Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4#ifndef _LINUX_BPF_H
5#define _LINUX_BPF_H 1
6
7#include <uapi/linux/bpf.h>
8#include <uapi/linux/filter.h>
9
10#include <linux/workqueue.h>
11#include <linux/file.h>
12#include <linux/percpu.h>
13#include <linux/err.h>
14#include <linux/rbtree_latch.h>
15#include <linux/numa.h>
16#include <linux/mm_types.h>
17#include <linux/wait.h>
18#include <linux/refcount.h>
19#include <linux/mutex.h>
20#include <linux/module.h>
21#include <linux/kallsyms.h>
22#include <linux/capability.h>
23#include <linux/sched/mm.h>
24#include <linux/slab.h>
25#include <linux/percpu-refcount.h>
26#include <linux/stddef.h>
27#include <linux/bpfptr.h>
28#include <linux/btf.h>
29#include <linux/rcupdate_trace.h>
30#include <linux/static_call.h>
31#include <linux/memcontrol.h>
32#include <linux/cfi.h>
33#include <asm/rqspinlock.h>
34
35struct bpf_verifier_env;
36struct bpf_verifier_log;
37struct perf_event;
38struct bpf_prog;
39struct bpf_prog_aux;
40struct bpf_map;
41struct bpf_arena;
42struct sock;
43struct seq_file;
44struct btf;
45struct btf_type;
46struct exception_table_entry;
47struct seq_operations;
48struct bpf_iter_aux_info;
49struct bpf_local_storage;
50struct bpf_local_storage_map;
51struct kobject;
52struct mem_cgroup;
53struct module;
54struct bpf_func_state;
55struct ftrace_ops;
56struct cgroup;
57struct bpf_token;
58struct user_namespace;
59struct super_block;
60struct inode;
61
62extern struct idr btf_idr;
63extern spinlock_t btf_idr_lock;
64extern struct kobject *btf_kobj;
65extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
66extern bool bpf_global_ma_set;
67
68typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
69typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
70 struct bpf_iter_aux_info *aux);
71typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
72typedef unsigned int (*bpf_func_t)(const void *,
73 const struct bpf_insn *);
74struct bpf_iter_seq_info {
75 const struct seq_operations *seq_ops;
76 bpf_iter_init_seq_priv_t init_seq_private;
77 bpf_iter_fini_seq_priv_t fini_seq_private;
78 u32 seq_priv_size;
79};
80
81/* map is generic key/value storage optionally accessible by eBPF programs */
82struct bpf_map_ops {
83 /* funcs callable from userspace (via syscall) */
84 int (*map_alloc_check)(union bpf_attr *attr);
85 struct bpf_map *(*map_alloc)(union bpf_attr *attr);
86 void (*map_release)(struct bpf_map *map, struct file *map_file);
87 void (*map_free)(struct bpf_map *map);
88 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
89 void (*map_release_uref)(struct bpf_map *map);
90 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
91 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
92 union bpf_attr __user *uattr);
93 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
94 void *value, u64 flags);
95 int (*map_lookup_and_delete_batch)(struct bpf_map *map,
96 const union bpf_attr *attr,
97 union bpf_attr __user *uattr);
98 int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
99 const union bpf_attr *attr,
100 union bpf_attr __user *uattr);
101 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
102 union bpf_attr __user *uattr);
103
104 /* funcs callable from userspace and from eBPF programs */
105 void *(*map_lookup_elem)(struct bpf_map *map, void *key);
106 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
107 long (*map_delete_elem)(struct bpf_map *map, void *key);
108 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
109 long (*map_pop_elem)(struct bpf_map *map, void *value);
110 long (*map_peek_elem)(struct bpf_map *map, void *value);
111 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
112
113 /* funcs called by prog_array and perf_event_array map */
114 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
115 int fd);
116 /* If need_defer is true, the implementation should guarantee that
117 * the to-be-put element is still alive before the bpf program, which
118 * may manipulate it, exists.
119 */
120 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
121 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
122 u32 (*map_fd_sys_lookup_elem)(void *ptr);
123 void (*map_seq_show_elem)(struct bpf_map *map, void *key,
124 struct seq_file *m);
125 int (*map_check_btf)(const struct bpf_map *map,
126 const struct btf *btf,
127 const struct btf_type *key_type,
128 const struct btf_type *value_type);
129
130 /* Prog poke tracking helpers. */
131 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
132 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
133 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
134 struct bpf_prog *new);
135
136 /* Direct value access helpers. */
137 int (*map_direct_value_addr)(const struct bpf_map *map,
138 u64 *imm, u32 off);
139 int (*map_direct_value_meta)(const struct bpf_map *map,
140 u64 imm, u32 *off);
141 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
142 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
143 struct poll_table_struct *pts);
144 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
145 unsigned long len, unsigned long pgoff,
146 unsigned long flags);
147
148 /* Functions called by bpf_local_storage maps */
149 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
150 void *owner, u32 size);
151 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
152 void *owner, u32 size);
153 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
154
155 /* Misc helpers.*/
156 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
157
158 /* map_meta_equal must be implemented for maps that can be
159 * used as an inner map. It is a runtime check to ensure
160 * an inner map can be inserted to an outer map.
161 *
162 * Some properties of the inner map has been used during the
163 * verification time. When inserting an inner map at the runtime,
164 * map_meta_equal has to ensure the inserting map has the same
165 * properties that the verifier has used earlier.
166 */
167 bool (*map_meta_equal)(const struct bpf_map *meta0,
168 const struct bpf_map *meta1);
169
170
171 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
172 struct bpf_func_state *caller,
173 struct bpf_func_state *callee);
174 long (*map_for_each_callback)(struct bpf_map *map,
175 bpf_callback_t callback_fn,
176 void *callback_ctx, u64 flags);
177
178 u64 (*map_mem_usage)(const struct bpf_map *map);
179
180 /* BTF id of struct allocated by map_alloc */
181 int *map_btf_id;
182
183 /* bpf_iter info used to open a seq_file */
184 const struct bpf_iter_seq_info *iter_seq_info;
185};
186
187enum {
188 /* Support at most 11 fields in a BTF type */
189 BTF_FIELDS_MAX = 11,
190};
191
192enum btf_field_type {
193 BPF_SPIN_LOCK = (1 << 0),
194 BPF_TIMER = (1 << 1),
195 BPF_KPTR_UNREF = (1 << 2),
196 BPF_KPTR_REF = (1 << 3),
197 BPF_KPTR_PERCPU = (1 << 4),
198 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
199 BPF_LIST_HEAD = (1 << 5),
200 BPF_LIST_NODE = (1 << 6),
201 BPF_RB_ROOT = (1 << 7),
202 BPF_RB_NODE = (1 << 8),
203 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
204 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
205 BPF_REFCOUNT = (1 << 9),
206 BPF_WORKQUEUE = (1 << 10),
207 BPF_UPTR = (1 << 11),
208 BPF_RES_SPIN_LOCK = (1 << 12),
209};
210
211typedef void (*btf_dtor_kfunc_t)(void *);
212
213struct btf_field_kptr {
214 struct btf *btf;
215 struct module *module;
216 /* dtor used if btf_is_kernel(btf), otherwise the type is
217 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used
218 */
219 btf_dtor_kfunc_t dtor;
220 u32 btf_id;
221};
222
223struct btf_field_graph_root {
224 struct btf *btf;
225 u32 value_btf_id;
226 u32 node_offset;
227 struct btf_record *value_rec;
228};
229
230struct btf_field {
231 u32 offset;
232 u32 size;
233 enum btf_field_type type;
234 union {
235 struct btf_field_kptr kptr;
236 struct btf_field_graph_root graph_root;
237 };
238};
239
240struct btf_record {
241 u32 cnt;
242 u32 field_mask;
243 int spin_lock_off;
244 int res_spin_lock_off;
245 int timer_off;
246 int wq_off;
247 int refcount_off;
248 struct btf_field fields[];
249};
250
251/* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
252struct bpf_rb_node_kern {
253 struct rb_node rb_node;
254 void *owner;
255} __attribute__((aligned(8)));
256
257/* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
258struct bpf_list_node_kern {
259 struct list_head list_head;
260 void *owner;
261} __attribute__((aligned(8)));
262
263struct bpf_map {
264 const struct bpf_map_ops *ops;
265 struct bpf_map *inner_map_meta;
266#ifdef CONFIG_SECURITY
267 void *security;
268#endif
269 enum bpf_map_type map_type;
270 u32 key_size;
271 u32 value_size;
272 u32 max_entries;
273 u64 map_extra; /* any per-map-type extra fields */
274 u32 map_flags;
275 u32 id;
276 struct btf_record *record;
277 int numa_node;
278 u32 btf_key_type_id;
279 u32 btf_value_type_id;
280 u32 btf_vmlinux_value_type_id;
281 struct btf *btf;
282#ifdef CONFIG_MEMCG
283 struct obj_cgroup *objcg;
284#endif
285 char name[BPF_OBJ_NAME_LEN];
286 struct mutex freeze_mutex;
287 atomic64_t refcnt;
288 atomic64_t usercnt;
289 /* rcu is used before freeing and work is only used during freeing */
290 union {
291 struct work_struct work;
292 struct rcu_head rcu;
293 };
294 atomic64_t writecnt;
295 /* 'Ownership' of program-containing map is claimed by the first program
296 * that is going to use this map or by the first program which FD is
297 * stored in the map to make sure that all callers and callees have the
298 * same prog type, JITed flag and xdp_has_frags flag.
299 */
300 struct {
301 const struct btf_type *attach_func_proto;
302 spinlock_t lock;
303 enum bpf_prog_type type;
304 bool jited;
305 bool xdp_has_frags;
306 } owner;
307 bool bypass_spec_v1;
308 bool frozen; /* write-once; write-protected by freeze_mutex */
309 bool free_after_mult_rcu_gp;
310 bool free_after_rcu_gp;
311 atomic64_t sleepable_refcnt;
312 s64 __percpu *elem_count;
313};
314
315static inline const char *btf_field_type_name(enum btf_field_type type)
316{
317 switch (type) {
318 case BPF_SPIN_LOCK:
319 return "bpf_spin_lock";
320 case BPF_RES_SPIN_LOCK:
321 return "bpf_res_spin_lock";
322 case BPF_TIMER:
323 return "bpf_timer";
324 case BPF_WORKQUEUE:
325 return "bpf_wq";
326 case BPF_KPTR_UNREF:
327 case BPF_KPTR_REF:
328 return "kptr";
329 case BPF_KPTR_PERCPU:
330 return "percpu_kptr";
331 case BPF_UPTR:
332 return "uptr";
333 case BPF_LIST_HEAD:
334 return "bpf_list_head";
335 case BPF_LIST_NODE:
336 return "bpf_list_node";
337 case BPF_RB_ROOT:
338 return "bpf_rb_root";
339 case BPF_RB_NODE:
340 return "bpf_rb_node";
341 case BPF_REFCOUNT:
342 return "bpf_refcount";
343 default:
344 WARN_ON_ONCE(1);
345 return "unknown";
346 }
347}
348
349static inline u32 btf_field_type_size(enum btf_field_type type)
350{
351 switch (type) {
352 case BPF_SPIN_LOCK:
353 return sizeof(struct bpf_spin_lock);
354 case BPF_RES_SPIN_LOCK:
355 return sizeof(struct bpf_res_spin_lock);
356 case BPF_TIMER:
357 return sizeof(struct bpf_timer);
358 case BPF_WORKQUEUE:
359 return sizeof(struct bpf_wq);
360 case BPF_KPTR_UNREF:
361 case BPF_KPTR_REF:
362 case BPF_KPTR_PERCPU:
363 case BPF_UPTR:
364 return sizeof(u64);
365 case BPF_LIST_HEAD:
366 return sizeof(struct bpf_list_head);
367 case BPF_LIST_NODE:
368 return sizeof(struct bpf_list_node);
369 case BPF_RB_ROOT:
370 return sizeof(struct bpf_rb_root);
371 case BPF_RB_NODE:
372 return sizeof(struct bpf_rb_node);
373 case BPF_REFCOUNT:
374 return sizeof(struct bpf_refcount);
375 default:
376 WARN_ON_ONCE(1);
377 return 0;
378 }
379}
380
381static inline u32 btf_field_type_align(enum btf_field_type type)
382{
383 switch (type) {
384 case BPF_SPIN_LOCK:
385 return __alignof__(struct bpf_spin_lock);
386 case BPF_RES_SPIN_LOCK:
387 return __alignof__(struct bpf_res_spin_lock);
388 case BPF_TIMER:
389 return __alignof__(struct bpf_timer);
390 case BPF_WORKQUEUE:
391 return __alignof__(struct bpf_wq);
392 case BPF_KPTR_UNREF:
393 case BPF_KPTR_REF:
394 case BPF_KPTR_PERCPU:
395 case BPF_UPTR:
396 return __alignof__(u64);
397 case BPF_LIST_HEAD:
398 return __alignof__(struct bpf_list_head);
399 case BPF_LIST_NODE:
400 return __alignof__(struct bpf_list_node);
401 case BPF_RB_ROOT:
402 return __alignof__(struct bpf_rb_root);
403 case BPF_RB_NODE:
404 return __alignof__(struct bpf_rb_node);
405 case BPF_REFCOUNT:
406 return __alignof__(struct bpf_refcount);
407 default:
408 WARN_ON_ONCE(1);
409 return 0;
410 }
411}
412
413static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
414{
415 memset(addr, 0, field->size);
416
417 switch (field->type) {
418 case BPF_REFCOUNT:
419 refcount_set((refcount_t *)addr, 1);
420 break;
421 case BPF_RB_NODE:
422 RB_CLEAR_NODE((struct rb_node *)addr);
423 break;
424 case BPF_LIST_HEAD:
425 case BPF_LIST_NODE:
426 INIT_LIST_HEAD((struct list_head *)addr);
427 break;
428 case BPF_RB_ROOT:
429 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
430 case BPF_SPIN_LOCK:
431 case BPF_RES_SPIN_LOCK:
432 case BPF_TIMER:
433 case BPF_WORKQUEUE:
434 case BPF_KPTR_UNREF:
435 case BPF_KPTR_REF:
436 case BPF_KPTR_PERCPU:
437 case BPF_UPTR:
438 break;
439 default:
440 WARN_ON_ONCE(1);
441 return;
442 }
443}
444
445static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
446{
447 if (IS_ERR_OR_NULL(rec))
448 return false;
449 return rec->field_mask & type;
450}
451
452static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
453{
454 int i;
455
456 if (IS_ERR_OR_NULL(rec))
457 return;
458 for (i = 0; i < rec->cnt; i++)
459 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
460}
461
462/* 'dst' must be a temporary buffer and should not point to memory that is being
463 * used in parallel by a bpf program or bpf syscall, otherwise the access from
464 * the bpf program or bpf syscall may be corrupted by the reinitialization,
465 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
466 * allocator, it is still possible for 'dst' to be used in parallel by a bpf
467 * program or bpf syscall.
468 */
469static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
470{
471 bpf_obj_init(map->record, dst);
472}
473
474/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
475 * forced to use 'long' read/writes to try to atomically copy long counters.
476 * Best-effort only. No barriers here, since it _will_ race with concurrent
477 * updates from BPF programs. Called from bpf syscall and mostly used with
478 * size 8 or 16 bytes, so ask compiler to inline it.
479 */
480static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
481{
482 const long *lsrc = src;
483 long *ldst = dst;
484
485 size /= sizeof(long);
486 while (size--)
487 data_race(*ldst++ = *lsrc++);
488}
489
490/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
491static inline void bpf_obj_memcpy(struct btf_record *rec,
492 void *dst, void *src, u32 size,
493 bool long_memcpy)
494{
495 u32 curr_off = 0;
496 int i;
497
498 if (IS_ERR_OR_NULL(rec)) {
499 if (long_memcpy)
500 bpf_long_memcpy(dst, src, round_up(size, 8));
501 else
502 memcpy(dst, src, size);
503 return;
504 }
505
506 for (i = 0; i < rec->cnt; i++) {
507 u32 next_off = rec->fields[i].offset;
508 u32 sz = next_off - curr_off;
509
510 memcpy(dst + curr_off, src + curr_off, sz);
511 curr_off += rec->fields[i].size + sz;
512 }
513 memcpy(dst + curr_off, src + curr_off, size - curr_off);
514}
515
516static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
517{
518 bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
519}
520
521static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
522{
523 bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
524}
525
526static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src)
527{
528 unsigned long *src_uptr, *dst_uptr;
529 const struct btf_field *field;
530 int i;
531
532 if (!btf_record_has_field(rec, BPF_UPTR))
533 return;
534
535 for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) {
536 if (field->type != BPF_UPTR)
537 continue;
538
539 src_uptr = src + field->offset;
540 dst_uptr = dst + field->offset;
541 swap(*src_uptr, *dst_uptr);
542 }
543}
544
545static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
546{
547 u32 curr_off = 0;
548 int i;
549
550 if (IS_ERR_OR_NULL(rec)) {
551 memset(dst, 0, size);
552 return;
553 }
554
555 for (i = 0; i < rec->cnt; i++) {
556 u32 next_off = rec->fields[i].offset;
557 u32 sz = next_off - curr_off;
558
559 memset(dst + curr_off, 0, sz);
560 curr_off += rec->fields[i].size + sz;
561 }
562 memset(dst + curr_off, 0, size - curr_off);
563}
564
565static inline void zero_map_value(struct bpf_map *map, void *dst)
566{
567 bpf_obj_memzero(map->record, dst, map->value_size);
568}
569
570void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
571 bool lock_src);
572void bpf_timer_cancel_and_free(void *timer);
573void bpf_wq_cancel_and_free(void *timer);
574void bpf_list_head_free(const struct btf_field *field, void *list_head,
575 struct bpf_spin_lock *spin_lock);
576void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
577 struct bpf_spin_lock *spin_lock);
578u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
579u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
580int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
581
582struct bpf_offload_dev;
583struct bpf_offloaded_map;
584
585struct bpf_map_dev_ops {
586 int (*map_get_next_key)(struct bpf_offloaded_map *map,
587 void *key, void *next_key);
588 int (*map_lookup_elem)(struct bpf_offloaded_map *map,
589 void *key, void *value);
590 int (*map_update_elem)(struct bpf_offloaded_map *map,
591 void *key, void *value, u64 flags);
592 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
593};
594
595struct bpf_offloaded_map {
596 struct bpf_map map;
597 struct net_device *netdev;
598 const struct bpf_map_dev_ops *dev_ops;
599 void *dev_priv;
600 struct list_head offloads;
601};
602
603static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
604{
605 return container_of(map, struct bpf_offloaded_map, map);
606}
607
608static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
609{
610 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
611}
612
613static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
614{
615 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
616 map->ops->map_seq_show_elem;
617}
618
619int map_check_no_btf(const struct bpf_map *map,
620 const struct btf *btf,
621 const struct btf_type *key_type,
622 const struct btf_type *value_type);
623
624bool bpf_map_meta_equal(const struct bpf_map *meta0,
625 const struct bpf_map *meta1);
626
627extern const struct bpf_map_ops bpf_map_offload_ops;
628
629/* bpf_type_flag contains a set of flags that are applicable to the values of
630 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
631 * or a memory is read-only. We classify types into two categories: base types
632 * and extended types. Extended types are base types combined with a type flag.
633 *
634 * Currently there are no more than 32 base types in arg_type, ret_type and
635 * reg_types.
636 */
637#define BPF_BASE_TYPE_BITS 8
638
639enum bpf_type_flag {
640 /* PTR may be NULL. */
641 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
642
643 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
644 * compatible with both mutable and immutable memory.
645 */
646 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
647
648 /* MEM points to BPF ring buffer reservation. */
649 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
650
651 /* MEM is in user address space. */
652 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
653
654 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
655 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
656 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
657 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
658 * to the specified cpu.
659 */
660 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
661
662 /* Indicates that the argument will be released. */
663 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
664
665 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
666 * unreferenced and referenced kptr loaded from map value using a load
667 * instruction, so that they can only be dereferenced but not escape the
668 * BPF program into the kernel (i.e. cannot be passed as arguments to
669 * kfunc or bpf helpers).
670 */
671 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
672
673 /* MEM can be uninitialized. */
674 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
675
676 /* DYNPTR points to memory local to the bpf program. */
677 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
678
679 /* DYNPTR points to a kernel-produced ringbuf record. */
680 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
681
682 /* Size is known at compile time. */
683 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
684
685 /* MEM is of an allocated object of type in program BTF. This is used to
686 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
687 */
688 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
689
690 /* PTR was passed from the kernel in a trusted context, and may be
691 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
692 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
693 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
694 * without invoking bpf_kptr_xchg(). What we really need to know is
695 * whether a pointer is safe to pass to a kfunc or BPF helper function.
696 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
697 * helpers, they do not cover all possible instances of unsafe
698 * pointers. For example, a pointer that was obtained from walking a
699 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
700 * fact that it may be NULL, invalid, etc. This is due to backwards
701 * compatibility requirements, as this was the behavior that was first
702 * introduced when kptrs were added. The behavior is now considered
703 * deprecated, and PTR_UNTRUSTED will eventually be removed.
704 *
705 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
706 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
707 * For example, pointers passed to tracepoint arguments are considered
708 * PTR_TRUSTED, as are pointers that are passed to struct_ops
709 * callbacks. As alluded to above, pointers that are obtained from
710 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
711 * struct task_struct *task is PTR_TRUSTED, then accessing
712 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
713 * in a BPF register. Similarly, pointers passed to certain programs
714 * types such as kretprobes are not guaranteed to be valid, as they may
715 * for example contain an object that was recently freed.
716 */
717 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
718
719 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
720 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
721
722 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
723 * Currently only valid for linked-list and rbtree nodes. If the nodes
724 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
725 */
726 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
727
728 /* DYNPTR points to sk_buff */
729 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS),
730
731 /* DYNPTR points to xdp_buff */
732 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS),
733
734 /* Memory must be aligned on some architectures, used in combination with
735 * MEM_FIXED_SIZE.
736 */
737 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS),
738
739 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence
740 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
741 * MEM_UNINIT means that memory needs to be initialized since it is also
742 * read.
743 */
744 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS),
745
746 __BPF_TYPE_FLAG_MAX,
747 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
748};
749
750#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
751 | DYNPTR_TYPE_XDP)
752
753/* Max number of base types. */
754#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
755
756/* Max number of all types. */
757#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
758
759/* function argument constraints */
760enum bpf_arg_type {
761 ARG_DONTCARE = 0, /* unused argument in helper function */
762
763 /* the following constraints used to prototype
764 * bpf_map_lookup/update/delete_elem() functions
765 */
766 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
767 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
768 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
769
770 /* Used to prototype bpf_memcmp() and other functions that access data
771 * on eBPF program stack
772 */
773 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
774 ARG_PTR_TO_ARENA,
775
776 ARG_CONST_SIZE, /* number of bytes accessed from memory */
777 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
778
779 ARG_PTR_TO_CTX, /* pointer to context */
780 ARG_ANYTHING, /* any (initialized) argument is ok */
781 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
782 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
783 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
784 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
785 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
786 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
787 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
788 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
789 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
790 ARG_PTR_TO_STACK, /* pointer to stack */
791 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
792 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
793 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */
794 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
795 __BPF_ARG_TYPE_MAX,
796
797 /* Extended arg_types. */
798 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
799 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
800 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
801 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
802 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
803 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
804 /* Pointer to memory does not need to be initialized, since helper function
805 * fills all bytes or clears them in error case.
806 */
807 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
808 /* Pointer to valid memory of size known at compile time. */
809 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
810
811 /* This must be the last entry. Its purpose is to ensure the enum is
812 * wide enough to hold the higher bits reserved for bpf_type_flag.
813 */
814 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
815};
816static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
817
818/* type of values returned from helper functions */
819enum bpf_return_type {
820 RET_INTEGER, /* function returns integer */
821 RET_VOID, /* function doesn't return anything */
822 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
823 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
824 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
825 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
826 RET_PTR_TO_MEM, /* returns a pointer to memory */
827 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
828 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
829 __BPF_RET_TYPE_MAX,
830
831 /* Extended ret_types. */
832 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
833 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
834 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
835 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
836 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
837 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
838 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
839 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
840
841 /* This must be the last entry. Its purpose is to ensure the enum is
842 * wide enough to hold the higher bits reserved for bpf_type_flag.
843 */
844 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
845};
846static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
847
848/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
849 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
850 * instructions after verifying
851 */
852struct bpf_func_proto {
853 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
854 bool gpl_only;
855 bool pkt_access;
856 bool might_sleep;
857 /* set to true if helper follows contract for llvm
858 * attribute bpf_fastcall:
859 * - void functions do not scratch r0
860 * - functions taking N arguments scratch only registers r1-rN
861 */
862 bool allow_fastcall;
863 enum bpf_return_type ret_type;
864 union {
865 struct {
866 enum bpf_arg_type arg1_type;
867 enum bpf_arg_type arg2_type;
868 enum bpf_arg_type arg3_type;
869 enum bpf_arg_type arg4_type;
870 enum bpf_arg_type arg5_type;
871 };
872 enum bpf_arg_type arg_type[5];
873 };
874 union {
875 struct {
876 u32 *arg1_btf_id;
877 u32 *arg2_btf_id;
878 u32 *arg3_btf_id;
879 u32 *arg4_btf_id;
880 u32 *arg5_btf_id;
881 };
882 u32 *arg_btf_id[5];
883 struct {
884 size_t arg1_size;
885 size_t arg2_size;
886 size_t arg3_size;
887 size_t arg4_size;
888 size_t arg5_size;
889 };
890 size_t arg_size[5];
891 };
892 int *ret_btf_id; /* return value btf_id */
893 bool (*allowed)(const struct bpf_prog *prog);
894};
895
896/* bpf_context is intentionally undefined structure. Pointer to bpf_context is
897 * the first argument to eBPF programs.
898 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
899 */
900struct bpf_context;
901
902enum bpf_access_type {
903 BPF_READ = 1,
904 BPF_WRITE = 2
905};
906
907/* types of values stored in eBPF registers */
908/* Pointer types represent:
909 * pointer
910 * pointer + imm
911 * pointer + (u16) var
912 * pointer + (u16) var + imm
913 * if (range > 0) then [ptr, ptr + range - off) is safe to access
914 * if (id > 0) means that some 'var' was added
915 * if (off > 0) means that 'imm' was added
916 */
917enum bpf_reg_type {
918 NOT_INIT = 0, /* nothing was written into register */
919 SCALAR_VALUE, /* reg doesn't contain a valid pointer */
920 PTR_TO_CTX, /* reg points to bpf_context */
921 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
922 PTR_TO_MAP_VALUE, /* reg points to map element value */
923 PTR_TO_MAP_KEY, /* reg points to a map element key */
924 PTR_TO_STACK, /* reg == frame_pointer + offset */
925 PTR_TO_PACKET_META, /* skb->data - meta_len */
926 PTR_TO_PACKET, /* reg points to skb->data */
927 PTR_TO_PACKET_END, /* skb->data + headlen */
928 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
929 PTR_TO_SOCKET, /* reg points to struct bpf_sock */
930 PTR_TO_SOCK_COMMON, /* reg points to sock_common */
931 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
932 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
933 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
934 /* PTR_TO_BTF_ID points to a kernel struct that does not need
935 * to be null checked by the BPF program. This does not imply the
936 * pointer is _not_ null and in practice this can easily be a null
937 * pointer when reading pointer chains. The assumption is program
938 * context will handle null pointer dereference typically via fault
939 * handling. The verifier must keep this in mind and can make no
940 * assumptions about null or non-null when doing branch analysis.
941 * Further, when passed into helpers the helpers can not, without
942 * additional context, assume the value is non-null.
943 */
944 PTR_TO_BTF_ID,
945 PTR_TO_MEM, /* reg points to valid memory region */
946 PTR_TO_ARENA,
947 PTR_TO_BUF, /* reg points to a read/write buffer */
948 PTR_TO_FUNC, /* reg points to a bpf program function */
949 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
950 __BPF_REG_TYPE_MAX,
951
952 /* Extended reg_types. */
953 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
954 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
955 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
956 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
957 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
958 * been checked for null. Used primarily to inform the verifier
959 * an explicit null check is required for this struct.
960 */
961 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
962
963 /* This must be the last entry. Its purpose is to ensure the enum is
964 * wide enough to hold the higher bits reserved for bpf_type_flag.
965 */
966 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
967};
968static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
969
970/* The information passed from prog-specific *_is_valid_access
971 * back to the verifier.
972 */
973struct bpf_insn_access_aux {
974 enum bpf_reg_type reg_type;
975 bool is_ldsx;
976 union {
977 int ctx_field_size;
978 struct {
979 struct btf *btf;
980 u32 btf_id;
981 u32 ref_obj_id;
982 };
983 };
984 struct bpf_verifier_log *log; /* for verbose logs */
985 bool is_retval; /* is accessing function return value ? */
986};
987
988static inline void
989bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
990{
991 aux->ctx_field_size = size;
992}
993
994static bool bpf_is_ldimm64(const struct bpf_insn *insn)
995{
996 return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
997}
998
999static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
1000{
1001 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
1002}
1003
1004/* Given a BPF_ATOMIC instruction @atomic_insn, return true if it is an
1005 * atomic load or store, and false if it is a read-modify-write instruction.
1006 */
1007static inline bool
1008bpf_atomic_is_load_store(const struct bpf_insn *atomic_insn)
1009{
1010 switch (atomic_insn->imm) {
1011 case BPF_LOAD_ACQ:
1012 case BPF_STORE_REL:
1013 return true;
1014 default:
1015 return false;
1016 }
1017}
1018
1019struct bpf_prog_ops {
1020 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
1021 union bpf_attr __user *uattr);
1022};
1023
1024struct bpf_reg_state;
1025struct bpf_verifier_ops {
1026 /* return eBPF function prototype for verification */
1027 const struct bpf_func_proto *
1028 (*get_func_proto)(enum bpf_func_id func_id,
1029 const struct bpf_prog *prog);
1030
1031 /* return true if 'size' wide access at offset 'off' within bpf_context
1032 * with 'type' (read or write) is allowed
1033 */
1034 bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
1035 const struct bpf_prog *prog,
1036 struct bpf_insn_access_aux *info);
1037 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
1038 const struct bpf_prog *prog);
1039 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog,
1040 s16 ctx_stack_off);
1041 int (*gen_ld_abs)(const struct bpf_insn *orig,
1042 struct bpf_insn *insn_buf);
1043 u32 (*convert_ctx_access)(enum bpf_access_type type,
1044 const struct bpf_insn *src,
1045 struct bpf_insn *dst,
1046 struct bpf_prog *prog, u32 *target_size);
1047 int (*btf_struct_access)(struct bpf_verifier_log *log,
1048 const struct bpf_reg_state *reg,
1049 int off, int size);
1050};
1051
1052struct bpf_prog_offload_ops {
1053 /* verifier basic callbacks */
1054 int (*insn_hook)(struct bpf_verifier_env *env,
1055 int insn_idx, int prev_insn_idx);
1056 int (*finalize)(struct bpf_verifier_env *env);
1057 /* verifier optimization callbacks (called after .finalize) */
1058 int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
1059 struct bpf_insn *insn);
1060 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
1061 /* program management callbacks */
1062 int (*prepare)(struct bpf_prog *prog);
1063 int (*translate)(struct bpf_prog *prog);
1064 void (*destroy)(struct bpf_prog *prog);
1065};
1066
1067struct bpf_prog_offload {
1068 struct bpf_prog *prog;
1069 struct net_device *netdev;
1070 struct bpf_offload_dev *offdev;
1071 void *dev_priv;
1072 struct list_head offloads;
1073 bool dev_state;
1074 bool opt_failed;
1075 void *jited_image;
1076 u32 jited_len;
1077};
1078
1079enum bpf_cgroup_storage_type {
1080 BPF_CGROUP_STORAGE_SHARED,
1081 BPF_CGROUP_STORAGE_PERCPU,
1082 __BPF_CGROUP_STORAGE_MAX
1083};
1084
1085#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1086
1087/* The longest tracepoint has 12 args.
1088 * See include/trace/bpf_probe.h
1089 */
1090#define MAX_BPF_FUNC_ARGS 12
1091
1092/* The maximum number of arguments passed through registers
1093 * a single function may have.
1094 */
1095#define MAX_BPF_FUNC_REG_ARGS 5
1096
1097/* The argument is a structure. */
1098#define BTF_FMODEL_STRUCT_ARG BIT(0)
1099
1100/* The argument is signed. */
1101#define BTF_FMODEL_SIGNED_ARG BIT(1)
1102
1103struct btf_func_model {
1104 u8 ret_size;
1105 u8 ret_flags;
1106 u8 nr_args;
1107 u8 arg_size[MAX_BPF_FUNC_ARGS];
1108 u8 arg_flags[MAX_BPF_FUNC_ARGS];
1109};
1110
1111/* Restore arguments before returning from trampoline to let original function
1112 * continue executing. This flag is used for fentry progs when there are no
1113 * fexit progs.
1114 */
1115#define BPF_TRAMP_F_RESTORE_REGS BIT(0)
1116/* Call original function after fentry progs, but before fexit progs.
1117 * Makes sense for fentry/fexit, normal calls and indirect calls.
1118 */
1119#define BPF_TRAMP_F_CALL_ORIG BIT(1)
1120/* Skip current frame and return to parent. Makes sense for fentry/fexit
1121 * programs only. Should not be used with normal calls and indirect calls.
1122 */
1123#define BPF_TRAMP_F_SKIP_FRAME BIT(2)
1124/* Store IP address of the caller on the trampoline stack,
1125 * so it's available for trampoline's programs.
1126 */
1127#define BPF_TRAMP_F_IP_ARG BIT(3)
1128/* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1129#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
1130
1131/* Get original function from stack instead of from provided direct address.
1132 * Makes sense for trampolines with fexit or fmod_ret programs.
1133 */
1134#define BPF_TRAMP_F_ORIG_STACK BIT(5)
1135
1136/* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1137 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1138 */
1139#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
1140
1141/* Indicate that current trampoline is in a tail call context. Then, it has to
1142 * cache and restore tail_call_cnt to avoid infinite tail call loop.
1143 */
1144#define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7)
1145
1146/*
1147 * Indicate the trampoline should be suitable to receive indirect calls;
1148 * without this indirectly calling the generated code can result in #UD/#CP,
1149 * depending on the CFI options.
1150 *
1151 * Used by bpf_struct_ops.
1152 *
1153 * Incompatible with FENTRY usage, overloads @func_addr argument.
1154 */
1155#define BPF_TRAMP_F_INDIRECT BIT(8)
1156
1157/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1158 * bytes on x86.
1159 */
1160enum {
1161#if defined(__s390x__)
1162 BPF_MAX_TRAMP_LINKS = 27,
1163#else
1164 BPF_MAX_TRAMP_LINKS = 38,
1165#endif
1166};
1167
1168struct bpf_tramp_links {
1169 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1170 int nr_links;
1171};
1172
1173struct bpf_tramp_run_ctx;
1174
1175/* Different use cases for BPF trampoline:
1176 * 1. replace nop at the function entry (kprobe equivalent)
1177 * flags = BPF_TRAMP_F_RESTORE_REGS
1178 * fentry = a set of programs to run before returning from trampoline
1179 *
1180 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1181 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1182 * orig_call = fentry_ip + MCOUNT_INSN_SIZE
1183 * fentry = a set of program to run before calling original function
1184 * fexit = a set of program to run after original function
1185 *
1186 * 3. replace direct call instruction anywhere in the function body
1187 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1188 * With flags = 0
1189 * fentry = a set of programs to run before returning from trampoline
1190 * With flags = BPF_TRAMP_F_CALL_ORIG
1191 * orig_call = original callback addr or direct function addr
1192 * fentry = a set of program to run before calling original function
1193 * fexit = a set of program to run after original function
1194 */
1195struct bpf_tramp_image;
1196int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1197 const struct btf_func_model *m, u32 flags,
1198 struct bpf_tramp_links *tlinks,
1199 void *func_addr);
1200void *arch_alloc_bpf_trampoline(unsigned int size);
1201void arch_free_bpf_trampoline(void *image, unsigned int size);
1202int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
1203int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1204 struct bpf_tramp_links *tlinks, void *func_addr);
1205
1206u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1207 struct bpf_tramp_run_ctx *run_ctx);
1208void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1209 struct bpf_tramp_run_ctx *run_ctx);
1210void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1211void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1212typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1213 struct bpf_tramp_run_ctx *run_ctx);
1214typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1215 struct bpf_tramp_run_ctx *run_ctx);
1216bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1217bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1218
1219struct bpf_ksym {
1220 unsigned long start;
1221 unsigned long end;
1222 char name[KSYM_NAME_LEN];
1223 struct list_head lnode;
1224 struct latch_tree_node tnode;
1225 bool prog;
1226};
1227
1228enum bpf_tramp_prog_type {
1229 BPF_TRAMP_FENTRY,
1230 BPF_TRAMP_FEXIT,
1231 BPF_TRAMP_MODIFY_RETURN,
1232 BPF_TRAMP_MAX,
1233 BPF_TRAMP_REPLACE, /* more than MAX */
1234};
1235
1236struct bpf_tramp_image {
1237 void *image;
1238 int size;
1239 struct bpf_ksym ksym;
1240 struct percpu_ref pcref;
1241 void *ip_after_call;
1242 void *ip_epilogue;
1243 union {
1244 struct rcu_head rcu;
1245 struct work_struct work;
1246 };
1247};
1248
1249struct bpf_trampoline {
1250 /* hlist for trampoline_table */
1251 struct hlist_node hlist;
1252 struct ftrace_ops *fops;
1253 /* serializes access to fields of this trampoline */
1254 struct mutex mutex;
1255 refcount_t refcnt;
1256 u32 flags;
1257 u64 key;
1258 struct {
1259 struct btf_func_model model;
1260 void *addr;
1261 bool ftrace_managed;
1262 } func;
1263 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1264 * program by replacing one of its functions. func.addr is the address
1265 * of the function it replaced.
1266 */
1267 struct bpf_prog *extension_prog;
1268 /* list of BPF programs using this trampoline */
1269 struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1270 /* Number of attached programs. A counter per kind. */
1271 int progs_cnt[BPF_TRAMP_MAX];
1272 /* Executable image of trampoline */
1273 struct bpf_tramp_image *cur_image;
1274};
1275
1276struct bpf_attach_target_info {
1277 struct btf_func_model fmodel;
1278 long tgt_addr;
1279 struct module *tgt_mod;
1280 const char *tgt_name;
1281 const struct btf_type *tgt_type;
1282};
1283
1284#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1285
1286struct bpf_dispatcher_prog {
1287 struct bpf_prog *prog;
1288 refcount_t users;
1289};
1290
1291struct bpf_dispatcher {
1292 /* dispatcher mutex */
1293 struct mutex mutex;
1294 void *func;
1295 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1296 int num_progs;
1297 void *image;
1298 void *rw_image;
1299 u32 image_off;
1300 struct bpf_ksym ksym;
1301#ifdef CONFIG_HAVE_STATIC_CALL
1302 struct static_call_key *sc_key;
1303 void *sc_tramp;
1304#endif
1305};
1306
1307#ifndef __bpfcall
1308#define __bpfcall __nocfi
1309#endif
1310
1311static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1312 const void *ctx,
1313 const struct bpf_insn *insnsi,
1314 bpf_func_t bpf_func)
1315{
1316 return bpf_func(ctx, insnsi);
1317}
1318
1319/* the implementation of the opaque uapi struct bpf_dynptr */
1320struct bpf_dynptr_kern {
1321 void *data;
1322 /* Size represents the number of usable bytes of dynptr data.
1323 * If for example the offset is at 4 for a local dynptr whose data is
1324 * of type u64, the number of usable bytes is 4.
1325 *
1326 * The upper 8 bits are reserved. It is as follows:
1327 * Bits 0 - 23 = size
1328 * Bits 24 - 30 = dynptr type
1329 * Bit 31 = whether dynptr is read-only
1330 */
1331 u32 size;
1332 u32 offset;
1333} __aligned(8);
1334
1335enum bpf_dynptr_type {
1336 BPF_DYNPTR_TYPE_INVALID,
1337 /* Points to memory that is local to the bpf program */
1338 BPF_DYNPTR_TYPE_LOCAL,
1339 /* Underlying data is a ringbuf record */
1340 BPF_DYNPTR_TYPE_RINGBUF,
1341 /* Underlying data is a sk_buff */
1342 BPF_DYNPTR_TYPE_SKB,
1343 /* Underlying data is a xdp_buff */
1344 BPF_DYNPTR_TYPE_XDP,
1345};
1346
1347int bpf_dynptr_check_size(u32 size);
1348u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1349const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1350void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1351bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr);
1352
1353#ifdef CONFIG_BPF_JIT
1354int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1355 struct bpf_trampoline *tr,
1356 struct bpf_prog *tgt_prog);
1357int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1358 struct bpf_trampoline *tr,
1359 struct bpf_prog *tgt_prog);
1360struct bpf_trampoline *bpf_trampoline_get(u64 key,
1361 struct bpf_attach_target_info *tgt_info);
1362void bpf_trampoline_put(struct bpf_trampoline *tr);
1363int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1364
1365/*
1366 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1367 * indirection with a direct call to the bpf program. If the architecture does
1368 * not have STATIC_CALL, avoid a double-indirection.
1369 */
1370#ifdef CONFIG_HAVE_STATIC_CALL
1371
1372#define __BPF_DISPATCHER_SC_INIT(_name) \
1373 .sc_key = &STATIC_CALL_KEY(_name), \
1374 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1375
1376#define __BPF_DISPATCHER_SC(name) \
1377 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1378
1379#define __BPF_DISPATCHER_CALL(name) \
1380 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1381
1382#define __BPF_DISPATCHER_UPDATE(_d, _new) \
1383 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1384
1385#else
1386#define __BPF_DISPATCHER_SC_INIT(name)
1387#define __BPF_DISPATCHER_SC(name)
1388#define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
1389#define __BPF_DISPATCHER_UPDATE(_d, _new)
1390#endif
1391
1392#define BPF_DISPATCHER_INIT(_name) { \
1393 .mutex = __MUTEX_INITIALIZER(_name.mutex), \
1394 .func = &_name##_func, \
1395 .progs = {}, \
1396 .num_progs = 0, \
1397 .image = NULL, \
1398 .image_off = 0, \
1399 .ksym = { \
1400 .name = #_name, \
1401 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
1402 }, \
1403 __BPF_DISPATCHER_SC_INIT(_name##_call) \
1404}
1405
1406#define DEFINE_BPF_DISPATCHER(name) \
1407 __BPF_DISPATCHER_SC(name); \
1408 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \
1409 const void *ctx, \
1410 const struct bpf_insn *insnsi, \
1411 bpf_func_t bpf_func) \
1412 { \
1413 return __BPF_DISPATCHER_CALL(name); \
1414 } \
1415 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
1416 struct bpf_dispatcher bpf_dispatcher_##name = \
1417 BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1418
1419#define DECLARE_BPF_DISPATCHER(name) \
1420 unsigned int bpf_dispatcher_##name##_func( \
1421 const void *ctx, \
1422 const struct bpf_insn *insnsi, \
1423 bpf_func_t bpf_func); \
1424 extern struct bpf_dispatcher bpf_dispatcher_##name;
1425
1426#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1427#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1428void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1429 struct bpf_prog *to);
1430/* Called only from JIT-enabled code, so there's no need for stubs. */
1431void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym);
1432void bpf_image_ksym_add(struct bpf_ksym *ksym);
1433void bpf_image_ksym_del(struct bpf_ksym *ksym);
1434void bpf_ksym_add(struct bpf_ksym *ksym);
1435void bpf_ksym_del(struct bpf_ksym *ksym);
1436int bpf_jit_charge_modmem(u32 size);
1437void bpf_jit_uncharge_modmem(u32 size);
1438bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1439#else
1440static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1441 struct bpf_trampoline *tr,
1442 struct bpf_prog *tgt_prog)
1443{
1444 return -ENOTSUPP;
1445}
1446static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1447 struct bpf_trampoline *tr,
1448 struct bpf_prog *tgt_prog)
1449{
1450 return -ENOTSUPP;
1451}
1452static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1453 struct bpf_attach_target_info *tgt_info)
1454{
1455 return NULL;
1456}
1457static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1458#define DEFINE_BPF_DISPATCHER(name)
1459#define DECLARE_BPF_DISPATCHER(name)
1460#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1461#define BPF_DISPATCHER_PTR(name) NULL
1462static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1463 struct bpf_prog *from,
1464 struct bpf_prog *to) {}
1465static inline bool is_bpf_image_address(unsigned long address)
1466{
1467 return false;
1468}
1469static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1470{
1471 return false;
1472}
1473#endif
1474
1475struct bpf_func_info_aux {
1476 u16 linkage;
1477 bool unreliable;
1478 bool called : 1;
1479 bool verified : 1;
1480};
1481
1482enum bpf_jit_poke_reason {
1483 BPF_POKE_REASON_TAIL_CALL,
1484};
1485
1486/* Descriptor of pokes pointing /into/ the JITed image. */
1487struct bpf_jit_poke_descriptor {
1488 void *tailcall_target;
1489 void *tailcall_bypass;
1490 void *bypass_addr;
1491 void *aux;
1492 union {
1493 struct {
1494 struct bpf_map *map;
1495 u32 key;
1496 } tail_call;
1497 };
1498 bool tailcall_target_stable;
1499 u8 adj_off;
1500 u16 reason;
1501 u32 insn_idx;
1502};
1503
1504/* reg_type info for ctx arguments */
1505struct bpf_ctx_arg_aux {
1506 u32 offset;
1507 enum bpf_reg_type reg_type;
1508 struct btf *btf;
1509 u32 btf_id;
1510 u32 ref_obj_id;
1511 bool refcounted;
1512};
1513
1514struct btf_mod_pair {
1515 struct btf *btf;
1516 struct module *module;
1517};
1518
1519struct bpf_kfunc_desc_tab;
1520
1521struct bpf_prog_aux {
1522 atomic64_t refcnt;
1523 u32 used_map_cnt;
1524 u32 used_btf_cnt;
1525 u32 max_ctx_offset;
1526 u32 max_pkt_offset;
1527 u32 max_tp_access;
1528 u32 stack_depth;
1529 u32 id;
1530 u32 func_cnt; /* used by non-func prog as the number of func progs */
1531 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1532 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1533 u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1534 u32 attach_st_ops_member_off;
1535 u32 ctx_arg_info_size;
1536 u32 max_rdonly_access;
1537 u32 max_rdwr_access;
1538 struct btf *attach_btf;
1539 struct bpf_ctx_arg_aux *ctx_arg_info;
1540 void __percpu *priv_stack_ptr;
1541 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1542 struct bpf_prog *dst_prog;
1543 struct bpf_trampoline *dst_trampoline;
1544 enum bpf_prog_type saved_dst_prog_type;
1545 enum bpf_attach_type saved_dst_attach_type;
1546 bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1547 bool dev_bound; /* Program is bound to the netdev. */
1548 bool offload_requested; /* Program is bound and offloaded to the netdev. */
1549 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1550 bool attach_tracing_prog; /* true if tracing another tracing program */
1551 bool func_proto_unreliable;
1552 bool tail_call_reachable;
1553 bool xdp_has_frags;
1554 bool exception_cb;
1555 bool exception_boundary;
1556 bool is_extended; /* true if extended by freplace program */
1557 bool jits_use_priv_stack;
1558 bool priv_stack_requested;
1559 bool changes_pkt_data;
1560 bool might_sleep;
1561 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
1562 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
1563 struct bpf_arena *arena;
1564 void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */
1565 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1566 const struct btf_type *attach_func_proto;
1567 /* function name for valid attach_btf_id */
1568 const char *attach_func_name;
1569 struct bpf_prog **func;
1570 void *jit_data; /* JIT specific data. arch dependent */
1571 struct bpf_jit_poke_descriptor *poke_tab;
1572 struct bpf_kfunc_desc_tab *kfunc_tab;
1573 struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1574 u32 size_poke_tab;
1575#ifdef CONFIG_FINEIBT
1576 struct bpf_ksym ksym_prefix;
1577#endif
1578 struct bpf_ksym ksym;
1579 const struct bpf_prog_ops *ops;
1580 const struct bpf_struct_ops *st_ops;
1581 struct bpf_map **used_maps;
1582 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1583 struct btf_mod_pair *used_btfs;
1584 struct bpf_prog *prog;
1585 struct user_struct *user;
1586 u64 load_time; /* ns since boottime */
1587 u32 verified_insns;
1588 int cgroup_atype; /* enum cgroup_bpf_attach_type */
1589 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1590 char name[BPF_OBJ_NAME_LEN];
1591 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1592#ifdef CONFIG_SECURITY
1593 void *security;
1594#endif
1595 struct bpf_token *token;
1596 struct bpf_prog_offload *offload;
1597 struct btf *btf;
1598 struct bpf_func_info *func_info;
1599 struct bpf_func_info_aux *func_info_aux;
1600 /* bpf_line_info loaded from userspace. linfo->insn_off
1601 * has the xlated insn offset.
1602 * Both the main and sub prog share the same linfo.
1603 * The subprog can access its first linfo by
1604 * using the linfo_idx.
1605 */
1606 struct bpf_line_info *linfo;
1607 /* jited_linfo is the jited addr of the linfo. It has a
1608 * one to one mapping to linfo:
1609 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1610 * Both the main and sub prog share the same jited_linfo.
1611 * The subprog can access its first jited_linfo by
1612 * using the linfo_idx.
1613 */
1614 void **jited_linfo;
1615 u32 func_info_cnt;
1616 u32 nr_linfo;
1617 /* subprog can use linfo_idx to access its first linfo and
1618 * jited_linfo.
1619 * main prog always has linfo_idx == 0
1620 */
1621 u32 linfo_idx;
1622 struct module *mod;
1623 u32 num_exentries;
1624 struct exception_table_entry *extable;
1625 union {
1626 struct work_struct work;
1627 struct rcu_head rcu;
1628 };
1629};
1630
1631struct bpf_prog {
1632 u16 pages; /* Number of allocated pages */
1633 u16 jited:1, /* Is our filter JIT'ed? */
1634 jit_requested:1,/* archs need to JIT the prog */
1635 gpl_compatible:1, /* Is filter GPL compatible? */
1636 cb_access:1, /* Is control block accessed? */
1637 dst_needed:1, /* Do we need dst entry? */
1638 blinding_requested:1, /* needs constant blinding */
1639 blinded:1, /* Was blinded */
1640 is_func:1, /* program is a bpf function */
1641 kprobe_override:1, /* Do we override a kprobe? */
1642 has_callchain_buf:1, /* callchain buffer allocated? */
1643 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1644 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1645 call_get_func_ip:1, /* Do we call get_func_ip() */
1646 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1647 sleepable:1; /* BPF program is sleepable */
1648 enum bpf_prog_type type; /* Type of BPF program */
1649 enum bpf_attach_type expected_attach_type; /* For some prog types */
1650 u32 len; /* Number of filter blocks */
1651 u32 jited_len; /* Size of jited insns in bytes */
1652 u8 tag[BPF_TAG_SIZE];
1653 struct bpf_prog_stats __percpu *stats;
1654 int __percpu *active;
1655 unsigned int (*bpf_func)(const void *ctx,
1656 const struct bpf_insn *insn);
1657 struct bpf_prog_aux *aux; /* Auxiliary fields */
1658 struct sock_fprog_kern *orig_prog; /* Original BPF program */
1659 /* Instructions for interpreter */
1660 union {
1661 DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1662 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1663 };
1664};
1665
1666struct bpf_array_aux {
1667 /* Programs with direct jumps into programs part of this array. */
1668 struct list_head poke_progs;
1669 struct bpf_map *map;
1670 struct mutex poke_mutex;
1671 struct work_struct work;
1672};
1673
1674struct bpf_link {
1675 atomic64_t refcnt;
1676 u32 id;
1677 enum bpf_link_type type;
1678 const struct bpf_link_ops *ops;
1679 struct bpf_prog *prog;
1680 /* whether BPF link itself has "sleepable" semantics, which can differ
1681 * from underlying BPF program having a "sleepable" semantics, as BPF
1682 * link's semantics is determined by target attach hook
1683 */
1684 bool sleepable;
1685 /* rcu is used before freeing, work can be used to schedule that
1686 * RCU-based freeing before that, so they never overlap
1687 */
1688 union {
1689 struct rcu_head rcu;
1690 struct work_struct work;
1691 };
1692};
1693
1694struct bpf_link_ops {
1695 void (*release)(struct bpf_link *link);
1696 /* deallocate link resources callback, called without RCU grace period
1697 * waiting
1698 */
1699 void (*dealloc)(struct bpf_link *link);
1700 /* deallocate link resources callback, called after RCU grace period;
1701 * if either the underlying BPF program is sleepable or BPF link's
1702 * target hook is sleepable, we'll go through tasks trace RCU GP and
1703 * then "classic" RCU GP; this need for chaining tasks trace and
1704 * classic RCU GPs is designated by setting bpf_link->sleepable flag
1705 */
1706 void (*dealloc_deferred)(struct bpf_link *link);
1707 int (*detach)(struct bpf_link *link);
1708 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1709 struct bpf_prog *old_prog);
1710 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1711 int (*fill_link_info)(const struct bpf_link *link,
1712 struct bpf_link_info *info);
1713 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1714 struct bpf_map *old_map);
1715 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts);
1716};
1717
1718struct bpf_tramp_link {
1719 struct bpf_link link;
1720 struct hlist_node tramp_hlist;
1721 u64 cookie;
1722};
1723
1724struct bpf_shim_tramp_link {
1725 struct bpf_tramp_link link;
1726 struct bpf_trampoline *trampoline;
1727};
1728
1729struct bpf_tracing_link {
1730 struct bpf_tramp_link link;
1731 enum bpf_attach_type attach_type;
1732 struct bpf_trampoline *trampoline;
1733 struct bpf_prog *tgt_prog;
1734};
1735
1736struct bpf_raw_tp_link {
1737 struct bpf_link link;
1738 struct bpf_raw_event_map *btp;
1739 u64 cookie;
1740};
1741
1742struct bpf_link_primer {
1743 struct bpf_link *link;
1744 struct file *file;
1745 int fd;
1746 u32 id;
1747};
1748
1749struct bpf_mount_opts {
1750 kuid_t uid;
1751 kgid_t gid;
1752 umode_t mode;
1753
1754 /* BPF token-related delegation options */
1755 u64 delegate_cmds;
1756 u64 delegate_maps;
1757 u64 delegate_progs;
1758 u64 delegate_attachs;
1759};
1760
1761struct bpf_token {
1762 struct work_struct work;
1763 atomic64_t refcnt;
1764 struct user_namespace *userns;
1765 u64 allowed_cmds;
1766 u64 allowed_maps;
1767 u64 allowed_progs;
1768 u64 allowed_attachs;
1769#ifdef CONFIG_SECURITY
1770 void *security;
1771#endif
1772};
1773
1774struct bpf_struct_ops_value;
1775struct btf_member;
1776
1777#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1778/**
1779 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1780 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1781 * of BPF_PROG_TYPE_STRUCT_OPS progs.
1782 * @verifier_ops: A structure of callbacks that are invoked by the verifier
1783 * when determining whether the struct_ops progs in the
1784 * struct_ops map are valid.
1785 * @init: A callback that is invoked a single time, and before any other
1786 * callback, to initialize the structure. A nonzero return value means
1787 * the subsystem could not be initialized.
1788 * @check_member: When defined, a callback invoked by the verifier to allow
1789 * the subsystem to determine if an entry in the struct_ops map
1790 * is valid. A nonzero return value means that the map is
1791 * invalid and should be rejected by the verifier.
1792 * @init_member: A callback that is invoked for each member of the struct_ops
1793 * map to allow the subsystem to initialize the member. A nonzero
1794 * value means the member could not be initialized. This callback
1795 * is exclusive with the @type, @type_id, @value_type, and
1796 * @value_id fields.
1797 * @reg: A callback that is invoked when the struct_ops map has been
1798 * initialized and is being attached to. Zero means the struct_ops map
1799 * has been successfully registered and is live. A nonzero return value
1800 * means the struct_ops map could not be registered.
1801 * @unreg: A callback that is invoked when the struct_ops map should be
1802 * unregistered.
1803 * @update: A callback that is invoked when the live struct_ops map is being
1804 * updated to contain new values. This callback is only invoked when
1805 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1806 * it is assumed that the struct_ops map cannot be updated.
1807 * @validate: A callback that is invoked after all of the members have been
1808 * initialized. This callback should perform static checks on the
1809 * map, meaning that it should either fail or succeed
1810 * deterministically. A struct_ops map that has been validated may
1811 * not necessarily succeed in being registered if the call to @reg
1812 * fails. For example, a valid struct_ops map may be loaded, but
1813 * then fail to be registered due to there being another active
1814 * struct_ops map on the system in the subsystem already. For this
1815 * reason, if this callback is not defined, the check is skipped as
1816 * the struct_ops map will have final verification performed in
1817 * @reg.
1818 * @type: BTF type.
1819 * @value_type: Value type.
1820 * @name: The name of the struct bpf_struct_ops object.
1821 * @func_models: Func models
1822 * @type_id: BTF type id.
1823 * @value_id: BTF value id.
1824 */
1825struct bpf_struct_ops {
1826 const struct bpf_verifier_ops *verifier_ops;
1827 int (*init)(struct btf *btf);
1828 int (*check_member)(const struct btf_type *t,
1829 const struct btf_member *member,
1830 const struct bpf_prog *prog);
1831 int (*init_member)(const struct btf_type *t,
1832 const struct btf_member *member,
1833 void *kdata, const void *udata);
1834 int (*reg)(void *kdata, struct bpf_link *link);
1835 void (*unreg)(void *kdata, struct bpf_link *link);
1836 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);
1837 int (*validate)(void *kdata);
1838 void *cfi_stubs;
1839 struct module *owner;
1840 const char *name;
1841 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1842};
1843
1844/* Every member of a struct_ops type has an instance even a member is not
1845 * an operator (function pointer). The "info" field will be assigned to
1846 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1847 * argument information required by the verifier to verify the program.
1848 *
1849 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1850 * corresponding entry for an given argument.
1851 */
1852struct bpf_struct_ops_arg_info {
1853 struct bpf_ctx_arg_aux *info;
1854 u32 cnt;
1855};
1856
1857struct bpf_struct_ops_desc {
1858 struct bpf_struct_ops *st_ops;
1859
1860 const struct btf_type *type;
1861 const struct btf_type *value_type;
1862 u32 type_id;
1863 u32 value_id;
1864
1865 /* Collection of argument information for each member */
1866 struct bpf_struct_ops_arg_info *arg_info;
1867};
1868
1869enum bpf_struct_ops_state {
1870 BPF_STRUCT_OPS_STATE_INIT,
1871 BPF_STRUCT_OPS_STATE_INUSE,
1872 BPF_STRUCT_OPS_STATE_TOBEFREE,
1873 BPF_STRUCT_OPS_STATE_READY,
1874};
1875
1876struct bpf_struct_ops_common_value {
1877 refcount_t refcnt;
1878 enum bpf_struct_ops_state state;
1879};
1880
1881#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1882/* This macro helps developer to register a struct_ops type and generate
1883 * type information correctly. Developers should use this macro to register
1884 * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1885 */
1886#define register_bpf_struct_ops(st_ops, type) \
1887 ({ \
1888 struct bpf_struct_ops_##type { \
1889 struct bpf_struct_ops_common_value common; \
1890 struct type data ____cacheline_aligned_in_smp; \
1891 }; \
1892 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \
1893 __register_bpf_struct_ops(st_ops); \
1894 })
1895#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1896bool bpf_struct_ops_get(const void *kdata);
1897void bpf_struct_ops_put(const void *kdata);
1898int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff);
1899int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1900 void *value);
1901int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1902 struct bpf_tramp_link *link,
1903 const struct btf_func_model *model,
1904 void *stub_func,
1905 void **image, u32 *image_off,
1906 bool allow_alloc);
1907void bpf_struct_ops_image_free(void *image);
1908static inline bool bpf_try_module_get(const void *data, struct module *owner)
1909{
1910 if (owner == BPF_MODULE_OWNER)
1911 return bpf_struct_ops_get(data);
1912 else
1913 return try_module_get(owner);
1914}
1915static inline void bpf_module_put(const void *data, struct module *owner)
1916{
1917 if (owner == BPF_MODULE_OWNER)
1918 bpf_struct_ops_put(data);
1919 else
1920 module_put(owner);
1921}
1922int bpf_struct_ops_link_create(union bpf_attr *attr);
1923
1924#ifdef CONFIG_NET
1925/* Define it here to avoid the use of forward declaration */
1926struct bpf_dummy_ops_state {
1927 int val;
1928};
1929
1930struct bpf_dummy_ops {
1931 int (*test_1)(struct bpf_dummy_ops_state *cb);
1932 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1933 char a3, unsigned long a4);
1934 int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1935};
1936
1937int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1938 union bpf_attr __user *uattr);
1939#endif
1940int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
1941 struct btf *btf,
1942 struct bpf_verifier_log *log);
1943void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
1944void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
1945#else
1946#define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
1947static inline bool bpf_try_module_get(const void *data, struct module *owner)
1948{
1949 return try_module_get(owner);
1950}
1951static inline void bpf_module_put(const void *data, struct module *owner)
1952{
1953 module_put(owner);
1954}
1955static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff)
1956{
1957 return -ENOTSUPP;
1958}
1959static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1960 void *key,
1961 void *value)
1962{
1963 return -EINVAL;
1964}
1965static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1966{
1967 return -EOPNOTSUPP;
1968}
1969static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
1970{
1971}
1972
1973static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
1974{
1975}
1976
1977#endif
1978
1979int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
1980 const struct bpf_ctx_arg_aux *info, u32 cnt);
1981
1982#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1983int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1984 int cgroup_atype);
1985void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1986#else
1987static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1988 int cgroup_atype)
1989{
1990 return -EOPNOTSUPP;
1991}
1992static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1993{
1994}
1995#endif
1996
1997struct bpf_array {
1998 struct bpf_map map;
1999 u32 elem_size;
2000 u32 index_mask;
2001 struct bpf_array_aux *aux;
2002 union {
2003 DECLARE_FLEX_ARRAY(char, value) __aligned(8);
2004 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
2005 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
2006 };
2007};
2008
2009#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
2010#define MAX_TAIL_CALL_CNT 33
2011
2012/* Maximum number of loops for bpf_loop and bpf_iter_num.
2013 * It's enum to expose it (and thus make it discoverable) through BTF.
2014 */
2015enum {
2016 BPF_MAX_LOOPS = 8 * 1024 * 1024,
2017 BPF_MAX_TIMED_LOOPS = 0xffff,
2018};
2019
2020#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
2021 BPF_F_RDONLY_PROG | \
2022 BPF_F_WRONLY | \
2023 BPF_F_WRONLY_PROG)
2024
2025#define BPF_MAP_CAN_READ BIT(0)
2026#define BPF_MAP_CAN_WRITE BIT(1)
2027
2028/* Maximum number of user-producer ring buffer samples that can be drained in
2029 * a call to bpf_user_ringbuf_drain().
2030 */
2031#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
2032
2033static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
2034{
2035 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2036
2037 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
2038 * not possible.
2039 */
2040 if (access_flags & BPF_F_RDONLY_PROG)
2041 return BPF_MAP_CAN_READ;
2042 else if (access_flags & BPF_F_WRONLY_PROG)
2043 return BPF_MAP_CAN_WRITE;
2044 else
2045 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
2046}
2047
2048static inline bool bpf_map_flags_access_ok(u32 access_flags)
2049{
2050 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
2051 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2052}
2053
2054struct bpf_event_entry {
2055 struct perf_event *event;
2056 struct file *perf_file;
2057 struct file *map_file;
2058 struct rcu_head rcu;
2059};
2060
2061static inline bool map_type_contains_progs(struct bpf_map *map)
2062{
2063 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
2064 map->map_type == BPF_MAP_TYPE_DEVMAP ||
2065 map->map_type == BPF_MAP_TYPE_CPUMAP;
2066}
2067
2068bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
2069int bpf_prog_calc_tag(struct bpf_prog *fp);
2070
2071const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
2072const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
2073
2074const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void);
2075
2076typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
2077 unsigned long off, unsigned long len);
2078typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
2079 const struct bpf_insn *src,
2080 struct bpf_insn *dst,
2081 struct bpf_prog *prog,
2082 u32 *target_size);
2083
2084u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2085 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
2086
2087/* an array of programs to be executed under rcu_lock.
2088 *
2089 * Typical usage:
2090 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
2091 *
2092 * the structure returned by bpf_prog_array_alloc() should be populated
2093 * with program pointers and the last pointer must be NULL.
2094 * The user has to keep refcnt on the program and make sure the program
2095 * is removed from the array before bpf_prog_put().
2096 * The 'struct bpf_prog_array *' should only be replaced with xchg()
2097 * since other cpus are walking the array of pointers in parallel.
2098 */
2099struct bpf_prog_array_item {
2100 struct bpf_prog *prog;
2101 union {
2102 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
2103 u64 bpf_cookie;
2104 };
2105};
2106
2107struct bpf_prog_array {
2108 struct rcu_head rcu;
2109 struct bpf_prog_array_item items[];
2110};
2111
2112struct bpf_empty_prog_array {
2113 struct bpf_prog_array hdr;
2114 struct bpf_prog *null_prog;
2115};
2116
2117/* to avoid allocating empty bpf_prog_array for cgroups that
2118 * don't have bpf program attached use one global 'bpf_empty_prog_array'
2119 * It will not be modified the caller of bpf_prog_array_alloc()
2120 * (since caller requested prog_cnt == 0)
2121 * that pointer should be 'freed' by bpf_prog_array_free()
2122 */
2123extern struct bpf_empty_prog_array bpf_empty_prog_array;
2124
2125struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
2126void bpf_prog_array_free(struct bpf_prog_array *progs);
2127/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2128void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2129int bpf_prog_array_length(struct bpf_prog_array *progs);
2130bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2131int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2132 __u32 __user *prog_ids, u32 cnt);
2133
2134void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2135 struct bpf_prog *old_prog);
2136int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2137int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2138 struct bpf_prog *prog);
2139int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2140 u32 *prog_ids, u32 request_cnt,
2141 u32 *prog_cnt);
2142int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2143 struct bpf_prog *exclude_prog,
2144 struct bpf_prog *include_prog,
2145 u64 bpf_cookie,
2146 struct bpf_prog_array **new_array);
2147
2148struct bpf_run_ctx {};
2149
2150struct bpf_cg_run_ctx {
2151 struct bpf_run_ctx run_ctx;
2152 const struct bpf_prog_array_item *prog_item;
2153 int retval;
2154};
2155
2156struct bpf_trace_run_ctx {
2157 struct bpf_run_ctx run_ctx;
2158 u64 bpf_cookie;
2159 bool is_uprobe;
2160};
2161
2162struct bpf_tramp_run_ctx {
2163 struct bpf_run_ctx run_ctx;
2164 u64 bpf_cookie;
2165 struct bpf_run_ctx *saved_run_ctx;
2166};
2167
2168static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2169{
2170 struct bpf_run_ctx *old_ctx = NULL;
2171
2172#ifdef CONFIG_BPF_SYSCALL
2173 old_ctx = current->bpf_ctx;
2174 current->bpf_ctx = new_ctx;
2175#endif
2176 return old_ctx;
2177}
2178
2179static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2180{
2181#ifdef CONFIG_BPF_SYSCALL
2182 current->bpf_ctx = old_ctx;
2183#endif
2184}
2185
2186/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2187#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
2188/* BPF program asks to set CN on the packet. */
2189#define BPF_RET_SET_CN (1 << 0)
2190
2191typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2192
2193static __always_inline u32
2194bpf_prog_run_array(const struct bpf_prog_array *array,
2195 const void *ctx, bpf_prog_run_fn run_prog)
2196{
2197 const struct bpf_prog_array_item *item;
2198 const struct bpf_prog *prog;
2199 struct bpf_run_ctx *old_run_ctx;
2200 struct bpf_trace_run_ctx run_ctx;
2201 u32 ret = 1;
2202
2203 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2204
2205 if (unlikely(!array))
2206 return ret;
2207
2208 run_ctx.is_uprobe = false;
2209
2210 migrate_disable();
2211 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2212 item = &array->items[0];
2213 while ((prog = READ_ONCE(item->prog))) {
2214 run_ctx.bpf_cookie = item->bpf_cookie;
2215 ret &= run_prog(prog, ctx);
2216 item++;
2217 }
2218 bpf_reset_run_ctx(old_run_ctx);
2219 migrate_enable();
2220 return ret;
2221}
2222
2223/* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2224 *
2225 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2226 * overall. As a result, we must use the bpf_prog_array_free_sleepable
2227 * in order to use the tasks_trace rcu grace period.
2228 *
2229 * When a non-sleepable program is inside the array, we take the rcu read
2230 * section and disable preemption for that program alone, so it can access
2231 * rcu-protected dynamically sized maps.
2232 */
2233static __always_inline u32
2234bpf_prog_run_array_uprobe(const struct bpf_prog_array *array,
2235 const void *ctx, bpf_prog_run_fn run_prog)
2236{
2237 const struct bpf_prog_array_item *item;
2238 const struct bpf_prog *prog;
2239 struct bpf_run_ctx *old_run_ctx;
2240 struct bpf_trace_run_ctx run_ctx;
2241 u32 ret = 1;
2242
2243 might_fault();
2244 RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held");
2245
2246 if (unlikely(!array))
2247 return ret;
2248
2249 migrate_disable();
2250
2251 run_ctx.is_uprobe = true;
2252
2253 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2254 item = &array->items[0];
2255 while ((prog = READ_ONCE(item->prog))) {
2256 if (!prog->sleepable)
2257 rcu_read_lock();
2258
2259 run_ctx.bpf_cookie = item->bpf_cookie;
2260 ret &= run_prog(prog, ctx);
2261 item++;
2262
2263 if (!prog->sleepable)
2264 rcu_read_unlock();
2265 }
2266 bpf_reset_run_ctx(old_run_ctx);
2267 migrate_enable();
2268 return ret;
2269}
2270
2271#ifdef CONFIG_BPF_SYSCALL
2272DECLARE_PER_CPU(int, bpf_prog_active);
2273extern struct mutex bpf_stats_enabled_mutex;
2274
2275/*
2276 * Block execution of BPF programs attached to instrumentation (perf,
2277 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2278 * these events can happen inside a region which holds a map bucket lock
2279 * and can deadlock on it.
2280 */
2281static inline void bpf_disable_instrumentation(void)
2282{
2283 migrate_disable();
2284 this_cpu_inc(bpf_prog_active);
2285}
2286
2287static inline void bpf_enable_instrumentation(void)
2288{
2289 this_cpu_dec(bpf_prog_active);
2290 migrate_enable();
2291}
2292
2293extern const struct super_operations bpf_super_ops;
2294extern const struct file_operations bpf_map_fops;
2295extern const struct file_operations bpf_prog_fops;
2296extern const struct file_operations bpf_iter_fops;
2297
2298#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2299 extern const struct bpf_prog_ops _name ## _prog_ops; \
2300 extern const struct bpf_verifier_ops _name ## _verifier_ops;
2301#define BPF_MAP_TYPE(_id, _ops) \
2302 extern const struct bpf_map_ops _ops;
2303#define BPF_LINK_TYPE(_id, _name)
2304#include <linux/bpf_types.h>
2305#undef BPF_PROG_TYPE
2306#undef BPF_MAP_TYPE
2307#undef BPF_LINK_TYPE
2308
2309extern const struct bpf_prog_ops bpf_offload_prog_ops;
2310extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2311extern const struct bpf_verifier_ops xdp_analyzer_ops;
2312
2313struct bpf_prog *bpf_prog_get(u32 ufd);
2314struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2315 bool attach_drv);
2316void bpf_prog_add(struct bpf_prog *prog, int i);
2317void bpf_prog_sub(struct bpf_prog *prog, int i);
2318void bpf_prog_inc(struct bpf_prog *prog);
2319struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2320void bpf_prog_put(struct bpf_prog *prog);
2321
2322void bpf_prog_free_id(struct bpf_prog *prog);
2323void bpf_map_free_id(struct bpf_map *map);
2324
2325struct btf_field *btf_record_find(const struct btf_record *rec,
2326 u32 offset, u32 field_mask);
2327void btf_record_free(struct btf_record *rec);
2328void bpf_map_free_record(struct bpf_map *map);
2329struct btf_record *btf_record_dup(const struct btf_record *rec);
2330bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2331void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2332void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj);
2333void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2334void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2335
2336struct bpf_map *bpf_map_get(u32 ufd);
2337struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2338
2339/*
2340 * The __bpf_map_get() and __btf_get_by_fd() functions parse a file
2341 * descriptor and return a corresponding map or btf object.
2342 * Their names are double underscored to emphasize the fact that they
2343 * do not increase refcnt. To also increase refcnt use corresponding
2344 * bpf_map_get() and btf_get_by_fd() functions.
2345 */
2346
2347static inline struct bpf_map *__bpf_map_get(struct fd f)
2348{
2349 if (fd_empty(f))
2350 return ERR_PTR(-EBADF);
2351 if (unlikely(fd_file(f)->f_op != &bpf_map_fops))
2352 return ERR_PTR(-EINVAL);
2353 return fd_file(f)->private_data;
2354}
2355
2356static inline struct btf *__btf_get_by_fd(struct fd f)
2357{
2358 if (fd_empty(f))
2359 return ERR_PTR(-EBADF);
2360 if (unlikely(fd_file(f)->f_op != &btf_fops))
2361 return ERR_PTR(-EINVAL);
2362 return fd_file(f)->private_data;
2363}
2364
2365void bpf_map_inc(struct bpf_map *map);
2366void bpf_map_inc_with_uref(struct bpf_map *map);
2367struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2368struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2369void bpf_map_put_with_uref(struct bpf_map *map);
2370void bpf_map_put(struct bpf_map *map);
2371void *bpf_map_area_alloc(u64 size, int numa_node);
2372void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2373void bpf_map_area_free(void *base);
2374bool bpf_map_write_active(const struct bpf_map *map);
2375void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2376int generic_map_lookup_batch(struct bpf_map *map,
2377 const union bpf_attr *attr,
2378 union bpf_attr __user *uattr);
2379int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2380 const union bpf_attr *attr,
2381 union bpf_attr __user *uattr);
2382int generic_map_delete_batch(struct bpf_map *map,
2383 const union bpf_attr *attr,
2384 union bpf_attr __user *uattr);
2385struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2386struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2387
2388int bpf_map_alloc_pages(const struct bpf_map *map, int nid,
2389 unsigned long nr_pages, struct page **page_array);
2390#ifdef CONFIG_MEMCG
2391void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2392 int node);
2393void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2394void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2395 gfp_t flags);
2396void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2397 size_t align, gfp_t flags);
2398#else
2399/*
2400 * These specialized allocators have to be macros for their allocations to be
2401 * accounted separately (to have separate alloc_tag).
2402 */
2403#define bpf_map_kmalloc_node(_map, _size, _flags, _node) \
2404 kmalloc_node(_size, _flags, _node)
2405#define bpf_map_kzalloc(_map, _size, _flags) \
2406 kzalloc(_size, _flags)
2407#define bpf_map_kvcalloc(_map, _n, _size, _flags) \
2408 kvcalloc(_n, _size, _flags)
2409#define bpf_map_alloc_percpu(_map, _size, _align, _flags) \
2410 __alloc_percpu_gfp(_size, _align, _flags)
2411#endif
2412
2413static inline int
2414bpf_map_init_elem_count(struct bpf_map *map)
2415{
2416 size_t size = sizeof(*map->elem_count), align = size;
2417 gfp_t flags = GFP_USER | __GFP_NOWARN;
2418
2419 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2420 if (!map->elem_count)
2421 return -ENOMEM;
2422
2423 return 0;
2424}
2425
2426static inline void
2427bpf_map_free_elem_count(struct bpf_map *map)
2428{
2429 free_percpu(map->elem_count);
2430}
2431
2432static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2433{
2434 this_cpu_inc(*map->elem_count);
2435}
2436
2437static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2438{
2439 this_cpu_dec(*map->elem_count);
2440}
2441
2442extern int sysctl_unprivileged_bpf_disabled;
2443
2444bool bpf_token_capable(const struct bpf_token *token, int cap);
2445
2446static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2447{
2448 return bpf_token_capable(token, CAP_PERFMON);
2449}
2450
2451static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2452{
2453 return bpf_token_capable(token, CAP_PERFMON);
2454}
2455
2456static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2457{
2458 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2459}
2460
2461static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2462{
2463 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2464}
2465
2466int bpf_map_new_fd(struct bpf_map *map, int flags);
2467int bpf_prog_new_fd(struct bpf_prog *prog);
2468
2469void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2470 const struct bpf_link_ops *ops, struct bpf_prog *prog);
2471void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2472 const struct bpf_link_ops *ops, struct bpf_prog *prog,
2473 bool sleepable);
2474int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2475int bpf_link_settle(struct bpf_link_primer *primer);
2476void bpf_link_cleanup(struct bpf_link_primer *primer);
2477void bpf_link_inc(struct bpf_link *link);
2478struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link);
2479void bpf_link_put(struct bpf_link *link);
2480int bpf_link_new_fd(struct bpf_link *link);
2481struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2482struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2483
2484void bpf_token_inc(struct bpf_token *token);
2485void bpf_token_put(struct bpf_token *token);
2486int bpf_token_create(union bpf_attr *attr);
2487struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2488
2489bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2490bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2491bool bpf_token_allow_prog_type(const struct bpf_token *token,
2492 enum bpf_prog_type prog_type,
2493 enum bpf_attach_type attach_type);
2494
2495int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2496int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2497struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2498 umode_t mode);
2499
2500#define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2501#define DEFINE_BPF_ITER_FUNC(target, args...) \
2502 extern int bpf_iter_ ## target(args); \
2503 int __init bpf_iter_ ## target(args) { return 0; }
2504
2505/*
2506 * The task type of iterators.
2507 *
2508 * For BPF task iterators, they can be parameterized with various
2509 * parameters to visit only some of tasks.
2510 *
2511 * BPF_TASK_ITER_ALL (default)
2512 * Iterate over resources of every task.
2513 *
2514 * BPF_TASK_ITER_TID
2515 * Iterate over resources of a task/tid.
2516 *
2517 * BPF_TASK_ITER_TGID
2518 * Iterate over resources of every task of a process / task group.
2519 */
2520enum bpf_iter_task_type {
2521 BPF_TASK_ITER_ALL = 0,
2522 BPF_TASK_ITER_TID,
2523 BPF_TASK_ITER_TGID,
2524};
2525
2526struct bpf_iter_aux_info {
2527 /* for map_elem iter */
2528 struct bpf_map *map;
2529
2530 /* for cgroup iter */
2531 struct {
2532 struct cgroup *start; /* starting cgroup */
2533 enum bpf_cgroup_iter_order order;
2534 } cgroup;
2535 struct {
2536 enum bpf_iter_task_type type;
2537 u32 pid;
2538 } task;
2539};
2540
2541typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2542 union bpf_iter_link_info *linfo,
2543 struct bpf_iter_aux_info *aux);
2544typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2545typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2546 struct seq_file *seq);
2547typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2548 struct bpf_link_info *info);
2549typedef const struct bpf_func_proto *
2550(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2551 const struct bpf_prog *prog);
2552
2553enum bpf_iter_feature {
2554 BPF_ITER_RESCHED = BIT(0),
2555};
2556
2557#define BPF_ITER_CTX_ARG_MAX 2
2558struct bpf_iter_reg {
2559 const char *target;
2560 bpf_iter_attach_target_t attach_target;
2561 bpf_iter_detach_target_t detach_target;
2562 bpf_iter_show_fdinfo_t show_fdinfo;
2563 bpf_iter_fill_link_info_t fill_link_info;
2564 bpf_iter_get_func_proto_t get_func_proto;
2565 u32 ctx_arg_info_size;
2566 u32 feature;
2567 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2568 const struct bpf_iter_seq_info *seq_info;
2569};
2570
2571struct bpf_iter_meta {
2572 __bpf_md_ptr(struct seq_file *, seq);
2573 u64 session_id;
2574 u64 seq_num;
2575};
2576
2577struct bpf_iter__bpf_map_elem {
2578 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2579 __bpf_md_ptr(struct bpf_map *, map);
2580 __bpf_md_ptr(void *, key);
2581 __bpf_md_ptr(void *, value);
2582};
2583
2584int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2585void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2586int bpf_iter_prog_supported(struct bpf_prog *prog);
2587const struct bpf_func_proto *
2588bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2589int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2590int bpf_iter_new_fd(struct bpf_link *link);
2591bool bpf_link_is_iter(struct bpf_link *link);
2592struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2593int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2594void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2595 struct seq_file *seq);
2596int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2597 struct bpf_link_info *info);
2598
2599int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2600 struct bpf_func_state *caller,
2601 struct bpf_func_state *callee);
2602
2603int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2604int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2605int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2606 u64 flags);
2607int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2608 u64 flags);
2609
2610int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2611
2612int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2613 void *key, void *value, u64 map_flags);
2614int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2615int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2616 void *key, void *value, u64 map_flags);
2617int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2618
2619int bpf_get_file_flag(int flags);
2620int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2621 size_t actual_size);
2622
2623/* verify correctness of eBPF program */
2624int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2625
2626#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2627void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2628#endif
2629
2630struct btf *bpf_get_btf_vmlinux(void);
2631
2632/* Map specifics */
2633struct xdp_frame;
2634struct sk_buff;
2635struct bpf_dtab_netdev;
2636struct bpf_cpu_map_entry;
2637
2638void __dev_flush(struct list_head *flush_list);
2639int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2640 struct net_device *dev_rx);
2641int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2642 struct net_device *dev_rx);
2643int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2644 struct bpf_map *map, bool exclude_ingress);
2645int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2646 const struct bpf_prog *xdp_prog);
2647int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2648 const struct bpf_prog *xdp_prog,
2649 struct bpf_map *map, bool exclude_ingress);
2650
2651void __cpu_map_flush(struct list_head *flush_list);
2652int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2653 struct net_device *dev_rx);
2654int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2655 struct sk_buff *skb);
2656
2657/* Return map's numa specified by userspace */
2658static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2659{
2660 return (attr->map_flags & BPF_F_NUMA_NODE) ?
2661 attr->numa_node : NUMA_NO_NODE;
2662}
2663
2664struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2665int array_map_alloc_check(union bpf_attr *attr);
2666
2667int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2668 union bpf_attr __user *uattr);
2669int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2670 union bpf_attr __user *uattr);
2671int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2672 const union bpf_attr *kattr,
2673 union bpf_attr __user *uattr);
2674int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2675 const union bpf_attr *kattr,
2676 union bpf_attr __user *uattr);
2677int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2678 const union bpf_attr *kattr,
2679 union bpf_attr __user *uattr);
2680int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2681 const union bpf_attr *kattr,
2682 union bpf_attr __user *uattr);
2683int bpf_prog_test_run_nf(struct bpf_prog *prog,
2684 const union bpf_attr *kattr,
2685 union bpf_attr __user *uattr);
2686bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2687 const struct bpf_prog *prog,
2688 struct bpf_insn_access_aux *info);
2689
2690static inline bool bpf_tracing_ctx_access(int off, int size,
2691 enum bpf_access_type type)
2692{
2693 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2694 return false;
2695 if (type != BPF_READ)
2696 return false;
2697 if (off % size != 0)
2698 return false;
2699 return true;
2700}
2701
2702static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2703 enum bpf_access_type type,
2704 const struct bpf_prog *prog,
2705 struct bpf_insn_access_aux *info)
2706{
2707 if (!bpf_tracing_ctx_access(off, size, type))
2708 return false;
2709 return btf_ctx_access(off, size, type, prog, info);
2710}
2711
2712int btf_struct_access(struct bpf_verifier_log *log,
2713 const struct bpf_reg_state *reg,
2714 int off, int size, enum bpf_access_type atype,
2715 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2716bool btf_struct_ids_match(struct bpf_verifier_log *log,
2717 const struct btf *btf, u32 id, int off,
2718 const struct btf *need_btf, u32 need_type_id,
2719 bool strict);
2720
2721int btf_distill_func_proto(struct bpf_verifier_log *log,
2722 struct btf *btf,
2723 const struct btf_type *func_proto,
2724 const char *func_name,
2725 struct btf_func_model *m);
2726
2727struct bpf_reg_state;
2728int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2729int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2730 struct btf *btf, const struct btf_type *t);
2731const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2732 int comp_idx, const char *tag_key);
2733int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2734 int comp_idx, const char *tag_key, int last_id);
2735
2736struct bpf_prog *bpf_prog_by_id(u32 id);
2737struct bpf_link *bpf_link_by_id(u32 id);
2738
2739const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2740 const struct bpf_prog *prog);
2741void bpf_task_storage_free(struct task_struct *task);
2742void bpf_cgrp_storage_free(struct cgroup *cgroup);
2743bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2744const struct btf_func_model *
2745bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2746 const struct bpf_insn *insn);
2747int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2748 u16 btf_fd_idx, u8 **func_addr);
2749
2750struct bpf_core_ctx {
2751 struct bpf_verifier_log *log;
2752 const struct btf *btf;
2753};
2754
2755bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2756 const struct bpf_reg_state *reg,
2757 const char *field_name, u32 btf_id, const char *suffix);
2758
2759bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2760 const struct btf *reg_btf, u32 reg_id,
2761 const struct btf *arg_btf, u32 arg_id);
2762
2763int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2764 int relo_idx, void *insn);
2765
2766static inline bool unprivileged_ebpf_enabled(void)
2767{
2768 return !sysctl_unprivileged_bpf_disabled;
2769}
2770
2771/* Not all bpf prog type has the bpf_ctx.
2772 * For the bpf prog type that has initialized the bpf_ctx,
2773 * this function can be used to decide if a kernel function
2774 * is called by a bpf program.
2775 */
2776static inline bool has_current_bpf_ctx(void)
2777{
2778 return !!current->bpf_ctx;
2779}
2780
2781void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2782
2783void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2784 enum bpf_dynptr_type type, u32 offset, u32 size);
2785void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2786void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2787
2788#else /* !CONFIG_BPF_SYSCALL */
2789static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2790{
2791 return ERR_PTR(-EOPNOTSUPP);
2792}
2793
2794static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2795 enum bpf_prog_type type,
2796 bool attach_drv)
2797{
2798 return ERR_PTR(-EOPNOTSUPP);
2799}
2800
2801static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2802{
2803}
2804
2805static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2806{
2807}
2808
2809static inline void bpf_prog_put(struct bpf_prog *prog)
2810{
2811}
2812
2813static inline void bpf_prog_inc(struct bpf_prog *prog)
2814{
2815}
2816
2817static inline struct bpf_prog *__must_check
2818bpf_prog_inc_not_zero(struct bpf_prog *prog)
2819{
2820 return ERR_PTR(-EOPNOTSUPP);
2821}
2822
2823static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2824 const struct bpf_link_ops *ops,
2825 struct bpf_prog *prog)
2826{
2827}
2828
2829static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2830 const struct bpf_link_ops *ops, struct bpf_prog *prog,
2831 bool sleepable)
2832{
2833}
2834
2835static inline int bpf_link_prime(struct bpf_link *link,
2836 struct bpf_link_primer *primer)
2837{
2838 return -EOPNOTSUPP;
2839}
2840
2841static inline int bpf_link_settle(struct bpf_link_primer *primer)
2842{
2843 return -EOPNOTSUPP;
2844}
2845
2846static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2847{
2848}
2849
2850static inline void bpf_link_inc(struct bpf_link *link)
2851{
2852}
2853
2854static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
2855{
2856 return NULL;
2857}
2858
2859static inline void bpf_link_put(struct bpf_link *link)
2860{
2861}
2862
2863static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2864{
2865 return -EOPNOTSUPP;
2866}
2867
2868static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2869{
2870 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2871}
2872
2873static inline void bpf_token_inc(struct bpf_token *token)
2874{
2875}
2876
2877static inline void bpf_token_put(struct bpf_token *token)
2878{
2879}
2880
2881static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2882{
2883 return ERR_PTR(-EOPNOTSUPP);
2884}
2885
2886static inline void __dev_flush(struct list_head *flush_list)
2887{
2888}
2889
2890struct xdp_frame;
2891struct bpf_dtab_netdev;
2892struct bpf_cpu_map_entry;
2893
2894static inline
2895int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2896 struct net_device *dev_rx)
2897{
2898 return 0;
2899}
2900
2901static inline
2902int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2903 struct net_device *dev_rx)
2904{
2905 return 0;
2906}
2907
2908static inline
2909int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2910 struct bpf_map *map, bool exclude_ingress)
2911{
2912 return 0;
2913}
2914
2915struct sk_buff;
2916
2917static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2918 struct sk_buff *skb,
2919 const struct bpf_prog *xdp_prog)
2920{
2921 return 0;
2922}
2923
2924static inline
2925int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2926 const struct bpf_prog *xdp_prog,
2927 struct bpf_map *map, bool exclude_ingress)
2928{
2929 return 0;
2930}
2931
2932static inline void __cpu_map_flush(struct list_head *flush_list)
2933{
2934}
2935
2936static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2937 struct xdp_frame *xdpf,
2938 struct net_device *dev_rx)
2939{
2940 return 0;
2941}
2942
2943static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2944 struct sk_buff *skb)
2945{
2946 return -EOPNOTSUPP;
2947}
2948
2949static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2950 enum bpf_prog_type type)
2951{
2952 return ERR_PTR(-EOPNOTSUPP);
2953}
2954
2955static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2956 const union bpf_attr *kattr,
2957 union bpf_attr __user *uattr)
2958{
2959 return -ENOTSUPP;
2960}
2961
2962static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2963 const union bpf_attr *kattr,
2964 union bpf_attr __user *uattr)
2965{
2966 return -ENOTSUPP;
2967}
2968
2969static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2970 const union bpf_attr *kattr,
2971 union bpf_attr __user *uattr)
2972{
2973 return -ENOTSUPP;
2974}
2975
2976static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2977 const union bpf_attr *kattr,
2978 union bpf_attr __user *uattr)
2979{
2980 return -ENOTSUPP;
2981}
2982
2983static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2984 const union bpf_attr *kattr,
2985 union bpf_attr __user *uattr)
2986{
2987 return -ENOTSUPP;
2988}
2989
2990static inline void bpf_map_put(struct bpf_map *map)
2991{
2992}
2993
2994static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2995{
2996 return ERR_PTR(-ENOTSUPP);
2997}
2998
2999static inline int btf_struct_access(struct bpf_verifier_log *log,
3000 const struct bpf_reg_state *reg,
3001 int off, int size, enum bpf_access_type atype,
3002 u32 *next_btf_id, enum bpf_type_flag *flag,
3003 const char **field_name)
3004{
3005 return -EACCES;
3006}
3007
3008static inline const struct bpf_func_proto *
3009bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3010{
3011 return NULL;
3012}
3013
3014static inline void bpf_task_storage_free(struct task_struct *task)
3015{
3016}
3017
3018static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3019{
3020 return false;
3021}
3022
3023static inline const struct btf_func_model *
3024bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3025 const struct bpf_insn *insn)
3026{
3027 return NULL;
3028}
3029
3030static inline int
3031bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
3032 u16 btf_fd_idx, u8 **func_addr)
3033{
3034 return -ENOTSUPP;
3035}
3036
3037static inline bool unprivileged_ebpf_enabled(void)
3038{
3039 return false;
3040}
3041
3042static inline bool has_current_bpf_ctx(void)
3043{
3044 return false;
3045}
3046
3047static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
3048{
3049}
3050
3051static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
3052{
3053}
3054
3055static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
3056 enum bpf_dynptr_type type, u32 offset, u32 size)
3057{
3058}
3059
3060static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
3061{
3062}
3063
3064static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
3065{
3066}
3067#endif /* CONFIG_BPF_SYSCALL */
3068
3069static __always_inline int
3070bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
3071{
3072 int ret = -EFAULT;
3073
3074 if (IS_ENABLED(CONFIG_BPF_EVENTS))
3075 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
3076 if (unlikely(ret < 0))
3077 memset(dst, 0, size);
3078 return ret;
3079}
3080
3081void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len);
3082
3083static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
3084 enum bpf_prog_type type)
3085{
3086 return bpf_prog_get_type_dev(ufd, type, false);
3087}
3088
3089void __bpf_free_used_maps(struct bpf_prog_aux *aux,
3090 struct bpf_map **used_maps, u32 len);
3091
3092bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
3093
3094int bpf_prog_offload_compile(struct bpf_prog *prog);
3095void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
3096int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
3097 struct bpf_prog *prog);
3098
3099int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
3100
3101int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
3102int bpf_map_offload_update_elem(struct bpf_map *map,
3103 void *key, void *value, u64 flags);
3104int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
3105int bpf_map_offload_get_next_key(struct bpf_map *map,
3106 void *key, void *next_key);
3107
3108bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
3109
3110struct bpf_offload_dev *
3111bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
3112void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
3113void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
3114int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
3115 struct net_device *netdev);
3116void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
3117 struct net_device *netdev);
3118bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
3119
3120void unpriv_ebpf_notify(int new_state);
3121
3122#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
3123int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3124 struct bpf_prog_aux *prog_aux);
3125void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
3126int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
3127int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
3128void bpf_dev_bound_netdev_unregister(struct net_device *dev);
3129
3130static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3131{
3132 return aux->dev_bound;
3133}
3134
3135static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
3136{
3137 return aux->offload_requested;
3138}
3139
3140bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
3141
3142static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3143{
3144 return unlikely(map->ops == &bpf_map_offload_ops);
3145}
3146
3147struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
3148void bpf_map_offload_map_free(struct bpf_map *map);
3149u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
3150int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3151 const union bpf_attr *kattr,
3152 union bpf_attr __user *uattr);
3153
3154int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3155int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3156int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3157int sock_map_bpf_prog_query(const union bpf_attr *attr,
3158 union bpf_attr __user *uattr);
3159int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog);
3160
3161void sock_map_unhash(struct sock *sk);
3162void sock_map_destroy(struct sock *sk);
3163void sock_map_close(struct sock *sk, long timeout);
3164#else
3165static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3166 struct bpf_prog_aux *prog_aux)
3167{
3168 return -EOPNOTSUPP;
3169}
3170
3171static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3172 u32 func_id)
3173{
3174 return NULL;
3175}
3176
3177static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3178 union bpf_attr *attr)
3179{
3180 return -EOPNOTSUPP;
3181}
3182
3183static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3184 struct bpf_prog *old_prog)
3185{
3186 return -EOPNOTSUPP;
3187}
3188
3189static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3190{
3191}
3192
3193static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3194{
3195 return false;
3196}
3197
3198static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3199{
3200 return false;
3201}
3202
3203static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3204{
3205 return false;
3206}
3207
3208static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3209{
3210 return false;
3211}
3212
3213static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3214{
3215 return ERR_PTR(-EOPNOTSUPP);
3216}
3217
3218static inline void bpf_map_offload_map_free(struct bpf_map *map)
3219{
3220}
3221
3222static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3223{
3224 return 0;
3225}
3226
3227static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3228 const union bpf_attr *kattr,
3229 union bpf_attr __user *uattr)
3230{
3231 return -ENOTSUPP;
3232}
3233
3234#ifdef CONFIG_BPF_SYSCALL
3235static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3236 struct bpf_prog *prog)
3237{
3238 return -EINVAL;
3239}
3240
3241static inline int sock_map_prog_detach(const union bpf_attr *attr,
3242 enum bpf_prog_type ptype)
3243{
3244 return -EOPNOTSUPP;
3245}
3246
3247static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3248 u64 flags)
3249{
3250 return -EOPNOTSUPP;
3251}
3252
3253static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3254 union bpf_attr __user *uattr)
3255{
3256 return -EINVAL;
3257}
3258
3259static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
3260{
3261 return -EOPNOTSUPP;
3262}
3263#endif /* CONFIG_BPF_SYSCALL */
3264#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3265
3266static __always_inline void
3267bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3268{
3269 const struct bpf_prog_array_item *item;
3270 struct bpf_prog *prog;
3271
3272 if (unlikely(!array))
3273 return;
3274
3275 item = &array->items[0];
3276 while ((prog = READ_ONCE(item->prog))) {
3277 bpf_prog_inc_misses_counter(prog);
3278 item++;
3279 }
3280}
3281
3282#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3283void bpf_sk_reuseport_detach(struct sock *sk);
3284int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3285 void *value);
3286int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3287 void *value, u64 map_flags);
3288#else
3289static inline void bpf_sk_reuseport_detach(struct sock *sk)
3290{
3291}
3292
3293#ifdef CONFIG_BPF_SYSCALL
3294static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3295 void *key, void *value)
3296{
3297 return -EOPNOTSUPP;
3298}
3299
3300static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3301 void *key, void *value,
3302 u64 map_flags)
3303{
3304 return -EOPNOTSUPP;
3305}
3306#endif /* CONFIG_BPF_SYSCALL */
3307#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3308
3309/* verifier prototypes for helper functions called from eBPF programs */
3310extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3311extern const struct bpf_func_proto bpf_map_update_elem_proto;
3312extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3313extern const struct bpf_func_proto bpf_map_push_elem_proto;
3314extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3315extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3316extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3317
3318extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3319extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3320extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3321extern const struct bpf_func_proto bpf_tail_call_proto;
3322extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3323extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3324extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3325extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3326extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3327extern const struct bpf_func_proto bpf_get_current_comm_proto;
3328extern const struct bpf_func_proto bpf_get_stackid_proto;
3329extern const struct bpf_func_proto bpf_get_stack_proto;
3330extern const struct bpf_func_proto bpf_get_stack_sleepable_proto;
3331extern const struct bpf_func_proto bpf_get_task_stack_proto;
3332extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto;
3333extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3334extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3335extern const struct bpf_func_proto bpf_sock_map_update_proto;
3336extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3337extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3338extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3339extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3340extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto;
3341extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3342extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3343extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3344extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3345extern const struct bpf_func_proto bpf_spin_lock_proto;
3346extern const struct bpf_func_proto bpf_spin_unlock_proto;
3347extern const struct bpf_func_proto bpf_get_local_storage_proto;
3348extern const struct bpf_func_proto bpf_strtol_proto;
3349extern const struct bpf_func_proto bpf_strtoul_proto;
3350extern const struct bpf_func_proto bpf_tcp_sock_proto;
3351extern const struct bpf_func_proto bpf_jiffies64_proto;
3352extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3353extern const struct bpf_func_proto bpf_event_output_data_proto;
3354extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3355extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3356extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3357extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3358extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3359extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3360extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3361extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3362extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3363extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3364extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3365extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3366extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3367extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3368extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3369extern const struct bpf_func_proto bpf_copy_from_user_proto;
3370extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3371extern const struct bpf_func_proto bpf_snprintf_proto;
3372extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3373extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3374extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3375extern const struct bpf_func_proto bpf_sock_from_file_proto;
3376extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3377extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3378extern const struct bpf_func_proto bpf_task_storage_get_proto;
3379extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3380extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3381extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3382extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3383extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3384extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3385extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3386extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3387extern const struct bpf_func_proto bpf_find_vma_proto;
3388extern const struct bpf_func_proto bpf_loop_proto;
3389extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3390extern const struct bpf_func_proto bpf_set_retval_proto;
3391extern const struct bpf_func_proto bpf_get_retval_proto;
3392extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3393extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3394extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3395
3396const struct bpf_func_proto *tracing_prog_func_proto(
3397 enum bpf_func_id func_id, const struct bpf_prog *prog);
3398
3399/* Shared helpers among cBPF and eBPF. */
3400void bpf_user_rnd_init_once(void);
3401u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3402u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3403
3404#if defined(CONFIG_NET)
3405bool bpf_sock_common_is_valid_access(int off, int size,
3406 enum bpf_access_type type,
3407 struct bpf_insn_access_aux *info);
3408bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3409 struct bpf_insn_access_aux *info);
3410u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3411 const struct bpf_insn *si,
3412 struct bpf_insn *insn_buf,
3413 struct bpf_prog *prog,
3414 u32 *target_size);
3415int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3416 struct bpf_dynptr *ptr);
3417#else
3418static inline bool bpf_sock_common_is_valid_access(int off, int size,
3419 enum bpf_access_type type,
3420 struct bpf_insn_access_aux *info)
3421{
3422 return false;
3423}
3424static inline bool bpf_sock_is_valid_access(int off, int size,
3425 enum bpf_access_type type,
3426 struct bpf_insn_access_aux *info)
3427{
3428 return false;
3429}
3430static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3431 const struct bpf_insn *si,
3432 struct bpf_insn *insn_buf,
3433 struct bpf_prog *prog,
3434 u32 *target_size)
3435{
3436 return 0;
3437}
3438static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3439 struct bpf_dynptr *ptr)
3440{
3441 return -EOPNOTSUPP;
3442}
3443#endif
3444
3445#ifdef CONFIG_INET
3446struct sk_reuseport_kern {
3447 struct sk_buff *skb;
3448 struct sock *sk;
3449 struct sock *selected_sk;
3450 struct sock *migrating_sk;
3451 void *data_end;
3452 u32 hash;
3453 u32 reuseport_id;
3454 bool bind_inany;
3455};
3456bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3457 struct bpf_insn_access_aux *info);
3458
3459u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3460 const struct bpf_insn *si,
3461 struct bpf_insn *insn_buf,
3462 struct bpf_prog *prog,
3463 u32 *target_size);
3464
3465bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3466 struct bpf_insn_access_aux *info);
3467
3468u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3469 const struct bpf_insn *si,
3470 struct bpf_insn *insn_buf,
3471 struct bpf_prog *prog,
3472 u32 *target_size);
3473#else
3474static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3475 enum bpf_access_type type,
3476 struct bpf_insn_access_aux *info)
3477{
3478 return false;
3479}
3480
3481static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3482 const struct bpf_insn *si,
3483 struct bpf_insn *insn_buf,
3484 struct bpf_prog *prog,
3485 u32 *target_size)
3486{
3487 return 0;
3488}
3489static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3490 enum bpf_access_type type,
3491 struct bpf_insn_access_aux *info)
3492{
3493 return false;
3494}
3495
3496static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3497 const struct bpf_insn *si,
3498 struct bpf_insn *insn_buf,
3499 struct bpf_prog *prog,
3500 u32 *target_size)
3501{
3502 return 0;
3503}
3504#endif /* CONFIG_INET */
3505
3506enum bpf_text_poke_type {
3507 BPF_MOD_CALL,
3508 BPF_MOD_JUMP,
3509};
3510
3511int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3512 void *addr1, void *addr2);
3513
3514void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3515 struct bpf_prog *new, struct bpf_prog *old);
3516
3517void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3518int bpf_arch_text_invalidate(void *dst, size_t len);
3519
3520struct btf_id_set;
3521bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3522
3523#define MAX_BPRINTF_VARARGS 12
3524#define MAX_BPRINTF_BUF 1024
3525
3526struct bpf_bprintf_data {
3527 u32 *bin_args;
3528 char *buf;
3529 bool get_bin_args;
3530 bool get_buf;
3531};
3532
3533int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3534 u32 num_args, struct bpf_bprintf_data *data);
3535void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3536
3537#ifdef CONFIG_BPF_LSM
3538void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3539void bpf_cgroup_atype_put(int cgroup_atype);
3540#else
3541static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3542static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3543#endif /* CONFIG_BPF_LSM */
3544
3545struct key;
3546
3547#ifdef CONFIG_KEYS
3548struct bpf_key {
3549 struct key *key;
3550 bool has_ref;
3551};
3552#endif /* CONFIG_KEYS */
3553
3554static inline bool type_is_alloc(u32 type)
3555{
3556 return type & MEM_ALLOC;
3557}
3558
3559static inline gfp_t bpf_memcg_flags(gfp_t flags)
3560{
3561 if (memcg_bpf_enabled())
3562 return flags | __GFP_ACCOUNT;
3563 return flags;
3564}
3565
3566static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3567{
3568 return prog->aux->func_idx != 0;
3569}
3570
3571#endif /* _LINUX_BPF_H */