at v6.15-rc2 49 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * 4 * Copyright (c) 2011, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 12#ifndef _HYPERV_H 13#define _HYPERV_H 14 15#include <uapi/linux/hyperv.h> 16 17#include <linux/mm.h> 18#include <linux/types.h> 19#include <linux/scatterlist.h> 20#include <linux/list.h> 21#include <linux/timer.h> 22#include <linux/completion.h> 23#include <linux/device.h> 24#include <linux/mod_devicetable.h> 25#include <linux/interrupt.h> 26#include <linux/reciprocal_div.h> 27#include <hyperv/hvhdk.h> 28 29#define MAX_PAGE_BUFFER_COUNT 32 30#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 31 32#pragma pack(push, 1) 33 34/* 35 * Types for GPADL, decides is how GPADL header is created. 36 * 37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the 38 * same as HV_HYP_PAGE_SIZE. 39 * 40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers 41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put 42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each 43 * HV_HYP_PAGE will be different between different types of GPADL, for example 44 * if PAGE_SIZE is 64K: 45 * 46 * BUFFER: 47 * 48 * gva: |-- 64k --|-- 64k --| ... | 49 * gpa: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | 50 * index: 0 1 2 15 16 17 18 .. 31 32 ... 51 * | | ... | | | ... | ... 52 * v V V V V V 53 * gpadl: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... | 54 * index: 0 1 2 ... 15 16 17 18 .. 31 32 ... 55 * 56 * RING: 57 * 58 * | header | data | header | data | 59 * gva: |-- 64k --|-- 64k --| ... |-- 64k --|-- 64k --| ... | 60 * gpa: | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... | 61 * index: 0 1 16 17 18 31 ... n n+1 n+16 ... 2n 62 * | / / / | / / 63 * | / / / | / / 64 * | / / ... / ... | / ... / 65 * | / / / | / / 66 * | / / / | / / 67 * V V V V V V v 68 * gpadl: | 4k | 4k | ... | ... | 4k | 4k | ... | 69 * index: 0 1 2 ... 16 ... n-15 n-14 n-13 ... 2n-30 70 */ 71enum hv_gpadl_type { 72 HV_GPADL_BUFFER, 73 HV_GPADL_RING 74}; 75 76/* Single-page buffer */ 77struct hv_page_buffer { 78 u32 len; 79 u32 offset; 80 u64 pfn; 81}; 82 83/* Multiple-page buffer */ 84struct hv_multipage_buffer { 85 /* Length and Offset determines the # of pfns in the array */ 86 u32 len; 87 u32 offset; 88 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 89}; 90 91/* 92 * Multiple-page buffer array; the pfn array is variable size: 93 * The number of entries in the PFN array is determined by 94 * "len" and "offset". 95 */ 96struct hv_mpb_array { 97 /* Length and Offset determines the # of pfns in the array */ 98 u32 len; 99 u32 offset; 100 u64 pfn_array[]; 101}; 102 103/* 0x18 includes the proprietary packet header */ 104#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 105 (sizeof(struct hv_page_buffer) * \ 106 MAX_PAGE_BUFFER_COUNT)) 107#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 108 sizeof(struct hv_multipage_buffer)) 109 110 111#pragma pack(pop) 112 113struct hv_ring_buffer { 114 /* Offset in bytes from the start of ring data below */ 115 u32 write_index; 116 117 /* Offset in bytes from the start of ring data below */ 118 u32 read_index; 119 120 u32 interrupt_mask; 121 122 /* 123 * WS2012/Win8 and later versions of Hyper-V implement interrupt 124 * driven flow management. The feature bit feat_pending_send_sz 125 * is set by the host on the host->guest ring buffer, and by the 126 * guest on the guest->host ring buffer. 127 * 128 * The meaning of the feature bit is a bit complex in that it has 129 * semantics that apply to both ring buffers. If the guest sets 130 * the feature bit in the guest->host ring buffer, the guest is 131 * telling the host that: 132 * 1) It will set the pending_send_sz field in the guest->host ring 133 * buffer when it is waiting for space to become available, and 134 * 2) It will read the pending_send_sz field in the host->guest 135 * ring buffer and interrupt the host when it frees enough space 136 * 137 * Similarly, if the host sets the feature bit in the host->guest 138 * ring buffer, the host is telling the guest that: 139 * 1) It will set the pending_send_sz field in the host->guest ring 140 * buffer when it is waiting for space to become available, and 141 * 2) It will read the pending_send_sz field in the guest->host 142 * ring buffer and interrupt the guest when it frees enough space 143 * 144 * If either the guest or host does not set the feature bit that it 145 * owns, that guest or host must do polling if it encounters a full 146 * ring buffer, and not signal the other end with an interrupt. 147 */ 148 u32 pending_send_sz; 149 u32 reserved1[12]; 150 union { 151 struct { 152 u32 feat_pending_send_sz:1; 153 }; 154 u32 value; 155 } feature_bits; 156 157 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 158 u8 reserved2[PAGE_SIZE - 68]; 159 160 /* 161 * Ring data starts here + RingDataStartOffset 162 * !!! DO NOT place any fields below this !!! 163 */ 164 u8 buffer[]; 165} __packed; 166 167 168/* 169 * If the requested ring buffer size is at least 8 times the size of the 170 * header, steal space from the ring buffer for the header. Otherwise, add 171 * space for the header so that is doesn't take too much of the ring buffer 172 * space. 173 * 174 * The factor of 8 is somewhat arbitrary. The goal is to prevent adding a 175 * relatively small header (4 Kbytes on x86) to a large-ish power-of-2 ring 176 * buffer size (such as 128 Kbytes) and so end up making a nearly twice as 177 * large allocation that will be almost half wasted. As a contrasting example, 178 * on ARM64 with 64 Kbyte page size, we don't want to take 64 Kbytes for the 179 * header from a 128 Kbyte allocation, leaving only 64 Kbytes for the ring. 180 * In this latter case, we must add 64 Kbytes for the header and not worry 181 * about what's wasted. 182 */ 183#define VMBUS_HEADER_ADJ(payload_sz) \ 184 ((payload_sz) >= 8 * sizeof(struct hv_ring_buffer) ? \ 185 0 : sizeof(struct hv_ring_buffer)) 186 187/* Calculate the proper size of a ringbuffer, it must be page-aligned */ 188#define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(VMBUS_HEADER_ADJ(payload_sz) + \ 189 (payload_sz)) 190 191struct hv_ring_buffer_info { 192 struct hv_ring_buffer *ring_buffer; 193 u32 ring_size; /* Include the shared header */ 194 struct reciprocal_value ring_size_div10_reciprocal; 195 spinlock_t ring_lock; 196 197 u32 ring_datasize; /* < ring_size */ 198 u32 priv_read_index; 199 /* 200 * The ring buffer mutex lock. This lock prevents the ring buffer from 201 * being freed while the ring buffer is being accessed. 202 */ 203 struct mutex ring_buffer_mutex; 204 205 /* Buffer that holds a copy of an incoming host packet */ 206 void *pkt_buffer; 207 u32 pkt_buffer_size; 208}; 209 210 211static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 212{ 213 u32 read_loc, write_loc, dsize, read; 214 215 dsize = rbi->ring_datasize; 216 read_loc = rbi->ring_buffer->read_index; 217 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 218 219 read = write_loc >= read_loc ? (write_loc - read_loc) : 220 (dsize - read_loc) + write_loc; 221 222 return read; 223} 224 225static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 226{ 227 u32 read_loc, write_loc, dsize, write; 228 229 dsize = rbi->ring_datasize; 230 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 231 write_loc = rbi->ring_buffer->write_index; 232 233 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 234 read_loc - write_loc; 235 return write; 236} 237 238static inline u32 hv_get_avail_to_write_percent( 239 const struct hv_ring_buffer_info *rbi) 240{ 241 u32 avail_write = hv_get_bytes_to_write(rbi); 242 243 return reciprocal_divide( 244 (avail_write << 3) + (avail_write << 1), 245 rbi->ring_size_div10_reciprocal); 246} 247 248/* 249 * VMBUS version is 32 bit entity broken up into 250 * two 16 bit quantities: major_number. minor_number. 251 * 252 * 0 . 13 (Windows Server 2008) 253 * 1 . 1 (Windows 7, WS2008 R2) 254 * 2 . 4 (Windows 8, WS2012) 255 * 3 . 0 (Windows 8.1, WS2012 R2) 256 * 4 . 0 (Windows 10) 257 * 4 . 1 (Windows 10 RS3) 258 * 5 . 0 (Newer Windows 10) 259 * 5 . 1 (Windows 10 RS4) 260 * 5 . 2 (Windows Server 2019, RS5) 261 * 5 . 3 (Windows Server 2022) 262 * 263 * The WS2008 and WIN7 versions are listed here for 264 * completeness but are no longer supported in the 265 * Linux kernel. 266 */ 267 268#define VERSION_WS2008 ((0 << 16) | (13)) 269#define VERSION_WIN7 ((1 << 16) | (1)) 270#define VERSION_WIN8 ((2 << 16) | (4)) 271#define VERSION_WIN8_1 ((3 << 16) | (0)) 272#define VERSION_WIN10 ((4 << 16) | (0)) 273#define VERSION_WIN10_V4_1 ((4 << 16) | (1)) 274#define VERSION_WIN10_V5 ((5 << 16) | (0)) 275#define VERSION_WIN10_V5_1 ((5 << 16) | (1)) 276#define VERSION_WIN10_V5_2 ((5 << 16) | (2)) 277#define VERSION_WIN10_V5_3 ((5 << 16) | (3)) 278 279/* Make maximum size of pipe payload of 16K */ 280#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 281 282/* Define PipeMode values. */ 283#define VMBUS_PIPE_TYPE_BYTE 0x00000000 284#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 285 286/* The size of the user defined data buffer for non-pipe offers. */ 287#define MAX_USER_DEFINED_BYTES 120 288 289/* The size of the user defined data buffer for pipe offers. */ 290#define MAX_PIPE_USER_DEFINED_BYTES 116 291 292/* 293 * At the center of the Channel Management library is the Channel Offer. This 294 * struct contains the fundamental information about an offer. 295 */ 296struct vmbus_channel_offer { 297 guid_t if_type; 298 guid_t if_instance; 299 300 /* 301 * These two fields are not currently used. 302 */ 303 u64 reserved1; 304 u64 reserved2; 305 306 u16 chn_flags; 307 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 308 309 union { 310 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 311 struct { 312 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 313 } std; 314 315 /* 316 * Pipes: 317 * The following structure is an integrated pipe protocol, which 318 * is implemented on top of standard user-defined data. Pipe 319 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 320 * use. 321 */ 322 struct { 323 u32 pipe_mode; 324 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 325 } pipe; 326 } u; 327 /* 328 * The sub_channel_index is defined in Win8: a value of zero means a 329 * primary channel and a value of non-zero means a sub-channel. 330 * 331 * Before Win8, the field is reserved, meaning it's always zero. 332 */ 333 u16 sub_channel_index; 334 u16 reserved3; 335} __packed; 336 337/* Server Flags */ 338#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 339#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 340#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 341#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 342#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 343#define VMBUS_CHANNEL_PARENT_OFFER 0x200 344#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 345#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 346 347struct vmpacket_descriptor { 348 u16 type; 349 u16 offset8; 350 u16 len8; 351 u16 flags; 352 u64 trans_id; 353} __packed; 354 355struct vmpacket_header { 356 u32 prev_pkt_start_offset; 357 struct vmpacket_descriptor descriptor; 358} __packed; 359 360struct vmtransfer_page_range { 361 u32 byte_count; 362 u32 byte_offset; 363} __packed; 364 365struct vmtransfer_page_packet_header { 366 struct vmpacket_descriptor d; 367 u16 xfer_pageset_id; 368 u8 sender_owns_set; 369 u8 reserved; 370 u32 range_cnt; 371 struct vmtransfer_page_range ranges[]; 372} __packed; 373 374/* 375 * This structure defines a range in guest physical space that can be made to 376 * look virtually contiguous. 377 */ 378struct gpa_range { 379 u32 byte_count; 380 u32 byte_offset; 381 u64 pfn_array[]; 382}; 383 384/* 385 * This is the format for a GPA-Direct packet, which contains a set of GPA 386 * ranges, in addition to commands and/or data. 387 */ 388struct vmdata_gpa_direct { 389 struct vmpacket_descriptor d; 390 u32 reserved; 391 u32 range_cnt; 392 struct gpa_range range[1]; 393} __packed; 394 395#define VMPACKET_DATA_START_ADDRESS(__packet) \ 396 (void *)(((unsigned char *)__packet) + \ 397 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 398 399#define VMPACKET_DATA_LENGTH(__packet) \ 400 ((((struct vmpacket_descriptor)__packet)->len8 - \ 401 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 402 403#define VMPACKET_TRANSFER_MODE(__packet) \ 404 (((struct IMPACT)__packet)->type) 405 406enum vmbus_packet_type { 407 VM_PKT_INVALID = 0x0, 408 VM_PKT_SYNCH = 0x1, 409 VM_PKT_ADD_XFER_PAGESET = 0x2, 410 VM_PKT_RM_XFER_PAGESET = 0x3, 411 VM_PKT_ESTABLISH_GPADL = 0x4, 412 VM_PKT_TEARDOWN_GPADL = 0x5, 413 VM_PKT_DATA_INBAND = 0x6, 414 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 415 VM_PKT_DATA_USING_GPADL = 0x8, 416 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 417 VM_PKT_CANCEL_REQUEST = 0xa, 418 VM_PKT_COMP = 0xb, 419 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 420 VM_PKT_ADDITIONAL_DATA = 0xd 421}; 422 423#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 424 425 426/* Version 1 messages */ 427enum vmbus_channel_message_type { 428 CHANNELMSG_INVALID = 0, 429 CHANNELMSG_OFFERCHANNEL = 1, 430 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 431 CHANNELMSG_REQUESTOFFERS = 3, 432 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 433 CHANNELMSG_OPENCHANNEL = 5, 434 CHANNELMSG_OPENCHANNEL_RESULT = 6, 435 CHANNELMSG_CLOSECHANNEL = 7, 436 CHANNELMSG_GPADL_HEADER = 8, 437 CHANNELMSG_GPADL_BODY = 9, 438 CHANNELMSG_GPADL_CREATED = 10, 439 CHANNELMSG_GPADL_TEARDOWN = 11, 440 CHANNELMSG_GPADL_TORNDOWN = 12, 441 CHANNELMSG_RELID_RELEASED = 13, 442 CHANNELMSG_INITIATE_CONTACT = 14, 443 CHANNELMSG_VERSION_RESPONSE = 15, 444 CHANNELMSG_UNLOAD = 16, 445 CHANNELMSG_UNLOAD_RESPONSE = 17, 446 CHANNELMSG_18 = 18, 447 CHANNELMSG_19 = 19, 448 CHANNELMSG_20 = 20, 449 CHANNELMSG_TL_CONNECT_REQUEST = 21, 450 CHANNELMSG_MODIFYCHANNEL = 22, 451 CHANNELMSG_TL_CONNECT_RESULT = 23, 452 CHANNELMSG_MODIFYCHANNEL_RESPONSE = 24, 453 CHANNELMSG_COUNT 454}; 455 456/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */ 457#define INVALID_RELID U32_MAX 458 459struct vmbus_channel_message_header { 460 enum vmbus_channel_message_type msgtype; 461 u32 padding; 462} __packed; 463 464/* Query VMBus Version parameters */ 465struct vmbus_channel_query_vmbus_version { 466 struct vmbus_channel_message_header header; 467 u32 version; 468} __packed; 469 470/* VMBus Version Supported parameters */ 471struct vmbus_channel_version_supported { 472 struct vmbus_channel_message_header header; 473 u8 version_supported; 474} __packed; 475 476/* Offer Channel parameters */ 477struct vmbus_channel_offer_channel { 478 struct vmbus_channel_message_header header; 479 struct vmbus_channel_offer offer; 480 u32 child_relid; 481 u8 monitorid; 482 /* 483 * win7 and beyond splits this field into a bit field. 484 */ 485 u8 monitor_allocated:1; 486 u8 reserved:7; 487 /* 488 * These are new fields added in win7 and later. 489 * Do not access these fields without checking the 490 * negotiated protocol. 491 * 492 * If "is_dedicated_interrupt" is set, we must not set the 493 * associated bit in the channel bitmap while sending the 494 * interrupt to the host. 495 * 496 * connection_id is to be used in signaling the host. 497 */ 498 u16 is_dedicated_interrupt:1; 499 u16 reserved1:15; 500 u32 connection_id; 501} __packed; 502 503/* Rescind Offer parameters */ 504struct vmbus_channel_rescind_offer { 505 struct vmbus_channel_message_header header; 506 u32 child_relid; 507} __packed; 508 509/* 510 * Request Offer -- no parameters, SynIC message contains the partition ID 511 * Set Snoop -- no parameters, SynIC message contains the partition ID 512 * Clear Snoop -- no parameters, SynIC message contains the partition ID 513 * All Offers Delivered -- no parameters, SynIC message contains the partition 514 * ID 515 * Flush Client -- no parameters, SynIC message contains the partition ID 516 */ 517 518/* Open Channel parameters */ 519struct vmbus_channel_open_channel { 520 struct vmbus_channel_message_header header; 521 522 /* Identifies the specific VMBus channel that is being opened. */ 523 u32 child_relid; 524 525 /* ID making a particular open request at a channel offer unique. */ 526 u32 openid; 527 528 /* GPADL for the channel's ring buffer. */ 529 u32 ringbuffer_gpadlhandle; 530 531 /* 532 * Starting with win8, this field will be used to specify 533 * the target virtual processor on which to deliver the interrupt for 534 * the host to guest communication. 535 * Prior to win8, incoming channel interrupts would only 536 * be delivered on cpu 0. Setting this value to 0 would 537 * preserve the earlier behavior. 538 */ 539 u32 target_vp; 540 541 /* 542 * The upstream ring buffer begins at offset zero in the memory 543 * described by RingBufferGpadlHandle. The downstream ring buffer 544 * follows it at this offset (in pages). 545 */ 546 u32 downstream_ringbuffer_pageoffset; 547 548 /* User-specific data to be passed along to the server endpoint. */ 549 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 550} __packed; 551 552/* Open Channel Result parameters */ 553struct vmbus_channel_open_result { 554 struct vmbus_channel_message_header header; 555 u32 child_relid; 556 u32 openid; 557 u32 status; 558} __packed; 559 560/* Modify Channel Result parameters */ 561struct vmbus_channel_modifychannel_response { 562 struct vmbus_channel_message_header header; 563 u32 child_relid; 564 u32 status; 565} __packed; 566 567/* Close channel parameters; */ 568struct vmbus_channel_close_channel { 569 struct vmbus_channel_message_header header; 570 u32 child_relid; 571} __packed; 572 573/* Channel Message GPADL */ 574#define GPADL_TYPE_RING_BUFFER 1 575#define GPADL_TYPE_SERVER_SAVE_AREA 2 576#define GPADL_TYPE_TRANSACTION 8 577 578/* 579 * The number of PFNs in a GPADL message is defined by the number of 580 * pages that would be spanned by ByteCount and ByteOffset. If the 581 * implied number of PFNs won't fit in this packet, there will be a 582 * follow-up packet that contains more. 583 */ 584struct vmbus_channel_gpadl_header { 585 struct vmbus_channel_message_header header; 586 u32 child_relid; 587 u32 gpadl; 588 u16 range_buflen; 589 u16 rangecount; 590 struct gpa_range range[]; 591} __packed; 592 593/* This is the followup packet that contains more PFNs. */ 594struct vmbus_channel_gpadl_body { 595 struct vmbus_channel_message_header header; 596 u32 msgnumber; 597 u32 gpadl; 598 u64 pfn[]; 599} __packed; 600 601struct vmbus_channel_gpadl_created { 602 struct vmbus_channel_message_header header; 603 u32 child_relid; 604 u32 gpadl; 605 u32 creation_status; 606} __packed; 607 608struct vmbus_channel_gpadl_teardown { 609 struct vmbus_channel_message_header header; 610 u32 child_relid; 611 u32 gpadl; 612} __packed; 613 614struct vmbus_channel_gpadl_torndown { 615 struct vmbus_channel_message_header header; 616 u32 gpadl; 617} __packed; 618 619struct vmbus_channel_relid_released { 620 struct vmbus_channel_message_header header; 621 u32 child_relid; 622} __packed; 623 624struct vmbus_channel_initiate_contact { 625 struct vmbus_channel_message_header header; 626 u32 vmbus_version_requested; 627 u32 target_vcpu; /* The VCPU the host should respond to */ 628 union { 629 u64 interrupt_page; 630 struct { 631 u8 msg_sint; 632 u8 msg_vtl; 633 u8 reserved[6]; 634 }; 635 }; 636 u64 monitor_page1; 637 u64 monitor_page2; 638} __packed; 639 640/* Hyper-V socket: guest's connect()-ing to host */ 641struct vmbus_channel_tl_connect_request { 642 struct vmbus_channel_message_header header; 643 guid_t guest_endpoint_id; 644 guid_t host_service_id; 645} __packed; 646 647/* Modify Channel parameters, cf. vmbus_send_modifychannel() */ 648struct vmbus_channel_modifychannel { 649 struct vmbus_channel_message_header header; 650 u32 child_relid; 651 u32 target_vp; 652} __packed; 653 654struct vmbus_channel_version_response { 655 struct vmbus_channel_message_header header; 656 u8 version_supported; 657 658 u8 connection_state; 659 u16 padding; 660 661 /* 662 * On new hosts that support VMBus protocol 5.0, we must use 663 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, 664 * and for subsequent messages, we must use the Message Connection ID 665 * field in the host-returned Version Response Message. 666 * 667 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). 668 */ 669 u32 msg_conn_id; 670} __packed; 671 672enum vmbus_channel_state { 673 CHANNEL_OFFER_STATE, 674 CHANNEL_OPENING_STATE, 675 CHANNEL_OPEN_STATE, 676 CHANNEL_OPENED_STATE, 677}; 678 679/* 680 * Represents each channel msg on the vmbus connection This is a 681 * variable-size data structure depending on the msg type itself 682 */ 683struct vmbus_channel_msginfo { 684 /* Bookkeeping stuff */ 685 struct list_head msglistentry; 686 687 /* So far, this is only used to handle gpadl body message */ 688 struct list_head submsglist; 689 690 /* Synchronize the request/response if needed */ 691 struct completion waitevent; 692 struct vmbus_channel *waiting_channel; 693 union { 694 struct vmbus_channel_version_supported version_supported; 695 struct vmbus_channel_open_result open_result; 696 struct vmbus_channel_gpadl_torndown gpadl_torndown; 697 struct vmbus_channel_gpadl_created gpadl_created; 698 struct vmbus_channel_version_response version_response; 699 struct vmbus_channel_modifychannel_response modify_response; 700 } response; 701 702 u32 msgsize; 703 /* 704 * The channel message that goes out on the "wire". 705 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 706 */ 707 unsigned char msg[]; 708}; 709 710struct vmbus_close_msg { 711 struct vmbus_channel_msginfo info; 712 struct vmbus_channel_close_channel msg; 713}; 714 715enum vmbus_device_type { 716 HV_IDE = 0, 717 HV_SCSI, 718 HV_FC, 719 HV_NIC, 720 HV_ND, 721 HV_PCIE, 722 HV_FB, 723 HV_KBD, 724 HV_MOUSE, 725 HV_KVP, 726 HV_TS, 727 HV_HB, 728 HV_SHUTDOWN, 729 HV_FCOPY, 730 HV_BACKUP, 731 HV_DM, 732 HV_UNKNOWN, 733}; 734 735/* 736 * Provides request ids for VMBus. Encapsulates guest memory 737 * addresses and stores the next available slot in req_arr 738 * to generate new ids in constant time. 739 */ 740struct vmbus_requestor { 741 u64 *req_arr; 742 unsigned long *req_bitmap; /* is a given slot available? */ 743 u32 size; 744 u64 next_request_id; 745 spinlock_t req_lock; /* provides atomicity */ 746}; 747 748#define VMBUS_NO_RQSTOR U64_MAX 749#define VMBUS_RQST_ERROR (U64_MAX - 1) 750#define VMBUS_RQST_ADDR_ANY U64_MAX 751/* NetVSC-specific */ 752#define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2) 753/* StorVSC-specific */ 754#define VMBUS_RQST_INIT (U64_MAX - 2) 755#define VMBUS_RQST_RESET (U64_MAX - 3) 756 757struct vmbus_device { 758 /* preferred ring buffer size in KB, 0 means no preferred size for this device */ 759 size_t pref_ring_size; 760 u16 dev_type; 761 guid_t guid; 762 bool perf_device; 763 bool allowed_in_isolated; 764}; 765 766#define VMBUS_DEFAULT_MAX_PKT_SIZE 4096 767 768struct vmbus_gpadl { 769 u32 gpadl_handle; 770 u32 size; 771 void *buffer; 772 bool decrypted; 773}; 774 775struct vmbus_channel { 776 struct list_head listentry; 777 778 struct hv_device *device_obj; 779 780 enum vmbus_channel_state state; 781 782 struct vmbus_channel_offer_channel offermsg; 783 /* 784 * These are based on the OfferMsg.MonitorId. 785 * Save it here for easy access. 786 */ 787 u8 monitor_grp; 788 u8 monitor_bit; 789 790 bool rescind; /* got rescind msg */ 791 bool rescind_ref; /* got rescind msg, got channel reference */ 792 struct completion rescind_event; 793 794 struct vmbus_gpadl ringbuffer_gpadlhandle; 795 796 /* Allocated memory for ring buffer */ 797 struct page *ringbuffer_page; 798 u32 ringbuffer_pagecount; 799 u32 ringbuffer_send_offset; 800 struct hv_ring_buffer_info outbound; /* send to parent */ 801 struct hv_ring_buffer_info inbound; /* receive from parent */ 802 803 struct vmbus_close_msg close_msg; 804 805 /* Statistics */ 806 u64 interrupts; /* Host to Guest interrupts */ 807 u64 sig_events; /* Guest to Host events */ 808 809 /* 810 * Guest to host interrupts caused by the outbound ring buffer changing 811 * from empty to not empty. 812 */ 813 u64 intr_out_empty; 814 815 /* 816 * Indicates that a full outbound ring buffer was encountered. The flag 817 * is set to true when a full outbound ring buffer is encountered and 818 * set to false when a write to the outbound ring buffer is completed. 819 */ 820 bool out_full_flag; 821 822 /* Channel callback's invoked in softirq context */ 823 struct tasklet_struct callback_event; 824 void (*onchannel_callback)(void *context); 825 void *channel_callback_context; 826 827 void (*change_target_cpu_callback)(struct vmbus_channel *channel, 828 u32 old, u32 new); 829 830 /* 831 * Synchronize channel scheduling and channel removal; see the inline 832 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb(). 833 */ 834 spinlock_t sched_lock; 835 836 /* 837 * A channel can be marked for one of three modes of reading: 838 * BATCHED - callback called from taslket and should read 839 * channel until empty. Interrupts from the host 840 * are masked while read is in process (default). 841 * DIRECT - callback called from tasklet (softirq). 842 * ISR - callback called in interrupt context and must 843 * invoke its own deferred processing. 844 * Host interrupts are disabled and must be re-enabled 845 * when ring is empty. 846 */ 847 enum hv_callback_mode { 848 HV_CALL_BATCHED, 849 HV_CALL_DIRECT, 850 HV_CALL_ISR 851 } callback_mode; 852 853 bool is_dedicated_interrupt; 854 u64 sig_event; 855 856 /* 857 * Starting with win8, this field will be used to specify the 858 * target CPU on which to deliver the interrupt for the host 859 * to guest communication. 860 * 861 * Prior to win8, incoming channel interrupts would only be 862 * delivered on CPU 0. Setting this value to 0 would preserve 863 * the earlier behavior. 864 */ 865 u32 target_cpu; 866 /* 867 * Support for sub-channels. For high performance devices, 868 * it will be useful to have multiple sub-channels to support 869 * a scalable communication infrastructure with the host. 870 * The support for sub-channels is implemented as an extension 871 * to the current infrastructure. 872 * The initial offer is considered the primary channel and this 873 * offer message will indicate if the host supports sub-channels. 874 * The guest is free to ask for sub-channels to be offered and can 875 * open these sub-channels as a normal "primary" channel. However, 876 * all sub-channels will have the same type and instance guids as the 877 * primary channel. Requests sent on a given channel will result in a 878 * response on the same channel. 879 */ 880 881 /* 882 * Sub-channel creation callback. This callback will be called in 883 * process context when a sub-channel offer is received from the host. 884 * The guest can open the sub-channel in the context of this callback. 885 */ 886 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 887 888 /* 889 * Channel rescind callback. Some channels (the hvsock ones), need to 890 * register a callback which is invoked in vmbus_onoffer_rescind(). 891 */ 892 void (*chn_rescind_callback)(struct vmbus_channel *channel); 893 894 /* 895 * All Sub-channels of a primary channel are linked here. 896 */ 897 struct list_head sc_list; 898 /* 899 * The primary channel this sub-channel belongs to. 900 * This will be NULL for the primary channel. 901 */ 902 struct vmbus_channel *primary_channel; 903 /* 904 * Support per-channel state for use by vmbus drivers. 905 */ 906 void *per_channel_state; 907 908 /* 909 * Defer freeing channel until after all cpu's have 910 * gone through grace period. 911 */ 912 struct rcu_head rcu; 913 914 /* 915 * For sysfs per-channel properties. 916 */ 917 struct kobject kobj; 918 919 /* 920 * For performance critical channels (storage, networking 921 * etc,), Hyper-V has a mechanism to enhance the throughput 922 * at the expense of latency: 923 * When the host is to be signaled, we just set a bit in a shared page 924 * and this bit will be inspected by the hypervisor within a certain 925 * window and if the bit is set, the host will be signaled. The window 926 * of time is the monitor latency - currently around 100 usecs. This 927 * mechanism improves throughput by: 928 * 929 * A) Making the host more efficient - each time it wakes up, 930 * potentially it will process more number of packets. The 931 * monitor latency allows a batch to build up. 932 * B) By deferring the hypercall to signal, we will also minimize 933 * the interrupts. 934 * 935 * Clearly, these optimizations improve throughput at the expense of 936 * latency. Furthermore, since the channel is shared for both 937 * control and data messages, control messages currently suffer 938 * unnecessary latency adversely impacting performance and boot 939 * time. To fix this issue, permit tagging the channel as being 940 * in "low latency" mode. In this mode, we will bypass the monitor 941 * mechanism. 942 */ 943 bool low_latency; 944 945 bool probe_done; 946 947 /* 948 * Cache the device ID here for easy access; this is useful, in 949 * particular, in situations where the channel's device_obj has 950 * not been allocated/initialized yet. 951 */ 952 u16 device_id; 953 954 /* 955 * We must offload the handling of the primary/sub channels 956 * from the single-threaded vmbus_connection.work_queue to 957 * two different workqueue, otherwise we can block 958 * vmbus_connection.work_queue and hang: see vmbus_process_offer(). 959 */ 960 struct work_struct add_channel_work; 961 962 /* 963 * Guest to host interrupts caused by the inbound ring buffer changing 964 * from full to not full while a packet is waiting. 965 */ 966 u64 intr_in_full; 967 968 /* 969 * The total number of write operations that encountered a full 970 * outbound ring buffer. 971 */ 972 u64 out_full_total; 973 974 /* 975 * The number of write operations that were the first to encounter a 976 * full outbound ring buffer. 977 */ 978 u64 out_full_first; 979 980 /* enabling/disabling fuzz testing on the channel (default is false)*/ 981 bool fuzz_testing_state; 982 983 /* 984 * Interrupt delay will delay the guest from emptying the ring buffer 985 * for a specific amount of time. The delay is in microseconds and will 986 * be between 1 to a maximum of 1000, its default is 0 (no delay). 987 * The Message delay will delay guest reading on a per message basis 988 * in microseconds between 1 to 1000 with the default being 0 989 * (no delay). 990 */ 991 u32 fuzz_testing_interrupt_delay; 992 u32 fuzz_testing_message_delay; 993 994 /* callback to generate a request ID from a request address */ 995 u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr); 996 /* callback to retrieve a request address from a request ID */ 997 u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id); 998 999 /* request/transaction ids for VMBus */ 1000 struct vmbus_requestor requestor; 1001 u32 rqstor_size; 1002 1003 /* The max size of a packet on this channel */ 1004 u32 max_pkt_size; 1005}; 1006 1007#define lock_requestor(channel, flags) \ 1008do { \ 1009 struct vmbus_requestor *rqstor = &(channel)->requestor; \ 1010 \ 1011 spin_lock_irqsave(&rqstor->req_lock, flags); \ 1012} while (0) 1013 1014static __always_inline void unlock_requestor(struct vmbus_channel *channel, 1015 unsigned long flags) 1016{ 1017 struct vmbus_requestor *rqstor = &channel->requestor; 1018 1019 spin_unlock_irqrestore(&rqstor->req_lock, flags); 1020} 1021 1022u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr); 1023u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1024 u64 rqst_addr); 1025u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1026 u64 rqst_addr); 1027u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id); 1028 1029static inline bool is_hvsock_offer(const struct vmbus_channel_offer_channel *o) 1030{ 1031 return !!(o->offer.chn_flags & VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 1032} 1033 1034static inline bool is_hvsock_channel(const struct vmbus_channel *c) 1035{ 1036 return is_hvsock_offer(&c->offermsg); 1037} 1038 1039static inline bool is_sub_channel(const struct vmbus_channel *c) 1040{ 1041 return c->offermsg.offer.sub_channel_index != 0; 1042} 1043 1044static inline void set_channel_read_mode(struct vmbus_channel *c, 1045 enum hv_callback_mode mode) 1046{ 1047 c->callback_mode = mode; 1048} 1049 1050static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 1051{ 1052 c->per_channel_state = s; 1053} 1054 1055static inline void *get_per_channel_state(struct vmbus_channel *c) 1056{ 1057 return c->per_channel_state; 1058} 1059 1060static inline void set_channel_pending_send_size(struct vmbus_channel *c, 1061 u32 size) 1062{ 1063 unsigned long flags; 1064 1065 if (size) { 1066 spin_lock_irqsave(&c->outbound.ring_lock, flags); 1067 ++c->out_full_total; 1068 1069 if (!c->out_full_flag) { 1070 ++c->out_full_first; 1071 c->out_full_flag = true; 1072 } 1073 spin_unlock_irqrestore(&c->outbound.ring_lock, flags); 1074 } else { 1075 c->out_full_flag = false; 1076 } 1077 1078 c->outbound.ring_buffer->pending_send_sz = size; 1079} 1080 1081void vmbus_onmessage(struct vmbus_channel_message_header *hdr); 1082 1083int vmbus_request_offers(void); 1084 1085/* 1086 * APIs for managing sub-channels. 1087 */ 1088 1089void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1090 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1091 1092void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1093 void (*chn_rescind_cb)(struct vmbus_channel *)); 1094 1095/* The format must be the same as struct vmdata_gpa_direct */ 1096struct vmbus_channel_packet_page_buffer { 1097 u16 type; 1098 u16 dataoffset8; 1099 u16 length8; 1100 u16 flags; 1101 u64 transactionid; 1102 u32 reserved; 1103 u32 rangecount; 1104 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1105} __packed; 1106 1107/* The format must be the same as struct vmdata_gpa_direct */ 1108struct vmbus_channel_packet_multipage_buffer { 1109 u16 type; 1110 u16 dataoffset8; 1111 u16 length8; 1112 u16 flags; 1113 u64 transactionid; 1114 u32 reserved; 1115 u32 rangecount; /* Always 1 in this case */ 1116 struct hv_multipage_buffer range; 1117} __packed; 1118 1119/* The format must be the same as struct vmdata_gpa_direct */ 1120struct vmbus_packet_mpb_array { 1121 u16 type; 1122 u16 dataoffset8; 1123 u16 length8; 1124 u16 flags; 1125 u64 transactionid; 1126 u32 reserved; 1127 u32 rangecount; /* Always 1 in this case */ 1128 struct hv_mpb_array range; 1129} __packed; 1130 1131int vmbus_alloc_ring(struct vmbus_channel *channel, 1132 u32 send_size, u32 recv_size); 1133void vmbus_free_ring(struct vmbus_channel *channel); 1134 1135int vmbus_connect_ring(struct vmbus_channel *channel, 1136 void (*onchannel_callback)(void *context), 1137 void *context); 1138int vmbus_disconnect_ring(struct vmbus_channel *channel); 1139 1140extern int vmbus_open(struct vmbus_channel *channel, 1141 u32 send_ringbuffersize, 1142 u32 recv_ringbuffersize, 1143 void *userdata, 1144 u32 userdatalen, 1145 void (*onchannel_callback)(void *context), 1146 void *context); 1147 1148extern void vmbus_close(struct vmbus_channel *channel); 1149 1150extern int vmbus_sendpacket_getid(struct vmbus_channel *channel, 1151 void *buffer, 1152 u32 bufferLen, 1153 u64 requestid, 1154 u64 *trans_id, 1155 enum vmbus_packet_type type, 1156 u32 flags); 1157extern int vmbus_sendpacket(struct vmbus_channel *channel, 1158 void *buffer, 1159 u32 bufferLen, 1160 u64 requestid, 1161 enum vmbus_packet_type type, 1162 u32 flags); 1163 1164extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1165 struct hv_page_buffer pagebuffers[], 1166 u32 pagecount, 1167 void *buffer, 1168 u32 bufferlen, 1169 u64 requestid); 1170 1171extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1172 struct vmbus_packet_mpb_array *mpb, 1173 u32 desc_size, 1174 void *buffer, 1175 u32 bufferlen, 1176 u64 requestid); 1177 1178extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1179 void *kbuffer, 1180 u32 size, 1181 struct vmbus_gpadl *gpadl); 1182 1183extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1184 struct vmbus_gpadl *gpadl); 1185 1186void vmbus_reset_channel_cb(struct vmbus_channel *channel); 1187 1188extern int vmbus_recvpacket(struct vmbus_channel *channel, 1189 void *buffer, 1190 u32 bufferlen, 1191 u32 *buffer_actual_len, 1192 u64 *requestid); 1193 1194extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1195 void *buffer, 1196 u32 bufferlen, 1197 u32 *buffer_actual_len, 1198 u64 *requestid); 1199 1200/* Base driver object */ 1201struct hv_driver { 1202 const char *name; 1203 1204 /* 1205 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1206 * channel flag, actually doesn't mean a synthetic device because the 1207 * offer's if_type/if_instance can change for every new hvsock 1208 * connection. 1209 * 1210 * However, to facilitate the notification of new-offer/rescind-offer 1211 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1212 * a special vmbus device, and hence we need the below flag to 1213 * indicate if the driver is the hvsock driver or not: we need to 1214 * specially treat the hvosck offer & driver in vmbus_match(). 1215 */ 1216 bool hvsock; 1217 1218 /* the device type supported by this driver */ 1219 guid_t dev_type; 1220 const struct hv_vmbus_device_id *id_table; 1221 1222 struct device_driver driver; 1223 1224 /* dynamic device GUID's */ 1225 struct { 1226 spinlock_t lock; 1227 struct list_head list; 1228 } dynids; 1229 1230 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1231 void (*remove)(struct hv_device *dev); 1232 void (*shutdown)(struct hv_device *); 1233 1234 int (*suspend)(struct hv_device *); 1235 int (*resume)(struct hv_device *); 1236 1237}; 1238 1239/* Base device object */ 1240struct hv_device { 1241 /* the device type id of this device */ 1242 guid_t dev_type; 1243 1244 /* the device instance id of this device */ 1245 guid_t dev_instance; 1246 u16 vendor_id; 1247 u16 device_id; 1248 1249 struct device device; 1250 /* 1251 * Driver name to force a match. Do not set directly, because core 1252 * frees it. Use driver_set_override() to set or clear it. 1253 */ 1254 const char *driver_override; 1255 1256 struct vmbus_channel *channel; 1257 struct kset *channels_kset; 1258 struct device_dma_parameters dma_parms; 1259 u64 dma_mask; 1260 1261 /* place holder to keep track of the dir for hv device in debugfs */ 1262 struct dentry *debug_dir; 1263 1264}; 1265 1266 1267#define device_to_hv_device(d) container_of_const(d, struct hv_device, device) 1268#define drv_to_hv_drv(d) container_of_const(d, struct hv_driver, driver) 1269 1270static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1271{ 1272 dev_set_drvdata(&dev->device, data); 1273} 1274 1275static inline void *hv_get_drvdata(struct hv_device *dev) 1276{ 1277 return dev_get_drvdata(&dev->device); 1278} 1279 1280struct hv_ring_buffer_debug_info { 1281 u32 current_interrupt_mask; 1282 u32 current_read_index; 1283 u32 current_write_index; 1284 u32 bytes_avail_toread; 1285 u32 bytes_avail_towrite; 1286}; 1287 1288 1289int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 1290 struct hv_ring_buffer_debug_info *debug_info); 1291 1292bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel); 1293 1294/* Vmbus interface */ 1295#define vmbus_driver_register(driver) \ 1296 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1297int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1298 struct module *owner, 1299 const char *mod_name); 1300void vmbus_driver_unregister(struct hv_driver *hv_driver); 1301 1302void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1303 1304int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1305 resource_size_t min, resource_size_t max, 1306 resource_size_t size, resource_size_t align, 1307 bool fb_overlap_ok); 1308void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1309 1310/* 1311 * GUID definitions of various offer types - services offered to the guest. 1312 */ 1313 1314/* 1315 * Network GUID 1316 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1317 */ 1318#define HV_NIC_GUID \ 1319 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1320 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1321 1322/* 1323 * IDE GUID 1324 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1325 */ 1326#define HV_IDE_GUID \ 1327 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1328 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1329 1330/* 1331 * SCSI GUID 1332 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1333 */ 1334#define HV_SCSI_GUID \ 1335 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1336 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1337 1338/* 1339 * Shutdown GUID 1340 * {0e0b6031-5213-4934-818b-38d90ced39db} 1341 */ 1342#define HV_SHUTDOWN_GUID \ 1343 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1344 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1345 1346/* 1347 * Time Synch GUID 1348 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1349 */ 1350#define HV_TS_GUID \ 1351 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1352 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1353 1354/* 1355 * Heartbeat GUID 1356 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1357 */ 1358#define HV_HEART_BEAT_GUID \ 1359 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1360 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1361 1362/* 1363 * KVP GUID 1364 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1365 */ 1366#define HV_KVP_GUID \ 1367 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1368 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1369 1370/* 1371 * Dynamic memory GUID 1372 * {525074dc-8985-46e2-8057-a307dc18a502} 1373 */ 1374#define HV_DM_GUID \ 1375 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1376 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1377 1378/* 1379 * Mouse GUID 1380 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1381 */ 1382#define HV_MOUSE_GUID \ 1383 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1384 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1385 1386/* 1387 * Keyboard GUID 1388 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1389 */ 1390#define HV_KBD_GUID \ 1391 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1392 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1393 1394/* 1395 * VSS (Backup/Restore) GUID 1396 */ 1397#define HV_VSS_GUID \ 1398 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1399 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1400/* 1401 * Synthetic Video GUID 1402 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1403 */ 1404#define HV_SYNTHVID_GUID \ 1405 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1406 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1407 1408/* 1409 * Synthetic FC GUID 1410 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1411 */ 1412#define HV_SYNTHFC_GUID \ 1413 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1414 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1415 1416/* 1417 * Guest File Copy Service 1418 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1419 */ 1420 1421#define HV_FCOPY_GUID \ 1422 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1423 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1424 1425/* 1426 * NetworkDirect. This is the guest RDMA service. 1427 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1428 */ 1429#define HV_ND_GUID \ 1430 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1431 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1432 1433/* 1434 * PCI Express Pass Through 1435 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1436 */ 1437 1438#define HV_PCIE_GUID \ 1439 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1440 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1441 1442/* 1443 * Linux doesn't support these 4 devices: the first two are for 1444 * Automatic Virtual Machine Activation, the third is for 1445 * Remote Desktop Virtualization, and the fourth is Initial 1446 * Machine Configuration (IMC) used only by Windows guests. 1447 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1448 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1449 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1450 * {c376c1c3-d276-48d2-90a9-c04748072c60} 1451 */ 1452 1453#define HV_AVMA1_GUID \ 1454 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1455 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1456 1457#define HV_AVMA2_GUID \ 1458 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1459 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1460 1461#define HV_RDV_GUID \ 1462 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1463 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1464 1465#define HV_IMC_GUID \ 1466 .guid = GUID_INIT(0xc376c1c3, 0xd276, 0x48d2, 0x90, 0xa9, \ 1467 0xc0, 0x47, 0x48, 0x07, 0x2c, 0x60) 1468 1469/* 1470 * Common header for Hyper-V ICs 1471 */ 1472 1473#define ICMSGTYPE_NEGOTIATE 0 1474#define ICMSGTYPE_HEARTBEAT 1 1475#define ICMSGTYPE_KVPEXCHANGE 2 1476#define ICMSGTYPE_SHUTDOWN 3 1477#define ICMSGTYPE_TIMESYNC 4 1478#define ICMSGTYPE_VSS 5 1479#define ICMSGTYPE_FCOPY 7 1480 1481#define ICMSGHDRFLAG_TRANSACTION 1 1482#define ICMSGHDRFLAG_REQUEST 2 1483#define ICMSGHDRFLAG_RESPONSE 4 1484 1485 1486/* 1487 * While we want to handle util services as regular devices, 1488 * there is only one instance of each of these services; so 1489 * we statically allocate the service specific state. 1490 */ 1491 1492struct hv_util_service { 1493 u8 *recv_buffer; 1494 void *channel; 1495 void (*util_cb)(void *); 1496 int (*util_init)(struct hv_util_service *); 1497 int (*util_init_transport)(void); 1498 void (*util_deinit)(void); 1499 int (*util_pre_suspend)(void); 1500 int (*util_pre_resume)(void); 1501}; 1502 1503struct vmbuspipe_hdr { 1504 u32 flags; 1505 u32 msgsize; 1506} __packed; 1507 1508struct ic_version { 1509 u16 major; 1510 u16 minor; 1511} __packed; 1512 1513struct icmsg_hdr { 1514 struct ic_version icverframe; 1515 u16 icmsgtype; 1516 struct ic_version icvermsg; 1517 u16 icmsgsize; 1518 u32 status; 1519 u8 ictransaction_id; 1520 u8 icflags; 1521 u8 reserved[2]; 1522} __packed; 1523 1524#define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100 1525#define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr)) 1526#define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \ 1527 (ICMSG_HDR + sizeof(struct icmsg_negotiate) + \ 1528 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version))) 1529 1530struct icmsg_negotiate { 1531 u16 icframe_vercnt; 1532 u16 icmsg_vercnt; 1533 u32 reserved; 1534 struct ic_version icversion_data[]; /* any size array */ 1535} __packed; 1536 1537struct shutdown_msg_data { 1538 u32 reason_code; 1539 u32 timeout_seconds; 1540 u32 flags; 1541 u8 display_message[2048]; 1542} __packed; 1543 1544struct heartbeat_msg_data { 1545 u64 seq_num; 1546 u32 reserved[8]; 1547} __packed; 1548 1549/* Time Sync IC defs */ 1550#define ICTIMESYNCFLAG_PROBE 0 1551#define ICTIMESYNCFLAG_SYNC 1 1552#define ICTIMESYNCFLAG_SAMPLE 2 1553 1554#ifdef __x86_64__ 1555#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1556#else 1557#define WLTIMEDELTA 116444736000000000LL 1558#endif 1559 1560struct ictimesync_data { 1561 u64 parenttime; 1562 u64 childtime; 1563 u64 roundtriptime; 1564 u8 flags; 1565} __packed; 1566 1567struct ictimesync_ref_data { 1568 u64 parenttime; 1569 u64 vmreferencetime; 1570 u8 flags; 1571 char leapflags; 1572 char stratum; 1573 u8 reserved[3]; 1574} __packed; 1575 1576struct hyperv_service_callback { 1577 u8 msg_type; 1578 char *log_msg; 1579 guid_t data; 1580 struct vmbus_channel *channel; 1581 void (*callback)(void *context); 1582}; 1583 1584struct hv_dma_range { 1585 dma_addr_t dma; 1586 u32 mapping_size; 1587}; 1588 1589#define MAX_SRV_VER 0x7ffffff 1590extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen, 1591 const int *fw_version, int fw_vercnt, 1592 const int *srv_version, int srv_vercnt, 1593 int *nego_fw_version, int *nego_srv_version); 1594 1595void hv_process_channel_removal(struct vmbus_channel *channel); 1596 1597void vmbus_setevent(struct vmbus_channel *channel); 1598/* 1599 * Negotiated version with the Host. 1600 */ 1601 1602extern __u32 vmbus_proto_version; 1603 1604int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id, 1605 const guid_t *shv_host_servie_id); 1606int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp); 1607void vmbus_set_event(struct vmbus_channel *channel); 1608int vmbus_channel_set_cpu(struct vmbus_channel *channel, u32 target_cpu); 1609 1610/* Get the start of the ring buffer. */ 1611static inline void * 1612hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1613{ 1614 return ring_info->ring_buffer->buffer; 1615} 1616 1617/* 1618 * Mask off host interrupt callback notifications 1619 */ 1620static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1621{ 1622 rbi->ring_buffer->interrupt_mask = 1; 1623 1624 /* make sure mask update is not reordered */ 1625 virt_mb(); 1626} 1627 1628/* 1629 * Re-enable host callback and return number of outstanding bytes 1630 */ 1631static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1632{ 1633 1634 rbi->ring_buffer->interrupt_mask = 0; 1635 1636 /* make sure mask update is not reordered */ 1637 virt_mb(); 1638 1639 /* 1640 * Now check to see if the ring buffer is still empty. 1641 * If it is not, we raced and we need to process new 1642 * incoming messages. 1643 */ 1644 return hv_get_bytes_to_read(rbi); 1645} 1646 1647/* 1648 * An API to support in-place processing of incoming VMBUS packets. 1649 */ 1650 1651/* Get data payload associated with descriptor */ 1652static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1653{ 1654 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1655} 1656 1657/* Get data size associated with descriptor */ 1658static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1659{ 1660 return (desc->len8 << 3) - (desc->offset8 << 3); 1661} 1662 1663/* Get packet length associated with descriptor */ 1664static inline u32 hv_pkt_len(const struct vmpacket_descriptor *desc) 1665{ 1666 return desc->len8 << 3; 1667} 1668 1669struct vmpacket_descriptor * 1670hv_pkt_iter_first(struct vmbus_channel *channel); 1671 1672struct vmpacket_descriptor * 1673__hv_pkt_iter_next(struct vmbus_channel *channel, 1674 const struct vmpacket_descriptor *pkt); 1675 1676void hv_pkt_iter_close(struct vmbus_channel *channel); 1677 1678static inline struct vmpacket_descriptor * 1679hv_pkt_iter_next(struct vmbus_channel *channel, 1680 const struct vmpacket_descriptor *pkt) 1681{ 1682 struct vmpacket_descriptor *nxt; 1683 1684 nxt = __hv_pkt_iter_next(channel, pkt); 1685 if (!nxt) 1686 hv_pkt_iter_close(channel); 1687 1688 return nxt; 1689} 1690 1691#define foreach_vmbus_pkt(pkt, channel) \ 1692 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1693 pkt = hv_pkt_iter_next(channel, pkt)) 1694 1695/* 1696 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver 1697 * sends requests to read and write blocks. Each block must be 128 bytes or 1698 * smaller. Optionally, the VF driver can register a callback function which 1699 * will be invoked when the host says that one or more of the first 64 block 1700 * IDs is "invalid" which means that the VF driver should reread them. 1701 */ 1702#define HV_CONFIG_BLOCK_SIZE_MAX 128 1703 1704int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len, 1705 unsigned int block_id, unsigned int *bytes_returned); 1706int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len, 1707 unsigned int block_id); 1708int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context, 1709 void (*block_invalidate)(void *context, 1710 u64 block_mask)); 1711 1712struct hyperv_pci_block_ops { 1713 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len, 1714 unsigned int block_id, unsigned int *bytes_returned); 1715 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len, 1716 unsigned int block_id); 1717 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context, 1718 void (*block_invalidate)(void *context, 1719 u64 block_mask)); 1720}; 1721 1722extern struct hyperv_pci_block_ops hvpci_block_ops; 1723 1724static inline unsigned long virt_to_hvpfn(void *addr) 1725{ 1726 phys_addr_t paddr; 1727 1728 if (is_vmalloc_addr(addr)) 1729 paddr = page_to_phys(vmalloc_to_page(addr)) + 1730 offset_in_page(addr); 1731 else 1732 paddr = __pa(addr); 1733 1734 return paddr >> HV_HYP_PAGE_SHIFT; 1735} 1736 1737#define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE) 1738#define offset_in_hvpage(ptr) ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK) 1739#define HVPFN_UP(x) (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT) 1740#define HVPFN_DOWN(x) ((x) >> HV_HYP_PAGE_SHIFT) 1741#define page_to_hvpfn(page) (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE) 1742 1743#endif /* _HYPERV_H */