at v6.15 409 lines 13 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_ENERGY_MODEL_H 3#define _LINUX_ENERGY_MODEL_H 4#include <linux/cpumask.h> 5#include <linux/device.h> 6#include <linux/jump_label.h> 7#include <linux/kobject.h> 8#include <linux/kref.h> 9#include <linux/rcupdate.h> 10#include <linux/sched/cpufreq.h> 11#include <linux/sched/topology.h> 12#include <linux/types.h> 13 14/** 15 * struct em_perf_state - Performance state of a performance domain 16 * @performance: CPU performance (capacity) at a given frequency 17 * @frequency: The frequency in KHz, for consistency with CPUFreq 18 * @power: The power consumed at this level (by 1 CPU or by a registered 19 * device). It can be a total power: static and dynamic. 20 * @cost: The cost coefficient associated with this level, used during 21 * energy calculation. Equal to: power * max_frequency / frequency 22 * @flags: see "em_perf_state flags" description below. 23 */ 24struct em_perf_state { 25 unsigned long performance; 26 unsigned long frequency; 27 unsigned long power; 28 unsigned long cost; 29 unsigned long flags; 30}; 31 32/* 33 * em_perf_state flags: 34 * 35 * EM_PERF_STATE_INEFFICIENT: The performance state is inefficient. There is 36 * in this em_perf_domain, another performance state with a higher frequency 37 * but a lower or equal power cost. Such inefficient states are ignored when 38 * using em_pd_get_efficient_*() functions. 39 */ 40#define EM_PERF_STATE_INEFFICIENT BIT(0) 41 42/** 43 * struct em_perf_table - Performance states table 44 * @rcu: RCU used for safe access and destruction 45 * @kref: Reference counter to track the users 46 * @state: List of performance states, in ascending order 47 */ 48struct em_perf_table { 49 struct rcu_head rcu; 50 struct kref kref; 51 struct em_perf_state state[]; 52}; 53 54/** 55 * struct em_perf_domain - Performance domain 56 * @em_table: Pointer to the runtime modifiable em_perf_table 57 * @nr_perf_states: Number of performance states 58 * @min_perf_state: Minimum allowed Performance State index 59 * @max_perf_state: Maximum allowed Performance State index 60 * @flags: See "em_perf_domain flags" 61 * @cpus: Cpumask covering the CPUs of the domain. It's here 62 * for performance reasons to avoid potential cache 63 * misses during energy calculations in the scheduler 64 * and simplifies allocating/freeing that memory region. 65 * 66 * In case of CPU device, a "performance domain" represents a group of CPUs 67 * whose performance is scaled together. All CPUs of a performance domain 68 * must have the same micro-architecture. Performance domains often have 69 * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus 70 * field is unused. 71 */ 72struct em_perf_domain { 73 struct em_perf_table __rcu *em_table; 74 int nr_perf_states; 75 int min_perf_state; 76 int max_perf_state; 77 unsigned long flags; 78 unsigned long cpus[]; 79}; 80 81/* 82 * em_perf_domain flags: 83 * 84 * EM_PERF_DOMAIN_MICROWATTS: The power values are in micro-Watts or some 85 * other scale. 86 * 87 * EM_PERF_DOMAIN_SKIP_INEFFICIENCIES: Skip inefficient states when estimating 88 * energy consumption. 89 * 90 * EM_PERF_DOMAIN_ARTIFICIAL: The power values are artificial and might be 91 * created by platform missing real power information 92 */ 93#define EM_PERF_DOMAIN_MICROWATTS BIT(0) 94#define EM_PERF_DOMAIN_SKIP_INEFFICIENCIES BIT(1) 95#define EM_PERF_DOMAIN_ARTIFICIAL BIT(2) 96 97#define em_span_cpus(em) (to_cpumask((em)->cpus)) 98#define em_is_artificial(em) ((em)->flags & EM_PERF_DOMAIN_ARTIFICIAL) 99 100#ifdef CONFIG_ENERGY_MODEL 101/* 102 * The max power value in micro-Watts. The limit of 64 Watts is set as 103 * a safety net to not overflow multiplications on 32bit platforms. The 104 * 32bit value limit for total Perf Domain power implies a limit of 105 * maximum CPUs in such domain to 64. 106 */ 107#define EM_MAX_POWER (64000000) /* 64 Watts */ 108 109/* 110 * To avoid possible energy estimation overflow on 32bit machines add 111 * limits to number of CPUs in the Perf. Domain. 112 * We are safe on 64bit machine, thus some big number. 113 */ 114#ifdef CONFIG_64BIT 115#define EM_MAX_NUM_CPUS 4096 116#else 117#define EM_MAX_NUM_CPUS 16 118#endif 119 120struct em_data_callback { 121 /** 122 * active_power() - Provide power at the next performance state of 123 * a device 124 * @dev : Device for which we do this operation (can be a CPU) 125 * @power : Active power at the performance state 126 * (modified) 127 * @freq : Frequency at the performance state in kHz 128 * (modified) 129 * 130 * active_power() must find the lowest performance state of 'dev' above 131 * 'freq' and update 'power' and 'freq' to the matching active power 132 * and frequency. 133 * 134 * In case of CPUs, the power is the one of a single CPU in the domain, 135 * expressed in micro-Watts or an abstract scale. It is expected to 136 * fit in the [0, EM_MAX_POWER] range. 137 * 138 * Return 0 on success. 139 */ 140 int (*active_power)(struct device *dev, unsigned long *power, 141 unsigned long *freq); 142 143 /** 144 * get_cost() - Provide the cost at the given performance state of 145 * a device 146 * @dev : Device for which we do this operation (can be a CPU) 147 * @freq : Frequency at the performance state in kHz 148 * @cost : The cost value for the performance state 149 * (modified) 150 * 151 * In case of CPUs, the cost is the one of a single CPU in the domain. 152 * It is expected to fit in the [0, EM_MAX_POWER] range due to internal 153 * usage in EAS calculation. 154 * 155 * Return 0 on success, or appropriate error value in case of failure. 156 */ 157 int (*get_cost)(struct device *dev, unsigned long freq, 158 unsigned long *cost); 159}; 160#define EM_SET_ACTIVE_POWER_CB(em_cb, cb) ((em_cb).active_power = cb) 161#define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) \ 162 { .active_power = _active_power_cb, \ 163 .get_cost = _cost_cb } 164#define EM_DATA_CB(_active_power_cb) \ 165 EM_ADV_DATA_CB(_active_power_cb, NULL) 166 167struct em_perf_domain *em_cpu_get(int cpu); 168struct em_perf_domain *em_pd_get(struct device *dev); 169int em_dev_update_perf_domain(struct device *dev, 170 struct em_perf_table *new_table); 171int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states, 172 const struct em_data_callback *cb, 173 const cpumask_t *cpus, bool microwatts); 174void em_dev_unregister_perf_domain(struct device *dev); 175struct em_perf_table *em_table_alloc(struct em_perf_domain *pd); 176void em_table_free(struct em_perf_table *table); 177int em_dev_compute_costs(struct device *dev, struct em_perf_state *table, 178 int nr_states); 179int em_dev_update_chip_binning(struct device *dev); 180int em_update_performance_limits(struct em_perf_domain *pd, 181 unsigned long freq_min_khz, unsigned long freq_max_khz); 182void em_rebuild_sched_domains(void); 183 184/** 185 * em_pd_get_efficient_state() - Get an efficient performance state from the EM 186 * @table: List of performance states, in ascending order 187 * @pd: performance domain for which this must be done 188 * @max_util: Max utilization to map with the EM 189 * 190 * It is called from the scheduler code quite frequently and as a consequence 191 * doesn't implement any check. 192 * 193 * Return: An efficient performance state id, high enough to meet @max_util 194 * requirement. 195 */ 196static inline int 197em_pd_get_efficient_state(struct em_perf_state *table, 198 struct em_perf_domain *pd, unsigned long max_util) 199{ 200 unsigned long pd_flags = pd->flags; 201 int min_ps = pd->min_perf_state; 202 int max_ps = pd->max_perf_state; 203 struct em_perf_state *ps; 204 int i; 205 206 for (i = min_ps; i <= max_ps; i++) { 207 ps = &table[i]; 208 if (ps->performance >= max_util) { 209 if (pd_flags & EM_PERF_DOMAIN_SKIP_INEFFICIENCIES && 210 ps->flags & EM_PERF_STATE_INEFFICIENT) 211 continue; 212 return i; 213 } 214 } 215 216 return max_ps; 217} 218 219/** 220 * em_cpu_energy() - Estimates the energy consumed by the CPUs of a 221 * performance domain 222 * @pd : performance domain for which energy has to be estimated 223 * @max_util : highest utilization among CPUs of the domain 224 * @sum_util : sum of the utilization of all CPUs in the domain 225 * @allowed_cpu_cap : maximum allowed CPU capacity for the @pd, which 226 * might reflect reduced frequency (due to thermal) 227 * 228 * This function must be used only for CPU devices. There is no validation, 229 * i.e. if the EM is a CPU type and has cpumask allocated. It is called from 230 * the scheduler code quite frequently and that is why there is not checks. 231 * 232 * Return: the sum of the energy consumed by the CPUs of the domain assuming 233 * a capacity state satisfying the max utilization of the domain. 234 */ 235static inline unsigned long em_cpu_energy(struct em_perf_domain *pd, 236 unsigned long max_util, unsigned long sum_util, 237 unsigned long allowed_cpu_cap) 238{ 239 struct em_perf_table *em_table; 240 struct em_perf_state *ps; 241 int i; 242 243 WARN_ONCE(!rcu_read_lock_held(), "EM: rcu read lock needed\n"); 244 245 if (!sum_util) 246 return 0; 247 248 /* 249 * In order to predict the performance state, map the utilization of 250 * the most utilized CPU of the performance domain to a requested 251 * performance, like schedutil. Take also into account that the real 252 * performance might be set lower (due to thermal capping). Thus, clamp 253 * max utilization to the allowed CPU capacity before calculating 254 * effective performance. 255 */ 256 max_util = min(max_util, allowed_cpu_cap); 257 258 /* 259 * Find the lowest performance state of the Energy Model above the 260 * requested performance. 261 */ 262 em_table = rcu_dereference(pd->em_table); 263 i = em_pd_get_efficient_state(em_table->state, pd, max_util); 264 ps = &em_table->state[i]; 265 266 /* 267 * The performance (capacity) of a CPU in the domain at the performance 268 * state (ps) can be computed as: 269 * 270 * ps->freq * scale_cpu 271 * ps->performance = -------------------- (1) 272 * cpu_max_freq 273 * 274 * So, ignoring the costs of idle states (which are not available in 275 * the EM), the energy consumed by this CPU at that performance state 276 * is estimated as: 277 * 278 * ps->power * cpu_util 279 * cpu_nrg = -------------------- (2) 280 * ps->performance 281 * 282 * since 'cpu_util / ps->performance' represents its percentage of busy 283 * time. 284 * 285 * NOTE: Although the result of this computation actually is in 286 * units of power, it can be manipulated as an energy value 287 * over a scheduling period, since it is assumed to be 288 * constant during that interval. 289 * 290 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product 291 * of two terms: 292 * 293 * ps->power * cpu_max_freq 294 * cpu_nrg = ------------------------ * cpu_util (3) 295 * ps->freq * scale_cpu 296 * 297 * The first term is static, and is stored in the em_perf_state struct 298 * as 'ps->cost'. 299 * 300 * Since all CPUs of the domain have the same micro-architecture, they 301 * share the same 'ps->cost', and the same CPU capacity. Hence, the 302 * total energy of the domain (which is the simple sum of the energy of 303 * all of its CPUs) can be factorized as: 304 * 305 * pd_nrg = ps->cost * \Sum cpu_util (4) 306 */ 307 return ps->cost * sum_util; 308} 309 310/** 311 * em_pd_nr_perf_states() - Get the number of performance states of a perf. 312 * domain 313 * @pd : performance domain for which this must be done 314 * 315 * Return: the number of performance states in the performance domain table 316 */ 317static inline int em_pd_nr_perf_states(struct em_perf_domain *pd) 318{ 319 return pd->nr_perf_states; 320} 321 322/** 323 * em_perf_state_from_pd() - Get the performance states table of perf. 324 * domain 325 * @pd : performance domain for which this must be done 326 * 327 * To use this function the rcu_read_lock() should be hold. After the usage 328 * of the performance states table is finished, the rcu_read_unlock() should 329 * be called. 330 * 331 * Return: the pointer to performance states table of the performance domain 332 */ 333static inline 334struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd) 335{ 336 return rcu_dereference(pd->em_table)->state; 337} 338 339#else 340struct em_data_callback {}; 341#define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) { } 342#define EM_DATA_CB(_active_power_cb) { } 343#define EM_SET_ACTIVE_POWER_CB(em_cb, cb) do { } while (0) 344 345static inline 346int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states, 347 const struct em_data_callback *cb, 348 const cpumask_t *cpus, bool microwatts) 349{ 350 return -EINVAL; 351} 352static inline void em_dev_unregister_perf_domain(struct device *dev) 353{ 354} 355static inline struct em_perf_domain *em_cpu_get(int cpu) 356{ 357 return NULL; 358} 359static inline struct em_perf_domain *em_pd_get(struct device *dev) 360{ 361 return NULL; 362} 363static inline unsigned long em_cpu_energy(struct em_perf_domain *pd, 364 unsigned long max_util, unsigned long sum_util, 365 unsigned long allowed_cpu_cap) 366{ 367 return 0; 368} 369static inline int em_pd_nr_perf_states(struct em_perf_domain *pd) 370{ 371 return 0; 372} 373static inline 374struct em_perf_table *em_table_alloc(struct em_perf_domain *pd) 375{ 376 return NULL; 377} 378static inline void em_table_free(struct em_perf_table *table) {} 379static inline 380int em_dev_update_perf_domain(struct device *dev, 381 struct em_perf_table *new_table) 382{ 383 return -EINVAL; 384} 385static inline 386struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd) 387{ 388 return NULL; 389} 390static inline 391int em_dev_compute_costs(struct device *dev, struct em_perf_state *table, 392 int nr_states) 393{ 394 return -EINVAL; 395} 396static inline int em_dev_update_chip_binning(struct device *dev) 397{ 398 return -EINVAL; 399} 400static inline 401int em_update_performance_limits(struct em_perf_domain *pd, 402 unsigned long freq_min_khz, unsigned long freq_max_khz) 403{ 404 return -EINVAL; 405} 406static inline void em_rebuild_sched_domains(void) {} 407#endif 408 409#endif