Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/user_namespace.h>
16#include <linux/namei.h>
17#include <linux/security.h>
18#include <linux/cred.h>
19#include <linux/idr.h>
20#include <linux/init.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/file.h>
24#include <linux/uaccess.h>
25#include <linux/proc_ns.h>
26#include <linux/magic.h>
27#include <linux/memblock.h>
28#include <linux/proc_fs.h>
29#include <linux/task_work.h>
30#include <linux/sched/task.h>
31#include <uapi/linux/mount.h>
32#include <linux/fs_context.h>
33#include <linux/shmem_fs.h>
34#include <linux/mnt_idmapping.h>
35#include <linux/pidfs.h>
36
37#include "pnode.h"
38#include "internal.h"
39
40/* Maximum number of mounts in a mount namespace */
41static unsigned int sysctl_mount_max __read_mostly = 100000;
42
43static unsigned int m_hash_mask __ro_after_init;
44static unsigned int m_hash_shift __ro_after_init;
45static unsigned int mp_hash_mask __ro_after_init;
46static unsigned int mp_hash_shift __ro_after_init;
47
48static __initdata unsigned long mhash_entries;
49static int __init set_mhash_entries(char *str)
50{
51 if (!str)
52 return 0;
53 mhash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55}
56__setup("mhash_entries=", set_mhash_entries);
57
58static __initdata unsigned long mphash_entries;
59static int __init set_mphash_entries(char *str)
60{
61 if (!str)
62 return 0;
63 mphash_entries = simple_strtoul(str, &str, 0);
64 return 1;
65}
66__setup("mphash_entries=", set_mphash_entries);
67
68static u64 event;
69static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
70static DEFINE_IDA(mnt_group_ida);
71
72/* Don't allow confusion with old 32bit mount ID */
73#define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
75
76static struct hlist_head *mount_hashtable __ro_after_init;
77static struct hlist_head *mountpoint_hashtable __ro_after_init;
78static struct kmem_cache *mnt_cache __ro_after_init;
79static DECLARE_RWSEM(namespace_sem);
80static HLIST_HEAD(unmounted); /* protected by namespace_sem */
81static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82static DEFINE_SEQLOCK(mnt_ns_tree_lock);
83
84#ifdef CONFIG_FSNOTIFY
85LIST_HEAD(notify_list); /* protected by namespace_sem */
86#endif
87static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
88static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */
89
90enum mount_kattr_flags_t {
91 MOUNT_KATTR_RECURSE = (1 << 0),
92 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1),
93};
94
95struct mount_kattr {
96 unsigned int attr_set;
97 unsigned int attr_clr;
98 unsigned int propagation;
99 unsigned int lookup_flags;
100 enum mount_kattr_flags_t kflags;
101 struct user_namespace *mnt_userns;
102 struct mnt_idmap *mnt_idmap;
103};
104
105/* /sys/fs */
106struct kobject *fs_kobj __ro_after_init;
107EXPORT_SYMBOL_GPL(fs_kobj);
108
109/*
110 * vfsmount lock may be taken for read to prevent changes to the
111 * vfsmount hash, ie. during mountpoint lookups or walking back
112 * up the tree.
113 *
114 * It should be taken for write in all cases where the vfsmount
115 * tree or hash is modified or when a vfsmount structure is modified.
116 */
117__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
118
119static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
120{
121 if (!node)
122 return NULL;
123 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
124}
125
126static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b)
127{
128 struct mnt_namespace *ns_a = node_to_mnt_ns(a);
129 struct mnt_namespace *ns_b = node_to_mnt_ns(b);
130 u64 seq_a = ns_a->seq;
131 u64 seq_b = ns_b->seq;
132
133 if (seq_a < seq_b)
134 return -1;
135 if (seq_a > seq_b)
136 return 1;
137 return 0;
138}
139
140static inline void mnt_ns_tree_write_lock(void)
141{
142 write_seqlock(&mnt_ns_tree_lock);
143}
144
145static inline void mnt_ns_tree_write_unlock(void)
146{
147 write_sequnlock(&mnt_ns_tree_lock);
148}
149
150static void mnt_ns_tree_add(struct mnt_namespace *ns)
151{
152 struct rb_node *node, *prev;
153
154 mnt_ns_tree_write_lock();
155 node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp);
156 /*
157 * If there's no previous entry simply add it after the
158 * head and if there is add it after the previous entry.
159 */
160 prev = rb_prev(&ns->mnt_ns_tree_node);
161 if (!prev)
162 list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list);
163 else
164 list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list);
165 mnt_ns_tree_write_unlock();
166
167 WARN_ON_ONCE(node);
168}
169
170static void mnt_ns_release(struct mnt_namespace *ns)
171{
172 /* keep alive for {list,stat}mount() */
173 if (refcount_dec_and_test(&ns->passive)) {
174 fsnotify_mntns_delete(ns);
175 put_user_ns(ns->user_ns);
176 kfree(ns);
177 }
178}
179DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
180
181static void mnt_ns_release_rcu(struct rcu_head *rcu)
182{
183 mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu));
184}
185
186static void mnt_ns_tree_remove(struct mnt_namespace *ns)
187{
188 /* remove from global mount namespace list */
189 if (!is_anon_ns(ns)) {
190 mnt_ns_tree_write_lock();
191 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
192 list_bidir_del_rcu(&ns->mnt_ns_list);
193 mnt_ns_tree_write_unlock();
194 }
195
196 call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu);
197}
198
199static int mnt_ns_find(const void *key, const struct rb_node *node)
200{
201 const u64 mnt_ns_id = *(u64 *)key;
202 const struct mnt_namespace *ns = node_to_mnt_ns(node);
203
204 if (mnt_ns_id < ns->seq)
205 return -1;
206 if (mnt_ns_id > ns->seq)
207 return 1;
208 return 0;
209}
210
211/*
212 * Lookup a mount namespace by id and take a passive reference count. Taking a
213 * passive reference means the mount namespace can be emptied if e.g., the last
214 * task holding an active reference exits. To access the mounts of the
215 * namespace the @namespace_sem must first be acquired. If the namespace has
216 * already shut down before acquiring @namespace_sem, {list,stat}mount() will
217 * see that the mount rbtree of the namespace is empty.
218 *
219 * Note the lookup is lockless protected by a sequence counter. We only
220 * need to guard against false negatives as false positives aren't
221 * possible. So if we didn't find a mount namespace and the sequence
222 * counter has changed we need to retry. If the sequence counter is
223 * still the same we know the search actually failed.
224 */
225static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
226{
227 struct mnt_namespace *ns;
228 struct rb_node *node;
229 unsigned int seq;
230
231 guard(rcu)();
232 do {
233 seq = read_seqbegin(&mnt_ns_tree_lock);
234 node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find);
235 if (node)
236 break;
237 } while (read_seqretry(&mnt_ns_tree_lock, seq));
238
239 if (!node)
240 return NULL;
241
242 /*
243 * The last reference count is put with RCU delay so we can
244 * unconditonally acquire a reference here.
245 */
246 ns = node_to_mnt_ns(node);
247 refcount_inc(&ns->passive);
248 return ns;
249}
250
251static inline void lock_mount_hash(void)
252{
253 write_seqlock(&mount_lock);
254}
255
256static inline void unlock_mount_hash(void)
257{
258 write_sequnlock(&mount_lock);
259}
260
261static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
262{
263 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
264 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
265 tmp = tmp + (tmp >> m_hash_shift);
266 return &mount_hashtable[tmp & m_hash_mask];
267}
268
269static inline struct hlist_head *mp_hash(struct dentry *dentry)
270{
271 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
272 tmp = tmp + (tmp >> mp_hash_shift);
273 return &mountpoint_hashtable[tmp & mp_hash_mask];
274}
275
276static int mnt_alloc_id(struct mount *mnt)
277{
278 int res;
279
280 xa_lock(&mnt_id_xa);
281 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
282 if (!res)
283 mnt->mnt_id_unique = ++mnt_id_ctr;
284 xa_unlock(&mnt_id_xa);
285 return res;
286}
287
288static void mnt_free_id(struct mount *mnt)
289{
290 xa_erase(&mnt_id_xa, mnt->mnt_id);
291}
292
293/*
294 * Allocate a new peer group ID
295 */
296static int mnt_alloc_group_id(struct mount *mnt)
297{
298 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
299
300 if (res < 0)
301 return res;
302 mnt->mnt_group_id = res;
303 return 0;
304}
305
306/*
307 * Release a peer group ID
308 */
309void mnt_release_group_id(struct mount *mnt)
310{
311 ida_free(&mnt_group_ida, mnt->mnt_group_id);
312 mnt->mnt_group_id = 0;
313}
314
315/*
316 * vfsmount lock must be held for read
317 */
318static inline void mnt_add_count(struct mount *mnt, int n)
319{
320#ifdef CONFIG_SMP
321 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
322#else
323 preempt_disable();
324 mnt->mnt_count += n;
325 preempt_enable();
326#endif
327}
328
329/*
330 * vfsmount lock must be held for write
331 */
332int mnt_get_count(struct mount *mnt)
333{
334#ifdef CONFIG_SMP
335 int count = 0;
336 int cpu;
337
338 for_each_possible_cpu(cpu) {
339 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
340 }
341
342 return count;
343#else
344 return mnt->mnt_count;
345#endif
346}
347
348static struct mount *alloc_vfsmnt(const char *name)
349{
350 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
351 if (mnt) {
352 int err;
353
354 err = mnt_alloc_id(mnt);
355 if (err)
356 goto out_free_cache;
357
358 if (name) {
359 mnt->mnt_devname = kstrdup_const(name,
360 GFP_KERNEL_ACCOUNT);
361 if (!mnt->mnt_devname)
362 goto out_free_id;
363 }
364
365#ifdef CONFIG_SMP
366 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
367 if (!mnt->mnt_pcp)
368 goto out_free_devname;
369
370 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
371#else
372 mnt->mnt_count = 1;
373 mnt->mnt_writers = 0;
374#endif
375
376 INIT_HLIST_NODE(&mnt->mnt_hash);
377 INIT_LIST_HEAD(&mnt->mnt_child);
378 INIT_LIST_HEAD(&mnt->mnt_mounts);
379 INIT_LIST_HEAD(&mnt->mnt_list);
380 INIT_LIST_HEAD(&mnt->mnt_expire);
381 INIT_LIST_HEAD(&mnt->mnt_share);
382 INIT_LIST_HEAD(&mnt->mnt_slave_list);
383 INIT_LIST_HEAD(&mnt->mnt_slave);
384 INIT_HLIST_NODE(&mnt->mnt_mp_list);
385 INIT_LIST_HEAD(&mnt->mnt_umounting);
386 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
387 RB_CLEAR_NODE(&mnt->mnt_node);
388 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
389 }
390 return mnt;
391
392#ifdef CONFIG_SMP
393out_free_devname:
394 kfree_const(mnt->mnt_devname);
395#endif
396out_free_id:
397 mnt_free_id(mnt);
398out_free_cache:
399 kmem_cache_free(mnt_cache, mnt);
400 return NULL;
401}
402
403/*
404 * Most r/o checks on a fs are for operations that take
405 * discrete amounts of time, like a write() or unlink().
406 * We must keep track of when those operations start
407 * (for permission checks) and when they end, so that
408 * we can determine when writes are able to occur to
409 * a filesystem.
410 */
411/*
412 * __mnt_is_readonly: check whether a mount is read-only
413 * @mnt: the mount to check for its write status
414 *
415 * This shouldn't be used directly ouside of the VFS.
416 * It does not guarantee that the filesystem will stay
417 * r/w, just that it is right *now*. This can not and
418 * should not be used in place of IS_RDONLY(inode).
419 * mnt_want/drop_write() will _keep_ the filesystem
420 * r/w.
421 */
422bool __mnt_is_readonly(struct vfsmount *mnt)
423{
424 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
425}
426EXPORT_SYMBOL_GPL(__mnt_is_readonly);
427
428static inline void mnt_inc_writers(struct mount *mnt)
429{
430#ifdef CONFIG_SMP
431 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
432#else
433 mnt->mnt_writers++;
434#endif
435}
436
437static inline void mnt_dec_writers(struct mount *mnt)
438{
439#ifdef CONFIG_SMP
440 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
441#else
442 mnt->mnt_writers--;
443#endif
444}
445
446static unsigned int mnt_get_writers(struct mount *mnt)
447{
448#ifdef CONFIG_SMP
449 unsigned int count = 0;
450 int cpu;
451
452 for_each_possible_cpu(cpu) {
453 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
454 }
455
456 return count;
457#else
458 return mnt->mnt_writers;
459#endif
460}
461
462static int mnt_is_readonly(struct vfsmount *mnt)
463{
464 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
465 return 1;
466 /*
467 * The barrier pairs with the barrier in sb_start_ro_state_change()
468 * making sure if we don't see s_readonly_remount set yet, we also will
469 * not see any superblock / mount flag changes done by remount.
470 * It also pairs with the barrier in sb_end_ro_state_change()
471 * assuring that if we see s_readonly_remount already cleared, we will
472 * see the values of superblock / mount flags updated by remount.
473 */
474 smp_rmb();
475 return __mnt_is_readonly(mnt);
476}
477
478/*
479 * Most r/o & frozen checks on a fs are for operations that take discrete
480 * amounts of time, like a write() or unlink(). We must keep track of when
481 * those operations start (for permission checks) and when they end, so that we
482 * can determine when writes are able to occur to a filesystem.
483 */
484/**
485 * mnt_get_write_access - get write access to a mount without freeze protection
486 * @m: the mount on which to take a write
487 *
488 * This tells the low-level filesystem that a write is about to be performed to
489 * it, and makes sure that writes are allowed (mnt it read-write) before
490 * returning success. This operation does not protect against filesystem being
491 * frozen. When the write operation is finished, mnt_put_write_access() must be
492 * called. This is effectively a refcount.
493 */
494int mnt_get_write_access(struct vfsmount *m)
495{
496 struct mount *mnt = real_mount(m);
497 int ret = 0;
498
499 preempt_disable();
500 mnt_inc_writers(mnt);
501 /*
502 * The store to mnt_inc_writers must be visible before we pass
503 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
504 * incremented count after it has set MNT_WRITE_HOLD.
505 */
506 smp_mb();
507 might_lock(&mount_lock.lock);
508 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
509 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
510 cpu_relax();
511 } else {
512 /*
513 * This prevents priority inversion, if the task
514 * setting MNT_WRITE_HOLD got preempted on a remote
515 * CPU, and it prevents life lock if the task setting
516 * MNT_WRITE_HOLD has a lower priority and is bound to
517 * the same CPU as the task that is spinning here.
518 */
519 preempt_enable();
520 lock_mount_hash();
521 unlock_mount_hash();
522 preempt_disable();
523 }
524 }
525 /*
526 * The barrier pairs with the barrier sb_start_ro_state_change() making
527 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
528 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
529 * mnt_is_readonly() and bail in case we are racing with remount
530 * read-only.
531 */
532 smp_rmb();
533 if (mnt_is_readonly(m)) {
534 mnt_dec_writers(mnt);
535 ret = -EROFS;
536 }
537 preempt_enable();
538
539 return ret;
540}
541EXPORT_SYMBOL_GPL(mnt_get_write_access);
542
543/**
544 * mnt_want_write - get write access to a mount
545 * @m: the mount on which to take a write
546 *
547 * This tells the low-level filesystem that a write is about to be performed to
548 * it, and makes sure that writes are allowed (mount is read-write, filesystem
549 * is not frozen) before returning success. When the write operation is
550 * finished, mnt_drop_write() must be called. This is effectively a refcount.
551 */
552int mnt_want_write(struct vfsmount *m)
553{
554 int ret;
555
556 sb_start_write(m->mnt_sb);
557 ret = mnt_get_write_access(m);
558 if (ret)
559 sb_end_write(m->mnt_sb);
560 return ret;
561}
562EXPORT_SYMBOL_GPL(mnt_want_write);
563
564/**
565 * mnt_get_write_access_file - get write access to a file's mount
566 * @file: the file who's mount on which to take a write
567 *
568 * This is like mnt_get_write_access, but if @file is already open for write it
569 * skips incrementing mnt_writers (since the open file already has a reference)
570 * and instead only does the check for emergency r/o remounts. This must be
571 * paired with mnt_put_write_access_file.
572 */
573int mnt_get_write_access_file(struct file *file)
574{
575 if (file->f_mode & FMODE_WRITER) {
576 /*
577 * Superblock may have become readonly while there are still
578 * writable fd's, e.g. due to a fs error with errors=remount-ro
579 */
580 if (__mnt_is_readonly(file->f_path.mnt))
581 return -EROFS;
582 return 0;
583 }
584 return mnt_get_write_access(file->f_path.mnt);
585}
586
587/**
588 * mnt_want_write_file - get write access to a file's mount
589 * @file: the file who's mount on which to take a write
590 *
591 * This is like mnt_want_write, but if the file is already open for writing it
592 * skips incrementing mnt_writers (since the open file already has a reference)
593 * and instead only does the freeze protection and the check for emergency r/o
594 * remounts. This must be paired with mnt_drop_write_file.
595 */
596int mnt_want_write_file(struct file *file)
597{
598 int ret;
599
600 sb_start_write(file_inode(file)->i_sb);
601 ret = mnt_get_write_access_file(file);
602 if (ret)
603 sb_end_write(file_inode(file)->i_sb);
604 return ret;
605}
606EXPORT_SYMBOL_GPL(mnt_want_write_file);
607
608/**
609 * mnt_put_write_access - give up write access to a mount
610 * @mnt: the mount on which to give up write access
611 *
612 * Tells the low-level filesystem that we are done
613 * performing writes to it. Must be matched with
614 * mnt_get_write_access() call above.
615 */
616void mnt_put_write_access(struct vfsmount *mnt)
617{
618 preempt_disable();
619 mnt_dec_writers(real_mount(mnt));
620 preempt_enable();
621}
622EXPORT_SYMBOL_GPL(mnt_put_write_access);
623
624/**
625 * mnt_drop_write - give up write access to a mount
626 * @mnt: the mount on which to give up write access
627 *
628 * Tells the low-level filesystem that we are done performing writes to it and
629 * also allows filesystem to be frozen again. Must be matched with
630 * mnt_want_write() call above.
631 */
632void mnt_drop_write(struct vfsmount *mnt)
633{
634 mnt_put_write_access(mnt);
635 sb_end_write(mnt->mnt_sb);
636}
637EXPORT_SYMBOL_GPL(mnt_drop_write);
638
639void mnt_put_write_access_file(struct file *file)
640{
641 if (!(file->f_mode & FMODE_WRITER))
642 mnt_put_write_access(file->f_path.mnt);
643}
644
645void mnt_drop_write_file(struct file *file)
646{
647 mnt_put_write_access_file(file);
648 sb_end_write(file_inode(file)->i_sb);
649}
650EXPORT_SYMBOL(mnt_drop_write_file);
651
652/**
653 * mnt_hold_writers - prevent write access to the given mount
654 * @mnt: mnt to prevent write access to
655 *
656 * Prevents write access to @mnt if there are no active writers for @mnt.
657 * This function needs to be called and return successfully before changing
658 * properties of @mnt that need to remain stable for callers with write access
659 * to @mnt.
660 *
661 * After this functions has been called successfully callers must pair it with
662 * a call to mnt_unhold_writers() in order to stop preventing write access to
663 * @mnt.
664 *
665 * Context: This function expects lock_mount_hash() to be held serializing
666 * setting MNT_WRITE_HOLD.
667 * Return: On success 0 is returned.
668 * On error, -EBUSY is returned.
669 */
670static inline int mnt_hold_writers(struct mount *mnt)
671{
672 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
673 /*
674 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
675 * should be visible before we do.
676 */
677 smp_mb();
678
679 /*
680 * With writers on hold, if this value is zero, then there are
681 * definitely no active writers (although held writers may subsequently
682 * increment the count, they'll have to wait, and decrement it after
683 * seeing MNT_READONLY).
684 *
685 * It is OK to have counter incremented on one CPU and decremented on
686 * another: the sum will add up correctly. The danger would be when we
687 * sum up each counter, if we read a counter before it is incremented,
688 * but then read another CPU's count which it has been subsequently
689 * decremented from -- we would see more decrements than we should.
690 * MNT_WRITE_HOLD protects against this scenario, because
691 * mnt_want_write first increments count, then smp_mb, then spins on
692 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
693 * we're counting up here.
694 */
695 if (mnt_get_writers(mnt) > 0)
696 return -EBUSY;
697
698 return 0;
699}
700
701/**
702 * mnt_unhold_writers - stop preventing write access to the given mount
703 * @mnt: mnt to stop preventing write access to
704 *
705 * Stop preventing write access to @mnt allowing callers to gain write access
706 * to @mnt again.
707 *
708 * This function can only be called after a successful call to
709 * mnt_hold_writers().
710 *
711 * Context: This function expects lock_mount_hash() to be held.
712 */
713static inline void mnt_unhold_writers(struct mount *mnt)
714{
715 /*
716 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
717 * that become unheld will see MNT_READONLY.
718 */
719 smp_wmb();
720 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
721}
722
723static int mnt_make_readonly(struct mount *mnt)
724{
725 int ret;
726
727 ret = mnt_hold_writers(mnt);
728 if (!ret)
729 mnt->mnt.mnt_flags |= MNT_READONLY;
730 mnt_unhold_writers(mnt);
731 return ret;
732}
733
734int sb_prepare_remount_readonly(struct super_block *sb)
735{
736 struct mount *mnt;
737 int err = 0;
738
739 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
740 if (atomic_long_read(&sb->s_remove_count))
741 return -EBUSY;
742
743 lock_mount_hash();
744 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
745 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
746 err = mnt_hold_writers(mnt);
747 if (err)
748 break;
749 }
750 }
751 if (!err && atomic_long_read(&sb->s_remove_count))
752 err = -EBUSY;
753
754 if (!err)
755 sb_start_ro_state_change(sb);
756 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
757 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
758 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
759 }
760 unlock_mount_hash();
761
762 return err;
763}
764
765static void free_vfsmnt(struct mount *mnt)
766{
767 mnt_idmap_put(mnt_idmap(&mnt->mnt));
768 kfree_const(mnt->mnt_devname);
769#ifdef CONFIG_SMP
770 free_percpu(mnt->mnt_pcp);
771#endif
772 kmem_cache_free(mnt_cache, mnt);
773}
774
775static void delayed_free_vfsmnt(struct rcu_head *head)
776{
777 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
778}
779
780/* call under rcu_read_lock */
781int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
782{
783 struct mount *mnt;
784 if (read_seqretry(&mount_lock, seq))
785 return 1;
786 if (bastard == NULL)
787 return 0;
788 mnt = real_mount(bastard);
789 mnt_add_count(mnt, 1);
790 smp_mb(); // see mntput_no_expire()
791 if (likely(!read_seqretry(&mount_lock, seq)))
792 return 0;
793 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
794 mnt_add_count(mnt, -1);
795 return 1;
796 }
797 lock_mount_hash();
798 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
799 mnt_add_count(mnt, -1);
800 unlock_mount_hash();
801 return 1;
802 }
803 unlock_mount_hash();
804 /* caller will mntput() */
805 return -1;
806}
807
808/* call under rcu_read_lock */
809static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
810{
811 int res = __legitimize_mnt(bastard, seq);
812 if (likely(!res))
813 return true;
814 if (unlikely(res < 0)) {
815 rcu_read_unlock();
816 mntput(bastard);
817 rcu_read_lock();
818 }
819 return false;
820}
821
822/**
823 * __lookup_mnt - find first child mount
824 * @mnt: parent mount
825 * @dentry: mountpoint
826 *
827 * If @mnt has a child mount @c mounted @dentry find and return it.
828 *
829 * Note that the child mount @c need not be unique. There are cases
830 * where shadow mounts are created. For example, during mount
831 * propagation when a source mount @mnt whose root got overmounted by a
832 * mount @o after path lookup but before @namespace_sem could be
833 * acquired gets copied and propagated. So @mnt gets copied including
834 * @o. When @mnt is propagated to a destination mount @d that already
835 * has another mount @n mounted at the same mountpoint then the source
836 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
837 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
838 * on @dentry.
839 *
840 * Return: The first child of @mnt mounted @dentry or NULL.
841 */
842struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
843{
844 struct hlist_head *head = m_hash(mnt, dentry);
845 struct mount *p;
846
847 hlist_for_each_entry_rcu(p, head, mnt_hash)
848 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
849 return p;
850 return NULL;
851}
852
853/*
854 * lookup_mnt - Return the first child mount mounted at path
855 *
856 * "First" means first mounted chronologically. If you create the
857 * following mounts:
858 *
859 * mount /dev/sda1 /mnt
860 * mount /dev/sda2 /mnt
861 * mount /dev/sda3 /mnt
862 *
863 * Then lookup_mnt() on the base /mnt dentry in the root mount will
864 * return successively the root dentry and vfsmount of /dev/sda1, then
865 * /dev/sda2, then /dev/sda3, then NULL.
866 *
867 * lookup_mnt takes a reference to the found vfsmount.
868 */
869struct vfsmount *lookup_mnt(const struct path *path)
870{
871 struct mount *child_mnt;
872 struct vfsmount *m;
873 unsigned seq;
874
875 rcu_read_lock();
876 do {
877 seq = read_seqbegin(&mount_lock);
878 child_mnt = __lookup_mnt(path->mnt, path->dentry);
879 m = child_mnt ? &child_mnt->mnt : NULL;
880 } while (!legitimize_mnt(m, seq));
881 rcu_read_unlock();
882 return m;
883}
884
885/*
886 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
887 * current mount namespace.
888 *
889 * The common case is dentries are not mountpoints at all and that
890 * test is handled inline. For the slow case when we are actually
891 * dealing with a mountpoint of some kind, walk through all of the
892 * mounts in the current mount namespace and test to see if the dentry
893 * is a mountpoint.
894 *
895 * The mount_hashtable is not usable in the context because we
896 * need to identify all mounts that may be in the current mount
897 * namespace not just a mount that happens to have some specified
898 * parent mount.
899 */
900bool __is_local_mountpoint(struct dentry *dentry)
901{
902 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
903 struct mount *mnt, *n;
904 bool is_covered = false;
905
906 down_read(&namespace_sem);
907 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
908 is_covered = (mnt->mnt_mountpoint == dentry);
909 if (is_covered)
910 break;
911 }
912 up_read(&namespace_sem);
913
914 return is_covered;
915}
916
917static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
918{
919 struct hlist_head *chain = mp_hash(dentry);
920 struct mountpoint *mp;
921
922 hlist_for_each_entry(mp, chain, m_hash) {
923 if (mp->m_dentry == dentry) {
924 mp->m_count++;
925 return mp;
926 }
927 }
928 return NULL;
929}
930
931static struct mountpoint *get_mountpoint(struct dentry *dentry)
932{
933 struct mountpoint *mp, *new = NULL;
934 int ret;
935
936 if (d_mountpoint(dentry)) {
937 /* might be worth a WARN_ON() */
938 if (d_unlinked(dentry))
939 return ERR_PTR(-ENOENT);
940mountpoint:
941 read_seqlock_excl(&mount_lock);
942 mp = lookup_mountpoint(dentry);
943 read_sequnlock_excl(&mount_lock);
944 if (mp)
945 goto done;
946 }
947
948 if (!new)
949 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
950 if (!new)
951 return ERR_PTR(-ENOMEM);
952
953
954 /* Exactly one processes may set d_mounted */
955 ret = d_set_mounted(dentry);
956
957 /* Someone else set d_mounted? */
958 if (ret == -EBUSY)
959 goto mountpoint;
960
961 /* The dentry is not available as a mountpoint? */
962 mp = ERR_PTR(ret);
963 if (ret)
964 goto done;
965
966 /* Add the new mountpoint to the hash table */
967 read_seqlock_excl(&mount_lock);
968 new->m_dentry = dget(dentry);
969 new->m_count = 1;
970 hlist_add_head(&new->m_hash, mp_hash(dentry));
971 INIT_HLIST_HEAD(&new->m_list);
972 read_sequnlock_excl(&mount_lock);
973
974 mp = new;
975 new = NULL;
976done:
977 kfree(new);
978 return mp;
979}
980
981/*
982 * vfsmount lock must be held. Additionally, the caller is responsible
983 * for serializing calls for given disposal list.
984 */
985static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
986{
987 if (!--mp->m_count) {
988 struct dentry *dentry = mp->m_dentry;
989 BUG_ON(!hlist_empty(&mp->m_list));
990 spin_lock(&dentry->d_lock);
991 dentry->d_flags &= ~DCACHE_MOUNTED;
992 spin_unlock(&dentry->d_lock);
993 dput_to_list(dentry, list);
994 hlist_del(&mp->m_hash);
995 kfree(mp);
996 }
997}
998
999/* called with namespace_lock and vfsmount lock */
1000static void put_mountpoint(struct mountpoint *mp)
1001{
1002 __put_mountpoint(mp, &ex_mountpoints);
1003}
1004
1005static inline int check_mnt(struct mount *mnt)
1006{
1007 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1008}
1009
1010static inline bool check_anonymous_mnt(struct mount *mnt)
1011{
1012 u64 seq;
1013
1014 if (!is_anon_ns(mnt->mnt_ns))
1015 return false;
1016
1017 seq = mnt->mnt_ns->seq_origin;
1018 return !seq || (seq == current->nsproxy->mnt_ns->seq);
1019}
1020
1021/*
1022 * vfsmount lock must be held for write
1023 */
1024static void touch_mnt_namespace(struct mnt_namespace *ns)
1025{
1026 if (ns) {
1027 ns->event = ++event;
1028 wake_up_interruptible(&ns->poll);
1029 }
1030}
1031
1032/*
1033 * vfsmount lock must be held for write
1034 */
1035static void __touch_mnt_namespace(struct mnt_namespace *ns)
1036{
1037 if (ns && ns->event != event) {
1038 ns->event = event;
1039 wake_up_interruptible(&ns->poll);
1040 }
1041}
1042
1043/*
1044 * vfsmount lock must be held for write
1045 */
1046static struct mountpoint *unhash_mnt(struct mount *mnt)
1047{
1048 struct mountpoint *mp;
1049 mnt->mnt_parent = mnt;
1050 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1051 list_del_init(&mnt->mnt_child);
1052 hlist_del_init_rcu(&mnt->mnt_hash);
1053 hlist_del_init(&mnt->mnt_mp_list);
1054 mp = mnt->mnt_mp;
1055 mnt->mnt_mp = NULL;
1056 return mp;
1057}
1058
1059/*
1060 * vfsmount lock must be held for write
1061 */
1062static void umount_mnt(struct mount *mnt)
1063{
1064 put_mountpoint(unhash_mnt(mnt));
1065}
1066
1067/*
1068 * vfsmount lock must be held for write
1069 */
1070void mnt_set_mountpoint(struct mount *mnt,
1071 struct mountpoint *mp,
1072 struct mount *child_mnt)
1073{
1074 mp->m_count++;
1075 mnt_add_count(mnt, 1); /* essentially, that's mntget */
1076 child_mnt->mnt_mountpoint = mp->m_dentry;
1077 child_mnt->mnt_parent = mnt;
1078 child_mnt->mnt_mp = mp;
1079 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1080}
1081
1082/**
1083 * mnt_set_mountpoint_beneath - mount a mount beneath another one
1084 *
1085 * @new_parent: the source mount
1086 * @top_mnt: the mount beneath which @new_parent is mounted
1087 * @new_mp: the new mountpoint of @top_mnt on @new_parent
1088 *
1089 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1090 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1091 * @new_mp. And mount @new_parent on the old parent and old
1092 * mountpoint of @top_mnt.
1093 *
1094 * Context: This function expects namespace_lock() and lock_mount_hash()
1095 * to have been acquired in that order.
1096 */
1097static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1098 struct mount *top_mnt,
1099 struct mountpoint *new_mp)
1100{
1101 struct mount *old_top_parent = top_mnt->mnt_parent;
1102 struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1103
1104 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1105 mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1106}
1107
1108
1109static void __attach_mnt(struct mount *mnt, struct mount *parent)
1110{
1111 hlist_add_head_rcu(&mnt->mnt_hash,
1112 m_hash(&parent->mnt, mnt->mnt_mountpoint));
1113 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1114}
1115
1116/**
1117 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1118 * list of child mounts
1119 * @parent: the parent
1120 * @mnt: the new mount
1121 * @mp: the new mountpoint
1122 * @beneath: whether to mount @mnt beneath or on top of @parent
1123 *
1124 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1125 * to @parent's child mount list and to @mount_hashtable.
1126 *
1127 * If @beneath is true, remove @mnt from its current parent and
1128 * mountpoint and mount it on @mp on @parent, and mount @parent on the
1129 * old parent and old mountpoint of @mnt. Finally, attach @parent to
1130 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1131 *
1132 * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1133 * to the correct parent.
1134 *
1135 * Context: This function expects namespace_lock() and lock_mount_hash()
1136 * to have been acquired in that order.
1137 */
1138static void attach_mnt(struct mount *mnt, struct mount *parent,
1139 struct mountpoint *mp, bool beneath)
1140{
1141 if (beneath)
1142 mnt_set_mountpoint_beneath(mnt, parent, mp);
1143 else
1144 mnt_set_mountpoint(parent, mp, mnt);
1145 /*
1146 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1147 * beneath @parent then @mnt will need to be attached to
1148 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1149 * isn't the same mount as @parent.
1150 */
1151 __attach_mnt(mnt, mnt->mnt_parent);
1152}
1153
1154void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1155{
1156 struct mountpoint *old_mp = mnt->mnt_mp;
1157 struct mount *old_parent = mnt->mnt_parent;
1158
1159 list_del_init(&mnt->mnt_child);
1160 hlist_del_init(&mnt->mnt_mp_list);
1161 hlist_del_init_rcu(&mnt->mnt_hash);
1162
1163 attach_mnt(mnt, parent, mp, false);
1164
1165 put_mountpoint(old_mp);
1166 mnt_add_count(old_parent, -1);
1167}
1168
1169static inline struct mount *node_to_mount(struct rb_node *node)
1170{
1171 return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1172}
1173
1174static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1175{
1176 struct rb_node **link = &ns->mounts.rb_node;
1177 struct rb_node *parent = NULL;
1178 bool mnt_first_node = true, mnt_last_node = true;
1179
1180 WARN_ON(mnt_ns_attached(mnt));
1181 mnt->mnt_ns = ns;
1182 while (*link) {
1183 parent = *link;
1184 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1185 link = &parent->rb_left;
1186 mnt_last_node = false;
1187 } else {
1188 link = &parent->rb_right;
1189 mnt_first_node = false;
1190 }
1191 }
1192
1193 if (mnt_last_node)
1194 ns->mnt_last_node = &mnt->mnt_node;
1195 if (mnt_first_node)
1196 ns->mnt_first_node = &mnt->mnt_node;
1197 rb_link_node(&mnt->mnt_node, parent, link);
1198 rb_insert_color(&mnt->mnt_node, &ns->mounts);
1199
1200 mnt_notify_add(mnt);
1201}
1202
1203/*
1204 * vfsmount lock must be held for write
1205 */
1206static void commit_tree(struct mount *mnt)
1207{
1208 struct mount *parent = mnt->mnt_parent;
1209 struct mount *m;
1210 LIST_HEAD(head);
1211 struct mnt_namespace *n = parent->mnt_ns;
1212
1213 BUG_ON(parent == mnt);
1214
1215 list_add_tail(&head, &mnt->mnt_list);
1216 while (!list_empty(&head)) {
1217 m = list_first_entry(&head, typeof(*m), mnt_list);
1218 list_del(&m->mnt_list);
1219
1220 mnt_add_to_ns(n, m);
1221 }
1222 n->nr_mounts += n->pending_mounts;
1223 n->pending_mounts = 0;
1224
1225 __attach_mnt(mnt, parent);
1226 touch_mnt_namespace(n);
1227}
1228
1229static struct mount *next_mnt(struct mount *p, struct mount *root)
1230{
1231 struct list_head *next = p->mnt_mounts.next;
1232 if (next == &p->mnt_mounts) {
1233 while (1) {
1234 if (p == root)
1235 return NULL;
1236 next = p->mnt_child.next;
1237 if (next != &p->mnt_parent->mnt_mounts)
1238 break;
1239 p = p->mnt_parent;
1240 }
1241 }
1242 return list_entry(next, struct mount, mnt_child);
1243}
1244
1245static struct mount *skip_mnt_tree(struct mount *p)
1246{
1247 struct list_head *prev = p->mnt_mounts.prev;
1248 while (prev != &p->mnt_mounts) {
1249 p = list_entry(prev, struct mount, mnt_child);
1250 prev = p->mnt_mounts.prev;
1251 }
1252 return p;
1253}
1254
1255/**
1256 * vfs_create_mount - Create a mount for a configured superblock
1257 * @fc: The configuration context with the superblock attached
1258 *
1259 * Create a mount to an already configured superblock. If necessary, the
1260 * caller should invoke vfs_get_tree() before calling this.
1261 *
1262 * Note that this does not attach the mount to anything.
1263 */
1264struct vfsmount *vfs_create_mount(struct fs_context *fc)
1265{
1266 struct mount *mnt;
1267
1268 if (!fc->root)
1269 return ERR_PTR(-EINVAL);
1270
1271 mnt = alloc_vfsmnt(fc->source ?: "none");
1272 if (!mnt)
1273 return ERR_PTR(-ENOMEM);
1274
1275 if (fc->sb_flags & SB_KERNMOUNT)
1276 mnt->mnt.mnt_flags = MNT_INTERNAL;
1277
1278 atomic_inc(&fc->root->d_sb->s_active);
1279 mnt->mnt.mnt_sb = fc->root->d_sb;
1280 mnt->mnt.mnt_root = dget(fc->root);
1281 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1282 mnt->mnt_parent = mnt;
1283
1284 lock_mount_hash();
1285 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1286 unlock_mount_hash();
1287 return &mnt->mnt;
1288}
1289EXPORT_SYMBOL(vfs_create_mount);
1290
1291struct vfsmount *fc_mount(struct fs_context *fc)
1292{
1293 int err = vfs_get_tree(fc);
1294 if (!err) {
1295 up_write(&fc->root->d_sb->s_umount);
1296 return vfs_create_mount(fc);
1297 }
1298 return ERR_PTR(err);
1299}
1300EXPORT_SYMBOL(fc_mount);
1301
1302struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1303 int flags, const char *name,
1304 void *data)
1305{
1306 struct fs_context *fc;
1307 struct vfsmount *mnt;
1308 int ret = 0;
1309
1310 if (!type)
1311 return ERR_PTR(-EINVAL);
1312
1313 fc = fs_context_for_mount(type, flags);
1314 if (IS_ERR(fc))
1315 return ERR_CAST(fc);
1316
1317 if (name)
1318 ret = vfs_parse_fs_string(fc, "source",
1319 name, strlen(name));
1320 if (!ret)
1321 ret = parse_monolithic_mount_data(fc, data);
1322 if (!ret)
1323 mnt = fc_mount(fc);
1324 else
1325 mnt = ERR_PTR(ret);
1326
1327 put_fs_context(fc);
1328 return mnt;
1329}
1330EXPORT_SYMBOL_GPL(vfs_kern_mount);
1331
1332struct vfsmount *
1333vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1334 const char *name, void *data)
1335{
1336 /* Until it is worked out how to pass the user namespace
1337 * through from the parent mount to the submount don't support
1338 * unprivileged mounts with submounts.
1339 */
1340 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1341 return ERR_PTR(-EPERM);
1342
1343 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1344}
1345EXPORT_SYMBOL_GPL(vfs_submount);
1346
1347static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1348 int flag)
1349{
1350 struct super_block *sb = old->mnt.mnt_sb;
1351 struct mount *mnt;
1352 int err;
1353
1354 mnt = alloc_vfsmnt(old->mnt_devname);
1355 if (!mnt)
1356 return ERR_PTR(-ENOMEM);
1357
1358 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1359 mnt->mnt_group_id = 0; /* not a peer of original */
1360 else
1361 mnt->mnt_group_id = old->mnt_group_id;
1362
1363 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1364 err = mnt_alloc_group_id(mnt);
1365 if (err)
1366 goto out_free;
1367 }
1368
1369 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1370 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1371
1372 atomic_inc(&sb->s_active);
1373 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1374
1375 mnt->mnt.mnt_sb = sb;
1376 mnt->mnt.mnt_root = dget(root);
1377 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1378 mnt->mnt_parent = mnt;
1379 lock_mount_hash();
1380 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1381 unlock_mount_hash();
1382
1383 if ((flag & CL_SLAVE) ||
1384 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1385 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1386 mnt->mnt_master = old;
1387 CLEAR_MNT_SHARED(mnt);
1388 } else if (!(flag & CL_PRIVATE)) {
1389 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1390 list_add(&mnt->mnt_share, &old->mnt_share);
1391 if (IS_MNT_SLAVE(old))
1392 list_add(&mnt->mnt_slave, &old->mnt_slave);
1393 mnt->mnt_master = old->mnt_master;
1394 } else {
1395 CLEAR_MNT_SHARED(mnt);
1396 }
1397 if (flag & CL_MAKE_SHARED)
1398 set_mnt_shared(mnt);
1399
1400 /* stick the duplicate mount on the same expiry list
1401 * as the original if that was on one */
1402 if (flag & CL_EXPIRE) {
1403 if (!list_empty(&old->mnt_expire))
1404 list_add(&mnt->mnt_expire, &old->mnt_expire);
1405 }
1406
1407 return mnt;
1408
1409 out_free:
1410 mnt_free_id(mnt);
1411 free_vfsmnt(mnt);
1412 return ERR_PTR(err);
1413}
1414
1415static void cleanup_mnt(struct mount *mnt)
1416{
1417 struct hlist_node *p;
1418 struct mount *m;
1419 /*
1420 * The warning here probably indicates that somebody messed
1421 * up a mnt_want/drop_write() pair. If this happens, the
1422 * filesystem was probably unable to make r/w->r/o transitions.
1423 * The locking used to deal with mnt_count decrement provides barriers,
1424 * so mnt_get_writers() below is safe.
1425 */
1426 WARN_ON(mnt_get_writers(mnt));
1427 if (unlikely(mnt->mnt_pins.first))
1428 mnt_pin_kill(mnt);
1429 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1430 hlist_del(&m->mnt_umount);
1431 mntput(&m->mnt);
1432 }
1433 fsnotify_vfsmount_delete(&mnt->mnt);
1434 dput(mnt->mnt.mnt_root);
1435 deactivate_super(mnt->mnt.mnt_sb);
1436 mnt_free_id(mnt);
1437 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1438}
1439
1440static void __cleanup_mnt(struct rcu_head *head)
1441{
1442 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1443}
1444
1445static LLIST_HEAD(delayed_mntput_list);
1446static void delayed_mntput(struct work_struct *unused)
1447{
1448 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1449 struct mount *m, *t;
1450
1451 llist_for_each_entry_safe(m, t, node, mnt_llist)
1452 cleanup_mnt(m);
1453}
1454static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1455
1456static void mntput_no_expire(struct mount *mnt)
1457{
1458 LIST_HEAD(list);
1459 int count;
1460
1461 rcu_read_lock();
1462 if (likely(READ_ONCE(mnt->mnt_ns))) {
1463 /*
1464 * Since we don't do lock_mount_hash() here,
1465 * ->mnt_ns can change under us. However, if it's
1466 * non-NULL, then there's a reference that won't
1467 * be dropped until after an RCU delay done after
1468 * turning ->mnt_ns NULL. So if we observe it
1469 * non-NULL under rcu_read_lock(), the reference
1470 * we are dropping is not the final one.
1471 */
1472 mnt_add_count(mnt, -1);
1473 rcu_read_unlock();
1474 return;
1475 }
1476 lock_mount_hash();
1477 /*
1478 * make sure that if __legitimize_mnt() has not seen us grab
1479 * mount_lock, we'll see their refcount increment here.
1480 */
1481 smp_mb();
1482 mnt_add_count(mnt, -1);
1483 count = mnt_get_count(mnt);
1484 if (count != 0) {
1485 WARN_ON(count < 0);
1486 rcu_read_unlock();
1487 unlock_mount_hash();
1488 return;
1489 }
1490 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1491 rcu_read_unlock();
1492 unlock_mount_hash();
1493 return;
1494 }
1495 mnt->mnt.mnt_flags |= MNT_DOOMED;
1496 rcu_read_unlock();
1497
1498 list_del(&mnt->mnt_instance);
1499
1500 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1501 struct mount *p, *tmp;
1502 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1503 __put_mountpoint(unhash_mnt(p), &list);
1504 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1505 }
1506 }
1507 unlock_mount_hash();
1508 shrink_dentry_list(&list);
1509
1510 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1511 struct task_struct *task = current;
1512 if (likely(!(task->flags & PF_KTHREAD))) {
1513 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1514 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1515 return;
1516 }
1517 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1518 schedule_delayed_work(&delayed_mntput_work, 1);
1519 return;
1520 }
1521 cleanup_mnt(mnt);
1522}
1523
1524void mntput(struct vfsmount *mnt)
1525{
1526 if (mnt) {
1527 struct mount *m = real_mount(mnt);
1528 /* avoid cacheline pingpong */
1529 if (unlikely(m->mnt_expiry_mark))
1530 WRITE_ONCE(m->mnt_expiry_mark, 0);
1531 mntput_no_expire(m);
1532 }
1533}
1534EXPORT_SYMBOL(mntput);
1535
1536struct vfsmount *mntget(struct vfsmount *mnt)
1537{
1538 if (mnt)
1539 mnt_add_count(real_mount(mnt), 1);
1540 return mnt;
1541}
1542EXPORT_SYMBOL(mntget);
1543
1544/*
1545 * Make a mount point inaccessible to new lookups.
1546 * Because there may still be current users, the caller MUST WAIT
1547 * for an RCU grace period before destroying the mount point.
1548 */
1549void mnt_make_shortterm(struct vfsmount *mnt)
1550{
1551 if (mnt)
1552 real_mount(mnt)->mnt_ns = NULL;
1553}
1554
1555/**
1556 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1557 * @path: path to check
1558 *
1559 * d_mountpoint() can only be used reliably to establish if a dentry is
1560 * not mounted in any namespace and that common case is handled inline.
1561 * d_mountpoint() isn't aware of the possibility there may be multiple
1562 * mounts using a given dentry in a different namespace. This function
1563 * checks if the passed in path is a mountpoint rather than the dentry
1564 * alone.
1565 */
1566bool path_is_mountpoint(const struct path *path)
1567{
1568 unsigned seq;
1569 bool res;
1570
1571 if (!d_mountpoint(path->dentry))
1572 return false;
1573
1574 rcu_read_lock();
1575 do {
1576 seq = read_seqbegin(&mount_lock);
1577 res = __path_is_mountpoint(path);
1578 } while (read_seqretry(&mount_lock, seq));
1579 rcu_read_unlock();
1580
1581 return res;
1582}
1583EXPORT_SYMBOL(path_is_mountpoint);
1584
1585struct vfsmount *mnt_clone_internal(const struct path *path)
1586{
1587 struct mount *p;
1588 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1589 if (IS_ERR(p))
1590 return ERR_CAST(p);
1591 p->mnt.mnt_flags |= MNT_INTERNAL;
1592 return &p->mnt;
1593}
1594
1595/*
1596 * Returns the mount which either has the specified mnt_id, or has the next
1597 * smallest id afer the specified one.
1598 */
1599static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1600{
1601 struct rb_node *node = ns->mounts.rb_node;
1602 struct mount *ret = NULL;
1603
1604 while (node) {
1605 struct mount *m = node_to_mount(node);
1606
1607 if (mnt_id <= m->mnt_id_unique) {
1608 ret = node_to_mount(node);
1609 if (mnt_id == m->mnt_id_unique)
1610 break;
1611 node = node->rb_left;
1612 } else {
1613 node = node->rb_right;
1614 }
1615 }
1616 return ret;
1617}
1618
1619/*
1620 * Returns the mount which either has the specified mnt_id, or has the next
1621 * greater id before the specified one.
1622 */
1623static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1624{
1625 struct rb_node *node = ns->mounts.rb_node;
1626 struct mount *ret = NULL;
1627
1628 while (node) {
1629 struct mount *m = node_to_mount(node);
1630
1631 if (mnt_id >= m->mnt_id_unique) {
1632 ret = node_to_mount(node);
1633 if (mnt_id == m->mnt_id_unique)
1634 break;
1635 node = node->rb_right;
1636 } else {
1637 node = node->rb_left;
1638 }
1639 }
1640 return ret;
1641}
1642
1643#ifdef CONFIG_PROC_FS
1644
1645/* iterator; we want it to have access to namespace_sem, thus here... */
1646static void *m_start(struct seq_file *m, loff_t *pos)
1647{
1648 struct proc_mounts *p = m->private;
1649
1650 down_read(&namespace_sem);
1651
1652 return mnt_find_id_at(p->ns, *pos);
1653}
1654
1655static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1656{
1657 struct mount *next = NULL, *mnt = v;
1658 struct rb_node *node = rb_next(&mnt->mnt_node);
1659
1660 ++*pos;
1661 if (node) {
1662 next = node_to_mount(node);
1663 *pos = next->mnt_id_unique;
1664 }
1665 return next;
1666}
1667
1668static void m_stop(struct seq_file *m, void *v)
1669{
1670 up_read(&namespace_sem);
1671}
1672
1673static int m_show(struct seq_file *m, void *v)
1674{
1675 struct proc_mounts *p = m->private;
1676 struct mount *r = v;
1677 return p->show(m, &r->mnt);
1678}
1679
1680const struct seq_operations mounts_op = {
1681 .start = m_start,
1682 .next = m_next,
1683 .stop = m_stop,
1684 .show = m_show,
1685};
1686
1687#endif /* CONFIG_PROC_FS */
1688
1689/**
1690 * may_umount_tree - check if a mount tree is busy
1691 * @m: root of mount tree
1692 *
1693 * This is called to check if a tree of mounts has any
1694 * open files, pwds, chroots or sub mounts that are
1695 * busy.
1696 */
1697int may_umount_tree(struct vfsmount *m)
1698{
1699 struct mount *mnt = real_mount(m);
1700 int actual_refs = 0;
1701 int minimum_refs = 0;
1702 struct mount *p;
1703 BUG_ON(!m);
1704
1705 /* write lock needed for mnt_get_count */
1706 lock_mount_hash();
1707 for (p = mnt; p; p = next_mnt(p, mnt)) {
1708 actual_refs += mnt_get_count(p);
1709 minimum_refs += 2;
1710 }
1711 unlock_mount_hash();
1712
1713 if (actual_refs > minimum_refs)
1714 return 0;
1715
1716 return 1;
1717}
1718
1719EXPORT_SYMBOL(may_umount_tree);
1720
1721/**
1722 * may_umount - check if a mount point is busy
1723 * @mnt: root of mount
1724 *
1725 * This is called to check if a mount point has any
1726 * open files, pwds, chroots or sub mounts. If the
1727 * mount has sub mounts this will return busy
1728 * regardless of whether the sub mounts are busy.
1729 *
1730 * Doesn't take quota and stuff into account. IOW, in some cases it will
1731 * give false negatives. The main reason why it's here is that we need
1732 * a non-destructive way to look for easily umountable filesystems.
1733 */
1734int may_umount(struct vfsmount *mnt)
1735{
1736 int ret = 1;
1737 down_read(&namespace_sem);
1738 lock_mount_hash();
1739 if (propagate_mount_busy(real_mount(mnt), 2))
1740 ret = 0;
1741 unlock_mount_hash();
1742 up_read(&namespace_sem);
1743 return ret;
1744}
1745
1746EXPORT_SYMBOL(may_umount);
1747
1748#ifdef CONFIG_FSNOTIFY
1749static void mnt_notify(struct mount *p)
1750{
1751 if (!p->prev_ns && p->mnt_ns) {
1752 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1753 } else if (p->prev_ns && !p->mnt_ns) {
1754 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1755 } else if (p->prev_ns == p->mnt_ns) {
1756 fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1757 } else {
1758 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1759 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1760 }
1761 p->prev_ns = p->mnt_ns;
1762}
1763
1764static void notify_mnt_list(void)
1765{
1766 struct mount *m, *tmp;
1767 /*
1768 * Notify about mounts that were added/reparented/detached/remain
1769 * connected after unmount.
1770 */
1771 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) {
1772 mnt_notify(m);
1773 list_del_init(&m->to_notify);
1774 }
1775}
1776
1777static bool need_notify_mnt_list(void)
1778{
1779 return !list_empty(¬ify_list);
1780}
1781#else
1782static void notify_mnt_list(void)
1783{
1784}
1785
1786static bool need_notify_mnt_list(void)
1787{
1788 return false;
1789}
1790#endif
1791
1792static void namespace_unlock(void)
1793{
1794 struct hlist_head head;
1795 struct hlist_node *p;
1796 struct mount *m;
1797 LIST_HEAD(list);
1798
1799 hlist_move_list(&unmounted, &head);
1800 list_splice_init(&ex_mountpoints, &list);
1801
1802 if (need_notify_mnt_list()) {
1803 /*
1804 * No point blocking out concurrent readers while notifications
1805 * are sent. This will also allow statmount()/listmount() to run
1806 * concurrently.
1807 */
1808 downgrade_write(&namespace_sem);
1809 notify_mnt_list();
1810 up_read(&namespace_sem);
1811 } else {
1812 up_write(&namespace_sem);
1813 }
1814
1815 shrink_dentry_list(&list);
1816
1817 if (likely(hlist_empty(&head)))
1818 return;
1819
1820 synchronize_rcu_expedited();
1821
1822 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1823 hlist_del(&m->mnt_umount);
1824 mntput(&m->mnt);
1825 }
1826}
1827
1828static inline void namespace_lock(void)
1829{
1830 down_write(&namespace_sem);
1831}
1832
1833enum umount_tree_flags {
1834 UMOUNT_SYNC = 1,
1835 UMOUNT_PROPAGATE = 2,
1836 UMOUNT_CONNECTED = 4,
1837};
1838
1839static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1840{
1841 /* Leaving mounts connected is only valid for lazy umounts */
1842 if (how & UMOUNT_SYNC)
1843 return true;
1844
1845 /* A mount without a parent has nothing to be connected to */
1846 if (!mnt_has_parent(mnt))
1847 return true;
1848
1849 /* Because the reference counting rules change when mounts are
1850 * unmounted and connected, umounted mounts may not be
1851 * connected to mounted mounts.
1852 */
1853 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1854 return true;
1855
1856 /* Has it been requested that the mount remain connected? */
1857 if (how & UMOUNT_CONNECTED)
1858 return false;
1859
1860 /* Is the mount locked such that it needs to remain connected? */
1861 if (IS_MNT_LOCKED(mnt))
1862 return false;
1863
1864 /* By default disconnect the mount */
1865 return true;
1866}
1867
1868/*
1869 * mount_lock must be held
1870 * namespace_sem must be held for write
1871 */
1872static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1873{
1874 LIST_HEAD(tmp_list);
1875 struct mount *p;
1876
1877 if (how & UMOUNT_PROPAGATE)
1878 propagate_mount_unlock(mnt);
1879
1880 /* Gather the mounts to umount */
1881 for (p = mnt; p; p = next_mnt(p, mnt)) {
1882 p->mnt.mnt_flags |= MNT_UMOUNT;
1883 if (mnt_ns_attached(p))
1884 move_from_ns(p, &tmp_list);
1885 else
1886 list_move(&p->mnt_list, &tmp_list);
1887 }
1888
1889 /* Hide the mounts from mnt_mounts */
1890 list_for_each_entry(p, &tmp_list, mnt_list) {
1891 list_del_init(&p->mnt_child);
1892 }
1893
1894 /* Add propagated mounts to the tmp_list */
1895 if (how & UMOUNT_PROPAGATE)
1896 propagate_umount(&tmp_list);
1897
1898 while (!list_empty(&tmp_list)) {
1899 struct mnt_namespace *ns;
1900 bool disconnect;
1901 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1902 list_del_init(&p->mnt_expire);
1903 list_del_init(&p->mnt_list);
1904 ns = p->mnt_ns;
1905 if (ns) {
1906 ns->nr_mounts--;
1907 __touch_mnt_namespace(ns);
1908 }
1909 p->mnt_ns = NULL;
1910 if (how & UMOUNT_SYNC)
1911 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1912
1913 disconnect = disconnect_mount(p, how);
1914 if (mnt_has_parent(p)) {
1915 mnt_add_count(p->mnt_parent, -1);
1916 if (!disconnect) {
1917 /* Don't forget about p */
1918 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1919 } else {
1920 umount_mnt(p);
1921 }
1922 }
1923 change_mnt_propagation(p, MS_PRIVATE);
1924 if (disconnect)
1925 hlist_add_head(&p->mnt_umount, &unmounted);
1926
1927 /*
1928 * At this point p->mnt_ns is NULL, notification will be queued
1929 * only if
1930 *
1931 * - p->prev_ns is non-NULL *and*
1932 * - p->prev_ns->n_fsnotify_marks is non-NULL
1933 *
1934 * This will preclude queuing the mount if this is a cleanup
1935 * after a failed copy_tree() or destruction of an anonymous
1936 * namespace, etc.
1937 */
1938 mnt_notify_add(p);
1939 }
1940}
1941
1942static void shrink_submounts(struct mount *mnt);
1943
1944static int do_umount_root(struct super_block *sb)
1945{
1946 int ret = 0;
1947
1948 down_write(&sb->s_umount);
1949 if (!sb_rdonly(sb)) {
1950 struct fs_context *fc;
1951
1952 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1953 SB_RDONLY);
1954 if (IS_ERR(fc)) {
1955 ret = PTR_ERR(fc);
1956 } else {
1957 ret = parse_monolithic_mount_data(fc, NULL);
1958 if (!ret)
1959 ret = reconfigure_super(fc);
1960 put_fs_context(fc);
1961 }
1962 }
1963 up_write(&sb->s_umount);
1964 return ret;
1965}
1966
1967static int do_umount(struct mount *mnt, int flags)
1968{
1969 struct super_block *sb = mnt->mnt.mnt_sb;
1970 int retval;
1971
1972 retval = security_sb_umount(&mnt->mnt, flags);
1973 if (retval)
1974 return retval;
1975
1976 /*
1977 * Allow userspace to request a mountpoint be expired rather than
1978 * unmounting unconditionally. Unmount only happens if:
1979 * (1) the mark is already set (the mark is cleared by mntput())
1980 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1981 */
1982 if (flags & MNT_EXPIRE) {
1983 if (&mnt->mnt == current->fs->root.mnt ||
1984 flags & (MNT_FORCE | MNT_DETACH))
1985 return -EINVAL;
1986
1987 /*
1988 * probably don't strictly need the lock here if we examined
1989 * all race cases, but it's a slowpath.
1990 */
1991 lock_mount_hash();
1992 if (mnt_get_count(mnt) != 2) {
1993 unlock_mount_hash();
1994 return -EBUSY;
1995 }
1996 unlock_mount_hash();
1997
1998 if (!xchg(&mnt->mnt_expiry_mark, 1))
1999 return -EAGAIN;
2000 }
2001
2002 /*
2003 * If we may have to abort operations to get out of this
2004 * mount, and they will themselves hold resources we must
2005 * allow the fs to do things. In the Unix tradition of
2006 * 'Gee thats tricky lets do it in userspace' the umount_begin
2007 * might fail to complete on the first run through as other tasks
2008 * must return, and the like. Thats for the mount program to worry
2009 * about for the moment.
2010 */
2011
2012 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
2013 sb->s_op->umount_begin(sb);
2014 }
2015
2016 /*
2017 * No sense to grab the lock for this test, but test itself looks
2018 * somewhat bogus. Suggestions for better replacement?
2019 * Ho-hum... In principle, we might treat that as umount + switch
2020 * to rootfs. GC would eventually take care of the old vfsmount.
2021 * Actually it makes sense, especially if rootfs would contain a
2022 * /reboot - static binary that would close all descriptors and
2023 * call reboot(9). Then init(8) could umount root and exec /reboot.
2024 */
2025 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
2026 /*
2027 * Special case for "unmounting" root ...
2028 * we just try to remount it readonly.
2029 */
2030 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2031 return -EPERM;
2032 return do_umount_root(sb);
2033 }
2034
2035 namespace_lock();
2036 lock_mount_hash();
2037
2038 /* Recheck MNT_LOCKED with the locks held */
2039 retval = -EINVAL;
2040 if (mnt->mnt.mnt_flags & MNT_LOCKED)
2041 goto out;
2042
2043 event++;
2044 if (flags & MNT_DETACH) {
2045 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
2046 umount_tree(mnt, UMOUNT_PROPAGATE);
2047 retval = 0;
2048 } else {
2049 shrink_submounts(mnt);
2050 retval = -EBUSY;
2051 if (!propagate_mount_busy(mnt, 2)) {
2052 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
2053 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2054 retval = 0;
2055 }
2056 }
2057out:
2058 unlock_mount_hash();
2059 namespace_unlock();
2060 return retval;
2061}
2062
2063/*
2064 * __detach_mounts - lazily unmount all mounts on the specified dentry
2065 *
2066 * During unlink, rmdir, and d_drop it is possible to loose the path
2067 * to an existing mountpoint, and wind up leaking the mount.
2068 * detach_mounts allows lazily unmounting those mounts instead of
2069 * leaking them.
2070 *
2071 * The caller may hold dentry->d_inode->i_mutex.
2072 */
2073void __detach_mounts(struct dentry *dentry)
2074{
2075 struct mountpoint *mp;
2076 struct mount *mnt;
2077
2078 namespace_lock();
2079 lock_mount_hash();
2080 mp = lookup_mountpoint(dentry);
2081 if (!mp)
2082 goto out_unlock;
2083
2084 event++;
2085 while (!hlist_empty(&mp->m_list)) {
2086 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
2087 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
2088 umount_mnt(mnt);
2089 hlist_add_head(&mnt->mnt_umount, &unmounted);
2090 }
2091 else umount_tree(mnt, UMOUNT_CONNECTED);
2092 }
2093 put_mountpoint(mp);
2094out_unlock:
2095 unlock_mount_hash();
2096 namespace_unlock();
2097}
2098
2099/*
2100 * Is the caller allowed to modify his namespace?
2101 */
2102bool may_mount(void)
2103{
2104 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2105}
2106
2107static void warn_mandlock(void)
2108{
2109 pr_warn_once("=======================================================\n"
2110 "WARNING: The mand mount option has been deprecated and\n"
2111 " and is ignored by this kernel. Remove the mand\n"
2112 " option from the mount to silence this warning.\n"
2113 "=======================================================\n");
2114}
2115
2116static int can_umount(const struct path *path, int flags)
2117{
2118 struct mount *mnt = real_mount(path->mnt);
2119 struct super_block *sb = path->dentry->d_sb;
2120
2121 if (!may_mount())
2122 return -EPERM;
2123 if (!path_mounted(path))
2124 return -EINVAL;
2125 if (!check_mnt(mnt))
2126 return -EINVAL;
2127 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2128 return -EINVAL;
2129 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2130 return -EPERM;
2131 return 0;
2132}
2133
2134// caller is responsible for flags being sane
2135int path_umount(struct path *path, int flags)
2136{
2137 struct mount *mnt = real_mount(path->mnt);
2138 int ret;
2139
2140 ret = can_umount(path, flags);
2141 if (!ret)
2142 ret = do_umount(mnt, flags);
2143
2144 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2145 dput(path->dentry);
2146 mntput_no_expire(mnt);
2147 return ret;
2148}
2149
2150static int ksys_umount(char __user *name, int flags)
2151{
2152 int lookup_flags = LOOKUP_MOUNTPOINT;
2153 struct path path;
2154 int ret;
2155
2156 // basic validity checks done first
2157 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2158 return -EINVAL;
2159
2160 if (!(flags & UMOUNT_NOFOLLOW))
2161 lookup_flags |= LOOKUP_FOLLOW;
2162 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2163 if (ret)
2164 return ret;
2165 return path_umount(&path, flags);
2166}
2167
2168SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2169{
2170 return ksys_umount(name, flags);
2171}
2172
2173#ifdef __ARCH_WANT_SYS_OLDUMOUNT
2174
2175/*
2176 * The 2.0 compatible umount. No flags.
2177 */
2178SYSCALL_DEFINE1(oldumount, char __user *, name)
2179{
2180 return ksys_umount(name, 0);
2181}
2182
2183#endif
2184
2185static bool is_mnt_ns_file(struct dentry *dentry)
2186{
2187 struct ns_common *ns;
2188
2189 /* Is this a proxy for a mount namespace? */
2190 if (dentry->d_op != &ns_dentry_operations)
2191 return false;
2192
2193 ns = d_inode(dentry)->i_private;
2194
2195 return ns->ops == &mntns_operations;
2196}
2197
2198struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2199{
2200 return &mnt->ns;
2201}
2202
2203struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2204{
2205 guard(rcu)();
2206
2207 for (;;) {
2208 struct list_head *list;
2209
2210 if (previous)
2211 list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list));
2212 else
2213 list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list));
2214 if (list_is_head(list, &mnt_ns_list))
2215 return ERR_PTR(-ENOENT);
2216
2217 mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list);
2218
2219 /*
2220 * The last passive reference count is put with RCU
2221 * delay so accessing the mount namespace is not just
2222 * safe but all relevant members are still valid.
2223 */
2224 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2225 continue;
2226
2227 /*
2228 * We need an active reference count as we're persisting
2229 * the mount namespace and it might already be on its
2230 * deathbed.
2231 */
2232 if (!refcount_inc_not_zero(&mntns->ns.count))
2233 continue;
2234
2235 return mntns;
2236 }
2237}
2238
2239struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2240{
2241 if (!is_mnt_ns_file(dentry))
2242 return NULL;
2243
2244 return to_mnt_ns(get_proc_ns(dentry->d_inode));
2245}
2246
2247static bool mnt_ns_loop(struct dentry *dentry)
2248{
2249 /* Could bind mounting the mount namespace inode cause a
2250 * mount namespace loop?
2251 */
2252 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2253
2254 if (!mnt_ns)
2255 return false;
2256
2257 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2258}
2259
2260struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2261 int flag)
2262{
2263 struct mount *res, *src_parent, *src_root_child, *src_mnt,
2264 *dst_parent, *dst_mnt;
2265
2266 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2267 return ERR_PTR(-EINVAL);
2268
2269 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2270 return ERR_PTR(-EINVAL);
2271
2272 res = dst_mnt = clone_mnt(src_root, dentry, flag);
2273 if (IS_ERR(dst_mnt))
2274 return dst_mnt;
2275
2276 src_parent = src_root;
2277 dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2278
2279 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2280 if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2281 continue;
2282
2283 for (src_mnt = src_root_child; src_mnt;
2284 src_mnt = next_mnt(src_mnt, src_root_child)) {
2285 if (!(flag & CL_COPY_UNBINDABLE) &&
2286 IS_MNT_UNBINDABLE(src_mnt)) {
2287 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2288 /* Both unbindable and locked. */
2289 dst_mnt = ERR_PTR(-EPERM);
2290 goto out;
2291 } else {
2292 src_mnt = skip_mnt_tree(src_mnt);
2293 continue;
2294 }
2295 }
2296 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2297 is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2298 src_mnt = skip_mnt_tree(src_mnt);
2299 continue;
2300 }
2301 while (src_parent != src_mnt->mnt_parent) {
2302 src_parent = src_parent->mnt_parent;
2303 dst_mnt = dst_mnt->mnt_parent;
2304 }
2305
2306 src_parent = src_mnt;
2307 dst_parent = dst_mnt;
2308 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2309 if (IS_ERR(dst_mnt))
2310 goto out;
2311 lock_mount_hash();
2312 list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2313 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2314 unlock_mount_hash();
2315 }
2316 }
2317 return res;
2318
2319out:
2320 if (res) {
2321 lock_mount_hash();
2322 umount_tree(res, UMOUNT_SYNC);
2323 unlock_mount_hash();
2324 }
2325 return dst_mnt;
2326}
2327
2328/* Caller should check returned pointer for errors */
2329
2330struct vfsmount *collect_mounts(const struct path *path)
2331{
2332 struct mount *tree;
2333 namespace_lock();
2334 if (!check_mnt(real_mount(path->mnt)))
2335 tree = ERR_PTR(-EINVAL);
2336 else
2337 tree = copy_tree(real_mount(path->mnt), path->dentry,
2338 CL_COPY_ALL | CL_PRIVATE);
2339 namespace_unlock();
2340 if (IS_ERR(tree))
2341 return ERR_CAST(tree);
2342 return &tree->mnt;
2343}
2344
2345static void free_mnt_ns(struct mnt_namespace *);
2346static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2347
2348static inline bool must_dissolve(struct mnt_namespace *mnt_ns)
2349{
2350 /*
2351 * This mount belonged to an anonymous mount namespace
2352 * but was moved to a non-anonymous mount namespace and
2353 * then unmounted.
2354 */
2355 if (unlikely(!mnt_ns))
2356 return false;
2357
2358 /*
2359 * This mount belongs to a non-anonymous mount namespace
2360 * and we know that such a mount can never transition to
2361 * an anonymous mount namespace again.
2362 */
2363 if (!is_anon_ns(mnt_ns)) {
2364 /*
2365 * A detached mount either belongs to an anonymous mount
2366 * namespace or a non-anonymous mount namespace. It
2367 * should never belong to something purely internal.
2368 */
2369 VFS_WARN_ON_ONCE(mnt_ns == MNT_NS_INTERNAL);
2370 return false;
2371 }
2372
2373 return true;
2374}
2375
2376void dissolve_on_fput(struct vfsmount *mnt)
2377{
2378 struct mnt_namespace *ns;
2379 struct mount *m = real_mount(mnt);
2380
2381 scoped_guard(rcu) {
2382 if (!must_dissolve(READ_ONCE(m->mnt_ns)))
2383 return;
2384 }
2385
2386 scoped_guard(rwsem_write, &namespace_sem) {
2387 ns = m->mnt_ns;
2388 if (!must_dissolve(ns))
2389 return;
2390
2391 /*
2392 * After must_dissolve() we know that this is a detached
2393 * mount in an anonymous mount namespace.
2394 *
2395 * Now when mnt_has_parent() reports that this mount
2396 * tree has a parent, we know that this anonymous mount
2397 * tree has been moved to another anonymous mount
2398 * namespace.
2399 *
2400 * So when closing this file we cannot unmount the mount
2401 * tree. This will be done when the file referring to
2402 * the root of the anonymous mount namespace will be
2403 * closed (It could already be closed but it would sync
2404 * on @namespace_sem and wait for us to finish.).
2405 */
2406 if (mnt_has_parent(m))
2407 return;
2408
2409 lock_mount_hash();
2410 umount_tree(m, UMOUNT_CONNECTED);
2411 unlock_mount_hash();
2412 }
2413
2414 /* Make sure we notice when we leak mounts. */
2415 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
2416 free_mnt_ns(ns);
2417}
2418
2419void drop_collected_mounts(struct vfsmount *mnt)
2420{
2421 namespace_lock();
2422 lock_mount_hash();
2423 umount_tree(real_mount(mnt), 0);
2424 unlock_mount_hash();
2425 namespace_unlock();
2426}
2427
2428bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2429{
2430 struct mount *child;
2431
2432 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2433 if (!is_subdir(child->mnt_mountpoint, dentry))
2434 continue;
2435
2436 if (child->mnt.mnt_flags & MNT_LOCKED)
2437 return true;
2438 }
2439 return false;
2440}
2441
2442/*
2443 * Check that there aren't references to earlier/same mount namespaces in the
2444 * specified subtree. Such references can act as pins for mount namespaces
2445 * that aren't checked by the mount-cycle checking code, thereby allowing
2446 * cycles to be made.
2447 */
2448static bool check_for_nsfs_mounts(struct mount *subtree)
2449{
2450 struct mount *p;
2451 bool ret = false;
2452
2453 lock_mount_hash();
2454 for (p = subtree; p; p = next_mnt(p, subtree))
2455 if (mnt_ns_loop(p->mnt.mnt_root))
2456 goto out;
2457
2458 ret = true;
2459out:
2460 unlock_mount_hash();
2461 return ret;
2462}
2463
2464/**
2465 * clone_private_mount - create a private clone of a path
2466 * @path: path to clone
2467 *
2468 * This creates a new vfsmount, which will be the clone of @path. The new mount
2469 * will not be attached anywhere in the namespace and will be private (i.e.
2470 * changes to the originating mount won't be propagated into this).
2471 *
2472 * This assumes caller has called or done the equivalent of may_mount().
2473 *
2474 * Release with mntput().
2475 */
2476struct vfsmount *clone_private_mount(const struct path *path)
2477{
2478 struct mount *old_mnt = real_mount(path->mnt);
2479 struct mount *new_mnt;
2480
2481 guard(rwsem_read)(&namespace_sem);
2482
2483 if (IS_MNT_UNBINDABLE(old_mnt))
2484 return ERR_PTR(-EINVAL);
2485
2486 if (mnt_has_parent(old_mnt)) {
2487 if (!check_mnt(old_mnt))
2488 return ERR_PTR(-EINVAL);
2489 } else {
2490 if (!is_mounted(&old_mnt->mnt))
2491 return ERR_PTR(-EINVAL);
2492
2493 /* Make sure this isn't something purely kernel internal. */
2494 if (!is_anon_ns(old_mnt->mnt_ns))
2495 return ERR_PTR(-EINVAL);
2496
2497 /* Make sure we don't create mount namespace loops. */
2498 if (!check_for_nsfs_mounts(old_mnt))
2499 return ERR_PTR(-EINVAL);
2500 }
2501
2502 if (has_locked_children(old_mnt, path->dentry))
2503 return ERR_PTR(-EINVAL);
2504
2505 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2506 if (IS_ERR(new_mnt))
2507 return ERR_PTR(-EINVAL);
2508
2509 /* Longterm mount to be removed by kern_unmount*() */
2510 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2511 return &new_mnt->mnt;
2512}
2513EXPORT_SYMBOL_GPL(clone_private_mount);
2514
2515int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2516 struct vfsmount *root)
2517{
2518 struct mount *mnt;
2519 int res = f(root, arg);
2520 if (res)
2521 return res;
2522 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2523 res = f(&mnt->mnt, arg);
2524 if (res)
2525 return res;
2526 }
2527 return 0;
2528}
2529
2530static void lock_mnt_tree(struct mount *mnt)
2531{
2532 struct mount *p;
2533
2534 for (p = mnt; p; p = next_mnt(p, mnt)) {
2535 int flags = p->mnt.mnt_flags;
2536 /* Don't allow unprivileged users to change mount flags */
2537 flags |= MNT_LOCK_ATIME;
2538
2539 if (flags & MNT_READONLY)
2540 flags |= MNT_LOCK_READONLY;
2541
2542 if (flags & MNT_NODEV)
2543 flags |= MNT_LOCK_NODEV;
2544
2545 if (flags & MNT_NOSUID)
2546 flags |= MNT_LOCK_NOSUID;
2547
2548 if (flags & MNT_NOEXEC)
2549 flags |= MNT_LOCK_NOEXEC;
2550 /* Don't allow unprivileged users to reveal what is under a mount */
2551 if (list_empty(&p->mnt_expire))
2552 flags |= MNT_LOCKED;
2553 p->mnt.mnt_flags = flags;
2554 }
2555}
2556
2557static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2558{
2559 struct mount *p;
2560
2561 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2562 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2563 mnt_release_group_id(p);
2564 }
2565}
2566
2567static int invent_group_ids(struct mount *mnt, bool recurse)
2568{
2569 struct mount *p;
2570
2571 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2572 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2573 int err = mnt_alloc_group_id(p);
2574 if (err) {
2575 cleanup_group_ids(mnt, p);
2576 return err;
2577 }
2578 }
2579 }
2580
2581 return 0;
2582}
2583
2584int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2585{
2586 unsigned int max = READ_ONCE(sysctl_mount_max);
2587 unsigned int mounts = 0;
2588 struct mount *p;
2589
2590 if (ns->nr_mounts >= max)
2591 return -ENOSPC;
2592 max -= ns->nr_mounts;
2593 if (ns->pending_mounts >= max)
2594 return -ENOSPC;
2595 max -= ns->pending_mounts;
2596
2597 for (p = mnt; p; p = next_mnt(p, mnt))
2598 mounts++;
2599
2600 if (mounts > max)
2601 return -ENOSPC;
2602
2603 ns->pending_mounts += mounts;
2604 return 0;
2605}
2606
2607enum mnt_tree_flags_t {
2608 MNT_TREE_MOVE = BIT(0),
2609 MNT_TREE_BENEATH = BIT(1),
2610 MNT_TREE_PROPAGATION = BIT(2),
2611};
2612
2613/**
2614 * attach_recursive_mnt - attach a source mount tree
2615 * @source_mnt: mount tree to be attached
2616 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath
2617 * @dest_mp: the mountpoint @source_mnt will be mounted at
2618 * @flags: modify how @source_mnt is supposed to be attached
2619 *
2620 * NOTE: in the table below explains the semantics when a source mount
2621 * of a given type is attached to a destination mount of a given type.
2622 * ---------------------------------------------------------------------------
2623 * | BIND MOUNT OPERATION |
2624 * |**************************************************************************
2625 * | source-->| shared | private | slave | unbindable |
2626 * | dest | | | | |
2627 * | | | | | | |
2628 * | v | | | | |
2629 * |**************************************************************************
2630 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2631 * | | | | | |
2632 * |non-shared| shared (+) | private | slave (*) | invalid |
2633 * ***************************************************************************
2634 * A bind operation clones the source mount and mounts the clone on the
2635 * destination mount.
2636 *
2637 * (++) the cloned mount is propagated to all the mounts in the propagation
2638 * tree of the destination mount and the cloned mount is added to
2639 * the peer group of the source mount.
2640 * (+) the cloned mount is created under the destination mount and is marked
2641 * as shared. The cloned mount is added to the peer group of the source
2642 * mount.
2643 * (+++) the mount is propagated to all the mounts in the propagation tree
2644 * of the destination mount and the cloned mount is made slave
2645 * of the same master as that of the source mount. The cloned mount
2646 * is marked as 'shared and slave'.
2647 * (*) the cloned mount is made a slave of the same master as that of the
2648 * source mount.
2649 *
2650 * ---------------------------------------------------------------------------
2651 * | MOVE MOUNT OPERATION |
2652 * |**************************************************************************
2653 * | source-->| shared | private | slave | unbindable |
2654 * | dest | | | | |
2655 * | | | | | | |
2656 * | v | | | | |
2657 * |**************************************************************************
2658 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2659 * | | | | | |
2660 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2661 * ***************************************************************************
2662 *
2663 * (+) the mount is moved to the destination. And is then propagated to
2664 * all the mounts in the propagation tree of the destination mount.
2665 * (+*) the mount is moved to the destination.
2666 * (+++) the mount is moved to the destination and is then propagated to
2667 * all the mounts belonging to the destination mount's propagation tree.
2668 * the mount is marked as 'shared and slave'.
2669 * (*) the mount continues to be a slave at the new location.
2670 *
2671 * if the source mount is a tree, the operations explained above is
2672 * applied to each mount in the tree.
2673 * Must be called without spinlocks held, since this function can sleep
2674 * in allocations.
2675 *
2676 * Context: The function expects namespace_lock() to be held.
2677 * Return: If @source_mnt was successfully attached 0 is returned.
2678 * Otherwise a negative error code is returned.
2679 */
2680static int attach_recursive_mnt(struct mount *source_mnt,
2681 struct mount *top_mnt,
2682 struct mountpoint *dest_mp,
2683 enum mnt_tree_flags_t flags)
2684{
2685 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2686 HLIST_HEAD(tree_list);
2687 struct mnt_namespace *ns = top_mnt->mnt_ns;
2688 struct mountpoint *smp;
2689 struct mount *child, *dest_mnt, *p;
2690 struct hlist_node *n;
2691 int err = 0;
2692 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2693
2694 /*
2695 * Preallocate a mountpoint in case the new mounts need to be
2696 * mounted beneath mounts on the same mountpoint.
2697 */
2698 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2699 if (IS_ERR(smp))
2700 return PTR_ERR(smp);
2701
2702 /* Is there space to add these mounts to the mount namespace? */
2703 if (!moving) {
2704 err = count_mounts(ns, source_mnt);
2705 if (err)
2706 goto out;
2707 }
2708
2709 if (beneath)
2710 dest_mnt = top_mnt->mnt_parent;
2711 else
2712 dest_mnt = top_mnt;
2713
2714 if (IS_MNT_SHARED(dest_mnt)) {
2715 err = invent_group_ids(source_mnt, true);
2716 if (err)
2717 goto out;
2718 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2719 }
2720 lock_mount_hash();
2721 if (err)
2722 goto out_cleanup_ids;
2723
2724 if (IS_MNT_SHARED(dest_mnt)) {
2725 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2726 set_mnt_shared(p);
2727 }
2728
2729 if (moving) {
2730 if (beneath)
2731 dest_mp = smp;
2732 unhash_mnt(source_mnt);
2733 attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2734 mnt_notify_add(source_mnt);
2735 touch_mnt_namespace(source_mnt->mnt_ns);
2736 } else {
2737 if (source_mnt->mnt_ns) {
2738 LIST_HEAD(head);
2739
2740 /* move from anon - the caller will destroy */
2741 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2742 move_from_ns(p, &head);
2743 list_del_init(&head);
2744 }
2745 if (beneath)
2746 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2747 else
2748 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2749 commit_tree(source_mnt);
2750 }
2751
2752 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2753 struct mount *q;
2754 hlist_del_init(&child->mnt_hash);
2755 q = __lookup_mnt(&child->mnt_parent->mnt,
2756 child->mnt_mountpoint);
2757 if (q)
2758 mnt_change_mountpoint(child, smp, q);
2759 /* Notice when we are propagating across user namespaces */
2760 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2761 lock_mnt_tree(child);
2762 child->mnt.mnt_flags &= ~MNT_LOCKED;
2763 commit_tree(child);
2764 }
2765 put_mountpoint(smp);
2766 unlock_mount_hash();
2767
2768 return 0;
2769
2770 out_cleanup_ids:
2771 while (!hlist_empty(&tree_list)) {
2772 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2773 child->mnt_parent->mnt_ns->pending_mounts = 0;
2774 umount_tree(child, UMOUNT_SYNC);
2775 }
2776 unlock_mount_hash();
2777 cleanup_group_ids(source_mnt, NULL);
2778 out:
2779 ns->pending_mounts = 0;
2780
2781 read_seqlock_excl(&mount_lock);
2782 put_mountpoint(smp);
2783 read_sequnlock_excl(&mount_lock);
2784
2785 return err;
2786}
2787
2788/**
2789 * do_lock_mount - lock mount and mountpoint
2790 * @path: target path
2791 * @beneath: whether the intention is to mount beneath @path
2792 *
2793 * Follow the mount stack on @path until the top mount @mnt is found. If
2794 * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2795 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2796 * until nothing is stacked on top of it anymore.
2797 *
2798 * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2799 * against concurrent removal of the new mountpoint from another mount
2800 * namespace.
2801 *
2802 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2803 * @mp on @mnt->mnt_parent must be acquired. This protects against a
2804 * concurrent unlink of @mp->mnt_dentry from another mount namespace
2805 * where @mnt doesn't have a child mount mounted @mp. A concurrent
2806 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2807 * on top of it for @beneath.
2808 *
2809 * In addition, @beneath needs to make sure that @mnt hasn't been
2810 * unmounted or moved from its current mountpoint in between dropping
2811 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2812 * being unmounted would be detected later by e.g., calling
2813 * check_mnt(mnt) in the function it's called from. For the @beneath
2814 * case however, it's useful to detect it directly in do_lock_mount().
2815 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2816 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2817 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2818 *
2819 * Return: Either the target mountpoint on the top mount or the top
2820 * mount's mountpoint.
2821 */
2822static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2823{
2824 struct vfsmount *mnt = path->mnt;
2825 struct dentry *dentry;
2826 struct mountpoint *mp = ERR_PTR(-ENOENT);
2827
2828 for (;;) {
2829 struct mount *m;
2830
2831 if (beneath) {
2832 m = real_mount(mnt);
2833 read_seqlock_excl(&mount_lock);
2834 dentry = dget(m->mnt_mountpoint);
2835 read_sequnlock_excl(&mount_lock);
2836 } else {
2837 dentry = path->dentry;
2838 }
2839
2840 inode_lock(dentry->d_inode);
2841 if (unlikely(cant_mount(dentry))) {
2842 inode_unlock(dentry->d_inode);
2843 goto out;
2844 }
2845
2846 namespace_lock();
2847
2848 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2849 namespace_unlock();
2850 inode_unlock(dentry->d_inode);
2851 goto out;
2852 }
2853
2854 mnt = lookup_mnt(path);
2855 if (likely(!mnt))
2856 break;
2857
2858 namespace_unlock();
2859 inode_unlock(dentry->d_inode);
2860 if (beneath)
2861 dput(dentry);
2862 path_put(path);
2863 path->mnt = mnt;
2864 path->dentry = dget(mnt->mnt_root);
2865 }
2866
2867 mp = get_mountpoint(dentry);
2868 if (IS_ERR(mp)) {
2869 namespace_unlock();
2870 inode_unlock(dentry->d_inode);
2871 }
2872
2873out:
2874 if (beneath)
2875 dput(dentry);
2876
2877 return mp;
2878}
2879
2880static inline struct mountpoint *lock_mount(struct path *path)
2881{
2882 return do_lock_mount(path, false);
2883}
2884
2885static void unlock_mount(struct mountpoint *where)
2886{
2887 struct dentry *dentry = where->m_dentry;
2888
2889 read_seqlock_excl(&mount_lock);
2890 put_mountpoint(where);
2891 read_sequnlock_excl(&mount_lock);
2892
2893 namespace_unlock();
2894 inode_unlock(dentry->d_inode);
2895}
2896
2897static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2898{
2899 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2900 return -EINVAL;
2901
2902 if (d_is_dir(mp->m_dentry) !=
2903 d_is_dir(mnt->mnt.mnt_root))
2904 return -ENOTDIR;
2905
2906 return attach_recursive_mnt(mnt, p, mp, 0);
2907}
2908
2909/*
2910 * Sanity check the flags to change_mnt_propagation.
2911 */
2912
2913static int flags_to_propagation_type(int ms_flags)
2914{
2915 int type = ms_flags & ~(MS_REC | MS_SILENT);
2916
2917 /* Fail if any non-propagation flags are set */
2918 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2919 return 0;
2920 /* Only one propagation flag should be set */
2921 if (!is_power_of_2(type))
2922 return 0;
2923 return type;
2924}
2925
2926/*
2927 * recursively change the type of the mountpoint.
2928 */
2929static int do_change_type(struct path *path, int ms_flags)
2930{
2931 struct mount *m;
2932 struct mount *mnt = real_mount(path->mnt);
2933 int recurse = ms_flags & MS_REC;
2934 int type;
2935 int err = 0;
2936
2937 if (!path_mounted(path))
2938 return -EINVAL;
2939
2940 type = flags_to_propagation_type(ms_flags);
2941 if (!type)
2942 return -EINVAL;
2943
2944 namespace_lock();
2945 if (type == MS_SHARED) {
2946 err = invent_group_ids(mnt, recurse);
2947 if (err)
2948 goto out_unlock;
2949 }
2950
2951 lock_mount_hash();
2952 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2953 change_mnt_propagation(m, type);
2954 unlock_mount_hash();
2955
2956 out_unlock:
2957 namespace_unlock();
2958 return err;
2959}
2960
2961/* may_copy_tree() - check if a mount tree can be copied
2962 * @path: path to the mount tree to be copied
2963 *
2964 * This helper checks if the caller may copy the mount tree starting
2965 * from @path->mnt. The caller may copy the mount tree under the
2966 * following circumstances:
2967 *
2968 * (1) The caller is located in the mount namespace of the mount tree.
2969 * This also implies that the mount does not belong to an anonymous
2970 * mount namespace.
2971 * (2) The caller tries to copy an nfs mount referring to a mount
2972 * namespace, i.e., the caller is trying to copy a mount namespace
2973 * entry from nsfs.
2974 * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2975 * (4) The caller is trying to copy a mount tree that belongs to an
2976 * anonymous mount namespace.
2977 *
2978 * For that to be safe, this helper enforces that the origin mount
2979 * namespace the anonymous mount namespace was created from is the
2980 * same as the caller's mount namespace by comparing the sequence
2981 * numbers.
2982 *
2983 * This is not strictly necessary. The current semantics of the new
2984 * mount api enforce that the caller must be located in the same
2985 * mount namespace as the mount tree it interacts with. Using the
2986 * origin sequence number preserves these semantics even for
2987 * anonymous mount namespaces. However, one could envision extending
2988 * the api to directly operate across mount namespace if needed.
2989 *
2990 * The ownership of a non-anonymous mount namespace such as the
2991 * caller's cannot change.
2992 * => We know that the caller's mount namespace is stable.
2993 *
2994 * If the origin sequence number of the anonymous mount namespace is
2995 * the same as the sequence number of the caller's mount namespace.
2996 * => The owning namespaces are the same.
2997 *
2998 * ==> The earlier capability check on the owning namespace of the
2999 * caller's mount namespace ensures that the caller has the
3000 * ability to copy the mount tree.
3001 *
3002 * Returns true if the mount tree can be copied, false otherwise.
3003 */
3004static inline bool may_copy_tree(struct path *path)
3005{
3006 struct mount *mnt = real_mount(path->mnt);
3007 const struct dentry_operations *d_op;
3008
3009 if (check_mnt(mnt))
3010 return true;
3011
3012 d_op = path->dentry->d_op;
3013 if (d_op == &ns_dentry_operations)
3014 return true;
3015
3016 if (d_op == &pidfs_dentry_operations)
3017 return true;
3018
3019 if (!is_mounted(path->mnt))
3020 return false;
3021
3022 return check_anonymous_mnt(mnt);
3023}
3024
3025
3026static struct mount *__do_loopback(struct path *old_path, int recurse)
3027{
3028 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
3029
3030 if (IS_MNT_UNBINDABLE(old))
3031 return mnt;
3032
3033 if (!may_copy_tree(old_path))
3034 return mnt;
3035
3036 if (!recurse && has_locked_children(old, old_path->dentry))
3037 return mnt;
3038
3039 if (recurse)
3040 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
3041 else
3042 mnt = clone_mnt(old, old_path->dentry, 0);
3043
3044 if (!IS_ERR(mnt))
3045 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3046
3047 return mnt;
3048}
3049
3050/*
3051 * do loopback mount.
3052 */
3053static int do_loopback(struct path *path, const char *old_name,
3054 int recurse)
3055{
3056 struct path old_path;
3057 struct mount *mnt = NULL, *parent;
3058 struct mountpoint *mp;
3059 int err;
3060 if (!old_name || !*old_name)
3061 return -EINVAL;
3062 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
3063 if (err)
3064 return err;
3065
3066 err = -EINVAL;
3067 if (mnt_ns_loop(old_path.dentry))
3068 goto out;
3069
3070 mp = lock_mount(path);
3071 if (IS_ERR(mp)) {
3072 err = PTR_ERR(mp);
3073 goto out;
3074 }
3075
3076 parent = real_mount(path->mnt);
3077 if (!check_mnt(parent))
3078 goto out2;
3079
3080 mnt = __do_loopback(&old_path, recurse);
3081 if (IS_ERR(mnt)) {
3082 err = PTR_ERR(mnt);
3083 goto out2;
3084 }
3085
3086 err = graft_tree(mnt, parent, mp);
3087 if (err) {
3088 lock_mount_hash();
3089 umount_tree(mnt, UMOUNT_SYNC);
3090 unlock_mount_hash();
3091 }
3092out2:
3093 unlock_mount(mp);
3094out:
3095 path_put(&old_path);
3096 return err;
3097}
3098
3099static struct file *open_detached_copy(struct path *path, bool recursive)
3100{
3101 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3102 struct user_namespace *user_ns = mnt_ns->user_ns;
3103 struct mount *mnt, *p;
3104 struct file *file;
3105
3106 ns = alloc_mnt_ns(user_ns, true);
3107 if (IS_ERR(ns))
3108 return ERR_CAST(ns);
3109
3110 namespace_lock();
3111
3112 /*
3113 * Record the sequence number of the source mount namespace.
3114 * This needs to hold namespace_sem to ensure that the mount
3115 * doesn't get attached.
3116 */
3117 if (is_mounted(path->mnt)) {
3118 src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3119 if (is_anon_ns(src_mnt_ns))
3120 ns->seq_origin = src_mnt_ns->seq_origin;
3121 else
3122 ns->seq_origin = src_mnt_ns->seq;
3123 }
3124
3125 mnt = __do_loopback(path, recursive);
3126 if (IS_ERR(mnt)) {
3127 namespace_unlock();
3128 free_mnt_ns(ns);
3129 return ERR_CAST(mnt);
3130 }
3131
3132 lock_mount_hash();
3133 for (p = mnt; p; p = next_mnt(p, mnt)) {
3134 mnt_add_to_ns(ns, p);
3135 ns->nr_mounts++;
3136 }
3137 ns->root = mnt;
3138 mntget(&mnt->mnt);
3139 unlock_mount_hash();
3140 namespace_unlock();
3141
3142 mntput(path->mnt);
3143 path->mnt = &mnt->mnt;
3144 file = dentry_open(path, O_PATH, current_cred());
3145 if (IS_ERR(file))
3146 dissolve_on_fput(path->mnt);
3147 else
3148 file->f_mode |= FMODE_NEED_UNMOUNT;
3149 return file;
3150}
3151
3152static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3153{
3154 int ret;
3155 struct path path __free(path_put) = {};
3156 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3157 bool detached = flags & OPEN_TREE_CLONE;
3158
3159 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3160
3161 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3162 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3163 OPEN_TREE_CLOEXEC))
3164 return ERR_PTR(-EINVAL);
3165
3166 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3167 return ERR_PTR(-EINVAL);
3168
3169 if (flags & AT_NO_AUTOMOUNT)
3170 lookup_flags &= ~LOOKUP_AUTOMOUNT;
3171 if (flags & AT_SYMLINK_NOFOLLOW)
3172 lookup_flags &= ~LOOKUP_FOLLOW;
3173 if (flags & AT_EMPTY_PATH)
3174 lookup_flags |= LOOKUP_EMPTY;
3175
3176 if (detached && !may_mount())
3177 return ERR_PTR(-EPERM);
3178
3179 ret = user_path_at(dfd, filename, lookup_flags, &path);
3180 if (unlikely(ret))
3181 return ERR_PTR(ret);
3182
3183 if (detached)
3184 return open_detached_copy(&path, flags & AT_RECURSIVE);
3185
3186 return dentry_open(&path, O_PATH, current_cred());
3187}
3188
3189SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3190{
3191 int fd;
3192 struct file *file __free(fput) = NULL;
3193
3194 file = vfs_open_tree(dfd, filename, flags);
3195 if (IS_ERR(file))
3196 return PTR_ERR(file);
3197
3198 fd = get_unused_fd_flags(flags & O_CLOEXEC);
3199 if (fd < 0)
3200 return fd;
3201
3202 fd_install(fd, no_free_ptr(file));
3203 return fd;
3204}
3205
3206/*
3207 * Don't allow locked mount flags to be cleared.
3208 *
3209 * No locks need to be held here while testing the various MNT_LOCK
3210 * flags because those flags can never be cleared once they are set.
3211 */
3212static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3213{
3214 unsigned int fl = mnt->mnt.mnt_flags;
3215
3216 if ((fl & MNT_LOCK_READONLY) &&
3217 !(mnt_flags & MNT_READONLY))
3218 return false;
3219
3220 if ((fl & MNT_LOCK_NODEV) &&
3221 !(mnt_flags & MNT_NODEV))
3222 return false;
3223
3224 if ((fl & MNT_LOCK_NOSUID) &&
3225 !(mnt_flags & MNT_NOSUID))
3226 return false;
3227
3228 if ((fl & MNT_LOCK_NOEXEC) &&
3229 !(mnt_flags & MNT_NOEXEC))
3230 return false;
3231
3232 if ((fl & MNT_LOCK_ATIME) &&
3233 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3234 return false;
3235
3236 return true;
3237}
3238
3239static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3240{
3241 bool readonly_request = (mnt_flags & MNT_READONLY);
3242
3243 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3244 return 0;
3245
3246 if (readonly_request)
3247 return mnt_make_readonly(mnt);
3248
3249 mnt->mnt.mnt_flags &= ~MNT_READONLY;
3250 return 0;
3251}
3252
3253static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3254{
3255 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3256 mnt->mnt.mnt_flags = mnt_flags;
3257 touch_mnt_namespace(mnt->mnt_ns);
3258}
3259
3260static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
3261{
3262 struct super_block *sb = mnt->mnt_sb;
3263
3264 if (!__mnt_is_readonly(mnt) &&
3265 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3266 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3267 char *buf, *mntpath;
3268
3269 buf = (char *)__get_free_page(GFP_KERNEL);
3270 if (buf)
3271 mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3272 else
3273 mntpath = ERR_PTR(-ENOMEM);
3274 if (IS_ERR(mntpath))
3275 mntpath = "(unknown)";
3276
3277 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3278 sb->s_type->name,
3279 is_mounted(mnt) ? "remounted" : "mounted",
3280 mntpath, &sb->s_time_max,
3281 (unsigned long long)sb->s_time_max);
3282
3283 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3284 if (buf)
3285 free_page((unsigned long)buf);
3286 }
3287}
3288
3289/*
3290 * Handle reconfiguration of the mountpoint only without alteration of the
3291 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
3292 * to mount(2).
3293 */
3294static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
3295{
3296 struct super_block *sb = path->mnt->mnt_sb;
3297 struct mount *mnt = real_mount(path->mnt);
3298 int ret;
3299
3300 if (!check_mnt(mnt))
3301 return -EINVAL;
3302
3303 if (!path_mounted(path))
3304 return -EINVAL;
3305
3306 if (!can_change_locked_flags(mnt, mnt_flags))
3307 return -EPERM;
3308
3309 /*
3310 * We're only checking whether the superblock is read-only not
3311 * changing it, so only take down_read(&sb->s_umount).
3312 */
3313 down_read(&sb->s_umount);
3314 lock_mount_hash();
3315 ret = change_mount_ro_state(mnt, mnt_flags);
3316 if (ret == 0)
3317 set_mount_attributes(mnt, mnt_flags);
3318 unlock_mount_hash();
3319 up_read(&sb->s_umount);
3320
3321 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3322
3323 return ret;
3324}
3325
3326/*
3327 * change filesystem flags. dir should be a physical root of filesystem.
3328 * If you've mounted a non-root directory somewhere and want to do remount
3329 * on it - tough luck.
3330 */
3331static int do_remount(struct path *path, int ms_flags, int sb_flags,
3332 int mnt_flags, void *data)
3333{
3334 int err;
3335 struct super_block *sb = path->mnt->mnt_sb;
3336 struct mount *mnt = real_mount(path->mnt);
3337 struct fs_context *fc;
3338
3339 if (!check_mnt(mnt))
3340 return -EINVAL;
3341
3342 if (!path_mounted(path))
3343 return -EINVAL;
3344
3345 if (!can_change_locked_flags(mnt, mnt_flags))
3346 return -EPERM;
3347
3348 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3349 if (IS_ERR(fc))
3350 return PTR_ERR(fc);
3351
3352 /*
3353 * Indicate to the filesystem that the remount request is coming
3354 * from the legacy mount system call.
3355 */
3356 fc->oldapi = true;
3357
3358 err = parse_monolithic_mount_data(fc, data);
3359 if (!err) {
3360 down_write(&sb->s_umount);
3361 err = -EPERM;
3362 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3363 err = reconfigure_super(fc);
3364 if (!err) {
3365 lock_mount_hash();
3366 set_mount_attributes(mnt, mnt_flags);
3367 unlock_mount_hash();
3368 }
3369 }
3370 up_write(&sb->s_umount);
3371 }
3372
3373 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3374
3375 put_fs_context(fc);
3376 return err;
3377}
3378
3379static inline int tree_contains_unbindable(struct mount *mnt)
3380{
3381 struct mount *p;
3382 for (p = mnt; p; p = next_mnt(p, mnt)) {
3383 if (IS_MNT_UNBINDABLE(p))
3384 return 1;
3385 }
3386 return 0;
3387}
3388
3389static int do_set_group(struct path *from_path, struct path *to_path)
3390{
3391 struct mount *from, *to;
3392 int err;
3393
3394 from = real_mount(from_path->mnt);
3395 to = real_mount(to_path->mnt);
3396
3397 namespace_lock();
3398
3399 err = -EINVAL;
3400 /* To and From must be mounted */
3401 if (!is_mounted(&from->mnt))
3402 goto out;
3403 if (!is_mounted(&to->mnt))
3404 goto out;
3405
3406 err = -EPERM;
3407 /* We should be allowed to modify mount namespaces of both mounts */
3408 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3409 goto out;
3410 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3411 goto out;
3412
3413 err = -EINVAL;
3414 /* To and From paths should be mount roots */
3415 if (!path_mounted(from_path))
3416 goto out;
3417 if (!path_mounted(to_path))
3418 goto out;
3419
3420 /* Setting sharing groups is only allowed across same superblock */
3421 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3422 goto out;
3423
3424 /* From mount root should be wider than To mount root */
3425 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3426 goto out;
3427
3428 /* From mount should not have locked children in place of To's root */
3429 if (has_locked_children(from, to->mnt.mnt_root))
3430 goto out;
3431
3432 /* Setting sharing groups is only allowed on private mounts */
3433 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3434 goto out;
3435
3436 /* From should not be private */
3437 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3438 goto out;
3439
3440 if (IS_MNT_SLAVE(from)) {
3441 struct mount *m = from->mnt_master;
3442
3443 list_add(&to->mnt_slave, &m->mnt_slave_list);
3444 to->mnt_master = m;
3445 }
3446
3447 if (IS_MNT_SHARED(from)) {
3448 to->mnt_group_id = from->mnt_group_id;
3449 list_add(&to->mnt_share, &from->mnt_share);
3450 lock_mount_hash();
3451 set_mnt_shared(to);
3452 unlock_mount_hash();
3453 }
3454
3455 err = 0;
3456out:
3457 namespace_unlock();
3458 return err;
3459}
3460
3461/**
3462 * path_overmounted - check if path is overmounted
3463 * @path: path to check
3464 *
3465 * Check if path is overmounted, i.e., if there's a mount on top of
3466 * @path->mnt with @path->dentry as mountpoint.
3467 *
3468 * Context: This function expects namespace_lock() to be held.
3469 * Return: If path is overmounted true is returned, false if not.
3470 */
3471static inline bool path_overmounted(const struct path *path)
3472{
3473 rcu_read_lock();
3474 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3475 rcu_read_unlock();
3476 return true;
3477 }
3478 rcu_read_unlock();
3479 return false;
3480}
3481
3482/**
3483 * can_move_mount_beneath - check that we can mount beneath the top mount
3484 * @from: mount to mount beneath
3485 * @to: mount under which to mount
3486 * @mp: mountpoint of @to
3487 *
3488 * - Make sure that @to->dentry is actually the root of a mount under
3489 * which we can mount another mount.
3490 * - Make sure that nothing can be mounted beneath the caller's current
3491 * root or the rootfs of the namespace.
3492 * - Make sure that the caller can unmount the topmost mount ensuring
3493 * that the caller could reveal the underlying mountpoint.
3494 * - Ensure that nothing has been mounted on top of @from before we
3495 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3496 * - Prevent mounting beneath a mount if the propagation relationship
3497 * between the source mount, parent mount, and top mount would lead to
3498 * nonsensical mount trees.
3499 *
3500 * Context: This function expects namespace_lock() to be held.
3501 * Return: On success 0, and on error a negative error code is returned.
3502 */
3503static int can_move_mount_beneath(const struct path *from,
3504 const struct path *to,
3505 const struct mountpoint *mp)
3506{
3507 struct mount *mnt_from = real_mount(from->mnt),
3508 *mnt_to = real_mount(to->mnt),
3509 *parent_mnt_to = mnt_to->mnt_parent;
3510
3511 if (!mnt_has_parent(mnt_to))
3512 return -EINVAL;
3513
3514 if (!path_mounted(to))
3515 return -EINVAL;
3516
3517 if (IS_MNT_LOCKED(mnt_to))
3518 return -EINVAL;
3519
3520 /* Avoid creating shadow mounts during mount propagation. */
3521 if (path_overmounted(from))
3522 return -EINVAL;
3523
3524 /*
3525 * Mounting beneath the rootfs only makes sense when the
3526 * semantics of pivot_root(".", ".") are used.
3527 */
3528 if (&mnt_to->mnt == current->fs->root.mnt)
3529 return -EINVAL;
3530 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3531 return -EINVAL;
3532
3533 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3534 if (p == mnt_to)
3535 return -EINVAL;
3536
3537 /*
3538 * If the parent mount propagates to the child mount this would
3539 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3540 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3541 * defeats the whole purpose of mounting beneath another mount.
3542 */
3543 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3544 return -EINVAL;
3545
3546 /*
3547 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3548 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3549 * Afterwards @mnt_from would be mounted on top of
3550 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3551 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3552 * already mounted on @mnt_from, @mnt_to would ultimately be
3553 * remounted on top of @c. Afterwards, @mnt_from would be
3554 * covered by a copy @c of @mnt_from and @c would be covered by
3555 * @mnt_from itself. This defeats the whole purpose of mounting
3556 * @mnt_from beneath @mnt_to.
3557 */
3558 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3559 return -EINVAL;
3560
3561 return 0;
3562}
3563
3564/* may_use_mount() - check if a mount tree can be used
3565 * @mnt: vfsmount to be used
3566 *
3567 * This helper checks if the caller may use the mount tree starting
3568 * from @path->mnt. The caller may use the mount tree under the
3569 * following circumstances:
3570 *
3571 * (1) The caller is located in the mount namespace of the mount tree.
3572 * This also implies that the mount does not belong to an anonymous
3573 * mount namespace.
3574 * (2) The caller is trying to use a mount tree that belongs to an
3575 * anonymous mount namespace.
3576 *
3577 * For that to be safe, this helper enforces that the origin mount
3578 * namespace the anonymous mount namespace was created from is the
3579 * same as the caller's mount namespace by comparing the sequence
3580 * numbers.
3581 *
3582 * The ownership of a non-anonymous mount namespace such as the
3583 * caller's cannot change.
3584 * => We know that the caller's mount namespace is stable.
3585 *
3586 * If the origin sequence number of the anonymous mount namespace is
3587 * the same as the sequence number of the caller's mount namespace.
3588 * => The owning namespaces are the same.
3589 *
3590 * ==> The earlier capability check on the owning namespace of the
3591 * caller's mount namespace ensures that the caller has the
3592 * ability to use the mount tree.
3593 *
3594 * Returns true if the mount tree can be used, false otherwise.
3595 */
3596static inline bool may_use_mount(struct mount *mnt)
3597{
3598 if (check_mnt(mnt))
3599 return true;
3600
3601 /*
3602 * Make sure that noone unmounted the target path or somehow
3603 * managed to get their hands on something purely kernel
3604 * internal.
3605 */
3606 if (!is_mounted(&mnt->mnt))
3607 return false;
3608
3609 return check_anonymous_mnt(mnt);
3610}
3611
3612static int do_move_mount(struct path *old_path,
3613 struct path *new_path, enum mnt_tree_flags_t flags)
3614{
3615 struct mnt_namespace *ns;
3616 struct mount *p;
3617 struct mount *old;
3618 struct mount *parent;
3619 struct mountpoint *mp, *old_mp;
3620 int err;
3621 bool attached, beneath = flags & MNT_TREE_BENEATH;
3622
3623 mp = do_lock_mount(new_path, beneath);
3624 if (IS_ERR(mp))
3625 return PTR_ERR(mp);
3626
3627 old = real_mount(old_path->mnt);
3628 p = real_mount(new_path->mnt);
3629 parent = old->mnt_parent;
3630 attached = mnt_has_parent(old);
3631 if (attached)
3632 flags |= MNT_TREE_MOVE;
3633 old_mp = old->mnt_mp;
3634 ns = old->mnt_ns;
3635
3636 err = -EINVAL;
3637 if (!may_use_mount(p))
3638 goto out;
3639
3640 /* The thing moved must be mounted... */
3641 if (!is_mounted(&old->mnt))
3642 goto out;
3643
3644 /* ... and either ours or the root of anon namespace */
3645 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3646 goto out;
3647
3648 if (is_anon_ns(ns)) {
3649 /*
3650 * Ending up with two files referring to the root of the
3651 * same anonymous mount namespace would cause an error
3652 * as this would mean trying to move the same mount
3653 * twice into the mount tree which would be rejected
3654 * later. But be explicit about it right here.
3655 */
3656 if ((is_anon_ns(p->mnt_ns) && ns == p->mnt_ns))
3657 goto out;
3658
3659 /*
3660 * If this is an anonymous mount tree ensure that mount
3661 * propagation can detect mounts that were just
3662 * propagated to the target mount tree so we don't
3663 * propagate onto them.
3664 */
3665 ns->mntns_flags |= MNTNS_PROPAGATING;
3666 } else if (is_anon_ns(p->mnt_ns)) {
3667 /*
3668 * Don't allow moving an attached mount tree to an
3669 * anonymous mount tree.
3670 */
3671 goto out;
3672 }
3673
3674 if (old->mnt.mnt_flags & MNT_LOCKED)
3675 goto out;
3676
3677 if (!path_mounted(old_path))
3678 goto out;
3679
3680 if (d_is_dir(new_path->dentry) !=
3681 d_is_dir(old_path->dentry))
3682 goto out;
3683 /*
3684 * Don't move a mount residing in a shared parent.
3685 */
3686 if (attached && IS_MNT_SHARED(parent))
3687 goto out;
3688
3689 if (beneath) {
3690 err = can_move_mount_beneath(old_path, new_path, mp);
3691 if (err)
3692 goto out;
3693
3694 err = -EINVAL;
3695 p = p->mnt_parent;
3696 flags |= MNT_TREE_BENEATH;
3697 }
3698
3699 /*
3700 * Don't move a mount tree containing unbindable mounts to a destination
3701 * mount which is shared.
3702 */
3703 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3704 goto out;
3705 err = -ELOOP;
3706 if (!check_for_nsfs_mounts(old))
3707 goto out;
3708 for (; mnt_has_parent(p); p = p->mnt_parent)
3709 if (p == old)
3710 goto out;
3711
3712 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3713 if (err)
3714 goto out;
3715
3716 if (is_anon_ns(ns))
3717 ns->mntns_flags &= ~MNTNS_PROPAGATING;
3718
3719 /* if the mount is moved, it should no longer be expire
3720 * automatically */
3721 list_del_init(&old->mnt_expire);
3722 if (attached)
3723 put_mountpoint(old_mp);
3724out:
3725 unlock_mount(mp);
3726 if (!err) {
3727 if (attached) {
3728 mntput_no_expire(parent);
3729 } else {
3730 /* Make sure we notice when we leak mounts. */
3731 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
3732 free_mnt_ns(ns);
3733 }
3734 }
3735 return err;
3736}
3737
3738static int do_move_mount_old(struct path *path, const char *old_name)
3739{
3740 struct path old_path;
3741 int err;
3742
3743 if (!old_name || !*old_name)
3744 return -EINVAL;
3745
3746 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3747 if (err)
3748 return err;
3749
3750 err = do_move_mount(&old_path, path, 0);
3751 path_put(&old_path);
3752 return err;
3753}
3754
3755/*
3756 * add a mount into a namespace's mount tree
3757 */
3758static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3759 const struct path *path, int mnt_flags)
3760{
3761 struct mount *parent = real_mount(path->mnt);
3762
3763 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3764
3765 if (unlikely(!check_mnt(parent))) {
3766 /* that's acceptable only for automounts done in private ns */
3767 if (!(mnt_flags & MNT_SHRINKABLE))
3768 return -EINVAL;
3769 /* ... and for those we'd better have mountpoint still alive */
3770 if (!parent->mnt_ns)
3771 return -EINVAL;
3772 }
3773
3774 /* Refuse the same filesystem on the same mount point */
3775 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3776 return -EBUSY;
3777
3778 if (d_is_symlink(newmnt->mnt.mnt_root))
3779 return -EINVAL;
3780
3781 newmnt->mnt.mnt_flags = mnt_flags;
3782 return graft_tree(newmnt, parent, mp);
3783}
3784
3785static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3786
3787/*
3788 * Create a new mount using a superblock configuration and request it
3789 * be added to the namespace tree.
3790 */
3791static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3792 unsigned int mnt_flags)
3793{
3794 struct vfsmount *mnt;
3795 struct mountpoint *mp;
3796 struct super_block *sb = fc->root->d_sb;
3797 int error;
3798
3799 error = security_sb_kern_mount(sb);
3800 if (!error && mount_too_revealing(sb, &mnt_flags))
3801 error = -EPERM;
3802
3803 if (unlikely(error)) {
3804 fc_drop_locked(fc);
3805 return error;
3806 }
3807
3808 up_write(&sb->s_umount);
3809
3810 mnt = vfs_create_mount(fc);
3811 if (IS_ERR(mnt))
3812 return PTR_ERR(mnt);
3813
3814 mnt_warn_timestamp_expiry(mountpoint, mnt);
3815
3816 mp = lock_mount(mountpoint);
3817 if (IS_ERR(mp)) {
3818 mntput(mnt);
3819 return PTR_ERR(mp);
3820 }
3821 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3822 unlock_mount(mp);
3823 if (error < 0)
3824 mntput(mnt);
3825 return error;
3826}
3827
3828/*
3829 * create a new mount for userspace and request it to be added into the
3830 * namespace's tree
3831 */
3832static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3833 int mnt_flags, const char *name, void *data)
3834{
3835 struct file_system_type *type;
3836 struct fs_context *fc;
3837 const char *subtype = NULL;
3838 int err = 0;
3839
3840 if (!fstype)
3841 return -EINVAL;
3842
3843 type = get_fs_type(fstype);
3844 if (!type)
3845 return -ENODEV;
3846
3847 if (type->fs_flags & FS_HAS_SUBTYPE) {
3848 subtype = strchr(fstype, '.');
3849 if (subtype) {
3850 subtype++;
3851 if (!*subtype) {
3852 put_filesystem(type);
3853 return -EINVAL;
3854 }
3855 }
3856 }
3857
3858 fc = fs_context_for_mount(type, sb_flags);
3859 put_filesystem(type);
3860 if (IS_ERR(fc))
3861 return PTR_ERR(fc);
3862
3863 /*
3864 * Indicate to the filesystem that the mount request is coming
3865 * from the legacy mount system call.
3866 */
3867 fc->oldapi = true;
3868
3869 if (subtype)
3870 err = vfs_parse_fs_string(fc, "subtype",
3871 subtype, strlen(subtype));
3872 if (!err && name)
3873 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3874 if (!err)
3875 err = parse_monolithic_mount_data(fc, data);
3876 if (!err && !mount_capable(fc))
3877 err = -EPERM;
3878 if (!err)
3879 err = vfs_get_tree(fc);
3880 if (!err)
3881 err = do_new_mount_fc(fc, path, mnt_flags);
3882
3883 put_fs_context(fc);
3884 return err;
3885}
3886
3887int finish_automount(struct vfsmount *m, const struct path *path)
3888{
3889 struct dentry *dentry = path->dentry;
3890 struct mountpoint *mp;
3891 struct mount *mnt;
3892 int err;
3893
3894 if (!m)
3895 return 0;
3896 if (IS_ERR(m))
3897 return PTR_ERR(m);
3898
3899 mnt = real_mount(m);
3900 /* The new mount record should have at least 2 refs to prevent it being
3901 * expired before we get a chance to add it
3902 */
3903 BUG_ON(mnt_get_count(mnt) < 2);
3904
3905 if (m->mnt_sb == path->mnt->mnt_sb &&
3906 m->mnt_root == dentry) {
3907 err = -ELOOP;
3908 goto discard;
3909 }
3910
3911 /*
3912 * we don't want to use lock_mount() - in this case finding something
3913 * that overmounts our mountpoint to be means "quitely drop what we've
3914 * got", not "try to mount it on top".
3915 */
3916 inode_lock(dentry->d_inode);
3917 namespace_lock();
3918 if (unlikely(cant_mount(dentry))) {
3919 err = -ENOENT;
3920 goto discard_locked;
3921 }
3922 if (path_overmounted(path)) {
3923 err = 0;
3924 goto discard_locked;
3925 }
3926 mp = get_mountpoint(dentry);
3927 if (IS_ERR(mp)) {
3928 err = PTR_ERR(mp);
3929 goto discard_locked;
3930 }
3931
3932 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3933 unlock_mount(mp);
3934 if (unlikely(err))
3935 goto discard;
3936 mntput(m);
3937 return 0;
3938
3939discard_locked:
3940 namespace_unlock();
3941 inode_unlock(dentry->d_inode);
3942discard:
3943 /* remove m from any expiration list it may be on */
3944 if (!list_empty(&mnt->mnt_expire)) {
3945 namespace_lock();
3946 list_del_init(&mnt->mnt_expire);
3947 namespace_unlock();
3948 }
3949 mntput(m);
3950 mntput(m);
3951 return err;
3952}
3953
3954/**
3955 * mnt_set_expiry - Put a mount on an expiration list
3956 * @mnt: The mount to list.
3957 * @expiry_list: The list to add the mount to.
3958 */
3959void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3960{
3961 namespace_lock();
3962
3963 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3964
3965 namespace_unlock();
3966}
3967EXPORT_SYMBOL(mnt_set_expiry);
3968
3969/*
3970 * process a list of expirable mountpoints with the intent of discarding any
3971 * mountpoints that aren't in use and haven't been touched since last we came
3972 * here
3973 */
3974void mark_mounts_for_expiry(struct list_head *mounts)
3975{
3976 struct mount *mnt, *next;
3977 LIST_HEAD(graveyard);
3978
3979 if (list_empty(mounts))
3980 return;
3981
3982 namespace_lock();
3983 lock_mount_hash();
3984
3985 /* extract from the expiration list every vfsmount that matches the
3986 * following criteria:
3987 * - only referenced by its parent vfsmount
3988 * - still marked for expiry (marked on the last call here; marks are
3989 * cleared by mntput())
3990 */
3991 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3992 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3993 propagate_mount_busy(mnt, 1))
3994 continue;
3995 list_move(&mnt->mnt_expire, &graveyard);
3996 }
3997 while (!list_empty(&graveyard)) {
3998 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3999 touch_mnt_namespace(mnt->mnt_ns);
4000 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
4001 }
4002 unlock_mount_hash();
4003 namespace_unlock();
4004}
4005
4006EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
4007
4008/*
4009 * Ripoff of 'select_parent()'
4010 *
4011 * search the list of submounts for a given mountpoint, and move any
4012 * shrinkable submounts to the 'graveyard' list.
4013 */
4014static int select_submounts(struct mount *parent, struct list_head *graveyard)
4015{
4016 struct mount *this_parent = parent;
4017 struct list_head *next;
4018 int found = 0;
4019
4020repeat:
4021 next = this_parent->mnt_mounts.next;
4022resume:
4023 while (next != &this_parent->mnt_mounts) {
4024 struct list_head *tmp = next;
4025 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
4026
4027 next = tmp->next;
4028 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
4029 continue;
4030 /*
4031 * Descend a level if the d_mounts list is non-empty.
4032 */
4033 if (!list_empty(&mnt->mnt_mounts)) {
4034 this_parent = mnt;
4035 goto repeat;
4036 }
4037
4038 if (!propagate_mount_busy(mnt, 1)) {
4039 list_move_tail(&mnt->mnt_expire, graveyard);
4040 found++;
4041 }
4042 }
4043 /*
4044 * All done at this level ... ascend and resume the search
4045 */
4046 if (this_parent != parent) {
4047 next = this_parent->mnt_child.next;
4048 this_parent = this_parent->mnt_parent;
4049 goto resume;
4050 }
4051 return found;
4052}
4053
4054/*
4055 * process a list of expirable mountpoints with the intent of discarding any
4056 * submounts of a specific parent mountpoint
4057 *
4058 * mount_lock must be held for write
4059 */
4060static void shrink_submounts(struct mount *mnt)
4061{
4062 LIST_HEAD(graveyard);
4063 struct mount *m;
4064
4065 /* extract submounts of 'mountpoint' from the expiration list */
4066 while (select_submounts(mnt, &graveyard)) {
4067 while (!list_empty(&graveyard)) {
4068 m = list_first_entry(&graveyard, struct mount,
4069 mnt_expire);
4070 touch_mnt_namespace(m->mnt_ns);
4071 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
4072 }
4073 }
4074}
4075
4076static void *copy_mount_options(const void __user * data)
4077{
4078 char *copy;
4079 unsigned left, offset;
4080
4081 if (!data)
4082 return NULL;
4083
4084 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
4085 if (!copy)
4086 return ERR_PTR(-ENOMEM);
4087
4088 left = copy_from_user(copy, data, PAGE_SIZE);
4089
4090 /*
4091 * Not all architectures have an exact copy_from_user(). Resort to
4092 * byte at a time.
4093 */
4094 offset = PAGE_SIZE - left;
4095 while (left) {
4096 char c;
4097 if (get_user(c, (const char __user *)data + offset))
4098 break;
4099 copy[offset] = c;
4100 left--;
4101 offset++;
4102 }
4103
4104 if (left == PAGE_SIZE) {
4105 kfree(copy);
4106 return ERR_PTR(-EFAULT);
4107 }
4108
4109 return copy;
4110}
4111
4112static char *copy_mount_string(const void __user *data)
4113{
4114 return data ? strndup_user(data, PATH_MAX) : NULL;
4115}
4116
4117/*
4118 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
4119 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
4120 *
4121 * data is a (void *) that can point to any structure up to
4122 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
4123 * information (or be NULL).
4124 *
4125 * Pre-0.97 versions of mount() didn't have a flags word.
4126 * When the flags word was introduced its top half was required
4127 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
4128 * Therefore, if this magic number is present, it carries no information
4129 * and must be discarded.
4130 */
4131int path_mount(const char *dev_name, struct path *path,
4132 const char *type_page, unsigned long flags, void *data_page)
4133{
4134 unsigned int mnt_flags = 0, sb_flags;
4135 int ret;
4136
4137 /* Discard magic */
4138 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
4139 flags &= ~MS_MGC_MSK;
4140
4141 /* Basic sanity checks */
4142 if (data_page)
4143 ((char *)data_page)[PAGE_SIZE - 1] = 0;
4144
4145 if (flags & MS_NOUSER)
4146 return -EINVAL;
4147
4148 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
4149 if (ret)
4150 return ret;
4151 if (!may_mount())
4152 return -EPERM;
4153 if (flags & SB_MANDLOCK)
4154 warn_mandlock();
4155
4156 /* Default to relatime unless overriden */
4157 if (!(flags & MS_NOATIME))
4158 mnt_flags |= MNT_RELATIME;
4159
4160 /* Separate the per-mountpoint flags */
4161 if (flags & MS_NOSUID)
4162 mnt_flags |= MNT_NOSUID;
4163 if (flags & MS_NODEV)
4164 mnt_flags |= MNT_NODEV;
4165 if (flags & MS_NOEXEC)
4166 mnt_flags |= MNT_NOEXEC;
4167 if (flags & MS_NOATIME)
4168 mnt_flags |= MNT_NOATIME;
4169 if (flags & MS_NODIRATIME)
4170 mnt_flags |= MNT_NODIRATIME;
4171 if (flags & MS_STRICTATIME)
4172 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
4173 if (flags & MS_RDONLY)
4174 mnt_flags |= MNT_READONLY;
4175 if (flags & MS_NOSYMFOLLOW)
4176 mnt_flags |= MNT_NOSYMFOLLOW;
4177
4178 /* The default atime for remount is preservation */
4179 if ((flags & MS_REMOUNT) &&
4180 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4181 MS_STRICTATIME)) == 0)) {
4182 mnt_flags &= ~MNT_ATIME_MASK;
4183 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4184 }
4185
4186 sb_flags = flags & (SB_RDONLY |
4187 SB_SYNCHRONOUS |
4188 SB_MANDLOCK |
4189 SB_DIRSYNC |
4190 SB_SILENT |
4191 SB_POSIXACL |
4192 SB_LAZYTIME |
4193 SB_I_VERSION);
4194
4195 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4196 return do_reconfigure_mnt(path, mnt_flags);
4197 if (flags & MS_REMOUNT)
4198 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
4199 if (flags & MS_BIND)
4200 return do_loopback(path, dev_name, flags & MS_REC);
4201 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4202 return do_change_type(path, flags);
4203 if (flags & MS_MOVE)
4204 return do_move_mount_old(path, dev_name);
4205
4206 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4207 data_page);
4208}
4209
4210int do_mount(const char *dev_name, const char __user *dir_name,
4211 const char *type_page, unsigned long flags, void *data_page)
4212{
4213 struct path path;
4214 int ret;
4215
4216 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4217 if (ret)
4218 return ret;
4219 ret = path_mount(dev_name, &path, type_page, flags, data_page);
4220 path_put(&path);
4221 return ret;
4222}
4223
4224static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4225{
4226 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4227}
4228
4229static void dec_mnt_namespaces(struct ucounts *ucounts)
4230{
4231 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4232}
4233
4234static void free_mnt_ns(struct mnt_namespace *ns)
4235{
4236 if (!is_anon_ns(ns))
4237 ns_free_inum(&ns->ns);
4238 dec_mnt_namespaces(ns->ucounts);
4239 mnt_ns_tree_remove(ns);
4240}
4241
4242/*
4243 * Assign a sequence number so we can detect when we attempt to bind
4244 * mount a reference to an older mount namespace into the current
4245 * mount namespace, preventing reference counting loops. A 64bit
4246 * number incrementing at 10Ghz will take 12,427 years to wrap which
4247 * is effectively never, so we can ignore the possibility.
4248 */
4249static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
4250
4251static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4252{
4253 struct mnt_namespace *new_ns;
4254 struct ucounts *ucounts;
4255 int ret;
4256
4257 ucounts = inc_mnt_namespaces(user_ns);
4258 if (!ucounts)
4259 return ERR_PTR(-ENOSPC);
4260
4261 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4262 if (!new_ns) {
4263 dec_mnt_namespaces(ucounts);
4264 return ERR_PTR(-ENOMEM);
4265 }
4266 if (!anon) {
4267 ret = ns_alloc_inum(&new_ns->ns);
4268 if (ret) {
4269 kfree(new_ns);
4270 dec_mnt_namespaces(ucounts);
4271 return ERR_PTR(ret);
4272 }
4273 }
4274 new_ns->ns.ops = &mntns_operations;
4275 if (!anon)
4276 new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
4277 refcount_set(&new_ns->ns.count, 1);
4278 refcount_set(&new_ns->passive, 1);
4279 new_ns->mounts = RB_ROOT;
4280 INIT_LIST_HEAD(&new_ns->mnt_ns_list);
4281 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
4282 init_waitqueue_head(&new_ns->poll);
4283 new_ns->user_ns = get_user_ns(user_ns);
4284 new_ns->ucounts = ucounts;
4285 return new_ns;
4286}
4287
4288__latent_entropy
4289struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
4290 struct user_namespace *user_ns, struct fs_struct *new_fs)
4291{
4292 struct mnt_namespace *new_ns;
4293 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
4294 struct mount *p, *q;
4295 struct mount *old;
4296 struct mount *new;
4297 int copy_flags;
4298
4299 BUG_ON(!ns);
4300
4301 if (likely(!(flags & CLONE_NEWNS))) {
4302 get_mnt_ns(ns);
4303 return ns;
4304 }
4305
4306 old = ns->root;
4307
4308 new_ns = alloc_mnt_ns(user_ns, false);
4309 if (IS_ERR(new_ns))
4310 return new_ns;
4311
4312 namespace_lock();
4313 /* First pass: copy the tree topology */
4314 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4315 if (user_ns != ns->user_ns)
4316 copy_flags |= CL_SHARED_TO_SLAVE;
4317 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4318 if (IS_ERR(new)) {
4319 namespace_unlock();
4320 ns_free_inum(&new_ns->ns);
4321 dec_mnt_namespaces(new_ns->ucounts);
4322 mnt_ns_release(new_ns);
4323 return ERR_CAST(new);
4324 }
4325 if (user_ns != ns->user_ns) {
4326 lock_mount_hash();
4327 lock_mnt_tree(new);
4328 unlock_mount_hash();
4329 }
4330 new_ns->root = new;
4331
4332 /*
4333 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4334 * as belonging to new namespace. We have already acquired a private
4335 * fs_struct, so tsk->fs->lock is not needed.
4336 */
4337 p = old;
4338 q = new;
4339 while (p) {
4340 mnt_add_to_ns(new_ns, q);
4341 new_ns->nr_mounts++;
4342 if (new_fs) {
4343 if (&p->mnt == new_fs->root.mnt) {
4344 new_fs->root.mnt = mntget(&q->mnt);
4345 rootmnt = &p->mnt;
4346 }
4347 if (&p->mnt == new_fs->pwd.mnt) {
4348 new_fs->pwd.mnt = mntget(&q->mnt);
4349 pwdmnt = &p->mnt;
4350 }
4351 }
4352 p = next_mnt(p, old);
4353 q = next_mnt(q, new);
4354 if (!q)
4355 break;
4356 // an mntns binding we'd skipped?
4357 while (p->mnt.mnt_root != q->mnt.mnt_root)
4358 p = next_mnt(skip_mnt_tree(p), old);
4359 }
4360 namespace_unlock();
4361
4362 if (rootmnt)
4363 mntput(rootmnt);
4364 if (pwdmnt)
4365 mntput(pwdmnt);
4366
4367 mnt_ns_tree_add(new_ns);
4368 return new_ns;
4369}
4370
4371struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4372{
4373 struct mount *mnt = real_mount(m);
4374 struct mnt_namespace *ns;
4375 struct super_block *s;
4376 struct path path;
4377 int err;
4378
4379 ns = alloc_mnt_ns(&init_user_ns, true);
4380 if (IS_ERR(ns)) {
4381 mntput(m);
4382 return ERR_CAST(ns);
4383 }
4384 ns->root = mnt;
4385 ns->nr_mounts++;
4386 mnt_add_to_ns(ns, mnt);
4387
4388 err = vfs_path_lookup(m->mnt_root, m,
4389 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4390
4391 put_mnt_ns(ns);
4392
4393 if (err)
4394 return ERR_PTR(err);
4395
4396 /* trade a vfsmount reference for active sb one */
4397 s = path.mnt->mnt_sb;
4398 atomic_inc(&s->s_active);
4399 mntput(path.mnt);
4400 /* lock the sucker */
4401 down_write(&s->s_umount);
4402 /* ... and return the root of (sub)tree on it */
4403 return path.dentry;
4404}
4405EXPORT_SYMBOL(mount_subtree);
4406
4407SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4408 char __user *, type, unsigned long, flags, void __user *, data)
4409{
4410 int ret;
4411 char *kernel_type;
4412 char *kernel_dev;
4413 void *options;
4414
4415 kernel_type = copy_mount_string(type);
4416 ret = PTR_ERR(kernel_type);
4417 if (IS_ERR(kernel_type))
4418 goto out_type;
4419
4420 kernel_dev = copy_mount_string(dev_name);
4421 ret = PTR_ERR(kernel_dev);
4422 if (IS_ERR(kernel_dev))
4423 goto out_dev;
4424
4425 options = copy_mount_options(data);
4426 ret = PTR_ERR(options);
4427 if (IS_ERR(options))
4428 goto out_data;
4429
4430 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4431
4432 kfree(options);
4433out_data:
4434 kfree(kernel_dev);
4435out_dev:
4436 kfree(kernel_type);
4437out_type:
4438 return ret;
4439}
4440
4441#define FSMOUNT_VALID_FLAGS \
4442 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
4443 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
4444 MOUNT_ATTR_NOSYMFOLLOW)
4445
4446#define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4447
4448#define MOUNT_SETATTR_PROPAGATION_FLAGS \
4449 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4450
4451static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4452{
4453 unsigned int mnt_flags = 0;
4454
4455 if (attr_flags & MOUNT_ATTR_RDONLY)
4456 mnt_flags |= MNT_READONLY;
4457 if (attr_flags & MOUNT_ATTR_NOSUID)
4458 mnt_flags |= MNT_NOSUID;
4459 if (attr_flags & MOUNT_ATTR_NODEV)
4460 mnt_flags |= MNT_NODEV;
4461 if (attr_flags & MOUNT_ATTR_NOEXEC)
4462 mnt_flags |= MNT_NOEXEC;
4463 if (attr_flags & MOUNT_ATTR_NODIRATIME)
4464 mnt_flags |= MNT_NODIRATIME;
4465 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4466 mnt_flags |= MNT_NOSYMFOLLOW;
4467
4468 return mnt_flags;
4469}
4470
4471/*
4472 * Create a kernel mount representation for a new, prepared superblock
4473 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4474 */
4475SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4476 unsigned int, attr_flags)
4477{
4478 struct mnt_namespace *ns;
4479 struct fs_context *fc;
4480 struct file *file;
4481 struct path newmount;
4482 struct mount *mnt;
4483 unsigned int mnt_flags = 0;
4484 long ret;
4485
4486 if (!may_mount())
4487 return -EPERM;
4488
4489 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4490 return -EINVAL;
4491
4492 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4493 return -EINVAL;
4494
4495 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4496
4497 switch (attr_flags & MOUNT_ATTR__ATIME) {
4498 case MOUNT_ATTR_STRICTATIME:
4499 break;
4500 case MOUNT_ATTR_NOATIME:
4501 mnt_flags |= MNT_NOATIME;
4502 break;
4503 case MOUNT_ATTR_RELATIME:
4504 mnt_flags |= MNT_RELATIME;
4505 break;
4506 default:
4507 return -EINVAL;
4508 }
4509
4510 CLASS(fd, f)(fs_fd);
4511 if (fd_empty(f))
4512 return -EBADF;
4513
4514 if (fd_file(f)->f_op != &fscontext_fops)
4515 return -EINVAL;
4516
4517 fc = fd_file(f)->private_data;
4518
4519 ret = mutex_lock_interruptible(&fc->uapi_mutex);
4520 if (ret < 0)
4521 return ret;
4522
4523 /* There must be a valid superblock or we can't mount it */
4524 ret = -EINVAL;
4525 if (!fc->root)
4526 goto err_unlock;
4527
4528 ret = -EPERM;
4529 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4530 pr_warn("VFS: Mount too revealing\n");
4531 goto err_unlock;
4532 }
4533
4534 ret = -EBUSY;
4535 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4536 goto err_unlock;
4537
4538 if (fc->sb_flags & SB_MANDLOCK)
4539 warn_mandlock();
4540
4541 newmount.mnt = vfs_create_mount(fc);
4542 if (IS_ERR(newmount.mnt)) {
4543 ret = PTR_ERR(newmount.mnt);
4544 goto err_unlock;
4545 }
4546 newmount.dentry = dget(fc->root);
4547 newmount.mnt->mnt_flags = mnt_flags;
4548
4549 /* We've done the mount bit - now move the file context into more or
4550 * less the same state as if we'd done an fspick(). We don't want to
4551 * do any memory allocation or anything like that at this point as we
4552 * don't want to have to handle any errors incurred.
4553 */
4554 vfs_clean_context(fc);
4555
4556 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4557 if (IS_ERR(ns)) {
4558 ret = PTR_ERR(ns);
4559 goto err_path;
4560 }
4561 mnt = real_mount(newmount.mnt);
4562 ns->root = mnt;
4563 ns->nr_mounts = 1;
4564 mnt_add_to_ns(ns, mnt);
4565 mntget(newmount.mnt);
4566
4567 /* Attach to an apparent O_PATH fd with a note that we need to unmount
4568 * it, not just simply put it.
4569 */
4570 file = dentry_open(&newmount, O_PATH, fc->cred);
4571 if (IS_ERR(file)) {
4572 dissolve_on_fput(newmount.mnt);
4573 ret = PTR_ERR(file);
4574 goto err_path;
4575 }
4576 file->f_mode |= FMODE_NEED_UNMOUNT;
4577
4578 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4579 if (ret >= 0)
4580 fd_install(ret, file);
4581 else
4582 fput(file);
4583
4584err_path:
4585 path_put(&newmount);
4586err_unlock:
4587 mutex_unlock(&fc->uapi_mutex);
4588 return ret;
4589}
4590
4591static inline int vfs_move_mount(struct path *from_path, struct path *to_path,
4592 enum mnt_tree_flags_t mflags)
4593{
4594 int ret;
4595
4596 ret = security_move_mount(from_path, to_path);
4597 if (ret)
4598 return ret;
4599
4600 if (mflags & MNT_TREE_PROPAGATION)
4601 return do_set_group(from_path, to_path);
4602
4603 return do_move_mount(from_path, to_path, mflags);
4604}
4605
4606/*
4607 * Move a mount from one place to another. In combination with
4608 * fsopen()/fsmount() this is used to install a new mount and in combination
4609 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4610 * a mount subtree.
4611 *
4612 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4613 */
4614SYSCALL_DEFINE5(move_mount,
4615 int, from_dfd, const char __user *, from_pathname,
4616 int, to_dfd, const char __user *, to_pathname,
4617 unsigned int, flags)
4618{
4619 struct path to_path __free(path_put) = {};
4620 struct path from_path __free(path_put) = {};
4621 struct filename *to_name __free(putname) = NULL;
4622 struct filename *from_name __free(putname) = NULL;
4623 unsigned int lflags, uflags;
4624 enum mnt_tree_flags_t mflags = 0;
4625 int ret = 0;
4626
4627 if (!may_mount())
4628 return -EPERM;
4629
4630 if (flags & ~MOVE_MOUNT__MASK)
4631 return -EINVAL;
4632
4633 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4634 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4635 return -EINVAL;
4636
4637 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION;
4638 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH;
4639
4640 lflags = 0;
4641 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4642 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4643 uflags = 0;
4644 if (flags & MOVE_MOUNT_F_EMPTY_PATH) uflags = AT_EMPTY_PATH;
4645 from_name = getname_maybe_null(from_pathname, uflags);
4646 if (IS_ERR(from_name))
4647 return PTR_ERR(from_name);
4648
4649 lflags = 0;
4650 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4651 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4652 uflags = 0;
4653 if (flags & MOVE_MOUNT_T_EMPTY_PATH) uflags = AT_EMPTY_PATH;
4654 to_name = getname_maybe_null(to_pathname, uflags);
4655 if (IS_ERR(to_name))
4656 return PTR_ERR(to_name);
4657
4658 if (!to_name && to_dfd >= 0) {
4659 CLASS(fd_raw, f_to)(to_dfd);
4660 if (fd_empty(f_to))
4661 return -EBADF;
4662
4663 to_path = fd_file(f_to)->f_path;
4664 path_get(&to_path);
4665 } else {
4666 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4667 if (ret)
4668 return ret;
4669 }
4670
4671 if (!from_name && from_dfd >= 0) {
4672 CLASS(fd_raw, f_from)(from_dfd);
4673 if (fd_empty(f_from))
4674 return -EBADF;
4675
4676 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4677 }
4678
4679 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4680 if (ret)
4681 return ret;
4682
4683 return vfs_move_mount(&from_path, &to_path, mflags);
4684}
4685
4686/*
4687 * Return true if path is reachable from root
4688 *
4689 * namespace_sem or mount_lock is held
4690 */
4691bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4692 const struct path *root)
4693{
4694 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4695 dentry = mnt->mnt_mountpoint;
4696 mnt = mnt->mnt_parent;
4697 }
4698 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4699}
4700
4701bool path_is_under(const struct path *path1, const struct path *path2)
4702{
4703 bool res;
4704 read_seqlock_excl(&mount_lock);
4705 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4706 read_sequnlock_excl(&mount_lock);
4707 return res;
4708}
4709EXPORT_SYMBOL(path_is_under);
4710
4711/*
4712 * pivot_root Semantics:
4713 * Moves the root file system of the current process to the directory put_old,
4714 * makes new_root as the new root file system of the current process, and sets
4715 * root/cwd of all processes which had them on the current root to new_root.
4716 *
4717 * Restrictions:
4718 * The new_root and put_old must be directories, and must not be on the
4719 * same file system as the current process root. The put_old must be
4720 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4721 * pointed to by put_old must yield the same directory as new_root. No other
4722 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4723 *
4724 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4725 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4726 * in this situation.
4727 *
4728 * Notes:
4729 * - we don't move root/cwd if they are not at the root (reason: if something
4730 * cared enough to change them, it's probably wrong to force them elsewhere)
4731 * - it's okay to pick a root that isn't the root of a file system, e.g.
4732 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4733 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4734 * first.
4735 */
4736SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4737 const char __user *, put_old)
4738{
4739 struct path new, old, root;
4740 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4741 struct mountpoint *old_mp, *root_mp;
4742 int error;
4743
4744 if (!may_mount())
4745 return -EPERM;
4746
4747 error = user_path_at(AT_FDCWD, new_root,
4748 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4749 if (error)
4750 goto out0;
4751
4752 error = user_path_at(AT_FDCWD, put_old,
4753 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4754 if (error)
4755 goto out1;
4756
4757 error = security_sb_pivotroot(&old, &new);
4758 if (error)
4759 goto out2;
4760
4761 get_fs_root(current->fs, &root);
4762 old_mp = lock_mount(&old);
4763 error = PTR_ERR(old_mp);
4764 if (IS_ERR(old_mp))
4765 goto out3;
4766
4767 error = -EINVAL;
4768 new_mnt = real_mount(new.mnt);
4769 root_mnt = real_mount(root.mnt);
4770 old_mnt = real_mount(old.mnt);
4771 ex_parent = new_mnt->mnt_parent;
4772 root_parent = root_mnt->mnt_parent;
4773 if (IS_MNT_SHARED(old_mnt) ||
4774 IS_MNT_SHARED(ex_parent) ||
4775 IS_MNT_SHARED(root_parent))
4776 goto out4;
4777 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4778 goto out4;
4779 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4780 goto out4;
4781 error = -ENOENT;
4782 if (d_unlinked(new.dentry))
4783 goto out4;
4784 error = -EBUSY;
4785 if (new_mnt == root_mnt || old_mnt == root_mnt)
4786 goto out4; /* loop, on the same file system */
4787 error = -EINVAL;
4788 if (!path_mounted(&root))
4789 goto out4; /* not a mountpoint */
4790 if (!mnt_has_parent(root_mnt))
4791 goto out4; /* not attached */
4792 if (!path_mounted(&new))
4793 goto out4; /* not a mountpoint */
4794 if (!mnt_has_parent(new_mnt))
4795 goto out4; /* not attached */
4796 /* make sure we can reach put_old from new_root */
4797 if (!is_path_reachable(old_mnt, old.dentry, &new))
4798 goto out4;
4799 /* make certain new is below the root */
4800 if (!is_path_reachable(new_mnt, new.dentry, &root))
4801 goto out4;
4802 lock_mount_hash();
4803 umount_mnt(new_mnt);
4804 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
4805 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4806 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4807 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4808 }
4809 /* mount old root on put_old */
4810 attach_mnt(root_mnt, old_mnt, old_mp, false);
4811 /* mount new_root on / */
4812 attach_mnt(new_mnt, root_parent, root_mp, false);
4813 mnt_add_count(root_parent, -1);
4814 touch_mnt_namespace(current->nsproxy->mnt_ns);
4815 /* A moved mount should not expire automatically */
4816 list_del_init(&new_mnt->mnt_expire);
4817 put_mountpoint(root_mp);
4818 unlock_mount_hash();
4819 mnt_notify_add(root_mnt);
4820 mnt_notify_add(new_mnt);
4821 chroot_fs_refs(&root, &new);
4822 error = 0;
4823out4:
4824 unlock_mount(old_mp);
4825 if (!error)
4826 mntput_no_expire(ex_parent);
4827out3:
4828 path_put(&root);
4829out2:
4830 path_put(&old);
4831out1:
4832 path_put(&new);
4833out0:
4834 return error;
4835}
4836
4837static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4838{
4839 unsigned int flags = mnt->mnt.mnt_flags;
4840
4841 /* flags to clear */
4842 flags &= ~kattr->attr_clr;
4843 /* flags to raise */
4844 flags |= kattr->attr_set;
4845
4846 return flags;
4847}
4848
4849static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4850{
4851 struct vfsmount *m = &mnt->mnt;
4852 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4853
4854 if (!kattr->mnt_idmap)
4855 return 0;
4856
4857 /*
4858 * Creating an idmapped mount with the filesystem wide idmapping
4859 * doesn't make sense so block that. We don't allow mushy semantics.
4860 */
4861 if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4862 return -EINVAL;
4863
4864 /*
4865 * We only allow an mount to change it's idmapping if it has
4866 * never been accessible to userspace.
4867 */
4868 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4869 return -EPERM;
4870
4871 /* The underlying filesystem doesn't support idmapped mounts yet. */
4872 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4873 return -EINVAL;
4874
4875 /* The filesystem has turned off idmapped mounts. */
4876 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4877 return -EINVAL;
4878
4879 /* We're not controlling the superblock. */
4880 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4881 return -EPERM;
4882
4883 /* Mount has already been visible in the filesystem hierarchy. */
4884 if (!is_anon_ns(mnt->mnt_ns))
4885 return -EINVAL;
4886
4887 return 0;
4888}
4889
4890/**
4891 * mnt_allow_writers() - check whether the attribute change allows writers
4892 * @kattr: the new mount attributes
4893 * @mnt: the mount to which @kattr will be applied
4894 *
4895 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4896 *
4897 * Return: true if writers need to be held, false if not
4898 */
4899static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4900 const struct mount *mnt)
4901{
4902 return (!(kattr->attr_set & MNT_READONLY) ||
4903 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4904 !kattr->mnt_idmap;
4905}
4906
4907static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4908{
4909 struct mount *m;
4910 int err;
4911
4912 for (m = mnt; m; m = next_mnt(m, mnt)) {
4913 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4914 err = -EPERM;
4915 break;
4916 }
4917
4918 err = can_idmap_mount(kattr, m);
4919 if (err)
4920 break;
4921
4922 if (!mnt_allow_writers(kattr, m)) {
4923 err = mnt_hold_writers(m);
4924 if (err)
4925 break;
4926 }
4927
4928 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4929 return 0;
4930 }
4931
4932 if (err) {
4933 struct mount *p;
4934
4935 /*
4936 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4937 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4938 * mounts and needs to take care to include the first mount.
4939 */
4940 for (p = mnt; p; p = next_mnt(p, mnt)) {
4941 /* If we had to hold writers unblock them. */
4942 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4943 mnt_unhold_writers(p);
4944
4945 /*
4946 * We're done once the first mount we changed got
4947 * MNT_WRITE_HOLD unset.
4948 */
4949 if (p == m)
4950 break;
4951 }
4952 }
4953 return err;
4954}
4955
4956static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4957{
4958 struct mnt_idmap *old_idmap;
4959
4960 if (!kattr->mnt_idmap)
4961 return;
4962
4963 old_idmap = mnt_idmap(&mnt->mnt);
4964
4965 /* Pairs with smp_load_acquire() in mnt_idmap(). */
4966 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4967 mnt_idmap_put(old_idmap);
4968}
4969
4970static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4971{
4972 struct mount *m;
4973
4974 for (m = mnt; m; m = next_mnt(m, mnt)) {
4975 unsigned int flags;
4976
4977 do_idmap_mount(kattr, m);
4978 flags = recalc_flags(kattr, m);
4979 WRITE_ONCE(m->mnt.mnt_flags, flags);
4980
4981 /* If we had to hold writers unblock them. */
4982 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4983 mnt_unhold_writers(m);
4984
4985 if (kattr->propagation)
4986 change_mnt_propagation(m, kattr->propagation);
4987 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4988 break;
4989 }
4990 touch_mnt_namespace(mnt->mnt_ns);
4991}
4992
4993static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4994{
4995 struct mount *mnt = real_mount(path->mnt);
4996 int err = 0;
4997
4998 if (!path_mounted(path))
4999 return -EINVAL;
5000
5001 if (kattr->mnt_userns) {
5002 struct mnt_idmap *mnt_idmap;
5003
5004 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
5005 if (IS_ERR(mnt_idmap))
5006 return PTR_ERR(mnt_idmap);
5007 kattr->mnt_idmap = mnt_idmap;
5008 }
5009
5010 if (kattr->propagation) {
5011 /*
5012 * Only take namespace_lock() if we're actually changing
5013 * propagation.
5014 */
5015 namespace_lock();
5016 if (kattr->propagation == MS_SHARED) {
5017 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
5018 if (err) {
5019 namespace_unlock();
5020 return err;
5021 }
5022 }
5023 }
5024
5025 err = -EINVAL;
5026 lock_mount_hash();
5027
5028 /* Ensure that this isn't anything purely vfs internal. */
5029 if (!is_mounted(&mnt->mnt))
5030 goto out;
5031
5032 /*
5033 * If this is an attached mount make sure it's located in the callers
5034 * mount namespace. If it's not don't let the caller interact with it.
5035 *
5036 * If this mount doesn't have a parent it's most often simply a
5037 * detached mount with an anonymous mount namespace. IOW, something
5038 * that's simply not attached yet. But there are apparently also users
5039 * that do change mount properties on the rootfs itself. That obviously
5040 * neither has a parent nor is it a detached mount so we cannot
5041 * unconditionally check for detached mounts.
5042 */
5043 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
5044 goto out;
5045
5046 /*
5047 * First, we get the mount tree in a shape where we can change mount
5048 * properties without failure. If we succeeded to do so we commit all
5049 * changes and if we failed we clean up.
5050 */
5051 err = mount_setattr_prepare(kattr, mnt);
5052 if (!err)
5053 mount_setattr_commit(kattr, mnt);
5054
5055out:
5056 unlock_mount_hash();
5057
5058 if (kattr->propagation) {
5059 if (err)
5060 cleanup_group_ids(mnt, NULL);
5061 namespace_unlock();
5062 }
5063
5064 return err;
5065}
5066
5067static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
5068 struct mount_kattr *kattr)
5069{
5070 struct ns_common *ns;
5071 struct user_namespace *mnt_userns;
5072
5073 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
5074 return 0;
5075
5076 if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
5077 /*
5078 * We can only remove an idmapping if it's never been
5079 * exposed to userspace.
5080 */
5081 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
5082 return -EINVAL;
5083
5084 /*
5085 * Removal of idmappings is equivalent to setting
5086 * nop_mnt_idmap.
5087 */
5088 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
5089 kattr->mnt_idmap = &nop_mnt_idmap;
5090 return 0;
5091 }
5092 }
5093
5094 if (attr->userns_fd > INT_MAX)
5095 return -EINVAL;
5096
5097 CLASS(fd, f)(attr->userns_fd);
5098 if (fd_empty(f))
5099 return -EBADF;
5100
5101 if (!proc_ns_file(fd_file(f)))
5102 return -EINVAL;
5103
5104 ns = get_proc_ns(file_inode(fd_file(f)));
5105 if (ns->ops->type != CLONE_NEWUSER)
5106 return -EINVAL;
5107
5108 /*
5109 * The initial idmapping cannot be used to create an idmapped
5110 * mount. We use the initial idmapping as an indicator of a mount
5111 * that is not idmapped. It can simply be passed into helpers that
5112 * are aware of idmapped mounts as a convenient shortcut. A user
5113 * can just create a dedicated identity mapping to achieve the same
5114 * result.
5115 */
5116 mnt_userns = container_of(ns, struct user_namespace, ns);
5117 if (mnt_userns == &init_user_ns)
5118 return -EPERM;
5119
5120 /* We're not controlling the target namespace. */
5121 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
5122 return -EPERM;
5123
5124 kattr->mnt_userns = get_user_ns(mnt_userns);
5125 return 0;
5126}
5127
5128static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
5129 struct mount_kattr *kattr)
5130{
5131 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
5132 return -EINVAL;
5133 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
5134 return -EINVAL;
5135 kattr->propagation = attr->propagation;
5136
5137 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
5138 return -EINVAL;
5139
5140 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
5141 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
5142
5143 /*
5144 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
5145 * users wanting to transition to a different atime setting cannot
5146 * simply specify the atime setting in @attr_set, but must also
5147 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
5148 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
5149 * @attr_clr and that @attr_set can't have any atime bits set if
5150 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
5151 */
5152 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
5153 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
5154 return -EINVAL;
5155
5156 /*
5157 * Clear all previous time settings as they are mutually
5158 * exclusive.
5159 */
5160 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
5161 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
5162 case MOUNT_ATTR_RELATIME:
5163 kattr->attr_set |= MNT_RELATIME;
5164 break;
5165 case MOUNT_ATTR_NOATIME:
5166 kattr->attr_set |= MNT_NOATIME;
5167 break;
5168 case MOUNT_ATTR_STRICTATIME:
5169 break;
5170 default:
5171 return -EINVAL;
5172 }
5173 } else {
5174 if (attr->attr_set & MOUNT_ATTR__ATIME)
5175 return -EINVAL;
5176 }
5177
5178 return build_mount_idmapped(attr, usize, kattr);
5179}
5180
5181static void finish_mount_kattr(struct mount_kattr *kattr)
5182{
5183 if (kattr->mnt_userns) {
5184 put_user_ns(kattr->mnt_userns);
5185 kattr->mnt_userns = NULL;
5186 }
5187
5188 if (kattr->mnt_idmap)
5189 mnt_idmap_put(kattr->mnt_idmap);
5190}
5191
5192static int copy_mount_setattr(struct mount_attr __user *uattr, size_t usize,
5193 struct mount_kattr *kattr)
5194{
5195 int ret;
5196 struct mount_attr attr;
5197
5198 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
5199
5200 if (unlikely(usize > PAGE_SIZE))
5201 return -E2BIG;
5202 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
5203 return -EINVAL;
5204
5205 if (!may_mount())
5206 return -EPERM;
5207
5208 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
5209 if (ret)
5210 return ret;
5211
5212 /* Don't bother walking through the mounts if this is a nop. */
5213 if (attr.attr_set == 0 &&
5214 attr.attr_clr == 0 &&
5215 attr.propagation == 0)
5216 return 0;
5217
5218 return build_mount_kattr(&attr, usize, kattr);
5219}
5220
5221SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
5222 unsigned int, flags, struct mount_attr __user *, uattr,
5223 size_t, usize)
5224{
5225 int err;
5226 struct path target;
5227 struct mount_kattr kattr;
5228 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
5229
5230 if (flags & ~(AT_EMPTY_PATH |
5231 AT_RECURSIVE |
5232 AT_SYMLINK_NOFOLLOW |
5233 AT_NO_AUTOMOUNT))
5234 return -EINVAL;
5235
5236 if (flags & AT_NO_AUTOMOUNT)
5237 lookup_flags &= ~LOOKUP_AUTOMOUNT;
5238 if (flags & AT_SYMLINK_NOFOLLOW)
5239 lookup_flags &= ~LOOKUP_FOLLOW;
5240 if (flags & AT_EMPTY_PATH)
5241 lookup_flags |= LOOKUP_EMPTY;
5242
5243 kattr = (struct mount_kattr) {
5244 .lookup_flags = lookup_flags,
5245 };
5246
5247 if (flags & AT_RECURSIVE)
5248 kattr.kflags |= MOUNT_KATTR_RECURSE;
5249
5250 err = copy_mount_setattr(uattr, usize, &kattr);
5251 if (err)
5252 return err;
5253
5254 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5255 if (!err) {
5256 err = do_mount_setattr(&target, &kattr);
5257 path_put(&target);
5258 }
5259 finish_mount_kattr(&kattr);
5260 return err;
5261}
5262
5263SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5264 unsigned, flags, struct mount_attr __user *, uattr,
5265 size_t, usize)
5266{
5267 struct file __free(fput) *file = NULL;
5268 int fd;
5269
5270 if (!uattr && usize)
5271 return -EINVAL;
5272
5273 file = vfs_open_tree(dfd, filename, flags);
5274 if (IS_ERR(file))
5275 return PTR_ERR(file);
5276
5277 if (uattr) {
5278 int ret;
5279 struct mount_kattr kattr = {};
5280
5281 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5282 if (flags & AT_RECURSIVE)
5283 kattr.kflags |= MOUNT_KATTR_RECURSE;
5284
5285 ret = copy_mount_setattr(uattr, usize, &kattr);
5286 if (ret)
5287 return ret;
5288
5289 ret = do_mount_setattr(&file->f_path, &kattr);
5290 if (ret)
5291 return ret;
5292
5293 finish_mount_kattr(&kattr);
5294 }
5295
5296 fd = get_unused_fd_flags(flags & O_CLOEXEC);
5297 if (fd < 0)
5298 return fd;
5299
5300 fd_install(fd, no_free_ptr(file));
5301 return fd;
5302}
5303
5304int show_path(struct seq_file *m, struct dentry *root)
5305{
5306 if (root->d_sb->s_op->show_path)
5307 return root->d_sb->s_op->show_path(m, root);
5308
5309 seq_dentry(m, root, " \t\n\\");
5310 return 0;
5311}
5312
5313static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5314{
5315 struct mount *mnt = mnt_find_id_at(ns, id);
5316
5317 if (!mnt || mnt->mnt_id_unique != id)
5318 return NULL;
5319
5320 return &mnt->mnt;
5321}
5322
5323struct kstatmount {
5324 struct statmount __user *buf;
5325 size_t bufsize;
5326 struct vfsmount *mnt;
5327 struct mnt_idmap *idmap;
5328 u64 mask;
5329 struct path root;
5330 struct seq_file seq;
5331
5332 /* Must be last --ends in a flexible-array member. */
5333 struct statmount sm;
5334};
5335
5336static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5337{
5338 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5339 u64 attr_flags = 0;
5340
5341 if (mnt_flags & MNT_READONLY)
5342 attr_flags |= MOUNT_ATTR_RDONLY;
5343 if (mnt_flags & MNT_NOSUID)
5344 attr_flags |= MOUNT_ATTR_NOSUID;
5345 if (mnt_flags & MNT_NODEV)
5346 attr_flags |= MOUNT_ATTR_NODEV;
5347 if (mnt_flags & MNT_NOEXEC)
5348 attr_flags |= MOUNT_ATTR_NOEXEC;
5349 if (mnt_flags & MNT_NODIRATIME)
5350 attr_flags |= MOUNT_ATTR_NODIRATIME;
5351 if (mnt_flags & MNT_NOSYMFOLLOW)
5352 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5353
5354 if (mnt_flags & MNT_NOATIME)
5355 attr_flags |= MOUNT_ATTR_NOATIME;
5356 else if (mnt_flags & MNT_RELATIME)
5357 attr_flags |= MOUNT_ATTR_RELATIME;
5358 else
5359 attr_flags |= MOUNT_ATTR_STRICTATIME;
5360
5361 if (is_idmapped_mnt(mnt))
5362 attr_flags |= MOUNT_ATTR_IDMAP;
5363
5364 return attr_flags;
5365}
5366
5367static u64 mnt_to_propagation_flags(struct mount *m)
5368{
5369 u64 propagation = 0;
5370
5371 if (IS_MNT_SHARED(m))
5372 propagation |= MS_SHARED;
5373 if (IS_MNT_SLAVE(m))
5374 propagation |= MS_SLAVE;
5375 if (IS_MNT_UNBINDABLE(m))
5376 propagation |= MS_UNBINDABLE;
5377 if (!propagation)
5378 propagation |= MS_PRIVATE;
5379
5380 return propagation;
5381}
5382
5383static void statmount_sb_basic(struct kstatmount *s)
5384{
5385 struct super_block *sb = s->mnt->mnt_sb;
5386
5387 s->sm.mask |= STATMOUNT_SB_BASIC;
5388 s->sm.sb_dev_major = MAJOR(sb->s_dev);
5389 s->sm.sb_dev_minor = MINOR(sb->s_dev);
5390 s->sm.sb_magic = sb->s_magic;
5391 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5392}
5393
5394static void statmount_mnt_basic(struct kstatmount *s)
5395{
5396 struct mount *m = real_mount(s->mnt);
5397
5398 s->sm.mask |= STATMOUNT_MNT_BASIC;
5399 s->sm.mnt_id = m->mnt_id_unique;
5400 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5401 s->sm.mnt_id_old = m->mnt_id;
5402 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5403 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5404 s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5405 s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
5406 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5407}
5408
5409static void statmount_propagate_from(struct kstatmount *s)
5410{
5411 struct mount *m = real_mount(s->mnt);
5412
5413 s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5414 if (IS_MNT_SLAVE(m))
5415 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root);
5416}
5417
5418static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5419{
5420 int ret;
5421 size_t start = seq->count;
5422
5423 ret = show_path(seq, s->mnt->mnt_root);
5424 if (ret)
5425 return ret;
5426
5427 if (unlikely(seq_has_overflowed(seq)))
5428 return -EAGAIN;
5429
5430 /*
5431 * Unescape the result. It would be better if supplied string was not
5432 * escaped in the first place, but that's a pretty invasive change.
5433 */
5434 seq->buf[seq->count] = '\0';
5435 seq->count = start;
5436 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5437 return 0;
5438}
5439
5440static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5441{
5442 struct vfsmount *mnt = s->mnt;
5443 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5444 int err;
5445
5446 err = seq_path_root(seq, &mnt_path, &s->root, "");
5447 return err == SEQ_SKIP ? 0 : err;
5448}
5449
5450static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5451{
5452 struct super_block *sb = s->mnt->mnt_sb;
5453
5454 seq_puts(seq, sb->s_type->name);
5455 return 0;
5456}
5457
5458static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5459{
5460 struct super_block *sb = s->mnt->mnt_sb;
5461
5462 if (sb->s_subtype)
5463 seq_puts(seq, sb->s_subtype);
5464}
5465
5466static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5467{
5468 struct super_block *sb = s->mnt->mnt_sb;
5469 struct mount *r = real_mount(s->mnt);
5470
5471 if (sb->s_op->show_devname) {
5472 size_t start = seq->count;
5473 int ret;
5474
5475 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5476 if (ret)
5477 return ret;
5478
5479 if (unlikely(seq_has_overflowed(seq)))
5480 return -EAGAIN;
5481
5482 /* Unescape the result */
5483 seq->buf[seq->count] = '\0';
5484 seq->count = start;
5485 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5486 } else if (r->mnt_devname) {
5487 seq_puts(seq, r->mnt_devname);
5488 }
5489 return 0;
5490}
5491
5492static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5493{
5494 s->sm.mask |= STATMOUNT_MNT_NS_ID;
5495 s->sm.mnt_ns_id = ns->seq;
5496}
5497
5498static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5499{
5500 struct vfsmount *mnt = s->mnt;
5501 struct super_block *sb = mnt->mnt_sb;
5502 size_t start = seq->count;
5503 int err;
5504
5505 err = security_sb_show_options(seq, sb);
5506 if (err)
5507 return err;
5508
5509 if (sb->s_op->show_options) {
5510 err = sb->s_op->show_options(seq, mnt->mnt_root);
5511 if (err)
5512 return err;
5513 }
5514
5515 if (unlikely(seq_has_overflowed(seq)))
5516 return -EAGAIN;
5517
5518 if (seq->count == start)
5519 return 0;
5520
5521 /* skip leading comma */
5522 memmove(seq->buf + start, seq->buf + start + 1,
5523 seq->count - start - 1);
5524 seq->count--;
5525
5526 return 0;
5527}
5528
5529static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5530{
5531 char *buf_end, *opt_end, *src, *dst;
5532 int count = 0;
5533
5534 if (unlikely(seq_has_overflowed(seq)))
5535 return -EAGAIN;
5536
5537 buf_end = seq->buf + seq->count;
5538 dst = seq->buf + start;
5539 src = dst + 1; /* skip initial comma */
5540
5541 if (src >= buf_end) {
5542 seq->count = start;
5543 return 0;
5544 }
5545
5546 *buf_end = '\0';
5547 for (; src < buf_end; src = opt_end + 1) {
5548 opt_end = strchrnul(src, ',');
5549 *opt_end = '\0';
5550 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5551 if (WARN_ON_ONCE(++count == INT_MAX))
5552 return -EOVERFLOW;
5553 }
5554 seq->count = dst - 1 - seq->buf;
5555 return count;
5556}
5557
5558static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5559{
5560 struct vfsmount *mnt = s->mnt;
5561 struct super_block *sb = mnt->mnt_sb;
5562 size_t start = seq->count;
5563 int err;
5564
5565 if (!sb->s_op->show_options)
5566 return 0;
5567
5568 err = sb->s_op->show_options(seq, mnt->mnt_root);
5569 if (err)
5570 return err;
5571
5572 err = statmount_opt_process(seq, start);
5573 if (err < 0)
5574 return err;
5575
5576 s->sm.opt_num = err;
5577 return 0;
5578}
5579
5580static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5581{
5582 struct vfsmount *mnt = s->mnt;
5583 struct super_block *sb = mnt->mnt_sb;
5584 size_t start = seq->count;
5585 int err;
5586
5587 err = security_sb_show_options(seq, sb);
5588 if (err)
5589 return err;
5590
5591 err = statmount_opt_process(seq, start);
5592 if (err < 0)
5593 return err;
5594
5595 s->sm.opt_sec_num = err;
5596 return 0;
5597}
5598
5599static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5600{
5601 int ret;
5602
5603 ret = statmount_mnt_idmap(s->idmap, seq, true);
5604 if (ret < 0)
5605 return ret;
5606
5607 s->sm.mnt_uidmap_num = ret;
5608 /*
5609 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5610 * mappings. This allows userspace to distinguish between a
5611 * non-idmapped mount and an idmapped mount where none of the
5612 * individual mappings are valid in the caller's idmapping.
5613 */
5614 if (is_valid_mnt_idmap(s->idmap))
5615 s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5616 return 0;
5617}
5618
5619static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5620{
5621 int ret;
5622
5623 ret = statmount_mnt_idmap(s->idmap, seq, false);
5624 if (ret < 0)
5625 return ret;
5626
5627 s->sm.mnt_gidmap_num = ret;
5628 /*
5629 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5630 * mappings. This allows userspace to distinguish between a
5631 * non-idmapped mount and an idmapped mount where none of the
5632 * individual mappings are valid in the caller's idmapping.
5633 */
5634 if (is_valid_mnt_idmap(s->idmap))
5635 s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5636 return 0;
5637}
5638
5639static int statmount_string(struct kstatmount *s, u64 flag)
5640{
5641 int ret = 0;
5642 size_t kbufsize;
5643 struct seq_file *seq = &s->seq;
5644 struct statmount *sm = &s->sm;
5645 u32 start, *offp;
5646
5647 /* Reserve an empty string at the beginning for any unset offsets */
5648 if (!seq->count)
5649 seq_putc(seq, 0);
5650
5651 start = seq->count;
5652
5653 switch (flag) {
5654 case STATMOUNT_FS_TYPE:
5655 offp = &sm->fs_type;
5656 ret = statmount_fs_type(s, seq);
5657 break;
5658 case STATMOUNT_MNT_ROOT:
5659 offp = &sm->mnt_root;
5660 ret = statmount_mnt_root(s, seq);
5661 break;
5662 case STATMOUNT_MNT_POINT:
5663 offp = &sm->mnt_point;
5664 ret = statmount_mnt_point(s, seq);
5665 break;
5666 case STATMOUNT_MNT_OPTS:
5667 offp = &sm->mnt_opts;
5668 ret = statmount_mnt_opts(s, seq);
5669 break;
5670 case STATMOUNT_OPT_ARRAY:
5671 offp = &sm->opt_array;
5672 ret = statmount_opt_array(s, seq);
5673 break;
5674 case STATMOUNT_OPT_SEC_ARRAY:
5675 offp = &sm->opt_sec_array;
5676 ret = statmount_opt_sec_array(s, seq);
5677 break;
5678 case STATMOUNT_FS_SUBTYPE:
5679 offp = &sm->fs_subtype;
5680 statmount_fs_subtype(s, seq);
5681 break;
5682 case STATMOUNT_SB_SOURCE:
5683 offp = &sm->sb_source;
5684 ret = statmount_sb_source(s, seq);
5685 break;
5686 case STATMOUNT_MNT_UIDMAP:
5687 sm->mnt_uidmap = start;
5688 ret = statmount_mnt_uidmap(s, seq);
5689 break;
5690 case STATMOUNT_MNT_GIDMAP:
5691 sm->mnt_gidmap = start;
5692 ret = statmount_mnt_gidmap(s, seq);
5693 break;
5694 default:
5695 WARN_ON_ONCE(true);
5696 return -EINVAL;
5697 }
5698
5699 /*
5700 * If nothing was emitted, return to avoid setting the flag
5701 * and terminating the buffer.
5702 */
5703 if (seq->count == start)
5704 return ret;
5705 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5706 return -EOVERFLOW;
5707 if (kbufsize >= s->bufsize)
5708 return -EOVERFLOW;
5709
5710 /* signal a retry */
5711 if (unlikely(seq_has_overflowed(seq)))
5712 return -EAGAIN;
5713
5714 if (ret)
5715 return ret;
5716
5717 seq->buf[seq->count++] = '\0';
5718 sm->mask |= flag;
5719 *offp = start;
5720 return 0;
5721}
5722
5723static int copy_statmount_to_user(struct kstatmount *s)
5724{
5725 struct statmount *sm = &s->sm;
5726 struct seq_file *seq = &s->seq;
5727 char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5728 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5729
5730 if (seq->count && copy_to_user(str, seq->buf, seq->count))
5731 return -EFAULT;
5732
5733 /* Return the number of bytes copied to the buffer */
5734 sm->size = copysize + seq->count;
5735 if (copy_to_user(s->buf, sm, copysize))
5736 return -EFAULT;
5737
5738 return 0;
5739}
5740
5741static struct mount *listmnt_next(struct mount *curr, bool reverse)
5742{
5743 struct rb_node *node;
5744
5745 if (reverse)
5746 node = rb_prev(&curr->mnt_node);
5747 else
5748 node = rb_next(&curr->mnt_node);
5749
5750 return node_to_mount(node);
5751}
5752
5753static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5754{
5755 struct mount *first, *child;
5756
5757 rwsem_assert_held(&namespace_sem);
5758
5759 /* We're looking at our own ns, just use get_fs_root. */
5760 if (ns == current->nsproxy->mnt_ns) {
5761 get_fs_root(current->fs, root);
5762 return 0;
5763 }
5764
5765 /*
5766 * We have to find the first mount in our ns and use that, however it
5767 * may not exist, so handle that properly.
5768 */
5769 if (mnt_ns_empty(ns))
5770 return -ENOENT;
5771
5772 first = child = ns->root;
5773 for (;;) {
5774 child = listmnt_next(child, false);
5775 if (!child)
5776 return -ENOENT;
5777 if (child->mnt_parent == first)
5778 break;
5779 }
5780
5781 root->mnt = mntget(&child->mnt);
5782 root->dentry = dget(root->mnt->mnt_root);
5783 return 0;
5784}
5785
5786/* This must be updated whenever a new flag is added */
5787#define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5788 STATMOUNT_MNT_BASIC | \
5789 STATMOUNT_PROPAGATE_FROM | \
5790 STATMOUNT_MNT_ROOT | \
5791 STATMOUNT_MNT_POINT | \
5792 STATMOUNT_FS_TYPE | \
5793 STATMOUNT_MNT_NS_ID | \
5794 STATMOUNT_MNT_OPTS | \
5795 STATMOUNT_FS_SUBTYPE | \
5796 STATMOUNT_SB_SOURCE | \
5797 STATMOUNT_OPT_ARRAY | \
5798 STATMOUNT_OPT_SEC_ARRAY | \
5799 STATMOUNT_SUPPORTED_MASK)
5800
5801static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5802 struct mnt_namespace *ns)
5803{
5804 struct path root __free(path_put) = {};
5805 struct mount *m;
5806 int err;
5807
5808 /* Has the namespace already been emptied? */
5809 if (mnt_ns_id && mnt_ns_empty(ns))
5810 return -ENOENT;
5811
5812 s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5813 if (!s->mnt)
5814 return -ENOENT;
5815
5816 err = grab_requested_root(ns, &root);
5817 if (err)
5818 return err;
5819
5820 /*
5821 * Don't trigger audit denials. We just want to determine what
5822 * mounts to show users.
5823 */
5824 m = real_mount(s->mnt);
5825 if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5826 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5827 return -EPERM;
5828
5829 err = security_sb_statfs(s->mnt->mnt_root);
5830 if (err)
5831 return err;
5832
5833 s->root = root;
5834 s->idmap = mnt_idmap(s->mnt);
5835 if (s->mask & STATMOUNT_SB_BASIC)
5836 statmount_sb_basic(s);
5837
5838 if (s->mask & STATMOUNT_MNT_BASIC)
5839 statmount_mnt_basic(s);
5840
5841 if (s->mask & STATMOUNT_PROPAGATE_FROM)
5842 statmount_propagate_from(s);
5843
5844 if (s->mask & STATMOUNT_FS_TYPE)
5845 err = statmount_string(s, STATMOUNT_FS_TYPE);
5846
5847 if (!err && s->mask & STATMOUNT_MNT_ROOT)
5848 err = statmount_string(s, STATMOUNT_MNT_ROOT);
5849
5850 if (!err && s->mask & STATMOUNT_MNT_POINT)
5851 err = statmount_string(s, STATMOUNT_MNT_POINT);
5852
5853 if (!err && s->mask & STATMOUNT_MNT_OPTS)
5854 err = statmount_string(s, STATMOUNT_MNT_OPTS);
5855
5856 if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5857 err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5858
5859 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5860 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5861
5862 if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5863 err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5864
5865 if (!err && s->mask & STATMOUNT_SB_SOURCE)
5866 err = statmount_string(s, STATMOUNT_SB_SOURCE);
5867
5868 if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5869 err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5870
5871 if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5872 err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5873
5874 if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5875 statmount_mnt_ns_id(s, ns);
5876
5877 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5878 s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5879 s->sm.supported_mask = STATMOUNT_SUPPORTED;
5880 }
5881
5882 if (err)
5883 return err;
5884
5885 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5886 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5887
5888 return 0;
5889}
5890
5891static inline bool retry_statmount(const long ret, size_t *seq_size)
5892{
5893 if (likely(ret != -EAGAIN))
5894 return false;
5895 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5896 return false;
5897 if (unlikely(*seq_size > MAX_RW_COUNT))
5898 return false;
5899 return true;
5900}
5901
5902#define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5903 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5904 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5905 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5906 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5907
5908static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5909 struct statmount __user *buf, size_t bufsize,
5910 size_t seq_size)
5911{
5912 if (!access_ok(buf, bufsize))
5913 return -EFAULT;
5914
5915 memset(ks, 0, sizeof(*ks));
5916 ks->mask = kreq->param;
5917 ks->buf = buf;
5918 ks->bufsize = bufsize;
5919
5920 if (ks->mask & STATMOUNT_STRING_REQ) {
5921 if (bufsize == sizeof(ks->sm))
5922 return -EOVERFLOW;
5923
5924 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5925 if (!ks->seq.buf)
5926 return -ENOMEM;
5927
5928 ks->seq.size = seq_size;
5929 }
5930
5931 return 0;
5932}
5933
5934static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5935 struct mnt_id_req *kreq)
5936{
5937 int ret;
5938 size_t usize;
5939
5940 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5941
5942 ret = get_user(usize, &req->size);
5943 if (ret)
5944 return -EFAULT;
5945 if (unlikely(usize > PAGE_SIZE))
5946 return -E2BIG;
5947 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5948 return -EINVAL;
5949 memset(kreq, 0, sizeof(*kreq));
5950 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5951 if (ret)
5952 return ret;
5953 if (kreq->spare != 0)
5954 return -EINVAL;
5955 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5956 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5957 return -EINVAL;
5958 return 0;
5959}
5960
5961/*
5962 * If the user requested a specific mount namespace id, look that up and return
5963 * that, or if not simply grab a passive reference on our mount namespace and
5964 * return that.
5965 */
5966static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5967{
5968 struct mnt_namespace *mnt_ns;
5969
5970 if (kreq->mnt_ns_id && kreq->spare)
5971 return ERR_PTR(-EINVAL);
5972
5973 if (kreq->mnt_ns_id)
5974 return lookup_mnt_ns(kreq->mnt_ns_id);
5975
5976 if (kreq->spare) {
5977 struct ns_common *ns;
5978
5979 CLASS(fd, f)(kreq->spare);
5980 if (fd_empty(f))
5981 return ERR_PTR(-EBADF);
5982
5983 if (!proc_ns_file(fd_file(f)))
5984 return ERR_PTR(-EINVAL);
5985
5986 ns = get_proc_ns(file_inode(fd_file(f)));
5987 if (ns->ops->type != CLONE_NEWNS)
5988 return ERR_PTR(-EINVAL);
5989
5990 mnt_ns = to_mnt_ns(ns);
5991 } else {
5992 mnt_ns = current->nsproxy->mnt_ns;
5993 }
5994
5995 refcount_inc(&mnt_ns->passive);
5996 return mnt_ns;
5997}
5998
5999SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
6000 struct statmount __user *, buf, size_t, bufsize,
6001 unsigned int, flags)
6002{
6003 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
6004 struct kstatmount *ks __free(kfree) = NULL;
6005 struct mnt_id_req kreq;
6006 /* We currently support retrieval of 3 strings. */
6007 size_t seq_size = 3 * PATH_MAX;
6008 int ret;
6009
6010 if (flags)
6011 return -EINVAL;
6012
6013 ret = copy_mnt_id_req(req, &kreq);
6014 if (ret)
6015 return ret;
6016
6017 ns = grab_requested_mnt_ns(&kreq);
6018 if (!ns)
6019 return -ENOENT;
6020
6021 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
6022 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6023 return -ENOENT;
6024
6025 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
6026 if (!ks)
6027 return -ENOMEM;
6028
6029retry:
6030 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
6031 if (ret)
6032 return ret;
6033
6034 scoped_guard(rwsem_read, &namespace_sem)
6035 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
6036
6037 if (!ret)
6038 ret = copy_statmount_to_user(ks);
6039 kvfree(ks->seq.buf);
6040 if (retry_statmount(ret, &seq_size))
6041 goto retry;
6042 return ret;
6043}
6044
6045static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
6046 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
6047 bool reverse)
6048{
6049 struct path root __free(path_put) = {};
6050 struct path orig;
6051 struct mount *r, *first;
6052 ssize_t ret;
6053
6054 rwsem_assert_held(&namespace_sem);
6055
6056 ret = grab_requested_root(ns, &root);
6057 if (ret)
6058 return ret;
6059
6060 if (mnt_parent_id == LSMT_ROOT) {
6061 orig = root;
6062 } else {
6063 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
6064 if (!orig.mnt)
6065 return -ENOENT;
6066 orig.dentry = orig.mnt->mnt_root;
6067 }
6068
6069 /*
6070 * Don't trigger audit denials. We just want to determine what
6071 * mounts to show users.
6072 */
6073 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
6074 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6075 return -EPERM;
6076
6077 ret = security_sb_statfs(orig.dentry);
6078 if (ret)
6079 return ret;
6080
6081 if (!last_mnt_id) {
6082 if (reverse)
6083 first = node_to_mount(ns->mnt_last_node);
6084 else
6085 first = node_to_mount(ns->mnt_first_node);
6086 } else {
6087 if (reverse)
6088 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
6089 else
6090 first = mnt_find_id_at(ns, last_mnt_id + 1);
6091 }
6092
6093 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
6094 if (r->mnt_id_unique == mnt_parent_id)
6095 continue;
6096 if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
6097 continue;
6098 *mnt_ids = r->mnt_id_unique;
6099 mnt_ids++;
6100 nr_mnt_ids--;
6101 ret++;
6102 }
6103 return ret;
6104}
6105
6106SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
6107 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
6108{
6109 u64 *kmnt_ids __free(kvfree) = NULL;
6110 const size_t maxcount = 1000000;
6111 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
6112 struct mnt_id_req kreq;
6113 u64 last_mnt_id;
6114 ssize_t ret;
6115
6116 if (flags & ~LISTMOUNT_REVERSE)
6117 return -EINVAL;
6118
6119 /*
6120 * If the mount namespace really has more than 1 million mounts the
6121 * caller must iterate over the mount namespace (and reconsider their
6122 * system design...).
6123 */
6124 if (unlikely(nr_mnt_ids > maxcount))
6125 return -EOVERFLOW;
6126
6127 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
6128 return -EFAULT;
6129
6130 ret = copy_mnt_id_req(req, &kreq);
6131 if (ret)
6132 return ret;
6133
6134 last_mnt_id = kreq.param;
6135 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
6136 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
6137 return -EINVAL;
6138
6139 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
6140 GFP_KERNEL_ACCOUNT);
6141 if (!kmnt_ids)
6142 return -ENOMEM;
6143
6144 ns = grab_requested_mnt_ns(&kreq);
6145 if (!ns)
6146 return -ENOENT;
6147
6148 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
6149 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6150 return -ENOENT;
6151
6152 scoped_guard(rwsem_read, &namespace_sem)
6153 ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
6154 nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
6155 if (ret <= 0)
6156 return ret;
6157
6158 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
6159 return -EFAULT;
6160
6161 return ret;
6162}
6163
6164static void __init init_mount_tree(void)
6165{
6166 struct vfsmount *mnt;
6167 struct mount *m;
6168 struct mnt_namespace *ns;
6169 struct path root;
6170
6171 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
6172 if (IS_ERR(mnt))
6173 panic("Can't create rootfs");
6174
6175 ns = alloc_mnt_ns(&init_user_ns, false);
6176 if (IS_ERR(ns))
6177 panic("Can't allocate initial namespace");
6178 m = real_mount(mnt);
6179 ns->root = m;
6180 ns->nr_mounts = 1;
6181 mnt_add_to_ns(ns, m);
6182 init_task.nsproxy->mnt_ns = ns;
6183 get_mnt_ns(ns);
6184
6185 root.mnt = mnt;
6186 root.dentry = mnt->mnt_root;
6187 mnt->mnt_flags |= MNT_LOCKED;
6188
6189 set_fs_pwd(current->fs, &root);
6190 set_fs_root(current->fs, &root);
6191
6192 mnt_ns_tree_add(ns);
6193}
6194
6195void __init mnt_init(void)
6196{
6197 int err;
6198
6199 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6200 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6201
6202 mount_hashtable = alloc_large_system_hash("Mount-cache",
6203 sizeof(struct hlist_head),
6204 mhash_entries, 19,
6205 HASH_ZERO,
6206 &m_hash_shift, &m_hash_mask, 0, 0);
6207 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6208 sizeof(struct hlist_head),
6209 mphash_entries, 19,
6210 HASH_ZERO,
6211 &mp_hash_shift, &mp_hash_mask, 0, 0);
6212
6213 if (!mount_hashtable || !mountpoint_hashtable)
6214 panic("Failed to allocate mount hash table\n");
6215
6216 kernfs_init();
6217
6218 err = sysfs_init();
6219 if (err)
6220 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6221 __func__, err);
6222 fs_kobj = kobject_create_and_add("fs", NULL);
6223 if (!fs_kobj)
6224 printk(KERN_WARNING "%s: kobj create error\n", __func__);
6225 shmem_init();
6226 init_rootfs();
6227 init_mount_tree();
6228}
6229
6230void put_mnt_ns(struct mnt_namespace *ns)
6231{
6232 if (!refcount_dec_and_test(&ns->ns.count))
6233 return;
6234 drop_collected_mounts(&ns->root->mnt);
6235 free_mnt_ns(ns);
6236}
6237
6238struct vfsmount *kern_mount(struct file_system_type *type)
6239{
6240 struct vfsmount *mnt;
6241 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6242 if (!IS_ERR(mnt)) {
6243 /*
6244 * it is a longterm mount, don't release mnt until
6245 * we unmount before file sys is unregistered
6246 */
6247 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6248 }
6249 return mnt;
6250}
6251EXPORT_SYMBOL_GPL(kern_mount);
6252
6253void kern_unmount(struct vfsmount *mnt)
6254{
6255 /* release long term mount so mount point can be released */
6256 if (!IS_ERR(mnt)) {
6257 mnt_make_shortterm(mnt);
6258 synchronize_rcu(); /* yecchhh... */
6259 mntput(mnt);
6260 }
6261}
6262EXPORT_SYMBOL(kern_unmount);
6263
6264void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6265{
6266 unsigned int i;
6267
6268 for (i = 0; i < num; i++)
6269 mnt_make_shortterm(mnt[i]);
6270 synchronize_rcu_expedited();
6271 for (i = 0; i < num; i++)
6272 mntput(mnt[i]);
6273}
6274EXPORT_SYMBOL(kern_unmount_array);
6275
6276bool our_mnt(struct vfsmount *mnt)
6277{
6278 return check_mnt(real_mount(mnt));
6279}
6280
6281bool current_chrooted(void)
6282{
6283 /* Does the current process have a non-standard root */
6284 struct path ns_root;
6285 struct path fs_root;
6286 bool chrooted;
6287
6288 /* Find the namespace root */
6289 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
6290 ns_root.dentry = ns_root.mnt->mnt_root;
6291 path_get(&ns_root);
6292 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
6293 ;
6294
6295 get_fs_root(current->fs, &fs_root);
6296
6297 chrooted = !path_equal(&fs_root, &ns_root);
6298
6299 path_put(&fs_root);
6300 path_put(&ns_root);
6301
6302 return chrooted;
6303}
6304
6305static bool mnt_already_visible(struct mnt_namespace *ns,
6306 const struct super_block *sb,
6307 int *new_mnt_flags)
6308{
6309 int new_flags = *new_mnt_flags;
6310 struct mount *mnt, *n;
6311 bool visible = false;
6312
6313 down_read(&namespace_sem);
6314 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6315 struct mount *child;
6316 int mnt_flags;
6317
6318 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6319 continue;
6320
6321 /* This mount is not fully visible if it's root directory
6322 * is not the root directory of the filesystem.
6323 */
6324 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6325 continue;
6326
6327 /* A local view of the mount flags */
6328 mnt_flags = mnt->mnt.mnt_flags;
6329
6330 /* Don't miss readonly hidden in the superblock flags */
6331 if (sb_rdonly(mnt->mnt.mnt_sb))
6332 mnt_flags |= MNT_LOCK_READONLY;
6333
6334 /* Verify the mount flags are equal to or more permissive
6335 * than the proposed new mount.
6336 */
6337 if ((mnt_flags & MNT_LOCK_READONLY) &&
6338 !(new_flags & MNT_READONLY))
6339 continue;
6340 if ((mnt_flags & MNT_LOCK_ATIME) &&
6341 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6342 continue;
6343
6344 /* This mount is not fully visible if there are any
6345 * locked child mounts that cover anything except for
6346 * empty directories.
6347 */
6348 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6349 struct inode *inode = child->mnt_mountpoint->d_inode;
6350 /* Only worry about locked mounts */
6351 if (!(child->mnt.mnt_flags & MNT_LOCKED))
6352 continue;
6353 /* Is the directory permanently empty? */
6354 if (!is_empty_dir_inode(inode))
6355 goto next;
6356 }
6357 /* Preserve the locked attributes */
6358 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6359 MNT_LOCK_ATIME);
6360 visible = true;
6361 goto found;
6362 next: ;
6363 }
6364found:
6365 up_read(&namespace_sem);
6366 return visible;
6367}
6368
6369static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6370{
6371 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6372 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6373 unsigned long s_iflags;
6374
6375 if (ns->user_ns == &init_user_ns)
6376 return false;
6377
6378 /* Can this filesystem be too revealing? */
6379 s_iflags = sb->s_iflags;
6380 if (!(s_iflags & SB_I_USERNS_VISIBLE))
6381 return false;
6382
6383 if ((s_iflags & required_iflags) != required_iflags) {
6384 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6385 required_iflags);
6386 return true;
6387 }
6388
6389 return !mnt_already_visible(ns, sb, new_mnt_flags);
6390}
6391
6392bool mnt_may_suid(struct vfsmount *mnt)
6393{
6394 /*
6395 * Foreign mounts (accessed via fchdir or through /proc
6396 * symlinks) are always treated as if they are nosuid. This
6397 * prevents namespaces from trusting potentially unsafe
6398 * suid/sgid bits, file caps, or security labels that originate
6399 * in other namespaces.
6400 */
6401 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6402 current_in_userns(mnt->mnt_sb->s_user_ns);
6403}
6404
6405static struct ns_common *mntns_get(struct task_struct *task)
6406{
6407 struct ns_common *ns = NULL;
6408 struct nsproxy *nsproxy;
6409
6410 task_lock(task);
6411 nsproxy = task->nsproxy;
6412 if (nsproxy) {
6413 ns = &nsproxy->mnt_ns->ns;
6414 get_mnt_ns(to_mnt_ns(ns));
6415 }
6416 task_unlock(task);
6417
6418 return ns;
6419}
6420
6421static void mntns_put(struct ns_common *ns)
6422{
6423 put_mnt_ns(to_mnt_ns(ns));
6424}
6425
6426static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6427{
6428 struct nsproxy *nsproxy = nsset->nsproxy;
6429 struct fs_struct *fs = nsset->fs;
6430 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6431 struct user_namespace *user_ns = nsset->cred->user_ns;
6432 struct path root;
6433 int err;
6434
6435 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6436 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6437 !ns_capable(user_ns, CAP_SYS_ADMIN))
6438 return -EPERM;
6439
6440 if (is_anon_ns(mnt_ns))
6441 return -EINVAL;
6442
6443 if (fs->users != 1)
6444 return -EINVAL;
6445
6446 get_mnt_ns(mnt_ns);
6447 old_mnt_ns = nsproxy->mnt_ns;
6448 nsproxy->mnt_ns = mnt_ns;
6449
6450 /* Find the root */
6451 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6452 "/", LOOKUP_DOWN, &root);
6453 if (err) {
6454 /* revert to old namespace */
6455 nsproxy->mnt_ns = old_mnt_ns;
6456 put_mnt_ns(mnt_ns);
6457 return err;
6458 }
6459
6460 put_mnt_ns(old_mnt_ns);
6461
6462 /* Update the pwd and root */
6463 set_fs_pwd(fs, &root);
6464 set_fs_root(fs, &root);
6465
6466 path_put(&root);
6467 return 0;
6468}
6469
6470static struct user_namespace *mntns_owner(struct ns_common *ns)
6471{
6472 return to_mnt_ns(ns)->user_ns;
6473}
6474
6475const struct proc_ns_operations mntns_operations = {
6476 .name = "mnt",
6477 .type = CLONE_NEWNS,
6478 .get = mntns_get,
6479 .put = mntns_put,
6480 .install = mntns_install,
6481 .owner = mntns_owner,
6482};
6483
6484#ifdef CONFIG_SYSCTL
6485static const struct ctl_table fs_namespace_sysctls[] = {
6486 {
6487 .procname = "mount-max",
6488 .data = &sysctl_mount_max,
6489 .maxlen = sizeof(unsigned int),
6490 .mode = 0644,
6491 .proc_handler = proc_dointvec_minmax,
6492 .extra1 = SYSCTL_ONE,
6493 },
6494};
6495
6496static int __init init_fs_namespace_sysctls(void)
6497{
6498 register_sysctl_init("fs", fs_namespace_sysctls);
6499 return 0;
6500}
6501fs_initcall(init_fs_namespace_sysctls);
6502
6503#endif /* CONFIG_SYSCTL */