at v6.14 151 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <gw4pts@gw4pts.ampr.org> 7 * Florian La Roche, <rzsfl@rz.uni-sb.de> 8 */ 9 10#ifndef _LINUX_SKBUFF_H 11#define _LINUX_SKBUFF_H 12 13#include <linux/kernel.h> 14#include <linux/compiler.h> 15#include <linux/time.h> 16#include <linux/bug.h> 17#include <linux/bvec.h> 18#include <linux/cache.h> 19#include <linux/rbtree.h> 20#include <linux/socket.h> 21#include <linux/refcount.h> 22 23#include <linux/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <net/checksum.h> 27#include <linux/rcupdate.h> 28#include <linux/dma-mapping.h> 29#include <linux/netdev_features.h> 30#include <net/flow_dissector.h> 31#include <linux/in6.h> 32#include <linux/if_packet.h> 33#include <linux/llist.h> 34#include <linux/page_frag_cache.h> 35#include <net/flow.h> 36#if IS_ENABLED(CONFIG_NF_CONNTRACK) 37#include <linux/netfilter/nf_conntrack_common.h> 38#endif 39#include <net/net_debug.h> 40#include <net/dropreason-core.h> 41#include <net/netmem.h> 42 43/** 44 * DOC: skb checksums 45 * 46 * The interface for checksum offload between the stack and networking drivers 47 * is as follows... 48 * 49 * IP checksum related features 50 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 51 * 52 * Drivers advertise checksum offload capabilities in the features of a device. 53 * From the stack's point of view these are capabilities offered by the driver. 54 * A driver typically only advertises features that it is capable of offloading 55 * to its device. 56 * 57 * .. flat-table:: Checksum related device features 58 * :widths: 1 10 59 * 60 * * - %NETIF_F_HW_CSUM 61 * - The driver (or its device) is able to compute one 62 * IP (one's complement) checksum for any combination 63 * of protocols or protocol layering. The checksum is 64 * computed and set in a packet per the CHECKSUM_PARTIAL 65 * interface (see below). 66 * 67 * * - %NETIF_F_IP_CSUM 68 * - Driver (device) is only able to checksum plain 69 * TCP or UDP packets over IPv4. These are specifically 70 * unencapsulated packets of the form IPv4|TCP or 71 * IPv4|UDP where the Protocol field in the IPv4 header 72 * is TCP or UDP. The IPv4 header may contain IP options. 73 * This feature cannot be set in features for a device 74 * with NETIF_F_HW_CSUM also set. This feature is being 75 * DEPRECATED (see below). 76 * 77 * * - %NETIF_F_IPV6_CSUM 78 * - Driver (device) is only able to checksum plain 79 * TCP or UDP packets over IPv6. These are specifically 80 * unencapsulated packets of the form IPv6|TCP or 81 * IPv6|UDP where the Next Header field in the IPv6 82 * header is either TCP or UDP. IPv6 extension headers 83 * are not supported with this feature. This feature 84 * cannot be set in features for a device with 85 * NETIF_F_HW_CSUM also set. This feature is being 86 * DEPRECATED (see below). 87 * 88 * * - %NETIF_F_RXCSUM 89 * - Driver (device) performs receive checksum offload. 90 * This flag is only used to disable the RX checksum 91 * feature for a device. The stack will accept receive 92 * checksum indication in packets received on a device 93 * regardless of whether NETIF_F_RXCSUM is set. 94 * 95 * Checksumming of received packets by device 96 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 97 * 98 * Indication of checksum verification is set in &sk_buff.ip_summed. 99 * Possible values are: 100 * 101 * - %CHECKSUM_NONE 102 * 103 * Device did not checksum this packet e.g. due to lack of capabilities. 104 * The packet contains full (though not verified) checksum in packet but 105 * not in skb->csum. Thus, skb->csum is undefined in this case. 106 * 107 * - %CHECKSUM_UNNECESSARY 108 * 109 * The hardware you're dealing with doesn't calculate the full checksum 110 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 111 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 112 * if their checksums are okay. &sk_buff.csum is still undefined in this case 113 * though. A driver or device must never modify the checksum field in the 114 * packet even if checksum is verified. 115 * 116 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 117 * 118 * - TCP: IPv6 and IPv4. 119 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 120 * zero UDP checksum for either IPv4 or IPv6, the networking stack 121 * may perform further validation in this case. 122 * - GRE: only if the checksum is present in the header. 123 * - SCTP: indicates the CRC in SCTP header has been validated. 124 * - FCOE: indicates the CRC in FC frame has been validated. 125 * 126 * &sk_buff.csum_level indicates the number of consecutive checksums found in 127 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 128 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 129 * and a device is able to verify the checksums for UDP (possibly zero), 130 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 131 * two. If the device were only able to verify the UDP checksum and not 132 * GRE, either because it doesn't support GRE checksum or because GRE 133 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 134 * not considered in this case). 135 * 136 * - %CHECKSUM_COMPLETE 137 * 138 * This is the most generic way. The device supplied checksum of the _whole_ 139 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 140 * hardware doesn't need to parse L3/L4 headers to implement this. 141 * 142 * Notes: 143 * 144 * - Even if device supports only some protocols, but is able to produce 145 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 146 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 147 * 148 * - %CHECKSUM_PARTIAL 149 * 150 * A checksum is set up to be offloaded to a device as described in the 151 * output description for CHECKSUM_PARTIAL. This may occur on a packet 152 * received directly from another Linux OS, e.g., a virtualized Linux kernel 153 * on the same host, or it may be set in the input path in GRO or remote 154 * checksum offload. For the purposes of checksum verification, the checksum 155 * referred to by skb->csum_start + skb->csum_offset and any preceding 156 * checksums in the packet are considered verified. Any checksums in the 157 * packet that are after the checksum being offloaded are not considered to 158 * be verified. 159 * 160 * Checksumming on transmit for non-GSO 161 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 162 * 163 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 164 * Values are: 165 * 166 * - %CHECKSUM_PARTIAL 167 * 168 * The driver is required to checksum the packet as seen by hard_start_xmit() 169 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 170 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 171 * A driver may verify that the 172 * csum_start and csum_offset values are valid values given the length and 173 * offset of the packet, but it should not attempt to validate that the 174 * checksum refers to a legitimate transport layer checksum -- it is the 175 * purview of the stack to validate that csum_start and csum_offset are set 176 * correctly. 177 * 178 * When the stack requests checksum offload for a packet, the driver MUST 179 * ensure that the checksum is set correctly. A driver can either offload the 180 * checksum calculation to the device, or call skb_checksum_help (in the case 181 * that the device does not support offload for a particular checksum). 182 * 183 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 184 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 185 * checksum offload capability. 186 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 187 * on network device checksumming capabilities: if a packet does not match 188 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 189 * &sk_buff.csum_not_inet, see :ref:`crc`) 190 * is called to resolve the checksum. 191 * 192 * - %CHECKSUM_NONE 193 * 194 * The skb was already checksummed by the protocol, or a checksum is not 195 * required. 196 * 197 * - %CHECKSUM_UNNECESSARY 198 * 199 * This has the same meaning as CHECKSUM_NONE for checksum offload on 200 * output. 201 * 202 * - %CHECKSUM_COMPLETE 203 * 204 * Not used in checksum output. If a driver observes a packet with this value 205 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 206 * 207 * .. _crc: 208 * 209 * Non-IP checksum (CRC) offloads 210 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 211 * 212 * .. flat-table:: 213 * :widths: 1 10 214 * 215 * * - %NETIF_F_SCTP_CRC 216 * - This feature indicates that a device is capable of 217 * offloading the SCTP CRC in a packet. To perform this offload the stack 218 * will set csum_start and csum_offset accordingly, set ip_summed to 219 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 220 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 221 * A driver that supports both IP checksum offload and SCTP CRC32c offload 222 * must verify which offload is configured for a packet by testing the 223 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 224 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 225 * 226 * * - %NETIF_F_FCOE_CRC 227 * - This feature indicates that a device is capable of offloading the FCOE 228 * CRC in a packet. To perform this offload the stack will set ip_summed 229 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 230 * accordingly. Note that there is no indication in the skbuff that the 231 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 232 * both IP checksum offload and FCOE CRC offload must verify which offload 233 * is configured for a packet, presumably by inspecting packet headers. 234 * 235 * Checksumming on output with GSO 236 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 237 * 238 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 239 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 240 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 241 * part of the GSO operation is implied. If a checksum is being offloaded 242 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 243 * csum_offset are set to refer to the outermost checksum being offloaded 244 * (two offloaded checksums are possible with UDP encapsulation). 245 */ 246 247/* Don't change this without changing skb_csum_unnecessary! */ 248#define CHECKSUM_NONE 0 249#define CHECKSUM_UNNECESSARY 1 250#define CHECKSUM_COMPLETE 2 251#define CHECKSUM_PARTIAL 3 252 253/* Maximum value in skb->csum_level */ 254#define SKB_MAX_CSUM_LEVEL 3 255 256#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 257#define SKB_WITH_OVERHEAD(X) \ 258 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 259 260/* For X bytes available in skb->head, what is the minimal 261 * allocation needed, knowing struct skb_shared_info needs 262 * to be aligned. 263 */ 264#define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 265 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 266 267#define SKB_MAX_ORDER(X, ORDER) \ 268 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 269#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 270#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 271 272/* return minimum truesize of one skb containing X bytes of data */ 273#define SKB_TRUESIZE(X) ((X) + \ 274 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 275 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 276 277struct ahash_request; 278struct net_device; 279struct scatterlist; 280struct pipe_inode_info; 281struct iov_iter; 282struct napi_struct; 283struct bpf_prog; 284union bpf_attr; 285struct skb_ext; 286struct ts_config; 287 288#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 289struct nf_bridge_info { 290 enum { 291 BRNF_PROTO_UNCHANGED, 292 BRNF_PROTO_8021Q, 293 BRNF_PROTO_PPPOE 294 } orig_proto:8; 295 u8 pkt_otherhost:1; 296 u8 in_prerouting:1; 297 u8 bridged_dnat:1; 298 u8 sabotage_in_done:1; 299 __u16 frag_max_size; 300 int physinif; 301 302 /* always valid & non-NULL from FORWARD on, for physdev match */ 303 struct net_device *physoutdev; 304 union { 305 /* prerouting: detect dnat in orig/reply direction */ 306 __be32 ipv4_daddr; 307 struct in6_addr ipv6_daddr; 308 309 /* after prerouting + nat detected: store original source 310 * mac since neigh resolution overwrites it, only used while 311 * skb is out in neigh layer. 312 */ 313 char neigh_header[8]; 314 }; 315}; 316#endif 317 318#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 319/* Chain in tc_skb_ext will be used to share the tc chain with 320 * ovs recirc_id. It will be set to the current chain by tc 321 * and read by ovs to recirc_id. 322 */ 323struct tc_skb_ext { 324 union { 325 u64 act_miss_cookie; 326 __u32 chain; 327 }; 328 __u16 mru; 329 __u16 zone; 330 u8 post_ct:1; 331 u8 post_ct_snat:1; 332 u8 post_ct_dnat:1; 333 u8 act_miss:1; /* Set if act_miss_cookie is used */ 334 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 335}; 336#endif 337 338struct sk_buff_head { 339 /* These two members must be first to match sk_buff. */ 340 struct_group_tagged(sk_buff_list, list, 341 struct sk_buff *next; 342 struct sk_buff *prev; 343 ); 344 345 __u32 qlen; 346 spinlock_t lock; 347}; 348 349struct sk_buff; 350 351#ifndef CONFIG_MAX_SKB_FRAGS 352# define CONFIG_MAX_SKB_FRAGS 17 353#endif 354 355#define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 356 357/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 358 * segment using its current segmentation instead. 359 */ 360#define GSO_BY_FRAGS 0xFFFF 361 362typedef struct skb_frag { 363 netmem_ref netmem; 364 unsigned int len; 365 unsigned int offset; 366} skb_frag_t; 367 368/** 369 * skb_frag_size() - Returns the size of a skb fragment 370 * @frag: skb fragment 371 */ 372static inline unsigned int skb_frag_size(const skb_frag_t *frag) 373{ 374 return frag->len; 375} 376 377/** 378 * skb_frag_size_set() - Sets the size of a skb fragment 379 * @frag: skb fragment 380 * @size: size of fragment 381 */ 382static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 383{ 384 frag->len = size; 385} 386 387/** 388 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 389 * @frag: skb fragment 390 * @delta: value to add 391 */ 392static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 393{ 394 frag->len += delta; 395} 396 397/** 398 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 399 * @frag: skb fragment 400 * @delta: value to subtract 401 */ 402static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 403{ 404 frag->len -= delta; 405} 406 407/** 408 * skb_frag_must_loop - Test if %p is a high memory page 409 * @p: fragment's page 410 */ 411static inline bool skb_frag_must_loop(struct page *p) 412{ 413#if defined(CONFIG_HIGHMEM) 414 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 415 return true; 416#endif 417 return false; 418} 419 420/** 421 * skb_frag_foreach_page - loop over pages in a fragment 422 * 423 * @f: skb frag to operate on 424 * @f_off: offset from start of f->netmem 425 * @f_len: length from f_off to loop over 426 * @p: (temp var) current page 427 * @p_off: (temp var) offset from start of current page, 428 * non-zero only on first page. 429 * @p_len: (temp var) length in current page, 430 * < PAGE_SIZE only on first and last page. 431 * @copied: (temp var) length so far, excluding current p_len. 432 * 433 * A fragment can hold a compound page, in which case per-page 434 * operations, notably kmap_atomic, must be called for each 435 * regular page. 436 */ 437#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 438 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 439 p_off = (f_off) & (PAGE_SIZE - 1), \ 440 p_len = skb_frag_must_loop(p) ? \ 441 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 442 copied = 0; \ 443 copied < f_len; \ 444 copied += p_len, p++, p_off = 0, \ 445 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 446 447/** 448 * struct skb_shared_hwtstamps - hardware time stamps 449 * @hwtstamp: hardware time stamp transformed into duration 450 * since arbitrary point in time 451 * @netdev_data: address/cookie of network device driver used as 452 * reference to actual hardware time stamp 453 * 454 * Software time stamps generated by ktime_get_real() are stored in 455 * skb->tstamp. 456 * 457 * hwtstamps can only be compared against other hwtstamps from 458 * the same device. 459 * 460 * This structure is attached to packets as part of the 461 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 462 */ 463struct skb_shared_hwtstamps { 464 union { 465 ktime_t hwtstamp; 466 void *netdev_data; 467 }; 468}; 469 470/* Definitions for tx_flags in struct skb_shared_info */ 471enum { 472 /* generate hardware time stamp */ 473 SKBTX_HW_TSTAMP = 1 << 0, 474 475 /* generate software time stamp when queueing packet to NIC */ 476 SKBTX_SW_TSTAMP = 1 << 1, 477 478 /* device driver is going to provide hardware time stamp */ 479 SKBTX_IN_PROGRESS = 1 << 2, 480 481 /* generate hardware time stamp based on cycles if supported */ 482 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 483 484 /* generate wifi status information (where possible) */ 485 SKBTX_WIFI_STATUS = 1 << 4, 486 487 /* determine hardware time stamp based on time or cycles */ 488 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 489 490 /* generate software time stamp when entering packet scheduling */ 491 SKBTX_SCHED_TSTAMP = 1 << 6, 492}; 493 494#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 495 SKBTX_SCHED_TSTAMP) 496#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 497 SKBTX_HW_TSTAMP_USE_CYCLES | \ 498 SKBTX_ANY_SW_TSTAMP) 499 500/* Definitions for flags in struct skb_shared_info */ 501enum { 502 /* use zcopy routines */ 503 SKBFL_ZEROCOPY_ENABLE = BIT(0), 504 505 /* This indicates at least one fragment might be overwritten 506 * (as in vmsplice(), sendfile() ...) 507 * If we need to compute a TX checksum, we'll need to copy 508 * all frags to avoid possible bad checksum 509 */ 510 SKBFL_SHARED_FRAG = BIT(1), 511 512 /* segment contains only zerocopy data and should not be 513 * charged to the kernel memory. 514 */ 515 SKBFL_PURE_ZEROCOPY = BIT(2), 516 517 SKBFL_DONT_ORPHAN = BIT(3), 518 519 /* page references are managed by the ubuf_info, so it's safe to 520 * use frags only up until ubuf_info is released 521 */ 522 SKBFL_MANAGED_FRAG_REFS = BIT(4), 523}; 524 525#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 526#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 527 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 528 529struct ubuf_info_ops { 530 void (*complete)(struct sk_buff *, struct ubuf_info *, 531 bool zerocopy_success); 532 /* has to be compatible with skb_zcopy_set() */ 533 int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg); 534}; 535 536/* 537 * The callback notifies userspace to release buffers when skb DMA is done in 538 * lower device, the skb last reference should be 0 when calling this. 539 * The zerocopy_success argument is true if zero copy transmit occurred, 540 * false on data copy or out of memory error caused by data copy attempt. 541 * The ctx field is used to track device context. 542 * The desc field is used to track userspace buffer index. 543 */ 544struct ubuf_info { 545 const struct ubuf_info_ops *ops; 546 refcount_t refcnt; 547 u8 flags; 548}; 549 550struct ubuf_info_msgzc { 551 struct ubuf_info ubuf; 552 553 union { 554 struct { 555 unsigned long desc; 556 void *ctx; 557 }; 558 struct { 559 u32 id; 560 u16 len; 561 u16 zerocopy:1; 562 u32 bytelen; 563 }; 564 }; 565 566 struct mmpin { 567 struct user_struct *user; 568 unsigned int num_pg; 569 } mmp; 570}; 571 572#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 573#define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 574 ubuf) 575 576int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 577void mm_unaccount_pinned_pages(struct mmpin *mmp); 578 579/* Preserve some data across TX submission and completion. 580 * 581 * Note, this state is stored in the driver. Extending the layout 582 * might need some special care. 583 */ 584struct xsk_tx_metadata_compl { 585 __u64 *tx_timestamp; 586}; 587 588/* This data is invariant across clones and lives at 589 * the end of the header data, ie. at skb->end. 590 */ 591struct skb_shared_info { 592 __u8 flags; 593 __u8 meta_len; 594 __u8 nr_frags; 595 __u8 tx_flags; 596 unsigned short gso_size; 597 /* Warning: this field is not always filled in (UFO)! */ 598 unsigned short gso_segs; 599 struct sk_buff *frag_list; 600 union { 601 struct skb_shared_hwtstamps hwtstamps; 602 struct xsk_tx_metadata_compl xsk_meta; 603 }; 604 unsigned int gso_type; 605 u32 tskey; 606 607 /* 608 * Warning : all fields before dataref are cleared in __alloc_skb() 609 */ 610 atomic_t dataref; 611 612 union { 613 struct { 614 u32 xdp_frags_size; 615 u32 xdp_frags_truesize; 616 }; 617 618 /* 619 * Intermediate layers must ensure that destructor_arg 620 * remains valid until skb destructor. 621 */ 622 void *destructor_arg; 623 }; 624 625 /* must be last field, see pskb_expand_head() */ 626 skb_frag_t frags[MAX_SKB_FRAGS]; 627}; 628 629/** 630 * DOC: dataref and headerless skbs 631 * 632 * Transport layers send out clones of payload skbs they hold for 633 * retransmissions. To allow lower layers of the stack to prepend their headers 634 * we split &skb_shared_info.dataref into two halves. 635 * The lower 16 bits count the overall number of references. 636 * The higher 16 bits indicate how many of the references are payload-only. 637 * skb_header_cloned() checks if skb is allowed to add / write the headers. 638 * 639 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 640 * (via __skb_header_release()). Any clone created from marked skb will get 641 * &sk_buff.hdr_len populated with the available headroom. 642 * If there's the only clone in existence it's able to modify the headroom 643 * at will. The sequence of calls inside the transport layer is:: 644 * 645 * <alloc skb> 646 * skb_reserve() 647 * __skb_header_release() 648 * skb_clone() 649 * // send the clone down the stack 650 * 651 * This is not a very generic construct and it depends on the transport layers 652 * doing the right thing. In practice there's usually only one payload-only skb. 653 * Having multiple payload-only skbs with different lengths of hdr_len is not 654 * possible. The payload-only skbs should never leave their owner. 655 */ 656#define SKB_DATAREF_SHIFT 16 657#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 658 659 660enum { 661 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 662 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 663 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 664}; 665 666enum { 667 SKB_GSO_TCPV4 = 1 << 0, 668 669 /* This indicates the skb is from an untrusted source. */ 670 SKB_GSO_DODGY = 1 << 1, 671 672 /* This indicates the tcp segment has CWR set. */ 673 SKB_GSO_TCP_ECN = 1 << 2, 674 675 SKB_GSO_TCP_FIXEDID = 1 << 3, 676 677 SKB_GSO_TCPV6 = 1 << 4, 678 679 SKB_GSO_FCOE = 1 << 5, 680 681 SKB_GSO_GRE = 1 << 6, 682 683 SKB_GSO_GRE_CSUM = 1 << 7, 684 685 SKB_GSO_IPXIP4 = 1 << 8, 686 687 SKB_GSO_IPXIP6 = 1 << 9, 688 689 SKB_GSO_UDP_TUNNEL = 1 << 10, 690 691 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 692 693 SKB_GSO_PARTIAL = 1 << 12, 694 695 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 696 697 SKB_GSO_SCTP = 1 << 14, 698 699 SKB_GSO_ESP = 1 << 15, 700 701 SKB_GSO_UDP = 1 << 16, 702 703 SKB_GSO_UDP_L4 = 1 << 17, 704 705 SKB_GSO_FRAGLIST = 1 << 18, 706}; 707 708#if BITS_PER_LONG > 32 709#define NET_SKBUFF_DATA_USES_OFFSET 1 710#endif 711 712#ifdef NET_SKBUFF_DATA_USES_OFFSET 713typedef unsigned int sk_buff_data_t; 714#else 715typedef unsigned char *sk_buff_data_t; 716#endif 717 718enum skb_tstamp_type { 719 SKB_CLOCK_REALTIME, 720 SKB_CLOCK_MONOTONIC, 721 SKB_CLOCK_TAI, 722 __SKB_CLOCK_MAX = SKB_CLOCK_TAI, 723}; 724 725/** 726 * DOC: Basic sk_buff geometry 727 * 728 * struct sk_buff itself is a metadata structure and does not hold any packet 729 * data. All the data is held in associated buffers. 730 * 731 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 732 * into two parts: 733 * 734 * - data buffer, containing headers and sometimes payload; 735 * this is the part of the skb operated on by the common helpers 736 * such as skb_put() or skb_pull(); 737 * - shared info (struct skb_shared_info) which holds an array of pointers 738 * to read-only data in the (page, offset, length) format. 739 * 740 * Optionally &skb_shared_info.frag_list may point to another skb. 741 * 742 * Basic diagram may look like this:: 743 * 744 * --------------- 745 * | sk_buff | 746 * --------------- 747 * ,--------------------------- + head 748 * / ,----------------- + data 749 * / / ,----------- + tail 750 * | | | , + end 751 * | | | | 752 * v v v v 753 * ----------------------------------------------- 754 * | headroom | data | tailroom | skb_shared_info | 755 * ----------------------------------------------- 756 * + [page frag] 757 * + [page frag] 758 * + [page frag] 759 * + [page frag] --------- 760 * + frag_list --> | sk_buff | 761 * --------- 762 * 763 */ 764 765/** 766 * struct sk_buff - socket buffer 767 * @next: Next buffer in list 768 * @prev: Previous buffer in list 769 * @tstamp: Time we arrived/left 770 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 771 * for retransmit timer 772 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 773 * @list: queue head 774 * @ll_node: anchor in an llist (eg socket defer_list) 775 * @sk: Socket we are owned by 776 * @dev: Device we arrived on/are leaving by 777 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 778 * @cb: Control buffer. Free for use by every layer. Put private vars here 779 * @_skb_refdst: destination entry (with norefcount bit) 780 * @len: Length of actual data 781 * @data_len: Data length 782 * @mac_len: Length of link layer header 783 * @hdr_len: writable header length of cloned skb 784 * @csum: Checksum (must include start/offset pair) 785 * @csum_start: Offset from skb->head where checksumming should start 786 * @csum_offset: Offset from csum_start where checksum should be stored 787 * @priority: Packet queueing priority 788 * @ignore_df: allow local fragmentation 789 * @cloned: Head may be cloned (check refcnt to be sure) 790 * @ip_summed: Driver fed us an IP checksum 791 * @nohdr: Payload reference only, must not modify header 792 * @pkt_type: Packet class 793 * @fclone: skbuff clone status 794 * @ipvs_property: skbuff is owned by ipvs 795 * @inner_protocol_type: whether the inner protocol is 796 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 797 * @remcsum_offload: remote checksum offload is enabled 798 * @offload_fwd_mark: Packet was L2-forwarded in hardware 799 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 800 * @tc_skip_classify: do not classify packet. set by IFB device 801 * @tc_at_ingress: used within tc_classify to distinguish in/egress 802 * @redirected: packet was redirected by packet classifier 803 * @from_ingress: packet was redirected from the ingress path 804 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 805 * @peeked: this packet has been seen already, so stats have been 806 * done for it, don't do them again 807 * @nf_trace: netfilter packet trace flag 808 * @protocol: Packet protocol from driver 809 * @destructor: Destruct function 810 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 811 * @_sk_redir: socket redirection information for skmsg 812 * @_nfct: Associated connection, if any (with nfctinfo bits) 813 * @skb_iif: ifindex of device we arrived on 814 * @tc_index: Traffic control index 815 * @hash: the packet hash 816 * @queue_mapping: Queue mapping for multiqueue devices 817 * @head_frag: skb was allocated from page fragments, 818 * not allocated by kmalloc() or vmalloc(). 819 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 820 * @pp_recycle: mark the packet for recycling instead of freeing (implies 821 * page_pool support on driver) 822 * @active_extensions: active extensions (skb_ext_id types) 823 * @ndisc_nodetype: router type (from link layer) 824 * @ooo_okay: allow the mapping of a socket to a queue to be changed 825 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 826 * ports. 827 * @sw_hash: indicates hash was computed in software stack 828 * @wifi_acked_valid: wifi_acked was set 829 * @wifi_acked: whether frame was acked on wifi or not 830 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 831 * @encapsulation: indicates the inner headers in the skbuff are valid 832 * @encap_hdr_csum: software checksum is needed 833 * @csum_valid: checksum is already valid 834 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 835 * @csum_complete_sw: checksum was completed by software 836 * @csum_level: indicates the number of consecutive checksums found in 837 * the packet minus one that have been verified as 838 * CHECKSUM_UNNECESSARY (max 3) 839 * @unreadable: indicates that at least 1 of the fragments in this skb is 840 * unreadable. 841 * @dst_pending_confirm: need to confirm neighbour 842 * @decrypted: Decrypted SKB 843 * @slow_gro: state present at GRO time, slower prepare step required 844 * @tstamp_type: When set, skb->tstamp has the 845 * delivery_time clock base of skb->tstamp. 846 * @napi_id: id of the NAPI struct this skb came from 847 * @sender_cpu: (aka @napi_id) source CPU in XPS 848 * @alloc_cpu: CPU which did the skb allocation. 849 * @secmark: security marking 850 * @mark: Generic packet mark 851 * @reserved_tailroom: (aka @mark) number of bytes of free space available 852 * at the tail of an sk_buff 853 * @vlan_all: vlan fields (proto & tci) 854 * @vlan_proto: vlan encapsulation protocol 855 * @vlan_tci: vlan tag control information 856 * @inner_protocol: Protocol (encapsulation) 857 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 858 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 859 * @inner_transport_header: Inner transport layer header (encapsulation) 860 * @inner_network_header: Network layer header (encapsulation) 861 * @inner_mac_header: Link layer header (encapsulation) 862 * @transport_header: Transport layer header 863 * @network_header: Network layer header 864 * @mac_header: Link layer header 865 * @kcov_handle: KCOV remote handle for remote coverage collection 866 * @tail: Tail pointer 867 * @end: End pointer 868 * @head: Head of buffer 869 * @data: Data head pointer 870 * @truesize: Buffer size 871 * @users: User count - see {datagram,tcp}.c 872 * @extensions: allocated extensions, valid if active_extensions is nonzero 873 */ 874 875struct sk_buff { 876 union { 877 struct { 878 /* These two members must be first to match sk_buff_head. */ 879 struct sk_buff *next; 880 struct sk_buff *prev; 881 882 union { 883 struct net_device *dev; 884 /* Some protocols might use this space to store information, 885 * while device pointer would be NULL. 886 * UDP receive path is one user. 887 */ 888 unsigned long dev_scratch; 889 }; 890 }; 891 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 892 struct list_head list; 893 struct llist_node ll_node; 894 }; 895 896 struct sock *sk; 897 898 union { 899 ktime_t tstamp; 900 u64 skb_mstamp_ns; /* earliest departure time */ 901 }; 902 /* 903 * This is the control buffer. It is free to use for every 904 * layer. Please put your private variables there. If you 905 * want to keep them across layers you have to do a skb_clone() 906 * first. This is owned by whoever has the skb queued ATM. 907 */ 908 char cb[48] __aligned(8); 909 910 union { 911 struct { 912 unsigned long _skb_refdst; 913 void (*destructor)(struct sk_buff *skb); 914 }; 915 struct list_head tcp_tsorted_anchor; 916#ifdef CONFIG_NET_SOCK_MSG 917 unsigned long _sk_redir; 918#endif 919 }; 920 921#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 922 unsigned long _nfct; 923#endif 924 unsigned int len, 925 data_len; 926 __u16 mac_len, 927 hdr_len; 928 929 /* Following fields are _not_ copied in __copy_skb_header() 930 * Note that queue_mapping is here mostly to fill a hole. 931 */ 932 __u16 queue_mapping; 933 934/* if you move cloned around you also must adapt those constants */ 935#ifdef __BIG_ENDIAN_BITFIELD 936#define CLONED_MASK (1 << 7) 937#else 938#define CLONED_MASK 1 939#endif 940#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 941 942 /* private: */ 943 __u8 __cloned_offset[0]; 944 /* public: */ 945 __u8 cloned:1, 946 nohdr:1, 947 fclone:2, 948 peeked:1, 949 head_frag:1, 950 pfmemalloc:1, 951 pp_recycle:1; /* page_pool recycle indicator */ 952#ifdef CONFIG_SKB_EXTENSIONS 953 __u8 active_extensions; 954#endif 955 956 /* Fields enclosed in headers group are copied 957 * using a single memcpy() in __copy_skb_header() 958 */ 959 struct_group(headers, 960 961 /* private: */ 962 __u8 __pkt_type_offset[0]; 963 /* public: */ 964 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 965 __u8 ignore_df:1; 966 __u8 dst_pending_confirm:1; 967 __u8 ip_summed:2; 968 __u8 ooo_okay:1; 969 970 /* private: */ 971 __u8 __mono_tc_offset[0]; 972 /* public: */ 973 __u8 tstamp_type:2; /* See skb_tstamp_type */ 974#ifdef CONFIG_NET_XGRESS 975 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 976 __u8 tc_skip_classify:1; 977#endif 978 __u8 remcsum_offload:1; 979 __u8 csum_complete_sw:1; 980 __u8 csum_level:2; 981 __u8 inner_protocol_type:1; 982 983 __u8 l4_hash:1; 984 __u8 sw_hash:1; 985#ifdef CONFIG_WIRELESS 986 __u8 wifi_acked_valid:1; 987 __u8 wifi_acked:1; 988#endif 989 __u8 no_fcs:1; 990 /* Indicates the inner headers are valid in the skbuff. */ 991 __u8 encapsulation:1; 992 __u8 encap_hdr_csum:1; 993 __u8 csum_valid:1; 994#ifdef CONFIG_IPV6_NDISC_NODETYPE 995 __u8 ndisc_nodetype:2; 996#endif 997 998#if IS_ENABLED(CONFIG_IP_VS) 999 __u8 ipvs_property:1; 1000#endif 1001#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 1002 __u8 nf_trace:1; 1003#endif 1004#ifdef CONFIG_NET_SWITCHDEV 1005 __u8 offload_fwd_mark:1; 1006 __u8 offload_l3_fwd_mark:1; 1007#endif 1008 __u8 redirected:1; 1009#ifdef CONFIG_NET_REDIRECT 1010 __u8 from_ingress:1; 1011#endif 1012#ifdef CONFIG_NETFILTER_SKIP_EGRESS 1013 __u8 nf_skip_egress:1; 1014#endif 1015#ifdef CONFIG_SKB_DECRYPTED 1016 __u8 decrypted:1; 1017#endif 1018 __u8 slow_gro:1; 1019#if IS_ENABLED(CONFIG_IP_SCTP) 1020 __u8 csum_not_inet:1; 1021#endif 1022 __u8 unreadable:1; 1023#if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 1024 __u16 tc_index; /* traffic control index */ 1025#endif 1026 1027 u16 alloc_cpu; 1028 1029 union { 1030 __wsum csum; 1031 struct { 1032 __u16 csum_start; 1033 __u16 csum_offset; 1034 }; 1035 }; 1036 __u32 priority; 1037 int skb_iif; 1038 __u32 hash; 1039 union { 1040 u32 vlan_all; 1041 struct { 1042 __be16 vlan_proto; 1043 __u16 vlan_tci; 1044 }; 1045 }; 1046#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1047 union { 1048 unsigned int napi_id; 1049 unsigned int sender_cpu; 1050 }; 1051#endif 1052#ifdef CONFIG_NETWORK_SECMARK 1053 __u32 secmark; 1054#endif 1055 1056 union { 1057 __u32 mark; 1058 __u32 reserved_tailroom; 1059 }; 1060 1061 union { 1062 __be16 inner_protocol; 1063 __u8 inner_ipproto; 1064 }; 1065 1066 __u16 inner_transport_header; 1067 __u16 inner_network_header; 1068 __u16 inner_mac_header; 1069 1070 __be16 protocol; 1071 __u16 transport_header; 1072 __u16 network_header; 1073 __u16 mac_header; 1074 1075#ifdef CONFIG_KCOV 1076 u64 kcov_handle; 1077#endif 1078 1079 ); /* end headers group */ 1080 1081 /* These elements must be at the end, see alloc_skb() for details. */ 1082 sk_buff_data_t tail; 1083 sk_buff_data_t end; 1084 unsigned char *head, 1085 *data; 1086 unsigned int truesize; 1087 refcount_t users; 1088 1089#ifdef CONFIG_SKB_EXTENSIONS 1090 /* only usable after checking ->active_extensions != 0 */ 1091 struct skb_ext *extensions; 1092#endif 1093}; 1094 1095/* if you move pkt_type around you also must adapt those constants */ 1096#ifdef __BIG_ENDIAN_BITFIELD 1097#define PKT_TYPE_MAX (7 << 5) 1098#else 1099#define PKT_TYPE_MAX 7 1100#endif 1101#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1102 1103/* if you move tc_at_ingress or tstamp_type 1104 * around, you also must adapt these constants. 1105 */ 1106#ifdef __BIG_ENDIAN_BITFIELD 1107#define SKB_TSTAMP_TYPE_MASK (3 << 6) 1108#define SKB_TSTAMP_TYPE_RSHIFT (6) 1109#define TC_AT_INGRESS_MASK (1 << 5) 1110#else 1111#define SKB_TSTAMP_TYPE_MASK (3) 1112#define TC_AT_INGRESS_MASK (1 << 2) 1113#endif 1114#define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1115 1116#ifdef __KERNEL__ 1117/* 1118 * Handling routines are only of interest to the kernel 1119 */ 1120 1121#define SKB_ALLOC_FCLONE 0x01 1122#define SKB_ALLOC_RX 0x02 1123#define SKB_ALLOC_NAPI 0x04 1124 1125/** 1126 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1127 * @skb: buffer 1128 */ 1129static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1130{ 1131 return unlikely(skb->pfmemalloc); 1132} 1133 1134/* 1135 * skb might have a dst pointer attached, refcounted or not. 1136 * _skb_refdst low order bit is set if refcount was _not_ taken 1137 */ 1138#define SKB_DST_NOREF 1UL 1139#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1140 1141/** 1142 * skb_dst - returns skb dst_entry 1143 * @skb: buffer 1144 * 1145 * Returns: skb dst_entry, regardless of reference taken or not. 1146 */ 1147static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1148{ 1149 /* If refdst was not refcounted, check we still are in a 1150 * rcu_read_lock section 1151 */ 1152 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1153 !rcu_read_lock_held() && 1154 !rcu_read_lock_bh_held()); 1155 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1156} 1157 1158/** 1159 * skb_dst_set - sets skb dst 1160 * @skb: buffer 1161 * @dst: dst entry 1162 * 1163 * Sets skb dst, assuming a reference was taken on dst and should 1164 * be released by skb_dst_drop() 1165 */ 1166static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1167{ 1168 skb->slow_gro |= !!dst; 1169 skb->_skb_refdst = (unsigned long)dst; 1170} 1171 1172/** 1173 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1174 * @skb: buffer 1175 * @dst: dst entry 1176 * 1177 * Sets skb dst, assuming a reference was not taken on dst. 1178 * If dst entry is cached, we do not take reference and dst_release 1179 * will be avoided by refdst_drop. If dst entry is not cached, we take 1180 * reference, so that last dst_release can destroy the dst immediately. 1181 */ 1182static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1183{ 1184 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1185 skb->slow_gro |= !!dst; 1186 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1187} 1188 1189/** 1190 * skb_dst_is_noref - Test if skb dst isn't refcounted 1191 * @skb: buffer 1192 */ 1193static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1194{ 1195 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1196} 1197 1198/* For mangling skb->pkt_type from user space side from applications 1199 * such as nft, tc, etc, we only allow a conservative subset of 1200 * possible pkt_types to be set. 1201*/ 1202static inline bool skb_pkt_type_ok(u32 ptype) 1203{ 1204 return ptype <= PACKET_OTHERHOST; 1205} 1206 1207/** 1208 * skb_napi_id - Returns the skb's NAPI id 1209 * @skb: buffer 1210 */ 1211static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1212{ 1213#ifdef CONFIG_NET_RX_BUSY_POLL 1214 return skb->napi_id; 1215#else 1216 return 0; 1217#endif 1218} 1219 1220static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1221{ 1222#ifdef CONFIG_WIRELESS 1223 return skb->wifi_acked_valid; 1224#else 1225 return 0; 1226#endif 1227} 1228 1229/** 1230 * skb_unref - decrement the skb's reference count 1231 * @skb: buffer 1232 * 1233 * Returns: true if we can free the skb. 1234 */ 1235static inline bool skb_unref(struct sk_buff *skb) 1236{ 1237 if (unlikely(!skb)) 1238 return false; 1239 if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1)) 1240 smp_rmb(); 1241 else if (likely(!refcount_dec_and_test(&skb->users))) 1242 return false; 1243 1244 return true; 1245} 1246 1247static inline bool skb_data_unref(const struct sk_buff *skb, 1248 struct skb_shared_info *shinfo) 1249{ 1250 int bias; 1251 1252 if (!skb->cloned) 1253 return true; 1254 1255 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 1256 1257 if (atomic_read(&shinfo->dataref) == bias) 1258 smp_rmb(); 1259 else if (atomic_sub_return(bias, &shinfo->dataref)) 1260 return false; 1261 1262 return true; 1263} 1264 1265void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1266 enum skb_drop_reason reason); 1267 1268static inline void 1269kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1270{ 1271 sk_skb_reason_drop(NULL, skb, reason); 1272} 1273 1274/** 1275 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1276 * @skb: buffer to free 1277 */ 1278static inline void kfree_skb(struct sk_buff *skb) 1279{ 1280 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1281} 1282 1283void skb_release_head_state(struct sk_buff *skb); 1284void kfree_skb_list_reason(struct sk_buff *segs, 1285 enum skb_drop_reason reason); 1286void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1287void skb_tx_error(struct sk_buff *skb); 1288 1289static inline void kfree_skb_list(struct sk_buff *segs) 1290{ 1291 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1292} 1293 1294#ifdef CONFIG_TRACEPOINTS 1295void consume_skb(struct sk_buff *skb); 1296#else 1297static inline void consume_skb(struct sk_buff *skb) 1298{ 1299 return kfree_skb(skb); 1300} 1301#endif 1302 1303void __consume_stateless_skb(struct sk_buff *skb); 1304void __kfree_skb(struct sk_buff *skb); 1305 1306void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1307bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1308 bool *fragstolen, int *delta_truesize); 1309 1310struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1311 int node); 1312struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1313struct sk_buff *build_skb(void *data, unsigned int frag_size); 1314struct sk_buff *build_skb_around(struct sk_buff *skb, 1315 void *data, unsigned int frag_size); 1316void skb_attempt_defer_free(struct sk_buff *skb); 1317 1318struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1319struct sk_buff *slab_build_skb(void *data); 1320 1321/** 1322 * alloc_skb - allocate a network buffer 1323 * @size: size to allocate 1324 * @priority: allocation mask 1325 * 1326 * This function is a convenient wrapper around __alloc_skb(). 1327 */ 1328static inline struct sk_buff *alloc_skb(unsigned int size, 1329 gfp_t priority) 1330{ 1331 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1332} 1333 1334struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1335 unsigned long data_len, 1336 int max_page_order, 1337 int *errcode, 1338 gfp_t gfp_mask); 1339struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1340 1341/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1342struct sk_buff_fclones { 1343 struct sk_buff skb1; 1344 1345 struct sk_buff skb2; 1346 1347 refcount_t fclone_ref; 1348}; 1349 1350/** 1351 * skb_fclone_busy - check if fclone is busy 1352 * @sk: socket 1353 * @skb: buffer 1354 * 1355 * Returns: true if skb is a fast clone, and its clone is not freed. 1356 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1357 * so we also check that didn't happen. 1358 */ 1359static inline bool skb_fclone_busy(const struct sock *sk, 1360 const struct sk_buff *skb) 1361{ 1362 const struct sk_buff_fclones *fclones; 1363 1364 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1365 1366 return skb->fclone == SKB_FCLONE_ORIG && 1367 refcount_read(&fclones->fclone_ref) > 1 && 1368 READ_ONCE(fclones->skb2.sk) == sk; 1369} 1370 1371/** 1372 * alloc_skb_fclone - allocate a network buffer from fclone cache 1373 * @size: size to allocate 1374 * @priority: allocation mask 1375 * 1376 * This function is a convenient wrapper around __alloc_skb(). 1377 */ 1378static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1379 gfp_t priority) 1380{ 1381 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1382} 1383 1384struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1385void skb_headers_offset_update(struct sk_buff *skb, int off); 1386int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1387struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1388void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1389struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1390struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1391 gfp_t gfp_mask, bool fclone); 1392static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1393 gfp_t gfp_mask) 1394{ 1395 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1396} 1397 1398int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1399struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1400 unsigned int headroom); 1401struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1402struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1403 int newtailroom, gfp_t priority); 1404int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1405 int offset, int len); 1406int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1407 int offset, int len); 1408int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1409int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1410 1411/** 1412 * skb_pad - zero pad the tail of an skb 1413 * @skb: buffer to pad 1414 * @pad: space to pad 1415 * 1416 * Ensure that a buffer is followed by a padding area that is zero 1417 * filled. Used by network drivers which may DMA or transfer data 1418 * beyond the buffer end onto the wire. 1419 * 1420 * May return error in out of memory cases. The skb is freed on error. 1421 */ 1422static inline int skb_pad(struct sk_buff *skb, int pad) 1423{ 1424 return __skb_pad(skb, pad, true); 1425} 1426#define dev_kfree_skb(a) consume_skb(a) 1427 1428int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1429 int offset, size_t size, size_t max_frags); 1430 1431struct skb_seq_state { 1432 __u32 lower_offset; 1433 __u32 upper_offset; 1434 __u32 frag_idx; 1435 __u32 stepped_offset; 1436 struct sk_buff *root_skb; 1437 struct sk_buff *cur_skb; 1438 __u8 *frag_data; 1439 __u32 frag_off; 1440}; 1441 1442void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1443 unsigned int to, struct skb_seq_state *st); 1444unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1445 struct skb_seq_state *st); 1446void skb_abort_seq_read(struct skb_seq_state *st); 1447int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len); 1448 1449unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1450 unsigned int to, struct ts_config *config); 1451 1452/* 1453 * Packet hash types specify the type of hash in skb_set_hash. 1454 * 1455 * Hash types refer to the protocol layer addresses which are used to 1456 * construct a packet's hash. The hashes are used to differentiate or identify 1457 * flows of the protocol layer for the hash type. Hash types are either 1458 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1459 * 1460 * Properties of hashes: 1461 * 1462 * 1) Two packets in different flows have different hash values 1463 * 2) Two packets in the same flow should have the same hash value 1464 * 1465 * A hash at a higher layer is considered to be more specific. A driver should 1466 * set the most specific hash possible. 1467 * 1468 * A driver cannot indicate a more specific hash than the layer at which a hash 1469 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1470 * 1471 * A driver may indicate a hash level which is less specific than the 1472 * actual layer the hash was computed on. For instance, a hash computed 1473 * at L4 may be considered an L3 hash. This should only be done if the 1474 * driver can't unambiguously determine that the HW computed the hash at 1475 * the higher layer. Note that the "should" in the second property above 1476 * permits this. 1477 */ 1478enum pkt_hash_types { 1479 PKT_HASH_TYPE_NONE, /* Undefined type */ 1480 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1481 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1482 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1483}; 1484 1485static inline void skb_clear_hash(struct sk_buff *skb) 1486{ 1487 skb->hash = 0; 1488 skb->sw_hash = 0; 1489 skb->l4_hash = 0; 1490} 1491 1492static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1493{ 1494 if (!skb->l4_hash) 1495 skb_clear_hash(skb); 1496} 1497 1498static inline void 1499__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1500{ 1501 skb->l4_hash = is_l4; 1502 skb->sw_hash = is_sw; 1503 skb->hash = hash; 1504} 1505 1506static inline void 1507skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1508{ 1509 /* Used by drivers to set hash from HW */ 1510 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1511} 1512 1513static inline void 1514__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1515{ 1516 __skb_set_hash(skb, hash, true, is_l4); 1517} 1518 1519u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb); 1520 1521static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb) 1522{ 1523 return __skb_get_hash_symmetric_net(NULL, skb); 1524} 1525 1526void __skb_get_hash_net(const struct net *net, struct sk_buff *skb); 1527u32 skb_get_poff(const struct sk_buff *skb); 1528u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1529 const struct flow_keys_basic *keys, int hlen); 1530__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1531 const void *data, int hlen_proto); 1532 1533static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1534 int thoff, u8 ip_proto) 1535{ 1536 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1537} 1538 1539void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1540 const struct flow_dissector_key *key, 1541 unsigned int key_count); 1542 1543struct bpf_flow_dissector; 1544u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1545 __be16 proto, int nhoff, int hlen, unsigned int flags); 1546 1547bool __skb_flow_dissect(const struct net *net, 1548 const struct sk_buff *skb, 1549 struct flow_dissector *flow_dissector, 1550 void *target_container, const void *data, 1551 __be16 proto, int nhoff, int hlen, unsigned int flags); 1552 1553static inline bool skb_flow_dissect(const struct sk_buff *skb, 1554 struct flow_dissector *flow_dissector, 1555 void *target_container, unsigned int flags) 1556{ 1557 return __skb_flow_dissect(NULL, skb, flow_dissector, 1558 target_container, NULL, 0, 0, 0, flags); 1559} 1560 1561static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1562 struct flow_keys *flow, 1563 unsigned int flags) 1564{ 1565 memset(flow, 0, sizeof(*flow)); 1566 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1567 flow, NULL, 0, 0, 0, flags); 1568} 1569 1570static inline bool 1571skb_flow_dissect_flow_keys_basic(const struct net *net, 1572 const struct sk_buff *skb, 1573 struct flow_keys_basic *flow, 1574 const void *data, __be16 proto, 1575 int nhoff, int hlen, unsigned int flags) 1576{ 1577 memset(flow, 0, sizeof(*flow)); 1578 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1579 data, proto, nhoff, hlen, flags); 1580} 1581 1582void skb_flow_dissect_meta(const struct sk_buff *skb, 1583 struct flow_dissector *flow_dissector, 1584 void *target_container); 1585 1586/* Gets a skb connection tracking info, ctinfo map should be a 1587 * map of mapsize to translate enum ip_conntrack_info states 1588 * to user states. 1589 */ 1590void 1591skb_flow_dissect_ct(const struct sk_buff *skb, 1592 struct flow_dissector *flow_dissector, 1593 void *target_container, 1594 u16 *ctinfo_map, size_t mapsize, 1595 bool post_ct, u16 zone); 1596void 1597skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1598 struct flow_dissector *flow_dissector, 1599 void *target_container); 1600 1601void skb_flow_dissect_hash(const struct sk_buff *skb, 1602 struct flow_dissector *flow_dissector, 1603 void *target_container); 1604 1605static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb) 1606{ 1607 if (!skb->l4_hash && !skb->sw_hash) 1608 __skb_get_hash_net(net, skb); 1609 1610 return skb->hash; 1611} 1612 1613static inline __u32 skb_get_hash(struct sk_buff *skb) 1614{ 1615 if (!skb->l4_hash && !skb->sw_hash) 1616 __skb_get_hash_net(NULL, skb); 1617 1618 return skb->hash; 1619} 1620 1621static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1622{ 1623 if (!skb->l4_hash && !skb->sw_hash) { 1624 struct flow_keys keys; 1625 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1626 1627 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1628 } 1629 1630 return skb->hash; 1631} 1632 1633__u32 skb_get_hash_perturb(const struct sk_buff *skb, 1634 const siphash_key_t *perturb); 1635 1636static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1637{ 1638 return skb->hash; 1639} 1640 1641static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1642{ 1643 to->hash = from->hash; 1644 to->sw_hash = from->sw_hash; 1645 to->l4_hash = from->l4_hash; 1646}; 1647 1648static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1649 const struct sk_buff *skb2) 1650{ 1651#ifdef CONFIG_SKB_DECRYPTED 1652 return skb2->decrypted - skb1->decrypted; 1653#else 1654 return 0; 1655#endif 1656} 1657 1658static inline bool skb_is_decrypted(const struct sk_buff *skb) 1659{ 1660#ifdef CONFIG_SKB_DECRYPTED 1661 return skb->decrypted; 1662#else 1663 return false; 1664#endif 1665} 1666 1667static inline void skb_copy_decrypted(struct sk_buff *to, 1668 const struct sk_buff *from) 1669{ 1670#ifdef CONFIG_SKB_DECRYPTED 1671 to->decrypted = from->decrypted; 1672#endif 1673} 1674 1675#ifdef NET_SKBUFF_DATA_USES_OFFSET 1676static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1677{ 1678 return skb->head + skb->end; 1679} 1680 1681static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1682{ 1683 return skb->end; 1684} 1685 1686static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1687{ 1688 skb->end = offset; 1689} 1690#else 1691static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1692{ 1693 return skb->end; 1694} 1695 1696static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1697{ 1698 return skb->end - skb->head; 1699} 1700 1701static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1702{ 1703 skb->end = skb->head + offset; 1704} 1705#endif 1706 1707extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops; 1708 1709struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1710 struct ubuf_info *uarg); 1711 1712void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1713 1714int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1715 struct sk_buff *skb, struct iov_iter *from, 1716 size_t length); 1717 1718int zerocopy_fill_skb_from_iter(struct sk_buff *skb, 1719 struct iov_iter *from, size_t length); 1720 1721static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1722 struct msghdr *msg, int len) 1723{ 1724 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1725} 1726 1727int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1728 struct msghdr *msg, int len, 1729 struct ubuf_info *uarg); 1730 1731/* Internal */ 1732#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1733 1734static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1735{ 1736 return &skb_shinfo(skb)->hwtstamps; 1737} 1738 1739static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1740{ 1741 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1742 1743 return is_zcopy ? skb_uarg(skb) : NULL; 1744} 1745 1746static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1747{ 1748 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1749} 1750 1751static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1752{ 1753 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1754} 1755 1756static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1757 const struct sk_buff *skb2) 1758{ 1759 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1760} 1761 1762static inline void net_zcopy_get(struct ubuf_info *uarg) 1763{ 1764 refcount_inc(&uarg->refcnt); 1765} 1766 1767static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1768{ 1769 skb_shinfo(skb)->destructor_arg = uarg; 1770 skb_shinfo(skb)->flags |= uarg->flags; 1771} 1772 1773static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1774 bool *have_ref) 1775{ 1776 if (skb && uarg && !skb_zcopy(skb)) { 1777 if (unlikely(have_ref && *have_ref)) 1778 *have_ref = false; 1779 else 1780 net_zcopy_get(uarg); 1781 skb_zcopy_init(skb, uarg); 1782 } 1783} 1784 1785static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1786{ 1787 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1788 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1789} 1790 1791static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1792{ 1793 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1794} 1795 1796static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1797{ 1798 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1799} 1800 1801static inline void net_zcopy_put(struct ubuf_info *uarg) 1802{ 1803 if (uarg) 1804 uarg->ops->complete(NULL, uarg, true); 1805} 1806 1807static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1808{ 1809 if (uarg) { 1810 if (uarg->ops == &msg_zerocopy_ubuf_ops) 1811 msg_zerocopy_put_abort(uarg, have_uref); 1812 else if (have_uref) 1813 net_zcopy_put(uarg); 1814 } 1815} 1816 1817/* Release a reference on a zerocopy structure */ 1818static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1819{ 1820 struct ubuf_info *uarg = skb_zcopy(skb); 1821 1822 if (uarg) { 1823 if (!skb_zcopy_is_nouarg(skb)) 1824 uarg->ops->complete(skb, uarg, zerocopy_success); 1825 1826 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1827 } 1828} 1829 1830void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1831 1832static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1833{ 1834 if (unlikely(skb_zcopy_managed(skb))) 1835 __skb_zcopy_downgrade_managed(skb); 1836} 1837 1838/* Return true if frags in this skb are readable by the host. */ 1839static inline bool skb_frags_readable(const struct sk_buff *skb) 1840{ 1841 return !skb->unreadable; 1842} 1843 1844static inline void skb_mark_not_on_list(struct sk_buff *skb) 1845{ 1846 skb->next = NULL; 1847} 1848 1849static inline void skb_poison_list(struct sk_buff *skb) 1850{ 1851#ifdef CONFIG_DEBUG_NET 1852 skb->next = SKB_LIST_POISON_NEXT; 1853#endif 1854} 1855 1856/* Iterate through singly-linked GSO fragments of an skb. */ 1857#define skb_list_walk_safe(first, skb, next_skb) \ 1858 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1859 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1860 1861static inline void skb_list_del_init(struct sk_buff *skb) 1862{ 1863 __list_del_entry(&skb->list); 1864 skb_mark_not_on_list(skb); 1865} 1866 1867/** 1868 * skb_queue_empty - check if a queue is empty 1869 * @list: queue head 1870 * 1871 * Returns true if the queue is empty, false otherwise. 1872 */ 1873static inline int skb_queue_empty(const struct sk_buff_head *list) 1874{ 1875 return list->next == (const struct sk_buff *) list; 1876} 1877 1878/** 1879 * skb_queue_empty_lockless - check if a queue is empty 1880 * @list: queue head 1881 * 1882 * Returns true if the queue is empty, false otherwise. 1883 * This variant can be used in lockless contexts. 1884 */ 1885static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1886{ 1887 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1888} 1889 1890 1891/** 1892 * skb_queue_is_last - check if skb is the last entry in the queue 1893 * @list: queue head 1894 * @skb: buffer 1895 * 1896 * Returns true if @skb is the last buffer on the list. 1897 */ 1898static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1899 const struct sk_buff *skb) 1900{ 1901 return skb->next == (const struct sk_buff *) list; 1902} 1903 1904/** 1905 * skb_queue_is_first - check if skb is the first entry in the queue 1906 * @list: queue head 1907 * @skb: buffer 1908 * 1909 * Returns true if @skb is the first buffer on the list. 1910 */ 1911static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1912 const struct sk_buff *skb) 1913{ 1914 return skb->prev == (const struct sk_buff *) list; 1915} 1916 1917/** 1918 * skb_queue_next - return the next packet in the queue 1919 * @list: queue head 1920 * @skb: current buffer 1921 * 1922 * Return the next packet in @list after @skb. It is only valid to 1923 * call this if skb_queue_is_last() evaluates to false. 1924 */ 1925static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1926 const struct sk_buff *skb) 1927{ 1928 /* This BUG_ON may seem severe, but if we just return then we 1929 * are going to dereference garbage. 1930 */ 1931 BUG_ON(skb_queue_is_last(list, skb)); 1932 return skb->next; 1933} 1934 1935/** 1936 * skb_queue_prev - return the prev packet in the queue 1937 * @list: queue head 1938 * @skb: current buffer 1939 * 1940 * Return the prev packet in @list before @skb. It is only valid to 1941 * call this if skb_queue_is_first() evaluates to false. 1942 */ 1943static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1944 const struct sk_buff *skb) 1945{ 1946 /* This BUG_ON may seem severe, but if we just return then we 1947 * are going to dereference garbage. 1948 */ 1949 BUG_ON(skb_queue_is_first(list, skb)); 1950 return skb->prev; 1951} 1952 1953/** 1954 * skb_get - reference buffer 1955 * @skb: buffer to reference 1956 * 1957 * Makes another reference to a socket buffer and returns a pointer 1958 * to the buffer. 1959 */ 1960static inline struct sk_buff *skb_get(struct sk_buff *skb) 1961{ 1962 refcount_inc(&skb->users); 1963 return skb; 1964} 1965 1966/* 1967 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1968 */ 1969 1970/** 1971 * skb_cloned - is the buffer a clone 1972 * @skb: buffer to check 1973 * 1974 * Returns true if the buffer was generated with skb_clone() and is 1975 * one of multiple shared copies of the buffer. Cloned buffers are 1976 * shared data so must not be written to under normal circumstances. 1977 */ 1978static inline int skb_cloned(const struct sk_buff *skb) 1979{ 1980 return skb->cloned && 1981 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1982} 1983 1984static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1985{ 1986 might_sleep_if(gfpflags_allow_blocking(pri)); 1987 1988 if (skb_cloned(skb)) 1989 return pskb_expand_head(skb, 0, 0, pri); 1990 1991 return 0; 1992} 1993 1994/* This variant of skb_unclone() makes sure skb->truesize 1995 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1996 * 1997 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1998 * when various debugging features are in place. 1999 */ 2000int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 2001static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2002{ 2003 might_sleep_if(gfpflags_allow_blocking(pri)); 2004 2005 if (skb_cloned(skb)) 2006 return __skb_unclone_keeptruesize(skb, pri); 2007 return 0; 2008} 2009 2010/** 2011 * skb_header_cloned - is the header a clone 2012 * @skb: buffer to check 2013 * 2014 * Returns true if modifying the header part of the buffer requires 2015 * the data to be copied. 2016 */ 2017static inline int skb_header_cloned(const struct sk_buff *skb) 2018{ 2019 int dataref; 2020 2021 if (!skb->cloned) 2022 return 0; 2023 2024 dataref = atomic_read(&skb_shinfo(skb)->dataref); 2025 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 2026 return dataref != 1; 2027} 2028 2029static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 2030{ 2031 might_sleep_if(gfpflags_allow_blocking(pri)); 2032 2033 if (skb_header_cloned(skb)) 2034 return pskb_expand_head(skb, 0, 0, pri); 2035 2036 return 0; 2037} 2038 2039/** 2040 * __skb_header_release() - allow clones to use the headroom 2041 * @skb: buffer to operate on 2042 * 2043 * See "DOC: dataref and headerless skbs". 2044 */ 2045static inline void __skb_header_release(struct sk_buff *skb) 2046{ 2047 skb->nohdr = 1; 2048 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 2049} 2050 2051 2052/** 2053 * skb_shared - is the buffer shared 2054 * @skb: buffer to check 2055 * 2056 * Returns true if more than one person has a reference to this 2057 * buffer. 2058 */ 2059static inline int skb_shared(const struct sk_buff *skb) 2060{ 2061 return refcount_read(&skb->users) != 1; 2062} 2063 2064/** 2065 * skb_share_check - check if buffer is shared and if so clone it 2066 * @skb: buffer to check 2067 * @pri: priority for memory allocation 2068 * 2069 * If the buffer is shared the buffer is cloned and the old copy 2070 * drops a reference. A new clone with a single reference is returned. 2071 * If the buffer is not shared the original buffer is returned. When 2072 * being called from interrupt status or with spinlocks held pri must 2073 * be GFP_ATOMIC. 2074 * 2075 * NULL is returned on a memory allocation failure. 2076 */ 2077static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2078{ 2079 might_sleep_if(gfpflags_allow_blocking(pri)); 2080 if (skb_shared(skb)) { 2081 struct sk_buff *nskb = skb_clone(skb, pri); 2082 2083 if (likely(nskb)) 2084 consume_skb(skb); 2085 else 2086 kfree_skb(skb); 2087 skb = nskb; 2088 } 2089 return skb; 2090} 2091 2092/* 2093 * Copy shared buffers into a new sk_buff. We effectively do COW on 2094 * packets to handle cases where we have a local reader and forward 2095 * and a couple of other messy ones. The normal one is tcpdumping 2096 * a packet that's being forwarded. 2097 */ 2098 2099/** 2100 * skb_unshare - make a copy of a shared buffer 2101 * @skb: buffer to check 2102 * @pri: priority for memory allocation 2103 * 2104 * If the socket buffer is a clone then this function creates a new 2105 * copy of the data, drops a reference count on the old copy and returns 2106 * the new copy with the reference count at 1. If the buffer is not a clone 2107 * the original buffer is returned. When called with a spinlock held or 2108 * from interrupt state @pri must be %GFP_ATOMIC 2109 * 2110 * %NULL is returned on a memory allocation failure. 2111 */ 2112static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2113 gfp_t pri) 2114{ 2115 might_sleep_if(gfpflags_allow_blocking(pri)); 2116 if (skb_cloned(skb)) { 2117 struct sk_buff *nskb = skb_copy(skb, pri); 2118 2119 /* Free our shared copy */ 2120 if (likely(nskb)) 2121 consume_skb(skb); 2122 else 2123 kfree_skb(skb); 2124 skb = nskb; 2125 } 2126 return skb; 2127} 2128 2129/** 2130 * skb_peek - peek at the head of an &sk_buff_head 2131 * @list_: list to peek at 2132 * 2133 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2134 * be careful with this one. A peek leaves the buffer on the 2135 * list and someone else may run off with it. You must hold 2136 * the appropriate locks or have a private queue to do this. 2137 * 2138 * Returns %NULL for an empty list or a pointer to the head element. 2139 * The reference count is not incremented and the reference is therefore 2140 * volatile. Use with caution. 2141 */ 2142static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2143{ 2144 struct sk_buff *skb = list_->next; 2145 2146 if (skb == (struct sk_buff *)list_) 2147 skb = NULL; 2148 return skb; 2149} 2150 2151/** 2152 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2153 * @list_: list to peek at 2154 * 2155 * Like skb_peek(), but the caller knows that the list is not empty. 2156 */ 2157static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2158{ 2159 return list_->next; 2160} 2161 2162/** 2163 * skb_peek_next - peek skb following the given one from a queue 2164 * @skb: skb to start from 2165 * @list_: list to peek at 2166 * 2167 * Returns %NULL when the end of the list is met or a pointer to the 2168 * next element. The reference count is not incremented and the 2169 * reference is therefore volatile. Use with caution. 2170 */ 2171static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2172 const struct sk_buff_head *list_) 2173{ 2174 struct sk_buff *next = skb->next; 2175 2176 if (next == (struct sk_buff *)list_) 2177 next = NULL; 2178 return next; 2179} 2180 2181/** 2182 * skb_peek_tail - peek at the tail of an &sk_buff_head 2183 * @list_: list to peek at 2184 * 2185 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2186 * be careful with this one. A peek leaves the buffer on the 2187 * list and someone else may run off with it. You must hold 2188 * the appropriate locks or have a private queue to do this. 2189 * 2190 * Returns %NULL for an empty list or a pointer to the tail element. 2191 * The reference count is not incremented and the reference is therefore 2192 * volatile. Use with caution. 2193 */ 2194static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2195{ 2196 struct sk_buff *skb = READ_ONCE(list_->prev); 2197 2198 if (skb == (struct sk_buff *)list_) 2199 skb = NULL; 2200 return skb; 2201 2202} 2203 2204/** 2205 * skb_queue_len - get queue length 2206 * @list_: list to measure 2207 * 2208 * Return the length of an &sk_buff queue. 2209 */ 2210static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2211{ 2212 return list_->qlen; 2213} 2214 2215/** 2216 * skb_queue_len_lockless - get queue length 2217 * @list_: list to measure 2218 * 2219 * Return the length of an &sk_buff queue. 2220 * This variant can be used in lockless contexts. 2221 */ 2222static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2223{ 2224 return READ_ONCE(list_->qlen); 2225} 2226 2227/** 2228 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2229 * @list: queue to initialize 2230 * 2231 * This initializes only the list and queue length aspects of 2232 * an sk_buff_head object. This allows to initialize the list 2233 * aspects of an sk_buff_head without reinitializing things like 2234 * the spinlock. It can also be used for on-stack sk_buff_head 2235 * objects where the spinlock is known to not be used. 2236 */ 2237static inline void __skb_queue_head_init(struct sk_buff_head *list) 2238{ 2239 list->prev = list->next = (struct sk_buff *)list; 2240 list->qlen = 0; 2241} 2242 2243/* 2244 * This function creates a split out lock class for each invocation; 2245 * this is needed for now since a whole lot of users of the skb-queue 2246 * infrastructure in drivers have different locking usage (in hardirq) 2247 * than the networking core (in softirq only). In the long run either the 2248 * network layer or drivers should need annotation to consolidate the 2249 * main types of usage into 3 classes. 2250 */ 2251static inline void skb_queue_head_init(struct sk_buff_head *list) 2252{ 2253 spin_lock_init(&list->lock); 2254 __skb_queue_head_init(list); 2255} 2256 2257static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2258 struct lock_class_key *class) 2259{ 2260 skb_queue_head_init(list); 2261 lockdep_set_class(&list->lock, class); 2262} 2263 2264/* 2265 * Insert an sk_buff on a list. 2266 * 2267 * The "__skb_xxxx()" functions are the non-atomic ones that 2268 * can only be called with interrupts disabled. 2269 */ 2270static inline void __skb_insert(struct sk_buff *newsk, 2271 struct sk_buff *prev, struct sk_buff *next, 2272 struct sk_buff_head *list) 2273{ 2274 /* See skb_queue_empty_lockless() and skb_peek_tail() 2275 * for the opposite READ_ONCE() 2276 */ 2277 WRITE_ONCE(newsk->next, next); 2278 WRITE_ONCE(newsk->prev, prev); 2279 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2280 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2281 WRITE_ONCE(list->qlen, list->qlen + 1); 2282} 2283 2284static inline void __skb_queue_splice(const struct sk_buff_head *list, 2285 struct sk_buff *prev, 2286 struct sk_buff *next) 2287{ 2288 struct sk_buff *first = list->next; 2289 struct sk_buff *last = list->prev; 2290 2291 WRITE_ONCE(first->prev, prev); 2292 WRITE_ONCE(prev->next, first); 2293 2294 WRITE_ONCE(last->next, next); 2295 WRITE_ONCE(next->prev, last); 2296} 2297 2298/** 2299 * skb_queue_splice - join two skb lists, this is designed for stacks 2300 * @list: the new list to add 2301 * @head: the place to add it in the first list 2302 */ 2303static inline void skb_queue_splice(const struct sk_buff_head *list, 2304 struct sk_buff_head *head) 2305{ 2306 if (!skb_queue_empty(list)) { 2307 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2308 head->qlen += list->qlen; 2309 } 2310} 2311 2312/** 2313 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2314 * @list: the new list to add 2315 * @head: the place to add it in the first list 2316 * 2317 * The list at @list is reinitialised 2318 */ 2319static inline void skb_queue_splice_init(struct sk_buff_head *list, 2320 struct sk_buff_head *head) 2321{ 2322 if (!skb_queue_empty(list)) { 2323 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2324 head->qlen += list->qlen; 2325 __skb_queue_head_init(list); 2326 } 2327} 2328 2329/** 2330 * skb_queue_splice_tail - join two skb lists, each list being a queue 2331 * @list: the new list to add 2332 * @head: the place to add it in the first list 2333 */ 2334static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2335 struct sk_buff_head *head) 2336{ 2337 if (!skb_queue_empty(list)) { 2338 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2339 head->qlen += list->qlen; 2340 } 2341} 2342 2343/** 2344 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2345 * @list: the new list to add 2346 * @head: the place to add it in the first list 2347 * 2348 * Each of the lists is a queue. 2349 * The list at @list is reinitialised 2350 */ 2351static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2352 struct sk_buff_head *head) 2353{ 2354 if (!skb_queue_empty(list)) { 2355 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2356 head->qlen += list->qlen; 2357 __skb_queue_head_init(list); 2358 } 2359} 2360 2361/** 2362 * __skb_queue_after - queue a buffer at the list head 2363 * @list: list to use 2364 * @prev: place after this buffer 2365 * @newsk: buffer to queue 2366 * 2367 * Queue a buffer int the middle of a list. This function takes no locks 2368 * and you must therefore hold required locks before calling it. 2369 * 2370 * A buffer cannot be placed on two lists at the same time. 2371 */ 2372static inline void __skb_queue_after(struct sk_buff_head *list, 2373 struct sk_buff *prev, 2374 struct sk_buff *newsk) 2375{ 2376 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2377} 2378 2379void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2380 struct sk_buff_head *list); 2381 2382static inline void __skb_queue_before(struct sk_buff_head *list, 2383 struct sk_buff *next, 2384 struct sk_buff *newsk) 2385{ 2386 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2387} 2388 2389/** 2390 * __skb_queue_head - queue a buffer at the list head 2391 * @list: list to use 2392 * @newsk: buffer to queue 2393 * 2394 * Queue a buffer at the start of a list. This function takes no locks 2395 * and you must therefore hold required locks before calling it. 2396 * 2397 * A buffer cannot be placed on two lists at the same time. 2398 */ 2399static inline void __skb_queue_head(struct sk_buff_head *list, 2400 struct sk_buff *newsk) 2401{ 2402 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2403} 2404void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2405 2406/** 2407 * __skb_queue_tail - queue a buffer at the list tail 2408 * @list: list to use 2409 * @newsk: buffer to queue 2410 * 2411 * Queue a buffer at the end of a list. This function takes no locks 2412 * and you must therefore hold required locks before calling it. 2413 * 2414 * A buffer cannot be placed on two lists at the same time. 2415 */ 2416static inline void __skb_queue_tail(struct sk_buff_head *list, 2417 struct sk_buff *newsk) 2418{ 2419 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2420} 2421void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2422 2423/* 2424 * remove sk_buff from list. _Must_ be called atomically, and with 2425 * the list known.. 2426 */ 2427void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2428static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2429{ 2430 struct sk_buff *next, *prev; 2431 2432 WRITE_ONCE(list->qlen, list->qlen - 1); 2433 next = skb->next; 2434 prev = skb->prev; 2435 skb->next = skb->prev = NULL; 2436 WRITE_ONCE(next->prev, prev); 2437 WRITE_ONCE(prev->next, next); 2438} 2439 2440/** 2441 * __skb_dequeue - remove from the head of the queue 2442 * @list: list to dequeue from 2443 * 2444 * Remove the head of the list. This function does not take any locks 2445 * so must be used with appropriate locks held only. The head item is 2446 * returned or %NULL if the list is empty. 2447 */ 2448static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2449{ 2450 struct sk_buff *skb = skb_peek(list); 2451 if (skb) 2452 __skb_unlink(skb, list); 2453 return skb; 2454} 2455struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2456 2457/** 2458 * __skb_dequeue_tail - remove from the tail of the queue 2459 * @list: list to dequeue from 2460 * 2461 * Remove the tail of the list. This function does not take any locks 2462 * so must be used with appropriate locks held only. The tail item is 2463 * returned or %NULL if the list is empty. 2464 */ 2465static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2466{ 2467 struct sk_buff *skb = skb_peek_tail(list); 2468 if (skb) 2469 __skb_unlink(skb, list); 2470 return skb; 2471} 2472struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2473 2474 2475static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2476{ 2477 return skb->data_len; 2478} 2479 2480static inline unsigned int skb_headlen(const struct sk_buff *skb) 2481{ 2482 return skb->len - skb->data_len; 2483} 2484 2485static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2486{ 2487 unsigned int i, len = 0; 2488 2489 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2490 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2491 return len; 2492} 2493 2494static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2495{ 2496 return skb_headlen(skb) + __skb_pagelen(skb); 2497} 2498 2499static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, 2500 netmem_ref netmem, int off, 2501 int size) 2502{ 2503 frag->netmem = netmem; 2504 frag->offset = off; 2505 skb_frag_size_set(frag, size); 2506} 2507 2508static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2509 struct page *page, 2510 int off, int size) 2511{ 2512 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size); 2513} 2514 2515static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, 2516 int i, netmem_ref netmem, 2517 int off, int size) 2518{ 2519 skb_frag_t *frag = &shinfo->frags[i]; 2520 2521 skb_frag_fill_netmem_desc(frag, netmem, off, size); 2522} 2523 2524static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2525 int i, struct page *page, 2526 int off, int size) 2527{ 2528 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off, 2529 size); 2530} 2531 2532/** 2533 * skb_len_add - adds a number to len fields of skb 2534 * @skb: buffer to add len to 2535 * @delta: number of bytes to add 2536 */ 2537static inline void skb_len_add(struct sk_buff *skb, int delta) 2538{ 2539 skb->len += delta; 2540 skb->data_len += delta; 2541 skb->truesize += delta; 2542} 2543 2544/** 2545 * __skb_fill_netmem_desc - initialise a fragment in an skb 2546 * @skb: buffer containing fragment to be initialised 2547 * @i: fragment index to initialise 2548 * @netmem: the netmem to use for this fragment 2549 * @off: the offset to the data with @page 2550 * @size: the length of the data 2551 * 2552 * Initialises the @i'th fragment of @skb to point to &size bytes at 2553 * offset @off within @page. 2554 * 2555 * Does not take any additional reference on the fragment. 2556 */ 2557static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, 2558 netmem_ref netmem, int off, int size) 2559{ 2560 struct page *page; 2561 2562 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); 2563 2564 if (netmem_is_net_iov(netmem)) { 2565 skb->unreadable = true; 2566 return; 2567 } 2568 2569 page = netmem_to_page(netmem); 2570 2571 /* Propagate page pfmemalloc to the skb if we can. The problem is 2572 * that not all callers have unique ownership of the page but rely 2573 * on page_is_pfmemalloc doing the right thing(tm). 2574 */ 2575 page = compound_head(page); 2576 if (page_is_pfmemalloc(page)) 2577 skb->pfmemalloc = true; 2578} 2579 2580static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2581 struct page *page, int off, int size) 2582{ 2583 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2584} 2585 2586static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, 2587 netmem_ref netmem, int off, int size) 2588{ 2589 __skb_fill_netmem_desc(skb, i, netmem, off, size); 2590 skb_shinfo(skb)->nr_frags = i + 1; 2591} 2592 2593/** 2594 * skb_fill_page_desc - initialise a paged fragment in an skb 2595 * @skb: buffer containing fragment to be initialised 2596 * @i: paged fragment index to initialise 2597 * @page: the page to use for this fragment 2598 * @off: the offset to the data with @page 2599 * @size: the length of the data 2600 * 2601 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2602 * @skb to point to @size bytes at offset @off within @page. In 2603 * addition updates @skb such that @i is the last fragment. 2604 * 2605 * Does not take any additional reference on the fragment. 2606 */ 2607static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2608 struct page *page, int off, int size) 2609{ 2610 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2611} 2612 2613/** 2614 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2615 * @skb: buffer containing fragment to be initialised 2616 * @i: paged fragment index to initialise 2617 * @page: the page to use for this fragment 2618 * @off: the offset to the data with @page 2619 * @size: the length of the data 2620 * 2621 * Variant of skb_fill_page_desc() which does not deal with 2622 * pfmemalloc, if page is not owned by us. 2623 */ 2624static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2625 struct page *page, int off, 2626 int size) 2627{ 2628 struct skb_shared_info *shinfo = skb_shinfo(skb); 2629 2630 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2631 shinfo->nr_frags = i + 1; 2632} 2633 2634void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 2635 int off, int size, unsigned int truesize); 2636 2637static inline void skb_add_rx_frag(struct sk_buff *skb, int i, 2638 struct page *page, int off, int size, 2639 unsigned int truesize) 2640{ 2641 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size, 2642 truesize); 2643} 2644 2645void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2646 unsigned int truesize); 2647 2648#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2649 2650#ifdef NET_SKBUFF_DATA_USES_OFFSET 2651static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2652{ 2653 return skb->head + skb->tail; 2654} 2655 2656static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2657{ 2658 skb->tail = skb->data - skb->head; 2659} 2660 2661static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2662{ 2663 skb_reset_tail_pointer(skb); 2664 skb->tail += offset; 2665} 2666 2667#else /* NET_SKBUFF_DATA_USES_OFFSET */ 2668static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2669{ 2670 return skb->tail; 2671} 2672 2673static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2674{ 2675 skb->tail = skb->data; 2676} 2677 2678static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2679{ 2680 skb->tail = skb->data + offset; 2681} 2682 2683#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2684 2685static inline void skb_assert_len(struct sk_buff *skb) 2686{ 2687#ifdef CONFIG_DEBUG_NET 2688 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2689 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2690#endif /* CONFIG_DEBUG_NET */ 2691} 2692 2693#if defined(CONFIG_FAIL_SKB_REALLOC) 2694void skb_might_realloc(struct sk_buff *skb); 2695#else 2696static inline void skb_might_realloc(struct sk_buff *skb) {} 2697#endif 2698 2699/* 2700 * Add data to an sk_buff 2701 */ 2702void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2703void *skb_put(struct sk_buff *skb, unsigned int len); 2704static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2705{ 2706 void *tmp = skb_tail_pointer(skb); 2707 SKB_LINEAR_ASSERT(skb); 2708 skb->tail += len; 2709 skb->len += len; 2710 return tmp; 2711} 2712 2713static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2714{ 2715 void *tmp = __skb_put(skb, len); 2716 2717 memset(tmp, 0, len); 2718 return tmp; 2719} 2720 2721static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2722 unsigned int len) 2723{ 2724 void *tmp = __skb_put(skb, len); 2725 2726 memcpy(tmp, data, len); 2727 return tmp; 2728} 2729 2730static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2731{ 2732 *(u8 *)__skb_put(skb, 1) = val; 2733} 2734 2735static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2736{ 2737 void *tmp = skb_put(skb, len); 2738 2739 memset(tmp, 0, len); 2740 2741 return tmp; 2742} 2743 2744static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2745 unsigned int len) 2746{ 2747 void *tmp = skb_put(skb, len); 2748 2749 memcpy(tmp, data, len); 2750 2751 return tmp; 2752} 2753 2754static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2755{ 2756 *(u8 *)skb_put(skb, 1) = val; 2757} 2758 2759void *skb_push(struct sk_buff *skb, unsigned int len); 2760static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2761{ 2762 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2763 2764 skb->data -= len; 2765 skb->len += len; 2766 return skb->data; 2767} 2768 2769void *skb_pull(struct sk_buff *skb, unsigned int len); 2770static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2771{ 2772 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2773 2774 skb->len -= len; 2775 if (unlikely(skb->len < skb->data_len)) { 2776#if defined(CONFIG_DEBUG_NET) 2777 skb->len += len; 2778 pr_err("__skb_pull(len=%u)\n", len); 2779 skb_dump(KERN_ERR, skb, false); 2780#endif 2781 BUG(); 2782 } 2783 return skb->data += len; 2784} 2785 2786static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2787{ 2788 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2789} 2790 2791void *skb_pull_data(struct sk_buff *skb, size_t len); 2792 2793void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2794 2795static inline enum skb_drop_reason 2796pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2797{ 2798 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2799 skb_might_realloc(skb); 2800 2801 if (likely(len <= skb_headlen(skb))) 2802 return SKB_NOT_DROPPED_YET; 2803 2804 if (unlikely(len > skb->len)) 2805 return SKB_DROP_REASON_PKT_TOO_SMALL; 2806 2807 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2808 return SKB_DROP_REASON_NOMEM; 2809 2810 return SKB_NOT_DROPPED_YET; 2811} 2812 2813static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2814{ 2815 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2816} 2817 2818static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2819{ 2820 if (!pskb_may_pull(skb, len)) 2821 return NULL; 2822 2823 skb->len -= len; 2824 return skb->data += len; 2825} 2826 2827void skb_condense(struct sk_buff *skb); 2828 2829/** 2830 * skb_headroom - bytes at buffer head 2831 * @skb: buffer to check 2832 * 2833 * Return the number of bytes of free space at the head of an &sk_buff. 2834 */ 2835static inline unsigned int skb_headroom(const struct sk_buff *skb) 2836{ 2837 return skb->data - skb->head; 2838} 2839 2840/** 2841 * skb_tailroom - bytes at buffer end 2842 * @skb: buffer to check 2843 * 2844 * Return the number of bytes of free space at the tail of an sk_buff 2845 */ 2846static inline int skb_tailroom(const struct sk_buff *skb) 2847{ 2848 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2849} 2850 2851/** 2852 * skb_availroom - bytes at buffer end 2853 * @skb: buffer to check 2854 * 2855 * Return the number of bytes of free space at the tail of an sk_buff 2856 * allocated by sk_stream_alloc() 2857 */ 2858static inline int skb_availroom(const struct sk_buff *skb) 2859{ 2860 if (skb_is_nonlinear(skb)) 2861 return 0; 2862 2863 return skb->end - skb->tail - skb->reserved_tailroom; 2864} 2865 2866/** 2867 * skb_reserve - adjust headroom 2868 * @skb: buffer to alter 2869 * @len: bytes to move 2870 * 2871 * Increase the headroom of an empty &sk_buff by reducing the tail 2872 * room. This is only allowed for an empty buffer. 2873 */ 2874static inline void skb_reserve(struct sk_buff *skb, int len) 2875{ 2876 skb->data += len; 2877 skb->tail += len; 2878} 2879 2880/** 2881 * skb_tailroom_reserve - adjust reserved_tailroom 2882 * @skb: buffer to alter 2883 * @mtu: maximum amount of headlen permitted 2884 * @needed_tailroom: minimum amount of reserved_tailroom 2885 * 2886 * Set reserved_tailroom so that headlen can be as large as possible but 2887 * not larger than mtu and tailroom cannot be smaller than 2888 * needed_tailroom. 2889 * The required headroom should already have been reserved before using 2890 * this function. 2891 */ 2892static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2893 unsigned int needed_tailroom) 2894{ 2895 SKB_LINEAR_ASSERT(skb); 2896 if (mtu < skb_tailroom(skb) - needed_tailroom) 2897 /* use at most mtu */ 2898 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2899 else 2900 /* use up to all available space */ 2901 skb->reserved_tailroom = needed_tailroom; 2902} 2903 2904#define ENCAP_TYPE_ETHER 0 2905#define ENCAP_TYPE_IPPROTO 1 2906 2907static inline void skb_set_inner_protocol(struct sk_buff *skb, 2908 __be16 protocol) 2909{ 2910 skb->inner_protocol = protocol; 2911 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2912} 2913 2914static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2915 __u8 ipproto) 2916{ 2917 skb->inner_ipproto = ipproto; 2918 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2919} 2920 2921static inline void skb_reset_inner_headers(struct sk_buff *skb) 2922{ 2923 skb->inner_mac_header = skb->mac_header; 2924 skb->inner_network_header = skb->network_header; 2925 skb->inner_transport_header = skb->transport_header; 2926} 2927 2928static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2929{ 2930 return skb->mac_header != (typeof(skb->mac_header))~0U; 2931} 2932 2933static inline void skb_reset_mac_len(struct sk_buff *skb) 2934{ 2935 if (!skb_mac_header_was_set(skb)) { 2936 DEBUG_NET_WARN_ON_ONCE(1); 2937 skb->mac_len = 0; 2938 } else { 2939 skb->mac_len = skb->network_header - skb->mac_header; 2940 } 2941} 2942 2943static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2944 *skb) 2945{ 2946 return skb->head + skb->inner_transport_header; 2947} 2948 2949static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2950{ 2951 return skb_inner_transport_header(skb) - skb->data; 2952} 2953 2954static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2955{ 2956 long offset = skb->data - skb->head; 2957 2958 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset); 2959 skb->inner_transport_header = offset; 2960} 2961 2962static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2963 const int offset) 2964{ 2965 skb_reset_inner_transport_header(skb); 2966 skb->inner_transport_header += offset; 2967} 2968 2969static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2970{ 2971 return skb->head + skb->inner_network_header; 2972} 2973 2974static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2975{ 2976 long offset = skb->data - skb->head; 2977 2978 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset); 2979 skb->inner_network_header = offset; 2980} 2981 2982static inline void skb_set_inner_network_header(struct sk_buff *skb, 2983 const int offset) 2984{ 2985 skb_reset_inner_network_header(skb); 2986 skb->inner_network_header += offset; 2987} 2988 2989static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) 2990{ 2991 return skb->inner_network_header > 0; 2992} 2993 2994static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2995{ 2996 return skb->head + skb->inner_mac_header; 2997} 2998 2999static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 3000{ 3001 long offset = skb->data - skb->head; 3002 3003 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset); 3004 skb->inner_mac_header = offset; 3005} 3006 3007static inline void skb_set_inner_mac_header(struct sk_buff *skb, 3008 const int offset) 3009{ 3010 skb_reset_inner_mac_header(skb); 3011 skb->inner_mac_header += offset; 3012} 3013static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 3014{ 3015 return skb->transport_header != (typeof(skb->transport_header))~0U; 3016} 3017 3018static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 3019{ 3020 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3021 return skb->head + skb->transport_header; 3022} 3023 3024static inline void skb_reset_transport_header(struct sk_buff *skb) 3025{ 3026 long offset = skb->data - skb->head; 3027 3028 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset); 3029 skb->transport_header = offset; 3030} 3031 3032static inline void skb_set_transport_header(struct sk_buff *skb, 3033 const int offset) 3034{ 3035 skb_reset_transport_header(skb); 3036 skb->transport_header += offset; 3037} 3038 3039static inline unsigned char *skb_network_header(const struct sk_buff *skb) 3040{ 3041 return skb->head + skb->network_header; 3042} 3043 3044static inline void skb_reset_network_header(struct sk_buff *skb) 3045{ 3046 long offset = skb->data - skb->head; 3047 3048 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset); 3049 skb->network_header = offset; 3050} 3051 3052static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 3053{ 3054 skb_reset_network_header(skb); 3055 skb->network_header += offset; 3056} 3057 3058static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 3059{ 3060 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3061 return skb->head + skb->mac_header; 3062} 3063 3064static inline int skb_mac_offset(const struct sk_buff *skb) 3065{ 3066 return skb_mac_header(skb) - skb->data; 3067} 3068 3069static inline u32 skb_mac_header_len(const struct sk_buff *skb) 3070{ 3071 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3072 return skb->network_header - skb->mac_header; 3073} 3074 3075static inline void skb_unset_mac_header(struct sk_buff *skb) 3076{ 3077 skb->mac_header = (typeof(skb->mac_header))~0U; 3078} 3079 3080static inline void skb_reset_mac_header(struct sk_buff *skb) 3081{ 3082 long offset = skb->data - skb->head; 3083 3084 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset); 3085 skb->mac_header = offset; 3086} 3087 3088static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 3089{ 3090 skb_reset_mac_header(skb); 3091 skb->mac_header += offset; 3092} 3093 3094static inline void skb_pop_mac_header(struct sk_buff *skb) 3095{ 3096 skb->mac_header = skb->network_header; 3097} 3098 3099static inline void skb_probe_transport_header(struct sk_buff *skb) 3100{ 3101 struct flow_keys_basic keys; 3102 3103 if (skb_transport_header_was_set(skb)) 3104 return; 3105 3106 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 3107 NULL, 0, 0, 0, 0)) 3108 skb_set_transport_header(skb, keys.control.thoff); 3109} 3110 3111static inline void skb_mac_header_rebuild(struct sk_buff *skb) 3112{ 3113 if (skb_mac_header_was_set(skb)) { 3114 const unsigned char *old_mac = skb_mac_header(skb); 3115 3116 skb_set_mac_header(skb, -skb->mac_len); 3117 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 3118 } 3119} 3120 3121/* Move the full mac header up to current network_header. 3122 * Leaves skb->data pointing at offset skb->mac_len into the mac_header. 3123 * Must be provided the complete mac header length. 3124 */ 3125static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len) 3126{ 3127 if (skb_mac_header_was_set(skb)) { 3128 const unsigned char *old_mac = skb_mac_header(skb); 3129 3130 skb_set_mac_header(skb, -full_mac_len); 3131 memmove(skb_mac_header(skb), old_mac, full_mac_len); 3132 __skb_push(skb, full_mac_len - skb->mac_len); 3133 } 3134} 3135 3136static inline int skb_checksum_start_offset(const struct sk_buff *skb) 3137{ 3138 return skb->csum_start - skb_headroom(skb); 3139} 3140 3141static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 3142{ 3143 return skb->head + skb->csum_start; 3144} 3145 3146static inline int skb_transport_offset(const struct sk_buff *skb) 3147{ 3148 return skb_transport_header(skb) - skb->data; 3149} 3150 3151static inline u32 skb_network_header_len(const struct sk_buff *skb) 3152{ 3153 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3154 return skb->transport_header - skb->network_header; 3155} 3156 3157static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 3158{ 3159 return skb->inner_transport_header - skb->inner_network_header; 3160} 3161 3162static inline int skb_network_offset(const struct sk_buff *skb) 3163{ 3164 return skb_network_header(skb) - skb->data; 3165} 3166 3167static inline int skb_inner_network_offset(const struct sk_buff *skb) 3168{ 3169 return skb_inner_network_header(skb) - skb->data; 3170} 3171 3172static inline enum skb_drop_reason 3173pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len) 3174{ 3175 return pskb_may_pull_reason(skb, skb_network_offset(skb) + len); 3176} 3177 3178static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 3179{ 3180 return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 3181} 3182 3183/* 3184 * CPUs often take a performance hit when accessing unaligned memory 3185 * locations. The actual performance hit varies, it can be small if the 3186 * hardware handles it or large if we have to take an exception and fix it 3187 * in software. 3188 * 3189 * Since an ethernet header is 14 bytes network drivers often end up with 3190 * the IP header at an unaligned offset. The IP header can be aligned by 3191 * shifting the start of the packet by 2 bytes. Drivers should do this 3192 * with: 3193 * 3194 * skb_reserve(skb, NET_IP_ALIGN); 3195 * 3196 * The downside to this alignment of the IP header is that the DMA is now 3197 * unaligned. On some architectures the cost of an unaligned DMA is high 3198 * and this cost outweighs the gains made by aligning the IP header. 3199 * 3200 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3201 * to be overridden. 3202 */ 3203#ifndef NET_IP_ALIGN 3204#define NET_IP_ALIGN 2 3205#endif 3206 3207/* 3208 * The networking layer reserves some headroom in skb data (via 3209 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3210 * the header has to grow. In the default case, if the header has to grow 3211 * 32 bytes or less we avoid the reallocation. 3212 * 3213 * Unfortunately this headroom changes the DMA alignment of the resulting 3214 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3215 * on some architectures. An architecture can override this value, 3216 * perhaps setting it to a cacheline in size (since that will maintain 3217 * cacheline alignment of the DMA). It must be a power of 2. 3218 * 3219 * Various parts of the networking layer expect at least 32 bytes of 3220 * headroom, you should not reduce this. 3221 * 3222 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3223 * to reduce average number of cache lines per packet. 3224 * get_rps_cpu() for example only access one 64 bytes aligned block : 3225 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3226 */ 3227#ifndef NET_SKB_PAD 3228#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3229#endif 3230 3231int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3232 3233static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3234{ 3235 if (WARN_ON(skb_is_nonlinear(skb))) 3236 return; 3237 skb->len = len; 3238 skb_set_tail_pointer(skb, len); 3239} 3240 3241static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3242{ 3243 __skb_set_length(skb, len); 3244} 3245 3246void skb_trim(struct sk_buff *skb, unsigned int len); 3247 3248static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3249{ 3250 if (skb->data_len) 3251 return ___pskb_trim(skb, len); 3252 __skb_trim(skb, len); 3253 return 0; 3254} 3255 3256static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3257{ 3258 skb_might_realloc(skb); 3259 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3260} 3261 3262/** 3263 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3264 * @skb: buffer to alter 3265 * @len: new length 3266 * 3267 * This is identical to pskb_trim except that the caller knows that 3268 * the skb is not cloned so we should never get an error due to out- 3269 * of-memory. 3270 */ 3271static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3272{ 3273 int err = pskb_trim(skb, len); 3274 BUG_ON(err); 3275} 3276 3277static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3278{ 3279 unsigned int diff = len - skb->len; 3280 3281 if (skb_tailroom(skb) < diff) { 3282 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3283 GFP_ATOMIC); 3284 if (ret) 3285 return ret; 3286 } 3287 __skb_set_length(skb, len); 3288 return 0; 3289} 3290 3291/** 3292 * skb_orphan - orphan a buffer 3293 * @skb: buffer to orphan 3294 * 3295 * If a buffer currently has an owner then we call the owner's 3296 * destructor function and make the @skb unowned. The buffer continues 3297 * to exist but is no longer charged to its former owner. 3298 */ 3299static inline void skb_orphan(struct sk_buff *skb) 3300{ 3301 if (skb->destructor) { 3302 skb->destructor(skb); 3303 skb->destructor = NULL; 3304 skb->sk = NULL; 3305 } else { 3306 BUG_ON(skb->sk); 3307 } 3308} 3309 3310/** 3311 * skb_orphan_frags - orphan the frags contained in a buffer 3312 * @skb: buffer to orphan frags from 3313 * @gfp_mask: allocation mask for replacement pages 3314 * 3315 * For each frag in the SKB which needs a destructor (i.e. has an 3316 * owner) create a copy of that frag and release the original 3317 * page by calling the destructor. 3318 */ 3319static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3320{ 3321 if (likely(!skb_zcopy(skb))) 3322 return 0; 3323 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3324 return 0; 3325 return skb_copy_ubufs(skb, gfp_mask); 3326} 3327 3328/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3329static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3330{ 3331 if (likely(!skb_zcopy(skb))) 3332 return 0; 3333 return skb_copy_ubufs(skb, gfp_mask); 3334} 3335 3336/** 3337 * __skb_queue_purge_reason - empty a list 3338 * @list: list to empty 3339 * @reason: drop reason 3340 * 3341 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3342 * the list and one reference dropped. This function does not take the 3343 * list lock and the caller must hold the relevant locks to use it. 3344 */ 3345static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3346 enum skb_drop_reason reason) 3347{ 3348 struct sk_buff *skb; 3349 3350 while ((skb = __skb_dequeue(list)) != NULL) 3351 kfree_skb_reason(skb, reason); 3352} 3353 3354static inline void __skb_queue_purge(struct sk_buff_head *list) 3355{ 3356 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3357} 3358 3359void skb_queue_purge_reason(struct sk_buff_head *list, 3360 enum skb_drop_reason reason); 3361 3362static inline void skb_queue_purge(struct sk_buff_head *list) 3363{ 3364 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3365} 3366 3367unsigned int skb_rbtree_purge(struct rb_root *root); 3368void skb_errqueue_purge(struct sk_buff_head *list); 3369 3370void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3371 3372/** 3373 * netdev_alloc_frag - allocate a page fragment 3374 * @fragsz: fragment size 3375 * 3376 * Allocates a frag from a page for receive buffer. 3377 * Uses GFP_ATOMIC allocations. 3378 */ 3379static inline void *netdev_alloc_frag(unsigned int fragsz) 3380{ 3381 return __netdev_alloc_frag_align(fragsz, ~0u); 3382} 3383 3384static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3385 unsigned int align) 3386{ 3387 WARN_ON_ONCE(!is_power_of_2(align)); 3388 return __netdev_alloc_frag_align(fragsz, -align); 3389} 3390 3391struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3392 gfp_t gfp_mask); 3393 3394/** 3395 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3396 * @dev: network device to receive on 3397 * @length: length to allocate 3398 * 3399 * Allocate a new &sk_buff and assign it a usage count of one. The 3400 * buffer has unspecified headroom built in. Users should allocate 3401 * the headroom they think they need without accounting for the 3402 * built in space. The built in space is used for optimisations. 3403 * 3404 * %NULL is returned if there is no free memory. Although this function 3405 * allocates memory it can be called from an interrupt. 3406 */ 3407static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3408 unsigned int length) 3409{ 3410 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3411} 3412 3413/* legacy helper around __netdev_alloc_skb() */ 3414static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3415 gfp_t gfp_mask) 3416{ 3417 return __netdev_alloc_skb(NULL, length, gfp_mask); 3418} 3419 3420/* legacy helper around netdev_alloc_skb() */ 3421static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3422{ 3423 return netdev_alloc_skb(NULL, length); 3424} 3425 3426 3427static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3428 unsigned int length, gfp_t gfp) 3429{ 3430 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3431 3432 if (NET_IP_ALIGN && skb) 3433 skb_reserve(skb, NET_IP_ALIGN); 3434 return skb; 3435} 3436 3437static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3438 unsigned int length) 3439{ 3440 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3441} 3442 3443static inline void skb_free_frag(void *addr) 3444{ 3445 page_frag_free(addr); 3446} 3447 3448void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3449 3450static inline void *napi_alloc_frag(unsigned int fragsz) 3451{ 3452 return __napi_alloc_frag_align(fragsz, ~0u); 3453} 3454 3455static inline void *napi_alloc_frag_align(unsigned int fragsz, 3456 unsigned int align) 3457{ 3458 WARN_ON_ONCE(!is_power_of_2(align)); 3459 return __napi_alloc_frag_align(fragsz, -align); 3460} 3461 3462struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length); 3463void napi_consume_skb(struct sk_buff *skb, int budget); 3464 3465void napi_skb_free_stolen_head(struct sk_buff *skb); 3466void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3467 3468/** 3469 * __dev_alloc_pages - allocate page for network Rx 3470 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3471 * @order: size of the allocation 3472 * 3473 * Allocate a new page. 3474 * 3475 * %NULL is returned if there is no free memory. 3476*/ 3477static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask, 3478 unsigned int order) 3479{ 3480 /* This piece of code contains several assumptions. 3481 * 1. This is for device Rx, therefore a cold page is preferred. 3482 * 2. The expectation is the user wants a compound page. 3483 * 3. If requesting a order 0 page it will not be compound 3484 * due to the check to see if order has a value in prep_new_page 3485 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3486 * code in gfp_to_alloc_flags that should be enforcing this. 3487 */ 3488 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3489 3490 return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order); 3491} 3492#define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__)) 3493 3494/* 3495 * This specialized allocator has to be a macro for its allocations to be 3496 * accounted separately (to have a separate alloc_tag). 3497 */ 3498#define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order) 3499 3500/** 3501 * __dev_alloc_page - allocate a page for network Rx 3502 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3503 * 3504 * Allocate a new page. 3505 * 3506 * %NULL is returned if there is no free memory. 3507 */ 3508static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask) 3509{ 3510 return __dev_alloc_pages_noprof(gfp_mask, 0); 3511} 3512#define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__)) 3513 3514/* 3515 * This specialized allocator has to be a macro for its allocations to be 3516 * accounted separately (to have a separate alloc_tag). 3517 */ 3518#define dev_alloc_page() dev_alloc_pages(0) 3519 3520/** 3521 * dev_page_is_reusable - check whether a page can be reused for network Rx 3522 * @page: the page to test 3523 * 3524 * A page shouldn't be considered for reusing/recycling if it was allocated 3525 * under memory pressure or at a distant memory node. 3526 * 3527 * Returns: false if this page should be returned to page allocator, true 3528 * otherwise. 3529 */ 3530static inline bool dev_page_is_reusable(const struct page *page) 3531{ 3532 return likely(page_to_nid(page) == numa_mem_id() && 3533 !page_is_pfmemalloc(page)); 3534} 3535 3536/** 3537 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3538 * @page: The page that was allocated from skb_alloc_page 3539 * @skb: The skb that may need pfmemalloc set 3540 */ 3541static inline void skb_propagate_pfmemalloc(const struct page *page, 3542 struct sk_buff *skb) 3543{ 3544 if (page_is_pfmemalloc(page)) 3545 skb->pfmemalloc = true; 3546} 3547 3548/** 3549 * skb_frag_off() - Returns the offset of a skb fragment 3550 * @frag: the paged fragment 3551 */ 3552static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3553{ 3554 return frag->offset; 3555} 3556 3557/** 3558 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3559 * @frag: skb fragment 3560 * @delta: value to add 3561 */ 3562static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3563{ 3564 frag->offset += delta; 3565} 3566 3567/** 3568 * skb_frag_off_set() - Sets the offset of a skb fragment 3569 * @frag: skb fragment 3570 * @offset: offset of fragment 3571 */ 3572static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3573{ 3574 frag->offset = offset; 3575} 3576 3577/** 3578 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3579 * @fragto: skb fragment where offset is set 3580 * @fragfrom: skb fragment offset is copied from 3581 */ 3582static inline void skb_frag_off_copy(skb_frag_t *fragto, 3583 const skb_frag_t *fragfrom) 3584{ 3585 fragto->offset = fragfrom->offset; 3586} 3587 3588/* Return: true if the skb_frag contains a net_iov. */ 3589static inline bool skb_frag_is_net_iov(const skb_frag_t *frag) 3590{ 3591 return netmem_is_net_iov(frag->netmem); 3592} 3593 3594/** 3595 * skb_frag_net_iov - retrieve the net_iov referred to by fragment 3596 * @frag: the fragment 3597 * 3598 * Return: the &struct net_iov associated with @frag. Returns NULL if this 3599 * frag has no associated net_iov. 3600 */ 3601static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag) 3602{ 3603 if (!skb_frag_is_net_iov(frag)) 3604 return NULL; 3605 3606 return netmem_to_net_iov(frag->netmem); 3607} 3608 3609/** 3610 * skb_frag_page - retrieve the page referred to by a paged fragment 3611 * @frag: the paged fragment 3612 * 3613 * Return: the &struct page associated with @frag. Returns NULL if this frag 3614 * has no associated page. 3615 */ 3616static inline struct page *skb_frag_page(const skb_frag_t *frag) 3617{ 3618 if (skb_frag_is_net_iov(frag)) 3619 return NULL; 3620 3621 return netmem_to_page(frag->netmem); 3622} 3623 3624/** 3625 * skb_frag_netmem - retrieve the netmem referred to by a fragment 3626 * @frag: the fragment 3627 * 3628 * Return: the &netmem_ref associated with @frag. 3629 */ 3630static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag) 3631{ 3632 return frag->netmem; 3633} 3634 3635int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 3636 unsigned int headroom); 3637int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 3638 const struct bpf_prog *prog); 3639 3640/** 3641 * skb_frag_address - gets the address of the data contained in a paged fragment 3642 * @frag: the paged fragment buffer 3643 * 3644 * Returns: the address of the data within @frag. The page must already 3645 * be mapped. 3646 */ 3647static inline void *skb_frag_address(const skb_frag_t *frag) 3648{ 3649 if (!skb_frag_page(frag)) 3650 return NULL; 3651 3652 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3653} 3654 3655/** 3656 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3657 * @frag: the paged fragment buffer 3658 * 3659 * Returns: the address of the data within @frag. Checks that the page 3660 * is mapped and returns %NULL otherwise. 3661 */ 3662static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3663{ 3664 void *ptr = page_address(skb_frag_page(frag)); 3665 if (unlikely(!ptr)) 3666 return NULL; 3667 3668 return ptr + skb_frag_off(frag); 3669} 3670 3671/** 3672 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3673 * @fragto: skb fragment where page is set 3674 * @fragfrom: skb fragment page is copied from 3675 */ 3676static inline void skb_frag_page_copy(skb_frag_t *fragto, 3677 const skb_frag_t *fragfrom) 3678{ 3679 fragto->netmem = fragfrom->netmem; 3680} 3681 3682bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3683 3684/** 3685 * __skb_frag_dma_map - maps a paged fragment via the DMA API 3686 * @dev: the device to map the fragment to 3687 * @frag: the paged fragment to map 3688 * @offset: the offset within the fragment (starting at the 3689 * fragment's own offset) 3690 * @size: the number of bytes to map 3691 * @dir: the direction of the mapping (``PCI_DMA_*``) 3692 * 3693 * Maps the page associated with @frag to @device. 3694 */ 3695static inline dma_addr_t __skb_frag_dma_map(struct device *dev, 3696 const skb_frag_t *frag, 3697 size_t offset, size_t size, 3698 enum dma_data_direction dir) 3699{ 3700 return dma_map_page(dev, skb_frag_page(frag), 3701 skb_frag_off(frag) + offset, size, dir); 3702} 3703 3704#define skb_frag_dma_map(dev, frag, ...) \ 3705 CONCATENATE(_skb_frag_dma_map, \ 3706 COUNT_ARGS(__VA_ARGS__))(dev, frag, ##__VA_ARGS__) 3707 3708#define __skb_frag_dma_map1(dev, frag, offset, uf, uo) ({ \ 3709 const skb_frag_t *uf = (frag); \ 3710 size_t uo = (offset); \ 3711 \ 3712 __skb_frag_dma_map(dev, uf, uo, skb_frag_size(uf) - uo, \ 3713 DMA_TO_DEVICE); \ 3714}) 3715#define _skb_frag_dma_map1(dev, frag, offset) \ 3716 __skb_frag_dma_map1(dev, frag, offset, __UNIQUE_ID(frag_), \ 3717 __UNIQUE_ID(offset_)) 3718#define _skb_frag_dma_map0(dev, frag) \ 3719 _skb_frag_dma_map1(dev, frag, 0) 3720#define _skb_frag_dma_map2(dev, frag, offset, size) \ 3721 __skb_frag_dma_map(dev, frag, offset, size, DMA_TO_DEVICE) 3722#define _skb_frag_dma_map3(dev, frag, offset, size, dir) \ 3723 __skb_frag_dma_map(dev, frag, offset, size, dir) 3724 3725static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3726 gfp_t gfp_mask) 3727{ 3728 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3729} 3730 3731 3732static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3733 gfp_t gfp_mask) 3734{ 3735 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3736} 3737 3738 3739/** 3740 * skb_clone_writable - is the header of a clone writable 3741 * @skb: buffer to check 3742 * @len: length up to which to write 3743 * 3744 * Returns true if modifying the header part of the cloned buffer 3745 * does not requires the data to be copied. 3746 */ 3747static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3748{ 3749 return !skb_header_cloned(skb) && 3750 skb_headroom(skb) + len <= skb->hdr_len; 3751} 3752 3753static inline int skb_try_make_writable(struct sk_buff *skb, 3754 unsigned int write_len) 3755{ 3756 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3757 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3758} 3759 3760static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3761 int cloned) 3762{ 3763 int delta = 0; 3764 3765 if (headroom > skb_headroom(skb)) 3766 delta = headroom - skb_headroom(skb); 3767 3768 if (delta || cloned) 3769 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3770 GFP_ATOMIC); 3771 return 0; 3772} 3773 3774/** 3775 * skb_cow - copy header of skb when it is required 3776 * @skb: buffer to cow 3777 * @headroom: needed headroom 3778 * 3779 * If the skb passed lacks sufficient headroom or its data part 3780 * is shared, data is reallocated. If reallocation fails, an error 3781 * is returned and original skb is not changed. 3782 * 3783 * The result is skb with writable area skb->head...skb->tail 3784 * and at least @headroom of space at head. 3785 */ 3786static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3787{ 3788 return __skb_cow(skb, headroom, skb_cloned(skb)); 3789} 3790 3791/** 3792 * skb_cow_head - skb_cow but only making the head writable 3793 * @skb: buffer to cow 3794 * @headroom: needed headroom 3795 * 3796 * This function is identical to skb_cow except that we replace the 3797 * skb_cloned check by skb_header_cloned. It should be used when 3798 * you only need to push on some header and do not need to modify 3799 * the data. 3800 */ 3801static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3802{ 3803 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3804} 3805 3806/** 3807 * skb_padto - pad an skbuff up to a minimal size 3808 * @skb: buffer to pad 3809 * @len: minimal length 3810 * 3811 * Pads up a buffer to ensure the trailing bytes exist and are 3812 * blanked. If the buffer already contains sufficient data it 3813 * is untouched. Otherwise it is extended. Returns zero on 3814 * success. The skb is freed on error. 3815 */ 3816static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3817{ 3818 unsigned int size = skb->len; 3819 if (likely(size >= len)) 3820 return 0; 3821 return skb_pad(skb, len - size); 3822} 3823 3824/** 3825 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3826 * @skb: buffer to pad 3827 * @len: minimal length 3828 * @free_on_error: free buffer on error 3829 * 3830 * Pads up a buffer to ensure the trailing bytes exist and are 3831 * blanked. If the buffer already contains sufficient data it 3832 * is untouched. Otherwise it is extended. Returns zero on 3833 * success. The skb is freed on error if @free_on_error is true. 3834 */ 3835static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3836 unsigned int len, 3837 bool free_on_error) 3838{ 3839 unsigned int size = skb->len; 3840 3841 if (unlikely(size < len)) { 3842 len -= size; 3843 if (__skb_pad(skb, len, free_on_error)) 3844 return -ENOMEM; 3845 __skb_put(skb, len); 3846 } 3847 return 0; 3848} 3849 3850/** 3851 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3852 * @skb: buffer to pad 3853 * @len: minimal length 3854 * 3855 * Pads up a buffer to ensure the trailing bytes exist and are 3856 * blanked. If the buffer already contains sufficient data it 3857 * is untouched. Otherwise it is extended. Returns zero on 3858 * success. The skb is freed on error. 3859 */ 3860static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3861{ 3862 return __skb_put_padto(skb, len, true); 3863} 3864 3865bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) 3866 __must_check; 3867 3868static inline int skb_add_data(struct sk_buff *skb, 3869 struct iov_iter *from, int copy) 3870{ 3871 const int off = skb->len; 3872 3873 if (skb->ip_summed == CHECKSUM_NONE) { 3874 __wsum csum = 0; 3875 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3876 &csum, from)) { 3877 skb->csum = csum_block_add(skb->csum, csum, off); 3878 return 0; 3879 } 3880 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3881 return 0; 3882 3883 __skb_trim(skb, off); 3884 return -EFAULT; 3885} 3886 3887static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3888 const struct page *page, int off) 3889{ 3890 if (skb_zcopy(skb)) 3891 return false; 3892 if (i) { 3893 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3894 3895 return page == skb_frag_page(frag) && 3896 off == skb_frag_off(frag) + skb_frag_size(frag); 3897 } 3898 return false; 3899} 3900 3901static inline int __skb_linearize(struct sk_buff *skb) 3902{ 3903 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3904} 3905 3906/** 3907 * skb_linearize - convert paged skb to linear one 3908 * @skb: buffer to linarize 3909 * 3910 * If there is no free memory -ENOMEM is returned, otherwise zero 3911 * is returned and the old skb data released. 3912 */ 3913static inline int skb_linearize(struct sk_buff *skb) 3914{ 3915 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3916} 3917 3918/** 3919 * skb_has_shared_frag - can any frag be overwritten 3920 * @skb: buffer to test 3921 * 3922 * Return: true if the skb has at least one frag that might be modified 3923 * by an external entity (as in vmsplice()/sendfile()) 3924 */ 3925static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3926{ 3927 return skb_is_nonlinear(skb) && 3928 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3929} 3930 3931/** 3932 * skb_linearize_cow - make sure skb is linear and writable 3933 * @skb: buffer to process 3934 * 3935 * If there is no free memory -ENOMEM is returned, otherwise zero 3936 * is returned and the old skb data released. 3937 */ 3938static inline int skb_linearize_cow(struct sk_buff *skb) 3939{ 3940 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3941 __skb_linearize(skb) : 0; 3942} 3943 3944static __always_inline void 3945__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3946 unsigned int off) 3947{ 3948 if (skb->ip_summed == CHECKSUM_COMPLETE) 3949 skb->csum = csum_block_sub(skb->csum, 3950 csum_partial(start, len, 0), off); 3951 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3952 skb_checksum_start_offset(skb) < 0) 3953 skb->ip_summed = CHECKSUM_NONE; 3954} 3955 3956/** 3957 * skb_postpull_rcsum - update checksum for received skb after pull 3958 * @skb: buffer to update 3959 * @start: start of data before pull 3960 * @len: length of data pulled 3961 * 3962 * After doing a pull on a received packet, you need to call this to 3963 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3964 * CHECKSUM_NONE so that it can be recomputed from scratch. 3965 */ 3966static inline void skb_postpull_rcsum(struct sk_buff *skb, 3967 const void *start, unsigned int len) 3968{ 3969 if (skb->ip_summed == CHECKSUM_COMPLETE) 3970 skb->csum = wsum_negate(csum_partial(start, len, 3971 wsum_negate(skb->csum))); 3972 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3973 skb_checksum_start_offset(skb) < 0) 3974 skb->ip_summed = CHECKSUM_NONE; 3975} 3976 3977static __always_inline void 3978__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3979 unsigned int off) 3980{ 3981 if (skb->ip_summed == CHECKSUM_COMPLETE) 3982 skb->csum = csum_block_add(skb->csum, 3983 csum_partial(start, len, 0), off); 3984} 3985 3986/** 3987 * skb_postpush_rcsum - update checksum for received skb after push 3988 * @skb: buffer to update 3989 * @start: start of data after push 3990 * @len: length of data pushed 3991 * 3992 * After doing a push on a received packet, you need to call this to 3993 * update the CHECKSUM_COMPLETE checksum. 3994 */ 3995static inline void skb_postpush_rcsum(struct sk_buff *skb, 3996 const void *start, unsigned int len) 3997{ 3998 __skb_postpush_rcsum(skb, start, len, 0); 3999} 4000 4001void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 4002 4003/** 4004 * skb_push_rcsum - push skb and update receive checksum 4005 * @skb: buffer to update 4006 * @len: length of data pulled 4007 * 4008 * This function performs an skb_push on the packet and updates 4009 * the CHECKSUM_COMPLETE checksum. It should be used on 4010 * receive path processing instead of skb_push unless you know 4011 * that the checksum difference is zero (e.g., a valid IP header) 4012 * or you are setting ip_summed to CHECKSUM_NONE. 4013 */ 4014static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 4015{ 4016 skb_push(skb, len); 4017 skb_postpush_rcsum(skb, skb->data, len); 4018 return skb->data; 4019} 4020 4021int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 4022/** 4023 * pskb_trim_rcsum - trim received skb and update checksum 4024 * @skb: buffer to trim 4025 * @len: new length 4026 * 4027 * This is exactly the same as pskb_trim except that it ensures the 4028 * checksum of received packets are still valid after the operation. 4029 * It can change skb pointers. 4030 */ 4031 4032static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 4033{ 4034 skb_might_realloc(skb); 4035 if (likely(len >= skb->len)) 4036 return 0; 4037 return pskb_trim_rcsum_slow(skb, len); 4038} 4039 4040static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 4041{ 4042 if (skb->ip_summed == CHECKSUM_COMPLETE) 4043 skb->ip_summed = CHECKSUM_NONE; 4044 __skb_trim(skb, len); 4045 return 0; 4046} 4047 4048static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 4049{ 4050 if (skb->ip_summed == CHECKSUM_COMPLETE) 4051 skb->ip_summed = CHECKSUM_NONE; 4052 return __skb_grow(skb, len); 4053} 4054 4055#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 4056#define skb_rb_first(root) rb_to_skb(rb_first(root)) 4057#define skb_rb_last(root) rb_to_skb(rb_last(root)) 4058#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 4059#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 4060 4061#define skb_queue_walk(queue, skb) \ 4062 for (skb = (queue)->next; \ 4063 skb != (struct sk_buff *)(queue); \ 4064 skb = skb->next) 4065 4066#define skb_queue_walk_safe(queue, skb, tmp) \ 4067 for (skb = (queue)->next, tmp = skb->next; \ 4068 skb != (struct sk_buff *)(queue); \ 4069 skb = tmp, tmp = skb->next) 4070 4071#define skb_queue_walk_from(queue, skb) \ 4072 for (; skb != (struct sk_buff *)(queue); \ 4073 skb = skb->next) 4074 4075#define skb_rbtree_walk(skb, root) \ 4076 for (skb = skb_rb_first(root); skb != NULL; \ 4077 skb = skb_rb_next(skb)) 4078 4079#define skb_rbtree_walk_from(skb) \ 4080 for (; skb != NULL; \ 4081 skb = skb_rb_next(skb)) 4082 4083#define skb_rbtree_walk_from_safe(skb, tmp) \ 4084 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 4085 skb = tmp) 4086 4087#define skb_queue_walk_from_safe(queue, skb, tmp) \ 4088 for (tmp = skb->next; \ 4089 skb != (struct sk_buff *)(queue); \ 4090 skb = tmp, tmp = skb->next) 4091 4092#define skb_queue_reverse_walk(queue, skb) \ 4093 for (skb = (queue)->prev; \ 4094 skb != (struct sk_buff *)(queue); \ 4095 skb = skb->prev) 4096 4097#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 4098 for (skb = (queue)->prev, tmp = skb->prev; \ 4099 skb != (struct sk_buff *)(queue); \ 4100 skb = tmp, tmp = skb->prev) 4101 4102#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 4103 for (tmp = skb->prev; \ 4104 skb != (struct sk_buff *)(queue); \ 4105 skb = tmp, tmp = skb->prev) 4106 4107static inline bool skb_has_frag_list(const struct sk_buff *skb) 4108{ 4109 return skb_shinfo(skb)->frag_list != NULL; 4110} 4111 4112static inline void skb_frag_list_init(struct sk_buff *skb) 4113{ 4114 skb_shinfo(skb)->frag_list = NULL; 4115} 4116 4117#define skb_walk_frags(skb, iter) \ 4118 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 4119 4120 4121int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 4122 int *err, long *timeo_p, 4123 const struct sk_buff *skb); 4124struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 4125 struct sk_buff_head *queue, 4126 unsigned int flags, 4127 int *off, int *err, 4128 struct sk_buff **last); 4129struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 4130 struct sk_buff_head *queue, 4131 unsigned int flags, int *off, int *err, 4132 struct sk_buff **last); 4133struct sk_buff *__skb_recv_datagram(struct sock *sk, 4134 struct sk_buff_head *sk_queue, 4135 unsigned int flags, int *off, int *err); 4136struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 4137__poll_t datagram_poll(struct file *file, struct socket *sock, 4138 struct poll_table_struct *wait); 4139int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 4140 struct iov_iter *to, int size); 4141static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 4142 struct msghdr *msg, int size) 4143{ 4144 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 4145} 4146int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 4147 struct msghdr *msg); 4148int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 4149 struct iov_iter *to, int len, 4150 struct ahash_request *hash); 4151int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 4152 struct iov_iter *from, int len); 4153int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 4154void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 4155int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 4156int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 4157int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 4158__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 4159 int len); 4160int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 4161 struct pipe_inode_info *pipe, unsigned int len, 4162 unsigned int flags); 4163int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 4164 int len); 4165int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 4166void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 4167unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 4168int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 4169 int len, int hlen); 4170void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 4171int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 4172void skb_scrub_packet(struct sk_buff *skb, bool xnet); 4173struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 4174struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 4175 unsigned int offset); 4176struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 4177int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 4178int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); 4179int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 4180int skb_vlan_pop(struct sk_buff *skb); 4181int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4182int skb_eth_pop(struct sk_buff *skb); 4183int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4184 const unsigned char *src); 4185int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4186 int mac_len, bool ethernet); 4187int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4188 bool ethernet); 4189int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4190int skb_mpls_dec_ttl(struct sk_buff *skb); 4191struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4192 gfp_t gfp); 4193 4194static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4195{ 4196 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4197} 4198 4199static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4200{ 4201 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4202} 4203 4204struct skb_checksum_ops { 4205 __wsum (*update)(const void *mem, int len, __wsum wsum); 4206 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4207}; 4208 4209extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4210 4211__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4212 __wsum csum, const struct skb_checksum_ops *ops); 4213__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4214 __wsum csum); 4215 4216static inline void * __must_check 4217__skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4218 const void *data, int hlen, void *buffer) 4219{ 4220 if (likely(hlen - offset >= len)) 4221 return (void *)data + offset; 4222 4223 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4224 return NULL; 4225 4226 return buffer; 4227} 4228 4229static inline void * __must_check 4230skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4231{ 4232 return __skb_header_pointer(skb, offset, len, skb->data, 4233 skb_headlen(skb), buffer); 4234} 4235 4236static inline void * __must_check 4237skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4238{ 4239 if (likely(skb_headlen(skb) - offset >= len)) 4240 return skb->data + offset; 4241 return NULL; 4242} 4243 4244/** 4245 * skb_needs_linearize - check if we need to linearize a given skb 4246 * depending on the given device features. 4247 * @skb: socket buffer to check 4248 * @features: net device features 4249 * 4250 * Returns true if either: 4251 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4252 * 2. skb is fragmented and the device does not support SG. 4253 */ 4254static inline bool skb_needs_linearize(struct sk_buff *skb, 4255 netdev_features_t features) 4256{ 4257 return skb_is_nonlinear(skb) && 4258 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4259 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4260} 4261 4262static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4263 void *to, 4264 const unsigned int len) 4265{ 4266 memcpy(to, skb->data, len); 4267} 4268 4269static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4270 const int offset, void *to, 4271 const unsigned int len) 4272{ 4273 memcpy(to, skb->data + offset, len); 4274} 4275 4276static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4277 const void *from, 4278 const unsigned int len) 4279{ 4280 memcpy(skb->data, from, len); 4281} 4282 4283static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4284 const int offset, 4285 const void *from, 4286 const unsigned int len) 4287{ 4288 memcpy(skb->data + offset, from, len); 4289} 4290 4291void skb_init(void); 4292 4293static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4294{ 4295 return skb->tstamp; 4296} 4297 4298/** 4299 * skb_get_timestamp - get timestamp from a skb 4300 * @skb: skb to get stamp from 4301 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4302 * 4303 * Timestamps are stored in the skb as offsets to a base timestamp. 4304 * This function converts the offset back to a struct timeval and stores 4305 * it in stamp. 4306 */ 4307static inline void skb_get_timestamp(const struct sk_buff *skb, 4308 struct __kernel_old_timeval *stamp) 4309{ 4310 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4311} 4312 4313static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4314 struct __kernel_sock_timeval *stamp) 4315{ 4316 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4317 4318 stamp->tv_sec = ts.tv_sec; 4319 stamp->tv_usec = ts.tv_nsec / 1000; 4320} 4321 4322static inline void skb_get_timestampns(const struct sk_buff *skb, 4323 struct __kernel_old_timespec *stamp) 4324{ 4325 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4326 4327 stamp->tv_sec = ts.tv_sec; 4328 stamp->tv_nsec = ts.tv_nsec; 4329} 4330 4331static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4332 struct __kernel_timespec *stamp) 4333{ 4334 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4335 4336 stamp->tv_sec = ts.tv_sec; 4337 stamp->tv_nsec = ts.tv_nsec; 4338} 4339 4340static inline void __net_timestamp(struct sk_buff *skb) 4341{ 4342 skb->tstamp = ktime_get_real(); 4343 skb->tstamp_type = SKB_CLOCK_REALTIME; 4344} 4345 4346static inline ktime_t net_timedelta(ktime_t t) 4347{ 4348 return ktime_sub(ktime_get_real(), t); 4349} 4350 4351static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4352 u8 tstamp_type) 4353{ 4354 skb->tstamp = kt; 4355 4356 if (kt) 4357 skb->tstamp_type = tstamp_type; 4358 else 4359 skb->tstamp_type = SKB_CLOCK_REALTIME; 4360} 4361 4362static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb, 4363 ktime_t kt, clockid_t clockid) 4364{ 4365 u8 tstamp_type = SKB_CLOCK_REALTIME; 4366 4367 switch (clockid) { 4368 case CLOCK_REALTIME: 4369 break; 4370 case CLOCK_MONOTONIC: 4371 tstamp_type = SKB_CLOCK_MONOTONIC; 4372 break; 4373 case CLOCK_TAI: 4374 tstamp_type = SKB_CLOCK_TAI; 4375 break; 4376 default: 4377 WARN_ON_ONCE(1); 4378 kt = 0; 4379 } 4380 4381 skb_set_delivery_time(skb, kt, tstamp_type); 4382} 4383 4384DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4385 4386/* It is used in the ingress path to clear the delivery_time. 4387 * If needed, set the skb->tstamp to the (rcv) timestamp. 4388 */ 4389static inline void skb_clear_delivery_time(struct sk_buff *skb) 4390{ 4391 if (skb->tstamp_type) { 4392 skb->tstamp_type = SKB_CLOCK_REALTIME; 4393 if (static_branch_unlikely(&netstamp_needed_key)) 4394 skb->tstamp = ktime_get_real(); 4395 else 4396 skb->tstamp = 0; 4397 } 4398} 4399 4400static inline void skb_clear_tstamp(struct sk_buff *skb) 4401{ 4402 if (skb->tstamp_type) 4403 return; 4404 4405 skb->tstamp = 0; 4406} 4407 4408static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4409{ 4410 if (skb->tstamp_type) 4411 return 0; 4412 4413 return skb->tstamp; 4414} 4415 4416static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4417{ 4418 if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp) 4419 return skb->tstamp; 4420 4421 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4422 return ktime_get_real(); 4423 4424 return 0; 4425} 4426 4427static inline u8 skb_metadata_len(const struct sk_buff *skb) 4428{ 4429 return skb_shinfo(skb)->meta_len; 4430} 4431 4432static inline void *skb_metadata_end(const struct sk_buff *skb) 4433{ 4434 return skb_mac_header(skb); 4435} 4436 4437static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4438 const struct sk_buff *skb_b, 4439 u8 meta_len) 4440{ 4441 const void *a = skb_metadata_end(skb_a); 4442 const void *b = skb_metadata_end(skb_b); 4443 u64 diffs = 0; 4444 4445 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || 4446 BITS_PER_LONG != 64) 4447 goto slow; 4448 4449 /* Using more efficient variant than plain call to memcmp(). */ 4450 switch (meta_len) { 4451#define __it(x, op) (x -= sizeof(u##op)) 4452#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4453 case 32: diffs |= __it_diff(a, b, 64); 4454 fallthrough; 4455 case 24: diffs |= __it_diff(a, b, 64); 4456 fallthrough; 4457 case 16: diffs |= __it_diff(a, b, 64); 4458 fallthrough; 4459 case 8: diffs |= __it_diff(a, b, 64); 4460 break; 4461 case 28: diffs |= __it_diff(a, b, 64); 4462 fallthrough; 4463 case 20: diffs |= __it_diff(a, b, 64); 4464 fallthrough; 4465 case 12: diffs |= __it_diff(a, b, 64); 4466 fallthrough; 4467 case 4: diffs |= __it_diff(a, b, 32); 4468 break; 4469 default: 4470slow: 4471 return memcmp(a - meta_len, b - meta_len, meta_len); 4472 } 4473 return diffs; 4474} 4475 4476static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4477 const struct sk_buff *skb_b) 4478{ 4479 u8 len_a = skb_metadata_len(skb_a); 4480 u8 len_b = skb_metadata_len(skb_b); 4481 4482 if (!(len_a | len_b)) 4483 return false; 4484 4485 return len_a != len_b ? 4486 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4487} 4488 4489static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4490{ 4491 skb_shinfo(skb)->meta_len = meta_len; 4492} 4493 4494static inline void skb_metadata_clear(struct sk_buff *skb) 4495{ 4496 skb_metadata_set(skb, 0); 4497} 4498 4499struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4500 4501#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4502 4503void skb_clone_tx_timestamp(struct sk_buff *skb); 4504bool skb_defer_rx_timestamp(struct sk_buff *skb); 4505 4506#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4507 4508static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4509{ 4510} 4511 4512static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4513{ 4514 return false; 4515} 4516 4517#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4518 4519/** 4520 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4521 * 4522 * PHY drivers may accept clones of transmitted packets for 4523 * timestamping via their phy_driver.txtstamp method. These drivers 4524 * must call this function to return the skb back to the stack with a 4525 * timestamp. 4526 * 4527 * @skb: clone of the original outgoing packet 4528 * @hwtstamps: hardware time stamps 4529 * 4530 */ 4531void skb_complete_tx_timestamp(struct sk_buff *skb, 4532 struct skb_shared_hwtstamps *hwtstamps); 4533 4534void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4535 struct skb_shared_hwtstamps *hwtstamps, 4536 struct sock *sk, int tstype); 4537 4538/** 4539 * skb_tstamp_tx - queue clone of skb with send time stamps 4540 * @orig_skb: the original outgoing packet 4541 * @hwtstamps: hardware time stamps, may be NULL if not available 4542 * 4543 * If the skb has a socket associated, then this function clones the 4544 * skb (thus sharing the actual data and optional structures), stores 4545 * the optional hardware time stamping information (if non NULL) or 4546 * generates a software time stamp (otherwise), then queues the clone 4547 * to the error queue of the socket. Errors are silently ignored. 4548 */ 4549void skb_tstamp_tx(struct sk_buff *orig_skb, 4550 struct skb_shared_hwtstamps *hwtstamps); 4551 4552/** 4553 * skb_tx_timestamp() - Driver hook for transmit timestamping 4554 * 4555 * Ethernet MAC Drivers should call this function in their hard_xmit() 4556 * function immediately before giving the sk_buff to the MAC hardware. 4557 * 4558 * Specifically, one should make absolutely sure that this function is 4559 * called before TX completion of this packet can trigger. Otherwise 4560 * the packet could potentially already be freed. 4561 * 4562 * @skb: A socket buffer. 4563 */ 4564static inline void skb_tx_timestamp(struct sk_buff *skb) 4565{ 4566 skb_clone_tx_timestamp(skb); 4567 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4568 skb_tstamp_tx(skb, NULL); 4569} 4570 4571/** 4572 * skb_complete_wifi_ack - deliver skb with wifi status 4573 * 4574 * @skb: the original outgoing packet 4575 * @acked: ack status 4576 * 4577 */ 4578void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4579 4580__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4581__sum16 __skb_checksum_complete(struct sk_buff *skb); 4582 4583static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4584{ 4585 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4586 skb->csum_valid || 4587 (skb->ip_summed == CHECKSUM_PARTIAL && 4588 skb_checksum_start_offset(skb) >= 0)); 4589} 4590 4591/** 4592 * skb_checksum_complete - Calculate checksum of an entire packet 4593 * @skb: packet to process 4594 * 4595 * This function calculates the checksum over the entire packet plus 4596 * the value of skb->csum. The latter can be used to supply the 4597 * checksum of a pseudo header as used by TCP/UDP. It returns the 4598 * checksum. 4599 * 4600 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4601 * this function can be used to verify that checksum on received 4602 * packets. In that case the function should return zero if the 4603 * checksum is correct. In particular, this function will return zero 4604 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4605 * hardware has already verified the correctness of the checksum. 4606 */ 4607static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4608{ 4609 return skb_csum_unnecessary(skb) ? 4610 0 : __skb_checksum_complete(skb); 4611} 4612 4613static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4614{ 4615 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4616 if (skb->csum_level == 0) 4617 skb->ip_summed = CHECKSUM_NONE; 4618 else 4619 skb->csum_level--; 4620 } 4621} 4622 4623static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4624{ 4625 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4626 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4627 skb->csum_level++; 4628 } else if (skb->ip_summed == CHECKSUM_NONE) { 4629 skb->ip_summed = CHECKSUM_UNNECESSARY; 4630 skb->csum_level = 0; 4631 } 4632} 4633 4634static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4635{ 4636 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4637 skb->ip_summed = CHECKSUM_NONE; 4638 skb->csum_level = 0; 4639 } 4640} 4641 4642/* Check if we need to perform checksum complete validation. 4643 * 4644 * Returns: true if checksum complete is needed, false otherwise 4645 * (either checksum is unnecessary or zero checksum is allowed). 4646 */ 4647static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4648 bool zero_okay, 4649 __sum16 check) 4650{ 4651 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4652 skb->csum_valid = 1; 4653 __skb_decr_checksum_unnecessary(skb); 4654 return false; 4655 } 4656 4657 return true; 4658} 4659 4660/* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4661 * in checksum_init. 4662 */ 4663#define CHECKSUM_BREAK 76 4664 4665/* Unset checksum-complete 4666 * 4667 * Unset checksum complete can be done when packet is being modified 4668 * (uncompressed for instance) and checksum-complete value is 4669 * invalidated. 4670 */ 4671static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4672{ 4673 if (skb->ip_summed == CHECKSUM_COMPLETE) 4674 skb->ip_summed = CHECKSUM_NONE; 4675} 4676 4677/* Validate (init) checksum based on checksum complete. 4678 * 4679 * Return values: 4680 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4681 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4682 * checksum is stored in skb->csum for use in __skb_checksum_complete 4683 * non-zero: value of invalid checksum 4684 * 4685 */ 4686static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4687 bool complete, 4688 __wsum psum) 4689{ 4690 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4691 if (!csum_fold(csum_add(psum, skb->csum))) { 4692 skb->csum_valid = 1; 4693 return 0; 4694 } 4695 } 4696 4697 skb->csum = psum; 4698 4699 if (complete || skb->len <= CHECKSUM_BREAK) { 4700 __sum16 csum; 4701 4702 csum = __skb_checksum_complete(skb); 4703 skb->csum_valid = !csum; 4704 return csum; 4705 } 4706 4707 return 0; 4708} 4709 4710static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4711{ 4712 return 0; 4713} 4714 4715/* Perform checksum validate (init). Note that this is a macro since we only 4716 * want to calculate the pseudo header which is an input function if necessary. 4717 * First we try to validate without any computation (checksum unnecessary) and 4718 * then calculate based on checksum complete calling the function to compute 4719 * pseudo header. 4720 * 4721 * Return values: 4722 * 0: checksum is validated or try to in skb_checksum_complete 4723 * non-zero: value of invalid checksum 4724 */ 4725#define __skb_checksum_validate(skb, proto, complete, \ 4726 zero_okay, check, compute_pseudo) \ 4727({ \ 4728 __sum16 __ret = 0; \ 4729 skb->csum_valid = 0; \ 4730 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4731 __ret = __skb_checksum_validate_complete(skb, \ 4732 complete, compute_pseudo(skb, proto)); \ 4733 __ret; \ 4734}) 4735 4736#define skb_checksum_init(skb, proto, compute_pseudo) \ 4737 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4738 4739#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4740 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4741 4742#define skb_checksum_validate(skb, proto, compute_pseudo) \ 4743 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4744 4745#define skb_checksum_validate_zero_check(skb, proto, check, \ 4746 compute_pseudo) \ 4747 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4748 4749#define skb_checksum_simple_validate(skb) \ 4750 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4751 4752static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4753{ 4754 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4755} 4756 4757static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4758{ 4759 skb->csum = ~pseudo; 4760 skb->ip_summed = CHECKSUM_COMPLETE; 4761} 4762 4763#define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4764do { \ 4765 if (__skb_checksum_convert_check(skb)) \ 4766 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4767} while (0) 4768 4769static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4770 u16 start, u16 offset) 4771{ 4772 skb->ip_summed = CHECKSUM_PARTIAL; 4773 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4774 skb->csum_offset = offset - start; 4775} 4776 4777/* Update skbuf and packet to reflect the remote checksum offload operation. 4778 * When called, ptr indicates the starting point for skb->csum when 4779 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4780 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4781 */ 4782static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4783 int start, int offset, bool nopartial) 4784{ 4785 __wsum delta; 4786 4787 if (!nopartial) { 4788 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4789 return; 4790 } 4791 4792 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4793 __skb_checksum_complete(skb); 4794 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4795 } 4796 4797 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4798 4799 /* Adjust skb->csum since we changed the packet */ 4800 skb->csum = csum_add(skb->csum, delta); 4801} 4802 4803static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4804{ 4805#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4806 return (void *)(skb->_nfct & NFCT_PTRMASK); 4807#else 4808 return NULL; 4809#endif 4810} 4811 4812static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4813{ 4814#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4815 return skb->_nfct; 4816#else 4817 return 0UL; 4818#endif 4819} 4820 4821static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4822{ 4823#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4824 skb->slow_gro |= !!nfct; 4825 skb->_nfct = nfct; 4826#endif 4827} 4828 4829#ifdef CONFIG_SKB_EXTENSIONS 4830enum skb_ext_id { 4831#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4832 SKB_EXT_BRIDGE_NF, 4833#endif 4834#ifdef CONFIG_XFRM 4835 SKB_EXT_SEC_PATH, 4836#endif 4837#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4838 TC_SKB_EXT, 4839#endif 4840#if IS_ENABLED(CONFIG_MPTCP) 4841 SKB_EXT_MPTCP, 4842#endif 4843#if IS_ENABLED(CONFIG_MCTP_FLOWS) 4844 SKB_EXT_MCTP, 4845#endif 4846 SKB_EXT_NUM, /* must be last */ 4847}; 4848 4849/** 4850 * struct skb_ext - sk_buff extensions 4851 * @refcnt: 1 on allocation, deallocated on 0 4852 * @offset: offset to add to @data to obtain extension address 4853 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4854 * @data: start of extension data, variable sized 4855 * 4856 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4857 * to use 'u8' types while allowing up to 2kb worth of extension data. 4858 */ 4859struct skb_ext { 4860 refcount_t refcnt; 4861 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4862 u8 chunks; /* same */ 4863 char data[] __aligned(8); 4864}; 4865 4866struct skb_ext *__skb_ext_alloc(gfp_t flags); 4867void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4868 struct skb_ext *ext); 4869void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4870void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4871void __skb_ext_put(struct skb_ext *ext); 4872 4873static inline void skb_ext_put(struct sk_buff *skb) 4874{ 4875 if (skb->active_extensions) 4876 __skb_ext_put(skb->extensions); 4877} 4878 4879static inline void __skb_ext_copy(struct sk_buff *dst, 4880 const struct sk_buff *src) 4881{ 4882 dst->active_extensions = src->active_extensions; 4883 4884 if (src->active_extensions) { 4885 struct skb_ext *ext = src->extensions; 4886 4887 refcount_inc(&ext->refcnt); 4888 dst->extensions = ext; 4889 } 4890} 4891 4892static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4893{ 4894 skb_ext_put(dst); 4895 __skb_ext_copy(dst, src); 4896} 4897 4898static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4899{ 4900 return !!ext->offset[i]; 4901} 4902 4903static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4904{ 4905 return skb->active_extensions & (1 << id); 4906} 4907 4908static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4909{ 4910 if (skb_ext_exist(skb, id)) 4911 __skb_ext_del(skb, id); 4912} 4913 4914static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4915{ 4916 if (skb_ext_exist(skb, id)) { 4917 struct skb_ext *ext = skb->extensions; 4918 4919 return (void *)ext + (ext->offset[id] << 3); 4920 } 4921 4922 return NULL; 4923} 4924 4925static inline void skb_ext_reset(struct sk_buff *skb) 4926{ 4927 if (unlikely(skb->active_extensions)) { 4928 __skb_ext_put(skb->extensions); 4929 skb->active_extensions = 0; 4930 } 4931} 4932 4933static inline bool skb_has_extensions(struct sk_buff *skb) 4934{ 4935 return unlikely(skb->active_extensions); 4936} 4937#else 4938static inline void skb_ext_put(struct sk_buff *skb) {} 4939static inline void skb_ext_reset(struct sk_buff *skb) {} 4940static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4941static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4942static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4943static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4944#endif /* CONFIG_SKB_EXTENSIONS */ 4945 4946static inline void nf_reset_ct(struct sk_buff *skb) 4947{ 4948#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4949 nf_conntrack_put(skb_nfct(skb)); 4950 skb->_nfct = 0; 4951#endif 4952} 4953 4954static inline void nf_reset_trace(struct sk_buff *skb) 4955{ 4956#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4957 skb->nf_trace = 0; 4958#endif 4959} 4960 4961static inline void ipvs_reset(struct sk_buff *skb) 4962{ 4963#if IS_ENABLED(CONFIG_IP_VS) 4964 skb->ipvs_property = 0; 4965#endif 4966} 4967 4968/* Note: This doesn't put any conntrack info in dst. */ 4969static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4970 bool copy) 4971{ 4972#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4973 dst->_nfct = src->_nfct; 4974 nf_conntrack_get(skb_nfct(src)); 4975#endif 4976#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4977 if (copy) 4978 dst->nf_trace = src->nf_trace; 4979#endif 4980} 4981 4982static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4983{ 4984#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4985 nf_conntrack_put(skb_nfct(dst)); 4986#endif 4987 dst->slow_gro = src->slow_gro; 4988 __nf_copy(dst, src, true); 4989} 4990 4991#ifdef CONFIG_NETWORK_SECMARK 4992static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4993{ 4994 to->secmark = from->secmark; 4995} 4996 4997static inline void skb_init_secmark(struct sk_buff *skb) 4998{ 4999 skb->secmark = 0; 5000} 5001#else 5002static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 5003{ } 5004 5005static inline void skb_init_secmark(struct sk_buff *skb) 5006{ } 5007#endif 5008 5009static inline int secpath_exists(const struct sk_buff *skb) 5010{ 5011#ifdef CONFIG_XFRM 5012 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 5013#else 5014 return 0; 5015#endif 5016} 5017 5018static inline bool skb_irq_freeable(const struct sk_buff *skb) 5019{ 5020 return !skb->destructor && 5021 !secpath_exists(skb) && 5022 !skb_nfct(skb) && 5023 !skb->_skb_refdst && 5024 !skb_has_frag_list(skb); 5025} 5026 5027static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 5028{ 5029 skb->queue_mapping = queue_mapping; 5030} 5031 5032static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 5033{ 5034 return skb->queue_mapping; 5035} 5036 5037static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 5038{ 5039 to->queue_mapping = from->queue_mapping; 5040} 5041 5042static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 5043{ 5044 skb->queue_mapping = rx_queue + 1; 5045} 5046 5047static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 5048{ 5049 return skb->queue_mapping - 1; 5050} 5051 5052static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 5053{ 5054 return skb->queue_mapping != 0; 5055} 5056 5057static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 5058{ 5059 skb->dst_pending_confirm = val; 5060} 5061 5062static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 5063{ 5064 return skb->dst_pending_confirm != 0; 5065} 5066 5067static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 5068{ 5069#ifdef CONFIG_XFRM 5070 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 5071#else 5072 return NULL; 5073#endif 5074} 5075 5076static inline bool skb_is_gso(const struct sk_buff *skb) 5077{ 5078 return skb_shinfo(skb)->gso_size; 5079} 5080 5081/* Note: Should be called only if skb_is_gso(skb) is true */ 5082static inline bool skb_is_gso_v6(const struct sk_buff *skb) 5083{ 5084 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 5085} 5086 5087/* Note: Should be called only if skb_is_gso(skb) is true */ 5088static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 5089{ 5090 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 5091} 5092 5093/* Note: Should be called only if skb_is_gso(skb) is true */ 5094static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 5095{ 5096 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 5097} 5098 5099static inline void skb_gso_reset(struct sk_buff *skb) 5100{ 5101 skb_shinfo(skb)->gso_size = 0; 5102 skb_shinfo(skb)->gso_segs = 0; 5103 skb_shinfo(skb)->gso_type = 0; 5104} 5105 5106static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 5107 u16 increment) 5108{ 5109 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 5110 return; 5111 shinfo->gso_size += increment; 5112} 5113 5114static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 5115 u16 decrement) 5116{ 5117 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 5118 return; 5119 shinfo->gso_size -= decrement; 5120} 5121 5122void __skb_warn_lro_forwarding(const struct sk_buff *skb); 5123 5124static inline bool skb_warn_if_lro(const struct sk_buff *skb) 5125{ 5126 /* LRO sets gso_size but not gso_type, whereas if GSO is really 5127 * wanted then gso_type will be set. */ 5128 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5129 5130 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 5131 unlikely(shinfo->gso_type == 0)) { 5132 __skb_warn_lro_forwarding(skb); 5133 return true; 5134 } 5135 return false; 5136} 5137 5138static inline void skb_forward_csum(struct sk_buff *skb) 5139{ 5140 /* Unfortunately we don't support this one. Any brave souls? */ 5141 if (skb->ip_summed == CHECKSUM_COMPLETE) 5142 skb->ip_summed = CHECKSUM_NONE; 5143} 5144 5145/** 5146 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 5147 * @skb: skb to check 5148 * 5149 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 5150 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 5151 * use this helper, to document places where we make this assertion. 5152 */ 5153static inline void skb_checksum_none_assert(const struct sk_buff *skb) 5154{ 5155 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 5156} 5157 5158bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 5159 5160int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 5161struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5162 unsigned int transport_len, 5163 __sum16(*skb_chkf)(struct sk_buff *skb)); 5164 5165/** 5166 * skb_head_is_locked - Determine if the skb->head is locked down 5167 * @skb: skb to check 5168 * 5169 * The head on skbs build around a head frag can be removed if they are 5170 * not cloned. This function returns true if the skb head is locked down 5171 * due to either being allocated via kmalloc, or by being a clone with 5172 * multiple references to the head. 5173 */ 5174static inline bool skb_head_is_locked(const struct sk_buff *skb) 5175{ 5176 return !skb->head_frag || skb_cloned(skb); 5177} 5178 5179/* Local Checksum Offload. 5180 * Compute outer checksum based on the assumption that the 5181 * inner checksum will be offloaded later. 5182 * See Documentation/networking/checksum-offloads.rst for 5183 * explanation of how this works. 5184 * Fill in outer checksum adjustment (e.g. with sum of outer 5185 * pseudo-header) before calling. 5186 * Also ensure that inner checksum is in linear data area. 5187 */ 5188static inline __wsum lco_csum(struct sk_buff *skb) 5189{ 5190 unsigned char *csum_start = skb_checksum_start(skb); 5191 unsigned char *l4_hdr = skb_transport_header(skb); 5192 __wsum partial; 5193 5194 /* Start with complement of inner checksum adjustment */ 5195 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5196 skb->csum_offset)); 5197 5198 /* Add in checksum of our headers (incl. outer checksum 5199 * adjustment filled in by caller) and return result. 5200 */ 5201 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5202} 5203 5204static inline bool skb_is_redirected(const struct sk_buff *skb) 5205{ 5206 return skb->redirected; 5207} 5208 5209static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5210{ 5211 skb->redirected = 1; 5212#ifdef CONFIG_NET_REDIRECT 5213 skb->from_ingress = from_ingress; 5214 if (skb->from_ingress) 5215 skb_clear_tstamp(skb); 5216#endif 5217} 5218 5219static inline void skb_reset_redirect(struct sk_buff *skb) 5220{ 5221 skb->redirected = 0; 5222} 5223 5224static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5225 bool from_ingress) 5226{ 5227 skb->redirected = 1; 5228#ifdef CONFIG_NET_REDIRECT 5229 skb->from_ingress = from_ingress; 5230#endif 5231} 5232 5233static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5234{ 5235#if IS_ENABLED(CONFIG_IP_SCTP) 5236 return skb->csum_not_inet; 5237#else 5238 return 0; 5239#endif 5240} 5241 5242static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5243{ 5244 skb->ip_summed = CHECKSUM_NONE; 5245#if IS_ENABLED(CONFIG_IP_SCTP) 5246 skb->csum_not_inet = 0; 5247#endif 5248} 5249 5250static inline void skb_set_kcov_handle(struct sk_buff *skb, 5251 const u64 kcov_handle) 5252{ 5253#ifdef CONFIG_KCOV 5254 skb->kcov_handle = kcov_handle; 5255#endif 5256} 5257 5258static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5259{ 5260#ifdef CONFIG_KCOV 5261 return skb->kcov_handle; 5262#else 5263 return 0; 5264#endif 5265} 5266 5267static inline void skb_mark_for_recycle(struct sk_buff *skb) 5268{ 5269#ifdef CONFIG_PAGE_POOL 5270 skb->pp_recycle = 1; 5271#endif 5272} 5273 5274ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5275 ssize_t maxsize, gfp_t gfp); 5276 5277#endif /* __KERNEL__ */ 5278#endif /* _LINUX_SKBUFF_H */