_ + r * n_ / d_; \ 145}) 146 147#define sector_div(a, b) do_div(a, b) 148 149/** 150 * abs - return absolute value of an argument 151 * @x: the value. If it is unsigned type, it is converted to signed type first. 152 * char is treated as if it was signed (regardless of whether it really is) 153 * but the macro's return type is preserved as char. 154 * 155 * Return: an absolute value of x. 156 */ 157#define abs(x) __abs_choose_expr(x, long long, \ 158 __abs_choose_expr(x, long, \ 159 __abs_choose_expr(x, int, \ 160 __abs_choose_expr(x, short, \ 161 __abs_choose_expr(x, char, \ 162 __builtin_choose_expr( \ 163 __builtin_types_compatible_p(typeof(x), char), \ 164 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 165 ((void)0))))))) 166 167#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 168 __builtin_types_compatible_p(typeof(x), signed type) || \ 169 __builtin_types_compatible_p(typeof(x), unsigned type), \ 170 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 171 172/** 173 * abs_diff - return absolute value of the difference between the arguments 174 * @a: the first argument 175 * @b: the second argument 176 * 177 * @a and @b have to be of the same type. With this restriction we compare 178 * signed to signed and unsigned to unsigned. The result is the subtraction 179 * the smaller of the two from the bigger, hence result is always a positive 180 * value. 181 * 182 * Return: an absolute value of the difference between the @a and @b. 183 */ 184#define abs_diff(a, b) ({ \ 185 typeof(a) __a = (a); \ 186 typeof(b) __b = (b); \ 187 (void)(&__a == &__b); \ 188 __a > __b ? (__a - __b) : (__b - __a); \ 189}) 190 191/** 192 * reciprocal_scale - "scale" a value into range [0, ep_ro) 193 * @val: value 194 * @ep_ro: right open interval endpoint 195 * 196 * Perform a "reciprocal multiplication" in order to "scale" a value into 197 * range [0, @ep_ro), where the upper interval endpoint is right-open. 198 * This is useful, e.g. for accessing a index of an array containing 199 * @ep_ro elements, for example. Think of it as sort of modulus, only that 200 * the result isn't that of modulo. ;) Note that if initial input is a 201 * small value, then result will return 0. 202 * 203 * Return: a result based on @val in interval [0, @ep_ro). 204 */ 205static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 206{ 207 return (u32)(((u64) val * ep_ro) >> 32); 208} 209 210u64 int_pow(u64 base, unsigned int exp); 211unsigned long int_sqrt(unsigned long); 212 213#if BITS_PER_LONG < 64 214u32 int_sqrt64(u64 x); 215#else 216static inline u32 int_sqrt64(u64 x) 217{ 218 return (u32)int_sqrt(x); 219} 220#endif 221 222#endif /* _LINUX_MATH_H */