Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22#include <linux/kernel.h>
23#include <linux/sched/signal.h>
24#include <linux/syscalls.h>
25#include <linux/fs.h>
26#include <linux/iomap.h>
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
30#include <linux/capability.h>
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
35#include <linux/export.h>
36#include <linux/backing-dev.h>
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
41#include <linux/task_io_accounting_ops.h>
42#include <linux/bio.h>
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
46#include <linux/bit_spinlock.h>
47#include <linux/pagevec.h>
48#include <linux/sched/mm.h>
49#include <trace/events/block.h>
50#include <linux/fscrypt.h>
51#include <linux/fsverity.h>
52#include <linux/sched/isolation.h>
53
54#include "internal.h"
55
56static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 enum rw_hint hint, struct writeback_control *wbc);
59
60#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
62inline void touch_buffer(struct buffer_head *bh)
63{
64 trace_block_touch_buffer(bh);
65 folio_mark_accessed(bh->b_folio);
66}
67EXPORT_SYMBOL(touch_buffer);
68
69void __lock_buffer(struct buffer_head *bh)
70{
71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72}
73EXPORT_SYMBOL(__lock_buffer);
74
75void unlock_buffer(struct buffer_head *bh)
76{
77 clear_bit_unlock(BH_Lock, &bh->b_state);
78 smp_mb__after_atomic();
79 wake_up_bit(&bh->b_state, BH_Lock);
80}
81EXPORT_SYMBOL(unlock_buffer);
82
83/*
84 * Returns if the folio has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the folio_test_dirty information is stale. If
86 * any of the buffers are locked, it is assumed they are locked for IO.
87 */
88void buffer_check_dirty_writeback(struct folio *folio,
89 bool *dirty, bool *writeback)
90{
91 struct buffer_head *head, *bh;
92 *dirty = false;
93 *writeback = false;
94
95 BUG_ON(!folio_test_locked(folio));
96
97 head = folio_buffers(folio);
98 if (!head)
99 return;
100
101 if (folio_test_writeback(folio))
102 *writeback = true;
103
104 bh = head;
105 do {
106 if (buffer_locked(bh))
107 *writeback = true;
108
109 if (buffer_dirty(bh))
110 *dirty = true;
111
112 bh = bh->b_this_page;
113 } while (bh != head);
114}
115
116/*
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
121void __wait_on_buffer(struct buffer_head * bh)
122{
123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124}
125EXPORT_SYMBOL(__wait_on_buffer);
126
127static void buffer_io_error(struct buffer_head *bh, char *msg)
128{
129 if (!test_bit(BH_Quiet, &bh->b_state))
130 printk_ratelimited(KERN_ERR
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133}
134
135/*
136 * End-of-IO handler helper function which does not touch the bh after
137 * unlocking it.
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
141 * itself.
142 */
143static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144{
145 if (uptodate) {
146 set_buffer_uptodate(bh);
147 } else {
148 /* This happens, due to failed read-ahead attempts. */
149 clear_buffer_uptodate(bh);
150 }
151 unlock_buffer(bh);
152}
153
154/*
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
156 * unlock the buffer.
157 */
158void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159{
160 __end_buffer_read_notouch(bh, uptodate);
161 put_bh(bh);
162}
163EXPORT_SYMBOL(end_buffer_read_sync);
164
165void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166{
167 if (uptodate) {
168 set_buffer_uptodate(bh);
169 } else {
170 buffer_io_error(bh, ", lost sync page write");
171 mark_buffer_write_io_error(bh);
172 clear_buffer_uptodate(bh);
173 }
174 unlock_buffer(bh);
175 put_bh(bh);
176}
177EXPORT_SYMBOL(end_buffer_write_sync);
178
179static struct buffer_head *
180__find_get_block_slow(struct block_device *bdev, sector_t block, bool atomic)
181{
182 struct address_space *bd_mapping = bdev->bd_mapping;
183 const int blkbits = bd_mapping->host->i_blkbits;
184 struct buffer_head *ret = NULL;
185 pgoff_t index;
186 struct buffer_head *bh;
187 struct buffer_head *head;
188 struct folio *folio;
189 int all_mapped = 1;
190 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
191
192 index = ((loff_t)block << blkbits) / PAGE_SIZE;
193 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
194 if (IS_ERR(folio))
195 goto out;
196
197 /*
198 * Folio lock protects the buffers. Callers that cannot block
199 * will fallback to serializing vs try_to_free_buffers() via
200 * the i_private_lock.
201 */
202 if (atomic)
203 spin_lock(&bd_mapping->i_private_lock);
204 else
205 folio_lock(folio);
206
207 head = folio_buffers(folio);
208 if (!head)
209 goto out_unlock;
210 /*
211 * Upon a noref migration, the folio lock serializes here;
212 * otherwise bail.
213 */
214 if (test_bit_acquire(BH_Migrate, &head->b_state)) {
215 WARN_ON(!atomic);
216 goto out_unlock;
217 }
218
219 bh = head;
220 do {
221 if (!buffer_mapped(bh))
222 all_mapped = 0;
223 else if (bh->b_blocknr == block) {
224 ret = bh;
225 get_bh(bh);
226 goto out_unlock;
227 }
228 bh = bh->b_this_page;
229 } while (bh != head);
230
231 /* we might be here because some of the buffers on this page are
232 * not mapped. This is due to various races between
233 * file io on the block device and getblk. It gets dealt with
234 * elsewhere, don't buffer_error if we had some unmapped buffers
235 */
236 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
237 if (all_mapped && __ratelimit(&last_warned)) {
238 printk("__find_get_block_slow() failed. block=%llu, "
239 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
240 "device %pg blocksize: %d\n",
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr,
243 bh->b_state, bh->b_size, bdev,
244 1 << blkbits);
245 }
246out_unlock:
247 if (atomic)
248 spin_unlock(&bd_mapping->i_private_lock);
249 else
250 folio_unlock(folio);
251 folio_put(folio);
252out:
253 return ret;
254}
255
256static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
257{
258 unsigned long flags;
259 struct buffer_head *first;
260 struct buffer_head *tmp;
261 struct folio *folio;
262 int folio_uptodate = 1;
263
264 BUG_ON(!buffer_async_read(bh));
265
266 folio = bh->b_folio;
267 if (uptodate) {
268 set_buffer_uptodate(bh);
269 } else {
270 clear_buffer_uptodate(bh);
271 buffer_io_error(bh, ", async page read");
272 }
273
274 /*
275 * Be _very_ careful from here on. Bad things can happen if
276 * two buffer heads end IO at almost the same time and both
277 * decide that the page is now completely done.
278 */
279 first = folio_buffers(folio);
280 spin_lock_irqsave(&first->b_uptodate_lock, flags);
281 clear_buffer_async_read(bh);
282 unlock_buffer(bh);
283 tmp = bh;
284 do {
285 if (!buffer_uptodate(tmp))
286 folio_uptodate = 0;
287 if (buffer_async_read(tmp)) {
288 BUG_ON(!buffer_locked(tmp));
289 goto still_busy;
290 }
291 tmp = tmp->b_this_page;
292 } while (tmp != bh);
293 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
294
295 folio_end_read(folio, folio_uptodate);
296 return;
297
298still_busy:
299 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
300 return;
301}
302
303struct postprocess_bh_ctx {
304 struct work_struct work;
305 struct buffer_head *bh;
306};
307
308static void verify_bh(struct work_struct *work)
309{
310 struct postprocess_bh_ctx *ctx =
311 container_of(work, struct postprocess_bh_ctx, work);
312 struct buffer_head *bh = ctx->bh;
313 bool valid;
314
315 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
316 end_buffer_async_read(bh, valid);
317 kfree(ctx);
318}
319
320static bool need_fsverity(struct buffer_head *bh)
321{
322 struct folio *folio = bh->b_folio;
323 struct inode *inode = folio->mapping->host;
324
325 return fsverity_active(inode) &&
326 /* needed by ext4 */
327 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
328}
329
330static void decrypt_bh(struct work_struct *work)
331{
332 struct postprocess_bh_ctx *ctx =
333 container_of(work, struct postprocess_bh_ctx, work);
334 struct buffer_head *bh = ctx->bh;
335 int err;
336
337 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
338 bh_offset(bh));
339 if (err == 0 && need_fsverity(bh)) {
340 /*
341 * We use different work queues for decryption and for verity
342 * because verity may require reading metadata pages that need
343 * decryption, and we shouldn't recurse to the same workqueue.
344 */
345 INIT_WORK(&ctx->work, verify_bh);
346 fsverity_enqueue_verify_work(&ctx->work);
347 return;
348 }
349 end_buffer_async_read(bh, err == 0);
350 kfree(ctx);
351}
352
353/*
354 * I/O completion handler for block_read_full_folio() - pages
355 * which come unlocked at the end of I/O.
356 */
357static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
358{
359 struct inode *inode = bh->b_folio->mapping->host;
360 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
361 bool verify = need_fsverity(bh);
362
363 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
364 if (uptodate && (decrypt || verify)) {
365 struct postprocess_bh_ctx *ctx =
366 kmalloc(sizeof(*ctx), GFP_ATOMIC);
367
368 if (ctx) {
369 ctx->bh = bh;
370 if (decrypt) {
371 INIT_WORK(&ctx->work, decrypt_bh);
372 fscrypt_enqueue_decrypt_work(&ctx->work);
373 } else {
374 INIT_WORK(&ctx->work, verify_bh);
375 fsverity_enqueue_verify_work(&ctx->work);
376 }
377 return;
378 }
379 uptodate = 0;
380 }
381 end_buffer_async_read(bh, uptodate);
382}
383
384/*
385 * Completion handler for block_write_full_folio() - folios which are unlocked
386 * during I/O, and which have the writeback flag cleared upon I/O completion.
387 */
388static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
389{
390 unsigned long flags;
391 struct buffer_head *first;
392 struct buffer_head *tmp;
393 struct folio *folio;
394
395 BUG_ON(!buffer_async_write(bh));
396
397 folio = bh->b_folio;
398 if (uptodate) {
399 set_buffer_uptodate(bh);
400 } else {
401 buffer_io_error(bh, ", lost async page write");
402 mark_buffer_write_io_error(bh);
403 clear_buffer_uptodate(bh);
404 }
405
406 first = folio_buffers(folio);
407 spin_lock_irqsave(&first->b_uptodate_lock, flags);
408
409 clear_buffer_async_write(bh);
410 unlock_buffer(bh);
411 tmp = bh->b_this_page;
412 while (tmp != bh) {
413 if (buffer_async_write(tmp)) {
414 BUG_ON(!buffer_locked(tmp));
415 goto still_busy;
416 }
417 tmp = tmp->b_this_page;
418 }
419 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
420 folio_end_writeback(folio);
421 return;
422
423still_busy:
424 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
425 return;
426}
427
428/*
429 * If a page's buffers are under async readin (end_buffer_async_read
430 * completion) then there is a possibility that another thread of
431 * control could lock one of the buffers after it has completed
432 * but while some of the other buffers have not completed. This
433 * locked buffer would confuse end_buffer_async_read() into not unlocking
434 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
435 * that this buffer is not under async I/O.
436 *
437 * The page comes unlocked when it has no locked buffer_async buffers
438 * left.
439 *
440 * PageLocked prevents anyone starting new async I/O reads any of
441 * the buffers.
442 *
443 * PageWriteback is used to prevent simultaneous writeout of the same
444 * page.
445 *
446 * PageLocked prevents anyone from starting writeback of a page which is
447 * under read I/O (PageWriteback is only ever set against a locked page).
448 */
449static void mark_buffer_async_read(struct buffer_head *bh)
450{
451 bh->b_end_io = end_buffer_async_read_io;
452 set_buffer_async_read(bh);
453}
454
455static void mark_buffer_async_write_endio(struct buffer_head *bh,
456 bh_end_io_t *handler)
457{
458 bh->b_end_io = handler;
459 set_buffer_async_write(bh);
460}
461
462void mark_buffer_async_write(struct buffer_head *bh)
463{
464 mark_buffer_async_write_endio(bh, end_buffer_async_write);
465}
466EXPORT_SYMBOL(mark_buffer_async_write);
467
468
469/*
470 * fs/buffer.c contains helper functions for buffer-backed address space's
471 * fsync functions. A common requirement for buffer-based filesystems is
472 * that certain data from the backing blockdev needs to be written out for
473 * a successful fsync(). For example, ext2 indirect blocks need to be
474 * written back and waited upon before fsync() returns.
475 *
476 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
477 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
478 * management of a list of dependent buffers at ->i_mapping->i_private_list.
479 *
480 * Locking is a little subtle: try_to_free_buffers() will remove buffers
481 * from their controlling inode's queue when they are being freed. But
482 * try_to_free_buffers() will be operating against the *blockdev* mapping
483 * at the time, not against the S_ISREG file which depends on those buffers.
484 * So the locking for i_private_list is via the i_private_lock in the address_space
485 * which backs the buffers. Which is different from the address_space
486 * against which the buffers are listed. So for a particular address_space,
487 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact,
488 * mapping->i_private_list will always be protected by the backing blockdev's
489 * ->i_private_lock.
490 *
491 * Which introduces a requirement: all buffers on an address_space's
492 * ->i_private_list must be from the same address_space: the blockdev's.
493 *
494 * address_spaces which do not place buffers at ->i_private_list via these
495 * utility functions are free to use i_private_lock and i_private_list for
496 * whatever they want. The only requirement is that list_empty(i_private_list)
497 * be true at clear_inode() time.
498 *
499 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
500 * filesystems should do that. invalidate_inode_buffers() should just go
501 * BUG_ON(!list_empty).
502 *
503 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
504 * take an address_space, not an inode. And it should be called
505 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
506 * queued up.
507 *
508 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
509 * list if it is already on a list. Because if the buffer is on a list,
510 * it *must* already be on the right one. If not, the filesystem is being
511 * silly. This will save a ton of locking. But first we have to ensure
512 * that buffers are taken *off* the old inode's list when they are freed
513 * (presumably in truncate). That requires careful auditing of all
514 * filesystems (do it inside bforget()). It could also be done by bringing
515 * b_inode back.
516 */
517
518/*
519 * The buffer's backing address_space's i_private_lock must be held
520 */
521static void __remove_assoc_queue(struct buffer_head *bh)
522{
523 list_del_init(&bh->b_assoc_buffers);
524 WARN_ON(!bh->b_assoc_map);
525 bh->b_assoc_map = NULL;
526}
527
528int inode_has_buffers(struct inode *inode)
529{
530 return !list_empty(&inode->i_data.i_private_list);
531}
532
533/*
534 * osync is designed to support O_SYNC io. It waits synchronously for
535 * all already-submitted IO to complete, but does not queue any new
536 * writes to the disk.
537 *
538 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
539 * as you dirty the buffers, and then use osync_inode_buffers to wait for
540 * completion. Any other dirty buffers which are not yet queued for
541 * write will not be flushed to disk by the osync.
542 */
543static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
544{
545 struct buffer_head *bh;
546 struct list_head *p;
547 int err = 0;
548
549 spin_lock(lock);
550repeat:
551 list_for_each_prev(p, list) {
552 bh = BH_ENTRY(p);
553 if (buffer_locked(bh)) {
554 get_bh(bh);
555 spin_unlock(lock);
556 wait_on_buffer(bh);
557 if (!buffer_uptodate(bh))
558 err = -EIO;
559 brelse(bh);
560 spin_lock(lock);
561 goto repeat;
562 }
563 }
564 spin_unlock(lock);
565 return err;
566}
567
568/**
569 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
570 * @mapping: the mapping which wants those buffers written
571 *
572 * Starts I/O against the buffers at mapping->i_private_list, and waits upon
573 * that I/O.
574 *
575 * Basically, this is a convenience function for fsync().
576 * @mapping is a file or directory which needs those buffers to be written for
577 * a successful fsync().
578 */
579int sync_mapping_buffers(struct address_space *mapping)
580{
581 struct address_space *buffer_mapping = mapping->i_private_data;
582
583 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
584 return 0;
585
586 return fsync_buffers_list(&buffer_mapping->i_private_lock,
587 &mapping->i_private_list);
588}
589EXPORT_SYMBOL(sync_mapping_buffers);
590
591/**
592 * generic_buffers_fsync_noflush - generic buffer fsync implementation
593 * for simple filesystems with no inode lock
594 *
595 * @file: file to synchronize
596 * @start: start offset in bytes
597 * @end: end offset in bytes (inclusive)
598 * @datasync: only synchronize essential metadata if true
599 *
600 * This is a generic implementation of the fsync method for simple
601 * filesystems which track all non-inode metadata in the buffers list
602 * hanging off the address_space structure.
603 */
604int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
605 bool datasync)
606{
607 struct inode *inode = file->f_mapping->host;
608 int err;
609 int ret;
610
611 err = file_write_and_wait_range(file, start, end);
612 if (err)
613 return err;
614
615 ret = sync_mapping_buffers(inode->i_mapping);
616 if (!(inode->i_state & I_DIRTY_ALL))
617 goto out;
618 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
619 goto out;
620
621 err = sync_inode_metadata(inode, 1);
622 if (ret == 0)
623 ret = err;
624
625out:
626 /* check and advance again to catch errors after syncing out buffers */
627 err = file_check_and_advance_wb_err(file);
628 if (ret == 0)
629 ret = err;
630 return ret;
631}
632EXPORT_SYMBOL(generic_buffers_fsync_noflush);
633
634/**
635 * generic_buffers_fsync - generic buffer fsync implementation
636 * for simple filesystems with no inode lock
637 *
638 * @file: file to synchronize
639 * @start: start offset in bytes
640 * @end: end offset in bytes (inclusive)
641 * @datasync: only synchronize essential metadata if true
642 *
643 * This is a generic implementation of the fsync method for simple
644 * filesystems which track all non-inode metadata in the buffers list
645 * hanging off the address_space structure. This also makes sure that
646 * a device cache flush operation is called at the end.
647 */
648int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
649 bool datasync)
650{
651 struct inode *inode = file->f_mapping->host;
652 int ret;
653
654 ret = generic_buffers_fsync_noflush(file, start, end, datasync);
655 if (!ret)
656 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
657 return ret;
658}
659EXPORT_SYMBOL(generic_buffers_fsync);
660
661/*
662 * Called when we've recently written block `bblock', and it is known that
663 * `bblock' was for a buffer_boundary() buffer. This means that the block at
664 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
665 * dirty, schedule it for IO. So that indirects merge nicely with their data.
666 */
667void write_boundary_block(struct block_device *bdev,
668 sector_t bblock, unsigned blocksize)
669{
670 struct buffer_head *bh;
671
672 bh = __find_get_block_nonatomic(bdev, bblock + 1, blocksize);
673 if (bh) {
674 if (buffer_dirty(bh))
675 write_dirty_buffer(bh, 0);
676 put_bh(bh);
677 }
678}
679
680void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
681{
682 struct address_space *mapping = inode->i_mapping;
683 struct address_space *buffer_mapping = bh->b_folio->mapping;
684
685 mark_buffer_dirty(bh);
686 if (!mapping->i_private_data) {
687 mapping->i_private_data = buffer_mapping;
688 } else {
689 BUG_ON(mapping->i_private_data != buffer_mapping);
690 }
691 if (!bh->b_assoc_map) {
692 spin_lock(&buffer_mapping->i_private_lock);
693 list_move_tail(&bh->b_assoc_buffers,
694 &mapping->i_private_list);
695 bh->b_assoc_map = mapping;
696 spin_unlock(&buffer_mapping->i_private_lock);
697 }
698}
699EXPORT_SYMBOL(mark_buffer_dirty_inode);
700
701/**
702 * block_dirty_folio - Mark a folio as dirty.
703 * @mapping: The address space containing this folio.
704 * @folio: The folio to mark dirty.
705 *
706 * Filesystems which use buffer_heads can use this function as their
707 * ->dirty_folio implementation. Some filesystems need to do a little
708 * work before calling this function. Filesystems which do not use
709 * buffer_heads should call filemap_dirty_folio() instead.
710 *
711 * If the folio has buffers, the uptodate buffers are set dirty, to
712 * preserve dirty-state coherency between the folio and the buffers.
713 * Buffers added to a dirty folio are created dirty.
714 *
715 * The buffers are dirtied before the folio is dirtied. There's a small
716 * race window in which writeback may see the folio cleanness but not the
717 * buffer dirtiness. That's fine. If this code were to set the folio
718 * dirty before the buffers, writeback could clear the folio dirty flag,
719 * see a bunch of clean buffers and we'd end up with dirty buffers/clean
720 * folio on the dirty folio list.
721 *
722 * We use i_private_lock to lock against try_to_free_buffers() while
723 * using the folio's buffer list. This also prevents clean buffers
724 * being added to the folio after it was set dirty.
725 *
726 * Context: May only be called from process context. Does not sleep.
727 * Caller must ensure that @folio cannot be truncated during this call,
728 * typically by holding the folio lock or having a page in the folio
729 * mapped and holding the page table lock.
730 *
731 * Return: True if the folio was dirtied; false if it was already dirtied.
732 */
733bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
734{
735 struct buffer_head *head;
736 bool newly_dirty;
737
738 spin_lock(&mapping->i_private_lock);
739 head = folio_buffers(folio);
740 if (head) {
741 struct buffer_head *bh = head;
742
743 do {
744 set_buffer_dirty(bh);
745 bh = bh->b_this_page;
746 } while (bh != head);
747 }
748 /*
749 * Lock out page's memcg migration to keep PageDirty
750 * synchronized with per-memcg dirty page counters.
751 */
752 newly_dirty = !folio_test_set_dirty(folio);
753 spin_unlock(&mapping->i_private_lock);
754
755 if (newly_dirty)
756 __folio_mark_dirty(folio, mapping, 1);
757
758 if (newly_dirty)
759 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
760
761 return newly_dirty;
762}
763EXPORT_SYMBOL(block_dirty_folio);
764
765/*
766 * Write out and wait upon a list of buffers.
767 *
768 * We have conflicting pressures: we want to make sure that all
769 * initially dirty buffers get waited on, but that any subsequently
770 * dirtied buffers don't. After all, we don't want fsync to last
771 * forever if somebody is actively writing to the file.
772 *
773 * Do this in two main stages: first we copy dirty buffers to a
774 * temporary inode list, queueing the writes as we go. Then we clean
775 * up, waiting for those writes to complete.
776 *
777 * During this second stage, any subsequent updates to the file may end
778 * up refiling the buffer on the original inode's dirty list again, so
779 * there is a chance we will end up with a buffer queued for write but
780 * not yet completed on that list. So, as a final cleanup we go through
781 * the osync code to catch these locked, dirty buffers without requeuing
782 * any newly dirty buffers for write.
783 */
784static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
785{
786 struct buffer_head *bh;
787 struct address_space *mapping;
788 int err = 0, err2;
789 struct blk_plug plug;
790 LIST_HEAD(tmp);
791
792 blk_start_plug(&plug);
793
794 spin_lock(lock);
795 while (!list_empty(list)) {
796 bh = BH_ENTRY(list->next);
797 mapping = bh->b_assoc_map;
798 __remove_assoc_queue(bh);
799 /* Avoid race with mark_buffer_dirty_inode() which does
800 * a lockless check and we rely on seeing the dirty bit */
801 smp_mb();
802 if (buffer_dirty(bh) || buffer_locked(bh)) {
803 list_add(&bh->b_assoc_buffers, &tmp);
804 bh->b_assoc_map = mapping;
805 if (buffer_dirty(bh)) {
806 get_bh(bh);
807 spin_unlock(lock);
808 /*
809 * Ensure any pending I/O completes so that
810 * write_dirty_buffer() actually writes the
811 * current contents - it is a noop if I/O is
812 * still in flight on potentially older
813 * contents.
814 */
815 write_dirty_buffer(bh, REQ_SYNC);
816
817 /*
818 * Kick off IO for the previous mapping. Note
819 * that we will not run the very last mapping,
820 * wait_on_buffer() will do that for us
821 * through sync_buffer().
822 */
823 brelse(bh);
824 spin_lock(lock);
825 }
826 }
827 }
828
829 spin_unlock(lock);
830 blk_finish_plug(&plug);
831 spin_lock(lock);
832
833 while (!list_empty(&tmp)) {
834 bh = BH_ENTRY(tmp.prev);
835 get_bh(bh);
836 mapping = bh->b_assoc_map;
837 __remove_assoc_queue(bh);
838 /* Avoid race with mark_buffer_dirty_inode() which does
839 * a lockless check and we rely on seeing the dirty bit */
840 smp_mb();
841 if (buffer_dirty(bh)) {
842 list_add(&bh->b_assoc_buffers,
843 &mapping->i_private_list);
844 bh->b_assoc_map = mapping;
845 }
846 spin_unlock(lock);
847 wait_on_buffer(bh);
848 if (!buffer_uptodate(bh))
849 err = -EIO;
850 brelse(bh);
851 spin_lock(lock);
852 }
853
854 spin_unlock(lock);
855 err2 = osync_buffers_list(lock, list);
856 if (err)
857 return err;
858 else
859 return err2;
860}
861
862/*
863 * Invalidate any and all dirty buffers on a given inode. We are
864 * probably unmounting the fs, but that doesn't mean we have already
865 * done a sync(). Just drop the buffers from the inode list.
866 *
867 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which
868 * assumes that all the buffers are against the blockdev.
869 */
870void invalidate_inode_buffers(struct inode *inode)
871{
872 if (inode_has_buffers(inode)) {
873 struct address_space *mapping = &inode->i_data;
874 struct list_head *list = &mapping->i_private_list;
875 struct address_space *buffer_mapping = mapping->i_private_data;
876
877 spin_lock(&buffer_mapping->i_private_lock);
878 while (!list_empty(list))
879 __remove_assoc_queue(BH_ENTRY(list->next));
880 spin_unlock(&buffer_mapping->i_private_lock);
881 }
882}
883EXPORT_SYMBOL(invalidate_inode_buffers);
884
885/*
886 * Remove any clean buffers from the inode's buffer list. This is called
887 * when we're trying to free the inode itself. Those buffers can pin it.
888 *
889 * Returns true if all buffers were removed.
890 */
891int remove_inode_buffers(struct inode *inode)
892{
893 int ret = 1;
894
895 if (inode_has_buffers(inode)) {
896 struct address_space *mapping = &inode->i_data;
897 struct list_head *list = &mapping->i_private_list;
898 struct address_space *buffer_mapping = mapping->i_private_data;
899
900 spin_lock(&buffer_mapping->i_private_lock);
901 while (!list_empty(list)) {
902 struct buffer_head *bh = BH_ENTRY(list->next);
903 if (buffer_dirty(bh)) {
904 ret = 0;
905 break;
906 }
907 __remove_assoc_queue(bh);
908 }
909 spin_unlock(&buffer_mapping->i_private_lock);
910 }
911 return ret;
912}
913
914/*
915 * Create the appropriate buffers when given a folio for data area and
916 * the size of each buffer.. Use the bh->b_this_page linked list to
917 * follow the buffers created. Return NULL if unable to create more
918 * buffers.
919 *
920 * The retry flag is used to differentiate async IO (paging, swapping)
921 * which may not fail from ordinary buffer allocations.
922 */
923struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
924 gfp_t gfp)
925{
926 struct buffer_head *bh, *head;
927 long offset;
928 struct mem_cgroup *memcg, *old_memcg;
929
930 /* The folio lock pins the memcg */
931 memcg = folio_memcg(folio);
932 old_memcg = set_active_memcg(memcg);
933
934 head = NULL;
935 offset = folio_size(folio);
936 while ((offset -= size) >= 0) {
937 bh = alloc_buffer_head(gfp);
938 if (!bh)
939 goto no_grow;
940
941 bh->b_this_page = head;
942 bh->b_blocknr = -1;
943 head = bh;
944
945 bh->b_size = size;
946
947 /* Link the buffer to its folio */
948 folio_set_bh(bh, folio, offset);
949 }
950out:
951 set_active_memcg(old_memcg);
952 return head;
953/*
954 * In case anything failed, we just free everything we got.
955 */
956no_grow:
957 if (head) {
958 do {
959 bh = head;
960 head = head->b_this_page;
961 free_buffer_head(bh);
962 } while (head);
963 }
964
965 goto out;
966}
967EXPORT_SYMBOL_GPL(folio_alloc_buffers);
968
969struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size)
970{
971 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
972
973 return folio_alloc_buffers(page_folio(page), size, gfp);
974}
975EXPORT_SYMBOL_GPL(alloc_page_buffers);
976
977static inline void link_dev_buffers(struct folio *folio,
978 struct buffer_head *head)
979{
980 struct buffer_head *bh, *tail;
981
982 bh = head;
983 do {
984 tail = bh;
985 bh = bh->b_this_page;
986 } while (bh);
987 tail->b_this_page = head;
988 folio_attach_private(folio, head);
989}
990
991static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
992{
993 sector_t retval = ~((sector_t)0);
994 loff_t sz = bdev_nr_bytes(bdev);
995
996 if (sz) {
997 unsigned int sizebits = blksize_bits(size);
998 retval = (sz >> sizebits);
999 }
1000 return retval;
1001}
1002
1003/*
1004 * Initialise the state of a blockdev folio's buffers.
1005 */
1006static sector_t folio_init_buffers(struct folio *folio,
1007 struct block_device *bdev, unsigned size)
1008{
1009 struct buffer_head *head = folio_buffers(folio);
1010 struct buffer_head *bh = head;
1011 bool uptodate = folio_test_uptodate(folio);
1012 sector_t block = div_u64(folio_pos(folio), size);
1013 sector_t end_block = blkdev_max_block(bdev, size);
1014
1015 do {
1016 if (!buffer_mapped(bh)) {
1017 bh->b_end_io = NULL;
1018 bh->b_private = NULL;
1019 bh->b_bdev = bdev;
1020 bh->b_blocknr = block;
1021 if (uptodate)
1022 set_buffer_uptodate(bh);
1023 if (block < end_block)
1024 set_buffer_mapped(bh);
1025 }
1026 block++;
1027 bh = bh->b_this_page;
1028 } while (bh != head);
1029
1030 /*
1031 * Caller needs to validate requested block against end of device.
1032 */
1033 return end_block;
1034}
1035
1036/*
1037 * Create the page-cache folio that contains the requested block.
1038 *
1039 * This is used purely for blockdev mappings.
1040 *
1041 * Returns false if we have a failure which cannot be cured by retrying
1042 * without sleeping. Returns true if we succeeded, or the caller should retry.
1043 */
1044static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1045 pgoff_t index, unsigned size, gfp_t gfp)
1046{
1047 struct address_space *mapping = bdev->bd_mapping;
1048 struct folio *folio;
1049 struct buffer_head *bh;
1050 sector_t end_block = 0;
1051
1052 folio = __filemap_get_folio(mapping, index,
1053 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1054 if (IS_ERR(folio))
1055 return false;
1056
1057 bh = folio_buffers(folio);
1058 if (bh) {
1059 if (bh->b_size == size) {
1060 end_block = folio_init_buffers(folio, bdev, size);
1061 goto unlock;
1062 }
1063
1064 /*
1065 * Retrying may succeed; for example the folio may finish
1066 * writeback, or buffers may be cleaned. This should not
1067 * happen very often; maybe we have old buffers attached to
1068 * this blockdev's page cache and we're trying to change
1069 * the block size?
1070 */
1071 if (!try_to_free_buffers(folio)) {
1072 end_block = ~0ULL;
1073 goto unlock;
1074 }
1075 }
1076
1077 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1078 if (!bh)
1079 goto unlock;
1080
1081 /*
1082 * Link the folio to the buffers and initialise them. Take the
1083 * lock to be atomic wrt __find_get_block(), which does not
1084 * run under the folio lock.
1085 */
1086 spin_lock(&mapping->i_private_lock);
1087 link_dev_buffers(folio, bh);
1088 end_block = folio_init_buffers(folio, bdev, size);
1089 spin_unlock(&mapping->i_private_lock);
1090unlock:
1091 folio_unlock(folio);
1092 folio_put(folio);
1093 return block < end_block;
1094}
1095
1096/*
1097 * Create buffers for the specified block device block's folio. If
1098 * that folio was dirty, the buffers are set dirty also. Returns false
1099 * if we've hit a permanent error.
1100 */
1101static bool grow_buffers(struct block_device *bdev, sector_t block,
1102 unsigned size, gfp_t gfp)
1103{
1104 loff_t pos;
1105
1106 /*
1107 * Check for a block which lies outside our maximum possible
1108 * pagecache index.
1109 */
1110 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1111 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1112 __func__, (unsigned long long)block,
1113 bdev);
1114 return false;
1115 }
1116
1117 /* Create a folio with the proper size buffers */
1118 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1119}
1120
1121static struct buffer_head *
1122__getblk_slow(struct block_device *bdev, sector_t block,
1123 unsigned size, gfp_t gfp)
1124{
1125 /* Size must be multiple of hard sectorsize */
1126 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1127 (size < 512 || size > PAGE_SIZE))) {
1128 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1129 size);
1130 printk(KERN_ERR "logical block size: %d\n",
1131 bdev_logical_block_size(bdev));
1132
1133 dump_stack();
1134 return NULL;
1135 }
1136
1137 for (;;) {
1138 struct buffer_head *bh;
1139
1140 bh = __find_get_block(bdev, block, size);
1141 if (bh)
1142 return bh;
1143
1144 if (!grow_buffers(bdev, block, size, gfp))
1145 return NULL;
1146 }
1147}
1148
1149/*
1150 * The relationship between dirty buffers and dirty pages:
1151 *
1152 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1153 * the page is tagged dirty in the page cache.
1154 *
1155 * At all times, the dirtiness of the buffers represents the dirtiness of
1156 * subsections of the page. If the page has buffers, the page dirty bit is
1157 * merely a hint about the true dirty state.
1158 *
1159 * When a page is set dirty in its entirety, all its buffers are marked dirty
1160 * (if the page has buffers).
1161 *
1162 * When a buffer is marked dirty, its page is dirtied, but the page's other
1163 * buffers are not.
1164 *
1165 * Also. When blockdev buffers are explicitly read with bread(), they
1166 * individually become uptodate. But their backing page remains not
1167 * uptodate - even if all of its buffers are uptodate. A subsequent
1168 * block_read_full_folio() against that folio will discover all the uptodate
1169 * buffers, will set the folio uptodate and will perform no I/O.
1170 */
1171
1172/**
1173 * mark_buffer_dirty - mark a buffer_head as needing writeout
1174 * @bh: the buffer_head to mark dirty
1175 *
1176 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1177 * its backing page dirty, then tag the page as dirty in the page cache
1178 * and then attach the address_space's inode to its superblock's dirty
1179 * inode list.
1180 *
1181 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock,
1182 * i_pages lock and mapping->host->i_lock.
1183 */
1184void mark_buffer_dirty(struct buffer_head *bh)
1185{
1186 WARN_ON_ONCE(!buffer_uptodate(bh));
1187
1188 trace_block_dirty_buffer(bh);
1189
1190 /*
1191 * Very *carefully* optimize the it-is-already-dirty case.
1192 *
1193 * Don't let the final "is it dirty" escape to before we
1194 * perhaps modified the buffer.
1195 */
1196 if (buffer_dirty(bh)) {
1197 smp_mb();
1198 if (buffer_dirty(bh))
1199 return;
1200 }
1201
1202 if (!test_set_buffer_dirty(bh)) {
1203 struct folio *folio = bh->b_folio;
1204 struct address_space *mapping = NULL;
1205
1206 if (!folio_test_set_dirty(folio)) {
1207 mapping = folio->mapping;
1208 if (mapping)
1209 __folio_mark_dirty(folio, mapping, 0);
1210 }
1211 if (mapping)
1212 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1213 }
1214}
1215EXPORT_SYMBOL(mark_buffer_dirty);
1216
1217void mark_buffer_write_io_error(struct buffer_head *bh)
1218{
1219 set_buffer_write_io_error(bh);
1220 /* FIXME: do we need to set this in both places? */
1221 if (bh->b_folio && bh->b_folio->mapping)
1222 mapping_set_error(bh->b_folio->mapping, -EIO);
1223 if (bh->b_assoc_map)
1224 mapping_set_error(bh->b_assoc_map, -EIO);
1225}
1226EXPORT_SYMBOL(mark_buffer_write_io_error);
1227
1228/**
1229 * __brelse - Release a buffer.
1230 * @bh: The buffer to release.
1231 *
1232 * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1233 */
1234void __brelse(struct buffer_head *bh)
1235{
1236 if (atomic_read(&bh->b_count)) {
1237 put_bh(bh);
1238 return;
1239 }
1240 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1241}
1242EXPORT_SYMBOL(__brelse);
1243
1244/**
1245 * __bforget - Discard any dirty data in a buffer.
1246 * @bh: The buffer to forget.
1247 *
1248 * This variant of bforget() can be called if @bh is guaranteed to not
1249 * be NULL.
1250 */
1251void __bforget(struct buffer_head *bh)
1252{
1253 clear_buffer_dirty(bh);
1254 if (bh->b_assoc_map) {
1255 struct address_space *buffer_mapping = bh->b_folio->mapping;
1256
1257 spin_lock(&buffer_mapping->i_private_lock);
1258 list_del_init(&bh->b_assoc_buffers);
1259 bh->b_assoc_map = NULL;
1260 spin_unlock(&buffer_mapping->i_private_lock);
1261 }
1262 __brelse(bh);
1263}
1264EXPORT_SYMBOL(__bforget);
1265
1266static struct buffer_head *__bread_slow(struct buffer_head *bh)
1267{
1268 lock_buffer(bh);
1269 if (buffer_uptodate(bh)) {
1270 unlock_buffer(bh);
1271 return bh;
1272 } else {
1273 get_bh(bh);
1274 bh->b_end_io = end_buffer_read_sync;
1275 submit_bh(REQ_OP_READ, bh);
1276 wait_on_buffer(bh);
1277 if (buffer_uptodate(bh))
1278 return bh;
1279 }
1280 brelse(bh);
1281 return NULL;
1282}
1283
1284/*
1285 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1286 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1287 * refcount elevated by one when they're in an LRU. A buffer can only appear
1288 * once in a particular CPU's LRU. A single buffer can be present in multiple
1289 * CPU's LRUs at the same time.
1290 *
1291 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1292 * sb_find_get_block().
1293 *
1294 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1295 * a local interrupt disable for that.
1296 */
1297
1298#define BH_LRU_SIZE 16
1299
1300struct bh_lru {
1301 struct buffer_head *bhs[BH_LRU_SIZE];
1302};
1303
1304static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1305
1306#ifdef CONFIG_SMP
1307#define bh_lru_lock() local_irq_disable()
1308#define bh_lru_unlock() local_irq_enable()
1309#else
1310#define bh_lru_lock() preempt_disable()
1311#define bh_lru_unlock() preempt_enable()
1312#endif
1313
1314static inline void check_irqs_on(void)
1315{
1316#ifdef irqs_disabled
1317 BUG_ON(irqs_disabled());
1318#endif
1319}
1320
1321/*
1322 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1323 * inserted at the front, and the buffer_head at the back if any is evicted.
1324 * Or, if already in the LRU it is moved to the front.
1325 */
1326static void bh_lru_install(struct buffer_head *bh)
1327{
1328 struct buffer_head *evictee = bh;
1329 struct bh_lru *b;
1330 int i;
1331
1332 check_irqs_on();
1333 bh_lru_lock();
1334
1335 /*
1336 * the refcount of buffer_head in bh_lru prevents dropping the
1337 * attached page(i.e., try_to_free_buffers) so it could cause
1338 * failing page migration.
1339 * Skip putting upcoming bh into bh_lru until migration is done.
1340 */
1341 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1342 bh_lru_unlock();
1343 return;
1344 }
1345
1346 b = this_cpu_ptr(&bh_lrus);
1347 for (i = 0; i < BH_LRU_SIZE; i++) {
1348 swap(evictee, b->bhs[i]);
1349 if (evictee == bh) {
1350 bh_lru_unlock();
1351 return;
1352 }
1353 }
1354
1355 get_bh(bh);
1356 bh_lru_unlock();
1357 brelse(evictee);
1358}
1359
1360/*
1361 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1362 */
1363static struct buffer_head *
1364lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1365{
1366 struct buffer_head *ret = NULL;
1367 unsigned int i;
1368
1369 check_irqs_on();
1370 bh_lru_lock();
1371 if (cpu_is_isolated(smp_processor_id())) {
1372 bh_lru_unlock();
1373 return NULL;
1374 }
1375 for (i = 0; i < BH_LRU_SIZE; i++) {
1376 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1377
1378 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1379 bh->b_size == size) {
1380 if (i) {
1381 while (i) {
1382 __this_cpu_write(bh_lrus.bhs[i],
1383 __this_cpu_read(bh_lrus.bhs[i - 1]));
1384 i--;
1385 }
1386 __this_cpu_write(bh_lrus.bhs[0], bh);
1387 }
1388 get_bh(bh);
1389 ret = bh;
1390 break;
1391 }
1392 }
1393 bh_lru_unlock();
1394 return ret;
1395}
1396
1397/*
1398 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1399 * it in the LRU and mark it as accessed. If it is not present then return
1400 * NULL. Atomic context callers may also return NULL if the buffer is being
1401 * migrated; similarly the page is not marked accessed either.
1402 */
1403static struct buffer_head *
1404find_get_block_common(struct block_device *bdev, sector_t block,
1405 unsigned size, bool atomic)
1406{
1407 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1408
1409 if (bh == NULL) {
1410 /* __find_get_block_slow will mark the page accessed */
1411 bh = __find_get_block_slow(bdev, block, atomic);
1412 if (bh)
1413 bh_lru_install(bh);
1414 } else
1415 touch_buffer(bh);
1416
1417 return bh;
1418}
1419
1420struct buffer_head *
1421__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1422{
1423 return find_get_block_common(bdev, block, size, true);
1424}
1425EXPORT_SYMBOL(__find_get_block);
1426
1427/* same as __find_get_block() but allows sleeping contexts */
1428struct buffer_head *
1429__find_get_block_nonatomic(struct block_device *bdev, sector_t block,
1430 unsigned size)
1431{
1432 return find_get_block_common(bdev, block, size, false);
1433}
1434EXPORT_SYMBOL(__find_get_block_nonatomic);
1435
1436/**
1437 * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1438 * @bdev: The block device.
1439 * @block: The block number.
1440 * @size: The size of buffer_heads for this @bdev.
1441 * @gfp: The memory allocation flags to use.
1442 *
1443 * The returned buffer head has its reference count incremented, but is
1444 * not locked. The caller should call brelse() when it has finished
1445 * with the buffer. The buffer may not be uptodate. If needed, the
1446 * caller can bring it uptodate either by reading it or overwriting it.
1447 *
1448 * Return: The buffer head, or NULL if memory could not be allocated.
1449 */
1450struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1451 unsigned size, gfp_t gfp)
1452{
1453 struct buffer_head *bh;
1454
1455 if (gfpflags_allow_blocking(gfp))
1456 bh = __find_get_block_nonatomic(bdev, block, size);
1457 else
1458 bh = __find_get_block(bdev, block, size);
1459
1460 might_alloc(gfp);
1461 if (bh)
1462 return bh;
1463
1464 return __getblk_slow(bdev, block, size, gfp);
1465}
1466EXPORT_SYMBOL(bdev_getblk);
1467
1468/*
1469 * Do async read-ahead on a buffer..
1470 */
1471void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1472{
1473 struct buffer_head *bh = bdev_getblk(bdev, block, size,
1474 GFP_NOWAIT | __GFP_MOVABLE);
1475
1476 if (likely(bh)) {
1477 bh_readahead(bh, REQ_RAHEAD);
1478 brelse(bh);
1479 }
1480}
1481EXPORT_SYMBOL(__breadahead);
1482
1483/**
1484 * __bread_gfp() - Read a block.
1485 * @bdev: The block device to read from.
1486 * @block: Block number in units of block size.
1487 * @size: The block size of this device in bytes.
1488 * @gfp: Not page allocation flags; see below.
1489 *
1490 * You are not expected to call this function. You should use one of
1491 * sb_bread(), sb_bread_unmovable() or __bread().
1492 *
1493 * Read a specified block, and return the buffer head that refers to it.
1494 * If @gfp is 0, the memory will be allocated using the block device's
1495 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be
1496 * allocated from a movable area. Do not pass in a complete set of
1497 * GFP flags.
1498 *
1499 * The returned buffer head has its refcount increased. The caller should
1500 * call brelse() when it has finished with the buffer.
1501 *
1502 * Context: May sleep waiting for I/O.
1503 * Return: NULL if the block was unreadable.
1504 */
1505struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1506 unsigned size, gfp_t gfp)
1507{
1508 struct buffer_head *bh;
1509
1510 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1511
1512 /*
1513 * Prefer looping in the allocator rather than here, at least that
1514 * code knows what it's doing.
1515 */
1516 gfp |= __GFP_NOFAIL;
1517
1518 bh = bdev_getblk(bdev, block, size, gfp);
1519
1520 if (likely(bh) && !buffer_uptodate(bh))
1521 bh = __bread_slow(bh);
1522 return bh;
1523}
1524EXPORT_SYMBOL(__bread_gfp);
1525
1526static void __invalidate_bh_lrus(struct bh_lru *b)
1527{
1528 int i;
1529
1530 for (i = 0; i < BH_LRU_SIZE; i++) {
1531 brelse(b->bhs[i]);
1532 b->bhs[i] = NULL;
1533 }
1534}
1535/*
1536 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1537 * This doesn't race because it runs in each cpu either in irq
1538 * or with preempt disabled.
1539 */
1540static void invalidate_bh_lru(void *arg)
1541{
1542 struct bh_lru *b = &get_cpu_var(bh_lrus);
1543
1544 __invalidate_bh_lrus(b);
1545 put_cpu_var(bh_lrus);
1546}
1547
1548bool has_bh_in_lru(int cpu, void *dummy)
1549{
1550 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1551 int i;
1552
1553 for (i = 0; i < BH_LRU_SIZE; i++) {
1554 if (b->bhs[i])
1555 return true;
1556 }
1557
1558 return false;
1559}
1560
1561void invalidate_bh_lrus(void)
1562{
1563 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1564}
1565EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1566
1567/*
1568 * It's called from workqueue context so we need a bh_lru_lock to close
1569 * the race with preemption/irq.
1570 */
1571void invalidate_bh_lrus_cpu(void)
1572{
1573 struct bh_lru *b;
1574
1575 bh_lru_lock();
1576 b = this_cpu_ptr(&bh_lrus);
1577 __invalidate_bh_lrus(b);
1578 bh_lru_unlock();
1579}
1580
1581void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1582 unsigned long offset)
1583{
1584 bh->b_folio = folio;
1585 BUG_ON(offset >= folio_size(folio));
1586 if (folio_test_highmem(folio))
1587 /*
1588 * This catches illegal uses and preserves the offset:
1589 */
1590 bh->b_data = (char *)(0 + offset);
1591 else
1592 bh->b_data = folio_address(folio) + offset;
1593}
1594EXPORT_SYMBOL(folio_set_bh);
1595
1596/*
1597 * Called when truncating a buffer on a page completely.
1598 */
1599
1600/* Bits that are cleared during an invalidate */
1601#define BUFFER_FLAGS_DISCARD \
1602 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1603 1 << BH_Delay | 1 << BH_Unwritten)
1604
1605static void discard_buffer(struct buffer_head * bh)
1606{
1607 unsigned long b_state;
1608
1609 lock_buffer(bh);
1610 clear_buffer_dirty(bh);
1611 bh->b_bdev = NULL;
1612 b_state = READ_ONCE(bh->b_state);
1613 do {
1614 } while (!try_cmpxchg(&bh->b_state, &b_state,
1615 b_state & ~BUFFER_FLAGS_DISCARD));
1616 unlock_buffer(bh);
1617}
1618
1619/**
1620 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1621 * @folio: The folio which is affected.
1622 * @offset: start of the range to invalidate
1623 * @length: length of the range to invalidate
1624 *
1625 * block_invalidate_folio() is called when all or part of the folio has been
1626 * invalidated by a truncate operation.
1627 *
1628 * block_invalidate_folio() does not have to release all buffers, but it must
1629 * ensure that no dirty buffer is left outside @offset and that no I/O
1630 * is underway against any of the blocks which are outside the truncation
1631 * point. Because the caller is about to free (and possibly reuse) those
1632 * blocks on-disk.
1633 */
1634void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1635{
1636 struct buffer_head *head, *bh, *next;
1637 size_t curr_off = 0;
1638 size_t stop = length + offset;
1639
1640 BUG_ON(!folio_test_locked(folio));
1641
1642 /*
1643 * Check for overflow
1644 */
1645 BUG_ON(stop > folio_size(folio) || stop < length);
1646
1647 head = folio_buffers(folio);
1648 if (!head)
1649 return;
1650
1651 bh = head;
1652 do {
1653 size_t next_off = curr_off + bh->b_size;
1654 next = bh->b_this_page;
1655
1656 /*
1657 * Are we still fully in range ?
1658 */
1659 if (next_off > stop)
1660 goto out;
1661
1662 /*
1663 * is this block fully invalidated?
1664 */
1665 if (offset <= curr_off)
1666 discard_buffer(bh);
1667 curr_off = next_off;
1668 bh = next;
1669 } while (bh != head);
1670
1671 /*
1672 * We release buffers only if the entire folio is being invalidated.
1673 * The get_block cached value has been unconditionally invalidated,
1674 * so real IO is not possible anymore.
1675 */
1676 if (length == folio_size(folio))
1677 filemap_release_folio(folio, 0);
1678out:
1679 folio_clear_mappedtodisk(folio);
1680 return;
1681}
1682EXPORT_SYMBOL(block_invalidate_folio);
1683
1684/*
1685 * We attach and possibly dirty the buffers atomically wrt
1686 * block_dirty_folio() via i_private_lock. try_to_free_buffers
1687 * is already excluded via the folio lock.
1688 */
1689struct buffer_head *create_empty_buffers(struct folio *folio,
1690 unsigned long blocksize, unsigned long b_state)
1691{
1692 struct buffer_head *bh, *head, *tail;
1693 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1694
1695 head = folio_alloc_buffers(folio, blocksize, gfp);
1696 bh = head;
1697 do {
1698 bh->b_state |= b_state;
1699 tail = bh;
1700 bh = bh->b_this_page;
1701 } while (bh);
1702 tail->b_this_page = head;
1703
1704 spin_lock(&folio->mapping->i_private_lock);
1705 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1706 bh = head;
1707 do {
1708 if (folio_test_dirty(folio))
1709 set_buffer_dirty(bh);
1710 if (folio_test_uptodate(folio))
1711 set_buffer_uptodate(bh);
1712 bh = bh->b_this_page;
1713 } while (bh != head);
1714 }
1715 folio_attach_private(folio, head);
1716 spin_unlock(&folio->mapping->i_private_lock);
1717
1718 return head;
1719}
1720EXPORT_SYMBOL(create_empty_buffers);
1721
1722/**
1723 * clean_bdev_aliases: clean a range of buffers in block device
1724 * @bdev: Block device to clean buffers in
1725 * @block: Start of a range of blocks to clean
1726 * @len: Number of blocks to clean
1727 *
1728 * We are taking a range of blocks for data and we don't want writeback of any
1729 * buffer-cache aliases starting from return from this function and until the
1730 * moment when something will explicitly mark the buffer dirty (hopefully that
1731 * will not happen until we will free that block ;-) We don't even need to mark
1732 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1733 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1734 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1735 * would confuse anyone who might pick it with bread() afterwards...
1736 *
1737 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1738 * writeout I/O going on against recently-freed buffers. We don't wait on that
1739 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1740 * need to. That happens here.
1741 */
1742void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1743{
1744 struct address_space *bd_mapping = bdev->bd_mapping;
1745 const int blkbits = bd_mapping->host->i_blkbits;
1746 struct folio_batch fbatch;
1747 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1748 pgoff_t end;
1749 int i, count;
1750 struct buffer_head *bh;
1751 struct buffer_head *head;
1752
1753 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1754 folio_batch_init(&fbatch);
1755 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1756 count = folio_batch_count(&fbatch);
1757 for (i = 0; i < count; i++) {
1758 struct folio *folio = fbatch.folios[i];
1759
1760 if (!folio_buffers(folio))
1761 continue;
1762 /*
1763 * We use folio lock instead of bd_mapping->i_private_lock
1764 * to pin buffers here since we can afford to sleep and
1765 * it scales better than a global spinlock lock.
1766 */
1767 folio_lock(folio);
1768 /* Recheck when the folio is locked which pins bhs */
1769 head = folio_buffers(folio);
1770 if (!head)
1771 goto unlock_page;
1772 bh = head;
1773 do {
1774 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1775 goto next;
1776 if (bh->b_blocknr >= block + len)
1777 break;
1778 clear_buffer_dirty(bh);
1779 wait_on_buffer(bh);
1780 clear_buffer_req(bh);
1781next:
1782 bh = bh->b_this_page;
1783 } while (bh != head);
1784unlock_page:
1785 folio_unlock(folio);
1786 }
1787 folio_batch_release(&fbatch);
1788 cond_resched();
1789 /* End of range already reached? */
1790 if (index > end || !index)
1791 break;
1792 }
1793}
1794EXPORT_SYMBOL(clean_bdev_aliases);
1795
1796static struct buffer_head *folio_create_buffers(struct folio *folio,
1797 struct inode *inode,
1798 unsigned int b_state)
1799{
1800 struct buffer_head *bh;
1801
1802 BUG_ON(!folio_test_locked(folio));
1803
1804 bh = folio_buffers(folio);
1805 if (!bh)
1806 bh = create_empty_buffers(folio,
1807 1 << READ_ONCE(inode->i_blkbits), b_state);
1808 return bh;
1809}
1810
1811/*
1812 * NOTE! All mapped/uptodate combinations are valid:
1813 *
1814 * Mapped Uptodate Meaning
1815 *
1816 * No No "unknown" - must do get_block()
1817 * No Yes "hole" - zero-filled
1818 * Yes No "allocated" - allocated on disk, not read in
1819 * Yes Yes "valid" - allocated and up-to-date in memory.
1820 *
1821 * "Dirty" is valid only with the last case (mapped+uptodate).
1822 */
1823
1824/*
1825 * While block_write_full_folio is writing back the dirty buffers under
1826 * the page lock, whoever dirtied the buffers may decide to clean them
1827 * again at any time. We handle that by only looking at the buffer
1828 * state inside lock_buffer().
1829 *
1830 * If block_write_full_folio() is called for regular writeback
1831 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1832 * locked buffer. This only can happen if someone has written the buffer
1833 * directly, with submit_bh(). At the address_space level PageWriteback
1834 * prevents this contention from occurring.
1835 *
1836 * If block_write_full_folio() is called with wbc->sync_mode ==
1837 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1838 * causes the writes to be flagged as synchronous writes.
1839 */
1840int __block_write_full_folio(struct inode *inode, struct folio *folio,
1841 get_block_t *get_block, struct writeback_control *wbc)
1842{
1843 int err;
1844 sector_t block;
1845 sector_t last_block;
1846 struct buffer_head *bh, *head;
1847 size_t blocksize;
1848 int nr_underway = 0;
1849 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1850
1851 head = folio_create_buffers(folio, inode,
1852 (1 << BH_Dirty) | (1 << BH_Uptodate));
1853
1854 /*
1855 * Be very careful. We have no exclusion from block_dirty_folio
1856 * here, and the (potentially unmapped) buffers may become dirty at
1857 * any time. If a buffer becomes dirty here after we've inspected it
1858 * then we just miss that fact, and the folio stays dirty.
1859 *
1860 * Buffers outside i_size may be dirtied by block_dirty_folio;
1861 * handle that here by just cleaning them.
1862 */
1863
1864 bh = head;
1865 blocksize = bh->b_size;
1866
1867 block = div_u64(folio_pos(folio), blocksize);
1868 last_block = div_u64(i_size_read(inode) - 1, blocksize);
1869
1870 /*
1871 * Get all the dirty buffers mapped to disk addresses and
1872 * handle any aliases from the underlying blockdev's mapping.
1873 */
1874 do {
1875 if (block > last_block) {
1876 /*
1877 * mapped buffers outside i_size will occur, because
1878 * this folio can be outside i_size when there is a
1879 * truncate in progress.
1880 */
1881 /*
1882 * The buffer was zeroed by block_write_full_folio()
1883 */
1884 clear_buffer_dirty(bh);
1885 set_buffer_uptodate(bh);
1886 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1887 buffer_dirty(bh)) {
1888 WARN_ON(bh->b_size != blocksize);
1889 err = get_block(inode, block, bh, 1);
1890 if (err)
1891 goto recover;
1892 clear_buffer_delay(bh);
1893 if (buffer_new(bh)) {
1894 /* blockdev mappings never come here */
1895 clear_buffer_new(bh);
1896 clean_bdev_bh_alias(bh);
1897 }
1898 }
1899 bh = bh->b_this_page;
1900 block++;
1901 } while (bh != head);
1902
1903 do {
1904 if (!buffer_mapped(bh))
1905 continue;
1906 /*
1907 * If it's a fully non-blocking write attempt and we cannot
1908 * lock the buffer then redirty the folio. Note that this can
1909 * potentially cause a busy-wait loop from writeback threads
1910 * and kswapd activity, but those code paths have their own
1911 * higher-level throttling.
1912 */
1913 if (wbc->sync_mode != WB_SYNC_NONE) {
1914 lock_buffer(bh);
1915 } else if (!trylock_buffer(bh)) {
1916 folio_redirty_for_writepage(wbc, folio);
1917 continue;
1918 }
1919 if (test_clear_buffer_dirty(bh)) {
1920 mark_buffer_async_write_endio(bh,
1921 end_buffer_async_write);
1922 } else {
1923 unlock_buffer(bh);
1924 }
1925 } while ((bh = bh->b_this_page) != head);
1926
1927 /*
1928 * The folio and its buffers are protected by the writeback flag,
1929 * so we can drop the bh refcounts early.
1930 */
1931 BUG_ON(folio_test_writeback(folio));
1932 folio_start_writeback(folio);
1933
1934 do {
1935 struct buffer_head *next = bh->b_this_page;
1936 if (buffer_async_write(bh)) {
1937 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1938 inode->i_write_hint, wbc);
1939 nr_underway++;
1940 }
1941 bh = next;
1942 } while (bh != head);
1943 folio_unlock(folio);
1944
1945 err = 0;
1946done:
1947 if (nr_underway == 0) {
1948 /*
1949 * The folio was marked dirty, but the buffers were
1950 * clean. Someone wrote them back by hand with
1951 * write_dirty_buffer/submit_bh. A rare case.
1952 */
1953 folio_end_writeback(folio);
1954
1955 /*
1956 * The folio and buffer_heads can be released at any time from
1957 * here on.
1958 */
1959 }
1960 return err;
1961
1962recover:
1963 /*
1964 * ENOSPC, or some other error. We may already have added some
1965 * blocks to the file, so we need to write these out to avoid
1966 * exposing stale data.
1967 * The folio is currently locked and not marked for writeback
1968 */
1969 bh = head;
1970 /* Recovery: lock and submit the mapped buffers */
1971 do {
1972 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1973 !buffer_delay(bh)) {
1974 lock_buffer(bh);
1975 mark_buffer_async_write_endio(bh,
1976 end_buffer_async_write);
1977 } else {
1978 /*
1979 * The buffer may have been set dirty during
1980 * attachment to a dirty folio.
1981 */
1982 clear_buffer_dirty(bh);
1983 }
1984 } while ((bh = bh->b_this_page) != head);
1985 BUG_ON(folio_test_writeback(folio));
1986 mapping_set_error(folio->mapping, err);
1987 folio_start_writeback(folio);
1988 do {
1989 struct buffer_head *next = bh->b_this_page;
1990 if (buffer_async_write(bh)) {
1991 clear_buffer_dirty(bh);
1992 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1993 inode->i_write_hint, wbc);
1994 nr_underway++;
1995 }
1996 bh = next;
1997 } while (bh != head);
1998 folio_unlock(folio);
1999 goto done;
2000}
2001EXPORT_SYMBOL(__block_write_full_folio);
2002
2003/*
2004 * If a folio has any new buffers, zero them out here, and mark them uptodate
2005 * and dirty so they'll be written out (in order to prevent uninitialised
2006 * block data from leaking). And clear the new bit.
2007 */
2008void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
2009{
2010 size_t block_start, block_end;
2011 struct buffer_head *head, *bh;
2012
2013 BUG_ON(!folio_test_locked(folio));
2014 head = folio_buffers(folio);
2015 if (!head)
2016 return;
2017
2018 bh = head;
2019 block_start = 0;
2020 do {
2021 block_end = block_start + bh->b_size;
2022
2023 if (buffer_new(bh)) {
2024 if (block_end > from && block_start < to) {
2025 if (!folio_test_uptodate(folio)) {
2026 size_t start, xend;
2027
2028 start = max(from, block_start);
2029 xend = min(to, block_end);
2030
2031 folio_zero_segment(folio, start, xend);
2032 set_buffer_uptodate(bh);
2033 }
2034
2035 clear_buffer_new(bh);
2036 mark_buffer_dirty(bh);
2037 }
2038 }
2039
2040 block_start = block_end;
2041 bh = bh->b_this_page;
2042 } while (bh != head);
2043}
2044EXPORT_SYMBOL(folio_zero_new_buffers);
2045
2046static int
2047iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2048 const struct iomap *iomap)
2049{
2050 loff_t offset = (loff_t)block << inode->i_blkbits;
2051
2052 bh->b_bdev = iomap->bdev;
2053
2054 /*
2055 * Block points to offset in file we need to map, iomap contains
2056 * the offset at which the map starts. If the map ends before the
2057 * current block, then do not map the buffer and let the caller
2058 * handle it.
2059 */
2060 if (offset >= iomap->offset + iomap->length)
2061 return -EIO;
2062
2063 switch (iomap->type) {
2064 case IOMAP_HOLE:
2065 /*
2066 * If the buffer is not up to date or beyond the current EOF,
2067 * we need to mark it as new to ensure sub-block zeroing is
2068 * executed if necessary.
2069 */
2070 if (!buffer_uptodate(bh) ||
2071 (offset >= i_size_read(inode)))
2072 set_buffer_new(bh);
2073 return 0;
2074 case IOMAP_DELALLOC:
2075 if (!buffer_uptodate(bh) ||
2076 (offset >= i_size_read(inode)))
2077 set_buffer_new(bh);
2078 set_buffer_uptodate(bh);
2079 set_buffer_mapped(bh);
2080 set_buffer_delay(bh);
2081 return 0;
2082 case IOMAP_UNWRITTEN:
2083 /*
2084 * For unwritten regions, we always need to ensure that regions
2085 * in the block we are not writing to are zeroed. Mark the
2086 * buffer as new to ensure this.
2087 */
2088 set_buffer_new(bh);
2089 set_buffer_unwritten(bh);
2090 fallthrough;
2091 case IOMAP_MAPPED:
2092 if ((iomap->flags & IOMAP_F_NEW) ||
2093 offset >= i_size_read(inode)) {
2094 /*
2095 * This can happen if truncating the block device races
2096 * with the check in the caller as i_size updates on
2097 * block devices aren't synchronized by i_rwsem for
2098 * block devices.
2099 */
2100 if (S_ISBLK(inode->i_mode))
2101 return -EIO;
2102 set_buffer_new(bh);
2103 }
2104 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2105 inode->i_blkbits;
2106 set_buffer_mapped(bh);
2107 return 0;
2108 default:
2109 WARN_ON_ONCE(1);
2110 return -EIO;
2111 }
2112}
2113
2114int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2115 get_block_t *get_block, const struct iomap *iomap)
2116{
2117 size_t from = offset_in_folio(folio, pos);
2118 size_t to = from + len;
2119 struct inode *inode = folio->mapping->host;
2120 size_t block_start, block_end;
2121 sector_t block;
2122 int err = 0;
2123 size_t blocksize;
2124 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2125
2126 BUG_ON(!folio_test_locked(folio));
2127 BUG_ON(to > folio_size(folio));
2128 BUG_ON(from > to);
2129
2130 head = folio_create_buffers(folio, inode, 0);
2131 blocksize = head->b_size;
2132 block = div_u64(folio_pos(folio), blocksize);
2133
2134 for (bh = head, block_start = 0; bh != head || !block_start;
2135 block++, block_start=block_end, bh = bh->b_this_page) {
2136 block_end = block_start + blocksize;
2137 if (block_end <= from || block_start >= to) {
2138 if (folio_test_uptodate(folio)) {
2139 if (!buffer_uptodate(bh))
2140 set_buffer_uptodate(bh);
2141 }
2142 continue;
2143 }
2144 if (buffer_new(bh))
2145 clear_buffer_new(bh);
2146 if (!buffer_mapped(bh)) {
2147 WARN_ON(bh->b_size != blocksize);
2148 if (get_block)
2149 err = get_block(inode, block, bh, 1);
2150 else
2151 err = iomap_to_bh(inode, block, bh, iomap);
2152 if (err)
2153 break;
2154
2155 if (buffer_new(bh)) {
2156 clean_bdev_bh_alias(bh);
2157 if (folio_test_uptodate(folio)) {
2158 clear_buffer_new(bh);
2159 set_buffer_uptodate(bh);
2160 mark_buffer_dirty(bh);
2161 continue;
2162 }
2163 if (block_end > to || block_start < from)
2164 folio_zero_segments(folio,
2165 to, block_end,
2166 block_start, from);
2167 continue;
2168 }
2169 }
2170 if (folio_test_uptodate(folio)) {
2171 if (!buffer_uptodate(bh))
2172 set_buffer_uptodate(bh);
2173 continue;
2174 }
2175 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2176 !buffer_unwritten(bh) &&
2177 (block_start < from || block_end > to)) {
2178 bh_read_nowait(bh, 0);
2179 *wait_bh++=bh;
2180 }
2181 }
2182 /*
2183 * If we issued read requests - let them complete.
2184 */
2185 while(wait_bh > wait) {
2186 wait_on_buffer(*--wait_bh);
2187 if (!buffer_uptodate(*wait_bh))
2188 err = -EIO;
2189 }
2190 if (unlikely(err))
2191 folio_zero_new_buffers(folio, from, to);
2192 return err;
2193}
2194
2195int __block_write_begin(struct folio *folio, loff_t pos, unsigned len,
2196 get_block_t *get_block)
2197{
2198 return __block_write_begin_int(folio, pos, len, get_block, NULL);
2199}
2200EXPORT_SYMBOL(__block_write_begin);
2201
2202void block_commit_write(struct folio *folio, size_t from, size_t to)
2203{
2204 size_t block_start, block_end;
2205 bool partial = false;
2206 unsigned blocksize;
2207 struct buffer_head *bh, *head;
2208
2209 bh = head = folio_buffers(folio);
2210 if (!bh)
2211 return;
2212 blocksize = bh->b_size;
2213
2214 block_start = 0;
2215 do {
2216 block_end = block_start + blocksize;
2217 if (block_end <= from || block_start >= to) {
2218 if (!buffer_uptodate(bh))
2219 partial = true;
2220 } else {
2221 set_buffer_uptodate(bh);
2222 mark_buffer_dirty(bh);
2223 }
2224 if (buffer_new(bh))
2225 clear_buffer_new(bh);
2226
2227 block_start = block_end;
2228 bh = bh->b_this_page;
2229 } while (bh != head);
2230
2231 /*
2232 * If this is a partial write which happened to make all buffers
2233 * uptodate then we can optimize away a bogus read_folio() for
2234 * the next read(). Here we 'discover' whether the folio went
2235 * uptodate as a result of this (potentially partial) write.
2236 */
2237 if (!partial)
2238 folio_mark_uptodate(folio);
2239}
2240EXPORT_SYMBOL(block_commit_write);
2241
2242/*
2243 * block_write_begin takes care of the basic task of block allocation and
2244 * bringing partial write blocks uptodate first.
2245 *
2246 * The filesystem needs to handle block truncation upon failure.
2247 */
2248int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2249 struct folio **foliop, get_block_t *get_block)
2250{
2251 pgoff_t index = pos >> PAGE_SHIFT;
2252 struct folio *folio;
2253 int status;
2254
2255 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2256 mapping_gfp_mask(mapping));
2257 if (IS_ERR(folio))
2258 return PTR_ERR(folio);
2259
2260 status = __block_write_begin_int(folio, pos, len, get_block, NULL);
2261 if (unlikely(status)) {
2262 folio_unlock(folio);
2263 folio_put(folio);
2264 folio = NULL;
2265 }
2266
2267 *foliop = folio;
2268 return status;
2269}
2270EXPORT_SYMBOL(block_write_begin);
2271
2272int block_write_end(struct file *file, struct address_space *mapping,
2273 loff_t pos, unsigned len, unsigned copied,
2274 struct folio *folio, void *fsdata)
2275{
2276 size_t start = pos - folio_pos(folio);
2277
2278 if (unlikely(copied < len)) {
2279 /*
2280 * The buffers that were written will now be uptodate, so
2281 * we don't have to worry about a read_folio reading them
2282 * and overwriting a partial write. However if we have
2283 * encountered a short write and only partially written
2284 * into a buffer, it will not be marked uptodate, so a
2285 * read_folio might come in and destroy our partial write.
2286 *
2287 * Do the simplest thing, and just treat any short write to a
2288 * non uptodate folio as a zero-length write, and force the
2289 * caller to redo the whole thing.
2290 */
2291 if (!folio_test_uptodate(folio))
2292 copied = 0;
2293
2294 folio_zero_new_buffers(folio, start+copied, start+len);
2295 }
2296 flush_dcache_folio(folio);
2297
2298 /* This could be a short (even 0-length) commit */
2299 block_commit_write(folio, start, start + copied);
2300
2301 return copied;
2302}
2303EXPORT_SYMBOL(block_write_end);
2304
2305int generic_write_end(struct file *file, struct address_space *mapping,
2306 loff_t pos, unsigned len, unsigned copied,
2307 struct folio *folio, void *fsdata)
2308{
2309 struct inode *inode = mapping->host;
2310 loff_t old_size = inode->i_size;
2311 bool i_size_changed = false;
2312
2313 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
2314
2315 /*
2316 * No need to use i_size_read() here, the i_size cannot change under us
2317 * because we hold i_rwsem.
2318 *
2319 * But it's important to update i_size while still holding folio lock:
2320 * page writeout could otherwise come in and zero beyond i_size.
2321 */
2322 if (pos + copied > inode->i_size) {
2323 i_size_write(inode, pos + copied);
2324 i_size_changed = true;
2325 }
2326
2327 folio_unlock(folio);
2328 folio_put(folio);
2329
2330 if (old_size < pos)
2331 pagecache_isize_extended(inode, old_size, pos);
2332 /*
2333 * Don't mark the inode dirty under page lock. First, it unnecessarily
2334 * makes the holding time of page lock longer. Second, it forces lock
2335 * ordering of page lock and transaction start for journaling
2336 * filesystems.
2337 */
2338 if (i_size_changed)
2339 mark_inode_dirty(inode);
2340 return copied;
2341}
2342EXPORT_SYMBOL(generic_write_end);
2343
2344/*
2345 * block_is_partially_uptodate checks whether buffers within a folio are
2346 * uptodate or not.
2347 *
2348 * Returns true if all buffers which correspond to the specified part
2349 * of the folio are uptodate.
2350 */
2351bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2352{
2353 unsigned block_start, block_end, blocksize;
2354 unsigned to;
2355 struct buffer_head *bh, *head;
2356 bool ret = true;
2357
2358 head = folio_buffers(folio);
2359 if (!head)
2360 return false;
2361 blocksize = head->b_size;
2362 to = min_t(unsigned, folio_size(folio) - from, count);
2363 to = from + to;
2364 if (from < blocksize && to > folio_size(folio) - blocksize)
2365 return false;
2366
2367 bh = head;
2368 block_start = 0;
2369 do {
2370 block_end = block_start + blocksize;
2371 if (block_end > from && block_start < to) {
2372 if (!buffer_uptodate(bh)) {
2373 ret = false;
2374 break;
2375 }
2376 if (block_end >= to)
2377 break;
2378 }
2379 block_start = block_end;
2380 bh = bh->b_this_page;
2381 } while (bh != head);
2382
2383 return ret;
2384}
2385EXPORT_SYMBOL(block_is_partially_uptodate);
2386
2387/*
2388 * Generic "read_folio" function for block devices that have the normal
2389 * get_block functionality. This is most of the block device filesystems.
2390 * Reads the folio asynchronously --- the unlock_buffer() and
2391 * set/clear_buffer_uptodate() functions propagate buffer state into the
2392 * folio once IO has completed.
2393 */
2394int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2395{
2396 struct inode *inode = folio->mapping->host;
2397 sector_t iblock, lblock;
2398 struct buffer_head *bh, *head, *prev = NULL;
2399 size_t blocksize;
2400 int fully_mapped = 1;
2401 bool page_error = false;
2402 loff_t limit = i_size_read(inode);
2403
2404 /* This is needed for ext4. */
2405 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2406 limit = inode->i_sb->s_maxbytes;
2407
2408 head = folio_create_buffers(folio, inode, 0);
2409 blocksize = head->b_size;
2410
2411 iblock = div_u64(folio_pos(folio), blocksize);
2412 lblock = div_u64(limit + blocksize - 1, blocksize);
2413 bh = head;
2414
2415 do {
2416 if (buffer_uptodate(bh))
2417 continue;
2418
2419 if (!buffer_mapped(bh)) {
2420 int err = 0;
2421
2422 fully_mapped = 0;
2423 if (iblock < lblock) {
2424 WARN_ON(bh->b_size != blocksize);
2425 err = get_block(inode, iblock, bh, 0);
2426 if (err)
2427 page_error = true;
2428 }
2429 if (!buffer_mapped(bh)) {
2430 folio_zero_range(folio, bh_offset(bh),
2431 blocksize);
2432 if (!err)
2433 set_buffer_uptodate(bh);
2434 continue;
2435 }
2436 /*
2437 * get_block() might have updated the buffer
2438 * synchronously
2439 */
2440 if (buffer_uptodate(bh))
2441 continue;
2442 }
2443
2444 lock_buffer(bh);
2445 if (buffer_uptodate(bh)) {
2446 unlock_buffer(bh);
2447 continue;
2448 }
2449
2450 mark_buffer_async_read(bh);
2451 if (prev)
2452 submit_bh(REQ_OP_READ, prev);
2453 prev = bh;
2454 } while (iblock++, (bh = bh->b_this_page) != head);
2455
2456 if (fully_mapped)
2457 folio_set_mappedtodisk(folio);
2458
2459 /*
2460 * All buffers are uptodate or get_block() returned an error
2461 * when trying to map them - we must finish the read because
2462 * end_buffer_async_read() will never be called on any buffer
2463 * in this folio.
2464 */
2465 if (prev)
2466 submit_bh(REQ_OP_READ, prev);
2467 else
2468 folio_end_read(folio, !page_error);
2469
2470 return 0;
2471}
2472EXPORT_SYMBOL(block_read_full_folio);
2473
2474/* utility function for filesystems that need to do work on expanding
2475 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2476 * deal with the hole.
2477 */
2478int generic_cont_expand_simple(struct inode *inode, loff_t size)
2479{
2480 struct address_space *mapping = inode->i_mapping;
2481 const struct address_space_operations *aops = mapping->a_ops;
2482 struct folio *folio;
2483 void *fsdata = NULL;
2484 int err;
2485
2486 err = inode_newsize_ok(inode, size);
2487 if (err)
2488 goto out;
2489
2490 err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata);
2491 if (err)
2492 goto out;
2493
2494 err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata);
2495 BUG_ON(err > 0);
2496
2497out:
2498 return err;
2499}
2500EXPORT_SYMBOL(generic_cont_expand_simple);
2501
2502static int cont_expand_zero(struct file *file, struct address_space *mapping,
2503 loff_t pos, loff_t *bytes)
2504{
2505 struct inode *inode = mapping->host;
2506 const struct address_space_operations *aops = mapping->a_ops;
2507 unsigned int blocksize = i_blocksize(inode);
2508 struct folio *folio;
2509 void *fsdata = NULL;
2510 pgoff_t index, curidx;
2511 loff_t curpos;
2512 unsigned zerofrom, offset, len;
2513 int err = 0;
2514
2515 index = pos >> PAGE_SHIFT;
2516 offset = pos & ~PAGE_MASK;
2517
2518 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2519 zerofrom = curpos & ~PAGE_MASK;
2520 if (zerofrom & (blocksize-1)) {
2521 *bytes |= (blocksize-1);
2522 (*bytes)++;
2523 }
2524 len = PAGE_SIZE - zerofrom;
2525
2526 err = aops->write_begin(file, mapping, curpos, len,
2527 &folio, &fsdata);
2528 if (err)
2529 goto out;
2530 folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2531 err = aops->write_end(file, mapping, curpos, len, len,
2532 folio, fsdata);
2533 if (err < 0)
2534 goto out;
2535 BUG_ON(err != len);
2536 err = 0;
2537
2538 balance_dirty_pages_ratelimited(mapping);
2539
2540 if (fatal_signal_pending(current)) {
2541 err = -EINTR;
2542 goto out;
2543 }
2544 }
2545
2546 /* page covers the boundary, find the boundary offset */
2547 if (index == curidx) {
2548 zerofrom = curpos & ~PAGE_MASK;
2549 /* if we will expand the thing last block will be filled */
2550 if (offset <= zerofrom) {
2551 goto out;
2552 }
2553 if (zerofrom & (blocksize-1)) {
2554 *bytes |= (blocksize-1);
2555 (*bytes)++;
2556 }
2557 len = offset - zerofrom;
2558
2559 err = aops->write_begin(file, mapping, curpos, len,
2560 &folio, &fsdata);
2561 if (err)
2562 goto out;
2563 folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2564 err = aops->write_end(file, mapping, curpos, len, len,
2565 folio, fsdata);
2566 if (err < 0)
2567 goto out;
2568 BUG_ON(err != len);
2569 err = 0;
2570 }
2571out:
2572 return err;
2573}
2574
2575/*
2576 * For moronic filesystems that do not allow holes in file.
2577 * We may have to extend the file.
2578 */
2579int cont_write_begin(struct file *file, struct address_space *mapping,
2580 loff_t pos, unsigned len,
2581 struct folio **foliop, void **fsdata,
2582 get_block_t *get_block, loff_t *bytes)
2583{
2584 struct inode *inode = mapping->host;
2585 unsigned int blocksize = i_blocksize(inode);
2586 unsigned int zerofrom;
2587 int err;
2588
2589 err = cont_expand_zero(file, mapping, pos, bytes);
2590 if (err)
2591 return err;
2592
2593 zerofrom = *bytes & ~PAGE_MASK;
2594 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2595 *bytes |= (blocksize-1);
2596 (*bytes)++;
2597 }
2598
2599 return block_write_begin(mapping, pos, len, foliop, get_block);
2600}
2601EXPORT_SYMBOL(cont_write_begin);
2602
2603/*
2604 * block_page_mkwrite() is not allowed to change the file size as it gets
2605 * called from a page fault handler when a page is first dirtied. Hence we must
2606 * be careful to check for EOF conditions here. We set the page up correctly
2607 * for a written page which means we get ENOSPC checking when writing into
2608 * holes and correct delalloc and unwritten extent mapping on filesystems that
2609 * support these features.
2610 *
2611 * We are not allowed to take the i_mutex here so we have to play games to
2612 * protect against truncate races as the page could now be beyond EOF. Because
2613 * truncate writes the inode size before removing pages, once we have the
2614 * page lock we can determine safely if the page is beyond EOF. If it is not
2615 * beyond EOF, then the page is guaranteed safe against truncation until we
2616 * unlock the page.
2617 *
2618 * Direct callers of this function should protect against filesystem freezing
2619 * using sb_start_pagefault() - sb_end_pagefault() functions.
2620 */
2621int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2622 get_block_t get_block)
2623{
2624 struct folio *folio = page_folio(vmf->page);
2625 struct inode *inode = file_inode(vma->vm_file);
2626 unsigned long end;
2627 loff_t size;
2628 int ret;
2629
2630 folio_lock(folio);
2631 size = i_size_read(inode);
2632 if ((folio->mapping != inode->i_mapping) ||
2633 (folio_pos(folio) >= size)) {
2634 /* We overload EFAULT to mean page got truncated */
2635 ret = -EFAULT;
2636 goto out_unlock;
2637 }
2638
2639 end = folio_size(folio);
2640 /* folio is wholly or partially inside EOF */
2641 if (folio_pos(folio) + end > size)
2642 end = size - folio_pos(folio);
2643
2644 ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2645 if (unlikely(ret))
2646 goto out_unlock;
2647
2648 block_commit_write(folio, 0, end);
2649
2650 folio_mark_dirty(folio);
2651 folio_wait_stable(folio);
2652 return 0;
2653out_unlock:
2654 folio_unlock(folio);
2655 return ret;
2656}
2657EXPORT_SYMBOL(block_page_mkwrite);
2658
2659int block_truncate_page(struct address_space *mapping,
2660 loff_t from, get_block_t *get_block)
2661{
2662 pgoff_t index = from >> PAGE_SHIFT;
2663 unsigned blocksize;
2664 sector_t iblock;
2665 size_t offset, length, pos;
2666 struct inode *inode = mapping->host;
2667 struct folio *folio;
2668 struct buffer_head *bh;
2669 int err = 0;
2670
2671 blocksize = i_blocksize(inode);
2672 length = from & (blocksize - 1);
2673
2674 /* Block boundary? Nothing to do */
2675 if (!length)
2676 return 0;
2677
2678 length = blocksize - length;
2679 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2680
2681 folio = filemap_grab_folio(mapping, index);
2682 if (IS_ERR(folio))
2683 return PTR_ERR(folio);
2684
2685 bh = folio_buffers(folio);
2686 if (!bh)
2687 bh = create_empty_buffers(folio, blocksize, 0);
2688
2689 /* Find the buffer that contains "offset" */
2690 offset = offset_in_folio(folio, from);
2691 pos = blocksize;
2692 while (offset >= pos) {
2693 bh = bh->b_this_page;
2694 iblock++;
2695 pos += blocksize;
2696 }
2697
2698 if (!buffer_mapped(bh)) {
2699 WARN_ON(bh->b_size != blocksize);
2700 err = get_block(inode, iblock, bh, 0);
2701 if (err)
2702 goto unlock;
2703 /* unmapped? It's a hole - nothing to do */
2704 if (!buffer_mapped(bh))
2705 goto unlock;
2706 }
2707
2708 /* Ok, it's mapped. Make sure it's up-to-date */
2709 if (folio_test_uptodate(folio))
2710 set_buffer_uptodate(bh);
2711
2712 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2713 err = bh_read(bh, 0);
2714 /* Uhhuh. Read error. Complain and punt. */
2715 if (err < 0)
2716 goto unlock;
2717 }
2718
2719 folio_zero_range(folio, offset, length);
2720 mark_buffer_dirty(bh);
2721
2722unlock:
2723 folio_unlock(folio);
2724 folio_put(folio);
2725
2726 return err;
2727}
2728EXPORT_SYMBOL(block_truncate_page);
2729
2730/*
2731 * The generic ->writepage function for buffer-backed address_spaces
2732 */
2733int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2734 void *get_block)
2735{
2736 struct inode * const inode = folio->mapping->host;
2737 loff_t i_size = i_size_read(inode);
2738
2739 /* Is the folio fully inside i_size? */
2740 if (folio_pos(folio) + folio_size(folio) <= i_size)
2741 return __block_write_full_folio(inode, folio, get_block, wbc);
2742
2743 /* Is the folio fully outside i_size? (truncate in progress) */
2744 if (folio_pos(folio) >= i_size) {
2745 folio_unlock(folio);
2746 return 0; /* don't care */
2747 }
2748
2749 /*
2750 * The folio straddles i_size. It must be zeroed out on each and every
2751 * writepage invocation because it may be mmapped. "A file is mapped
2752 * in multiples of the page size. For a file that is not a multiple of
2753 * the page size, the remaining memory is zeroed when mapped, and
2754 * writes to that region are not written out to the file."
2755 */
2756 folio_zero_segment(folio, offset_in_folio(folio, i_size),
2757 folio_size(folio));
2758 return __block_write_full_folio(inode, folio, get_block, wbc);
2759}
2760
2761sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2762 get_block_t *get_block)
2763{
2764 struct inode *inode = mapping->host;
2765 struct buffer_head tmp = {
2766 .b_size = i_blocksize(inode),
2767 };
2768
2769 get_block(inode, block, &tmp, 0);
2770 return tmp.b_blocknr;
2771}
2772EXPORT_SYMBOL(generic_block_bmap);
2773
2774static void end_bio_bh_io_sync(struct bio *bio)
2775{
2776 struct buffer_head *bh = bio->bi_private;
2777
2778 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2779 set_bit(BH_Quiet, &bh->b_state);
2780
2781 bh->b_end_io(bh, !bio->bi_status);
2782 bio_put(bio);
2783}
2784
2785static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2786 enum rw_hint write_hint,
2787 struct writeback_control *wbc)
2788{
2789 const enum req_op op = opf & REQ_OP_MASK;
2790 struct bio *bio;
2791
2792 BUG_ON(!buffer_locked(bh));
2793 BUG_ON(!buffer_mapped(bh));
2794 BUG_ON(!bh->b_end_io);
2795 BUG_ON(buffer_delay(bh));
2796 BUG_ON(buffer_unwritten(bh));
2797
2798 /*
2799 * Only clear out a write error when rewriting
2800 */
2801 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2802 clear_buffer_write_io_error(bh);
2803
2804 if (buffer_meta(bh))
2805 opf |= REQ_META;
2806 if (buffer_prio(bh))
2807 opf |= REQ_PRIO;
2808
2809 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2810
2811 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2812
2813 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2814 bio->bi_write_hint = write_hint;
2815
2816 bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh));
2817
2818 bio->bi_end_io = end_bio_bh_io_sync;
2819 bio->bi_private = bh;
2820
2821 /* Take care of bh's that straddle the end of the device */
2822 guard_bio_eod(bio);
2823
2824 if (wbc) {
2825 wbc_init_bio(wbc, bio);
2826 wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size);
2827 }
2828
2829 submit_bio(bio);
2830}
2831
2832void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2833{
2834 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2835}
2836EXPORT_SYMBOL(submit_bh);
2837
2838void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2839{
2840 lock_buffer(bh);
2841 if (!test_clear_buffer_dirty(bh)) {
2842 unlock_buffer(bh);
2843 return;
2844 }
2845 bh->b_end_io = end_buffer_write_sync;
2846 get_bh(bh);
2847 submit_bh(REQ_OP_WRITE | op_flags, bh);
2848}
2849EXPORT_SYMBOL(write_dirty_buffer);
2850
2851/*
2852 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2853 * and then start new I/O and then wait upon it. The caller must have a ref on
2854 * the buffer_head.
2855 */
2856int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2857{
2858 WARN_ON(atomic_read(&bh->b_count) < 1);
2859 lock_buffer(bh);
2860 if (test_clear_buffer_dirty(bh)) {
2861 /*
2862 * The bh should be mapped, but it might not be if the
2863 * device was hot-removed. Not much we can do but fail the I/O.
2864 */
2865 if (!buffer_mapped(bh)) {
2866 unlock_buffer(bh);
2867 return -EIO;
2868 }
2869
2870 get_bh(bh);
2871 bh->b_end_io = end_buffer_write_sync;
2872 submit_bh(REQ_OP_WRITE | op_flags, bh);
2873 wait_on_buffer(bh);
2874 if (!buffer_uptodate(bh))
2875 return -EIO;
2876 } else {
2877 unlock_buffer(bh);
2878 }
2879 return 0;
2880}
2881EXPORT_SYMBOL(__sync_dirty_buffer);
2882
2883int sync_dirty_buffer(struct buffer_head *bh)
2884{
2885 return __sync_dirty_buffer(bh, REQ_SYNC);
2886}
2887EXPORT_SYMBOL(sync_dirty_buffer);
2888
2889static inline int buffer_busy(struct buffer_head *bh)
2890{
2891 return atomic_read(&bh->b_count) |
2892 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2893}
2894
2895static bool
2896drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2897{
2898 struct buffer_head *head = folio_buffers(folio);
2899 struct buffer_head *bh;
2900
2901 bh = head;
2902 do {
2903 if (buffer_busy(bh))
2904 goto failed;
2905 bh = bh->b_this_page;
2906 } while (bh != head);
2907
2908 do {
2909 struct buffer_head *next = bh->b_this_page;
2910
2911 if (bh->b_assoc_map)
2912 __remove_assoc_queue(bh);
2913 bh = next;
2914 } while (bh != head);
2915 *buffers_to_free = head;
2916 folio_detach_private(folio);
2917 return true;
2918failed:
2919 return false;
2920}
2921
2922/**
2923 * try_to_free_buffers - Release buffers attached to this folio.
2924 * @folio: The folio.
2925 *
2926 * If any buffers are in use (dirty, under writeback, elevated refcount),
2927 * no buffers will be freed.
2928 *
2929 * If the folio is dirty but all the buffers are clean then we need to
2930 * be sure to mark the folio clean as well. This is because the folio
2931 * may be against a block device, and a later reattachment of buffers
2932 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2933 * filesystem data on the same device.
2934 *
2935 * The same applies to regular filesystem folios: if all the buffers are
2936 * clean then we set the folio clean and proceed. To do that, we require
2937 * total exclusion from block_dirty_folio(). That is obtained with
2938 * i_private_lock.
2939 *
2940 * Exclusion against try_to_free_buffers may be obtained by either
2941 * locking the folio or by holding its mapping's i_private_lock.
2942 *
2943 * Context: Process context. @folio must be locked. Will not sleep.
2944 * Return: true if all buffers attached to this folio were freed.
2945 */
2946bool try_to_free_buffers(struct folio *folio)
2947{
2948 struct address_space * const mapping = folio->mapping;
2949 struct buffer_head *buffers_to_free = NULL;
2950 bool ret = 0;
2951
2952 BUG_ON(!folio_test_locked(folio));
2953 if (folio_test_writeback(folio))
2954 return false;
2955
2956 if (mapping == NULL) { /* can this still happen? */
2957 ret = drop_buffers(folio, &buffers_to_free);
2958 goto out;
2959 }
2960
2961 spin_lock(&mapping->i_private_lock);
2962 ret = drop_buffers(folio, &buffers_to_free);
2963
2964 /*
2965 * If the filesystem writes its buffers by hand (eg ext3)
2966 * then we can have clean buffers against a dirty folio. We
2967 * clean the folio here; otherwise the VM will never notice
2968 * that the filesystem did any IO at all.
2969 *
2970 * Also, during truncate, discard_buffer will have marked all
2971 * the folio's buffers clean. We discover that here and clean
2972 * the folio also.
2973 *
2974 * i_private_lock must be held over this entire operation in order
2975 * to synchronise against block_dirty_folio and prevent the
2976 * dirty bit from being lost.
2977 */
2978 if (ret)
2979 folio_cancel_dirty(folio);
2980 spin_unlock(&mapping->i_private_lock);
2981out:
2982 if (buffers_to_free) {
2983 struct buffer_head *bh = buffers_to_free;
2984
2985 do {
2986 struct buffer_head *next = bh->b_this_page;
2987 free_buffer_head(bh);
2988 bh = next;
2989 } while (bh != buffers_to_free);
2990 }
2991 return ret;
2992}
2993EXPORT_SYMBOL(try_to_free_buffers);
2994
2995/*
2996 * Buffer-head allocation
2997 */
2998static struct kmem_cache *bh_cachep __ro_after_init;
2999
3000/*
3001 * Once the number of bh's in the machine exceeds this level, we start
3002 * stripping them in writeback.
3003 */
3004static unsigned long max_buffer_heads __ro_after_init;
3005
3006int buffer_heads_over_limit;
3007
3008struct bh_accounting {
3009 int nr; /* Number of live bh's */
3010 int ratelimit; /* Limit cacheline bouncing */
3011};
3012
3013static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3014
3015static void recalc_bh_state(void)
3016{
3017 int i;
3018 int tot = 0;
3019
3020 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3021 return;
3022 __this_cpu_write(bh_accounting.ratelimit, 0);
3023 for_each_online_cpu(i)
3024 tot += per_cpu(bh_accounting, i).nr;
3025 buffer_heads_over_limit = (tot > max_buffer_heads);
3026}
3027
3028struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3029{
3030 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3031 if (ret) {
3032 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3033 spin_lock_init(&ret->b_uptodate_lock);
3034 preempt_disable();
3035 __this_cpu_inc(bh_accounting.nr);
3036 recalc_bh_state();
3037 preempt_enable();
3038 }
3039 return ret;
3040}
3041EXPORT_SYMBOL(alloc_buffer_head);
3042
3043void free_buffer_head(struct buffer_head *bh)
3044{
3045 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3046 kmem_cache_free(bh_cachep, bh);
3047 preempt_disable();
3048 __this_cpu_dec(bh_accounting.nr);
3049 recalc_bh_state();
3050 preempt_enable();
3051}
3052EXPORT_SYMBOL(free_buffer_head);
3053
3054static int buffer_exit_cpu_dead(unsigned int cpu)
3055{
3056 int i;
3057 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3058
3059 for (i = 0; i < BH_LRU_SIZE; i++) {
3060 brelse(b->bhs[i]);
3061 b->bhs[i] = NULL;
3062 }
3063 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3064 per_cpu(bh_accounting, cpu).nr = 0;
3065 return 0;
3066}
3067
3068/**
3069 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3070 * @bh: struct buffer_head
3071 *
3072 * Return true if the buffer is up-to-date and false,
3073 * with the buffer locked, if not.
3074 */
3075int bh_uptodate_or_lock(struct buffer_head *bh)
3076{
3077 if (!buffer_uptodate(bh)) {
3078 lock_buffer(bh);
3079 if (!buffer_uptodate(bh))
3080 return 0;
3081 unlock_buffer(bh);
3082 }
3083 return 1;
3084}
3085EXPORT_SYMBOL(bh_uptodate_or_lock);
3086
3087/**
3088 * __bh_read - Submit read for a locked buffer
3089 * @bh: struct buffer_head
3090 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3091 * @wait: wait until reading finish
3092 *
3093 * Returns zero on success or don't wait, and -EIO on error.
3094 */
3095int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3096{
3097 int ret = 0;
3098
3099 BUG_ON(!buffer_locked(bh));
3100
3101 get_bh(bh);
3102 bh->b_end_io = end_buffer_read_sync;
3103 submit_bh(REQ_OP_READ | op_flags, bh);
3104 if (wait) {
3105 wait_on_buffer(bh);
3106 if (!buffer_uptodate(bh))
3107 ret = -EIO;
3108 }
3109 return ret;
3110}
3111EXPORT_SYMBOL(__bh_read);
3112
3113/**
3114 * __bh_read_batch - Submit read for a batch of unlocked buffers
3115 * @nr: entry number of the buffer batch
3116 * @bhs: a batch of struct buffer_head
3117 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3118 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3119 * buffer that cannot lock.
3120 *
3121 * Returns zero on success or don't wait, and -EIO on error.
3122 */
3123void __bh_read_batch(int nr, struct buffer_head *bhs[],
3124 blk_opf_t op_flags, bool force_lock)
3125{
3126 int i;
3127
3128 for (i = 0; i < nr; i++) {
3129 struct buffer_head *bh = bhs[i];
3130
3131 if (buffer_uptodate(bh))
3132 continue;
3133
3134 if (force_lock)
3135 lock_buffer(bh);
3136 else
3137 if (!trylock_buffer(bh))
3138 continue;
3139
3140 if (buffer_uptodate(bh)) {
3141 unlock_buffer(bh);
3142 continue;
3143 }
3144
3145 bh->b_end_io = end_buffer_read_sync;
3146 get_bh(bh);
3147 submit_bh(REQ_OP_READ | op_flags, bh);
3148 }
3149}
3150EXPORT_SYMBOL(__bh_read_batch);
3151
3152void __init buffer_init(void)
3153{
3154 unsigned long nrpages;
3155 int ret;
3156
3157 bh_cachep = KMEM_CACHE(buffer_head,
3158 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3159 /*
3160 * Limit the bh occupancy to 10% of ZONE_NORMAL
3161 */
3162 nrpages = (nr_free_buffer_pages() * 10) / 100;
3163 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3164 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3165 NULL, buffer_exit_cpu_dead);
3166 WARN_ON(ret < 0);
3167}