at v6.14 54 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT) 10 11#ifndef __ASSEMBLY__ 12#ifdef CONFIG_MMU 13 14#include <linux/mm_types.h> 15#include <linux/bug.h> 16#include <linux/errno.h> 17#include <asm-generic/pgtable_uffd.h> 18#include <linux/page_table_check.h> 19 20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 23#endif 24 25/* 26 * On almost all architectures and configurations, 0 can be used as the 27 * upper ceiling to free_pgtables(): on many architectures it has the same 28 * effect as using TASK_SIZE. However, there is one configuration which 29 * must impose a more careful limit, to avoid freeing kernel pgtables. 30 */ 31#ifndef USER_PGTABLES_CEILING 32#define USER_PGTABLES_CEILING 0UL 33#endif 34 35/* 36 * This defines the first usable user address. Platforms 37 * can override its value with custom FIRST_USER_ADDRESS 38 * defined in their respective <asm/pgtable.h>. 39 */ 40#ifndef FIRST_USER_ADDRESS 41#define FIRST_USER_ADDRESS 0UL 42#endif 43 44/* 45 * This defines the generic helper for accessing PMD page 46 * table page. Although platforms can still override this 47 * via their respective <asm/pgtable.h>. 48 */ 49#ifndef pmd_pgtable 50#define pmd_pgtable(pmd) pmd_page(pmd) 51#endif 52 53#define pmd_folio(pmd) page_folio(pmd_page(pmd)) 54 55/* 56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 57 * 58 * The pXx_index() functions return the index of the entry in the page 59 * table page which would control the given virtual address 60 * 61 * As these functions may be used by the same code for different levels of 62 * the page table folding, they are always available, regardless of 63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 64 * because in such cases PTRS_PER_PxD equals 1. 65 */ 66 67static inline unsigned long pte_index(unsigned long address) 68{ 69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 70} 71 72#ifndef pmd_index 73static inline unsigned long pmd_index(unsigned long address) 74{ 75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 76} 77#define pmd_index pmd_index 78#endif 79 80#ifndef pud_index 81static inline unsigned long pud_index(unsigned long address) 82{ 83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 84} 85#define pud_index pud_index 86#endif 87 88#ifndef pgd_index 89/* Must be a compile-time constant, so implement it as a macro */ 90#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 91#endif 92 93#ifndef kernel_pte_init 94static inline void kernel_pte_init(void *addr) 95{ 96} 97#define kernel_pte_init kernel_pte_init 98#endif 99 100#ifndef pmd_init 101static inline void pmd_init(void *addr) 102{ 103} 104#define pmd_init pmd_init 105#endif 106 107#ifndef pud_init 108static inline void pud_init(void *addr) 109{ 110} 111#define pud_init pud_init 112#endif 113 114#ifndef pte_offset_kernel 115static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 116{ 117 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 118} 119#define pte_offset_kernel pte_offset_kernel 120#endif 121 122#ifdef CONFIG_HIGHPTE 123#define __pte_map(pmd, address) \ 124 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address))) 125#define pte_unmap(pte) do { \ 126 kunmap_local((pte)); \ 127 rcu_read_unlock(); \ 128} while (0) 129#else 130static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address) 131{ 132 return pte_offset_kernel(pmd, address); 133} 134static inline void pte_unmap(pte_t *pte) 135{ 136 rcu_read_unlock(); 137} 138#endif 139 140void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable); 141 142/* Find an entry in the second-level page table.. */ 143#ifndef pmd_offset 144static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 145{ 146 return pud_pgtable(*pud) + pmd_index(address); 147} 148#define pmd_offset pmd_offset 149#endif 150 151#ifndef pud_offset 152static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 153{ 154 return p4d_pgtable(*p4d) + pud_index(address); 155} 156#define pud_offset pud_offset 157#endif 158 159static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 160{ 161 return (pgd + pgd_index(address)); 162}; 163 164/* 165 * a shortcut to get a pgd_t in a given mm 166 */ 167#ifndef pgd_offset 168#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 169#endif 170 171/* 172 * a shortcut which implies the use of the kernel's pgd, instead 173 * of a process's 174 */ 175#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 176 177/* 178 * In many cases it is known that a virtual address is mapped at PMD or PTE 179 * level, so instead of traversing all the page table levels, we can get a 180 * pointer to the PMD entry in user or kernel page table or translate a virtual 181 * address to the pointer in the PTE in the kernel page tables with simple 182 * helpers. 183 */ 184static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 185{ 186 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 187} 188 189static inline pmd_t *pmd_off_k(unsigned long va) 190{ 191 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 192} 193 194static inline pte_t *virt_to_kpte(unsigned long vaddr) 195{ 196 pmd_t *pmd = pmd_off_k(vaddr); 197 198 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 199} 200 201#ifndef pmd_young 202static inline int pmd_young(pmd_t pmd) 203{ 204 return 0; 205} 206#endif 207 208#ifndef pmd_dirty 209static inline int pmd_dirty(pmd_t pmd) 210{ 211 return 0; 212} 213#endif 214 215/* 216 * A facility to provide lazy MMU batching. This allows PTE updates and 217 * page invalidations to be delayed until a call to leave lazy MMU mode 218 * is issued. Some architectures may benefit from doing this, and it is 219 * beneficial for both shadow and direct mode hypervisors, which may batch 220 * the PTE updates which happen during this window. Note that using this 221 * interface requires that read hazards be removed from the code. A read 222 * hazard could result in the direct mode hypervisor case, since the actual 223 * write to the page tables may not yet have taken place, so reads though 224 * a raw PTE pointer after it has been modified are not guaranteed to be 225 * up to date. This mode can only be entered and left under the protection of 226 * the page table locks for all page tables which may be modified. In the UP 227 * case, this is required so that preemption is disabled, and in the SMP case, 228 * it must synchronize the delayed page table writes properly on other CPUs. 229 */ 230#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 231#define arch_enter_lazy_mmu_mode() do {} while (0) 232#define arch_leave_lazy_mmu_mode() do {} while (0) 233#define arch_flush_lazy_mmu_mode() do {} while (0) 234#endif 235 236#ifndef pte_batch_hint 237/** 238 * pte_batch_hint - Number of pages that can be added to batch without scanning. 239 * @ptep: Page table pointer for the entry. 240 * @pte: Page table entry. 241 * 242 * Some architectures know that a set of contiguous ptes all map the same 243 * contiguous memory with the same permissions. In this case, it can provide a 244 * hint to aid pte batching without the core code needing to scan every pte. 245 * 246 * An architecture implementation may ignore the PTE accessed state. Further, 247 * the dirty state must apply atomically to all the PTEs described by the hint. 248 * 249 * May be overridden by the architecture, else pte_batch_hint is always 1. 250 */ 251static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) 252{ 253 return 1; 254} 255#endif 256 257#ifndef pte_advance_pfn 258static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) 259{ 260 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); 261} 262#endif 263 264#define pte_next_pfn(pte) pte_advance_pfn(pte, 1) 265 266#ifndef set_ptes 267/** 268 * set_ptes - Map consecutive pages to a contiguous range of addresses. 269 * @mm: Address space to map the pages into. 270 * @addr: Address to map the first page at. 271 * @ptep: Page table pointer for the first entry. 272 * @pte: Page table entry for the first page. 273 * @nr: Number of pages to map. 274 * 275 * When nr==1, initial state of pte may be present or not present, and new state 276 * may be present or not present. When nr>1, initial state of all ptes must be 277 * not present, and new state must be present. 278 * 279 * May be overridden by the architecture, or the architecture can define 280 * set_pte() and PFN_PTE_SHIFT. 281 * 282 * Context: The caller holds the page table lock. The pages all belong 283 * to the same folio. The PTEs are all in the same PMD. 284 */ 285static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 286 pte_t *ptep, pte_t pte, unsigned int nr) 287{ 288 page_table_check_ptes_set(mm, ptep, pte, nr); 289 290 arch_enter_lazy_mmu_mode(); 291 for (;;) { 292 set_pte(ptep, pte); 293 if (--nr == 0) 294 break; 295 ptep++; 296 pte = pte_next_pfn(pte); 297 } 298 arch_leave_lazy_mmu_mode(); 299} 300#endif 301#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1) 302 303#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 304extern int ptep_set_access_flags(struct vm_area_struct *vma, 305 unsigned long address, pte_t *ptep, 306 pte_t entry, int dirty); 307#endif 308 309#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 310#ifdef CONFIG_TRANSPARENT_HUGEPAGE 311extern int pmdp_set_access_flags(struct vm_area_struct *vma, 312 unsigned long address, pmd_t *pmdp, 313 pmd_t entry, int dirty); 314extern int pudp_set_access_flags(struct vm_area_struct *vma, 315 unsigned long address, pud_t *pudp, 316 pud_t entry, int dirty); 317#else 318static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 319 unsigned long address, pmd_t *pmdp, 320 pmd_t entry, int dirty) 321{ 322 BUILD_BUG(); 323 return 0; 324} 325static inline int pudp_set_access_flags(struct vm_area_struct *vma, 326 unsigned long address, pud_t *pudp, 327 pud_t entry, int dirty) 328{ 329 BUILD_BUG(); 330 return 0; 331} 332#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 333#endif 334 335#ifndef ptep_get 336static inline pte_t ptep_get(pte_t *ptep) 337{ 338 return READ_ONCE(*ptep); 339} 340#endif 341 342#ifndef pmdp_get 343static inline pmd_t pmdp_get(pmd_t *pmdp) 344{ 345 return READ_ONCE(*pmdp); 346} 347#endif 348 349#ifndef pudp_get 350static inline pud_t pudp_get(pud_t *pudp) 351{ 352 return READ_ONCE(*pudp); 353} 354#endif 355 356#ifndef p4dp_get 357static inline p4d_t p4dp_get(p4d_t *p4dp) 358{ 359 return READ_ONCE(*p4dp); 360} 361#endif 362 363#ifndef pgdp_get 364static inline pgd_t pgdp_get(pgd_t *pgdp) 365{ 366 return READ_ONCE(*pgdp); 367} 368#endif 369 370#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 371static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 372 unsigned long address, 373 pte_t *ptep) 374{ 375 pte_t pte = ptep_get(ptep); 376 int r = 1; 377 if (!pte_young(pte)) 378 r = 0; 379 else 380 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 381 return r; 382} 383#endif 384 385#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 386#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 387static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 388 unsigned long address, 389 pmd_t *pmdp) 390{ 391 pmd_t pmd = *pmdp; 392 int r = 1; 393 if (!pmd_young(pmd)) 394 r = 0; 395 else 396 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 397 return r; 398} 399#else 400static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 401 unsigned long address, 402 pmd_t *pmdp) 403{ 404 BUILD_BUG(); 405 return 0; 406} 407#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ 408#endif 409 410#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 411int ptep_clear_flush_young(struct vm_area_struct *vma, 412 unsigned long address, pte_t *ptep); 413#endif 414 415#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 416#ifdef CONFIG_TRANSPARENT_HUGEPAGE 417extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 418 unsigned long address, pmd_t *pmdp); 419#else 420/* 421 * Despite relevant to THP only, this API is called from generic rmap code 422 * under PageTransHuge(), hence needs a dummy implementation for !THP 423 */ 424static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 425 unsigned long address, pmd_t *pmdp) 426{ 427 BUILD_BUG(); 428 return 0; 429} 430#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 431#endif 432 433#ifndef arch_has_hw_nonleaf_pmd_young 434/* 435 * Return whether the accessed bit in non-leaf PMD entries is supported on the 436 * local CPU. 437 */ 438static inline bool arch_has_hw_nonleaf_pmd_young(void) 439{ 440 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); 441} 442#endif 443 444#ifndef arch_has_hw_pte_young 445/* 446 * Return whether the accessed bit is supported on the local CPU. 447 * 448 * This stub assumes accessing through an old PTE triggers a page fault. 449 * Architectures that automatically set the access bit should overwrite it. 450 */ 451static inline bool arch_has_hw_pte_young(void) 452{ 453 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG); 454} 455#endif 456 457#ifndef arch_check_zapped_pte 458static inline void arch_check_zapped_pte(struct vm_area_struct *vma, 459 pte_t pte) 460{ 461} 462#endif 463 464#ifndef arch_check_zapped_pmd 465static inline void arch_check_zapped_pmd(struct vm_area_struct *vma, 466 pmd_t pmd) 467{ 468} 469#endif 470 471#ifndef arch_check_zapped_pud 472static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud) 473{ 474} 475#endif 476 477#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 478static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 479 unsigned long address, 480 pte_t *ptep) 481{ 482 pte_t pte = ptep_get(ptep); 483 pte_clear(mm, address, ptep); 484 page_table_check_pte_clear(mm, pte); 485 return pte; 486} 487#endif 488 489#ifndef clear_young_dirty_ptes 490/** 491 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the 492 * same folio as old/clean. 493 * @mm: Address space the pages are mapped into. 494 * @addr: Address the first page is mapped at. 495 * @ptep: Page table pointer for the first entry. 496 * @nr: Number of entries to mark old/clean. 497 * @flags: Flags to modify the PTE batch semantics. 498 * 499 * May be overridden by the architecture; otherwise, implemented by 500 * get_and_clear/modify/set for each pte in the range. 501 * 502 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 503 * some PTEs might be write-protected. 504 * 505 * Context: The caller holds the page table lock. The PTEs map consecutive 506 * pages that belong to the same folio. The PTEs are all in the same PMD. 507 */ 508static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, 509 unsigned long addr, pte_t *ptep, 510 unsigned int nr, cydp_t flags) 511{ 512 pte_t pte; 513 514 for (;;) { 515 if (flags == CYDP_CLEAR_YOUNG) 516 ptep_test_and_clear_young(vma, addr, ptep); 517 else { 518 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep); 519 if (flags & CYDP_CLEAR_YOUNG) 520 pte = pte_mkold(pte); 521 if (flags & CYDP_CLEAR_DIRTY) 522 pte = pte_mkclean(pte); 523 set_pte_at(vma->vm_mm, addr, ptep, pte); 524 } 525 if (--nr == 0) 526 break; 527 ptep++; 528 addr += PAGE_SIZE; 529 } 530} 531#endif 532 533static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, 534 pte_t *ptep) 535{ 536 pte_t pte = ptep_get(ptep); 537 538 pte_clear(mm, addr, ptep); 539 /* 540 * No need for ptep_get_and_clear(): page table check doesn't care about 541 * any bits that could have been set by HW concurrently. 542 */ 543 page_table_check_pte_clear(mm, pte); 544} 545 546#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH 547/* 548 * For walking the pagetables without holding any locks. Some architectures 549 * (eg x86-32 PAE) cannot load the entries atomically without using expensive 550 * instructions. We are guaranteed that a PTE will only either go from not 551 * present to present, or present to not present -- it will not switch to a 552 * completely different present page without a TLB flush inbetween; which we 553 * are blocking by holding interrupts off. 554 * 555 * Setting ptes from not present to present goes: 556 * 557 * ptep->pte_high = h; 558 * smp_wmb(); 559 * ptep->pte_low = l; 560 * 561 * And present to not present goes: 562 * 563 * ptep->pte_low = 0; 564 * smp_wmb(); 565 * ptep->pte_high = 0; 566 * 567 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 568 * We load pte_high *after* loading pte_low, which ensures we don't see an older 569 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 570 * picked up a changed pte high. We might have gotten rubbish values from 571 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 572 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 573 * operates on present ptes we're safe. 574 */ 575static inline pte_t ptep_get_lockless(pte_t *ptep) 576{ 577 pte_t pte; 578 579 do { 580 pte.pte_low = ptep->pte_low; 581 smp_rmb(); 582 pte.pte_high = ptep->pte_high; 583 smp_rmb(); 584 } while (unlikely(pte.pte_low != ptep->pte_low)); 585 586 return pte; 587} 588#define ptep_get_lockless ptep_get_lockless 589 590#if CONFIG_PGTABLE_LEVELS > 2 591static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 592{ 593 pmd_t pmd; 594 595 do { 596 pmd.pmd_low = pmdp->pmd_low; 597 smp_rmb(); 598 pmd.pmd_high = pmdp->pmd_high; 599 smp_rmb(); 600 } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); 601 602 return pmd; 603} 604#define pmdp_get_lockless pmdp_get_lockless 605#define pmdp_get_lockless_sync() tlb_remove_table_sync_one() 606#endif /* CONFIG_PGTABLE_LEVELS > 2 */ 607#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ 608 609/* 610 * We require that the PTE can be read atomically. 611 */ 612#ifndef ptep_get_lockless 613static inline pte_t ptep_get_lockless(pte_t *ptep) 614{ 615 return ptep_get(ptep); 616} 617#endif 618 619#ifndef pmdp_get_lockless 620static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 621{ 622 return pmdp_get(pmdp); 623} 624static inline void pmdp_get_lockless_sync(void) 625{ 626} 627#endif 628 629#ifdef CONFIG_TRANSPARENT_HUGEPAGE 630#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 631static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 632 unsigned long address, 633 pmd_t *pmdp) 634{ 635 pmd_t pmd = *pmdp; 636 637 pmd_clear(pmdp); 638 page_table_check_pmd_clear(mm, pmd); 639 640 return pmd; 641} 642#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 643#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 644static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 645 unsigned long address, 646 pud_t *pudp) 647{ 648 pud_t pud = *pudp; 649 650 pud_clear(pudp); 651 page_table_check_pud_clear(mm, pud); 652 653 return pud; 654} 655#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 656#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 657 658#ifdef CONFIG_TRANSPARENT_HUGEPAGE 659#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 660static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 661 unsigned long address, pmd_t *pmdp, 662 int full) 663{ 664 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 665} 666#endif 667 668#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 669static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 670 unsigned long address, pud_t *pudp, 671 int full) 672{ 673 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp); 674} 675#endif 676#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 677 678#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 679static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 680 unsigned long address, pte_t *ptep, 681 int full) 682{ 683 return ptep_get_and_clear(mm, address, ptep); 684} 685#endif 686 687#ifndef get_and_clear_full_ptes 688/** 689 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of 690 * the same folio, collecting dirty/accessed bits. 691 * @mm: Address space the pages are mapped into. 692 * @addr: Address the first page is mapped at. 693 * @ptep: Page table pointer for the first entry. 694 * @nr: Number of entries to clear. 695 * @full: Whether we are clearing a full mm. 696 * 697 * May be overridden by the architecture; otherwise, implemented as a simple 698 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the 699 * returned PTE. 700 * 701 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 702 * some PTEs might be write-protected. 703 * 704 * Context: The caller holds the page table lock. The PTEs map consecutive 705 * pages that belong to the same folio. The PTEs are all in the same PMD. 706 */ 707static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, 708 unsigned long addr, pte_t *ptep, unsigned int nr, int full) 709{ 710 pte_t pte, tmp_pte; 711 712 pte = ptep_get_and_clear_full(mm, addr, ptep, full); 713 while (--nr) { 714 ptep++; 715 addr += PAGE_SIZE; 716 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full); 717 if (pte_dirty(tmp_pte)) 718 pte = pte_mkdirty(pte); 719 if (pte_young(tmp_pte)) 720 pte = pte_mkyoung(pte); 721 } 722 return pte; 723} 724#endif 725 726#ifndef clear_full_ptes 727/** 728 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same 729 * folio. 730 * @mm: Address space the pages are mapped into. 731 * @addr: Address the first page is mapped at. 732 * @ptep: Page table pointer for the first entry. 733 * @nr: Number of entries to clear. 734 * @full: Whether we are clearing a full mm. 735 * 736 * May be overridden by the architecture; otherwise, implemented as a simple 737 * loop over ptep_get_and_clear_full(). 738 * 739 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 740 * some PTEs might be write-protected. 741 * 742 * Context: The caller holds the page table lock. The PTEs map consecutive 743 * pages that belong to the same folio. The PTEs are all in the same PMD. 744 */ 745static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, 746 pte_t *ptep, unsigned int nr, int full) 747{ 748 for (;;) { 749 ptep_get_and_clear_full(mm, addr, ptep, full); 750 if (--nr == 0) 751 break; 752 ptep++; 753 addr += PAGE_SIZE; 754 } 755} 756#endif 757 758/* 759 * If two threads concurrently fault at the same page, the thread that 760 * won the race updates the PTE and its local TLB/Cache. The other thread 761 * gives up, simply does nothing, and continues; on architectures where 762 * software can update TLB, local TLB can be updated here to avoid next page 763 * fault. This function updates TLB only, do nothing with cache or others. 764 * It is the difference with function update_mmu_cache. 765 */ 766#ifndef update_mmu_tlb_range 767static inline void update_mmu_tlb_range(struct vm_area_struct *vma, 768 unsigned long address, pte_t *ptep, unsigned int nr) 769{ 770} 771#endif 772 773static inline void update_mmu_tlb(struct vm_area_struct *vma, 774 unsigned long address, pte_t *ptep) 775{ 776 update_mmu_tlb_range(vma, address, ptep, 1); 777} 778 779/* 780 * Some architectures may be able to avoid expensive synchronization 781 * primitives when modifications are made to PTE's which are already 782 * not present, or in the process of an address space destruction. 783 */ 784#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 785static inline void pte_clear_not_present_full(struct mm_struct *mm, 786 unsigned long address, 787 pte_t *ptep, 788 int full) 789{ 790 pte_clear(mm, address, ptep); 791} 792#endif 793 794#ifndef clear_not_present_full_ptes 795/** 796 * clear_not_present_full_ptes - Clear multiple not present PTEs which are 797 * consecutive in the pgtable. 798 * @mm: Address space the ptes represent. 799 * @addr: Address of the first pte. 800 * @ptep: Page table pointer for the first entry. 801 * @nr: Number of entries to clear. 802 * @full: Whether we are clearing a full mm. 803 * 804 * May be overridden by the architecture; otherwise, implemented as a simple 805 * loop over pte_clear_not_present_full(). 806 * 807 * Context: The caller holds the page table lock. The PTEs are all not present. 808 * The PTEs are all in the same PMD. 809 */ 810static inline void clear_not_present_full_ptes(struct mm_struct *mm, 811 unsigned long addr, pte_t *ptep, unsigned int nr, int full) 812{ 813 for (;;) { 814 pte_clear_not_present_full(mm, addr, ptep, full); 815 if (--nr == 0) 816 break; 817 ptep++; 818 addr += PAGE_SIZE; 819 } 820} 821#endif 822 823#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 824extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 825 unsigned long address, 826 pte_t *ptep); 827#endif 828 829#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 830extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 831 unsigned long address, 832 pmd_t *pmdp); 833extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 834 unsigned long address, 835 pud_t *pudp); 836#endif 837 838#ifndef pte_mkwrite 839static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma) 840{ 841 return pte_mkwrite_novma(pte); 842} 843#endif 844 845#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite) 846static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 847{ 848 return pmd_mkwrite_novma(pmd); 849} 850#endif 851 852#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 853struct mm_struct; 854static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 855{ 856 pte_t old_pte = ptep_get(ptep); 857 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 858} 859#endif 860 861#ifndef wrprotect_ptes 862/** 863 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same 864 * folio. 865 * @mm: Address space the pages are mapped into. 866 * @addr: Address the first page is mapped at. 867 * @ptep: Page table pointer for the first entry. 868 * @nr: Number of entries to write-protect. 869 * 870 * May be overridden by the architecture; otherwise, implemented as a simple 871 * loop over ptep_set_wrprotect(). 872 * 873 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 874 * some PTEs might be write-protected. 875 * 876 * Context: The caller holds the page table lock. The PTEs map consecutive 877 * pages that belong to the same folio. The PTEs are all in the same PMD. 878 */ 879static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr, 880 pte_t *ptep, unsigned int nr) 881{ 882 for (;;) { 883 ptep_set_wrprotect(mm, addr, ptep); 884 if (--nr == 0) 885 break; 886 ptep++; 887 addr += PAGE_SIZE; 888 } 889} 890#endif 891 892/* 893 * On some architectures hardware does not set page access bit when accessing 894 * memory page, it is responsibility of software setting this bit. It brings 895 * out extra page fault penalty to track page access bit. For optimization page 896 * access bit can be set during all page fault flow on these arches. 897 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 898 * where software maintains page access bit. 899 */ 900#ifndef pte_sw_mkyoung 901static inline pte_t pte_sw_mkyoung(pte_t pte) 902{ 903 return pte; 904} 905#define pte_sw_mkyoung pte_sw_mkyoung 906#endif 907 908#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 909#ifdef CONFIG_TRANSPARENT_HUGEPAGE 910static inline void pmdp_set_wrprotect(struct mm_struct *mm, 911 unsigned long address, pmd_t *pmdp) 912{ 913 pmd_t old_pmd = *pmdp; 914 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 915} 916#else 917static inline void pmdp_set_wrprotect(struct mm_struct *mm, 918 unsigned long address, pmd_t *pmdp) 919{ 920 BUILD_BUG(); 921} 922#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 923#endif 924#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 925#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 926#ifdef CONFIG_TRANSPARENT_HUGEPAGE 927static inline void pudp_set_wrprotect(struct mm_struct *mm, 928 unsigned long address, pud_t *pudp) 929{ 930 pud_t old_pud = *pudp; 931 932 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 933} 934#else 935static inline void pudp_set_wrprotect(struct mm_struct *mm, 936 unsigned long address, pud_t *pudp) 937{ 938 BUILD_BUG(); 939} 940#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 941#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 942#endif 943 944#ifndef pmdp_collapse_flush 945#ifdef CONFIG_TRANSPARENT_HUGEPAGE 946extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 947 unsigned long address, pmd_t *pmdp); 948#else 949static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 950 unsigned long address, 951 pmd_t *pmdp) 952{ 953 BUILD_BUG(); 954 return *pmdp; 955} 956#define pmdp_collapse_flush pmdp_collapse_flush 957#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 958#endif 959 960#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 961extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 962 pgtable_t pgtable); 963#endif 964 965#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 966extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 967#endif 968 969#ifndef arch_needs_pgtable_deposit 970#define arch_needs_pgtable_deposit() (false) 971#endif 972 973#ifdef CONFIG_TRANSPARENT_HUGEPAGE 974/* 975 * This is an implementation of pmdp_establish() that is only suitable for an 976 * architecture that doesn't have hardware dirty/accessed bits. In this case we 977 * can't race with CPU which sets these bits and non-atomic approach is fine. 978 */ 979static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 980 unsigned long address, pmd_t *pmdp, pmd_t pmd) 981{ 982 pmd_t old_pmd = *pmdp; 983 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 984 return old_pmd; 985} 986#endif 987 988#ifndef __HAVE_ARCH_PMDP_INVALIDATE 989extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 990 pmd_t *pmdp); 991#endif 992 993#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD 994 995/* 996 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent 997 * hugepage mapping in the page tables. This function is similar to 998 * pmdp_invalidate(), but should only be used if the access and dirty bits would 999 * not be cleared by the software in the new PMD value. The function ensures 1000 * that hardware changes of the access and dirty bits updates would not be lost. 1001 * 1002 * Doing so can allow in certain architectures to avoid a TLB flush in most 1003 * cases. Yet, another TLB flush might be necessary later if the PMD update 1004 * itself requires such flush (e.g., if protection was set to be stricter). Yet, 1005 * even when a TLB flush is needed because of the update, the caller may be able 1006 * to batch these TLB flushing operations, so fewer TLB flush operations are 1007 * needed. 1008 */ 1009extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, 1010 unsigned long address, pmd_t *pmdp); 1011#endif 1012 1013#ifndef __HAVE_ARCH_PTE_SAME 1014static inline int pte_same(pte_t pte_a, pte_t pte_b) 1015{ 1016 return pte_val(pte_a) == pte_val(pte_b); 1017} 1018#endif 1019 1020#ifndef __HAVE_ARCH_PTE_UNUSED 1021/* 1022 * Some architectures provide facilities to virtualization guests 1023 * so that they can flag allocated pages as unused. This allows the 1024 * host to transparently reclaim unused pages. This function returns 1025 * whether the pte's page is unused. 1026 */ 1027static inline int pte_unused(pte_t pte) 1028{ 1029 return 0; 1030} 1031#endif 1032 1033#ifndef pte_access_permitted 1034#define pte_access_permitted(pte, write) \ 1035 (pte_present(pte) && (!(write) || pte_write(pte))) 1036#endif 1037 1038#ifndef pmd_access_permitted 1039#define pmd_access_permitted(pmd, write) \ 1040 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 1041#endif 1042 1043#ifndef pud_access_permitted 1044#define pud_access_permitted(pud, write) \ 1045 (pud_present(pud) && (!(write) || pud_write(pud))) 1046#endif 1047 1048#ifndef p4d_access_permitted 1049#define p4d_access_permitted(p4d, write) \ 1050 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 1051#endif 1052 1053#ifndef pgd_access_permitted 1054#define pgd_access_permitted(pgd, write) \ 1055 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 1056#endif 1057 1058#ifndef __HAVE_ARCH_PMD_SAME 1059static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 1060{ 1061 return pmd_val(pmd_a) == pmd_val(pmd_b); 1062} 1063#endif 1064 1065#ifndef pud_same 1066static inline int pud_same(pud_t pud_a, pud_t pud_b) 1067{ 1068 return pud_val(pud_a) == pud_val(pud_b); 1069} 1070#define pud_same pud_same 1071#endif 1072 1073#ifndef __HAVE_ARCH_P4D_SAME 1074static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 1075{ 1076 return p4d_val(p4d_a) == p4d_val(p4d_b); 1077} 1078#endif 1079 1080#ifndef __HAVE_ARCH_PGD_SAME 1081static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 1082{ 1083 return pgd_val(pgd_a) == pgd_val(pgd_b); 1084} 1085#endif 1086 1087#ifndef __HAVE_ARCH_DO_SWAP_PAGE 1088static inline void arch_do_swap_page_nr(struct mm_struct *mm, 1089 struct vm_area_struct *vma, 1090 unsigned long addr, 1091 pte_t pte, pte_t oldpte, 1092 int nr) 1093{ 1094 1095} 1096#else 1097/* 1098 * Some architectures support metadata associated with a page. When a 1099 * page is being swapped out, this metadata must be saved so it can be 1100 * restored when the page is swapped back in. SPARC M7 and newer 1101 * processors support an ADI (Application Data Integrity) tag for the 1102 * page as metadata for the page. arch_do_swap_page() can restore this 1103 * metadata when a page is swapped back in. 1104 */ 1105static inline void arch_do_swap_page_nr(struct mm_struct *mm, 1106 struct vm_area_struct *vma, 1107 unsigned long addr, 1108 pte_t pte, pte_t oldpte, 1109 int nr) 1110{ 1111 for (int i = 0; i < nr; i++) { 1112 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE, 1113 pte_advance_pfn(pte, i), 1114 pte_advance_pfn(oldpte, i)); 1115 } 1116} 1117#endif 1118 1119#ifndef __HAVE_ARCH_UNMAP_ONE 1120/* 1121 * Some architectures support metadata associated with a page. When a 1122 * page is being swapped out, this metadata must be saved so it can be 1123 * restored when the page is swapped back in. SPARC M7 and newer 1124 * processors support an ADI (Application Data Integrity) tag for the 1125 * page as metadata for the page. arch_unmap_one() can save this 1126 * metadata on a swap-out of a page. 1127 */ 1128static inline int arch_unmap_one(struct mm_struct *mm, 1129 struct vm_area_struct *vma, 1130 unsigned long addr, 1131 pte_t orig_pte) 1132{ 1133 return 0; 1134} 1135#endif 1136 1137/* 1138 * Allow architectures to preserve additional metadata associated with 1139 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 1140 * prototypes must be defined in the arch-specific asm/pgtable.h file. 1141 */ 1142#ifndef __HAVE_ARCH_PREPARE_TO_SWAP 1143static inline int arch_prepare_to_swap(struct folio *folio) 1144{ 1145 return 0; 1146} 1147#endif 1148 1149#ifndef __HAVE_ARCH_SWAP_INVALIDATE 1150static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 1151{ 1152} 1153 1154static inline void arch_swap_invalidate_area(int type) 1155{ 1156} 1157#endif 1158 1159#ifndef __HAVE_ARCH_SWAP_RESTORE 1160static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) 1161{ 1162} 1163#endif 1164 1165#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 1166#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 1167#endif 1168 1169#ifndef __HAVE_ARCH_MOVE_PTE 1170#define move_pte(pte, old_addr, new_addr) (pte) 1171#endif 1172 1173#ifndef pte_accessible 1174# define pte_accessible(mm, pte) ((void)(pte), 1) 1175#endif 1176 1177#ifndef flush_tlb_fix_spurious_fault 1178#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address) 1179#endif 1180 1181/* 1182 * When walking page tables, get the address of the next boundary, 1183 * or the end address of the range if that comes earlier. Although no 1184 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 1185 */ 1186 1187#define pgd_addr_end(addr, end) \ 1188({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 1189 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1190}) 1191 1192#ifndef p4d_addr_end 1193#define p4d_addr_end(addr, end) \ 1194({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 1195 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1196}) 1197#endif 1198 1199#ifndef pud_addr_end 1200#define pud_addr_end(addr, end) \ 1201({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 1202 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1203}) 1204#endif 1205 1206#ifndef pmd_addr_end 1207#define pmd_addr_end(addr, end) \ 1208({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 1209 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1210}) 1211#endif 1212 1213/* 1214 * When walking page tables, we usually want to skip any p?d_none entries; 1215 * and any p?d_bad entries - reporting the error before resetting to none. 1216 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 1217 */ 1218void pgd_clear_bad(pgd_t *); 1219 1220#ifndef __PAGETABLE_P4D_FOLDED 1221void p4d_clear_bad(p4d_t *); 1222#else 1223#define p4d_clear_bad(p4d) do { } while (0) 1224#endif 1225 1226#ifndef __PAGETABLE_PUD_FOLDED 1227void pud_clear_bad(pud_t *); 1228#else 1229#define pud_clear_bad(p4d) do { } while (0) 1230#endif 1231 1232void pmd_clear_bad(pmd_t *); 1233 1234static inline int pgd_none_or_clear_bad(pgd_t *pgd) 1235{ 1236 if (pgd_none(*pgd)) 1237 return 1; 1238 if (unlikely(pgd_bad(*pgd))) { 1239 pgd_clear_bad(pgd); 1240 return 1; 1241 } 1242 return 0; 1243} 1244 1245static inline int p4d_none_or_clear_bad(p4d_t *p4d) 1246{ 1247 if (p4d_none(*p4d)) 1248 return 1; 1249 if (unlikely(p4d_bad(*p4d))) { 1250 p4d_clear_bad(p4d); 1251 return 1; 1252 } 1253 return 0; 1254} 1255 1256static inline int pud_none_or_clear_bad(pud_t *pud) 1257{ 1258 if (pud_none(*pud)) 1259 return 1; 1260 if (unlikely(pud_bad(*pud))) { 1261 pud_clear_bad(pud); 1262 return 1; 1263 } 1264 return 0; 1265} 1266 1267static inline int pmd_none_or_clear_bad(pmd_t *pmd) 1268{ 1269 if (pmd_none(*pmd)) 1270 return 1; 1271 if (unlikely(pmd_bad(*pmd))) { 1272 pmd_clear_bad(pmd); 1273 return 1; 1274 } 1275 return 0; 1276} 1277 1278static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 1279 unsigned long addr, 1280 pte_t *ptep) 1281{ 1282 /* 1283 * Get the current pte state, but zero it out to make it 1284 * non-present, preventing the hardware from asynchronously 1285 * updating it. 1286 */ 1287 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 1288} 1289 1290static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 1291 unsigned long addr, 1292 pte_t *ptep, pte_t pte) 1293{ 1294 /* 1295 * The pte is non-present, so there's no hardware state to 1296 * preserve. 1297 */ 1298 set_pte_at(vma->vm_mm, addr, ptep, pte); 1299} 1300 1301#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1302/* 1303 * Start a pte protection read-modify-write transaction, which 1304 * protects against asynchronous hardware modifications to the pte. 1305 * The intention is not to prevent the hardware from making pte 1306 * updates, but to prevent any updates it may make from being lost. 1307 * 1308 * This does not protect against other software modifications of the 1309 * pte; the appropriate pte lock must be held over the transaction. 1310 * 1311 * Note that this interface is intended to be batchable, meaning that 1312 * ptep_modify_prot_commit may not actually update the pte, but merely 1313 * queue the update to be done at some later time. The update must be 1314 * actually committed before the pte lock is released, however. 1315 */ 1316static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 1317 unsigned long addr, 1318 pte_t *ptep) 1319{ 1320 return __ptep_modify_prot_start(vma, addr, ptep); 1321} 1322 1323/* 1324 * Commit an update to a pte, leaving any hardware-controlled bits in 1325 * the PTE unmodified. 1326 */ 1327static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 1328 unsigned long addr, 1329 pte_t *ptep, pte_t old_pte, pte_t pte) 1330{ 1331 __ptep_modify_prot_commit(vma, addr, ptep, pte); 1332} 1333#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 1334#endif /* CONFIG_MMU */ 1335 1336/* 1337 * No-op macros that just return the current protection value. Defined here 1338 * because these macros can be used even if CONFIG_MMU is not defined. 1339 */ 1340 1341#ifndef pgprot_nx 1342#define pgprot_nx(prot) (prot) 1343#endif 1344 1345#ifndef pgprot_noncached 1346#define pgprot_noncached(prot) (prot) 1347#endif 1348 1349#ifndef pgprot_writecombine 1350#define pgprot_writecombine pgprot_noncached 1351#endif 1352 1353#ifndef pgprot_writethrough 1354#define pgprot_writethrough pgprot_noncached 1355#endif 1356 1357#ifndef pgprot_device 1358#define pgprot_device pgprot_noncached 1359#endif 1360 1361#ifndef pgprot_mhp 1362#define pgprot_mhp(prot) (prot) 1363#endif 1364 1365#ifdef CONFIG_MMU 1366#ifndef pgprot_modify 1367#define pgprot_modify pgprot_modify 1368static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 1369{ 1370 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 1371 newprot = pgprot_noncached(newprot); 1372 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 1373 newprot = pgprot_writecombine(newprot); 1374 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 1375 newprot = pgprot_device(newprot); 1376 return newprot; 1377} 1378#endif 1379#endif /* CONFIG_MMU */ 1380 1381#ifndef pgprot_encrypted 1382#define pgprot_encrypted(prot) (prot) 1383#endif 1384 1385#ifndef pgprot_decrypted 1386#define pgprot_decrypted(prot) (prot) 1387#endif 1388 1389/* 1390 * A facility to provide batching of the reload of page tables and 1391 * other process state with the actual context switch code for 1392 * paravirtualized guests. By convention, only one of the batched 1393 * update (lazy) modes (CPU, MMU) should be active at any given time, 1394 * entry should never be nested, and entry and exits should always be 1395 * paired. This is for sanity of maintaining and reasoning about the 1396 * kernel code. In this case, the exit (end of the context switch) is 1397 * in architecture-specific code, and so doesn't need a generic 1398 * definition. 1399 */ 1400#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 1401#define arch_start_context_switch(prev) do {} while (0) 1402#endif 1403 1404#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1405#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 1406static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1407{ 1408 return pmd; 1409} 1410 1411static inline int pmd_swp_soft_dirty(pmd_t pmd) 1412{ 1413 return 0; 1414} 1415 1416static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1417{ 1418 return pmd; 1419} 1420#endif 1421#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1422static inline int pte_soft_dirty(pte_t pte) 1423{ 1424 return 0; 1425} 1426 1427static inline int pmd_soft_dirty(pmd_t pmd) 1428{ 1429 return 0; 1430} 1431 1432static inline pte_t pte_mksoft_dirty(pte_t pte) 1433{ 1434 return pte; 1435} 1436 1437static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 1438{ 1439 return pmd; 1440} 1441 1442static inline pte_t pte_clear_soft_dirty(pte_t pte) 1443{ 1444 return pte; 1445} 1446 1447static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 1448{ 1449 return pmd; 1450} 1451 1452static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1453{ 1454 return pte; 1455} 1456 1457static inline int pte_swp_soft_dirty(pte_t pte) 1458{ 1459 return 0; 1460} 1461 1462static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1463{ 1464 return pte; 1465} 1466 1467static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1468{ 1469 return pmd; 1470} 1471 1472static inline int pmd_swp_soft_dirty(pmd_t pmd) 1473{ 1474 return 0; 1475} 1476 1477static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1478{ 1479 return pmd; 1480} 1481#endif 1482 1483#ifndef __HAVE_PFNMAP_TRACKING 1484/* 1485 * Interfaces that can be used by architecture code to keep track of 1486 * memory type of pfn mappings specified by the remap_pfn_range, 1487 * vmf_insert_pfn. 1488 */ 1489 1490/* 1491 * track_pfn_remap is called when a _new_ pfn mapping is being established 1492 * by remap_pfn_range() for physical range indicated by pfn and size. 1493 */ 1494static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1495 unsigned long pfn, unsigned long addr, 1496 unsigned long size) 1497{ 1498 return 0; 1499} 1500 1501/* 1502 * track_pfn_insert is called when a _new_ single pfn is established 1503 * by vmf_insert_pfn(). 1504 */ 1505static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1506 pfn_t pfn) 1507{ 1508} 1509 1510/* 1511 * track_pfn_copy is called when vma that is covering the pfnmap gets 1512 * copied through copy_page_range(). 1513 */ 1514static inline int track_pfn_copy(struct vm_area_struct *vma) 1515{ 1516 return 0; 1517} 1518 1519/* 1520 * untrack_pfn is called while unmapping a pfnmap for a region. 1521 * untrack can be called for a specific region indicated by pfn and size or 1522 * can be for the entire vma (in which case pfn, size are zero). 1523 */ 1524static inline void untrack_pfn(struct vm_area_struct *vma, 1525 unsigned long pfn, unsigned long size, 1526 bool mm_wr_locked) 1527{ 1528} 1529 1530/* 1531 * untrack_pfn_clear is called while mremapping a pfnmap for a new region 1532 * or fails to copy pgtable during duplicate vm area. 1533 */ 1534static inline void untrack_pfn_clear(struct vm_area_struct *vma) 1535{ 1536} 1537#else 1538extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1539 unsigned long pfn, unsigned long addr, 1540 unsigned long size); 1541extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1542 pfn_t pfn); 1543extern int track_pfn_copy(struct vm_area_struct *vma); 1544extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1545 unsigned long size, bool mm_wr_locked); 1546extern void untrack_pfn_clear(struct vm_area_struct *vma); 1547#endif 1548 1549#ifdef CONFIG_MMU 1550#ifdef __HAVE_COLOR_ZERO_PAGE 1551static inline int is_zero_pfn(unsigned long pfn) 1552{ 1553 extern unsigned long zero_pfn; 1554 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1555 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1556} 1557 1558#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1559 1560#else 1561static inline int is_zero_pfn(unsigned long pfn) 1562{ 1563 extern unsigned long zero_pfn; 1564 return pfn == zero_pfn; 1565} 1566 1567static inline unsigned long my_zero_pfn(unsigned long addr) 1568{ 1569 extern unsigned long zero_pfn; 1570 return zero_pfn; 1571} 1572#endif 1573#else 1574static inline int is_zero_pfn(unsigned long pfn) 1575{ 1576 return 0; 1577} 1578 1579static inline unsigned long my_zero_pfn(unsigned long addr) 1580{ 1581 return 0; 1582} 1583#endif /* CONFIG_MMU */ 1584 1585#ifdef CONFIG_MMU 1586 1587#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1588static inline int pmd_trans_huge(pmd_t pmd) 1589{ 1590 return 0; 1591} 1592#ifndef pmd_write 1593static inline int pmd_write(pmd_t pmd) 1594{ 1595 BUG(); 1596 return 0; 1597} 1598#endif /* pmd_write */ 1599#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1600 1601#ifndef pud_write 1602static inline int pud_write(pud_t pud) 1603{ 1604 BUG(); 1605 return 0; 1606} 1607#endif /* pud_write */ 1608 1609#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1610static inline int pmd_devmap(pmd_t pmd) 1611{ 1612 return 0; 1613} 1614static inline int pud_devmap(pud_t pud) 1615{ 1616 return 0; 1617} 1618static inline int pgd_devmap(pgd_t pgd) 1619{ 1620 return 0; 1621} 1622#endif 1623 1624#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1625 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1626static inline int pud_trans_huge(pud_t pud) 1627{ 1628 return 0; 1629} 1630#endif 1631 1632static inline int pud_trans_unstable(pud_t *pud) 1633{ 1634#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1635 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1636 pud_t pudval = READ_ONCE(*pud); 1637 1638 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1639 return 1; 1640 if (unlikely(pud_bad(pudval))) { 1641 pud_clear_bad(pud); 1642 return 1; 1643 } 1644#endif 1645 return 0; 1646} 1647 1648#ifndef CONFIG_NUMA_BALANCING 1649/* 1650 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is 1651 * perfectly valid to indicate "no" in that case, which is why our default 1652 * implementation defaults to "always no". 1653 * 1654 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE 1655 * page protection due to NUMA hinting. NUMA hinting faults only apply in 1656 * accessible VMAs. 1657 * 1658 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault, 1659 * looking at the VMA accessibility is sufficient. 1660 */ 1661static inline int pte_protnone(pte_t pte) 1662{ 1663 return 0; 1664} 1665 1666static inline int pmd_protnone(pmd_t pmd) 1667{ 1668 return 0; 1669} 1670#endif /* CONFIG_NUMA_BALANCING */ 1671 1672#endif /* CONFIG_MMU */ 1673 1674#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1675 1676#ifndef __PAGETABLE_P4D_FOLDED 1677int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1678void p4d_clear_huge(p4d_t *p4d); 1679#else 1680static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1681{ 1682 return 0; 1683} 1684static inline void p4d_clear_huge(p4d_t *p4d) { } 1685#endif /* !__PAGETABLE_P4D_FOLDED */ 1686 1687int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1688int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1689int pud_clear_huge(pud_t *pud); 1690int pmd_clear_huge(pmd_t *pmd); 1691int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1692int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1693int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1694#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1695static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1696{ 1697 return 0; 1698} 1699static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1700{ 1701 return 0; 1702} 1703static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1704{ 1705 return 0; 1706} 1707static inline void p4d_clear_huge(p4d_t *p4d) { } 1708static inline int pud_clear_huge(pud_t *pud) 1709{ 1710 return 0; 1711} 1712static inline int pmd_clear_huge(pmd_t *pmd) 1713{ 1714 return 0; 1715} 1716static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1717{ 1718 return 0; 1719} 1720static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1721{ 1722 return 0; 1723} 1724static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1725{ 1726 return 0; 1727} 1728#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1729 1730#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1731#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1732/* 1733 * ARCHes with special requirements for evicting THP backing TLB entries can 1734 * implement this. Otherwise also, it can help optimize normal TLB flush in 1735 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1736 * entire TLB if flush span is greater than a threshold, which will 1737 * likely be true for a single huge page. Thus a single THP flush will 1738 * invalidate the entire TLB which is not desirable. 1739 * e.g. see arch/arc: flush_pmd_tlb_range 1740 */ 1741#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1742#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1743#else 1744#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1745#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1746#endif 1747#endif 1748 1749struct file; 1750int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1751 unsigned long size, pgprot_t *vma_prot); 1752 1753#ifndef CONFIG_X86_ESPFIX64 1754static inline void init_espfix_bsp(void) { } 1755#endif 1756 1757extern void __init pgtable_cache_init(void); 1758 1759#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1760static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1761{ 1762 return true; 1763} 1764 1765static inline bool arch_has_pfn_modify_check(void) 1766{ 1767 return false; 1768} 1769#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1770 1771/* 1772 * Architecture PAGE_KERNEL_* fallbacks 1773 * 1774 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1775 * because they really don't support them, or the port needs to be updated to 1776 * reflect the required functionality. Below are a set of relatively safe 1777 * fallbacks, as best effort, which we can count on in lieu of the architectures 1778 * not defining them on their own yet. 1779 */ 1780 1781#ifndef PAGE_KERNEL_RO 1782# define PAGE_KERNEL_RO PAGE_KERNEL 1783#endif 1784 1785#ifndef PAGE_KERNEL_EXEC 1786# define PAGE_KERNEL_EXEC PAGE_KERNEL 1787#endif 1788 1789/* 1790 * Page Table Modification bits for pgtbl_mod_mask. 1791 * 1792 * These are used by the p?d_alloc_track*() set of functions an in the generic 1793 * vmalloc/ioremap code to track at which page-table levels entries have been 1794 * modified. Based on that the code can better decide when vmalloc and ioremap 1795 * mapping changes need to be synchronized to other page-tables in the system. 1796 */ 1797#define __PGTBL_PGD_MODIFIED 0 1798#define __PGTBL_P4D_MODIFIED 1 1799#define __PGTBL_PUD_MODIFIED 2 1800#define __PGTBL_PMD_MODIFIED 3 1801#define __PGTBL_PTE_MODIFIED 4 1802 1803#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1804#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1805#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1806#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1807#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1808 1809/* Page-Table Modification Mask */ 1810typedef unsigned int pgtbl_mod_mask; 1811 1812#endif /* !__ASSEMBLY__ */ 1813 1814#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1815#ifdef CONFIG_PHYS_ADDR_T_64BIT 1816/* 1817 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1818 * with physical address space extension, but falls back to 1819 * BITS_PER_LONG otherwise. 1820 */ 1821#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1822#else 1823#define MAX_POSSIBLE_PHYSMEM_BITS 32 1824#endif 1825#endif 1826 1827#ifndef has_transparent_hugepage 1828#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) 1829#endif 1830 1831#ifndef has_transparent_pud_hugepage 1832#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1833#endif 1834/* 1835 * On some architectures it depends on the mm if the p4d/pud or pmd 1836 * layer of the page table hierarchy is folded or not. 1837 */ 1838#ifndef mm_p4d_folded 1839#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1840#endif 1841 1842#ifndef mm_pud_folded 1843#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1844#endif 1845 1846#ifndef mm_pmd_folded 1847#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1848#endif 1849 1850#ifndef p4d_offset_lockless 1851#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 1852#endif 1853#ifndef pud_offset_lockless 1854#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 1855#endif 1856#ifndef pmd_offset_lockless 1857#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 1858#endif 1859 1860/* 1861 * pXd_leaf() is the API to check whether a pgtable entry is a huge page 1862 * mapping. It should work globally across all archs, without any 1863 * dependency on CONFIG_* options. For architectures that do not support 1864 * huge mappings on specific levels, below fallbacks will be used. 1865 * 1866 * A leaf pgtable entry should always imply the following: 1867 * 1868 * - It is a "present" entry. IOW, before using this API, please check it 1869 * with pXd_present() first. NOTE: it may not always mean the "present 1870 * bit" is set. For example, PROT_NONE entries are always "present". 1871 * 1872 * - It should _never_ be a swap entry of any type. Above "present" check 1873 * should have guarded this, but let's be crystal clear on this. 1874 * 1875 * - It should contain a huge PFN, which points to a huge page larger than 1876 * PAGE_SIZE of the platform. The PFN format isn't important here. 1877 * 1878 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(), 1879 * pXd_devmap(), or hugetlb mappings). 1880 */ 1881#ifndef pgd_leaf 1882#define pgd_leaf(x) false 1883#endif 1884#ifndef p4d_leaf 1885#define p4d_leaf(x) false 1886#endif 1887#ifndef pud_leaf 1888#define pud_leaf(x) false 1889#endif 1890#ifndef pmd_leaf 1891#define pmd_leaf(x) false 1892#endif 1893 1894#ifndef pgd_leaf_size 1895#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) 1896#endif 1897#ifndef p4d_leaf_size 1898#define p4d_leaf_size(x) P4D_SIZE 1899#endif 1900#ifndef pud_leaf_size 1901#define pud_leaf_size(x) PUD_SIZE 1902#endif 1903#ifndef pmd_leaf_size 1904#define pmd_leaf_size(x) PMD_SIZE 1905#endif 1906#ifndef __pte_leaf_size 1907#ifndef pte_leaf_size 1908#define pte_leaf_size(x) PAGE_SIZE 1909#endif 1910#define __pte_leaf_size(x,y) pte_leaf_size(y) 1911#endif 1912 1913/* 1914 * We always define pmd_pfn for all archs as it's used in lots of generic 1915 * code. Now it happens too for pud_pfn (and can happen for larger 1916 * mappings too in the future; we're not there yet). Instead of defining 1917 * it for all archs (like pmd_pfn), provide a fallback. 1918 * 1919 * Note that returning 0 here means any arch that didn't define this can 1920 * get severely wrong when it hits a real pud leaf. It's arch's 1921 * responsibility to properly define it when a huge pud is possible. 1922 */ 1923#ifndef pud_pfn 1924#define pud_pfn(x) 0 1925#endif 1926 1927/* 1928 * Some architectures have MMUs that are configurable or selectable at boot 1929 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it 1930 * helps to have a static maximum value. 1931 */ 1932 1933#ifndef MAX_PTRS_PER_PTE 1934#define MAX_PTRS_PER_PTE PTRS_PER_PTE 1935#endif 1936 1937#ifndef MAX_PTRS_PER_PMD 1938#define MAX_PTRS_PER_PMD PTRS_PER_PMD 1939#endif 1940 1941#ifndef MAX_PTRS_PER_PUD 1942#define MAX_PTRS_PER_PUD PTRS_PER_PUD 1943#endif 1944 1945#ifndef MAX_PTRS_PER_P4D 1946#define MAX_PTRS_PER_P4D PTRS_PER_P4D 1947#endif 1948 1949#ifndef pte_pgprot 1950#define pte_pgprot(x) ((pgprot_t) {0}) 1951#endif 1952 1953#ifndef pmd_pgprot 1954#define pmd_pgprot(x) ((pgprot_t) {0}) 1955#endif 1956 1957#ifndef pud_pgprot 1958#define pud_pgprot(x) ((pgprot_t) {0}) 1959#endif 1960 1961/* description of effects of mapping type and prot in current implementation. 1962 * this is due to the limited x86 page protection hardware. The expected 1963 * behavior is in parens: 1964 * 1965 * map_type prot 1966 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 1967 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1968 * w: (no) no w: (no) no w: (yes) yes w: (no) no 1969 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1970 * 1971 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1972 * w: (no) no w: (no) no w: (copy) copy w: (no) no 1973 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1974 * 1975 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 1976 * MAP_PRIVATE (with Enhanced PAN supported): 1977 * r: (no) no 1978 * w: (no) no 1979 * x: (yes) yes 1980 */ 1981#define DECLARE_VM_GET_PAGE_PROT \ 1982pgprot_t vm_get_page_prot(unsigned long vm_flags) \ 1983{ \ 1984 return protection_map[vm_flags & \ 1985 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ 1986} \ 1987EXPORT_SYMBOL(vm_get_page_prot); 1988 1989#endif /* _LINUX_PGTABLE_H */