Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Macros for manipulating and testing page->flags
4 */
5
6#ifndef PAGE_FLAGS_H
7#define PAGE_FLAGS_H
8
9#include <linux/types.h>
10#include <linux/bug.h>
11#include <linux/mmdebug.h>
12#ifndef __GENERATING_BOUNDS_H
13#include <linux/mm_types.h>
14#include <generated/bounds.h>
15#endif /* !__GENERATING_BOUNDS_H */
16
17/*
18 * Various page->flags bits:
19 *
20 * PG_reserved is set for special pages. The "struct page" of such a page
21 * should in general not be touched (e.g. set dirty) except by its owner.
22 * Pages marked as PG_reserved include:
23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24 * initrd, HW tables)
25 * - Pages reserved or allocated early during boot (before the page allocator
26 * was initialized). This includes (depending on the architecture) the
27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28 * much more. Once (if ever) freed, PG_reserved is cleared and they will
29 * be given to the page allocator.
30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31 * to read/write these pages might end badly. Don't touch!
32 * - The zero page(s)
33 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
34 * control pages, vmcoreinfo)
35 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
36 * not marked PG_reserved (as they might be in use by somebody else who does
37 * not respect the caching strategy).
38 * - MCA pages on ia64
39 * - Pages holding CPU notes for POWER Firmware Assisted Dump
40 * - Device memory (e.g. PMEM, DAX, HMM)
41 * Some PG_reserved pages will be excluded from the hibernation image.
42 * PG_reserved does in general not hinder anybody from dumping or swapping
43 * and is no longer required for remap_pfn_range(). ioremap might require it.
44 * Consequently, PG_reserved for a page mapped into user space can indicate
45 * the zero page, the vDSO, MMIO pages or device memory.
46 *
47 * The PG_private bitflag is set on pagecache pages if they contain filesystem
48 * specific data (which is normally at page->private). It can be used by
49 * private allocations for its own usage.
50 *
51 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
52 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
53 * is set before writeback starts and cleared when it finishes.
54 *
55 * PG_locked also pins a page in pagecache, and blocks truncation of the file
56 * while it is held.
57 *
58 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
59 * to become unlocked.
60 *
61 * PG_swapbacked is set when a page uses swap as a backing storage. This are
62 * usually PageAnon or shmem pages but please note that even anonymous pages
63 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
64 * a result of MADV_FREE).
65 *
66 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
67 * file-backed pagecache (see mm/vmscan.c).
68 *
69 * PG_arch_1 is an architecture specific page state bit. The generic code
70 * guarantees that this bit is cleared for a page when it first is entered into
71 * the page cache.
72 *
73 * PG_hwpoison indicates that a page got corrupted in hardware and contains
74 * data with incorrect ECC bits that triggered a machine check. Accessing is
75 * not safe since it may cause another machine check. Don't touch!
76 */
77
78/*
79 * Don't use the pageflags directly. Use the PageFoo macros.
80 *
81 * The page flags field is split into two parts, the main flags area
82 * which extends from the low bits upwards, and the fields area which
83 * extends from the high bits downwards.
84 *
85 * | FIELD | ... | FLAGS |
86 * N-1 ^ 0
87 * (NR_PAGEFLAGS)
88 *
89 * The fields area is reserved for fields mapping zone, node (for NUMA) and
90 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
91 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
92 */
93enum pageflags {
94 PG_locked, /* Page is locked. Don't touch. */
95 PG_writeback, /* Page is under writeback */
96 PG_referenced,
97 PG_uptodate,
98 PG_dirty,
99 PG_lru,
100 PG_head, /* Must be in bit 6 */
101 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
102 PG_active,
103 PG_workingset,
104 PG_owner_priv_1, /* Owner use. If pagecache, fs may use */
105 PG_owner_2, /* Owner use. If pagecache, fs may use */
106 PG_arch_1,
107 PG_reserved,
108 PG_private, /* If pagecache, has fs-private data */
109 PG_private_2, /* If pagecache, has fs aux data */
110 PG_reclaim, /* To be reclaimed asap */
111 PG_swapbacked, /* Page is backed by RAM/swap */
112 PG_unevictable, /* Page is "unevictable" */
113 PG_dropbehind, /* drop pages on IO completion */
114#ifdef CONFIG_MMU
115 PG_mlocked, /* Page is vma mlocked */
116#endif
117#ifdef CONFIG_MEMORY_FAILURE
118 PG_hwpoison, /* hardware poisoned page. Don't touch */
119#endif
120#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
121 PG_young,
122 PG_idle,
123#endif
124#ifdef CONFIG_ARCH_USES_PG_ARCH_2
125 PG_arch_2,
126#endif
127#ifdef CONFIG_ARCH_USES_PG_ARCH_3
128 PG_arch_3,
129#endif
130 __NR_PAGEFLAGS,
131
132 PG_readahead = PG_reclaim,
133
134 /* Anonymous memory (and shmem) */
135 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
136 /* Some filesystems */
137 PG_checked = PG_owner_priv_1,
138
139 /*
140 * Depending on the way an anonymous folio can be mapped into a page
141 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
142 * THP), PG_anon_exclusive may be set only for the head page or for
143 * tail pages of an anonymous folio. For now, we only expect it to be
144 * set on tail pages for PTE-mapped THP.
145 */
146 PG_anon_exclusive = PG_owner_2,
147
148 /*
149 * Set if all buffer heads in the folio are mapped.
150 * Filesystems which do not use BHs can use it for their own purpose.
151 */
152 PG_mappedtodisk = PG_owner_2,
153
154 /* Two page bits are conscripted by FS-Cache to maintain local caching
155 * state. These bits are set on pages belonging to the netfs's inodes
156 * when those inodes are being locally cached.
157 */
158 PG_fscache = PG_private_2, /* page backed by cache */
159
160 /* XEN */
161 /* Pinned in Xen as a read-only pagetable page. */
162 PG_pinned = PG_owner_priv_1,
163 /* Pinned as part of domain save (see xen_mm_pin_all()). */
164 PG_savepinned = PG_dirty,
165 /* Has a grant mapping of another (foreign) domain's page. */
166 PG_foreign = PG_owner_priv_1,
167 /* Remapped by swiotlb-xen. */
168 PG_xen_remapped = PG_owner_priv_1,
169
170 /* non-lru isolated movable page */
171 PG_isolated = PG_reclaim,
172
173 /* Only valid for buddy pages. Used to track pages that are reported */
174 PG_reported = PG_uptodate,
175
176#ifdef CONFIG_MEMORY_HOTPLUG
177 /* For self-hosted memmap pages */
178 PG_vmemmap_self_hosted = PG_owner_priv_1,
179#endif
180
181 /*
182 * Flags only valid for compound pages. Stored in first tail page's
183 * flags word. Cannot use the first 8 flags or any flag marked as
184 * PF_ANY.
185 */
186
187 /* At least one page in this folio has the hwpoison flag set */
188 PG_has_hwpoisoned = PG_active,
189 PG_large_rmappable = PG_workingset, /* anon or file-backed */
190 PG_partially_mapped = PG_reclaim, /* was identified to be partially mapped */
191};
192
193#define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1)
194
195#ifndef __GENERATING_BOUNDS_H
196
197#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
198DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
199
200/*
201 * Return the real head page struct iff the @page is a fake head page, otherwise
202 * return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
203 */
204static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
205{
206 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
207 return page;
208
209 /*
210 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
211 * struct page. The alignment check aims to avoid access the fields (
212 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
213 * cold cacheline in some cases.
214 */
215 if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
216 test_bit(PG_head, &page->flags)) {
217 /*
218 * We can safely access the field of the @page[1] with PG_head
219 * because the @page is a compound page composed with at least
220 * two contiguous pages.
221 */
222 unsigned long head = READ_ONCE(page[1].compound_head);
223
224 if (likely(head & 1))
225 return (const struct page *)(head - 1);
226 }
227 return page;
228}
229#else
230static inline const struct page *page_fixed_fake_head(const struct page *page)
231{
232 return page;
233}
234#endif
235
236static __always_inline int page_is_fake_head(const struct page *page)
237{
238 return page_fixed_fake_head(page) != page;
239}
240
241static __always_inline unsigned long _compound_head(const struct page *page)
242{
243 unsigned long head = READ_ONCE(page->compound_head);
244
245 if (unlikely(head & 1))
246 return head - 1;
247 return (unsigned long)page_fixed_fake_head(page);
248}
249
250#define compound_head(page) ((typeof(page))_compound_head(page))
251
252/**
253 * page_folio - Converts from page to folio.
254 * @p: The page.
255 *
256 * Every page is part of a folio. This function cannot be called on a
257 * NULL pointer.
258 *
259 * Context: No reference, nor lock is required on @page. If the caller
260 * does not hold a reference, this call may race with a folio split, so
261 * it should re-check the folio still contains this page after gaining
262 * a reference on the folio.
263 * Return: The folio which contains this page.
264 */
265#define page_folio(p) (_Generic((p), \
266 const struct page *: (const struct folio *)_compound_head(p), \
267 struct page *: (struct folio *)_compound_head(p)))
268
269/**
270 * folio_page - Return a page from a folio.
271 * @folio: The folio.
272 * @n: The page number to return.
273 *
274 * @n is relative to the start of the folio. This function does not
275 * check that the page number lies within @folio; the caller is presumed
276 * to have a reference to the page.
277 */
278#define folio_page(folio, n) nth_page(&(folio)->page, n)
279
280static __always_inline int PageTail(const struct page *page)
281{
282 return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
283}
284
285static __always_inline int PageCompound(const struct page *page)
286{
287 return test_bit(PG_head, &page->flags) ||
288 READ_ONCE(page->compound_head) & 1;
289}
290
291#define PAGE_POISON_PATTERN -1l
292static inline int PagePoisoned(const struct page *page)
293{
294 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
295}
296
297#ifdef CONFIG_DEBUG_VM
298void page_init_poison(struct page *page, size_t size);
299#else
300static inline void page_init_poison(struct page *page, size_t size)
301{
302}
303#endif
304
305static const unsigned long *const_folio_flags(const struct folio *folio,
306 unsigned n)
307{
308 const struct page *page = &folio->page;
309
310 VM_BUG_ON_PGFLAGS(page->compound_head & 1, page);
311 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
312 return &page[n].flags;
313}
314
315static unsigned long *folio_flags(struct folio *folio, unsigned n)
316{
317 struct page *page = &folio->page;
318
319 VM_BUG_ON_PGFLAGS(page->compound_head & 1, page);
320 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
321 return &page[n].flags;
322}
323
324/*
325 * Page flags policies wrt compound pages
326 *
327 * PF_POISONED_CHECK
328 * check if this struct page poisoned/uninitialized
329 *
330 * PF_ANY:
331 * the page flag is relevant for small, head and tail pages.
332 *
333 * PF_HEAD:
334 * for compound page all operations related to the page flag applied to
335 * head page.
336 *
337 * PF_NO_TAIL:
338 * modifications of the page flag must be done on small or head pages,
339 * checks can be done on tail pages too.
340 *
341 * PF_NO_COMPOUND:
342 * the page flag is not relevant for compound pages.
343 *
344 * PF_SECOND:
345 * the page flag is stored in the first tail page.
346 */
347#define PF_POISONED_CHECK(page) ({ \
348 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \
349 page; })
350#define PF_ANY(page, enforce) PF_POISONED_CHECK(page)
351#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page))
352#define PF_NO_TAIL(page, enforce) ({ \
353 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
354 PF_POISONED_CHECK(compound_head(page)); })
355#define PF_NO_COMPOUND(page, enforce) ({ \
356 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
357 PF_POISONED_CHECK(page); })
358#define PF_SECOND(page, enforce) ({ \
359 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \
360 PF_POISONED_CHECK(&page[1]); })
361
362/* Which page is the flag stored in */
363#define FOLIO_PF_ANY 0
364#define FOLIO_PF_HEAD 0
365#define FOLIO_PF_NO_TAIL 0
366#define FOLIO_PF_NO_COMPOUND 0
367#define FOLIO_PF_SECOND 1
368
369#define FOLIO_HEAD_PAGE 0
370#define FOLIO_SECOND_PAGE 1
371
372/*
373 * Macros to create function definitions for page flags
374 */
375#define FOLIO_TEST_FLAG(name, page) \
376static __always_inline bool folio_test_##name(const struct folio *folio) \
377{ return test_bit(PG_##name, const_folio_flags(folio, page)); }
378
379#define FOLIO_SET_FLAG(name, page) \
380static __always_inline void folio_set_##name(struct folio *folio) \
381{ set_bit(PG_##name, folio_flags(folio, page)); }
382
383#define FOLIO_CLEAR_FLAG(name, page) \
384static __always_inline void folio_clear_##name(struct folio *folio) \
385{ clear_bit(PG_##name, folio_flags(folio, page)); }
386
387#define __FOLIO_SET_FLAG(name, page) \
388static __always_inline void __folio_set_##name(struct folio *folio) \
389{ __set_bit(PG_##name, folio_flags(folio, page)); }
390
391#define __FOLIO_CLEAR_FLAG(name, page) \
392static __always_inline void __folio_clear_##name(struct folio *folio) \
393{ __clear_bit(PG_##name, folio_flags(folio, page)); }
394
395#define FOLIO_TEST_SET_FLAG(name, page) \
396static __always_inline bool folio_test_set_##name(struct folio *folio) \
397{ return test_and_set_bit(PG_##name, folio_flags(folio, page)); }
398
399#define FOLIO_TEST_CLEAR_FLAG(name, page) \
400static __always_inline bool folio_test_clear_##name(struct folio *folio) \
401{ return test_and_clear_bit(PG_##name, folio_flags(folio, page)); }
402
403#define FOLIO_FLAG(name, page) \
404FOLIO_TEST_FLAG(name, page) \
405FOLIO_SET_FLAG(name, page) \
406FOLIO_CLEAR_FLAG(name, page)
407
408#define TESTPAGEFLAG(uname, lname, policy) \
409FOLIO_TEST_FLAG(lname, FOLIO_##policy) \
410static __always_inline int Page##uname(const struct page *page) \
411{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
412
413#define SETPAGEFLAG(uname, lname, policy) \
414FOLIO_SET_FLAG(lname, FOLIO_##policy) \
415static __always_inline void SetPage##uname(struct page *page) \
416{ set_bit(PG_##lname, &policy(page, 1)->flags); }
417
418#define CLEARPAGEFLAG(uname, lname, policy) \
419FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \
420static __always_inline void ClearPage##uname(struct page *page) \
421{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
422
423#define __SETPAGEFLAG(uname, lname, policy) \
424__FOLIO_SET_FLAG(lname, FOLIO_##policy) \
425static __always_inline void __SetPage##uname(struct page *page) \
426{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
427
428#define __CLEARPAGEFLAG(uname, lname, policy) \
429__FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \
430static __always_inline void __ClearPage##uname(struct page *page) \
431{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
432
433#define TESTSETFLAG(uname, lname, policy) \
434FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy) \
435static __always_inline int TestSetPage##uname(struct page *page) \
436{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
437
438#define TESTCLEARFLAG(uname, lname, policy) \
439FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy) \
440static __always_inline int TestClearPage##uname(struct page *page) \
441{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
442
443#define PAGEFLAG(uname, lname, policy) \
444 TESTPAGEFLAG(uname, lname, policy) \
445 SETPAGEFLAG(uname, lname, policy) \
446 CLEARPAGEFLAG(uname, lname, policy)
447
448#define __PAGEFLAG(uname, lname, policy) \
449 TESTPAGEFLAG(uname, lname, policy) \
450 __SETPAGEFLAG(uname, lname, policy) \
451 __CLEARPAGEFLAG(uname, lname, policy)
452
453#define TESTSCFLAG(uname, lname, policy) \
454 TESTSETFLAG(uname, lname, policy) \
455 TESTCLEARFLAG(uname, lname, policy)
456
457#define FOLIO_TEST_FLAG_FALSE(name) \
458static inline bool folio_test_##name(const struct folio *folio) \
459{ return false; }
460#define FOLIO_SET_FLAG_NOOP(name) \
461static inline void folio_set_##name(struct folio *folio) { }
462#define FOLIO_CLEAR_FLAG_NOOP(name) \
463static inline void folio_clear_##name(struct folio *folio) { }
464#define __FOLIO_SET_FLAG_NOOP(name) \
465static inline void __folio_set_##name(struct folio *folio) { }
466#define __FOLIO_CLEAR_FLAG_NOOP(name) \
467static inline void __folio_clear_##name(struct folio *folio) { }
468#define FOLIO_TEST_SET_FLAG_FALSE(name) \
469static inline bool folio_test_set_##name(struct folio *folio) \
470{ return false; }
471#define FOLIO_TEST_CLEAR_FLAG_FALSE(name) \
472static inline bool folio_test_clear_##name(struct folio *folio) \
473{ return false; }
474
475#define FOLIO_FLAG_FALSE(name) \
476FOLIO_TEST_FLAG_FALSE(name) \
477FOLIO_SET_FLAG_NOOP(name) \
478FOLIO_CLEAR_FLAG_NOOP(name)
479
480#define TESTPAGEFLAG_FALSE(uname, lname) \
481FOLIO_TEST_FLAG_FALSE(lname) \
482static inline int Page##uname(const struct page *page) { return 0; }
483
484#define SETPAGEFLAG_NOOP(uname, lname) \
485FOLIO_SET_FLAG_NOOP(lname) \
486static inline void SetPage##uname(struct page *page) { }
487
488#define CLEARPAGEFLAG_NOOP(uname, lname) \
489FOLIO_CLEAR_FLAG_NOOP(lname) \
490static inline void ClearPage##uname(struct page *page) { }
491
492#define __CLEARPAGEFLAG_NOOP(uname, lname) \
493__FOLIO_CLEAR_FLAG_NOOP(lname) \
494static inline void __ClearPage##uname(struct page *page) { }
495
496#define TESTSETFLAG_FALSE(uname, lname) \
497FOLIO_TEST_SET_FLAG_FALSE(lname) \
498static inline int TestSetPage##uname(struct page *page) { return 0; }
499
500#define TESTCLEARFLAG_FALSE(uname, lname) \
501FOLIO_TEST_CLEAR_FLAG_FALSE(lname) \
502static inline int TestClearPage##uname(struct page *page) { return 0; }
503
504#define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \
505 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
506
507#define TESTSCFLAG_FALSE(uname, lname) \
508 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
509
510__PAGEFLAG(Locked, locked, PF_NO_TAIL)
511FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE)
512FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE)
513 FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE)
514 __FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE)
515PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
516 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
517PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
518 TESTCLEARFLAG(LRU, lru, PF_HEAD)
519FOLIO_FLAG(active, FOLIO_HEAD_PAGE)
520 __FOLIO_CLEAR_FLAG(active, FOLIO_HEAD_PAGE)
521 FOLIO_TEST_CLEAR_FLAG(active, FOLIO_HEAD_PAGE)
522PAGEFLAG(Workingset, workingset, PF_HEAD)
523 TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
524PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
525
526/* Xen */
527PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
528 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
529PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
530PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
531PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
532 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
533
534PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
535 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
536 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
537FOLIO_FLAG(swapbacked, FOLIO_HEAD_PAGE)
538 __FOLIO_CLEAR_FLAG(swapbacked, FOLIO_HEAD_PAGE)
539 __FOLIO_SET_FLAG(swapbacked, FOLIO_HEAD_PAGE)
540
541/*
542 * Private page markings that may be used by the filesystem that owns the page
543 * for its own purposes.
544 * - PG_private and PG_private_2 cause release_folio() and co to be invoked
545 */
546PAGEFLAG(Private, private, PF_ANY)
547FOLIO_FLAG(private_2, FOLIO_HEAD_PAGE)
548
549/* owner_2 can be set on tail pages for anon memory */
550FOLIO_FLAG(owner_2, FOLIO_HEAD_PAGE)
551
552/*
553 * Only test-and-set exist for PG_writeback. The unconditional operators are
554 * risky: they bypass page accounting.
555 */
556TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
557 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
558FOLIO_FLAG(mappedtodisk, FOLIO_HEAD_PAGE)
559
560/* PG_readahead is only used for reads; PG_reclaim is only for writes */
561PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
562 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
563FOLIO_FLAG(readahead, FOLIO_HEAD_PAGE)
564 FOLIO_TEST_CLEAR_FLAG(readahead, FOLIO_HEAD_PAGE)
565
566FOLIO_FLAG(dropbehind, FOLIO_HEAD_PAGE)
567 FOLIO_TEST_CLEAR_FLAG(dropbehind, FOLIO_HEAD_PAGE)
568 __FOLIO_SET_FLAG(dropbehind, FOLIO_HEAD_PAGE)
569
570#ifdef CONFIG_HIGHMEM
571/*
572 * Must use a macro here due to header dependency issues. page_zone() is not
573 * available at this point.
574 */
575#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
576#define folio_test_highmem(__f) is_highmem_idx(folio_zonenum(__f))
577#else
578PAGEFLAG_FALSE(HighMem, highmem)
579#endif
580
581#ifdef CONFIG_SWAP
582static __always_inline bool folio_test_swapcache(const struct folio *folio)
583{
584 return folio_test_swapbacked(folio) &&
585 test_bit(PG_swapcache, const_folio_flags(folio, 0));
586}
587
588FOLIO_SET_FLAG(swapcache, FOLIO_HEAD_PAGE)
589FOLIO_CLEAR_FLAG(swapcache, FOLIO_HEAD_PAGE)
590#else
591FOLIO_FLAG_FALSE(swapcache)
592#endif
593
594FOLIO_FLAG(unevictable, FOLIO_HEAD_PAGE)
595 __FOLIO_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE)
596 FOLIO_TEST_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE)
597
598#ifdef CONFIG_MMU
599FOLIO_FLAG(mlocked, FOLIO_HEAD_PAGE)
600 __FOLIO_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE)
601 FOLIO_TEST_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE)
602 FOLIO_TEST_SET_FLAG(mlocked, FOLIO_HEAD_PAGE)
603#else
604FOLIO_FLAG_FALSE(mlocked)
605 __FOLIO_CLEAR_FLAG_NOOP(mlocked)
606 FOLIO_TEST_CLEAR_FLAG_FALSE(mlocked)
607 FOLIO_TEST_SET_FLAG_FALSE(mlocked)
608#endif
609
610#ifdef CONFIG_MEMORY_FAILURE
611PAGEFLAG(HWPoison, hwpoison, PF_ANY)
612TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
613#define __PG_HWPOISON (1UL << PG_hwpoison)
614#else
615PAGEFLAG_FALSE(HWPoison, hwpoison)
616#define __PG_HWPOISON 0
617#endif
618
619#ifdef CONFIG_PAGE_IDLE_FLAG
620#ifdef CONFIG_64BIT
621FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE)
622FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE)
623FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE)
624FOLIO_FLAG(idle, FOLIO_HEAD_PAGE)
625#endif
626/* See page_idle.h for !64BIT workaround */
627#else /* !CONFIG_PAGE_IDLE_FLAG */
628FOLIO_FLAG_FALSE(young)
629FOLIO_TEST_CLEAR_FLAG_FALSE(young)
630FOLIO_FLAG_FALSE(idle)
631#endif
632
633/*
634 * PageReported() is used to track reported free pages within the Buddy
635 * allocator. We can use the non-atomic version of the test and set
636 * operations as both should be shielded with the zone lock to prevent
637 * any possible races on the setting or clearing of the bit.
638 */
639__PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
640
641#ifdef CONFIG_MEMORY_HOTPLUG
642PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
643#else
644PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
645#endif
646
647/*
648 * On an anonymous folio mapped into a user virtual memory area,
649 * folio->mapping points to its anon_vma, not to a struct address_space;
650 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
651 *
652 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
653 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
654 * bit; and then folio->mapping points, not to an anon_vma, but to a private
655 * structure which KSM associates with that merged page. See ksm.h.
656 *
657 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
658 * page and then folio->mapping points to a struct movable_operations.
659 *
660 * Please note that, confusingly, "folio_mapping" refers to the inode
661 * address_space which maps the folio from disk; whereas "folio_mapped"
662 * refers to user virtual address space into which the folio is mapped.
663 *
664 * For slab pages, since slab reuses the bits in struct page to store its
665 * internal states, the folio->mapping does not exist as such, nor do
666 * these flags below. So in order to avoid testing non-existent bits,
667 * please make sure that folio_test_slab(folio) actually evaluates to
668 * false before calling the following functions (e.g., folio_test_anon).
669 * See mm/slab.h.
670 */
671#define PAGE_MAPPING_ANON 0x1
672#define PAGE_MAPPING_MOVABLE 0x2
673#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
674#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
675
676/*
677 * Different with flags above, this flag is used only for fsdax mode. It
678 * indicates that this page->mapping is now under reflink case.
679 */
680#define PAGE_MAPPING_DAX_SHARED ((void *)0x1)
681
682static __always_inline bool folio_mapping_flags(const struct folio *folio)
683{
684 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0;
685}
686
687static __always_inline bool PageMappingFlags(const struct page *page)
688{
689 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
690}
691
692static __always_inline bool folio_test_anon(const struct folio *folio)
693{
694 return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
695}
696
697static __always_inline bool PageAnonNotKsm(const struct page *page)
698{
699 unsigned long flags = (unsigned long)page_folio(page)->mapping;
700
701 return (flags & PAGE_MAPPING_FLAGS) == PAGE_MAPPING_ANON;
702}
703
704static __always_inline bool PageAnon(const struct page *page)
705{
706 return folio_test_anon(page_folio(page));
707}
708
709static __always_inline bool __folio_test_movable(const struct folio *folio)
710{
711 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
712 PAGE_MAPPING_MOVABLE;
713}
714
715static __always_inline bool __PageMovable(const struct page *page)
716{
717 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
718 PAGE_MAPPING_MOVABLE;
719}
720
721#ifdef CONFIG_KSM
722/*
723 * A KSM page is one of those write-protected "shared pages" or "merged pages"
724 * which KSM maps into multiple mms, wherever identical anonymous page content
725 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
726 * anon_vma, but to that page's node of the stable tree.
727 */
728static __always_inline bool folio_test_ksm(const struct folio *folio)
729{
730 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
731 PAGE_MAPPING_KSM;
732}
733#else
734FOLIO_TEST_FLAG_FALSE(ksm)
735#endif
736
737u64 stable_page_flags(const struct page *page);
738
739/**
740 * folio_xor_flags_has_waiters - Change some folio flags.
741 * @folio: The folio.
742 * @mask: Bits set in this word will be changed.
743 *
744 * This must only be used for flags which are changed with the folio
745 * lock held. For example, it is unsafe to use for PG_dirty as that
746 * can be set without the folio lock held. It can also only be used
747 * on flags which are in the range 0-6 as some of the implementations
748 * only affect those bits.
749 *
750 * Return: Whether there are tasks waiting on the folio.
751 */
752static inline bool folio_xor_flags_has_waiters(struct folio *folio,
753 unsigned long mask)
754{
755 return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0));
756}
757
758/**
759 * folio_test_uptodate - Is this folio up to date?
760 * @folio: The folio.
761 *
762 * The uptodate flag is set on a folio when every byte in the folio is
763 * at least as new as the corresponding bytes on storage. Anonymous
764 * and CoW folios are always uptodate. If the folio is not uptodate,
765 * some of the bytes in it may be; see the is_partially_uptodate()
766 * address_space operation.
767 */
768static inline bool folio_test_uptodate(const struct folio *folio)
769{
770 bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0));
771 /*
772 * Must ensure that the data we read out of the folio is loaded
773 * _after_ we've loaded folio->flags to check the uptodate bit.
774 * We can skip the barrier if the folio is not uptodate, because
775 * we wouldn't be reading anything from it.
776 *
777 * See folio_mark_uptodate() for the other side of the story.
778 */
779 if (ret)
780 smp_rmb();
781
782 return ret;
783}
784
785static inline bool PageUptodate(const struct page *page)
786{
787 return folio_test_uptodate(page_folio(page));
788}
789
790static __always_inline void __folio_mark_uptodate(struct folio *folio)
791{
792 smp_wmb();
793 __set_bit(PG_uptodate, folio_flags(folio, 0));
794}
795
796static __always_inline void folio_mark_uptodate(struct folio *folio)
797{
798 /*
799 * Memory barrier must be issued before setting the PG_uptodate bit,
800 * so that all previous stores issued in order to bring the folio
801 * uptodate are actually visible before folio_test_uptodate becomes true.
802 */
803 smp_wmb();
804 set_bit(PG_uptodate, folio_flags(folio, 0));
805}
806
807static __always_inline void __SetPageUptodate(struct page *page)
808{
809 __folio_mark_uptodate((struct folio *)page);
810}
811
812static __always_inline void SetPageUptodate(struct page *page)
813{
814 folio_mark_uptodate((struct folio *)page);
815}
816
817CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
818
819void __folio_start_writeback(struct folio *folio, bool keep_write);
820void set_page_writeback(struct page *page);
821
822#define folio_start_writeback(folio) \
823 __folio_start_writeback(folio, false)
824#define folio_start_writeback_keepwrite(folio) \
825 __folio_start_writeback(folio, true)
826
827static __always_inline bool folio_test_head(const struct folio *folio)
828{
829 return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY));
830}
831
832static __always_inline int PageHead(const struct page *page)
833{
834 PF_POISONED_CHECK(page);
835 return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
836}
837
838__SETPAGEFLAG(Head, head, PF_ANY)
839__CLEARPAGEFLAG(Head, head, PF_ANY)
840CLEARPAGEFLAG(Head, head, PF_ANY)
841
842/**
843 * folio_test_large() - Does this folio contain more than one page?
844 * @folio: The folio to test.
845 *
846 * Return: True if the folio is larger than one page.
847 */
848static inline bool folio_test_large(const struct folio *folio)
849{
850 return folio_test_head(folio);
851}
852
853static __always_inline void set_compound_head(struct page *page, struct page *head)
854{
855 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
856}
857
858static __always_inline void clear_compound_head(struct page *page)
859{
860 WRITE_ONCE(page->compound_head, 0);
861}
862
863#ifdef CONFIG_TRANSPARENT_HUGEPAGE
864static inline void ClearPageCompound(struct page *page)
865{
866 BUG_ON(!PageHead(page));
867 ClearPageHead(page);
868}
869FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE)
870FOLIO_FLAG(partially_mapped, FOLIO_SECOND_PAGE)
871#else
872FOLIO_FLAG_FALSE(large_rmappable)
873FOLIO_FLAG_FALSE(partially_mapped)
874#endif
875
876#define PG_head_mask ((1UL << PG_head))
877
878#ifdef CONFIG_TRANSPARENT_HUGEPAGE
879/*
880 * PageHuge() only returns true for hugetlbfs pages, but not for
881 * normal or transparent huge pages.
882 *
883 * PageTransHuge() returns true for both transparent huge and
884 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
885 * called only in the core VM paths where hugetlbfs pages can't exist.
886 */
887static inline int PageTransHuge(const struct page *page)
888{
889 VM_BUG_ON_PAGE(PageTail(page), page);
890 return PageHead(page);
891}
892
893/*
894 * PageTransCompound returns true for both transparent huge pages
895 * and hugetlbfs pages, so it should only be called when it's known
896 * that hugetlbfs pages aren't involved.
897 */
898static inline int PageTransCompound(const struct page *page)
899{
900 return PageCompound(page);
901}
902#else
903TESTPAGEFLAG_FALSE(TransHuge, transhuge)
904TESTPAGEFLAG_FALSE(TransCompound, transcompound)
905#endif
906
907#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
908/*
909 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
910 * compound page.
911 *
912 * This flag is set by hwpoison handler. Cleared by THP split or free page.
913 */
914FOLIO_FLAG(has_hwpoisoned, FOLIO_SECOND_PAGE)
915#else
916FOLIO_FLAG_FALSE(has_hwpoisoned)
917#endif
918
919/*
920 * For pages that do not use mapcount, page_type may be used.
921 * The low 24 bits of pagetype may be used for your own purposes, as long
922 * as you are careful to not affect the top 8 bits. The low bits of
923 * pagetype will be overwritten when you clear the page_type from the page.
924 */
925enum pagetype {
926 /* 0x00-0x7f are positive numbers, ie mapcount */
927 /* Reserve 0x80-0xef for mapcount overflow. */
928 PGTY_buddy = 0xf0,
929 PGTY_offline = 0xf1,
930 PGTY_table = 0xf2,
931 PGTY_guard = 0xf3,
932 PGTY_hugetlb = 0xf4,
933 PGTY_slab = 0xf5,
934 PGTY_zsmalloc = 0xf6,
935 PGTY_unaccepted = 0xf7,
936
937 PGTY_mapcount_underflow = 0xff
938};
939
940static inline bool page_type_has_type(int page_type)
941{
942 return page_type < (PGTY_mapcount_underflow << 24);
943}
944
945/* This takes a mapcount which is one more than page->_mapcount */
946static inline bool page_mapcount_is_type(unsigned int mapcount)
947{
948 return page_type_has_type(mapcount - 1);
949}
950
951static inline bool page_has_type(const struct page *page)
952{
953 return page_mapcount_is_type(data_race(page->page_type));
954}
955
956#define FOLIO_TYPE_OPS(lname, fname) \
957static __always_inline bool folio_test_##fname(const struct folio *folio) \
958{ \
959 return data_race(folio->page.page_type >> 24) == PGTY_##lname; \
960} \
961static __always_inline void __folio_set_##fname(struct folio *folio) \
962{ \
963 if (folio_test_##fname(folio)) \
964 return; \
965 VM_BUG_ON_FOLIO(data_race(folio->page.page_type) != UINT_MAX, \
966 folio); \
967 folio->page.page_type = (unsigned int)PGTY_##lname << 24; \
968} \
969static __always_inline void __folio_clear_##fname(struct folio *folio) \
970{ \
971 if (folio->page.page_type == UINT_MAX) \
972 return; \
973 VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio); \
974 folio->page.page_type = UINT_MAX; \
975}
976
977#define PAGE_TYPE_OPS(uname, lname, fname) \
978FOLIO_TYPE_OPS(lname, fname) \
979static __always_inline int Page##uname(const struct page *page) \
980{ \
981 return data_race(page->page_type >> 24) == PGTY_##lname; \
982} \
983static __always_inline void __SetPage##uname(struct page *page) \
984{ \
985 if (Page##uname(page)) \
986 return; \
987 VM_BUG_ON_PAGE(data_race(page->page_type) != UINT_MAX, page); \
988 page->page_type = (unsigned int)PGTY_##lname << 24; \
989} \
990static __always_inline void __ClearPage##uname(struct page *page) \
991{ \
992 if (page->page_type == UINT_MAX) \
993 return; \
994 VM_BUG_ON_PAGE(!Page##uname(page), page); \
995 page->page_type = UINT_MAX; \
996}
997
998/*
999 * PageBuddy() indicates that the page is free and in the buddy system
1000 * (see mm/page_alloc.c).
1001 */
1002PAGE_TYPE_OPS(Buddy, buddy, buddy)
1003
1004/*
1005 * PageOffline() indicates that the page is logically offline although the
1006 * containing section is online. (e.g. inflated in a balloon driver or
1007 * not onlined when onlining the section).
1008 * The content of these pages is effectively stale. Such pages should not
1009 * be touched (read/write/dump/save) except by their owner.
1010 *
1011 * When a memory block gets onlined, all pages are initialized with a
1012 * refcount of 1 and PageOffline(). generic_online_page() will
1013 * take care of clearing PageOffline().
1014 *
1015 * If a driver wants to allow to offline unmovable PageOffline() pages without
1016 * putting them back to the buddy, it can do so via the memory notifier by
1017 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
1018 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
1019 * pages (now with a reference count of zero) are treated like free (unmanaged)
1020 * pages, allowing the containing memory block to get offlined. A driver that
1021 * relies on this feature is aware that re-onlining the memory block will
1022 * require not giving them to the buddy via generic_online_page().
1023 *
1024 * Memory offlining code will not adjust the managed page count for any
1025 * PageOffline() pages, treating them like they were never exposed to the
1026 * buddy using generic_online_page().
1027 *
1028 * There are drivers that mark a page PageOffline() and expect there won't be
1029 * any further access to page content. PFN walkers that read content of random
1030 * pages should check PageOffline() and synchronize with such drivers using
1031 * page_offline_freeze()/page_offline_thaw().
1032 */
1033PAGE_TYPE_OPS(Offline, offline, offline)
1034
1035extern void page_offline_freeze(void);
1036extern void page_offline_thaw(void);
1037extern void page_offline_begin(void);
1038extern void page_offline_end(void);
1039
1040/*
1041 * Marks pages in use as page tables.
1042 */
1043PAGE_TYPE_OPS(Table, table, pgtable)
1044
1045/*
1046 * Marks guardpages used with debug_pagealloc.
1047 */
1048PAGE_TYPE_OPS(Guard, guard, guard)
1049
1050FOLIO_TYPE_OPS(slab, slab)
1051
1052/**
1053 * PageSlab - Determine if the page belongs to the slab allocator
1054 * @page: The page to test.
1055 *
1056 * Context: Any context.
1057 * Return: True for slab pages, false for any other kind of page.
1058 */
1059static inline bool PageSlab(const struct page *page)
1060{
1061 return folio_test_slab(page_folio(page));
1062}
1063
1064#ifdef CONFIG_HUGETLB_PAGE
1065FOLIO_TYPE_OPS(hugetlb, hugetlb)
1066#else
1067FOLIO_TEST_FLAG_FALSE(hugetlb)
1068#endif
1069
1070PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc)
1071
1072/*
1073 * Mark pages that has to be accepted before touched for the first time.
1074 *
1075 * Serialized with zone lock.
1076 */
1077PAGE_TYPE_OPS(Unaccepted, unaccepted, unaccepted)
1078
1079/**
1080 * PageHuge - Determine if the page belongs to hugetlbfs
1081 * @page: The page to test.
1082 *
1083 * Context: Any context.
1084 * Return: True for hugetlbfs pages, false for anon pages or pages
1085 * belonging to other filesystems.
1086 */
1087static inline bool PageHuge(const struct page *page)
1088{
1089 return folio_test_hugetlb(page_folio(page));
1090}
1091
1092/*
1093 * Check if a page is currently marked HWPoisoned. Note that this check is
1094 * best effort only and inherently racy: there is no way to synchronize with
1095 * failing hardware.
1096 */
1097static inline bool is_page_hwpoison(const struct page *page)
1098{
1099 const struct folio *folio;
1100
1101 if (PageHWPoison(page))
1102 return true;
1103 folio = page_folio(page);
1104 return folio_test_hugetlb(folio) && PageHWPoison(&folio->page);
1105}
1106
1107bool is_free_buddy_page(const struct page *page);
1108
1109PAGEFLAG(Isolated, isolated, PF_ANY);
1110
1111static __always_inline int PageAnonExclusive(const struct page *page)
1112{
1113 VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1114 /*
1115 * HugeTLB stores this information on the head page; THP keeps it per
1116 * page
1117 */
1118 if (PageHuge(page))
1119 page = compound_head(page);
1120 return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1121}
1122
1123static __always_inline void SetPageAnonExclusive(struct page *page)
1124{
1125 VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page);
1126 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1127 set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1128}
1129
1130static __always_inline void ClearPageAnonExclusive(struct page *page)
1131{
1132 VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page);
1133 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1134 clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1135}
1136
1137static __always_inline void __ClearPageAnonExclusive(struct page *page)
1138{
1139 VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1140 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1141 __clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1142}
1143
1144#ifdef CONFIG_MMU
1145#define __PG_MLOCKED (1UL << PG_mlocked)
1146#else
1147#define __PG_MLOCKED 0
1148#endif
1149
1150/*
1151 * Flags checked when a page is freed. Pages being freed should not have
1152 * these flags set. If they are, there is a problem.
1153 */
1154#define PAGE_FLAGS_CHECK_AT_FREE \
1155 (1UL << PG_lru | 1UL << PG_locked | \
1156 1UL << PG_private | 1UL << PG_private_2 | \
1157 1UL << PG_writeback | 1UL << PG_reserved | \
1158 1UL << PG_active | \
1159 1UL << PG_unevictable | __PG_MLOCKED | LRU_GEN_MASK)
1160
1161/*
1162 * Flags checked when a page is prepped for return by the page allocator.
1163 * Pages being prepped should not have these flags set. If they are set,
1164 * there has been a kernel bug or struct page corruption.
1165 *
1166 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1167 * alloc-free cycle to prevent from reusing the page.
1168 */
1169#define PAGE_FLAGS_CHECK_AT_PREP \
1170 ((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
1171
1172/*
1173 * Flags stored in the second page of a compound page. They may overlap
1174 * the CHECK_AT_FREE flags above, so need to be cleared.
1175 */
1176#define PAGE_FLAGS_SECOND \
1177 (0xffUL /* order */ | 1UL << PG_has_hwpoisoned | \
1178 1UL << PG_large_rmappable | 1UL << PG_partially_mapped)
1179
1180#define PAGE_FLAGS_PRIVATE \
1181 (1UL << PG_private | 1UL << PG_private_2)
1182/**
1183 * folio_has_private - Determine if folio has private stuff
1184 * @folio: The folio to be checked
1185 *
1186 * Determine if a folio has private stuff, indicating that release routines
1187 * should be invoked upon it.
1188 */
1189static inline int folio_has_private(const struct folio *folio)
1190{
1191 return !!(folio->flags & PAGE_FLAGS_PRIVATE);
1192}
1193
1194#undef PF_ANY
1195#undef PF_HEAD
1196#undef PF_NO_TAIL
1197#undef PF_NO_COMPOUND
1198#undef PF_SECOND
1199#endif /* !__GENERATING_BOUNDS_H */
1200
1201#endif /* PAGE_FLAGS_H */