at v6.15-rc7 422 lines 15 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2 3//! Crate for all kernel procedural macros. 4 5// When fixdep scans this, it will find this string `CONFIG_RUSTC_VERSION_TEXT` 6// and thus add a dependency on `include/config/RUSTC_VERSION_TEXT`, which is 7// touched by Kconfig when the version string from the compiler changes. 8 9#[macro_use] 10mod quote; 11mod concat_idents; 12mod export; 13mod helpers; 14mod kunit; 15mod module; 16mod paste; 17mod vtable; 18 19use proc_macro::TokenStream; 20 21/// Declares a kernel module. 22/// 23/// The `type` argument should be a type which implements the [`Module`] 24/// trait. Also accepts various forms of kernel metadata. 25/// 26/// C header: [`include/linux/moduleparam.h`](srctree/include/linux/moduleparam.h) 27/// 28/// [`Module`]: ../kernel/trait.Module.html 29/// 30/// # Examples 31/// 32/// ``` 33/// use kernel::prelude::*; 34/// 35/// module!{ 36/// type: MyModule, 37/// name: "my_kernel_module", 38/// authors: ["Rust for Linux Contributors"], 39/// description: "My very own kernel module!", 40/// license: "GPL", 41/// alias: ["alternate_module_name"], 42/// } 43/// 44/// struct MyModule(i32); 45/// 46/// impl kernel::Module for MyModule { 47/// fn init(_module: &'static ThisModule) -> Result<Self> { 48/// let foo: i32 = 42; 49/// pr_info!("I contain: {}\n", foo); 50/// Ok(Self(foo)) 51/// } 52/// } 53/// # fn main() {} 54/// ``` 55/// 56/// ## Firmware 57/// 58/// The following example shows how to declare a kernel module that needs 59/// to load binary firmware files. You need to specify the file names of 60/// the firmware in the `firmware` field. The information is embedded 61/// in the `modinfo` section of the kernel module. For example, a tool to 62/// build an initramfs uses this information to put the firmware files into 63/// the initramfs image. 64/// 65/// ``` 66/// use kernel::prelude::*; 67/// 68/// module!{ 69/// type: MyDeviceDriverModule, 70/// name: "my_device_driver_module", 71/// authors: ["Rust for Linux Contributors"], 72/// description: "My device driver requires firmware", 73/// license: "GPL", 74/// firmware: ["my_device_firmware1.bin", "my_device_firmware2.bin"], 75/// } 76/// 77/// struct MyDeviceDriverModule; 78/// 79/// impl kernel::Module for MyDeviceDriverModule { 80/// fn init(_module: &'static ThisModule) -> Result<Self> { 81/// Ok(Self) 82/// } 83/// } 84/// # fn main() {} 85/// ``` 86/// 87/// # Supported argument types 88/// - `type`: type which implements the [`Module`] trait (required). 89/// - `name`: ASCII string literal of the name of the kernel module (required). 90/// - `authors`: array of ASCII string literals of the authors of the kernel module. 91/// - `description`: string literal of the description of the kernel module. 92/// - `license`: ASCII string literal of the license of the kernel module (required). 93/// - `alias`: array of ASCII string literals of the alias names of the kernel module. 94/// - `firmware`: array of ASCII string literals of the firmware files of 95/// the kernel module. 96#[proc_macro] 97pub fn module(ts: TokenStream) -> TokenStream { 98 module::module(ts) 99} 100 101/// Declares or implements a vtable trait. 102/// 103/// Linux's use of pure vtables is very close to Rust traits, but they differ 104/// in how unimplemented functions are represented. In Rust, traits can provide 105/// default implementation for all non-required methods (and the default 106/// implementation could just return `Error::EINVAL`); Linux typically use C 107/// `NULL` pointers to represent these functions. 108/// 109/// This attribute closes that gap. A trait can be annotated with the 110/// `#[vtable]` attribute. Implementers of the trait will then also have to 111/// annotate the trait with `#[vtable]`. This attribute generates a `HAS_*` 112/// associated constant bool for each method in the trait that is set to true if 113/// the implementer has overridden the associated method. 114/// 115/// For a trait method to be optional, it must have a default implementation. 116/// This is also the case for traits annotated with `#[vtable]`, but in this 117/// case the default implementation will never be executed. The reason for this 118/// is that the functions will be called through function pointers installed in 119/// C side vtables. When an optional method is not implemented on a `#[vtable]` 120/// trait, a NULL entry is installed in the vtable. Thus the default 121/// implementation is never called. Since these traits are not designed to be 122/// used on the Rust side, it should not be possible to call the default 123/// implementation. This is done to ensure that we call the vtable methods 124/// through the C vtable, and not through the Rust vtable. Therefore, the 125/// default implementation should call `build_error!`, which prevents 126/// calls to this function at compile time: 127/// 128/// ```compile_fail 129/// # // Intentionally missing `use`s to simplify `rusttest`. 130/// build_error!(VTABLE_DEFAULT_ERROR) 131/// ``` 132/// 133/// Note that you might need to import [`kernel::error::VTABLE_DEFAULT_ERROR`]. 134/// 135/// This macro should not be used when all functions are required. 136/// 137/// # Examples 138/// 139/// ``` 140/// use kernel::error::VTABLE_DEFAULT_ERROR; 141/// use kernel::prelude::*; 142/// 143/// // Declares a `#[vtable]` trait 144/// #[vtable] 145/// pub trait Operations: Send + Sync + Sized { 146/// fn foo(&self) -> Result<()> { 147/// build_error!(VTABLE_DEFAULT_ERROR) 148/// } 149/// 150/// fn bar(&self) -> Result<()> { 151/// build_error!(VTABLE_DEFAULT_ERROR) 152/// } 153/// } 154/// 155/// struct Foo; 156/// 157/// // Implements the `#[vtable]` trait 158/// #[vtable] 159/// impl Operations for Foo { 160/// fn foo(&self) -> Result<()> { 161/// # Err(EINVAL) 162/// // ... 163/// } 164/// } 165/// 166/// assert_eq!(<Foo as Operations>::HAS_FOO, true); 167/// assert_eq!(<Foo as Operations>::HAS_BAR, false); 168/// ``` 169/// 170/// [`kernel::error::VTABLE_DEFAULT_ERROR`]: ../kernel/error/constant.VTABLE_DEFAULT_ERROR.html 171#[proc_macro_attribute] 172pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream { 173 vtable::vtable(attr, ts) 174} 175 176/// Export a function so that C code can call it via a header file. 177/// 178/// Functions exported using this macro can be called from C code using the declaration in the 179/// appropriate header file. It should only be used in cases where C calls the function through a 180/// header file; cases where C calls into Rust via a function pointer in a vtable (such as 181/// `file_operations`) should not use this macro. 182/// 183/// This macro has the following effect: 184/// 185/// * Disables name mangling for this function. 186/// * Verifies at compile-time that the function signature matches the declaration in the header 187/// file. 188/// 189/// You must declare the signature of the Rust function in a header file that is included by 190/// `rust/bindings/bindings_helper.h`. 191/// 192/// This macro is *not* the same as the C macros `EXPORT_SYMBOL_*`. All Rust symbols are currently 193/// automatically exported with `EXPORT_SYMBOL_GPL`. 194#[proc_macro_attribute] 195pub fn export(attr: TokenStream, ts: TokenStream) -> TokenStream { 196 export::export(attr, ts) 197} 198 199/// Concatenate two identifiers. 200/// 201/// This is useful in macros that need to declare or reference items with names 202/// starting with a fixed prefix and ending in a user specified name. The resulting 203/// identifier has the span of the second argument. 204/// 205/// # Examples 206/// 207/// ``` 208/// # const binder_driver_return_protocol_BR_OK: u32 = 0; 209/// # const binder_driver_return_protocol_BR_ERROR: u32 = 1; 210/// # const binder_driver_return_protocol_BR_TRANSACTION: u32 = 2; 211/// # const binder_driver_return_protocol_BR_REPLY: u32 = 3; 212/// # const binder_driver_return_protocol_BR_DEAD_REPLY: u32 = 4; 213/// # const binder_driver_return_protocol_BR_TRANSACTION_COMPLETE: u32 = 5; 214/// # const binder_driver_return_protocol_BR_INCREFS: u32 = 6; 215/// # const binder_driver_return_protocol_BR_ACQUIRE: u32 = 7; 216/// # const binder_driver_return_protocol_BR_RELEASE: u32 = 8; 217/// # const binder_driver_return_protocol_BR_DECREFS: u32 = 9; 218/// # const binder_driver_return_protocol_BR_NOOP: u32 = 10; 219/// # const binder_driver_return_protocol_BR_SPAWN_LOOPER: u32 = 11; 220/// # const binder_driver_return_protocol_BR_DEAD_BINDER: u32 = 12; 221/// # const binder_driver_return_protocol_BR_CLEAR_DEATH_NOTIFICATION_DONE: u32 = 13; 222/// # const binder_driver_return_protocol_BR_FAILED_REPLY: u32 = 14; 223/// use kernel::macros::concat_idents; 224/// 225/// macro_rules! pub_no_prefix { 226/// ($prefix:ident, $($newname:ident),+) => { 227/// $(pub(crate) const $newname: u32 = concat_idents!($prefix, $newname);)+ 228/// }; 229/// } 230/// 231/// pub_no_prefix!( 232/// binder_driver_return_protocol_, 233/// BR_OK, 234/// BR_ERROR, 235/// BR_TRANSACTION, 236/// BR_REPLY, 237/// BR_DEAD_REPLY, 238/// BR_TRANSACTION_COMPLETE, 239/// BR_INCREFS, 240/// BR_ACQUIRE, 241/// BR_RELEASE, 242/// BR_DECREFS, 243/// BR_NOOP, 244/// BR_SPAWN_LOOPER, 245/// BR_DEAD_BINDER, 246/// BR_CLEAR_DEATH_NOTIFICATION_DONE, 247/// BR_FAILED_REPLY 248/// ); 249/// 250/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK); 251/// ``` 252#[proc_macro] 253pub fn concat_idents(ts: TokenStream) -> TokenStream { 254 concat_idents::concat_idents(ts) 255} 256 257/// Paste identifiers together. 258/// 259/// Within the `paste!` macro, identifiers inside `[<` and `>]` are concatenated together to form a 260/// single identifier. 261/// 262/// This is similar to the [`paste`] crate, but with pasting feature limited to identifiers and 263/// literals (lifetimes and documentation strings are not supported). There is a difference in 264/// supported modifiers as well. 265/// 266/// # Example 267/// 268/// ``` 269/// # const binder_driver_return_protocol_BR_OK: u32 = 0; 270/// # const binder_driver_return_protocol_BR_ERROR: u32 = 1; 271/// # const binder_driver_return_protocol_BR_TRANSACTION: u32 = 2; 272/// # const binder_driver_return_protocol_BR_REPLY: u32 = 3; 273/// # const binder_driver_return_protocol_BR_DEAD_REPLY: u32 = 4; 274/// # const binder_driver_return_protocol_BR_TRANSACTION_COMPLETE: u32 = 5; 275/// # const binder_driver_return_protocol_BR_INCREFS: u32 = 6; 276/// # const binder_driver_return_protocol_BR_ACQUIRE: u32 = 7; 277/// # const binder_driver_return_protocol_BR_RELEASE: u32 = 8; 278/// # const binder_driver_return_protocol_BR_DECREFS: u32 = 9; 279/// # const binder_driver_return_protocol_BR_NOOP: u32 = 10; 280/// # const binder_driver_return_protocol_BR_SPAWN_LOOPER: u32 = 11; 281/// # const binder_driver_return_protocol_BR_DEAD_BINDER: u32 = 12; 282/// # const binder_driver_return_protocol_BR_CLEAR_DEATH_NOTIFICATION_DONE: u32 = 13; 283/// # const binder_driver_return_protocol_BR_FAILED_REPLY: u32 = 14; 284/// macro_rules! pub_no_prefix { 285/// ($prefix:ident, $($newname:ident),+) => { 286/// kernel::macros::paste! { 287/// $(pub(crate) const $newname: u32 = [<$prefix $newname>];)+ 288/// } 289/// }; 290/// } 291/// 292/// pub_no_prefix!( 293/// binder_driver_return_protocol_, 294/// BR_OK, 295/// BR_ERROR, 296/// BR_TRANSACTION, 297/// BR_REPLY, 298/// BR_DEAD_REPLY, 299/// BR_TRANSACTION_COMPLETE, 300/// BR_INCREFS, 301/// BR_ACQUIRE, 302/// BR_RELEASE, 303/// BR_DECREFS, 304/// BR_NOOP, 305/// BR_SPAWN_LOOPER, 306/// BR_DEAD_BINDER, 307/// BR_CLEAR_DEATH_NOTIFICATION_DONE, 308/// BR_FAILED_REPLY 309/// ); 310/// 311/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK); 312/// ``` 313/// 314/// # Modifiers 315/// 316/// For each identifier, it is possible to attach one or multiple modifiers to 317/// it. 318/// 319/// Currently supported modifiers are: 320/// * `span`: change the span of concatenated identifier to the span of the specified token. By 321/// default the span of the `[< >]` group is used. 322/// * `lower`: change the identifier to lower case. 323/// * `upper`: change the identifier to upper case. 324/// 325/// ``` 326/// # const binder_driver_return_protocol_BR_OK: u32 = 0; 327/// # const binder_driver_return_protocol_BR_ERROR: u32 = 1; 328/// # const binder_driver_return_protocol_BR_TRANSACTION: u32 = 2; 329/// # const binder_driver_return_protocol_BR_REPLY: u32 = 3; 330/// # const binder_driver_return_protocol_BR_DEAD_REPLY: u32 = 4; 331/// # const binder_driver_return_protocol_BR_TRANSACTION_COMPLETE: u32 = 5; 332/// # const binder_driver_return_protocol_BR_INCREFS: u32 = 6; 333/// # const binder_driver_return_protocol_BR_ACQUIRE: u32 = 7; 334/// # const binder_driver_return_protocol_BR_RELEASE: u32 = 8; 335/// # const binder_driver_return_protocol_BR_DECREFS: u32 = 9; 336/// # const binder_driver_return_protocol_BR_NOOP: u32 = 10; 337/// # const binder_driver_return_protocol_BR_SPAWN_LOOPER: u32 = 11; 338/// # const binder_driver_return_protocol_BR_DEAD_BINDER: u32 = 12; 339/// # const binder_driver_return_protocol_BR_CLEAR_DEATH_NOTIFICATION_DONE: u32 = 13; 340/// # const binder_driver_return_protocol_BR_FAILED_REPLY: u32 = 14; 341/// macro_rules! pub_no_prefix { 342/// ($prefix:ident, $($newname:ident),+) => { 343/// kernel::macros::paste! { 344/// $(pub(crate) const fn [<$newname:lower:span>]() -> u32 { [<$prefix $newname:span>] })+ 345/// } 346/// }; 347/// } 348/// 349/// pub_no_prefix!( 350/// binder_driver_return_protocol_, 351/// BR_OK, 352/// BR_ERROR, 353/// BR_TRANSACTION, 354/// BR_REPLY, 355/// BR_DEAD_REPLY, 356/// BR_TRANSACTION_COMPLETE, 357/// BR_INCREFS, 358/// BR_ACQUIRE, 359/// BR_RELEASE, 360/// BR_DECREFS, 361/// BR_NOOP, 362/// BR_SPAWN_LOOPER, 363/// BR_DEAD_BINDER, 364/// BR_CLEAR_DEATH_NOTIFICATION_DONE, 365/// BR_FAILED_REPLY 366/// ); 367/// 368/// assert_eq!(br_ok(), binder_driver_return_protocol_BR_OK); 369/// ``` 370/// 371/// # Literals 372/// 373/// Literals can also be concatenated with other identifiers: 374/// 375/// ``` 376/// macro_rules! create_numbered_fn { 377/// ($name:literal, $val:literal) => { 378/// kernel::macros::paste! { 379/// fn [<some_ $name _fn $val>]() -> u32 { $val } 380/// } 381/// }; 382/// } 383/// 384/// create_numbered_fn!("foo", 100); 385/// 386/// assert_eq!(some_foo_fn100(), 100) 387/// ``` 388/// 389/// [`paste`]: https://docs.rs/paste/ 390#[proc_macro] 391pub fn paste(input: TokenStream) -> TokenStream { 392 let mut tokens = input.into_iter().collect(); 393 paste::expand(&mut tokens); 394 tokens.into_iter().collect() 395} 396 397/// Registers a KUnit test suite and its test cases using a user-space like syntax. 398/// 399/// This macro should be used on modules. If `CONFIG_KUNIT` (in `.config`) is `n`, the target module 400/// is ignored. 401/// 402/// # Examples 403/// 404/// ```ignore 405/// # use macros::kunit_tests; 406/// #[kunit_tests(kunit_test_suit_name)] 407/// mod tests { 408/// #[test] 409/// fn foo() { 410/// assert_eq!(1, 1); 411/// } 412/// 413/// #[test] 414/// fn bar() { 415/// assert_eq!(2, 2); 416/// } 417/// } 418/// ``` 419#[proc_macro_attribute] 420pub fn kunit_tests(attr: TokenStream, ts: TokenStream) -> TokenStream { 421 kunit::kunit_tests(attr, ts) 422}