at v6.15 18 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de> 4 */ 5#ifndef __LINUX_BIO_H 6#define __LINUX_BIO_H 7 8#include <linux/mempool.h> 9/* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ 10#include <linux/blk_types.h> 11#include <linux/uio.h> 12 13#define BIO_MAX_VECS 256U 14#define BIO_MAX_INLINE_VECS UIO_MAXIOV 15 16struct queue_limits; 17 18static inline unsigned int bio_max_segs(unsigned int nr_segs) 19{ 20 return min(nr_segs, BIO_MAX_VECS); 21} 22 23#define bio_iter_iovec(bio, iter) \ 24 bvec_iter_bvec((bio)->bi_io_vec, (iter)) 25 26#define bio_iter_page(bio, iter) \ 27 bvec_iter_page((bio)->bi_io_vec, (iter)) 28#define bio_iter_len(bio, iter) \ 29 bvec_iter_len((bio)->bi_io_vec, (iter)) 30#define bio_iter_offset(bio, iter) \ 31 bvec_iter_offset((bio)->bi_io_vec, (iter)) 32 33#define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) 34#define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) 35#define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) 36 37#define bvec_iter_sectors(iter) ((iter).bi_size >> 9) 38#define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) 39 40#define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) 41#define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) 42 43/* 44 * Return the data direction, READ or WRITE. 45 */ 46#define bio_data_dir(bio) \ 47 (op_is_write(bio_op(bio)) ? WRITE : READ) 48 49/* 50 * Check whether this bio carries any data or not. A NULL bio is allowed. 51 */ 52static inline bool bio_has_data(struct bio *bio) 53{ 54 if (bio && 55 bio->bi_iter.bi_size && 56 bio_op(bio) != REQ_OP_DISCARD && 57 bio_op(bio) != REQ_OP_SECURE_ERASE && 58 bio_op(bio) != REQ_OP_WRITE_ZEROES) 59 return true; 60 61 return false; 62} 63 64static inline bool bio_no_advance_iter(const struct bio *bio) 65{ 66 return bio_op(bio) == REQ_OP_DISCARD || 67 bio_op(bio) == REQ_OP_SECURE_ERASE || 68 bio_op(bio) == REQ_OP_WRITE_ZEROES; 69} 70 71static inline void *bio_data(struct bio *bio) 72{ 73 if (bio_has_data(bio)) 74 return page_address(bio_page(bio)) + bio_offset(bio); 75 76 return NULL; 77} 78 79static inline bool bio_next_segment(const struct bio *bio, 80 struct bvec_iter_all *iter) 81{ 82 if (iter->idx >= bio->bi_vcnt) 83 return false; 84 85 bvec_advance(&bio->bi_io_vec[iter->idx], iter); 86 return true; 87} 88 89/* 90 * drivers should _never_ use the all version - the bio may have been split 91 * before it got to the driver and the driver won't own all of it 92 */ 93#define bio_for_each_segment_all(bvl, bio, iter) \ 94 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) 95 96static inline void bio_advance_iter(const struct bio *bio, 97 struct bvec_iter *iter, unsigned int bytes) 98{ 99 iter->bi_sector += bytes >> 9; 100 101 if (bio_no_advance_iter(bio)) 102 iter->bi_size -= bytes; 103 else 104 bvec_iter_advance(bio->bi_io_vec, iter, bytes); 105 /* TODO: It is reasonable to complete bio with error here. */ 106} 107 108/* @bytes should be less or equal to bvec[i->bi_idx].bv_len */ 109static inline void bio_advance_iter_single(const struct bio *bio, 110 struct bvec_iter *iter, 111 unsigned int bytes) 112{ 113 iter->bi_sector += bytes >> 9; 114 115 if (bio_no_advance_iter(bio)) 116 iter->bi_size -= bytes; 117 else 118 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes); 119} 120 121void __bio_advance(struct bio *, unsigned bytes); 122 123/** 124 * bio_advance - increment/complete a bio by some number of bytes 125 * @bio: bio to advance 126 * @nbytes: number of bytes to complete 127 * 128 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 129 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 130 * be updated on the last bvec as well. 131 * 132 * @bio will then represent the remaining, uncompleted portion of the io. 133 */ 134static inline void bio_advance(struct bio *bio, unsigned int nbytes) 135{ 136 if (nbytes == bio->bi_iter.bi_size) { 137 bio->bi_iter.bi_size = 0; 138 return; 139 } 140 __bio_advance(bio, nbytes); 141} 142 143#define __bio_for_each_segment(bvl, bio, iter, start) \ 144 for (iter = (start); \ 145 (iter).bi_size && \ 146 ((bvl = bio_iter_iovec((bio), (iter))), 1); \ 147 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 148 149#define bio_for_each_segment(bvl, bio, iter) \ 150 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) 151 152#define __bio_for_each_bvec(bvl, bio, iter, start) \ 153 for (iter = (start); \ 154 (iter).bi_size && \ 155 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ 156 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 157 158/* iterate over multi-page bvec */ 159#define bio_for_each_bvec(bvl, bio, iter) \ 160 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) 161 162/* 163 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the 164 * same reasons as bio_for_each_segment_all(). 165 */ 166#define bio_for_each_bvec_all(bvl, bio, i) \ 167 for (i = 0, bvl = bio_first_bvec_all(bio); \ 168 i < (bio)->bi_vcnt; i++, bvl++) 169 170#define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) 171 172static inline unsigned bio_segments(struct bio *bio) 173{ 174 unsigned segs = 0; 175 struct bio_vec bv; 176 struct bvec_iter iter; 177 178 /* 179 * We special case discard/write same/write zeroes, because they 180 * interpret bi_size differently: 181 */ 182 183 switch (bio_op(bio)) { 184 case REQ_OP_DISCARD: 185 case REQ_OP_SECURE_ERASE: 186 case REQ_OP_WRITE_ZEROES: 187 return 0; 188 default: 189 break; 190 } 191 192 bio_for_each_segment(bv, bio, iter) 193 segs++; 194 195 return segs; 196} 197 198/* 199 * get a reference to a bio, so it won't disappear. the intended use is 200 * something like: 201 * 202 * bio_get(bio); 203 * submit_bio(rw, bio); 204 * if (bio->bi_flags ...) 205 * do_something 206 * bio_put(bio); 207 * 208 * without the bio_get(), it could potentially complete I/O before submit_bio 209 * returns. and then bio would be freed memory when if (bio->bi_flags ...) 210 * runs 211 */ 212static inline void bio_get(struct bio *bio) 213{ 214 bio->bi_flags |= (1 << BIO_REFFED); 215 smp_mb__before_atomic(); 216 atomic_inc(&bio->__bi_cnt); 217} 218 219static inline void bio_cnt_set(struct bio *bio, unsigned int count) 220{ 221 if (count != 1) { 222 bio->bi_flags |= (1 << BIO_REFFED); 223 smp_mb(); 224 } 225 atomic_set(&bio->__bi_cnt, count); 226} 227 228static inline bool bio_flagged(struct bio *bio, unsigned int bit) 229{ 230 return bio->bi_flags & (1U << bit); 231} 232 233static inline void bio_set_flag(struct bio *bio, unsigned int bit) 234{ 235 bio->bi_flags |= (1U << bit); 236} 237 238static inline void bio_clear_flag(struct bio *bio, unsigned int bit) 239{ 240 bio->bi_flags &= ~(1U << bit); 241} 242 243static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) 244{ 245 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 246 return bio->bi_io_vec; 247} 248 249static inline struct page *bio_first_page_all(struct bio *bio) 250{ 251 return bio_first_bvec_all(bio)->bv_page; 252} 253 254static inline struct folio *bio_first_folio_all(struct bio *bio) 255{ 256 return page_folio(bio_first_page_all(bio)); 257} 258 259static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) 260{ 261 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 262 return &bio->bi_io_vec[bio->bi_vcnt - 1]; 263} 264 265/** 266 * struct folio_iter - State for iterating all folios in a bio. 267 * @folio: The current folio we're iterating. NULL after the last folio. 268 * @offset: The byte offset within the current folio. 269 * @length: The number of bytes in this iteration (will not cross folio 270 * boundary). 271 */ 272struct folio_iter { 273 struct folio *folio; 274 size_t offset; 275 size_t length; 276 /* private: for use by the iterator */ 277 struct folio *_next; 278 size_t _seg_count; 279 int _i; 280}; 281 282static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio, 283 int i) 284{ 285 struct bio_vec *bvec = bio_first_bvec_all(bio) + i; 286 287 if (unlikely(i >= bio->bi_vcnt)) { 288 fi->folio = NULL; 289 return; 290 } 291 292 fi->folio = page_folio(bvec->bv_page); 293 fi->offset = bvec->bv_offset + 294 PAGE_SIZE * (bvec->bv_page - &fi->folio->page); 295 fi->_seg_count = bvec->bv_len; 296 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count); 297 fi->_next = folio_next(fi->folio); 298 fi->_i = i; 299} 300 301static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio) 302{ 303 fi->_seg_count -= fi->length; 304 if (fi->_seg_count) { 305 fi->folio = fi->_next; 306 fi->offset = 0; 307 fi->length = min(folio_size(fi->folio), fi->_seg_count); 308 fi->_next = folio_next(fi->folio); 309 } else { 310 bio_first_folio(fi, bio, fi->_i + 1); 311 } 312} 313 314/** 315 * bio_for_each_folio_all - Iterate over each folio in a bio. 316 * @fi: struct folio_iter which is updated for each folio. 317 * @bio: struct bio to iterate over. 318 */ 319#define bio_for_each_folio_all(fi, bio) \ 320 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio)) 321 322void bio_trim(struct bio *bio, sector_t offset, sector_t size); 323extern struct bio *bio_split(struct bio *bio, int sectors, 324 gfp_t gfp, struct bio_set *bs); 325int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim, 326 unsigned *segs, unsigned max_bytes); 327 328/** 329 * bio_next_split - get next @sectors from a bio, splitting if necessary 330 * @bio: bio to split 331 * @sectors: number of sectors to split from the front of @bio 332 * @gfp: gfp mask 333 * @bs: bio set to allocate from 334 * 335 * Return: a bio representing the next @sectors of @bio - if the bio is smaller 336 * than @sectors, returns the original bio unchanged. 337 */ 338static inline struct bio *bio_next_split(struct bio *bio, int sectors, 339 gfp_t gfp, struct bio_set *bs) 340{ 341 if (sectors >= bio_sectors(bio)) 342 return bio; 343 344 return bio_split(bio, sectors, gfp, bs); 345} 346 347enum { 348 BIOSET_NEED_BVECS = BIT(0), 349 BIOSET_NEED_RESCUER = BIT(1), 350 BIOSET_PERCPU_CACHE = BIT(2), 351}; 352extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); 353extern void bioset_exit(struct bio_set *); 354extern int biovec_init_pool(mempool_t *pool, int pool_entries); 355 356struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 357 blk_opf_t opf, gfp_t gfp_mask, 358 struct bio_set *bs); 359struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask); 360extern void bio_put(struct bio *); 361 362struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 363 gfp_t gfp, struct bio_set *bs); 364int bio_init_clone(struct block_device *bdev, struct bio *bio, 365 struct bio *bio_src, gfp_t gfp); 366 367extern struct bio_set fs_bio_set; 368 369static inline struct bio *bio_alloc(struct block_device *bdev, 370 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask) 371{ 372 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set); 373} 374 375void submit_bio(struct bio *bio); 376 377extern void bio_endio(struct bio *); 378 379static inline void bio_io_error(struct bio *bio) 380{ 381 bio->bi_status = BLK_STS_IOERR; 382 bio_endio(bio); 383} 384 385static inline void bio_wouldblock_error(struct bio *bio) 386{ 387 bio_set_flag(bio, BIO_QUIET); 388 bio->bi_status = BLK_STS_AGAIN; 389 bio_endio(bio); 390} 391 392/* 393 * Calculate number of bvec segments that should be allocated to fit data 394 * pointed by @iter. If @iter is backed by bvec it's going to be reused 395 * instead of allocating a new one. 396 */ 397static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs) 398{ 399 if (iov_iter_is_bvec(iter)) 400 return 0; 401 return iov_iter_npages(iter, max_segs); 402} 403 404struct request_queue; 405 406extern int submit_bio_wait(struct bio *bio); 407void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 408 unsigned short max_vecs, blk_opf_t opf); 409extern void bio_uninit(struct bio *); 410void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf); 411void bio_chain(struct bio *, struct bio *); 412 413int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len, 414 unsigned off); 415bool __must_check bio_add_folio(struct bio *bio, struct folio *folio, 416 size_t len, size_t off); 417void __bio_add_page(struct bio *bio, struct page *page, 418 unsigned int len, unsigned int off); 419void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 420 size_t off); 421int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter); 422void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter); 423void __bio_release_pages(struct bio *bio, bool mark_dirty); 424extern void bio_set_pages_dirty(struct bio *bio); 425extern void bio_check_pages_dirty(struct bio *bio); 426 427extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 428 struct bio *src, struct bvec_iter *src_iter); 429extern void bio_copy_data(struct bio *dst, struct bio *src); 430extern void bio_free_pages(struct bio *bio); 431void guard_bio_eod(struct bio *bio); 432void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); 433 434static inline void zero_fill_bio(struct bio *bio) 435{ 436 zero_fill_bio_iter(bio, bio->bi_iter); 437} 438 439static inline void bio_release_pages(struct bio *bio, bool mark_dirty) 440{ 441 if (bio_flagged(bio, BIO_PAGE_PINNED)) 442 __bio_release_pages(bio, mark_dirty); 443} 444 445#define bio_dev(bio) \ 446 disk_devt((bio)->bi_bdev->bd_disk) 447 448#ifdef CONFIG_BLK_CGROUP 449void bio_associate_blkg(struct bio *bio); 450void bio_associate_blkg_from_css(struct bio *bio, 451 struct cgroup_subsys_state *css); 452void bio_clone_blkg_association(struct bio *dst, struct bio *src); 453void blkcg_punt_bio_submit(struct bio *bio); 454#else /* CONFIG_BLK_CGROUP */ 455static inline void bio_associate_blkg(struct bio *bio) { } 456static inline void bio_associate_blkg_from_css(struct bio *bio, 457 struct cgroup_subsys_state *css) 458{ } 459static inline void bio_clone_blkg_association(struct bio *dst, 460 struct bio *src) { } 461static inline void blkcg_punt_bio_submit(struct bio *bio) 462{ 463 submit_bio(bio); 464} 465#endif /* CONFIG_BLK_CGROUP */ 466 467static inline void bio_set_dev(struct bio *bio, struct block_device *bdev) 468{ 469 bio_clear_flag(bio, BIO_REMAPPED); 470 if (bio->bi_bdev != bdev) 471 bio_clear_flag(bio, BIO_BPS_THROTTLED); 472 bio->bi_bdev = bdev; 473 bio_associate_blkg(bio); 474} 475 476/* 477 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. 478 * 479 * A bio_list anchors a singly-linked list of bios chained through the bi_next 480 * member of the bio. The bio_list also caches the last list member to allow 481 * fast access to the tail. 482 */ 483struct bio_list { 484 struct bio *head; 485 struct bio *tail; 486}; 487 488static inline int bio_list_empty(const struct bio_list *bl) 489{ 490 return bl->head == NULL; 491} 492 493static inline void bio_list_init(struct bio_list *bl) 494{ 495 bl->head = bl->tail = NULL; 496} 497 498#define BIO_EMPTY_LIST { NULL, NULL } 499 500#define bio_list_for_each(bio, bl) \ 501 for (bio = (bl)->head; bio; bio = bio->bi_next) 502 503static inline unsigned bio_list_size(const struct bio_list *bl) 504{ 505 unsigned sz = 0; 506 struct bio *bio; 507 508 bio_list_for_each(bio, bl) 509 sz++; 510 511 return sz; 512} 513 514static inline void bio_list_add(struct bio_list *bl, struct bio *bio) 515{ 516 bio->bi_next = NULL; 517 518 if (bl->tail) 519 bl->tail->bi_next = bio; 520 else 521 bl->head = bio; 522 523 bl->tail = bio; 524} 525 526static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) 527{ 528 bio->bi_next = bl->head; 529 530 bl->head = bio; 531 532 if (!bl->tail) 533 bl->tail = bio; 534} 535 536static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) 537{ 538 if (!bl2->head) 539 return; 540 541 if (bl->tail) 542 bl->tail->bi_next = bl2->head; 543 else 544 bl->head = bl2->head; 545 546 bl->tail = bl2->tail; 547} 548 549static inline void bio_list_merge_init(struct bio_list *bl, 550 struct bio_list *bl2) 551{ 552 bio_list_merge(bl, bl2); 553 bio_list_init(bl2); 554} 555 556static inline void bio_list_merge_head(struct bio_list *bl, 557 struct bio_list *bl2) 558{ 559 if (!bl2->head) 560 return; 561 562 if (bl->head) 563 bl2->tail->bi_next = bl->head; 564 else 565 bl->tail = bl2->tail; 566 567 bl->head = bl2->head; 568} 569 570static inline struct bio *bio_list_peek(struct bio_list *bl) 571{ 572 return bl->head; 573} 574 575static inline struct bio *bio_list_pop(struct bio_list *bl) 576{ 577 struct bio *bio = bl->head; 578 579 if (bio) { 580 bl->head = bl->head->bi_next; 581 if (!bl->head) 582 bl->tail = NULL; 583 584 bio->bi_next = NULL; 585 } 586 587 return bio; 588} 589 590static inline struct bio *bio_list_get(struct bio_list *bl) 591{ 592 struct bio *bio = bl->head; 593 594 bl->head = bl->tail = NULL; 595 596 return bio; 597} 598 599/* 600 * Increment chain count for the bio. Make sure the CHAIN flag update 601 * is visible before the raised count. 602 */ 603static inline void bio_inc_remaining(struct bio *bio) 604{ 605 bio_set_flag(bio, BIO_CHAIN); 606 smp_mb__before_atomic(); 607 atomic_inc(&bio->__bi_remaining); 608} 609 610/* 611 * bio_set is used to allow other portions of the IO system to 612 * allocate their own private memory pools for bio and iovec structures. 613 * These memory pools in turn all allocate from the bio_slab 614 * and the bvec_slabs[]. 615 */ 616#define BIO_POOL_SIZE 2 617 618struct bio_set { 619 struct kmem_cache *bio_slab; 620 unsigned int front_pad; 621 622 /* 623 * per-cpu bio alloc cache 624 */ 625 struct bio_alloc_cache __percpu *cache; 626 627 mempool_t bio_pool; 628 mempool_t bvec_pool; 629 630 unsigned int back_pad; 631 /* 632 * Deadlock avoidance for stacking block drivers: see comments in 633 * bio_alloc_bioset() for details 634 */ 635 spinlock_t rescue_lock; 636 struct bio_list rescue_list; 637 struct work_struct rescue_work; 638 struct workqueue_struct *rescue_workqueue; 639 640 /* 641 * Hot un-plug notifier for the per-cpu cache, if used 642 */ 643 struct hlist_node cpuhp_dead; 644}; 645 646static inline bool bioset_initialized(struct bio_set *bs) 647{ 648 return bs->bio_slab != NULL; 649} 650 651/* 652 * Mark a bio as polled. Note that for async polled IO, the caller must 653 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). 654 * We cannot block waiting for requests on polled IO, as those completions 655 * must be found by the caller. This is different than IRQ driven IO, where 656 * it's safe to wait for IO to complete. 657 */ 658static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) 659{ 660 bio->bi_opf |= REQ_POLLED; 661 if (kiocb->ki_flags & IOCB_NOWAIT) 662 bio->bi_opf |= REQ_NOWAIT; 663} 664 665static inline void bio_clear_polled(struct bio *bio) 666{ 667 bio->bi_opf &= ~REQ_POLLED; 668} 669 670/** 671 * bio_is_zone_append - is this a zone append bio? 672 * @bio: bio to check 673 * 674 * Check if @bio is a zone append operation. Core block layer code and end_io 675 * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check 676 * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if 677 * it is not natively supported. 678 */ 679static inline bool bio_is_zone_append(struct bio *bio) 680{ 681 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 682 return false; 683 return bio_op(bio) == REQ_OP_ZONE_APPEND || 684 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND); 685} 686 687struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 688 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp); 689struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new); 690 691struct bio *blk_alloc_discard_bio(struct block_device *bdev, 692 sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask); 693 694#endif /* __LINUX_BIO_H */