Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2018, Google LLC.
4 */
5
6#ifndef SELFTEST_KVM_PROCESSOR_H
7#define SELFTEST_KVM_PROCESSOR_H
8
9#include <assert.h>
10#include <stdint.h>
11#include <syscall.h>
12
13#include <asm/msr-index.h>
14#include <asm/prctl.h>
15
16#include <linux/kvm_para.h>
17#include <linux/stringify.h>
18
19#include "kvm_util.h"
20#include "ucall_common.h"
21
22extern bool host_cpu_is_intel;
23extern bool host_cpu_is_amd;
24extern uint64_t guest_tsc_khz;
25
26#ifndef MAX_NR_CPUID_ENTRIES
27#define MAX_NR_CPUID_ENTRIES 100
28#endif
29
30#define NONCANONICAL 0xaaaaaaaaaaaaaaaaull
31
32/* Forced emulation prefix, used to invoke the emulator unconditionally. */
33#define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
34
35#define NMI_VECTOR 0x02
36
37#define X86_EFLAGS_FIXED (1u << 1)
38
39#define X86_CR4_VME (1ul << 0)
40#define X86_CR4_PVI (1ul << 1)
41#define X86_CR4_TSD (1ul << 2)
42#define X86_CR4_DE (1ul << 3)
43#define X86_CR4_PSE (1ul << 4)
44#define X86_CR4_PAE (1ul << 5)
45#define X86_CR4_MCE (1ul << 6)
46#define X86_CR4_PGE (1ul << 7)
47#define X86_CR4_PCE (1ul << 8)
48#define X86_CR4_OSFXSR (1ul << 9)
49#define X86_CR4_OSXMMEXCPT (1ul << 10)
50#define X86_CR4_UMIP (1ul << 11)
51#define X86_CR4_LA57 (1ul << 12)
52#define X86_CR4_VMXE (1ul << 13)
53#define X86_CR4_SMXE (1ul << 14)
54#define X86_CR4_FSGSBASE (1ul << 16)
55#define X86_CR4_PCIDE (1ul << 17)
56#define X86_CR4_OSXSAVE (1ul << 18)
57#define X86_CR4_SMEP (1ul << 20)
58#define X86_CR4_SMAP (1ul << 21)
59#define X86_CR4_PKE (1ul << 22)
60
61struct xstate_header {
62 u64 xstate_bv;
63 u64 xcomp_bv;
64 u64 reserved[6];
65} __attribute__((packed));
66
67struct xstate {
68 u8 i387[512];
69 struct xstate_header header;
70 u8 extended_state_area[0];
71} __attribute__ ((packed, aligned (64)));
72
73#define XFEATURE_MASK_FP BIT_ULL(0)
74#define XFEATURE_MASK_SSE BIT_ULL(1)
75#define XFEATURE_MASK_YMM BIT_ULL(2)
76#define XFEATURE_MASK_BNDREGS BIT_ULL(3)
77#define XFEATURE_MASK_BNDCSR BIT_ULL(4)
78#define XFEATURE_MASK_OPMASK BIT_ULL(5)
79#define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6)
80#define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7)
81#define XFEATURE_MASK_PT BIT_ULL(8)
82#define XFEATURE_MASK_PKRU BIT_ULL(9)
83#define XFEATURE_MASK_PASID BIT_ULL(10)
84#define XFEATURE_MASK_CET_USER BIT_ULL(11)
85#define XFEATURE_MASK_CET_KERNEL BIT_ULL(12)
86#define XFEATURE_MASK_LBR BIT_ULL(15)
87#define XFEATURE_MASK_XTILE_CFG BIT_ULL(17)
88#define XFEATURE_MASK_XTILE_DATA BIT_ULL(18)
89
90#define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \
91 XFEATURE_MASK_ZMM_Hi256 | \
92 XFEATURE_MASK_Hi16_ZMM)
93#define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \
94 XFEATURE_MASK_XTILE_CFG)
95
96/* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */
97enum cpuid_output_regs {
98 KVM_CPUID_EAX,
99 KVM_CPUID_EBX,
100 KVM_CPUID_ECX,
101 KVM_CPUID_EDX
102};
103
104/*
105 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
106 * passed by value with no overhead.
107 */
108struct kvm_x86_cpu_feature {
109 u32 function;
110 u16 index;
111 u8 reg;
112 u8 bit;
113};
114#define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \
115({ \
116 struct kvm_x86_cpu_feature feature = { \
117 .function = fn, \
118 .index = idx, \
119 .reg = KVM_CPUID_##gpr, \
120 .bit = __bit, \
121 }; \
122 \
123 kvm_static_assert((fn & 0xc0000000) == 0 || \
124 (fn & 0xc0000000) == 0x40000000 || \
125 (fn & 0xc0000000) == 0x80000000 || \
126 (fn & 0xc0000000) == 0xc0000000); \
127 kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \
128 feature; \
129})
130
131/*
132 * Basic Leafs, a.k.a. Intel defined
133 */
134#define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
135#define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
136#define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
137#define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
138#define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
139#define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
140#define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
141#define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
142#define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
143#define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
144#define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
145#define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
146#define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
147#define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
148#define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
149#define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
150#define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
151#define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
152#define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
153#define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
154#define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
155#define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
156#define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
157#define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
158#define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
159#define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
160#define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
161#define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
162#define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
163#define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
164#define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
165#define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
166#define X86_FEATURE_OSPKE KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
167#define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
168#define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
169#define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
170#define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
171#define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
172#define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
173#define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
174#define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
175#define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
176#define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
177#define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
178#define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
179#define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
180#define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
181
182/*
183 * Extended Leafs, a.k.a. AMD defined
184 */
185#define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
186#define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
187#define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
188#define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
189#define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
190#define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
191#define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
192#define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
193#define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
194#define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
195#define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
196#define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
197#define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
198#define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
199#define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
200#define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
201#define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
202
203/*
204 * KVM defined paravirt features.
205 */
206#define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
207#define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
208#define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
209#define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
210#define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
211#define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
212#define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
213#define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
214/* Bit 8 apparently isn't used?!?! */
215#define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
216#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
217#define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
218#define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
219#define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
220#define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
221#define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
222#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
223#define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
224
225/*
226 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
227 * value/property as opposed to a single-bit feature. Again, pack the info
228 * into a 64-bit value to pass by value with no overhead.
229 */
230struct kvm_x86_cpu_property {
231 u32 function;
232 u8 index;
233 u8 reg;
234 u8 lo_bit;
235 u8 hi_bit;
236};
237#define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \
238({ \
239 struct kvm_x86_cpu_property property = { \
240 .function = fn, \
241 .index = idx, \
242 .reg = KVM_CPUID_##gpr, \
243 .lo_bit = low_bit, \
244 .hi_bit = high_bit, \
245 }; \
246 \
247 kvm_static_assert(low_bit < high_bit); \
248 kvm_static_assert((fn & 0xc0000000) == 0 || \
249 (fn & 0xc0000000) == 0x40000000 || \
250 (fn & 0xc0000000) == 0x80000000 || \
251 (fn & 0xc0000000) == 0xc0000000); \
252 kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \
253 property; \
254})
255
256#define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
257#define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
258#define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
259#define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
260#define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
261#define X86_PROPERTY_PMU_EVENTS_MASK KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
262#define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
263#define X86_PROPERTY_PMU_NR_FIXED_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
264#define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
265
266#define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31)
267#define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31)
268#define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31)
269#define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31)
270
271#define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31)
272#define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31)
273#define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31)
274#define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15)
275#define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
276#define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15)
277#define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
278#define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15)
279
280#define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
281
282#define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
283#define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
284#define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
285#define X86_PROPERTY_GUEST_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23)
286#define X86_PROPERTY_SEV_C_BIT KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
287#define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
288
289#define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
290
291/*
292 * Intel's architectural PMU events are bizarre. They have a "feature" bit
293 * that indicates the feature is _not_ supported, and a property that states
294 * the length of the bit mask of unsupported features. A feature is supported
295 * if the size of the bit mask is larger than the "unavailable" bit, and said
296 * bit is not set. Fixed counters also bizarre enumeration, but inverted from
297 * arch events for general purpose counters. Fixed counters are supported if a
298 * feature flag is set **OR** the total number of fixed counters is greater
299 * than index of the counter.
300 *
301 * Wrap the events for general purpose and fixed counters to simplify checking
302 * whether or not a given architectural event is supported.
303 */
304struct kvm_x86_pmu_feature {
305 struct kvm_x86_cpu_feature f;
306};
307#define KVM_X86_PMU_FEATURE(__reg, __bit) \
308({ \
309 struct kvm_x86_pmu_feature feature = { \
310 .f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit), \
311 }; \
312 \
313 kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX || \
314 KVM_CPUID_##__reg == KVM_CPUID_ECX); \
315 feature; \
316})
317
318#define X86_PMU_FEATURE_CPU_CYCLES KVM_X86_PMU_FEATURE(EBX, 0)
319#define X86_PMU_FEATURE_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 1)
320#define X86_PMU_FEATURE_REFERENCE_CYCLES KVM_X86_PMU_FEATURE(EBX, 2)
321#define X86_PMU_FEATURE_LLC_REFERENCES KVM_X86_PMU_FEATURE(EBX, 3)
322#define X86_PMU_FEATURE_LLC_MISSES KVM_X86_PMU_FEATURE(EBX, 4)
323#define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 5)
324#define X86_PMU_FEATURE_BRANCHES_MISPREDICTED KVM_X86_PMU_FEATURE(EBX, 6)
325#define X86_PMU_FEATURE_TOPDOWN_SLOTS KVM_X86_PMU_FEATURE(EBX, 7)
326
327#define X86_PMU_FEATURE_INSNS_RETIRED_FIXED KVM_X86_PMU_FEATURE(ECX, 0)
328#define X86_PMU_FEATURE_CPU_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 1)
329#define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 2)
330#define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED KVM_X86_PMU_FEATURE(ECX, 3)
331
332static inline unsigned int x86_family(unsigned int eax)
333{
334 unsigned int x86;
335
336 x86 = (eax >> 8) & 0xf;
337
338 if (x86 == 0xf)
339 x86 += (eax >> 20) & 0xff;
340
341 return x86;
342}
343
344static inline unsigned int x86_model(unsigned int eax)
345{
346 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
347}
348
349/* Page table bitfield declarations */
350#define PTE_PRESENT_MASK BIT_ULL(0)
351#define PTE_WRITABLE_MASK BIT_ULL(1)
352#define PTE_USER_MASK BIT_ULL(2)
353#define PTE_ACCESSED_MASK BIT_ULL(5)
354#define PTE_DIRTY_MASK BIT_ULL(6)
355#define PTE_LARGE_MASK BIT_ULL(7)
356#define PTE_GLOBAL_MASK BIT_ULL(8)
357#define PTE_NX_MASK BIT_ULL(63)
358
359#define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12)
360
361#define PAGE_SHIFT 12
362#define PAGE_SIZE (1ULL << PAGE_SHIFT)
363#define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
364
365#define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9))
366#define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x))
367#define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
368
369#define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK)
370#define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT)
371
372/* General Registers in 64-Bit Mode */
373struct gpr64_regs {
374 u64 rax;
375 u64 rcx;
376 u64 rdx;
377 u64 rbx;
378 u64 rsp;
379 u64 rbp;
380 u64 rsi;
381 u64 rdi;
382 u64 r8;
383 u64 r9;
384 u64 r10;
385 u64 r11;
386 u64 r12;
387 u64 r13;
388 u64 r14;
389 u64 r15;
390};
391
392struct desc64 {
393 uint16_t limit0;
394 uint16_t base0;
395 unsigned base1:8, type:4, s:1, dpl:2, p:1;
396 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
397 uint32_t base3;
398 uint32_t zero1;
399} __attribute__((packed));
400
401struct desc_ptr {
402 uint16_t size;
403 uint64_t address;
404} __attribute__((packed));
405
406struct kvm_x86_state {
407 struct kvm_xsave *xsave;
408 struct kvm_vcpu_events events;
409 struct kvm_mp_state mp_state;
410 struct kvm_regs regs;
411 struct kvm_xcrs xcrs;
412 struct kvm_sregs sregs;
413 struct kvm_debugregs debugregs;
414 union {
415 struct kvm_nested_state nested;
416 char nested_[16384];
417 };
418 struct kvm_msrs msrs;
419};
420
421static inline uint64_t get_desc64_base(const struct desc64 *desc)
422{
423 return ((uint64_t)desc->base3 << 32) |
424 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
425}
426
427static inline uint64_t rdtsc(void)
428{
429 uint32_t eax, edx;
430 uint64_t tsc_val;
431 /*
432 * The lfence is to wait (on Intel CPUs) until all previous
433 * instructions have been executed. If software requires RDTSC to be
434 * executed prior to execution of any subsequent instruction, it can
435 * execute LFENCE immediately after RDTSC
436 */
437 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
438 tsc_val = ((uint64_t)edx) << 32 | eax;
439 return tsc_val;
440}
441
442static inline uint64_t rdtscp(uint32_t *aux)
443{
444 uint32_t eax, edx;
445
446 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
447 return ((uint64_t)edx) << 32 | eax;
448}
449
450static inline uint64_t rdmsr(uint32_t msr)
451{
452 uint32_t a, d;
453
454 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
455
456 return a | ((uint64_t) d << 32);
457}
458
459static inline void wrmsr(uint32_t msr, uint64_t value)
460{
461 uint32_t a = value;
462 uint32_t d = value >> 32;
463
464 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
465}
466
467
468static inline uint16_t inw(uint16_t port)
469{
470 uint16_t tmp;
471
472 __asm__ __volatile__("in %%dx, %%ax"
473 : /* output */ "=a" (tmp)
474 : /* input */ "d" (port));
475
476 return tmp;
477}
478
479static inline uint16_t get_es(void)
480{
481 uint16_t es;
482
483 __asm__ __volatile__("mov %%es, %[es]"
484 : /* output */ [es]"=rm"(es));
485 return es;
486}
487
488static inline uint16_t get_cs(void)
489{
490 uint16_t cs;
491
492 __asm__ __volatile__("mov %%cs, %[cs]"
493 : /* output */ [cs]"=rm"(cs));
494 return cs;
495}
496
497static inline uint16_t get_ss(void)
498{
499 uint16_t ss;
500
501 __asm__ __volatile__("mov %%ss, %[ss]"
502 : /* output */ [ss]"=rm"(ss));
503 return ss;
504}
505
506static inline uint16_t get_ds(void)
507{
508 uint16_t ds;
509
510 __asm__ __volatile__("mov %%ds, %[ds]"
511 : /* output */ [ds]"=rm"(ds));
512 return ds;
513}
514
515static inline uint16_t get_fs(void)
516{
517 uint16_t fs;
518
519 __asm__ __volatile__("mov %%fs, %[fs]"
520 : /* output */ [fs]"=rm"(fs));
521 return fs;
522}
523
524static inline uint16_t get_gs(void)
525{
526 uint16_t gs;
527
528 __asm__ __volatile__("mov %%gs, %[gs]"
529 : /* output */ [gs]"=rm"(gs));
530 return gs;
531}
532
533static inline uint16_t get_tr(void)
534{
535 uint16_t tr;
536
537 __asm__ __volatile__("str %[tr]"
538 : /* output */ [tr]"=rm"(tr));
539 return tr;
540}
541
542static inline uint64_t get_cr0(void)
543{
544 uint64_t cr0;
545
546 __asm__ __volatile__("mov %%cr0, %[cr0]"
547 : /* output */ [cr0]"=r"(cr0));
548 return cr0;
549}
550
551static inline uint64_t get_cr3(void)
552{
553 uint64_t cr3;
554
555 __asm__ __volatile__("mov %%cr3, %[cr3]"
556 : /* output */ [cr3]"=r"(cr3));
557 return cr3;
558}
559
560static inline uint64_t get_cr4(void)
561{
562 uint64_t cr4;
563
564 __asm__ __volatile__("mov %%cr4, %[cr4]"
565 : /* output */ [cr4]"=r"(cr4));
566 return cr4;
567}
568
569static inline void set_cr4(uint64_t val)
570{
571 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
572}
573
574static inline void set_idt(const struct desc_ptr *idt_desc)
575{
576 __asm__ __volatile__("lidt %0"::"m"(*idt_desc));
577}
578
579static inline u64 xgetbv(u32 index)
580{
581 u32 eax, edx;
582
583 __asm__ __volatile__("xgetbv;"
584 : "=a" (eax), "=d" (edx)
585 : "c" (index));
586 return eax | ((u64)edx << 32);
587}
588
589static inline void xsetbv(u32 index, u64 value)
590{
591 u32 eax = value;
592 u32 edx = value >> 32;
593
594 __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
595}
596
597static inline void wrpkru(u32 pkru)
598{
599 /* Note, ECX and EDX are architecturally required to be '0'. */
600 asm volatile(".byte 0x0f,0x01,0xef\n\t"
601 : : "a" (pkru), "c"(0), "d"(0));
602}
603
604static inline struct desc_ptr get_gdt(void)
605{
606 struct desc_ptr gdt;
607 __asm__ __volatile__("sgdt %[gdt]"
608 : /* output */ [gdt]"=m"(gdt));
609 return gdt;
610}
611
612static inline struct desc_ptr get_idt(void)
613{
614 struct desc_ptr idt;
615 __asm__ __volatile__("sidt %[idt]"
616 : /* output */ [idt]"=m"(idt));
617 return idt;
618}
619
620static inline void outl(uint16_t port, uint32_t value)
621{
622 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
623}
624
625static inline void __cpuid(uint32_t function, uint32_t index,
626 uint32_t *eax, uint32_t *ebx,
627 uint32_t *ecx, uint32_t *edx)
628{
629 *eax = function;
630 *ecx = index;
631
632 asm volatile("cpuid"
633 : "=a" (*eax),
634 "=b" (*ebx),
635 "=c" (*ecx),
636 "=d" (*edx)
637 : "0" (*eax), "2" (*ecx)
638 : "memory");
639}
640
641static inline void cpuid(uint32_t function,
642 uint32_t *eax, uint32_t *ebx,
643 uint32_t *ecx, uint32_t *edx)
644{
645 return __cpuid(function, 0, eax, ebx, ecx, edx);
646}
647
648static inline uint32_t this_cpu_fms(void)
649{
650 uint32_t eax, ebx, ecx, edx;
651
652 cpuid(1, &eax, &ebx, &ecx, &edx);
653 return eax;
654}
655
656static inline uint32_t this_cpu_family(void)
657{
658 return x86_family(this_cpu_fms());
659}
660
661static inline uint32_t this_cpu_model(void)
662{
663 return x86_model(this_cpu_fms());
664}
665
666static inline bool this_cpu_vendor_string_is(const char *vendor)
667{
668 const uint32_t *chunk = (const uint32_t *)vendor;
669 uint32_t eax, ebx, ecx, edx;
670
671 cpuid(0, &eax, &ebx, &ecx, &edx);
672 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
673}
674
675static inline bool this_cpu_is_intel(void)
676{
677 return this_cpu_vendor_string_is("GenuineIntel");
678}
679
680/*
681 * Exclude early K5 samples with a vendor string of "AMDisbetter!"
682 */
683static inline bool this_cpu_is_amd(void)
684{
685 return this_cpu_vendor_string_is("AuthenticAMD");
686}
687
688static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
689 uint8_t reg, uint8_t lo, uint8_t hi)
690{
691 uint32_t gprs[4];
692
693 __cpuid(function, index,
694 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
695 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
696
697 return (gprs[reg] & GENMASK(hi, lo)) >> lo;
698}
699
700static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
701{
702 return __this_cpu_has(feature.function, feature.index,
703 feature.reg, feature.bit, feature.bit);
704}
705
706static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
707{
708 return __this_cpu_has(property.function, property.index,
709 property.reg, property.lo_bit, property.hi_bit);
710}
711
712static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
713{
714 uint32_t max_leaf;
715
716 switch (property.function & 0xc0000000) {
717 case 0:
718 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
719 break;
720 case 0x40000000:
721 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
722 break;
723 case 0x80000000:
724 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
725 break;
726 case 0xc0000000:
727 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
728 }
729 return max_leaf >= property.function;
730}
731
732static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
733{
734 uint32_t nr_bits;
735
736 if (feature.f.reg == KVM_CPUID_EBX) {
737 nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
738 return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
739 }
740
741 GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
742 nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
743 return nr_bits > feature.f.bit || this_cpu_has(feature.f);
744}
745
746static __always_inline uint64_t this_cpu_supported_xcr0(void)
747{
748 if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
749 return 0;
750
751 return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
752 ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
753}
754
755typedef u32 __attribute__((vector_size(16))) sse128_t;
756#define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
757#define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; })
758#define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; })
759
760static inline void read_sse_reg(int reg, sse128_t *data)
761{
762 switch (reg) {
763 case 0:
764 asm("movdqa %%xmm0, %0" : "=m"(*data));
765 break;
766 case 1:
767 asm("movdqa %%xmm1, %0" : "=m"(*data));
768 break;
769 case 2:
770 asm("movdqa %%xmm2, %0" : "=m"(*data));
771 break;
772 case 3:
773 asm("movdqa %%xmm3, %0" : "=m"(*data));
774 break;
775 case 4:
776 asm("movdqa %%xmm4, %0" : "=m"(*data));
777 break;
778 case 5:
779 asm("movdqa %%xmm5, %0" : "=m"(*data));
780 break;
781 case 6:
782 asm("movdqa %%xmm6, %0" : "=m"(*data));
783 break;
784 case 7:
785 asm("movdqa %%xmm7, %0" : "=m"(*data));
786 break;
787 default:
788 BUG();
789 }
790}
791
792static inline void write_sse_reg(int reg, const sse128_t *data)
793{
794 switch (reg) {
795 case 0:
796 asm("movdqa %0, %%xmm0" : : "m"(*data));
797 break;
798 case 1:
799 asm("movdqa %0, %%xmm1" : : "m"(*data));
800 break;
801 case 2:
802 asm("movdqa %0, %%xmm2" : : "m"(*data));
803 break;
804 case 3:
805 asm("movdqa %0, %%xmm3" : : "m"(*data));
806 break;
807 case 4:
808 asm("movdqa %0, %%xmm4" : : "m"(*data));
809 break;
810 case 5:
811 asm("movdqa %0, %%xmm5" : : "m"(*data));
812 break;
813 case 6:
814 asm("movdqa %0, %%xmm6" : : "m"(*data));
815 break;
816 case 7:
817 asm("movdqa %0, %%xmm7" : : "m"(*data));
818 break;
819 default:
820 BUG();
821 }
822}
823
824static inline void cpu_relax(void)
825{
826 asm volatile("rep; nop" ::: "memory");
827}
828
829static inline void udelay(unsigned long usec)
830{
831 uint64_t start, now, cycles;
832
833 GUEST_ASSERT(guest_tsc_khz);
834 cycles = guest_tsc_khz / 1000 * usec;
835
836 /*
837 * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is
838 * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits.
839 */
840 start = rdtsc();
841 do {
842 now = rdtsc();
843 } while (now - start < cycles);
844}
845
846#define ud2() \
847 __asm__ __volatile__( \
848 "ud2\n" \
849 )
850
851#define hlt() \
852 __asm__ __volatile__( \
853 "hlt\n" \
854 )
855
856struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
857void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
858void kvm_x86_state_cleanup(struct kvm_x86_state *state);
859
860const struct kvm_msr_list *kvm_get_msr_index_list(void);
861const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
862bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
863uint64_t kvm_get_feature_msr(uint64_t msr_index);
864
865static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
866 struct kvm_msrs *msrs)
867{
868 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
869
870 TEST_ASSERT(r == msrs->nmsrs,
871 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
872 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
873}
874static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
875{
876 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
877
878 TEST_ASSERT(r == msrs->nmsrs,
879 "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
880 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
881}
882static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
883 struct kvm_debugregs *debugregs)
884{
885 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
886}
887static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
888 struct kvm_debugregs *debugregs)
889{
890 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
891}
892static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
893 struct kvm_xsave *xsave)
894{
895 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
896}
897static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
898 struct kvm_xsave *xsave)
899{
900 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
901}
902static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
903 struct kvm_xsave *xsave)
904{
905 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
906}
907static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
908 struct kvm_xcrs *xcrs)
909{
910 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
911}
912static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
913{
914 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
915}
916
917const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
918 uint32_t function, uint32_t index);
919const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
920
921static inline uint32_t kvm_cpu_fms(void)
922{
923 return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
924}
925
926static inline uint32_t kvm_cpu_family(void)
927{
928 return x86_family(kvm_cpu_fms());
929}
930
931static inline uint32_t kvm_cpu_model(void)
932{
933 return x86_model(kvm_cpu_fms());
934}
935
936bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
937 struct kvm_x86_cpu_feature feature);
938
939static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
940{
941 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
942}
943
944uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
945 struct kvm_x86_cpu_property property);
946
947static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
948{
949 return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
950}
951
952static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
953{
954 uint32_t max_leaf;
955
956 switch (property.function & 0xc0000000) {
957 case 0:
958 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
959 break;
960 case 0x40000000:
961 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
962 break;
963 case 0x80000000:
964 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
965 break;
966 case 0xc0000000:
967 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
968 }
969 return max_leaf >= property.function;
970}
971
972static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
973{
974 uint32_t nr_bits;
975
976 if (feature.f.reg == KVM_CPUID_EBX) {
977 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
978 return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
979 }
980
981 TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
982 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
983 return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
984}
985
986static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
987{
988 if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
989 return 0;
990
991 return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
992 ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
993}
994
995static inline size_t kvm_cpuid2_size(int nr_entries)
996{
997 return sizeof(struct kvm_cpuid2) +
998 sizeof(struct kvm_cpuid_entry2) * nr_entries;
999}
1000
1001/*
1002 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
1003 * entries sized to hold @nr_entries. The caller is responsible for freeing
1004 * the struct.
1005 */
1006static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
1007{
1008 struct kvm_cpuid2 *cpuid;
1009
1010 cpuid = malloc(kvm_cpuid2_size(nr_entries));
1011 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
1012
1013 cpuid->nent = nr_entries;
1014
1015 return cpuid;
1016}
1017
1018void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
1019
1020static inline void vcpu_get_cpuid(struct kvm_vcpu *vcpu)
1021{
1022 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1023}
1024
1025static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1026 uint32_t function,
1027 uint32_t index)
1028{
1029 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first (or equivalent)");
1030
1031 vcpu_get_cpuid(vcpu);
1032
1033 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1034 function, index);
1035}
1036
1037static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1038 uint32_t function)
1039{
1040 return __vcpu_get_cpuid_entry(vcpu, function, 0);
1041}
1042
1043static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1044{
1045 int r;
1046
1047 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1048 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1049 if (r)
1050 return r;
1051
1052 /* On success, refresh the cache to pick up adjustments made by KVM. */
1053 vcpu_get_cpuid(vcpu);
1054 return 0;
1055}
1056
1057static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1058{
1059 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1060 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1061
1062 /* Refresh the cache to pick up adjustments made by KVM. */
1063 vcpu_get_cpuid(vcpu);
1064}
1065
1066void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1067 struct kvm_x86_cpu_property property,
1068 uint32_t value);
1069void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1070
1071void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1072
1073static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1074 struct kvm_x86_cpu_feature feature)
1075{
1076 struct kvm_cpuid_entry2 *entry;
1077
1078 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1079 return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1080}
1081
1082void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1083 struct kvm_x86_cpu_feature feature,
1084 bool set);
1085
1086static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1087 struct kvm_x86_cpu_feature feature)
1088{
1089 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1090
1091}
1092
1093static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1094 struct kvm_x86_cpu_feature feature)
1095{
1096 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1097}
1098
1099uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1100int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1101
1102/*
1103 * Assert on an MSR access(es) and pretty print the MSR name when possible.
1104 * Note, the caller provides the stringified name so that the name of macro is
1105 * printed, not the value the macro resolves to (due to macro expansion).
1106 */
1107#define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \
1108do { \
1109 if (__builtin_constant_p(msr)) { \
1110 TEST_ASSERT(cond, fmt, str, args); \
1111 } else if (!(cond)) { \
1112 char buf[16]; \
1113 \
1114 snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \
1115 TEST_ASSERT(cond, fmt, buf, args); \
1116 } \
1117} while (0)
1118
1119/*
1120 * Returns true if KVM should return the last written value when reading an MSR
1121 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1122 * is changing, etc. This is NOT an exhaustive list! The intent is to filter
1123 * out MSRs that are not durable _and_ that a selftest wants to write.
1124 */
1125static inline bool is_durable_msr(uint32_t msr)
1126{
1127 return msr != MSR_IA32_TSC;
1128}
1129
1130#define vcpu_set_msr(vcpu, msr, val) \
1131do { \
1132 uint64_t r, v = val; \
1133 \
1134 TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \
1135 "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \
1136 if (!is_durable_msr(msr)) \
1137 break; \
1138 r = vcpu_get_msr(vcpu, msr); \
1139 TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1140} while (0)
1141
1142void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1143void kvm_init_vm_address_properties(struct kvm_vm *vm);
1144bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1145
1146struct ex_regs {
1147 uint64_t rax, rcx, rdx, rbx;
1148 uint64_t rbp, rsi, rdi;
1149 uint64_t r8, r9, r10, r11;
1150 uint64_t r12, r13, r14, r15;
1151 uint64_t vector;
1152 uint64_t error_code;
1153 uint64_t rip;
1154 uint64_t cs;
1155 uint64_t rflags;
1156};
1157
1158struct idt_entry {
1159 uint16_t offset0;
1160 uint16_t selector;
1161 uint16_t ist : 3;
1162 uint16_t : 5;
1163 uint16_t type : 4;
1164 uint16_t : 1;
1165 uint16_t dpl : 2;
1166 uint16_t p : 1;
1167 uint16_t offset1;
1168 uint32_t offset2; uint32_t reserved;
1169};
1170
1171void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1172 void (*handler)(struct ex_regs *));
1173
1174/* If a toddler were to say "abracadabra". */
1175#define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1176
1177/*
1178 * KVM selftest exception fixup uses registers to coordinate with the exception
1179 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1180 * per-CPU data. Using only registers avoids having to map memory into the
1181 * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1182 * for recursive faults when accessing memory in the handler. The downside to
1183 * using registers is that it restricts what registers can be used by the actual
1184 * instruction. But, selftests are 64-bit only, making register* pressure a
1185 * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved
1186 * by the callee, and except for r11 are not implicit parameters to any
1187 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit
1188 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1189 * is higher priority than testing non-faulting SYSCALL/SYSRET.
1190 *
1191 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1192 * is guaranteed to be non-zero on fault.
1193 *
1194 * REGISTER INPUTS:
1195 * r9 = MAGIC
1196 * r10 = RIP
1197 * r11 = new RIP on fault
1198 *
1199 * REGISTER OUTPUTS:
1200 * r9 = exception vector (non-zero)
1201 * r10 = error code
1202 */
1203#define __KVM_ASM_SAFE(insn, fep) \
1204 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \
1205 "lea 1f(%%rip), %%r10\n\t" \
1206 "lea 2f(%%rip), %%r11\n\t" \
1207 fep "1: " insn "\n\t" \
1208 "xor %%r9, %%r9\n\t" \
1209 "2:\n\t" \
1210 "mov %%r9b, %[vector]\n\t" \
1211 "mov %%r10, %[error_code]\n\t"
1212
1213#define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1214#define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1215
1216#define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec)
1217#define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11"
1218
1219#define kvm_asm_safe(insn, inputs...) \
1220({ \
1221 uint64_t ign_error_code; \
1222 uint8_t vector; \
1223 \
1224 asm volatile(KVM_ASM_SAFE(insn) \
1225 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
1226 : inputs \
1227 : KVM_ASM_SAFE_CLOBBERS); \
1228 vector; \
1229})
1230
1231#define kvm_asm_safe_ec(insn, error_code, inputs...) \
1232({ \
1233 uint8_t vector; \
1234 \
1235 asm volatile(KVM_ASM_SAFE(insn) \
1236 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1237 : inputs \
1238 : KVM_ASM_SAFE_CLOBBERS); \
1239 vector; \
1240})
1241
1242#define kvm_asm_safe_fep(insn, inputs...) \
1243({ \
1244 uint64_t ign_error_code; \
1245 uint8_t vector; \
1246 \
1247 asm volatile(KVM_ASM_SAFE(insn) \
1248 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
1249 : inputs \
1250 : KVM_ASM_SAFE_CLOBBERS); \
1251 vector; \
1252})
1253
1254#define kvm_asm_safe_ec_fep(insn, error_code, inputs...) \
1255({ \
1256 uint8_t vector; \
1257 \
1258 asm volatile(KVM_ASM_SAFE_FEP(insn) \
1259 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1260 : inputs \
1261 : KVM_ASM_SAFE_CLOBBERS); \
1262 vector; \
1263})
1264
1265#define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \
1266static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val) \
1267{ \
1268 uint64_t error_code; \
1269 uint8_t vector; \
1270 uint32_t a, d; \
1271 \
1272 asm volatile(KVM_ASM_SAFE##_FEP(#insn) \
1273 : "=a"(a), "=d"(d), \
1274 KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1275 : "c"(idx) \
1276 : KVM_ASM_SAFE_CLOBBERS); \
1277 \
1278 *val = (uint64_t)a | ((uint64_t)d << 32); \
1279 return vector; \
1280}
1281
1282/*
1283 * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1284 * use ECX as in input index, and EDX:EAX as a 64-bit output.
1285 */
1286#define BUILD_READ_U64_SAFE_HELPERS(insn) \
1287 BUILD_READ_U64_SAFE_HELPER(insn, , ) \
1288 BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \
1289
1290BUILD_READ_U64_SAFE_HELPERS(rdmsr)
1291BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1292BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1293
1294static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1295{
1296 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1297}
1298
1299static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1300{
1301 u32 eax = value;
1302 u32 edx = value >> 32;
1303
1304 return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1305}
1306
1307bool kvm_is_tdp_enabled(void);
1308
1309static inline bool kvm_is_pmu_enabled(void)
1310{
1311 return get_kvm_param_bool("enable_pmu");
1312}
1313
1314static inline bool kvm_is_forced_emulation_enabled(void)
1315{
1316 return !!get_kvm_param_integer("force_emulation_prefix");
1317}
1318
1319uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1320 int *level);
1321uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1322
1323uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1324 uint64_t a3);
1325uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1326void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1327
1328static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1329 uint64_t size, uint64_t flags)
1330{
1331 return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1332}
1333
1334static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1335 uint64_t flags)
1336{
1337 uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1338
1339 GUEST_ASSERT(!ret);
1340}
1341
1342void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1343
1344#define vm_xsave_require_permission(xfeature) \
1345 __vm_xsave_require_permission(xfeature, #xfeature)
1346
1347enum pg_level {
1348 PG_LEVEL_NONE,
1349 PG_LEVEL_4K,
1350 PG_LEVEL_2M,
1351 PG_LEVEL_1G,
1352 PG_LEVEL_512G,
1353 PG_LEVEL_NUM
1354};
1355
1356#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1357#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1358
1359#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1360#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1361#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1362
1363void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1364void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1365 uint64_t nr_bytes, int level);
1366
1367/*
1368 * Basic CPU control in CR0
1369 */
1370#define X86_CR0_PE (1UL<<0) /* Protection Enable */
1371#define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */
1372#define X86_CR0_EM (1UL<<2) /* Emulation */
1373#define X86_CR0_TS (1UL<<3) /* Task Switched */
1374#define X86_CR0_ET (1UL<<4) /* Extension Type */
1375#define X86_CR0_NE (1UL<<5) /* Numeric Error */
1376#define X86_CR0_WP (1UL<<16) /* Write Protect */
1377#define X86_CR0_AM (1UL<<18) /* Alignment Mask */
1378#define X86_CR0_NW (1UL<<29) /* Not Write-through */
1379#define X86_CR0_CD (1UL<<30) /* Cache Disable */
1380#define X86_CR0_PG (1UL<<31) /* Paging */
1381
1382#define PFERR_PRESENT_BIT 0
1383#define PFERR_WRITE_BIT 1
1384#define PFERR_USER_BIT 2
1385#define PFERR_RSVD_BIT 3
1386#define PFERR_FETCH_BIT 4
1387#define PFERR_PK_BIT 5
1388#define PFERR_SGX_BIT 15
1389#define PFERR_GUEST_FINAL_BIT 32
1390#define PFERR_GUEST_PAGE_BIT 33
1391#define PFERR_IMPLICIT_ACCESS_BIT 48
1392
1393#define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT)
1394#define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT)
1395#define PFERR_USER_MASK BIT(PFERR_USER_BIT)
1396#define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT)
1397#define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT)
1398#define PFERR_PK_MASK BIT(PFERR_PK_BIT)
1399#define PFERR_SGX_MASK BIT(PFERR_SGX_BIT)
1400#define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT)
1401#define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT)
1402#define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1403
1404bool sys_clocksource_is_based_on_tsc(void);
1405
1406#endif /* SELFTEST_KVM_PROCESSOR_H */