Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
10
11#ifndef __ASSEMBLY__
12#ifdef CONFIG_MMU
13
14#include <linux/mm_types.h>
15#include <linux/bug.h>
16#include <linux/errno.h>
17#include <asm-generic/pgtable_uffd.h>
18#include <linux/page_table_check.h>
19
20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23#endif
24
25/*
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
30 */
31#ifndef USER_PGTABLES_CEILING
32#define USER_PGTABLES_CEILING 0UL
33#endif
34
35/*
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
39 */
40#ifndef FIRST_USER_ADDRESS
41#define FIRST_USER_ADDRESS 0UL
42#endif
43
44/*
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
48 */
49#ifndef pmd_pgtable
50#define pmd_pgtable(pmd) pmd_page(pmd)
51#endif
52
53#define pmd_folio(pmd) page_folio(pmd_page(pmd))
54
55/*
56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
57 *
58 * The pXx_index() functions return the index of the entry in the page
59 * table page which would control the given virtual address
60 *
61 * As these functions may be used by the same code for different levels of
62 * the page table folding, they are always available, regardless of
63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64 * because in such cases PTRS_PER_PxD equals 1.
65 */
66
67static inline unsigned long pte_index(unsigned long address)
68{
69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
70}
71
72#ifndef pmd_index
73static inline unsigned long pmd_index(unsigned long address)
74{
75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
76}
77#define pmd_index pmd_index
78#endif
79
80#ifndef pud_index
81static inline unsigned long pud_index(unsigned long address)
82{
83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
84}
85#define pud_index pud_index
86#endif
87
88#ifndef pgd_index
89/* Must be a compile-time constant, so implement it as a macro */
90#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
91#endif
92
93#ifndef kernel_pte_init
94static inline void kernel_pte_init(void *addr)
95{
96}
97#define kernel_pte_init kernel_pte_init
98#endif
99
100#ifndef pmd_init
101static inline void pmd_init(void *addr)
102{
103}
104#define pmd_init pmd_init
105#endif
106
107#ifndef pud_init
108static inline void pud_init(void *addr)
109{
110}
111#define pud_init pud_init
112#endif
113
114#ifndef pte_offset_kernel
115static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
116{
117 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
118}
119#define pte_offset_kernel pte_offset_kernel
120#endif
121
122#ifdef CONFIG_HIGHPTE
123#define __pte_map(pmd, address) \
124 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
125#define pte_unmap(pte) do { \
126 kunmap_local((pte)); \
127 rcu_read_unlock(); \
128} while (0)
129#else
130static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
131{
132 return pte_offset_kernel(pmd, address);
133}
134static inline void pte_unmap(pte_t *pte)
135{
136 rcu_read_unlock();
137}
138#endif
139
140void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
141
142/* Find an entry in the second-level page table.. */
143#ifndef pmd_offset
144static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
145{
146 return pud_pgtable(*pud) + pmd_index(address);
147}
148#define pmd_offset pmd_offset
149#endif
150
151#ifndef pud_offset
152static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
153{
154 return p4d_pgtable(*p4d) + pud_index(address);
155}
156#define pud_offset pud_offset
157#endif
158
159static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
160{
161 return (pgd + pgd_index(address));
162};
163
164/*
165 * a shortcut to get a pgd_t in a given mm
166 */
167#ifndef pgd_offset
168#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
169#endif
170
171/*
172 * a shortcut which implies the use of the kernel's pgd, instead
173 * of a process's
174 */
175#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
176
177/*
178 * In many cases it is known that a virtual address is mapped at PMD or PTE
179 * level, so instead of traversing all the page table levels, we can get a
180 * pointer to the PMD entry in user or kernel page table or translate a virtual
181 * address to the pointer in the PTE in the kernel page tables with simple
182 * helpers.
183 */
184static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
185{
186 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
187}
188
189static inline pmd_t *pmd_off_k(unsigned long va)
190{
191 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
192}
193
194static inline pte_t *virt_to_kpte(unsigned long vaddr)
195{
196 pmd_t *pmd = pmd_off_k(vaddr);
197
198 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
199}
200
201#ifndef pmd_young
202static inline int pmd_young(pmd_t pmd)
203{
204 return 0;
205}
206#endif
207
208#ifndef pmd_dirty
209static inline int pmd_dirty(pmd_t pmd)
210{
211 return 0;
212}
213#endif
214
215/*
216 * A facility to provide lazy MMU batching. This allows PTE updates and
217 * page invalidations to be delayed until a call to leave lazy MMU mode
218 * is issued. Some architectures may benefit from doing this, and it is
219 * beneficial for both shadow and direct mode hypervisors, which may batch
220 * the PTE updates which happen during this window. Note that using this
221 * interface requires that read hazards be removed from the code. A read
222 * hazard could result in the direct mode hypervisor case, since the actual
223 * write to the page tables may not yet have taken place, so reads though
224 * a raw PTE pointer after it has been modified are not guaranteed to be
225 * up to date. This mode can only be entered and left under the protection of
226 * the page table locks for all page tables which may be modified. In the UP
227 * case, this is required so that preemption is disabled, and in the SMP case,
228 * it must synchronize the delayed page table writes properly on other CPUs.
229 */
230#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
231#define arch_enter_lazy_mmu_mode() do {} while (0)
232#define arch_leave_lazy_mmu_mode() do {} while (0)
233#define arch_flush_lazy_mmu_mode() do {} while (0)
234#endif
235
236#ifndef pte_batch_hint
237/**
238 * pte_batch_hint - Number of pages that can be added to batch without scanning.
239 * @ptep: Page table pointer for the entry.
240 * @pte: Page table entry.
241 *
242 * Some architectures know that a set of contiguous ptes all map the same
243 * contiguous memory with the same permissions. In this case, it can provide a
244 * hint to aid pte batching without the core code needing to scan every pte.
245 *
246 * An architecture implementation may ignore the PTE accessed state. Further,
247 * the dirty state must apply atomically to all the PTEs described by the hint.
248 *
249 * May be overridden by the architecture, else pte_batch_hint is always 1.
250 */
251static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
252{
253 return 1;
254}
255#endif
256
257#ifndef pte_advance_pfn
258static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
259{
260 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
261}
262#endif
263
264#define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
265
266#ifndef set_ptes
267/**
268 * set_ptes - Map consecutive pages to a contiguous range of addresses.
269 * @mm: Address space to map the pages into.
270 * @addr: Address to map the first page at.
271 * @ptep: Page table pointer for the first entry.
272 * @pte: Page table entry for the first page.
273 * @nr: Number of pages to map.
274 *
275 * When nr==1, initial state of pte may be present or not present, and new state
276 * may be present or not present. When nr>1, initial state of all ptes must be
277 * not present, and new state must be present.
278 *
279 * May be overridden by the architecture, or the architecture can define
280 * set_pte() and PFN_PTE_SHIFT.
281 *
282 * Context: The caller holds the page table lock. The pages all belong
283 * to the same folio. The PTEs are all in the same PMD.
284 */
285static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
286 pte_t *ptep, pte_t pte, unsigned int nr)
287{
288 page_table_check_ptes_set(mm, ptep, pte, nr);
289
290 arch_enter_lazy_mmu_mode();
291 for (;;) {
292 set_pte(ptep, pte);
293 if (--nr == 0)
294 break;
295 ptep++;
296 pte = pte_next_pfn(pte);
297 }
298 arch_leave_lazy_mmu_mode();
299}
300#endif
301#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
302
303#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
304extern int ptep_set_access_flags(struct vm_area_struct *vma,
305 unsigned long address, pte_t *ptep,
306 pte_t entry, int dirty);
307#endif
308
309#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
310#ifdef CONFIG_TRANSPARENT_HUGEPAGE
311extern int pmdp_set_access_flags(struct vm_area_struct *vma,
312 unsigned long address, pmd_t *pmdp,
313 pmd_t entry, int dirty);
314extern int pudp_set_access_flags(struct vm_area_struct *vma,
315 unsigned long address, pud_t *pudp,
316 pud_t entry, int dirty);
317#else
318static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
319 unsigned long address, pmd_t *pmdp,
320 pmd_t entry, int dirty)
321{
322 BUILD_BUG();
323 return 0;
324}
325static inline int pudp_set_access_flags(struct vm_area_struct *vma,
326 unsigned long address, pud_t *pudp,
327 pud_t entry, int dirty)
328{
329 BUILD_BUG();
330 return 0;
331}
332#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
333#endif
334
335#ifndef ptep_get
336static inline pte_t ptep_get(pte_t *ptep)
337{
338 return READ_ONCE(*ptep);
339}
340#endif
341
342#ifndef pmdp_get
343static inline pmd_t pmdp_get(pmd_t *pmdp)
344{
345 return READ_ONCE(*pmdp);
346}
347#endif
348
349#ifndef pudp_get
350static inline pud_t pudp_get(pud_t *pudp)
351{
352 return READ_ONCE(*pudp);
353}
354#endif
355
356#ifndef p4dp_get
357static inline p4d_t p4dp_get(p4d_t *p4dp)
358{
359 return READ_ONCE(*p4dp);
360}
361#endif
362
363#ifndef pgdp_get
364static inline pgd_t pgdp_get(pgd_t *pgdp)
365{
366 return READ_ONCE(*pgdp);
367}
368#endif
369
370#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
371static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
372 unsigned long address,
373 pte_t *ptep)
374{
375 pte_t pte = ptep_get(ptep);
376 int r = 1;
377 if (!pte_young(pte))
378 r = 0;
379 else
380 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
381 return r;
382}
383#endif
384
385#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
386#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
387static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
388 unsigned long address,
389 pmd_t *pmdp)
390{
391 pmd_t pmd = *pmdp;
392 int r = 1;
393 if (!pmd_young(pmd))
394 r = 0;
395 else
396 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
397 return r;
398}
399#else
400static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
401 unsigned long address,
402 pmd_t *pmdp)
403{
404 BUILD_BUG();
405 return 0;
406}
407#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
408#endif
409
410#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
411int ptep_clear_flush_young(struct vm_area_struct *vma,
412 unsigned long address, pte_t *ptep);
413#endif
414
415#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
416#ifdef CONFIG_TRANSPARENT_HUGEPAGE
417extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
418 unsigned long address, pmd_t *pmdp);
419#else
420/*
421 * Despite relevant to THP only, this API is called from generic rmap code
422 * under PageTransHuge(), hence needs a dummy implementation for !THP
423 */
424static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
425 unsigned long address, pmd_t *pmdp)
426{
427 BUILD_BUG();
428 return 0;
429}
430#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
431#endif
432
433#ifndef arch_has_hw_nonleaf_pmd_young
434/*
435 * Return whether the accessed bit in non-leaf PMD entries is supported on the
436 * local CPU.
437 */
438static inline bool arch_has_hw_nonleaf_pmd_young(void)
439{
440 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
441}
442#endif
443
444#ifndef arch_has_hw_pte_young
445/*
446 * Return whether the accessed bit is supported on the local CPU.
447 *
448 * This stub assumes accessing through an old PTE triggers a page fault.
449 * Architectures that automatically set the access bit should overwrite it.
450 */
451static inline bool arch_has_hw_pte_young(void)
452{
453 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
454}
455#endif
456
457#ifndef arch_check_zapped_pte
458static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
459 pte_t pte)
460{
461}
462#endif
463
464#ifndef arch_check_zapped_pmd
465static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
466 pmd_t pmd)
467{
468}
469#endif
470
471#ifndef arch_check_zapped_pud
472static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
473{
474}
475#endif
476
477#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
478static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
479 unsigned long address,
480 pte_t *ptep)
481{
482 pte_t pte = ptep_get(ptep);
483 pte_clear(mm, address, ptep);
484 page_table_check_pte_clear(mm, pte);
485 return pte;
486}
487#endif
488
489#ifndef clear_young_dirty_ptes
490/**
491 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
492 * same folio as old/clean.
493 * @mm: Address space the pages are mapped into.
494 * @addr: Address the first page is mapped at.
495 * @ptep: Page table pointer for the first entry.
496 * @nr: Number of entries to mark old/clean.
497 * @flags: Flags to modify the PTE batch semantics.
498 *
499 * May be overridden by the architecture; otherwise, implemented by
500 * get_and_clear/modify/set for each pte in the range.
501 *
502 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
503 * some PTEs might be write-protected.
504 *
505 * Context: The caller holds the page table lock. The PTEs map consecutive
506 * pages that belong to the same folio. The PTEs are all in the same PMD.
507 */
508static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
509 unsigned long addr, pte_t *ptep,
510 unsigned int nr, cydp_t flags)
511{
512 pte_t pte;
513
514 for (;;) {
515 if (flags == CYDP_CLEAR_YOUNG)
516 ptep_test_and_clear_young(vma, addr, ptep);
517 else {
518 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
519 if (flags & CYDP_CLEAR_YOUNG)
520 pte = pte_mkold(pte);
521 if (flags & CYDP_CLEAR_DIRTY)
522 pte = pte_mkclean(pte);
523 set_pte_at(vma->vm_mm, addr, ptep, pte);
524 }
525 if (--nr == 0)
526 break;
527 ptep++;
528 addr += PAGE_SIZE;
529 }
530}
531#endif
532
533static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
534 pte_t *ptep)
535{
536 pte_t pte = ptep_get(ptep);
537
538 pte_clear(mm, addr, ptep);
539 /*
540 * No need for ptep_get_and_clear(): page table check doesn't care about
541 * any bits that could have been set by HW concurrently.
542 */
543 page_table_check_pte_clear(mm, pte);
544}
545
546#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
547/*
548 * For walking the pagetables without holding any locks. Some architectures
549 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
550 * instructions. We are guaranteed that a PTE will only either go from not
551 * present to present, or present to not present -- it will not switch to a
552 * completely different present page without a TLB flush inbetween; which we
553 * are blocking by holding interrupts off.
554 *
555 * Setting ptes from not present to present goes:
556 *
557 * ptep->pte_high = h;
558 * smp_wmb();
559 * ptep->pte_low = l;
560 *
561 * And present to not present goes:
562 *
563 * ptep->pte_low = 0;
564 * smp_wmb();
565 * ptep->pte_high = 0;
566 *
567 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
568 * We load pte_high *after* loading pte_low, which ensures we don't see an older
569 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
570 * picked up a changed pte high. We might have gotten rubbish values from
571 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
572 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
573 * operates on present ptes we're safe.
574 */
575static inline pte_t ptep_get_lockless(pte_t *ptep)
576{
577 pte_t pte;
578
579 do {
580 pte.pte_low = ptep->pte_low;
581 smp_rmb();
582 pte.pte_high = ptep->pte_high;
583 smp_rmb();
584 } while (unlikely(pte.pte_low != ptep->pte_low));
585
586 return pte;
587}
588#define ptep_get_lockless ptep_get_lockless
589
590#if CONFIG_PGTABLE_LEVELS > 2
591static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
592{
593 pmd_t pmd;
594
595 do {
596 pmd.pmd_low = pmdp->pmd_low;
597 smp_rmb();
598 pmd.pmd_high = pmdp->pmd_high;
599 smp_rmb();
600 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
601
602 return pmd;
603}
604#define pmdp_get_lockless pmdp_get_lockless
605#define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
606#endif /* CONFIG_PGTABLE_LEVELS > 2 */
607#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
608
609/*
610 * We require that the PTE can be read atomically.
611 */
612#ifndef ptep_get_lockless
613static inline pte_t ptep_get_lockless(pte_t *ptep)
614{
615 return ptep_get(ptep);
616}
617#endif
618
619#ifndef pmdp_get_lockless
620static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
621{
622 return pmdp_get(pmdp);
623}
624static inline void pmdp_get_lockless_sync(void)
625{
626}
627#endif
628
629#ifdef CONFIG_TRANSPARENT_HUGEPAGE
630#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
631static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
632 unsigned long address,
633 pmd_t *pmdp)
634{
635 pmd_t pmd = *pmdp;
636
637 pmd_clear(pmdp);
638 page_table_check_pmd_clear(mm, pmd);
639
640 return pmd;
641}
642#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
643#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
644static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
645 unsigned long address,
646 pud_t *pudp)
647{
648 pud_t pud = *pudp;
649
650 pud_clear(pudp);
651 page_table_check_pud_clear(mm, pud);
652
653 return pud;
654}
655#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
656#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
657
658#ifdef CONFIG_TRANSPARENT_HUGEPAGE
659#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
660static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
661 unsigned long address, pmd_t *pmdp,
662 int full)
663{
664 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
665}
666#endif
667
668#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
669static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
670 unsigned long address, pud_t *pudp,
671 int full)
672{
673 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
674}
675#endif
676#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
677
678#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
679static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
680 unsigned long address, pte_t *ptep,
681 int full)
682{
683 return ptep_get_and_clear(mm, address, ptep);
684}
685#endif
686
687#ifndef get_and_clear_full_ptes
688/**
689 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
690 * the same folio, collecting dirty/accessed bits.
691 * @mm: Address space the pages are mapped into.
692 * @addr: Address the first page is mapped at.
693 * @ptep: Page table pointer for the first entry.
694 * @nr: Number of entries to clear.
695 * @full: Whether we are clearing a full mm.
696 *
697 * May be overridden by the architecture; otherwise, implemented as a simple
698 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
699 * returned PTE.
700 *
701 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
702 * some PTEs might be write-protected.
703 *
704 * Context: The caller holds the page table lock. The PTEs map consecutive
705 * pages that belong to the same folio. The PTEs are all in the same PMD.
706 */
707static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
708 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
709{
710 pte_t pte, tmp_pte;
711
712 pte = ptep_get_and_clear_full(mm, addr, ptep, full);
713 while (--nr) {
714 ptep++;
715 addr += PAGE_SIZE;
716 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
717 if (pte_dirty(tmp_pte))
718 pte = pte_mkdirty(pte);
719 if (pte_young(tmp_pte))
720 pte = pte_mkyoung(pte);
721 }
722 return pte;
723}
724#endif
725
726#ifndef clear_full_ptes
727/**
728 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
729 * folio.
730 * @mm: Address space the pages are mapped into.
731 * @addr: Address the first page is mapped at.
732 * @ptep: Page table pointer for the first entry.
733 * @nr: Number of entries to clear.
734 * @full: Whether we are clearing a full mm.
735 *
736 * May be overridden by the architecture; otherwise, implemented as a simple
737 * loop over ptep_get_and_clear_full().
738 *
739 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
740 * some PTEs might be write-protected.
741 *
742 * Context: The caller holds the page table lock. The PTEs map consecutive
743 * pages that belong to the same folio. The PTEs are all in the same PMD.
744 */
745static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
746 pte_t *ptep, unsigned int nr, int full)
747{
748 for (;;) {
749 ptep_get_and_clear_full(mm, addr, ptep, full);
750 if (--nr == 0)
751 break;
752 ptep++;
753 addr += PAGE_SIZE;
754 }
755}
756#endif
757
758/*
759 * If two threads concurrently fault at the same page, the thread that
760 * won the race updates the PTE and its local TLB/Cache. The other thread
761 * gives up, simply does nothing, and continues; on architectures where
762 * software can update TLB, local TLB can be updated here to avoid next page
763 * fault. This function updates TLB only, do nothing with cache or others.
764 * It is the difference with function update_mmu_cache.
765 */
766#ifndef update_mmu_tlb_range
767static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
768 unsigned long address, pte_t *ptep, unsigned int nr)
769{
770}
771#endif
772
773static inline void update_mmu_tlb(struct vm_area_struct *vma,
774 unsigned long address, pte_t *ptep)
775{
776 update_mmu_tlb_range(vma, address, ptep, 1);
777}
778
779/*
780 * Some architectures may be able to avoid expensive synchronization
781 * primitives when modifications are made to PTE's which are already
782 * not present, or in the process of an address space destruction.
783 */
784#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
785static inline void pte_clear_not_present_full(struct mm_struct *mm,
786 unsigned long address,
787 pte_t *ptep,
788 int full)
789{
790 pte_clear(mm, address, ptep);
791}
792#endif
793
794#ifndef clear_not_present_full_ptes
795/**
796 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
797 * consecutive in the pgtable.
798 * @mm: Address space the ptes represent.
799 * @addr: Address of the first pte.
800 * @ptep: Page table pointer for the first entry.
801 * @nr: Number of entries to clear.
802 * @full: Whether we are clearing a full mm.
803 *
804 * May be overridden by the architecture; otherwise, implemented as a simple
805 * loop over pte_clear_not_present_full().
806 *
807 * Context: The caller holds the page table lock. The PTEs are all not present.
808 * The PTEs are all in the same PMD.
809 */
810static inline void clear_not_present_full_ptes(struct mm_struct *mm,
811 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
812{
813 for (;;) {
814 pte_clear_not_present_full(mm, addr, ptep, full);
815 if (--nr == 0)
816 break;
817 ptep++;
818 addr += PAGE_SIZE;
819 }
820}
821#endif
822
823#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
824extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
825 unsigned long address,
826 pte_t *ptep);
827#endif
828
829#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
830extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
831 unsigned long address,
832 pmd_t *pmdp);
833extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
834 unsigned long address,
835 pud_t *pudp);
836#endif
837
838#ifndef pte_mkwrite
839static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
840{
841 return pte_mkwrite_novma(pte);
842}
843#endif
844
845#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
846static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
847{
848 return pmd_mkwrite_novma(pmd);
849}
850#endif
851
852#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
853struct mm_struct;
854static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
855{
856 pte_t old_pte = ptep_get(ptep);
857 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
858}
859#endif
860
861#ifndef wrprotect_ptes
862/**
863 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
864 * folio.
865 * @mm: Address space the pages are mapped into.
866 * @addr: Address the first page is mapped at.
867 * @ptep: Page table pointer for the first entry.
868 * @nr: Number of entries to write-protect.
869 *
870 * May be overridden by the architecture; otherwise, implemented as a simple
871 * loop over ptep_set_wrprotect().
872 *
873 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
874 * some PTEs might be write-protected.
875 *
876 * Context: The caller holds the page table lock. The PTEs map consecutive
877 * pages that belong to the same folio. The PTEs are all in the same PMD.
878 */
879static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
880 pte_t *ptep, unsigned int nr)
881{
882 for (;;) {
883 ptep_set_wrprotect(mm, addr, ptep);
884 if (--nr == 0)
885 break;
886 ptep++;
887 addr += PAGE_SIZE;
888 }
889}
890#endif
891
892/*
893 * On some architectures hardware does not set page access bit when accessing
894 * memory page, it is responsibility of software setting this bit. It brings
895 * out extra page fault penalty to track page access bit. For optimization page
896 * access bit can be set during all page fault flow on these arches.
897 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
898 * where software maintains page access bit.
899 */
900#ifndef pte_sw_mkyoung
901static inline pte_t pte_sw_mkyoung(pte_t pte)
902{
903 return pte;
904}
905#define pte_sw_mkyoung pte_sw_mkyoung
906#endif
907
908#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
909#ifdef CONFIG_TRANSPARENT_HUGEPAGE
910static inline void pmdp_set_wrprotect(struct mm_struct *mm,
911 unsigned long address, pmd_t *pmdp)
912{
913 pmd_t old_pmd = *pmdp;
914 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
915}
916#else
917static inline void pmdp_set_wrprotect(struct mm_struct *mm,
918 unsigned long address, pmd_t *pmdp)
919{
920 BUILD_BUG();
921}
922#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
923#endif
924#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
925#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
926#ifdef CONFIG_TRANSPARENT_HUGEPAGE
927static inline void pudp_set_wrprotect(struct mm_struct *mm,
928 unsigned long address, pud_t *pudp)
929{
930 pud_t old_pud = *pudp;
931
932 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
933}
934#else
935static inline void pudp_set_wrprotect(struct mm_struct *mm,
936 unsigned long address, pud_t *pudp)
937{
938 BUILD_BUG();
939}
940#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
941#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
942#endif
943
944#ifndef pmdp_collapse_flush
945#ifdef CONFIG_TRANSPARENT_HUGEPAGE
946extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
947 unsigned long address, pmd_t *pmdp);
948#else
949static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
950 unsigned long address,
951 pmd_t *pmdp)
952{
953 BUILD_BUG();
954 return *pmdp;
955}
956#define pmdp_collapse_flush pmdp_collapse_flush
957#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
958#endif
959
960#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
961extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
962 pgtable_t pgtable);
963#endif
964
965#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
966extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
967#endif
968
969#ifndef arch_needs_pgtable_deposit
970#define arch_needs_pgtable_deposit() (false)
971#endif
972
973#ifdef CONFIG_TRANSPARENT_HUGEPAGE
974/*
975 * This is an implementation of pmdp_establish() that is only suitable for an
976 * architecture that doesn't have hardware dirty/accessed bits. In this case we
977 * can't race with CPU which sets these bits and non-atomic approach is fine.
978 */
979static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
980 unsigned long address, pmd_t *pmdp, pmd_t pmd)
981{
982 pmd_t old_pmd = *pmdp;
983 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
984 return old_pmd;
985}
986#endif
987
988#ifndef __HAVE_ARCH_PMDP_INVALIDATE
989extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
990 pmd_t *pmdp);
991#endif
992
993#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
994
995/*
996 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
997 * hugepage mapping in the page tables. This function is similar to
998 * pmdp_invalidate(), but should only be used if the access and dirty bits would
999 * not be cleared by the software in the new PMD value. The function ensures
1000 * that hardware changes of the access and dirty bits updates would not be lost.
1001 *
1002 * Doing so can allow in certain architectures to avoid a TLB flush in most
1003 * cases. Yet, another TLB flush might be necessary later if the PMD update
1004 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
1005 * even when a TLB flush is needed because of the update, the caller may be able
1006 * to batch these TLB flushing operations, so fewer TLB flush operations are
1007 * needed.
1008 */
1009extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1010 unsigned long address, pmd_t *pmdp);
1011#endif
1012
1013#ifndef __HAVE_ARCH_PTE_SAME
1014static inline int pte_same(pte_t pte_a, pte_t pte_b)
1015{
1016 return pte_val(pte_a) == pte_val(pte_b);
1017}
1018#endif
1019
1020#ifndef __HAVE_ARCH_PTE_UNUSED
1021/*
1022 * Some architectures provide facilities to virtualization guests
1023 * so that they can flag allocated pages as unused. This allows the
1024 * host to transparently reclaim unused pages. This function returns
1025 * whether the pte's page is unused.
1026 */
1027static inline int pte_unused(pte_t pte)
1028{
1029 return 0;
1030}
1031#endif
1032
1033#ifndef pte_access_permitted
1034#define pte_access_permitted(pte, write) \
1035 (pte_present(pte) && (!(write) || pte_write(pte)))
1036#endif
1037
1038#ifndef pmd_access_permitted
1039#define pmd_access_permitted(pmd, write) \
1040 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1041#endif
1042
1043#ifndef pud_access_permitted
1044#define pud_access_permitted(pud, write) \
1045 (pud_present(pud) && (!(write) || pud_write(pud)))
1046#endif
1047
1048#ifndef p4d_access_permitted
1049#define p4d_access_permitted(p4d, write) \
1050 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1051#endif
1052
1053#ifndef pgd_access_permitted
1054#define pgd_access_permitted(pgd, write) \
1055 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1056#endif
1057
1058#ifndef __HAVE_ARCH_PMD_SAME
1059static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1060{
1061 return pmd_val(pmd_a) == pmd_val(pmd_b);
1062}
1063#endif
1064
1065#ifndef pud_same
1066static inline int pud_same(pud_t pud_a, pud_t pud_b)
1067{
1068 return pud_val(pud_a) == pud_val(pud_b);
1069}
1070#define pud_same pud_same
1071#endif
1072
1073#ifndef __HAVE_ARCH_P4D_SAME
1074static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1075{
1076 return p4d_val(p4d_a) == p4d_val(p4d_b);
1077}
1078#endif
1079
1080#ifndef __HAVE_ARCH_PGD_SAME
1081static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1082{
1083 return pgd_val(pgd_a) == pgd_val(pgd_b);
1084}
1085#endif
1086
1087#ifndef __HAVE_ARCH_DO_SWAP_PAGE
1088static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1089 struct vm_area_struct *vma,
1090 unsigned long addr,
1091 pte_t pte, pte_t oldpte,
1092 int nr)
1093{
1094
1095}
1096#else
1097/*
1098 * Some architectures support metadata associated with a page. When a
1099 * page is being swapped out, this metadata must be saved so it can be
1100 * restored when the page is swapped back in. SPARC M7 and newer
1101 * processors support an ADI (Application Data Integrity) tag for the
1102 * page as metadata for the page. arch_do_swap_page() can restore this
1103 * metadata when a page is swapped back in.
1104 */
1105static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1106 struct vm_area_struct *vma,
1107 unsigned long addr,
1108 pte_t pte, pte_t oldpte,
1109 int nr)
1110{
1111 for (int i = 0; i < nr; i++) {
1112 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1113 pte_advance_pfn(pte, i),
1114 pte_advance_pfn(oldpte, i));
1115 }
1116}
1117#endif
1118
1119#ifndef __HAVE_ARCH_UNMAP_ONE
1120/*
1121 * Some architectures support metadata associated with a page. When a
1122 * page is being swapped out, this metadata must be saved so it can be
1123 * restored when the page is swapped back in. SPARC M7 and newer
1124 * processors support an ADI (Application Data Integrity) tag for the
1125 * page as metadata for the page. arch_unmap_one() can save this
1126 * metadata on a swap-out of a page.
1127 */
1128static inline int arch_unmap_one(struct mm_struct *mm,
1129 struct vm_area_struct *vma,
1130 unsigned long addr,
1131 pte_t orig_pte)
1132{
1133 return 0;
1134}
1135#endif
1136
1137/*
1138 * Allow architectures to preserve additional metadata associated with
1139 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1140 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1141 */
1142#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1143static inline int arch_prepare_to_swap(struct folio *folio)
1144{
1145 return 0;
1146}
1147#endif
1148
1149#ifndef __HAVE_ARCH_SWAP_INVALIDATE
1150static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1151{
1152}
1153
1154static inline void arch_swap_invalidate_area(int type)
1155{
1156}
1157#endif
1158
1159#ifndef __HAVE_ARCH_SWAP_RESTORE
1160static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1161{
1162}
1163#endif
1164
1165#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1166#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
1167#endif
1168
1169#ifndef __HAVE_ARCH_MOVE_PTE
1170#define move_pte(pte, old_addr, new_addr) (pte)
1171#endif
1172
1173#ifndef pte_accessible
1174# define pte_accessible(mm, pte) ((void)(pte), 1)
1175#endif
1176
1177#ifndef flush_tlb_fix_spurious_fault
1178#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1179#endif
1180
1181/*
1182 * When walking page tables, get the address of the next boundary,
1183 * or the end address of the range if that comes earlier. Although no
1184 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1185 */
1186
1187#define pgd_addr_end(addr, end) \
1188({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
1189 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1190})
1191
1192#ifndef p4d_addr_end
1193#define p4d_addr_end(addr, end) \
1194({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
1195 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1196})
1197#endif
1198
1199#ifndef pud_addr_end
1200#define pud_addr_end(addr, end) \
1201({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
1202 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1203})
1204#endif
1205
1206#ifndef pmd_addr_end
1207#define pmd_addr_end(addr, end) \
1208({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
1209 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1210})
1211#endif
1212
1213/*
1214 * When walking page tables, we usually want to skip any p?d_none entries;
1215 * and any p?d_bad entries - reporting the error before resetting to none.
1216 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1217 */
1218void pgd_clear_bad(pgd_t *);
1219
1220#ifndef __PAGETABLE_P4D_FOLDED
1221void p4d_clear_bad(p4d_t *);
1222#else
1223#define p4d_clear_bad(p4d) do { } while (0)
1224#endif
1225
1226#ifndef __PAGETABLE_PUD_FOLDED
1227void pud_clear_bad(pud_t *);
1228#else
1229#define pud_clear_bad(p4d) do { } while (0)
1230#endif
1231
1232void pmd_clear_bad(pmd_t *);
1233
1234static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1235{
1236 if (pgd_none(*pgd))
1237 return 1;
1238 if (unlikely(pgd_bad(*pgd))) {
1239 pgd_clear_bad(pgd);
1240 return 1;
1241 }
1242 return 0;
1243}
1244
1245static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1246{
1247 if (p4d_none(*p4d))
1248 return 1;
1249 if (unlikely(p4d_bad(*p4d))) {
1250 p4d_clear_bad(p4d);
1251 return 1;
1252 }
1253 return 0;
1254}
1255
1256static inline int pud_none_or_clear_bad(pud_t *pud)
1257{
1258 if (pud_none(*pud))
1259 return 1;
1260 if (unlikely(pud_bad(*pud))) {
1261 pud_clear_bad(pud);
1262 return 1;
1263 }
1264 return 0;
1265}
1266
1267static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1268{
1269 if (pmd_none(*pmd))
1270 return 1;
1271 if (unlikely(pmd_bad(*pmd))) {
1272 pmd_clear_bad(pmd);
1273 return 1;
1274 }
1275 return 0;
1276}
1277
1278static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1279 unsigned long addr,
1280 pte_t *ptep)
1281{
1282 /*
1283 * Get the current pte state, but zero it out to make it
1284 * non-present, preventing the hardware from asynchronously
1285 * updating it.
1286 */
1287 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1288}
1289
1290static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1291 unsigned long addr,
1292 pte_t *ptep, pte_t pte)
1293{
1294 /*
1295 * The pte is non-present, so there's no hardware state to
1296 * preserve.
1297 */
1298 set_pte_at(vma->vm_mm, addr, ptep, pte);
1299}
1300
1301#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1302/*
1303 * Start a pte protection read-modify-write transaction, which
1304 * protects against asynchronous hardware modifications to the pte.
1305 * The intention is not to prevent the hardware from making pte
1306 * updates, but to prevent any updates it may make from being lost.
1307 *
1308 * This does not protect against other software modifications of the
1309 * pte; the appropriate pte lock must be held over the transaction.
1310 *
1311 * Note that this interface is intended to be batchable, meaning that
1312 * ptep_modify_prot_commit may not actually update the pte, but merely
1313 * queue the update to be done at some later time. The update must be
1314 * actually committed before the pte lock is released, however.
1315 */
1316static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1317 unsigned long addr,
1318 pte_t *ptep)
1319{
1320 return __ptep_modify_prot_start(vma, addr, ptep);
1321}
1322
1323/*
1324 * Commit an update to a pte, leaving any hardware-controlled bits in
1325 * the PTE unmodified.
1326 */
1327static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1328 unsigned long addr,
1329 pte_t *ptep, pte_t old_pte, pte_t pte)
1330{
1331 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1332}
1333#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1334#endif /* CONFIG_MMU */
1335
1336/*
1337 * No-op macros that just return the current protection value. Defined here
1338 * because these macros can be used even if CONFIG_MMU is not defined.
1339 */
1340
1341#ifndef pgprot_nx
1342#define pgprot_nx(prot) (prot)
1343#endif
1344
1345#ifndef pgprot_noncached
1346#define pgprot_noncached(prot) (prot)
1347#endif
1348
1349#ifndef pgprot_writecombine
1350#define pgprot_writecombine pgprot_noncached
1351#endif
1352
1353#ifndef pgprot_writethrough
1354#define pgprot_writethrough pgprot_noncached
1355#endif
1356
1357#ifndef pgprot_device
1358#define pgprot_device pgprot_noncached
1359#endif
1360
1361#ifndef pgprot_mhp
1362#define pgprot_mhp(prot) (prot)
1363#endif
1364
1365#ifdef CONFIG_MMU
1366#ifndef pgprot_modify
1367#define pgprot_modify pgprot_modify
1368static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1369{
1370 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1371 newprot = pgprot_noncached(newprot);
1372 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1373 newprot = pgprot_writecombine(newprot);
1374 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1375 newprot = pgprot_device(newprot);
1376 return newprot;
1377}
1378#endif
1379#endif /* CONFIG_MMU */
1380
1381#ifndef pgprot_encrypted
1382#define pgprot_encrypted(prot) (prot)
1383#endif
1384
1385#ifndef pgprot_decrypted
1386#define pgprot_decrypted(prot) (prot)
1387#endif
1388
1389/*
1390 * A facility to provide batching of the reload of page tables and
1391 * other process state with the actual context switch code for
1392 * paravirtualized guests. By convention, only one of the batched
1393 * update (lazy) modes (CPU, MMU) should be active at any given time,
1394 * entry should never be nested, and entry and exits should always be
1395 * paired. This is for sanity of maintaining and reasoning about the
1396 * kernel code. In this case, the exit (end of the context switch) is
1397 * in architecture-specific code, and so doesn't need a generic
1398 * definition.
1399 */
1400#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1401#define arch_start_context_switch(prev) do {} while (0)
1402#endif
1403
1404#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1405#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1406static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1407{
1408 return pmd;
1409}
1410
1411static inline int pmd_swp_soft_dirty(pmd_t pmd)
1412{
1413 return 0;
1414}
1415
1416static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1417{
1418 return pmd;
1419}
1420#endif
1421#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1422static inline int pte_soft_dirty(pte_t pte)
1423{
1424 return 0;
1425}
1426
1427static inline int pmd_soft_dirty(pmd_t pmd)
1428{
1429 return 0;
1430}
1431
1432static inline pte_t pte_mksoft_dirty(pte_t pte)
1433{
1434 return pte;
1435}
1436
1437static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1438{
1439 return pmd;
1440}
1441
1442static inline pte_t pte_clear_soft_dirty(pte_t pte)
1443{
1444 return pte;
1445}
1446
1447static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1448{
1449 return pmd;
1450}
1451
1452static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1453{
1454 return pte;
1455}
1456
1457static inline int pte_swp_soft_dirty(pte_t pte)
1458{
1459 return 0;
1460}
1461
1462static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1463{
1464 return pte;
1465}
1466
1467static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1468{
1469 return pmd;
1470}
1471
1472static inline int pmd_swp_soft_dirty(pmd_t pmd)
1473{
1474 return 0;
1475}
1476
1477static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1478{
1479 return pmd;
1480}
1481#endif
1482
1483#ifndef __HAVE_PFNMAP_TRACKING
1484/*
1485 * Interfaces that can be used by architecture code to keep track of
1486 * memory type of pfn mappings specified by the remap_pfn_range,
1487 * vmf_insert_pfn.
1488 */
1489
1490/*
1491 * track_pfn_remap is called when a _new_ pfn mapping is being established
1492 * by remap_pfn_range() for physical range indicated by pfn and size.
1493 */
1494static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1495 unsigned long pfn, unsigned long addr,
1496 unsigned long size)
1497{
1498 return 0;
1499}
1500
1501/*
1502 * track_pfn_insert is called when a _new_ single pfn is established
1503 * by vmf_insert_pfn().
1504 */
1505static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1506 pfn_t pfn)
1507{
1508}
1509
1510/*
1511 * track_pfn_copy is called when vma that is covering the pfnmap gets
1512 * copied through copy_page_range().
1513 */
1514static inline int track_pfn_copy(struct vm_area_struct *vma)
1515{
1516 return 0;
1517}
1518
1519/*
1520 * untrack_pfn is called while unmapping a pfnmap for a region.
1521 * untrack can be called for a specific region indicated by pfn and size or
1522 * can be for the entire vma (in which case pfn, size are zero).
1523 */
1524static inline void untrack_pfn(struct vm_area_struct *vma,
1525 unsigned long pfn, unsigned long size,
1526 bool mm_wr_locked)
1527{
1528}
1529
1530/*
1531 * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1532 * or fails to copy pgtable during duplicate vm area.
1533 */
1534static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1535{
1536}
1537#else
1538extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1539 unsigned long pfn, unsigned long addr,
1540 unsigned long size);
1541extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1542 pfn_t pfn);
1543extern int track_pfn_copy(struct vm_area_struct *vma);
1544extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1545 unsigned long size, bool mm_wr_locked);
1546extern void untrack_pfn_clear(struct vm_area_struct *vma);
1547#endif
1548
1549#ifdef CONFIG_MMU
1550#ifdef __HAVE_COLOR_ZERO_PAGE
1551static inline int is_zero_pfn(unsigned long pfn)
1552{
1553 extern unsigned long zero_pfn;
1554 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1555 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1556}
1557
1558#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1559
1560#else
1561static inline int is_zero_pfn(unsigned long pfn)
1562{
1563 extern unsigned long zero_pfn;
1564 return pfn == zero_pfn;
1565}
1566
1567static inline unsigned long my_zero_pfn(unsigned long addr)
1568{
1569 extern unsigned long zero_pfn;
1570 return zero_pfn;
1571}
1572#endif
1573#else
1574static inline int is_zero_pfn(unsigned long pfn)
1575{
1576 return 0;
1577}
1578
1579static inline unsigned long my_zero_pfn(unsigned long addr)
1580{
1581 return 0;
1582}
1583#endif /* CONFIG_MMU */
1584
1585#ifdef CONFIG_MMU
1586
1587#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1588static inline int pmd_trans_huge(pmd_t pmd)
1589{
1590 return 0;
1591}
1592#ifndef pmd_write
1593static inline int pmd_write(pmd_t pmd)
1594{
1595 BUG();
1596 return 0;
1597}
1598#endif /* pmd_write */
1599#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1600
1601#ifndef pud_write
1602static inline int pud_write(pud_t pud)
1603{
1604 BUG();
1605 return 0;
1606}
1607#endif /* pud_write */
1608
1609#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1610static inline int pmd_devmap(pmd_t pmd)
1611{
1612 return 0;
1613}
1614static inline int pud_devmap(pud_t pud)
1615{
1616 return 0;
1617}
1618static inline int pgd_devmap(pgd_t pgd)
1619{
1620 return 0;
1621}
1622#endif
1623
1624#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1625 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1626static inline int pud_trans_huge(pud_t pud)
1627{
1628 return 0;
1629}
1630#endif
1631
1632static inline int pud_trans_unstable(pud_t *pud)
1633{
1634#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1635 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1636 pud_t pudval = READ_ONCE(*pud);
1637
1638 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1639 return 1;
1640 if (unlikely(pud_bad(pudval))) {
1641 pud_clear_bad(pud);
1642 return 1;
1643 }
1644#endif
1645 return 0;
1646}
1647
1648#ifndef CONFIG_NUMA_BALANCING
1649/*
1650 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1651 * perfectly valid to indicate "no" in that case, which is why our default
1652 * implementation defaults to "always no".
1653 *
1654 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1655 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1656 * accessible VMAs.
1657 *
1658 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1659 * looking at the VMA accessibility is sufficient.
1660 */
1661static inline int pte_protnone(pte_t pte)
1662{
1663 return 0;
1664}
1665
1666static inline int pmd_protnone(pmd_t pmd)
1667{
1668 return 0;
1669}
1670#endif /* CONFIG_NUMA_BALANCING */
1671
1672#endif /* CONFIG_MMU */
1673
1674#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1675
1676#ifndef __PAGETABLE_P4D_FOLDED
1677int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1678void p4d_clear_huge(p4d_t *p4d);
1679#else
1680static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1681{
1682 return 0;
1683}
1684static inline void p4d_clear_huge(p4d_t *p4d) { }
1685#endif /* !__PAGETABLE_P4D_FOLDED */
1686
1687int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1688int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1689int pud_clear_huge(pud_t *pud);
1690int pmd_clear_huge(pmd_t *pmd);
1691int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1692int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1693int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1694#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1695static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1696{
1697 return 0;
1698}
1699static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1700{
1701 return 0;
1702}
1703static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1704{
1705 return 0;
1706}
1707static inline void p4d_clear_huge(p4d_t *p4d) { }
1708static inline int pud_clear_huge(pud_t *pud)
1709{
1710 return 0;
1711}
1712static inline int pmd_clear_huge(pmd_t *pmd)
1713{
1714 return 0;
1715}
1716static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1717{
1718 return 0;
1719}
1720static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1721{
1722 return 0;
1723}
1724static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1725{
1726 return 0;
1727}
1728#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1729
1730#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1731#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1732/*
1733 * ARCHes with special requirements for evicting THP backing TLB entries can
1734 * implement this. Otherwise also, it can help optimize normal TLB flush in
1735 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1736 * entire TLB if flush span is greater than a threshold, which will
1737 * likely be true for a single huge page. Thus a single THP flush will
1738 * invalidate the entire TLB which is not desirable.
1739 * e.g. see arch/arc: flush_pmd_tlb_range
1740 */
1741#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1742#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1743#else
1744#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1745#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1746#endif
1747#endif
1748
1749struct file;
1750int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1751 unsigned long size, pgprot_t *vma_prot);
1752
1753#ifndef CONFIG_X86_ESPFIX64
1754static inline void init_espfix_bsp(void) { }
1755#endif
1756
1757extern void __init pgtable_cache_init(void);
1758
1759#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1760static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1761{
1762 return true;
1763}
1764
1765static inline bool arch_has_pfn_modify_check(void)
1766{
1767 return false;
1768}
1769#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1770
1771/*
1772 * Architecture PAGE_KERNEL_* fallbacks
1773 *
1774 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1775 * because they really don't support them, or the port needs to be updated to
1776 * reflect the required functionality. Below are a set of relatively safe
1777 * fallbacks, as best effort, which we can count on in lieu of the architectures
1778 * not defining them on their own yet.
1779 */
1780
1781#ifndef PAGE_KERNEL_RO
1782# define PAGE_KERNEL_RO PAGE_KERNEL
1783#endif
1784
1785#ifndef PAGE_KERNEL_EXEC
1786# define PAGE_KERNEL_EXEC PAGE_KERNEL
1787#endif
1788
1789/*
1790 * Page Table Modification bits for pgtbl_mod_mask.
1791 *
1792 * These are used by the p?d_alloc_track*() set of functions an in the generic
1793 * vmalloc/ioremap code to track at which page-table levels entries have been
1794 * modified. Based on that the code can better decide when vmalloc and ioremap
1795 * mapping changes need to be synchronized to other page-tables in the system.
1796 */
1797#define __PGTBL_PGD_MODIFIED 0
1798#define __PGTBL_P4D_MODIFIED 1
1799#define __PGTBL_PUD_MODIFIED 2
1800#define __PGTBL_PMD_MODIFIED 3
1801#define __PGTBL_PTE_MODIFIED 4
1802
1803#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1804#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1805#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1806#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1807#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1808
1809/* Page-Table Modification Mask */
1810typedef unsigned int pgtbl_mod_mask;
1811
1812#endif /* !__ASSEMBLY__ */
1813
1814#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1815#ifdef CONFIG_PHYS_ADDR_T_64BIT
1816/*
1817 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1818 * with physical address space extension, but falls back to
1819 * BITS_PER_LONG otherwise.
1820 */
1821#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1822#else
1823#define MAX_POSSIBLE_PHYSMEM_BITS 32
1824#endif
1825#endif
1826
1827#ifndef has_transparent_hugepage
1828#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1829#endif
1830
1831#ifndef has_transparent_pud_hugepage
1832#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1833#endif
1834/*
1835 * On some architectures it depends on the mm if the p4d/pud or pmd
1836 * layer of the page table hierarchy is folded or not.
1837 */
1838#ifndef mm_p4d_folded
1839#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1840#endif
1841
1842#ifndef mm_pud_folded
1843#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1844#endif
1845
1846#ifndef mm_pmd_folded
1847#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1848#endif
1849
1850#ifndef p4d_offset_lockless
1851#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1852#endif
1853#ifndef pud_offset_lockless
1854#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1855#endif
1856#ifndef pmd_offset_lockless
1857#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1858#endif
1859
1860/*
1861 * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1862 * mapping. It should work globally across all archs, without any
1863 * dependency on CONFIG_* options. For architectures that do not support
1864 * huge mappings on specific levels, below fallbacks will be used.
1865 *
1866 * A leaf pgtable entry should always imply the following:
1867 *
1868 * - It is a "present" entry. IOW, before using this API, please check it
1869 * with pXd_present() first. NOTE: it may not always mean the "present
1870 * bit" is set. For example, PROT_NONE entries are always "present".
1871 *
1872 * - It should _never_ be a swap entry of any type. Above "present" check
1873 * should have guarded this, but let's be crystal clear on this.
1874 *
1875 * - It should contain a huge PFN, which points to a huge page larger than
1876 * PAGE_SIZE of the platform. The PFN format isn't important here.
1877 *
1878 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1879 * pXd_devmap(), or hugetlb mappings).
1880 */
1881#ifndef pgd_leaf
1882#define pgd_leaf(x) false
1883#endif
1884#ifndef p4d_leaf
1885#define p4d_leaf(x) false
1886#endif
1887#ifndef pud_leaf
1888#define pud_leaf(x) false
1889#endif
1890#ifndef pmd_leaf
1891#define pmd_leaf(x) false
1892#endif
1893
1894#ifndef pgd_leaf_size
1895#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1896#endif
1897#ifndef p4d_leaf_size
1898#define p4d_leaf_size(x) P4D_SIZE
1899#endif
1900#ifndef pud_leaf_size
1901#define pud_leaf_size(x) PUD_SIZE
1902#endif
1903#ifndef pmd_leaf_size
1904#define pmd_leaf_size(x) PMD_SIZE
1905#endif
1906#ifndef __pte_leaf_size
1907#ifndef pte_leaf_size
1908#define pte_leaf_size(x) PAGE_SIZE
1909#endif
1910#define __pte_leaf_size(x,y) pte_leaf_size(y)
1911#endif
1912
1913/*
1914 * We always define pmd_pfn for all archs as it's used in lots of generic
1915 * code. Now it happens too for pud_pfn (and can happen for larger
1916 * mappings too in the future; we're not there yet). Instead of defining
1917 * it for all archs (like pmd_pfn), provide a fallback.
1918 *
1919 * Note that returning 0 here means any arch that didn't define this can
1920 * get severely wrong when it hits a real pud leaf. It's arch's
1921 * responsibility to properly define it when a huge pud is possible.
1922 */
1923#ifndef pud_pfn
1924#define pud_pfn(x) 0
1925#endif
1926
1927/*
1928 * Some architectures have MMUs that are configurable or selectable at boot
1929 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1930 * helps to have a static maximum value.
1931 */
1932
1933#ifndef MAX_PTRS_PER_PTE
1934#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1935#endif
1936
1937#ifndef MAX_PTRS_PER_PMD
1938#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1939#endif
1940
1941#ifndef MAX_PTRS_PER_PUD
1942#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1943#endif
1944
1945#ifndef MAX_PTRS_PER_P4D
1946#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1947#endif
1948
1949#ifndef pte_pgprot
1950#define pte_pgprot(x) ((pgprot_t) {0})
1951#endif
1952
1953#ifndef pmd_pgprot
1954#define pmd_pgprot(x) ((pgprot_t) {0})
1955#endif
1956
1957#ifndef pud_pgprot
1958#define pud_pgprot(x) ((pgprot_t) {0})
1959#endif
1960
1961/* description of effects of mapping type and prot in current implementation.
1962 * this is due to the limited x86 page protection hardware. The expected
1963 * behavior is in parens:
1964 *
1965 * map_type prot
1966 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1967 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1968 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1969 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1970 *
1971 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1972 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1973 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1974 *
1975 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1976 * MAP_PRIVATE (with Enhanced PAN supported):
1977 * r: (no) no
1978 * w: (no) no
1979 * x: (yes) yes
1980 */
1981#define DECLARE_VM_GET_PAGE_PROT \
1982pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1983{ \
1984 return protection_map[vm_flags & \
1985 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1986} \
1987EXPORT_SYMBOL(vm_get_page_prot);
1988
1989#endif /* _LINUX_PGTABLE_H */