at v6.15 1333 lines 39 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_CPUMASK_H 3#define __LINUX_CPUMASK_H 4 5/* 6 * Cpumasks provide a bitmap suitable for representing the 7 * set of CPUs in a system, one bit position per CPU number. In general, 8 * only nr_cpu_ids (<= NR_CPUS) bits are valid. 9 */ 10#include <linux/cleanup.h> 11#include <linux/kernel.h> 12#include <linux/bitmap.h> 13#include <linux/cpumask_types.h> 14#include <linux/atomic.h> 15#include <linux/bug.h> 16#include <linux/gfp_types.h> 17#include <linux/numa.h> 18 19/** 20 * cpumask_pr_args - printf args to output a cpumask 21 * @maskp: cpumask to be printed 22 * 23 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. 24 */ 25#define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) 26 27#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 28#define nr_cpu_ids ((unsigned int)NR_CPUS) 29#else 30extern unsigned int nr_cpu_ids; 31#endif 32 33static __always_inline void set_nr_cpu_ids(unsigned int nr) 34{ 35#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 36 WARN_ON(nr != nr_cpu_ids); 37#else 38 nr_cpu_ids = nr; 39#endif 40} 41 42/* 43 * We have several different "preferred sizes" for the cpumask 44 * operations, depending on operation. 45 * 46 * For example, the bitmap scanning and operating operations have 47 * optimized routines that work for the single-word case, but only when 48 * the size is constant. So if NR_CPUS fits in one single word, we are 49 * better off using that small constant, in order to trigger the 50 * optimized bit finding. That is 'small_cpumask_size'. 51 * 52 * The clearing and copying operations will similarly perform better 53 * with a constant size, but we limit that size arbitrarily to four 54 * words. We call this 'large_cpumask_size'. 55 * 56 * Finally, some operations just want the exact limit, either because 57 * they set bits or just don't have any faster fixed-sized versions. We 58 * call this just 'nr_cpumask_bits'. 59 * 60 * Note that these optional constants are always guaranteed to be at 61 * least as big as 'nr_cpu_ids' itself is, and all our cpumask 62 * allocations are at least that size (see cpumask_size()). The 63 * optimization comes from being able to potentially use a compile-time 64 * constant instead of a run-time generated exact number of CPUs. 65 */ 66#if NR_CPUS <= BITS_PER_LONG 67 #define small_cpumask_bits ((unsigned int)NR_CPUS) 68 #define large_cpumask_bits ((unsigned int)NR_CPUS) 69#elif NR_CPUS <= 4*BITS_PER_LONG 70 #define small_cpumask_bits nr_cpu_ids 71 #define large_cpumask_bits ((unsigned int)NR_CPUS) 72#else 73 #define small_cpumask_bits nr_cpu_ids 74 #define large_cpumask_bits nr_cpu_ids 75#endif 76#define nr_cpumask_bits nr_cpu_ids 77 78/* 79 * The following particular system cpumasks and operations manage 80 * possible, present, active and online cpus. 81 * 82 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable 83 * cpu_present_mask - has bit 'cpu' set iff cpu is populated 84 * cpu_enabled_mask - has bit 'cpu' set iff cpu can be brought online 85 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler 86 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration 87 * 88 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. 89 * 90 * The cpu_possible_mask is fixed at boot time, as the set of CPU IDs 91 * that it is possible might ever be plugged in at anytime during the 92 * life of that system boot. The cpu_present_mask is dynamic(*), 93 * representing which CPUs are currently plugged in. And 94 * cpu_online_mask is the dynamic subset of cpu_present_mask, 95 * indicating those CPUs available for scheduling. 96 * 97 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, 98 * depending on what ACPI reports as currently plugged in, otherwise 99 * cpu_present_mask is just a copy of cpu_possible_mask. 100 * 101 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not 102 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. 103 * 104 * Subtleties: 105 * 1) UP ARCHes (NR_CPUS == 1, CONFIG_SMP not defined) hardcode 106 * assumption that their single CPU is online. The UP 107 * cpu_{online,possible,present}_masks are placebos. Changing them 108 * will have no useful affect on the following num_*_cpus() 109 * and cpu_*() macros in the UP case. This ugliness is a UP 110 * optimization - don't waste any instructions or memory references 111 * asking if you're online or how many CPUs there are if there is 112 * only one CPU. 113 */ 114 115extern struct cpumask __cpu_possible_mask; 116extern struct cpumask __cpu_online_mask; 117extern struct cpumask __cpu_enabled_mask; 118extern struct cpumask __cpu_present_mask; 119extern struct cpumask __cpu_active_mask; 120extern struct cpumask __cpu_dying_mask; 121#define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) 122#define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) 123#define cpu_enabled_mask ((const struct cpumask *)&__cpu_enabled_mask) 124#define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) 125#define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) 126#define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask) 127 128extern atomic_t __num_online_cpus; 129 130extern cpumask_t cpus_booted_once_mask; 131 132static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) 133{ 134#ifdef CONFIG_DEBUG_PER_CPU_MAPS 135 WARN_ON_ONCE(cpu >= bits); 136#endif /* CONFIG_DEBUG_PER_CPU_MAPS */ 137} 138 139/* verify cpu argument to cpumask_* operators */ 140static __always_inline unsigned int cpumask_check(unsigned int cpu) 141{ 142 cpu_max_bits_warn(cpu, small_cpumask_bits); 143 return cpu; 144} 145 146/** 147 * cpumask_first - get the first cpu in a cpumask 148 * @srcp: the cpumask pointer 149 * 150 * Return: >= nr_cpu_ids if no cpus set. 151 */ 152static __always_inline unsigned int cpumask_first(const struct cpumask *srcp) 153{ 154 return find_first_bit(cpumask_bits(srcp), small_cpumask_bits); 155} 156 157/** 158 * cpumask_first_zero - get the first unset cpu in a cpumask 159 * @srcp: the cpumask pointer 160 * 161 * Return: >= nr_cpu_ids if all cpus are set. 162 */ 163static __always_inline unsigned int cpumask_first_zero(const struct cpumask *srcp) 164{ 165 return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits); 166} 167 168/** 169 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 170 * @srcp1: the first input 171 * @srcp2: the second input 172 * 173 * Return: >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). 174 */ 175static __always_inline 176unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2) 177{ 178 return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 179} 180 181/** 182 * cpumask_first_and_and - return the first cpu from *srcp1 & *srcp2 & *srcp3 183 * @srcp1: the first input 184 * @srcp2: the second input 185 * @srcp3: the third input 186 * 187 * Return: >= nr_cpu_ids if no cpus set in all. 188 */ 189static __always_inline 190unsigned int cpumask_first_and_and(const struct cpumask *srcp1, 191 const struct cpumask *srcp2, 192 const struct cpumask *srcp3) 193{ 194 return find_first_and_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 195 cpumask_bits(srcp3), small_cpumask_bits); 196} 197 198/** 199 * cpumask_last - get the last CPU in a cpumask 200 * @srcp: - the cpumask pointer 201 * 202 * Return: >= nr_cpumask_bits if no CPUs set. 203 */ 204static __always_inline unsigned int cpumask_last(const struct cpumask *srcp) 205{ 206 return find_last_bit(cpumask_bits(srcp), small_cpumask_bits); 207} 208 209/** 210 * cpumask_next - get the next cpu in a cpumask 211 * @n: the cpu prior to the place to search (i.e. return will be > @n) 212 * @srcp: the cpumask pointer 213 * 214 * Return: >= nr_cpu_ids if no further cpus set. 215 */ 216static __always_inline 217unsigned int cpumask_next(int n, const struct cpumask *srcp) 218{ 219 /* -1 is a legal arg here. */ 220 if (n != -1) 221 cpumask_check(n); 222 return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1); 223} 224 225/** 226 * cpumask_next_zero - get the next unset cpu in a cpumask 227 * @n: the cpu prior to the place to search (i.e. return will be > @n) 228 * @srcp: the cpumask pointer 229 * 230 * Return: >= nr_cpu_ids if no further cpus unset. 231 */ 232static __always_inline 233unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) 234{ 235 /* -1 is a legal arg here. */ 236 if (n != -1) 237 cpumask_check(n); 238 return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1); 239} 240 241#if NR_CPUS == 1 242/* Uniprocessor: there is only one valid CPU */ 243static __always_inline 244unsigned int cpumask_local_spread(unsigned int i, int node) 245{ 246 return 0; 247} 248 249static __always_inline 250unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 251 const struct cpumask *src2p) 252{ 253 return cpumask_first_and(src1p, src2p); 254} 255 256static __always_inline 257unsigned int cpumask_any_distribute(const struct cpumask *srcp) 258{ 259 return cpumask_first(srcp); 260} 261#else 262unsigned int cpumask_local_spread(unsigned int i, int node); 263unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 264 const struct cpumask *src2p); 265unsigned int cpumask_any_distribute(const struct cpumask *srcp); 266#endif /* NR_CPUS */ 267 268/** 269 * cpumask_next_and - get the next cpu in *src1p & *src2p 270 * @n: the cpu prior to the place to search (i.e. return will be > @n) 271 * @src1p: the first cpumask pointer 272 * @src2p: the second cpumask pointer 273 * 274 * Return: >= nr_cpu_ids if no further cpus set in both. 275 */ 276static __always_inline 277unsigned int cpumask_next_and(int n, const struct cpumask *src1p, 278 const struct cpumask *src2p) 279{ 280 /* -1 is a legal arg here. */ 281 if (n != -1) 282 cpumask_check(n); 283 return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p), 284 small_cpumask_bits, n + 1); 285} 286 287/** 288 * cpumask_next_and_wrap - get the next cpu in *src1p & *src2p, starting from 289 * @n+1. If nothing found, wrap around and start from 290 * the beginning 291 * @n: the cpu prior to the place to search (i.e. search starts from @n+1) 292 * @src1p: the first cpumask pointer 293 * @src2p: the second cpumask pointer 294 * 295 * Return: next set bit, wrapped if needed, or >= nr_cpu_ids if @src1p & @src2p is empty. 296 */ 297static __always_inline 298unsigned int cpumask_next_and_wrap(int n, const struct cpumask *src1p, 299 const struct cpumask *src2p) 300{ 301 /* -1 is a legal arg here. */ 302 if (n != -1) 303 cpumask_check(n); 304 return find_next_and_bit_wrap(cpumask_bits(src1p), cpumask_bits(src2p), 305 small_cpumask_bits, n + 1); 306} 307 308/** 309 * cpumask_next_wrap - get the next cpu in *src, starting from @n+1. If nothing 310 * found, wrap around and start from the beginning 311 * @n: the cpu prior to the place to search (i.e. search starts from @n+1) 312 * @src: cpumask pointer 313 * 314 * Return: next set bit, wrapped if needed, or >= nr_cpu_ids if @src is empty. 315 */ 316static __always_inline 317unsigned int cpumask_next_wrap(int n, const struct cpumask *src) 318{ 319 /* -1 is a legal arg here. */ 320 if (n != -1) 321 cpumask_check(n); 322 return find_next_bit_wrap(cpumask_bits(src), small_cpumask_bits, n + 1); 323} 324 325/** 326 * for_each_cpu - iterate over every cpu in a mask 327 * @cpu: the (optionally unsigned) integer iterator 328 * @mask: the cpumask pointer 329 * 330 * After the loop, cpu is >= nr_cpu_ids. 331 */ 332#define for_each_cpu(cpu, mask) \ 333 for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits) 334 335/** 336 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location 337 * @cpu: the (optionally unsigned) integer iterator 338 * @mask: the cpumask pointer 339 * @start: the start location 340 * 341 * The implementation does not assume any bit in @mask is set (including @start). 342 * 343 * After the loop, cpu is >= nr_cpu_ids. 344 */ 345#define for_each_cpu_wrap(cpu, mask, start) \ 346 for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start) 347 348/** 349 * for_each_cpu_and - iterate over every cpu in both masks 350 * @cpu: the (optionally unsigned) integer iterator 351 * @mask1: the first cpumask pointer 352 * @mask2: the second cpumask pointer 353 * 354 * This saves a temporary CPU mask in many places. It is equivalent to: 355 * struct cpumask tmp; 356 * cpumask_and(&tmp, &mask1, &mask2); 357 * for_each_cpu(cpu, &tmp) 358 * ... 359 * 360 * After the loop, cpu is >= nr_cpu_ids. 361 */ 362#define for_each_cpu_and(cpu, mask1, mask2) \ 363 for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 364 365/** 366 * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding 367 * those present in another. 368 * @cpu: the (optionally unsigned) integer iterator 369 * @mask1: the first cpumask pointer 370 * @mask2: the second cpumask pointer 371 * 372 * This saves a temporary CPU mask in many places. It is equivalent to: 373 * struct cpumask tmp; 374 * cpumask_andnot(&tmp, &mask1, &mask2); 375 * for_each_cpu(cpu, &tmp) 376 * ... 377 * 378 * After the loop, cpu is >= nr_cpu_ids. 379 */ 380#define for_each_cpu_andnot(cpu, mask1, mask2) \ 381 for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 382 383/** 384 * for_each_cpu_or - iterate over every cpu present in either mask 385 * @cpu: the (optionally unsigned) integer iterator 386 * @mask1: the first cpumask pointer 387 * @mask2: the second cpumask pointer 388 * 389 * This saves a temporary CPU mask in many places. It is equivalent to: 390 * struct cpumask tmp; 391 * cpumask_or(&tmp, &mask1, &mask2); 392 * for_each_cpu(cpu, &tmp) 393 * ... 394 * 395 * After the loop, cpu is >= nr_cpu_ids. 396 */ 397#define for_each_cpu_or(cpu, mask1, mask2) \ 398 for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 399 400/** 401 * for_each_cpu_from - iterate over CPUs present in @mask, from @cpu to the end of @mask. 402 * @cpu: the (optionally unsigned) integer iterator 403 * @mask: the cpumask pointer 404 * 405 * After the loop, cpu is >= nr_cpu_ids. 406 */ 407#define for_each_cpu_from(cpu, mask) \ 408 for_each_set_bit_from(cpu, cpumask_bits(mask), small_cpumask_bits) 409 410/** 411 * cpumask_any_but - return an arbitrary cpu in a cpumask, but not this one. 412 * @mask: the cpumask to search 413 * @cpu: the cpu to ignore. 414 * 415 * Often used to find any cpu but smp_processor_id() in a mask. 416 * Return: >= nr_cpu_ids if no cpus set. 417 */ 418static __always_inline 419unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) 420{ 421 unsigned int i; 422 423 cpumask_check(cpu); 424 for_each_cpu(i, mask) 425 if (i != cpu) 426 break; 427 return i; 428} 429 430/** 431 * cpumask_any_and_but - pick an arbitrary cpu from *mask1 & *mask2, but not this one. 432 * @mask1: the first input cpumask 433 * @mask2: the second input cpumask 434 * @cpu: the cpu to ignore 435 * 436 * Returns >= nr_cpu_ids if no cpus set. 437 */ 438static __always_inline 439unsigned int cpumask_any_and_but(const struct cpumask *mask1, 440 const struct cpumask *mask2, 441 unsigned int cpu) 442{ 443 unsigned int i; 444 445 cpumask_check(cpu); 446 i = cpumask_first_and(mask1, mask2); 447 if (i != cpu) 448 return i; 449 450 return cpumask_next_and(cpu, mask1, mask2); 451} 452 453/** 454 * cpumask_nth - get the Nth cpu in a cpumask 455 * @srcp: the cpumask pointer 456 * @cpu: the Nth cpu to find, starting from 0 457 * 458 * Return: >= nr_cpu_ids if such cpu doesn't exist. 459 */ 460static __always_inline 461unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp) 462{ 463 return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu)); 464} 465 466/** 467 * cpumask_nth_and - get the Nth cpu in 2 cpumasks 468 * @srcp1: the cpumask pointer 469 * @srcp2: the cpumask pointer 470 * @cpu: the Nth cpu to find, starting from 0 471 * 472 * Return: >= nr_cpu_ids if such cpu doesn't exist. 473 */ 474static __always_inline 475unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1, 476 const struct cpumask *srcp2) 477{ 478 return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 479 small_cpumask_bits, cpumask_check(cpu)); 480} 481 482/** 483 * cpumask_nth_andnot - get the Nth cpu set in 1st cpumask, and clear in 2nd. 484 * @srcp1: the cpumask pointer 485 * @srcp2: the cpumask pointer 486 * @cpu: the Nth cpu to find, starting from 0 487 * 488 * Return: >= nr_cpu_ids if such cpu doesn't exist. 489 */ 490static __always_inline 491unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1, 492 const struct cpumask *srcp2) 493{ 494 return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 495 small_cpumask_bits, cpumask_check(cpu)); 496} 497 498/** 499 * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd. 500 * @srcp1: the cpumask pointer 501 * @srcp2: the cpumask pointer 502 * @srcp3: the cpumask pointer 503 * @cpu: the Nth cpu to find, starting from 0 504 * 505 * Return: >= nr_cpu_ids if such cpu doesn't exist. 506 */ 507static __always_inline 508unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1, 509 const struct cpumask *srcp2, 510 const struct cpumask *srcp3) 511{ 512 return find_nth_and_andnot_bit(cpumask_bits(srcp1), 513 cpumask_bits(srcp2), 514 cpumask_bits(srcp3), 515 small_cpumask_bits, cpumask_check(cpu)); 516} 517 518#define CPU_BITS_NONE \ 519{ \ 520 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 521} 522 523#define CPU_BITS_CPU0 \ 524{ \ 525 [0] = 1UL \ 526} 527 528/** 529 * cpumask_set_cpu - set a cpu in a cpumask 530 * @cpu: cpu number (< nr_cpu_ids) 531 * @dstp: the cpumask pointer 532 */ 533static __always_inline 534void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 535{ 536 set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 537} 538 539static __always_inline 540void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 541{ 542 __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 543} 544 545 546/** 547 * cpumask_clear_cpu - clear a cpu in a cpumask 548 * @cpu: cpu number (< nr_cpu_ids) 549 * @dstp: the cpumask pointer 550 */ 551static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) 552{ 553 clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 554} 555 556static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) 557{ 558 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 559} 560 561/** 562 * cpumask_assign_cpu - assign a cpu in a cpumask 563 * @cpu: cpu number (< nr_cpu_ids) 564 * @dstp: the cpumask pointer 565 * @bool: the value to assign 566 */ 567static __always_inline void cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value) 568{ 569 assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value); 570} 571 572static __always_inline void __cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value) 573{ 574 __assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value); 575} 576 577/** 578 * cpumask_test_cpu - test for a cpu in a cpumask 579 * @cpu: cpu number (< nr_cpu_ids) 580 * @cpumask: the cpumask pointer 581 * 582 * Return: true if @cpu is set in @cpumask, else returns false 583 */ 584static __always_inline 585bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask) 586{ 587 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); 588} 589 590/** 591 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask 592 * @cpu: cpu number (< nr_cpu_ids) 593 * @cpumask: the cpumask pointer 594 * 595 * test_and_set_bit wrapper for cpumasks. 596 * 597 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false 598 */ 599static __always_inline 600bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) 601{ 602 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 603} 604 605/** 606 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask 607 * @cpu: cpu number (< nr_cpu_ids) 608 * @cpumask: the cpumask pointer 609 * 610 * test_and_clear_bit wrapper for cpumasks. 611 * 612 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false 613 */ 614static __always_inline 615bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) 616{ 617 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 618} 619 620/** 621 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask 622 * @dstp: the cpumask pointer 623 */ 624static __always_inline void cpumask_setall(struct cpumask *dstp) 625{ 626 if (small_const_nbits(small_cpumask_bits)) { 627 cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits); 628 return; 629 } 630 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); 631} 632 633/** 634 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask 635 * @dstp: the cpumask pointer 636 */ 637static __always_inline void cpumask_clear(struct cpumask *dstp) 638{ 639 bitmap_zero(cpumask_bits(dstp), large_cpumask_bits); 640} 641 642/** 643 * cpumask_and - *dstp = *src1p & *src2p 644 * @dstp: the cpumask result 645 * @src1p: the first input 646 * @src2p: the second input 647 * 648 * Return: false if *@dstp is empty, else returns true 649 */ 650static __always_inline 651bool cpumask_and(struct cpumask *dstp, const struct cpumask *src1p, 652 const struct cpumask *src2p) 653{ 654 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), 655 cpumask_bits(src2p), small_cpumask_bits); 656} 657 658/** 659 * cpumask_or - *dstp = *src1p | *src2p 660 * @dstp: the cpumask result 661 * @src1p: the first input 662 * @src2p: the second input 663 */ 664static __always_inline 665void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, 666 const struct cpumask *src2p) 667{ 668 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), 669 cpumask_bits(src2p), small_cpumask_bits); 670} 671 672/** 673 * cpumask_xor - *dstp = *src1p ^ *src2p 674 * @dstp: the cpumask result 675 * @src1p: the first input 676 * @src2p: the second input 677 */ 678static __always_inline 679void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p, 680 const struct cpumask *src2p) 681{ 682 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), 683 cpumask_bits(src2p), small_cpumask_bits); 684} 685 686/** 687 * cpumask_andnot - *dstp = *src1p & ~*src2p 688 * @dstp: the cpumask result 689 * @src1p: the first input 690 * @src2p: the second input 691 * 692 * Return: false if *@dstp is empty, else returns true 693 */ 694static __always_inline 695bool cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p, 696 const struct cpumask *src2p) 697{ 698 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), 699 cpumask_bits(src2p), small_cpumask_bits); 700} 701 702/** 703 * cpumask_equal - *src1p == *src2p 704 * @src1p: the first input 705 * @src2p: the second input 706 * 707 * Return: true if the cpumasks are equal, false if not 708 */ 709static __always_inline 710bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p) 711{ 712 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), 713 small_cpumask_bits); 714} 715 716/** 717 * cpumask_or_equal - *src1p | *src2p == *src3p 718 * @src1p: the first input 719 * @src2p: the second input 720 * @src3p: the third input 721 * 722 * Return: true if first cpumask ORed with second cpumask == third cpumask, 723 * otherwise false 724 */ 725static __always_inline 726bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p, 727 const struct cpumask *src3p) 728{ 729 return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), 730 cpumask_bits(src3p), small_cpumask_bits); 731} 732 733/** 734 * cpumask_intersects - (*src1p & *src2p) != 0 735 * @src1p: the first input 736 * @src2p: the second input 737 * 738 * Return: true if first cpumask ANDed with second cpumask is non-empty, 739 * otherwise false 740 */ 741static __always_inline 742bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p) 743{ 744 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), 745 small_cpumask_bits); 746} 747 748/** 749 * cpumask_subset - (*src1p & ~*src2p) == 0 750 * @src1p: the first input 751 * @src2p: the second input 752 * 753 * Return: true if *@src1p is a subset of *@src2p, else returns false 754 */ 755static __always_inline 756bool cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p) 757{ 758 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), 759 small_cpumask_bits); 760} 761 762/** 763 * cpumask_empty - *srcp == 0 764 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. 765 * 766 * Return: true if srcp is empty (has no bits set), else false 767 */ 768static __always_inline bool cpumask_empty(const struct cpumask *srcp) 769{ 770 return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits); 771} 772 773/** 774 * cpumask_full - *srcp == 0xFFFFFFFF... 775 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. 776 * 777 * Return: true if srcp is full (has all bits set), else false 778 */ 779static __always_inline bool cpumask_full(const struct cpumask *srcp) 780{ 781 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); 782} 783 784/** 785 * cpumask_weight - Count of bits in *srcp 786 * @srcp: the cpumask to count bits (< nr_cpu_ids) in. 787 * 788 * Return: count of bits set in *srcp 789 */ 790static __always_inline unsigned int cpumask_weight(const struct cpumask *srcp) 791{ 792 return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits); 793} 794 795/** 796 * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2) 797 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. 798 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. 799 * 800 * Return: count of bits set in both *srcp1 and *srcp2 801 */ 802static __always_inline 803unsigned int cpumask_weight_and(const struct cpumask *srcp1, const struct cpumask *srcp2) 804{ 805 return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 806} 807 808/** 809 * cpumask_weight_andnot - Count of bits in (*srcp1 & ~*srcp2) 810 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. 811 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. 812 * 813 * Return: count of bits set in both *srcp1 and *srcp2 814 */ 815static __always_inline 816unsigned int cpumask_weight_andnot(const struct cpumask *srcp1, 817 const struct cpumask *srcp2) 818{ 819 return bitmap_weight_andnot(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 820} 821 822/** 823 * cpumask_shift_right - *dstp = *srcp >> n 824 * @dstp: the cpumask result 825 * @srcp: the input to shift 826 * @n: the number of bits to shift by 827 */ 828static __always_inline 829void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n) 830{ 831 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, 832 small_cpumask_bits); 833} 834 835/** 836 * cpumask_shift_left - *dstp = *srcp << n 837 * @dstp: the cpumask result 838 * @srcp: the input to shift 839 * @n: the number of bits to shift by 840 */ 841static __always_inline 842void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n) 843{ 844 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, 845 nr_cpumask_bits); 846} 847 848/** 849 * cpumask_copy - *dstp = *srcp 850 * @dstp: the result 851 * @srcp: the input cpumask 852 */ 853static __always_inline 854void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp) 855{ 856 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits); 857} 858 859/** 860 * cpumask_any - pick an arbitrary cpu from *srcp 861 * @srcp: the input cpumask 862 * 863 * Return: >= nr_cpu_ids if no cpus set. 864 */ 865#define cpumask_any(srcp) cpumask_first(srcp) 866 867/** 868 * cpumask_any_and - pick an arbitrary cpu from *mask1 & *mask2 869 * @mask1: the first input cpumask 870 * @mask2: the second input cpumask 871 * 872 * Return: >= nr_cpu_ids if no cpus set. 873 */ 874#define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) 875 876/** 877 * cpumask_of - the cpumask containing just a given cpu 878 * @cpu: the cpu (<= nr_cpu_ids) 879 */ 880#define cpumask_of(cpu) (get_cpu_mask(cpu)) 881 882/** 883 * cpumask_parse_user - extract a cpumask from a user string 884 * @buf: the buffer to extract from 885 * @len: the length of the buffer 886 * @dstp: the cpumask to set. 887 * 888 * Return: -errno, or 0 for success. 889 */ 890static __always_inline 891int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp) 892{ 893 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); 894} 895 896/** 897 * cpumask_parselist_user - extract a cpumask from a user string 898 * @buf: the buffer to extract from 899 * @len: the length of the buffer 900 * @dstp: the cpumask to set. 901 * 902 * Return: -errno, or 0 for success. 903 */ 904static __always_inline 905int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp) 906{ 907 return bitmap_parselist_user(buf, len, cpumask_bits(dstp), 908 nr_cpumask_bits); 909} 910 911/** 912 * cpumask_parse - extract a cpumask from a string 913 * @buf: the buffer to extract from 914 * @dstp: the cpumask to set. 915 * 916 * Return: -errno, or 0 for success. 917 */ 918static __always_inline int cpumask_parse(const char *buf, struct cpumask *dstp) 919{ 920 return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); 921} 922 923/** 924 * cpulist_parse - extract a cpumask from a user string of ranges 925 * @buf: the buffer to extract from 926 * @dstp: the cpumask to set. 927 * 928 * Return: -errno, or 0 for success. 929 */ 930static __always_inline int cpulist_parse(const char *buf, struct cpumask *dstp) 931{ 932 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); 933} 934 935/** 936 * cpumask_size - calculate size to allocate for a 'struct cpumask' in bytes 937 * 938 * Return: size to allocate for a &struct cpumask in bytes 939 */ 940static __always_inline unsigned int cpumask_size(void) 941{ 942 return bitmap_size(large_cpumask_bits); 943} 944 945#ifdef CONFIG_CPUMASK_OFFSTACK 946 947#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) 948#define __cpumask_var_read_mostly __read_mostly 949 950bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); 951 952static __always_inline 953bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) 954{ 955 return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node); 956} 957 958/** 959 * alloc_cpumask_var - allocate a struct cpumask 960 * @mask: pointer to cpumask_var_t where the cpumask is returned 961 * @flags: GFP_ flags 962 * 963 * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is 964 * a nop returning a constant 1 (in <linux/cpumask.h>). 965 * 966 * See alloc_cpumask_var_node. 967 * 968 * Return: %true if allocation succeeded, %false if not 969 */ 970static __always_inline 971bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 972{ 973 return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE); 974} 975 976static __always_inline 977bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 978{ 979 return alloc_cpumask_var(mask, flags | __GFP_ZERO); 980} 981 982void alloc_bootmem_cpumask_var(cpumask_var_t *mask); 983void free_cpumask_var(cpumask_var_t mask); 984void free_bootmem_cpumask_var(cpumask_var_t mask); 985 986static __always_inline bool cpumask_available(cpumask_var_t mask) 987{ 988 return mask != NULL; 989} 990 991#else 992 993#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) 994#define __cpumask_var_read_mostly 995 996static __always_inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 997{ 998 return true; 999} 1000 1001static __always_inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 1002 int node) 1003{ 1004 return true; 1005} 1006 1007static __always_inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 1008{ 1009 cpumask_clear(*mask); 1010 return true; 1011} 1012 1013static __always_inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 1014 int node) 1015{ 1016 cpumask_clear(*mask); 1017 return true; 1018} 1019 1020static __always_inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) 1021{ 1022} 1023 1024static __always_inline void free_cpumask_var(cpumask_var_t mask) 1025{ 1026} 1027 1028static __always_inline void free_bootmem_cpumask_var(cpumask_var_t mask) 1029{ 1030} 1031 1032static __always_inline bool cpumask_available(cpumask_var_t mask) 1033{ 1034 return true; 1035} 1036#endif /* CONFIG_CPUMASK_OFFSTACK */ 1037 1038DEFINE_FREE(free_cpumask_var, struct cpumask *, if (_T) free_cpumask_var(_T)); 1039 1040/* It's common to want to use cpu_all_mask in struct member initializers, 1041 * so it has to refer to an address rather than a pointer. */ 1042extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); 1043#define cpu_all_mask to_cpumask(cpu_all_bits) 1044 1045/* First bits of cpu_bit_bitmap are in fact unset. */ 1046#define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) 1047 1048#if NR_CPUS == 1 1049/* Uniprocessor: the possible/online/present masks are always "1" */ 1050#define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1051#define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1052#define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1053 1054#define for_each_possible_cpu_wrap(cpu, start) \ 1055 for ((void)(start), (cpu) = 0; (cpu) < 1; (cpu)++) 1056#define for_each_online_cpu_wrap(cpu, start) \ 1057 for ((void)(start), (cpu) = 0; (cpu) < 1; (cpu)++) 1058#else 1059#define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) 1060#define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) 1061#define for_each_enabled_cpu(cpu) for_each_cpu((cpu), cpu_enabled_mask) 1062#define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) 1063 1064#define for_each_possible_cpu_wrap(cpu, start) \ 1065 for_each_cpu_wrap((cpu), cpu_possible_mask, (start)) 1066#define for_each_online_cpu_wrap(cpu, start) \ 1067 for_each_cpu_wrap((cpu), cpu_online_mask, (start)) 1068#endif 1069 1070/* Wrappers for arch boot code to manipulate normally-constant masks */ 1071void init_cpu_present(const struct cpumask *src); 1072void init_cpu_possible(const struct cpumask *src); 1073 1074#define assign_cpu(cpu, mask, val) \ 1075 assign_bit(cpumask_check(cpu), cpumask_bits(mask), (val)) 1076 1077#define set_cpu_possible(cpu, possible) assign_cpu((cpu), &__cpu_possible_mask, (possible)) 1078#define set_cpu_enabled(cpu, enabled) assign_cpu((cpu), &__cpu_enabled_mask, (enabled)) 1079#define set_cpu_present(cpu, present) assign_cpu((cpu), &__cpu_present_mask, (present)) 1080#define set_cpu_active(cpu, active) assign_cpu((cpu), &__cpu_active_mask, (active)) 1081#define set_cpu_dying(cpu, dying) assign_cpu((cpu), &__cpu_dying_mask, (dying)) 1082 1083void set_cpu_online(unsigned int cpu, bool online); 1084 1085/** 1086 * to_cpumask - convert a NR_CPUS bitmap to a struct cpumask * 1087 * @bitmap: the bitmap 1088 * 1089 * There are a few places where cpumask_var_t isn't appropriate and 1090 * static cpumasks must be used (eg. very early boot), yet we don't 1091 * expose the definition of 'struct cpumask'. 1092 * 1093 * This does the conversion, and can be used as a constant initializer. 1094 */ 1095#define to_cpumask(bitmap) \ 1096 ((struct cpumask *)(1 ? (bitmap) \ 1097 : (void *)sizeof(__check_is_bitmap(bitmap)))) 1098 1099static __always_inline int __check_is_bitmap(const unsigned long *bitmap) 1100{ 1101 return 1; 1102} 1103 1104/* 1105 * Special-case data structure for "single bit set only" constant CPU masks. 1106 * 1107 * We pre-generate all the 64 (or 32) possible bit positions, with enough 1108 * padding to the left and the right, and return the constant pointer 1109 * appropriately offset. 1110 */ 1111extern const unsigned long 1112 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; 1113 1114static __always_inline const struct cpumask *get_cpu_mask(unsigned int cpu) 1115{ 1116 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; 1117 p -= cpu / BITS_PER_LONG; 1118 return to_cpumask(p); 1119} 1120 1121#if NR_CPUS > 1 1122/** 1123 * num_online_cpus() - Read the number of online CPUs 1124 * 1125 * Despite the fact that __num_online_cpus is of type atomic_t, this 1126 * interface gives only a momentary snapshot and is not protected against 1127 * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held 1128 * region. 1129 * 1130 * Return: momentary snapshot of the number of online CPUs 1131 */ 1132static __always_inline unsigned int num_online_cpus(void) 1133{ 1134 return raw_atomic_read(&__num_online_cpus); 1135} 1136#define num_possible_cpus() cpumask_weight(cpu_possible_mask) 1137#define num_enabled_cpus() cpumask_weight(cpu_enabled_mask) 1138#define num_present_cpus() cpumask_weight(cpu_present_mask) 1139#define num_active_cpus() cpumask_weight(cpu_active_mask) 1140 1141static __always_inline bool cpu_online(unsigned int cpu) 1142{ 1143 return cpumask_test_cpu(cpu, cpu_online_mask); 1144} 1145 1146static __always_inline bool cpu_enabled(unsigned int cpu) 1147{ 1148 return cpumask_test_cpu(cpu, cpu_enabled_mask); 1149} 1150 1151static __always_inline bool cpu_possible(unsigned int cpu) 1152{ 1153 return cpumask_test_cpu(cpu, cpu_possible_mask); 1154} 1155 1156static __always_inline bool cpu_present(unsigned int cpu) 1157{ 1158 return cpumask_test_cpu(cpu, cpu_present_mask); 1159} 1160 1161static __always_inline bool cpu_active(unsigned int cpu) 1162{ 1163 return cpumask_test_cpu(cpu, cpu_active_mask); 1164} 1165 1166static __always_inline bool cpu_dying(unsigned int cpu) 1167{ 1168 return cpumask_test_cpu(cpu, cpu_dying_mask); 1169} 1170 1171#else 1172 1173#define num_online_cpus() 1U 1174#define num_possible_cpus() 1U 1175#define num_enabled_cpus() 1U 1176#define num_present_cpus() 1U 1177#define num_active_cpus() 1U 1178 1179static __always_inline bool cpu_online(unsigned int cpu) 1180{ 1181 return cpu == 0; 1182} 1183 1184static __always_inline bool cpu_possible(unsigned int cpu) 1185{ 1186 return cpu == 0; 1187} 1188 1189static __always_inline bool cpu_enabled(unsigned int cpu) 1190{ 1191 return cpu == 0; 1192} 1193 1194static __always_inline bool cpu_present(unsigned int cpu) 1195{ 1196 return cpu == 0; 1197} 1198 1199static __always_inline bool cpu_active(unsigned int cpu) 1200{ 1201 return cpu == 0; 1202} 1203 1204static __always_inline bool cpu_dying(unsigned int cpu) 1205{ 1206 return false; 1207} 1208 1209#endif /* NR_CPUS > 1 */ 1210 1211#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) 1212 1213#if NR_CPUS <= BITS_PER_LONG 1214#define CPU_BITS_ALL \ 1215{ \ 1216 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1217} 1218 1219#else /* NR_CPUS > BITS_PER_LONG */ 1220 1221#define CPU_BITS_ALL \ 1222{ \ 1223 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1224 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1225} 1226#endif /* NR_CPUS > BITS_PER_LONG */ 1227 1228/** 1229 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either 1230 * as comma-separated list of cpus or hex values of cpumask 1231 * @list: indicates whether the cpumap must be list 1232 * @mask: the cpumask to copy 1233 * @buf: the buffer to copy into 1234 * 1235 * Return: the length of the (null-terminated) @buf string, zero if 1236 * nothing is copied. 1237 */ 1238static __always_inline ssize_t 1239cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) 1240{ 1241 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), 1242 nr_cpu_ids); 1243} 1244 1245/** 1246 * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as 1247 * hex values of cpumask 1248 * 1249 * @buf: the buffer to copy into 1250 * @mask: the cpumask to copy 1251 * @off: in the string from which we are copying, we copy to @buf 1252 * @count: the maximum number of bytes to print 1253 * 1254 * The function prints the cpumask into the buffer as hex values of 1255 * cpumask; Typically used by bin_attribute to export cpumask bitmask 1256 * ABI. 1257 * 1258 * Return: the length of how many bytes have been copied, excluding 1259 * terminating '\0'. 1260 */ 1261static __always_inline 1262ssize_t cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask, 1263 loff_t off, size_t count) 1264{ 1265 return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask), 1266 nr_cpu_ids, off, count) - 1; 1267} 1268 1269/** 1270 * cpumap_print_list_to_buf - copies the cpumask into the buffer as 1271 * comma-separated list of cpus 1272 * @buf: the buffer to copy into 1273 * @mask: the cpumask to copy 1274 * @off: in the string from which we are copying, we copy to @buf 1275 * @count: the maximum number of bytes to print 1276 * 1277 * Everything is same with the above cpumap_print_bitmask_to_buf() 1278 * except the print format. 1279 * 1280 * Return: the length of how many bytes have been copied, excluding 1281 * terminating '\0'. 1282 */ 1283static __always_inline 1284ssize_t cpumap_print_list_to_buf(char *buf, const struct cpumask *mask, 1285 loff_t off, size_t count) 1286{ 1287 return bitmap_print_list_to_buf(buf, cpumask_bits(mask), 1288 nr_cpu_ids, off, count) - 1; 1289} 1290 1291#if NR_CPUS <= BITS_PER_LONG 1292#define CPU_MASK_ALL \ 1293(cpumask_t) { { \ 1294 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1295} } 1296#else 1297#define CPU_MASK_ALL \ 1298(cpumask_t) { { \ 1299 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1300 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1301} } 1302#endif /* NR_CPUS > BITS_PER_LONG */ 1303 1304#define CPU_MASK_NONE \ 1305(cpumask_t) { { \ 1306 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 1307} } 1308 1309#define CPU_MASK_CPU0 \ 1310(cpumask_t) { { \ 1311 [0] = 1UL \ 1312} } 1313 1314/* 1315 * Provide a valid theoretical max size for cpumap and cpulist sysfs files 1316 * to avoid breaking userspace which may allocate a buffer based on the size 1317 * reported by e.g. fstat. 1318 * 1319 * for cpumap NR_CPUS * 9/32 - 1 should be an exact length. 1320 * 1321 * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up 1322 * to 2 orders of magnitude larger than 8192. And then we divide by 2 to 1323 * cover a worst-case of every other cpu being on one of two nodes for a 1324 * very large NR_CPUS. 1325 * 1326 * Use PAGE_SIZE as a minimum for smaller configurations while avoiding 1327 * unsigned comparison to -1. 1328 */ 1329#define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \ 1330 ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE) 1331#define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE) 1332 1333#endif /* __LINUX_CPUMASK_H */