Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_CPUMASK_H
3#define __LINUX_CPUMASK_H
4
5/*
6 * Cpumasks provide a bitmap suitable for representing the
7 * set of CPUs in a system, one bit position per CPU number. In general,
8 * only nr_cpu_ids (<= NR_CPUS) bits are valid.
9 */
10#include <linux/cleanup.h>
11#include <linux/kernel.h>
12#include <linux/bitmap.h>
13#include <linux/cpumask_types.h>
14#include <linux/atomic.h>
15#include <linux/bug.h>
16#include <linux/gfp_types.h>
17#include <linux/numa.h>
18
19/**
20 * cpumask_pr_args - printf args to output a cpumask
21 * @maskp: cpumask to be printed
22 *
23 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask.
24 */
25#define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp)
26
27#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
28#define nr_cpu_ids ((unsigned int)NR_CPUS)
29#else
30extern unsigned int nr_cpu_ids;
31#endif
32
33static __always_inline void set_nr_cpu_ids(unsigned int nr)
34{
35#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
36 WARN_ON(nr != nr_cpu_ids);
37#else
38 nr_cpu_ids = nr;
39#endif
40}
41
42/*
43 * We have several different "preferred sizes" for the cpumask
44 * operations, depending on operation.
45 *
46 * For example, the bitmap scanning and operating operations have
47 * optimized routines that work for the single-word case, but only when
48 * the size is constant. So if NR_CPUS fits in one single word, we are
49 * better off using that small constant, in order to trigger the
50 * optimized bit finding. That is 'small_cpumask_size'.
51 *
52 * The clearing and copying operations will similarly perform better
53 * with a constant size, but we limit that size arbitrarily to four
54 * words. We call this 'large_cpumask_size'.
55 *
56 * Finally, some operations just want the exact limit, either because
57 * they set bits or just don't have any faster fixed-sized versions. We
58 * call this just 'nr_cpumask_bits'.
59 *
60 * Note that these optional constants are always guaranteed to be at
61 * least as big as 'nr_cpu_ids' itself is, and all our cpumask
62 * allocations are at least that size (see cpumask_size()). The
63 * optimization comes from being able to potentially use a compile-time
64 * constant instead of a run-time generated exact number of CPUs.
65 */
66#if NR_CPUS <= BITS_PER_LONG
67 #define small_cpumask_bits ((unsigned int)NR_CPUS)
68 #define large_cpumask_bits ((unsigned int)NR_CPUS)
69#elif NR_CPUS <= 4*BITS_PER_LONG
70 #define small_cpumask_bits nr_cpu_ids
71 #define large_cpumask_bits ((unsigned int)NR_CPUS)
72#else
73 #define small_cpumask_bits nr_cpu_ids
74 #define large_cpumask_bits nr_cpu_ids
75#endif
76#define nr_cpumask_bits nr_cpu_ids
77
78/*
79 * The following particular system cpumasks and operations manage
80 * possible, present, active and online cpus.
81 *
82 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable
83 * cpu_present_mask - has bit 'cpu' set iff cpu is populated
84 * cpu_enabled_mask - has bit 'cpu' set iff cpu can be brought online
85 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler
86 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration
87 *
88 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online.
89 *
90 * The cpu_possible_mask is fixed at boot time, as the set of CPU IDs
91 * that it is possible might ever be plugged in at anytime during the
92 * life of that system boot. The cpu_present_mask is dynamic(*),
93 * representing which CPUs are currently plugged in. And
94 * cpu_online_mask is the dynamic subset of cpu_present_mask,
95 * indicating those CPUs available for scheduling.
96 *
97 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically,
98 * depending on what ACPI reports as currently plugged in, otherwise
99 * cpu_present_mask is just a copy of cpu_possible_mask.
100 *
101 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not
102 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot.
103 *
104 * Subtleties:
105 * 1) UP ARCHes (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
106 * assumption that their single CPU is online. The UP
107 * cpu_{online,possible,present}_masks are placebos. Changing them
108 * will have no useful affect on the following num_*_cpus()
109 * and cpu_*() macros in the UP case. This ugliness is a UP
110 * optimization - don't waste any instructions or memory references
111 * asking if you're online or how many CPUs there are if there is
112 * only one CPU.
113 */
114
115extern struct cpumask __cpu_possible_mask;
116extern struct cpumask __cpu_online_mask;
117extern struct cpumask __cpu_enabled_mask;
118extern struct cpumask __cpu_present_mask;
119extern struct cpumask __cpu_active_mask;
120extern struct cpumask __cpu_dying_mask;
121#define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask)
122#define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask)
123#define cpu_enabled_mask ((const struct cpumask *)&__cpu_enabled_mask)
124#define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask)
125#define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask)
126#define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask)
127
128extern atomic_t __num_online_cpus;
129
130extern cpumask_t cpus_booted_once_mask;
131
132static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits)
133{
134#ifdef CONFIG_DEBUG_PER_CPU_MAPS
135 WARN_ON_ONCE(cpu >= bits);
136#endif /* CONFIG_DEBUG_PER_CPU_MAPS */
137}
138
139/* verify cpu argument to cpumask_* operators */
140static __always_inline unsigned int cpumask_check(unsigned int cpu)
141{
142 cpu_max_bits_warn(cpu, small_cpumask_bits);
143 return cpu;
144}
145
146/**
147 * cpumask_first - get the first cpu in a cpumask
148 * @srcp: the cpumask pointer
149 *
150 * Return: >= nr_cpu_ids if no cpus set.
151 */
152static __always_inline unsigned int cpumask_first(const struct cpumask *srcp)
153{
154 return find_first_bit(cpumask_bits(srcp), small_cpumask_bits);
155}
156
157/**
158 * cpumask_first_zero - get the first unset cpu in a cpumask
159 * @srcp: the cpumask pointer
160 *
161 * Return: >= nr_cpu_ids if all cpus are set.
162 */
163static __always_inline unsigned int cpumask_first_zero(const struct cpumask *srcp)
164{
165 return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits);
166}
167
168/**
169 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2
170 * @srcp1: the first input
171 * @srcp2: the second input
172 *
173 * Return: >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and().
174 */
175static __always_inline
176unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2)
177{
178 return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
179}
180
181/**
182 * cpumask_first_and_and - return the first cpu from *srcp1 & *srcp2 & *srcp3
183 * @srcp1: the first input
184 * @srcp2: the second input
185 * @srcp3: the third input
186 *
187 * Return: >= nr_cpu_ids if no cpus set in all.
188 */
189static __always_inline
190unsigned int cpumask_first_and_and(const struct cpumask *srcp1,
191 const struct cpumask *srcp2,
192 const struct cpumask *srcp3)
193{
194 return find_first_and_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
195 cpumask_bits(srcp3), small_cpumask_bits);
196}
197
198/**
199 * cpumask_last - get the last CPU in a cpumask
200 * @srcp: - the cpumask pointer
201 *
202 * Return: >= nr_cpumask_bits if no CPUs set.
203 */
204static __always_inline unsigned int cpumask_last(const struct cpumask *srcp)
205{
206 return find_last_bit(cpumask_bits(srcp), small_cpumask_bits);
207}
208
209/**
210 * cpumask_next - get the next cpu in a cpumask
211 * @n: the cpu prior to the place to search (i.e. return will be > @n)
212 * @srcp: the cpumask pointer
213 *
214 * Return: >= nr_cpu_ids if no further cpus set.
215 */
216static __always_inline
217unsigned int cpumask_next(int n, const struct cpumask *srcp)
218{
219 /* -1 is a legal arg here. */
220 if (n != -1)
221 cpumask_check(n);
222 return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1);
223}
224
225/**
226 * cpumask_next_zero - get the next unset cpu in a cpumask
227 * @n: the cpu prior to the place to search (i.e. return will be > @n)
228 * @srcp: the cpumask pointer
229 *
230 * Return: >= nr_cpu_ids if no further cpus unset.
231 */
232static __always_inline
233unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
234{
235 /* -1 is a legal arg here. */
236 if (n != -1)
237 cpumask_check(n);
238 return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1);
239}
240
241#if NR_CPUS == 1
242/* Uniprocessor: there is only one valid CPU */
243static __always_inline
244unsigned int cpumask_local_spread(unsigned int i, int node)
245{
246 return 0;
247}
248
249static __always_inline
250unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
251 const struct cpumask *src2p)
252{
253 return cpumask_first_and(src1p, src2p);
254}
255
256static __always_inline
257unsigned int cpumask_any_distribute(const struct cpumask *srcp)
258{
259 return cpumask_first(srcp);
260}
261#else
262unsigned int cpumask_local_spread(unsigned int i, int node);
263unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
264 const struct cpumask *src2p);
265unsigned int cpumask_any_distribute(const struct cpumask *srcp);
266#endif /* NR_CPUS */
267
268/**
269 * cpumask_next_and - get the next cpu in *src1p & *src2p
270 * @n: the cpu prior to the place to search (i.e. return will be > @n)
271 * @src1p: the first cpumask pointer
272 * @src2p: the second cpumask pointer
273 *
274 * Return: >= nr_cpu_ids if no further cpus set in both.
275 */
276static __always_inline
277unsigned int cpumask_next_and(int n, const struct cpumask *src1p,
278 const struct cpumask *src2p)
279{
280 /* -1 is a legal arg here. */
281 if (n != -1)
282 cpumask_check(n);
283 return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p),
284 small_cpumask_bits, n + 1);
285}
286
287/**
288 * cpumask_next_and_wrap - get the next cpu in *src1p & *src2p, starting from
289 * @n+1. If nothing found, wrap around and start from
290 * the beginning
291 * @n: the cpu prior to the place to search (i.e. search starts from @n+1)
292 * @src1p: the first cpumask pointer
293 * @src2p: the second cpumask pointer
294 *
295 * Return: next set bit, wrapped if needed, or >= nr_cpu_ids if @src1p & @src2p is empty.
296 */
297static __always_inline
298unsigned int cpumask_next_and_wrap(int n, const struct cpumask *src1p,
299 const struct cpumask *src2p)
300{
301 /* -1 is a legal arg here. */
302 if (n != -1)
303 cpumask_check(n);
304 return find_next_and_bit_wrap(cpumask_bits(src1p), cpumask_bits(src2p),
305 small_cpumask_bits, n + 1);
306}
307
308/**
309 * cpumask_next_wrap - get the next cpu in *src, starting from @n+1. If nothing
310 * found, wrap around and start from the beginning
311 * @n: the cpu prior to the place to search (i.e. search starts from @n+1)
312 * @src: cpumask pointer
313 *
314 * Return: next set bit, wrapped if needed, or >= nr_cpu_ids if @src is empty.
315 */
316static __always_inline
317unsigned int cpumask_next_wrap(int n, const struct cpumask *src)
318{
319 /* -1 is a legal arg here. */
320 if (n != -1)
321 cpumask_check(n);
322 return find_next_bit_wrap(cpumask_bits(src), small_cpumask_bits, n + 1);
323}
324
325/**
326 * for_each_cpu - iterate over every cpu in a mask
327 * @cpu: the (optionally unsigned) integer iterator
328 * @mask: the cpumask pointer
329 *
330 * After the loop, cpu is >= nr_cpu_ids.
331 */
332#define for_each_cpu(cpu, mask) \
333 for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits)
334
335/**
336 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location
337 * @cpu: the (optionally unsigned) integer iterator
338 * @mask: the cpumask pointer
339 * @start: the start location
340 *
341 * The implementation does not assume any bit in @mask is set (including @start).
342 *
343 * After the loop, cpu is >= nr_cpu_ids.
344 */
345#define for_each_cpu_wrap(cpu, mask, start) \
346 for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start)
347
348/**
349 * for_each_cpu_and - iterate over every cpu in both masks
350 * @cpu: the (optionally unsigned) integer iterator
351 * @mask1: the first cpumask pointer
352 * @mask2: the second cpumask pointer
353 *
354 * This saves a temporary CPU mask in many places. It is equivalent to:
355 * struct cpumask tmp;
356 * cpumask_and(&tmp, &mask1, &mask2);
357 * for_each_cpu(cpu, &tmp)
358 * ...
359 *
360 * After the loop, cpu is >= nr_cpu_ids.
361 */
362#define for_each_cpu_and(cpu, mask1, mask2) \
363 for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
364
365/**
366 * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding
367 * those present in another.
368 * @cpu: the (optionally unsigned) integer iterator
369 * @mask1: the first cpumask pointer
370 * @mask2: the second cpumask pointer
371 *
372 * This saves a temporary CPU mask in many places. It is equivalent to:
373 * struct cpumask tmp;
374 * cpumask_andnot(&tmp, &mask1, &mask2);
375 * for_each_cpu(cpu, &tmp)
376 * ...
377 *
378 * After the loop, cpu is >= nr_cpu_ids.
379 */
380#define for_each_cpu_andnot(cpu, mask1, mask2) \
381 for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
382
383/**
384 * for_each_cpu_or - iterate over every cpu present in either mask
385 * @cpu: the (optionally unsigned) integer iterator
386 * @mask1: the first cpumask pointer
387 * @mask2: the second cpumask pointer
388 *
389 * This saves a temporary CPU mask in many places. It is equivalent to:
390 * struct cpumask tmp;
391 * cpumask_or(&tmp, &mask1, &mask2);
392 * for_each_cpu(cpu, &tmp)
393 * ...
394 *
395 * After the loop, cpu is >= nr_cpu_ids.
396 */
397#define for_each_cpu_or(cpu, mask1, mask2) \
398 for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
399
400/**
401 * for_each_cpu_from - iterate over CPUs present in @mask, from @cpu to the end of @mask.
402 * @cpu: the (optionally unsigned) integer iterator
403 * @mask: the cpumask pointer
404 *
405 * After the loop, cpu is >= nr_cpu_ids.
406 */
407#define for_each_cpu_from(cpu, mask) \
408 for_each_set_bit_from(cpu, cpumask_bits(mask), small_cpumask_bits)
409
410/**
411 * cpumask_any_but - return an arbitrary cpu in a cpumask, but not this one.
412 * @mask: the cpumask to search
413 * @cpu: the cpu to ignore.
414 *
415 * Often used to find any cpu but smp_processor_id() in a mask.
416 * Return: >= nr_cpu_ids if no cpus set.
417 */
418static __always_inline
419unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu)
420{
421 unsigned int i;
422
423 cpumask_check(cpu);
424 for_each_cpu(i, mask)
425 if (i != cpu)
426 break;
427 return i;
428}
429
430/**
431 * cpumask_any_and_but - pick an arbitrary cpu from *mask1 & *mask2, but not this one.
432 * @mask1: the first input cpumask
433 * @mask2: the second input cpumask
434 * @cpu: the cpu to ignore
435 *
436 * Returns >= nr_cpu_ids if no cpus set.
437 */
438static __always_inline
439unsigned int cpumask_any_and_but(const struct cpumask *mask1,
440 const struct cpumask *mask2,
441 unsigned int cpu)
442{
443 unsigned int i;
444
445 cpumask_check(cpu);
446 i = cpumask_first_and(mask1, mask2);
447 if (i != cpu)
448 return i;
449
450 return cpumask_next_and(cpu, mask1, mask2);
451}
452
453/**
454 * cpumask_nth - get the Nth cpu in a cpumask
455 * @srcp: the cpumask pointer
456 * @cpu: the Nth cpu to find, starting from 0
457 *
458 * Return: >= nr_cpu_ids if such cpu doesn't exist.
459 */
460static __always_inline
461unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp)
462{
463 return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu));
464}
465
466/**
467 * cpumask_nth_and - get the Nth cpu in 2 cpumasks
468 * @srcp1: the cpumask pointer
469 * @srcp2: the cpumask pointer
470 * @cpu: the Nth cpu to find, starting from 0
471 *
472 * Return: >= nr_cpu_ids if such cpu doesn't exist.
473 */
474static __always_inline
475unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1,
476 const struct cpumask *srcp2)
477{
478 return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
479 small_cpumask_bits, cpumask_check(cpu));
480}
481
482/**
483 * cpumask_nth_andnot - get the Nth cpu set in 1st cpumask, and clear in 2nd.
484 * @srcp1: the cpumask pointer
485 * @srcp2: the cpumask pointer
486 * @cpu: the Nth cpu to find, starting from 0
487 *
488 * Return: >= nr_cpu_ids if such cpu doesn't exist.
489 */
490static __always_inline
491unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1,
492 const struct cpumask *srcp2)
493{
494 return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
495 small_cpumask_bits, cpumask_check(cpu));
496}
497
498/**
499 * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd.
500 * @srcp1: the cpumask pointer
501 * @srcp2: the cpumask pointer
502 * @srcp3: the cpumask pointer
503 * @cpu: the Nth cpu to find, starting from 0
504 *
505 * Return: >= nr_cpu_ids if such cpu doesn't exist.
506 */
507static __always_inline
508unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1,
509 const struct cpumask *srcp2,
510 const struct cpumask *srcp3)
511{
512 return find_nth_and_andnot_bit(cpumask_bits(srcp1),
513 cpumask_bits(srcp2),
514 cpumask_bits(srcp3),
515 small_cpumask_bits, cpumask_check(cpu));
516}
517
518#define CPU_BITS_NONE \
519{ \
520 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
521}
522
523#define CPU_BITS_CPU0 \
524{ \
525 [0] = 1UL \
526}
527
528/**
529 * cpumask_set_cpu - set a cpu in a cpumask
530 * @cpu: cpu number (< nr_cpu_ids)
531 * @dstp: the cpumask pointer
532 */
533static __always_inline
534void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
535{
536 set_bit(cpumask_check(cpu), cpumask_bits(dstp));
537}
538
539static __always_inline
540void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
541{
542 __set_bit(cpumask_check(cpu), cpumask_bits(dstp));
543}
544
545
546/**
547 * cpumask_clear_cpu - clear a cpu in a cpumask
548 * @cpu: cpu number (< nr_cpu_ids)
549 * @dstp: the cpumask pointer
550 */
551static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
552{
553 clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
554}
555
556static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp)
557{
558 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
559}
560
561/**
562 * cpumask_assign_cpu - assign a cpu in a cpumask
563 * @cpu: cpu number (< nr_cpu_ids)
564 * @dstp: the cpumask pointer
565 * @bool: the value to assign
566 */
567static __always_inline void cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value)
568{
569 assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value);
570}
571
572static __always_inline void __cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value)
573{
574 __assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value);
575}
576
577/**
578 * cpumask_test_cpu - test for a cpu in a cpumask
579 * @cpu: cpu number (< nr_cpu_ids)
580 * @cpumask: the cpumask pointer
581 *
582 * Return: true if @cpu is set in @cpumask, else returns false
583 */
584static __always_inline
585bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask)
586{
587 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask)));
588}
589
590/**
591 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
592 * @cpu: cpu number (< nr_cpu_ids)
593 * @cpumask: the cpumask pointer
594 *
595 * test_and_set_bit wrapper for cpumasks.
596 *
597 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false
598 */
599static __always_inline
600bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
601{
602 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
603}
604
605/**
606 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask
607 * @cpu: cpu number (< nr_cpu_ids)
608 * @cpumask: the cpumask pointer
609 *
610 * test_and_clear_bit wrapper for cpumasks.
611 *
612 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false
613 */
614static __always_inline
615bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask)
616{
617 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask));
618}
619
620/**
621 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
622 * @dstp: the cpumask pointer
623 */
624static __always_inline void cpumask_setall(struct cpumask *dstp)
625{
626 if (small_const_nbits(small_cpumask_bits)) {
627 cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits);
628 return;
629 }
630 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits);
631}
632
633/**
634 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
635 * @dstp: the cpumask pointer
636 */
637static __always_inline void cpumask_clear(struct cpumask *dstp)
638{
639 bitmap_zero(cpumask_bits(dstp), large_cpumask_bits);
640}
641
642/**
643 * cpumask_and - *dstp = *src1p & *src2p
644 * @dstp: the cpumask result
645 * @src1p: the first input
646 * @src2p: the second input
647 *
648 * Return: false if *@dstp is empty, else returns true
649 */
650static __always_inline
651bool cpumask_and(struct cpumask *dstp, const struct cpumask *src1p,
652 const struct cpumask *src2p)
653{
654 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
655 cpumask_bits(src2p), small_cpumask_bits);
656}
657
658/**
659 * cpumask_or - *dstp = *src1p | *src2p
660 * @dstp: the cpumask result
661 * @src1p: the first input
662 * @src2p: the second input
663 */
664static __always_inline
665void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
666 const struct cpumask *src2p)
667{
668 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
669 cpumask_bits(src2p), small_cpumask_bits);
670}
671
672/**
673 * cpumask_xor - *dstp = *src1p ^ *src2p
674 * @dstp: the cpumask result
675 * @src1p: the first input
676 * @src2p: the second input
677 */
678static __always_inline
679void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p,
680 const struct cpumask *src2p)
681{
682 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
683 cpumask_bits(src2p), small_cpumask_bits);
684}
685
686/**
687 * cpumask_andnot - *dstp = *src1p & ~*src2p
688 * @dstp: the cpumask result
689 * @src1p: the first input
690 * @src2p: the second input
691 *
692 * Return: false if *@dstp is empty, else returns true
693 */
694static __always_inline
695bool cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p,
696 const struct cpumask *src2p)
697{
698 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
699 cpumask_bits(src2p), small_cpumask_bits);
700}
701
702/**
703 * cpumask_equal - *src1p == *src2p
704 * @src1p: the first input
705 * @src2p: the second input
706 *
707 * Return: true if the cpumasks are equal, false if not
708 */
709static __always_inline
710bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p)
711{
712 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
713 small_cpumask_bits);
714}
715
716/**
717 * cpumask_or_equal - *src1p | *src2p == *src3p
718 * @src1p: the first input
719 * @src2p: the second input
720 * @src3p: the third input
721 *
722 * Return: true if first cpumask ORed with second cpumask == third cpumask,
723 * otherwise false
724 */
725static __always_inline
726bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p,
727 const struct cpumask *src3p)
728{
729 return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p),
730 cpumask_bits(src3p), small_cpumask_bits);
731}
732
733/**
734 * cpumask_intersects - (*src1p & *src2p) != 0
735 * @src1p: the first input
736 * @src2p: the second input
737 *
738 * Return: true if first cpumask ANDed with second cpumask is non-empty,
739 * otherwise false
740 */
741static __always_inline
742bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p)
743{
744 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
745 small_cpumask_bits);
746}
747
748/**
749 * cpumask_subset - (*src1p & ~*src2p) == 0
750 * @src1p: the first input
751 * @src2p: the second input
752 *
753 * Return: true if *@src1p is a subset of *@src2p, else returns false
754 */
755static __always_inline
756bool cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p)
757{
758 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
759 small_cpumask_bits);
760}
761
762/**
763 * cpumask_empty - *srcp == 0
764 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
765 *
766 * Return: true if srcp is empty (has no bits set), else false
767 */
768static __always_inline bool cpumask_empty(const struct cpumask *srcp)
769{
770 return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits);
771}
772
773/**
774 * cpumask_full - *srcp == 0xFFFFFFFF...
775 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
776 *
777 * Return: true if srcp is full (has all bits set), else false
778 */
779static __always_inline bool cpumask_full(const struct cpumask *srcp)
780{
781 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
782}
783
784/**
785 * cpumask_weight - Count of bits in *srcp
786 * @srcp: the cpumask to count bits (< nr_cpu_ids) in.
787 *
788 * Return: count of bits set in *srcp
789 */
790static __always_inline unsigned int cpumask_weight(const struct cpumask *srcp)
791{
792 return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits);
793}
794
795/**
796 * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2)
797 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in.
798 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in.
799 *
800 * Return: count of bits set in both *srcp1 and *srcp2
801 */
802static __always_inline
803unsigned int cpumask_weight_and(const struct cpumask *srcp1, const struct cpumask *srcp2)
804{
805 return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
806}
807
808/**
809 * cpumask_weight_andnot - Count of bits in (*srcp1 & ~*srcp2)
810 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in.
811 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in.
812 *
813 * Return: count of bits set in both *srcp1 and *srcp2
814 */
815static __always_inline
816unsigned int cpumask_weight_andnot(const struct cpumask *srcp1,
817 const struct cpumask *srcp2)
818{
819 return bitmap_weight_andnot(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
820}
821
822/**
823 * cpumask_shift_right - *dstp = *srcp >> n
824 * @dstp: the cpumask result
825 * @srcp: the input to shift
826 * @n: the number of bits to shift by
827 */
828static __always_inline
829void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n)
830{
831 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
832 small_cpumask_bits);
833}
834
835/**
836 * cpumask_shift_left - *dstp = *srcp << n
837 * @dstp: the cpumask result
838 * @srcp: the input to shift
839 * @n: the number of bits to shift by
840 */
841static __always_inline
842void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n)
843{
844 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
845 nr_cpumask_bits);
846}
847
848/**
849 * cpumask_copy - *dstp = *srcp
850 * @dstp: the result
851 * @srcp: the input cpumask
852 */
853static __always_inline
854void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp)
855{
856 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits);
857}
858
859/**
860 * cpumask_any - pick an arbitrary cpu from *srcp
861 * @srcp: the input cpumask
862 *
863 * Return: >= nr_cpu_ids if no cpus set.
864 */
865#define cpumask_any(srcp) cpumask_first(srcp)
866
867/**
868 * cpumask_any_and - pick an arbitrary cpu from *mask1 & *mask2
869 * @mask1: the first input cpumask
870 * @mask2: the second input cpumask
871 *
872 * Return: >= nr_cpu_ids if no cpus set.
873 */
874#define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
875
876/**
877 * cpumask_of - the cpumask containing just a given cpu
878 * @cpu: the cpu (<= nr_cpu_ids)
879 */
880#define cpumask_of(cpu) (get_cpu_mask(cpu))
881
882/**
883 * cpumask_parse_user - extract a cpumask from a user string
884 * @buf: the buffer to extract from
885 * @len: the length of the buffer
886 * @dstp: the cpumask to set.
887 *
888 * Return: -errno, or 0 for success.
889 */
890static __always_inline
891int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp)
892{
893 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
894}
895
896/**
897 * cpumask_parselist_user - extract a cpumask from a user string
898 * @buf: the buffer to extract from
899 * @len: the length of the buffer
900 * @dstp: the cpumask to set.
901 *
902 * Return: -errno, or 0 for success.
903 */
904static __always_inline
905int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp)
906{
907 return bitmap_parselist_user(buf, len, cpumask_bits(dstp),
908 nr_cpumask_bits);
909}
910
911/**
912 * cpumask_parse - extract a cpumask from a string
913 * @buf: the buffer to extract from
914 * @dstp: the cpumask to set.
915 *
916 * Return: -errno, or 0 for success.
917 */
918static __always_inline int cpumask_parse(const char *buf, struct cpumask *dstp)
919{
920 return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits);
921}
922
923/**
924 * cpulist_parse - extract a cpumask from a user string of ranges
925 * @buf: the buffer to extract from
926 * @dstp: the cpumask to set.
927 *
928 * Return: -errno, or 0 for success.
929 */
930static __always_inline int cpulist_parse(const char *buf, struct cpumask *dstp)
931{
932 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits);
933}
934
935/**
936 * cpumask_size - calculate size to allocate for a 'struct cpumask' in bytes
937 *
938 * Return: size to allocate for a &struct cpumask in bytes
939 */
940static __always_inline unsigned int cpumask_size(void)
941{
942 return bitmap_size(large_cpumask_bits);
943}
944
945#ifdef CONFIG_CPUMASK_OFFSTACK
946
947#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x)
948#define __cpumask_var_read_mostly __read_mostly
949
950bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
951
952static __always_inline
953bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node)
954{
955 return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node);
956}
957
958/**
959 * alloc_cpumask_var - allocate a struct cpumask
960 * @mask: pointer to cpumask_var_t where the cpumask is returned
961 * @flags: GFP_ flags
962 *
963 * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is
964 * a nop returning a constant 1 (in <linux/cpumask.h>).
965 *
966 * See alloc_cpumask_var_node.
967 *
968 * Return: %true if allocation succeeded, %false if not
969 */
970static __always_inline
971bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
972{
973 return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE);
974}
975
976static __always_inline
977bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
978{
979 return alloc_cpumask_var(mask, flags | __GFP_ZERO);
980}
981
982void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
983void free_cpumask_var(cpumask_var_t mask);
984void free_bootmem_cpumask_var(cpumask_var_t mask);
985
986static __always_inline bool cpumask_available(cpumask_var_t mask)
987{
988 return mask != NULL;
989}
990
991#else
992
993#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x)
994#define __cpumask_var_read_mostly
995
996static __always_inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
997{
998 return true;
999}
1000
1001static __always_inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
1002 int node)
1003{
1004 return true;
1005}
1006
1007static __always_inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
1008{
1009 cpumask_clear(*mask);
1010 return true;
1011}
1012
1013static __always_inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
1014 int node)
1015{
1016 cpumask_clear(*mask);
1017 return true;
1018}
1019
1020static __always_inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
1021{
1022}
1023
1024static __always_inline void free_cpumask_var(cpumask_var_t mask)
1025{
1026}
1027
1028static __always_inline void free_bootmem_cpumask_var(cpumask_var_t mask)
1029{
1030}
1031
1032static __always_inline bool cpumask_available(cpumask_var_t mask)
1033{
1034 return true;
1035}
1036#endif /* CONFIG_CPUMASK_OFFSTACK */
1037
1038DEFINE_FREE(free_cpumask_var, struct cpumask *, if (_T) free_cpumask_var(_T));
1039
1040/* It's common to want to use cpu_all_mask in struct member initializers,
1041 * so it has to refer to an address rather than a pointer. */
1042extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
1043#define cpu_all_mask to_cpumask(cpu_all_bits)
1044
1045/* First bits of cpu_bit_bitmap are in fact unset. */
1046#define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
1047
1048#if NR_CPUS == 1
1049/* Uniprocessor: the possible/online/present masks are always "1" */
1050#define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
1051#define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
1052#define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
1053
1054#define for_each_possible_cpu_wrap(cpu, start) \
1055 for ((void)(start), (cpu) = 0; (cpu) < 1; (cpu)++)
1056#define for_each_online_cpu_wrap(cpu, start) \
1057 for ((void)(start), (cpu) = 0; (cpu) < 1; (cpu)++)
1058#else
1059#define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask)
1060#define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask)
1061#define for_each_enabled_cpu(cpu) for_each_cpu((cpu), cpu_enabled_mask)
1062#define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask)
1063
1064#define for_each_possible_cpu_wrap(cpu, start) \
1065 for_each_cpu_wrap((cpu), cpu_possible_mask, (start))
1066#define for_each_online_cpu_wrap(cpu, start) \
1067 for_each_cpu_wrap((cpu), cpu_online_mask, (start))
1068#endif
1069
1070/* Wrappers for arch boot code to manipulate normally-constant masks */
1071void init_cpu_present(const struct cpumask *src);
1072void init_cpu_possible(const struct cpumask *src);
1073
1074#define assign_cpu(cpu, mask, val) \
1075 assign_bit(cpumask_check(cpu), cpumask_bits(mask), (val))
1076
1077#define set_cpu_possible(cpu, possible) assign_cpu((cpu), &__cpu_possible_mask, (possible))
1078#define set_cpu_enabled(cpu, enabled) assign_cpu((cpu), &__cpu_enabled_mask, (enabled))
1079#define set_cpu_present(cpu, present) assign_cpu((cpu), &__cpu_present_mask, (present))
1080#define set_cpu_active(cpu, active) assign_cpu((cpu), &__cpu_active_mask, (active))
1081#define set_cpu_dying(cpu, dying) assign_cpu((cpu), &__cpu_dying_mask, (dying))
1082
1083void set_cpu_online(unsigned int cpu, bool online);
1084
1085/**
1086 * to_cpumask - convert a NR_CPUS bitmap to a struct cpumask *
1087 * @bitmap: the bitmap
1088 *
1089 * There are a few places where cpumask_var_t isn't appropriate and
1090 * static cpumasks must be used (eg. very early boot), yet we don't
1091 * expose the definition of 'struct cpumask'.
1092 *
1093 * This does the conversion, and can be used as a constant initializer.
1094 */
1095#define to_cpumask(bitmap) \
1096 ((struct cpumask *)(1 ? (bitmap) \
1097 : (void *)sizeof(__check_is_bitmap(bitmap))))
1098
1099static __always_inline int __check_is_bitmap(const unsigned long *bitmap)
1100{
1101 return 1;
1102}
1103
1104/*
1105 * Special-case data structure for "single bit set only" constant CPU masks.
1106 *
1107 * We pre-generate all the 64 (or 32) possible bit positions, with enough
1108 * padding to the left and the right, and return the constant pointer
1109 * appropriately offset.
1110 */
1111extern const unsigned long
1112 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
1113
1114static __always_inline const struct cpumask *get_cpu_mask(unsigned int cpu)
1115{
1116 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
1117 p -= cpu / BITS_PER_LONG;
1118 return to_cpumask(p);
1119}
1120
1121#if NR_CPUS > 1
1122/**
1123 * num_online_cpus() - Read the number of online CPUs
1124 *
1125 * Despite the fact that __num_online_cpus is of type atomic_t, this
1126 * interface gives only a momentary snapshot and is not protected against
1127 * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held
1128 * region.
1129 *
1130 * Return: momentary snapshot of the number of online CPUs
1131 */
1132static __always_inline unsigned int num_online_cpus(void)
1133{
1134 return raw_atomic_read(&__num_online_cpus);
1135}
1136#define num_possible_cpus() cpumask_weight(cpu_possible_mask)
1137#define num_enabled_cpus() cpumask_weight(cpu_enabled_mask)
1138#define num_present_cpus() cpumask_weight(cpu_present_mask)
1139#define num_active_cpus() cpumask_weight(cpu_active_mask)
1140
1141static __always_inline bool cpu_online(unsigned int cpu)
1142{
1143 return cpumask_test_cpu(cpu, cpu_online_mask);
1144}
1145
1146static __always_inline bool cpu_enabled(unsigned int cpu)
1147{
1148 return cpumask_test_cpu(cpu, cpu_enabled_mask);
1149}
1150
1151static __always_inline bool cpu_possible(unsigned int cpu)
1152{
1153 return cpumask_test_cpu(cpu, cpu_possible_mask);
1154}
1155
1156static __always_inline bool cpu_present(unsigned int cpu)
1157{
1158 return cpumask_test_cpu(cpu, cpu_present_mask);
1159}
1160
1161static __always_inline bool cpu_active(unsigned int cpu)
1162{
1163 return cpumask_test_cpu(cpu, cpu_active_mask);
1164}
1165
1166static __always_inline bool cpu_dying(unsigned int cpu)
1167{
1168 return cpumask_test_cpu(cpu, cpu_dying_mask);
1169}
1170
1171#else
1172
1173#define num_online_cpus() 1U
1174#define num_possible_cpus() 1U
1175#define num_enabled_cpus() 1U
1176#define num_present_cpus() 1U
1177#define num_active_cpus() 1U
1178
1179static __always_inline bool cpu_online(unsigned int cpu)
1180{
1181 return cpu == 0;
1182}
1183
1184static __always_inline bool cpu_possible(unsigned int cpu)
1185{
1186 return cpu == 0;
1187}
1188
1189static __always_inline bool cpu_enabled(unsigned int cpu)
1190{
1191 return cpu == 0;
1192}
1193
1194static __always_inline bool cpu_present(unsigned int cpu)
1195{
1196 return cpu == 0;
1197}
1198
1199static __always_inline bool cpu_active(unsigned int cpu)
1200{
1201 return cpu == 0;
1202}
1203
1204static __always_inline bool cpu_dying(unsigned int cpu)
1205{
1206 return false;
1207}
1208
1209#endif /* NR_CPUS > 1 */
1210
1211#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
1212
1213#if NR_CPUS <= BITS_PER_LONG
1214#define CPU_BITS_ALL \
1215{ \
1216 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1217}
1218
1219#else /* NR_CPUS > BITS_PER_LONG */
1220
1221#define CPU_BITS_ALL \
1222{ \
1223 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
1224 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1225}
1226#endif /* NR_CPUS > BITS_PER_LONG */
1227
1228/**
1229 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either
1230 * as comma-separated list of cpus or hex values of cpumask
1231 * @list: indicates whether the cpumap must be list
1232 * @mask: the cpumask to copy
1233 * @buf: the buffer to copy into
1234 *
1235 * Return: the length of the (null-terminated) @buf string, zero if
1236 * nothing is copied.
1237 */
1238static __always_inline ssize_t
1239cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
1240{
1241 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
1242 nr_cpu_ids);
1243}
1244
1245/**
1246 * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as
1247 * hex values of cpumask
1248 *
1249 * @buf: the buffer to copy into
1250 * @mask: the cpumask to copy
1251 * @off: in the string from which we are copying, we copy to @buf
1252 * @count: the maximum number of bytes to print
1253 *
1254 * The function prints the cpumask into the buffer as hex values of
1255 * cpumask; Typically used by bin_attribute to export cpumask bitmask
1256 * ABI.
1257 *
1258 * Return: the length of how many bytes have been copied, excluding
1259 * terminating '\0'.
1260 */
1261static __always_inline
1262ssize_t cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask,
1263 loff_t off, size_t count)
1264{
1265 return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask),
1266 nr_cpu_ids, off, count) - 1;
1267}
1268
1269/**
1270 * cpumap_print_list_to_buf - copies the cpumask into the buffer as
1271 * comma-separated list of cpus
1272 * @buf: the buffer to copy into
1273 * @mask: the cpumask to copy
1274 * @off: in the string from which we are copying, we copy to @buf
1275 * @count: the maximum number of bytes to print
1276 *
1277 * Everything is same with the above cpumap_print_bitmask_to_buf()
1278 * except the print format.
1279 *
1280 * Return: the length of how many bytes have been copied, excluding
1281 * terminating '\0'.
1282 */
1283static __always_inline
1284ssize_t cpumap_print_list_to_buf(char *buf, const struct cpumask *mask,
1285 loff_t off, size_t count)
1286{
1287 return bitmap_print_list_to_buf(buf, cpumask_bits(mask),
1288 nr_cpu_ids, off, count) - 1;
1289}
1290
1291#if NR_CPUS <= BITS_PER_LONG
1292#define CPU_MASK_ALL \
1293(cpumask_t) { { \
1294 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1295} }
1296#else
1297#define CPU_MASK_ALL \
1298(cpumask_t) { { \
1299 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
1300 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1301} }
1302#endif /* NR_CPUS > BITS_PER_LONG */
1303
1304#define CPU_MASK_NONE \
1305(cpumask_t) { { \
1306 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
1307} }
1308
1309#define CPU_MASK_CPU0 \
1310(cpumask_t) { { \
1311 [0] = 1UL \
1312} }
1313
1314/*
1315 * Provide a valid theoretical max size for cpumap and cpulist sysfs files
1316 * to avoid breaking userspace which may allocate a buffer based on the size
1317 * reported by e.g. fstat.
1318 *
1319 * for cpumap NR_CPUS * 9/32 - 1 should be an exact length.
1320 *
1321 * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up
1322 * to 2 orders of magnitude larger than 8192. And then we divide by 2 to
1323 * cover a worst-case of every other cpu being on one of two nodes for a
1324 * very large NR_CPUS.
1325 *
1326 * Use PAGE_SIZE as a minimum for smaller configurations while avoiding
1327 * unsigned comparison to -1.
1328 */
1329#define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \
1330 ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE)
1331#define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE)
1332
1333#endif /* __LINUX_CPUMASK_H */