at v6.14 68 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/list_nulls.h> 11#include <linux/wait.h> 12#include <linux/bitops.h> 13#include <linux/cache.h> 14#include <linux/threads.h> 15#include <linux/numa.h> 16#include <linux/init.h> 17#include <linux/seqlock.h> 18#include <linux/nodemask.h> 19#include <linux/pageblock-flags.h> 20#include <linux/page-flags-layout.h> 21#include <linux/atomic.h> 22#include <linux/mm_types.h> 23#include <linux/page-flags.h> 24#include <linux/local_lock.h> 25#include <linux/zswap.h> 26#include <asm/page.h> 27 28/* Free memory management - zoned buddy allocator. */ 29#ifndef CONFIG_ARCH_FORCE_MAX_ORDER 30#define MAX_PAGE_ORDER 10 31#else 32#define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 33#endif 34#define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) 35 36#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 37 38#define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) 39 40/* 41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 42 * costly to service. That is between allocation orders which should 43 * coalesce naturally under reasonable reclaim pressure and those which 44 * will not. 45 */ 46#define PAGE_ALLOC_COSTLY_ORDER 3 47 48enum migratetype { 49 MIGRATE_UNMOVABLE, 50 MIGRATE_MOVABLE, 51 MIGRATE_RECLAIMABLE, 52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 54#ifdef CONFIG_CMA 55 /* 56 * MIGRATE_CMA migration type is designed to mimic the way 57 * ZONE_MOVABLE works. Only movable pages can be allocated 58 * from MIGRATE_CMA pageblocks and page allocator never 59 * implicitly change migration type of MIGRATE_CMA pageblock. 60 * 61 * The way to use it is to change migratetype of a range of 62 * pageblocks to MIGRATE_CMA which can be done by 63 * __free_pageblock_cma() function. 64 */ 65 MIGRATE_CMA, 66#endif 67#ifdef CONFIG_MEMORY_ISOLATION 68 MIGRATE_ISOLATE, /* can't allocate from here */ 69#endif 70 MIGRATE_TYPES 71}; 72 73/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 74extern const char * const migratetype_names[MIGRATE_TYPES]; 75 76#ifdef CONFIG_CMA 77# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 78# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 79# define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \ 80 get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK)) 81#else 82# define is_migrate_cma(migratetype) false 83# define is_migrate_cma_page(_page) false 84# define is_migrate_cma_folio(folio, pfn) false 85#endif 86 87static inline bool is_migrate_movable(int mt) 88{ 89 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 90} 91 92/* 93 * Check whether a migratetype can be merged with another migratetype. 94 * 95 * It is only mergeable when it can fall back to other migratetypes for 96 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 97 */ 98static inline bool migratetype_is_mergeable(int mt) 99{ 100 return mt < MIGRATE_PCPTYPES; 101} 102 103#define for_each_migratetype_order(order, type) \ 104 for (order = 0; order < NR_PAGE_ORDERS; order++) \ 105 for (type = 0; type < MIGRATE_TYPES; type++) 106 107extern int page_group_by_mobility_disabled; 108 109#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 110 111#define get_pageblock_migratetype(page) \ 112 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 113 114#define folio_migratetype(folio) \ 115 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 116 MIGRATETYPE_MASK) 117struct free_area { 118 struct list_head free_list[MIGRATE_TYPES]; 119 unsigned long nr_free; 120}; 121 122struct pglist_data; 123 124#ifdef CONFIG_NUMA 125enum numa_stat_item { 126 NUMA_HIT, /* allocated in intended node */ 127 NUMA_MISS, /* allocated in non intended node */ 128 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 130 NUMA_LOCAL, /* allocation from local node */ 131 NUMA_OTHER, /* allocation from other node */ 132 NR_VM_NUMA_EVENT_ITEMS 133}; 134#else 135#define NR_VM_NUMA_EVENT_ITEMS 0 136#endif 137 138enum zone_stat_item { 139 /* First 128 byte cacheline (assuming 64 bit words) */ 140 NR_FREE_PAGES, 141 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 142 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 143 NR_ZONE_ACTIVE_ANON, 144 NR_ZONE_INACTIVE_FILE, 145 NR_ZONE_ACTIVE_FILE, 146 NR_ZONE_UNEVICTABLE, 147 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 148 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 149 /* Second 128 byte cacheline */ 150 NR_BOUNCE, 151#if IS_ENABLED(CONFIG_ZSMALLOC) 152 NR_ZSPAGES, /* allocated in zsmalloc */ 153#endif 154 NR_FREE_CMA_PAGES, 155#ifdef CONFIG_UNACCEPTED_MEMORY 156 NR_UNACCEPTED, 157#endif 158 NR_VM_ZONE_STAT_ITEMS }; 159 160enum node_stat_item { 161 NR_LRU_BASE, 162 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 163 NR_ACTIVE_ANON, /* " " " " " */ 164 NR_INACTIVE_FILE, /* " " " " " */ 165 NR_ACTIVE_FILE, /* " " " " " */ 166 NR_UNEVICTABLE, /* " " " " " */ 167 NR_SLAB_RECLAIMABLE_B, 168 NR_SLAB_UNRECLAIMABLE_B, 169 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 170 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 171 WORKINGSET_NODES, 172 WORKINGSET_REFAULT_BASE, 173 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 174 WORKINGSET_REFAULT_FILE, 175 WORKINGSET_ACTIVATE_BASE, 176 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 177 WORKINGSET_ACTIVATE_FILE, 178 WORKINGSET_RESTORE_BASE, 179 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 180 WORKINGSET_RESTORE_FILE, 181 WORKINGSET_NODERECLAIM, 182 NR_ANON_MAPPED, /* Mapped anonymous pages */ 183 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 184 only modified from process context */ 185 NR_FILE_PAGES, 186 NR_FILE_DIRTY, 187 NR_WRITEBACK, 188 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 189 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 190 NR_SHMEM_THPS, 191 NR_SHMEM_PMDMAPPED, 192 NR_FILE_THPS, 193 NR_FILE_PMDMAPPED, 194 NR_ANON_THPS, 195 NR_VMSCAN_WRITE, 196 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 197 NR_DIRTIED, /* page dirtyings since bootup */ 198 NR_WRITTEN, /* page writings since bootup */ 199 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 200 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 201 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 202 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 203 NR_KERNEL_STACK_KB, /* measured in KiB */ 204#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 205 NR_KERNEL_SCS_KB, /* measured in KiB */ 206#endif 207 NR_PAGETABLE, /* used for pagetables */ 208 NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ 209#ifdef CONFIG_IOMMU_SUPPORT 210 NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */ 211#endif 212#ifdef CONFIG_SWAP 213 NR_SWAPCACHE, 214#endif 215#ifdef CONFIG_NUMA_BALANCING 216 PGPROMOTE_SUCCESS, /* promote successfully */ 217 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 218#endif 219 /* PGDEMOTE_*: pages demoted */ 220 PGDEMOTE_KSWAPD, 221 PGDEMOTE_DIRECT, 222 PGDEMOTE_KHUGEPAGED, 223#ifdef CONFIG_HUGETLB_PAGE 224 NR_HUGETLB, 225#endif 226 NR_VM_NODE_STAT_ITEMS 227}; 228 229/* 230 * Returns true if the item should be printed in THPs (/proc/vmstat 231 * currently prints number of anon, file and shmem THPs. But the item 232 * is charged in pages). 233 */ 234static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 235{ 236 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 237 return false; 238 239 return item == NR_ANON_THPS || 240 item == NR_FILE_THPS || 241 item == NR_SHMEM_THPS || 242 item == NR_SHMEM_PMDMAPPED || 243 item == NR_FILE_PMDMAPPED; 244} 245 246/* 247 * Returns true if the value is measured in bytes (most vmstat values are 248 * measured in pages). This defines the API part, the internal representation 249 * might be different. 250 */ 251static __always_inline bool vmstat_item_in_bytes(int idx) 252{ 253 /* 254 * Global and per-node slab counters track slab pages. 255 * It's expected that changes are multiples of PAGE_SIZE. 256 * Internally values are stored in pages. 257 * 258 * Per-memcg and per-lruvec counters track memory, consumed 259 * by individual slab objects. These counters are actually 260 * byte-precise. 261 */ 262 return (idx == NR_SLAB_RECLAIMABLE_B || 263 idx == NR_SLAB_UNRECLAIMABLE_B); 264} 265 266/* 267 * We do arithmetic on the LRU lists in various places in the code, 268 * so it is important to keep the active lists LRU_ACTIVE higher in 269 * the array than the corresponding inactive lists, and to keep 270 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 271 * 272 * This has to be kept in sync with the statistics in zone_stat_item 273 * above and the descriptions in vmstat_text in mm/vmstat.c 274 */ 275#define LRU_BASE 0 276#define LRU_ACTIVE 1 277#define LRU_FILE 2 278 279enum lru_list { 280 LRU_INACTIVE_ANON = LRU_BASE, 281 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 282 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 283 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 284 LRU_UNEVICTABLE, 285 NR_LRU_LISTS 286}; 287 288enum vmscan_throttle_state { 289 VMSCAN_THROTTLE_WRITEBACK, 290 VMSCAN_THROTTLE_ISOLATED, 291 VMSCAN_THROTTLE_NOPROGRESS, 292 VMSCAN_THROTTLE_CONGESTED, 293 NR_VMSCAN_THROTTLE, 294}; 295 296#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 297 298#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 299 300static inline bool is_file_lru(enum lru_list lru) 301{ 302 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 303} 304 305static inline bool is_active_lru(enum lru_list lru) 306{ 307 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 308} 309 310#define WORKINGSET_ANON 0 311#define WORKINGSET_FILE 1 312#define ANON_AND_FILE 2 313 314enum lruvec_flags { 315 /* 316 * An lruvec has many dirty pages backed by a congested BDI: 317 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 318 * It can be cleared by cgroup reclaim or kswapd. 319 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 320 * It can only be cleared by kswapd. 321 * 322 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 323 * reclaim, but not vice versa. This only applies to the root cgroup. 324 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 325 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 326 * by kswapd). 327 */ 328 LRUVEC_CGROUP_CONGESTED, 329 LRUVEC_NODE_CONGESTED, 330}; 331 332#endif /* !__GENERATING_BOUNDS_H */ 333 334/* 335 * Evictable folios are divided into multiple generations. The youngest and the 336 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 337 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 338 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 339 * corresponding generation. The gen counter in folio->flags stores gen+1 while 340 * a folio is on one of lrugen->folios[]. Otherwise it stores 0. 341 * 342 * After a folio is faulted in, the aging needs to check the accessed bit at 343 * least twice before handing this folio over to the eviction. The first check 344 * clears the accessed bit from the initial fault; the second check makes sure 345 * this folio hasn't been used since then. This process, AKA second chance, 346 * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI 347 * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two 348 * generations are considered active; the rest of generations, if they exist, 349 * are considered inactive. See lru_gen_is_active(). 350 * 351 * PG_active is always cleared while a folio is on one of lrugen->folios[] so 352 * that the sliding window needs not to worry about it. And it's set again when 353 * a folio considered active is isolated for non-reclaiming purposes, e.g., 354 * migration. See lru_gen_add_folio() and lru_gen_del_folio(). 355 * 356 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 357 * number of categories of the active/inactive LRU when keeping track of 358 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 359 * in folio->flags, masked by LRU_GEN_MASK. 360 */ 361#define MIN_NR_GENS 2U 362#define MAX_NR_GENS 4U 363 364/* 365 * Each generation is divided into multiple tiers. A folio accessed N times 366 * through file descriptors is in tier order_base_2(N). A folio in the first 367 * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page 368 * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by 369 * PG_workingset. A folio in any other tier (1<N<5) between the first and last 370 * is marked by additional bits of LRU_REFS_WIDTH in folio->flags. 371 * 372 * In contrast to moving across generations which requires the LRU lock, moving 373 * across tiers only involves atomic operations on folio->flags and therefore 374 * has a negligible cost in the buffered access path. In the eviction path, 375 * comparisons of refaulted/(evicted+protected) from the first tier and the rest 376 * infer whether folios accessed multiple times through file descriptors are 377 * statistically hot and thus worth protecting. 378 * 379 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 380 * number of categories of the active/inactive LRU when keeping track of 381 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 382 * folio->flags, masked by LRU_REFS_MASK. 383 */ 384#define MAX_NR_TIERS 4U 385 386#ifndef __GENERATING_BOUNDS_H 387 388#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 389#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 390 391/* 392 * For folios accessed multiple times through file descriptors, 393 * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags 394 * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its 395 * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily 396 * promoted into the second oldest generation in the eviction path. And when 397 * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that 398 * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is 399 * only valid when PG_referenced is set. 400 * 401 * For folios accessed multiple times through page tables, folio_update_gen() 402 * from a page table walk or lru_gen_set_refs() from a rmap walk sets 403 * PG_referenced after the accessed bit is cleared for the first time. 404 * Thereafter, those two paths set PG_workingset and promote folios to the 405 * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears 406 * PG_referenced. Note that for this case, LRU_REFS_MASK is not used. 407 * 408 * For both cases above, after PG_workingset is set on a folio, it remains until 409 * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It 410 * can be set again if lru_gen_test_recent() returns true upon a refault. 411 */ 412#define LRU_REFS_FLAGS (LRU_REFS_MASK | BIT(PG_referenced)) 413 414struct lruvec; 415struct page_vma_mapped_walk; 416 417#ifdef CONFIG_LRU_GEN 418 419enum { 420 LRU_GEN_ANON, 421 LRU_GEN_FILE, 422}; 423 424enum { 425 LRU_GEN_CORE, 426 LRU_GEN_MM_WALK, 427 LRU_GEN_NONLEAF_YOUNG, 428 NR_LRU_GEN_CAPS 429}; 430 431#define MIN_LRU_BATCH BITS_PER_LONG 432#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 433 434/* whether to keep historical stats from evicted generations */ 435#ifdef CONFIG_LRU_GEN_STATS 436#define NR_HIST_GENS MAX_NR_GENS 437#else 438#define NR_HIST_GENS 1U 439#endif 440 441/* 442 * The youngest generation number is stored in max_seq for both anon and file 443 * types as they are aged on an equal footing. The oldest generation numbers are 444 * stored in min_seq[] separately for anon and file types so that they can be 445 * incremented independently. Ideally min_seq[] are kept in sync when both anon 446 * and file types are evictable. However, to adapt to situations like extreme 447 * swappiness, they are allowed to be out of sync by at most 448 * MAX_NR_GENS-MIN_NR_GENS-1. 449 * 450 * The number of pages in each generation is eventually consistent and therefore 451 * can be transiently negative when reset_batch_size() is pending. 452 */ 453struct lru_gen_folio { 454 /* the aging increments the youngest generation number */ 455 unsigned long max_seq; 456 /* the eviction increments the oldest generation numbers */ 457 unsigned long min_seq[ANON_AND_FILE]; 458 /* the birth time of each generation in jiffies */ 459 unsigned long timestamps[MAX_NR_GENS]; 460 /* the multi-gen LRU lists, lazily sorted on eviction */ 461 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 462 /* the multi-gen LRU sizes, eventually consistent */ 463 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 464 /* the exponential moving average of refaulted */ 465 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 466 /* the exponential moving average of evicted+protected */ 467 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 468 /* can only be modified under the LRU lock */ 469 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 470 /* can be modified without holding the LRU lock */ 471 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 472 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 473 /* whether the multi-gen LRU is enabled */ 474 bool enabled; 475 /* the memcg generation this lru_gen_folio belongs to */ 476 u8 gen; 477 /* the list segment this lru_gen_folio belongs to */ 478 u8 seg; 479 /* per-node lru_gen_folio list for global reclaim */ 480 struct hlist_nulls_node list; 481}; 482 483enum { 484 MM_LEAF_TOTAL, /* total leaf entries */ 485 MM_LEAF_YOUNG, /* young leaf entries */ 486 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 487 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 488 NR_MM_STATS 489}; 490 491/* double-buffering Bloom filters */ 492#define NR_BLOOM_FILTERS 2 493 494struct lru_gen_mm_state { 495 /* synced with max_seq after each iteration */ 496 unsigned long seq; 497 /* where the current iteration continues after */ 498 struct list_head *head; 499 /* where the last iteration ended before */ 500 struct list_head *tail; 501 /* Bloom filters flip after each iteration */ 502 unsigned long *filters[NR_BLOOM_FILTERS]; 503 /* the mm stats for debugging */ 504 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 505}; 506 507struct lru_gen_mm_walk { 508 /* the lruvec under reclaim */ 509 struct lruvec *lruvec; 510 /* max_seq from lru_gen_folio: can be out of date */ 511 unsigned long seq; 512 /* the next address within an mm to scan */ 513 unsigned long next_addr; 514 /* to batch promoted pages */ 515 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 516 /* to batch the mm stats */ 517 int mm_stats[NR_MM_STATS]; 518 /* total batched items */ 519 int batched; 520 int swappiness; 521 bool force_scan; 522}; 523 524/* 525 * For each node, memcgs are divided into two generations: the old and the 526 * young. For each generation, memcgs are randomly sharded into multiple bins 527 * to improve scalability. For each bin, the hlist_nulls is virtually divided 528 * into three segments: the head, the tail and the default. 529 * 530 * An onlining memcg is added to the tail of a random bin in the old generation. 531 * The eviction starts at the head of a random bin in the old generation. The 532 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 533 * the old generation, is incremented when all its bins become empty. 534 * 535 * There are four operations: 536 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its 537 * current generation (old or young) and updates its "seg" to "head"; 538 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its 539 * current generation (old or young) and updates its "seg" to "tail"; 540 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old 541 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 542 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the 543 * young generation, updates its "gen" to "young" and resets its "seg" to 544 * "default". 545 * 546 * The events that trigger the above operations are: 547 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 548 * 2. The first attempt to reclaim a memcg below low, which triggers 549 * MEMCG_LRU_TAIL; 550 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size 551 * threshold, which triggers MEMCG_LRU_TAIL; 552 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size 553 * threshold, which triggers MEMCG_LRU_YOUNG; 554 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; 555 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 556 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. 557 * 558 * Notes: 559 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing 560 * of their max_seq counters ensures the eventual fairness to all eligible 561 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 562 * 2. There are only two valid generations: old (seq) and young (seq+1). 563 * MEMCG_NR_GENS is set to three so that when reading the generation counter 564 * locklessly, a stale value (seq-1) does not wraparound to young. 565 */ 566#define MEMCG_NR_GENS 3 567#define MEMCG_NR_BINS 8 568 569struct lru_gen_memcg { 570 /* the per-node memcg generation counter */ 571 unsigned long seq; 572 /* each memcg has one lru_gen_folio per node */ 573 unsigned long nr_memcgs[MEMCG_NR_GENS]; 574 /* per-node lru_gen_folio list for global reclaim */ 575 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 576 /* protects the above */ 577 spinlock_t lock; 578}; 579 580void lru_gen_init_pgdat(struct pglist_data *pgdat); 581void lru_gen_init_lruvec(struct lruvec *lruvec); 582bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 583 584void lru_gen_init_memcg(struct mem_cgroup *memcg); 585void lru_gen_exit_memcg(struct mem_cgroup *memcg); 586void lru_gen_online_memcg(struct mem_cgroup *memcg); 587void lru_gen_offline_memcg(struct mem_cgroup *memcg); 588void lru_gen_release_memcg(struct mem_cgroup *memcg); 589void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 590 591#else /* !CONFIG_LRU_GEN */ 592 593static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 594{ 595} 596 597static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 598{ 599} 600 601static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 602{ 603 return false; 604} 605 606static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 607{ 608} 609 610static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 611{ 612} 613 614static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 615{ 616} 617 618static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 619{ 620} 621 622static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 623{ 624} 625 626static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 627{ 628} 629 630#endif /* CONFIG_LRU_GEN */ 631 632struct lruvec { 633 struct list_head lists[NR_LRU_LISTS]; 634 /* per lruvec lru_lock for memcg */ 635 spinlock_t lru_lock; 636 /* 637 * These track the cost of reclaiming one LRU - file or anon - 638 * over the other. As the observed cost of reclaiming one LRU 639 * increases, the reclaim scan balance tips toward the other. 640 */ 641 unsigned long anon_cost; 642 unsigned long file_cost; 643 /* Non-resident age, driven by LRU movement */ 644 atomic_long_t nonresident_age; 645 /* Refaults at the time of last reclaim cycle */ 646 unsigned long refaults[ANON_AND_FILE]; 647 /* Various lruvec state flags (enum lruvec_flags) */ 648 unsigned long flags; 649#ifdef CONFIG_LRU_GEN 650 /* evictable pages divided into generations */ 651 struct lru_gen_folio lrugen; 652#ifdef CONFIG_LRU_GEN_WALKS_MMU 653 /* to concurrently iterate lru_gen_mm_list */ 654 struct lru_gen_mm_state mm_state; 655#endif 656#endif /* CONFIG_LRU_GEN */ 657#ifdef CONFIG_MEMCG 658 struct pglist_data *pgdat; 659#endif 660 struct zswap_lruvec_state zswap_lruvec_state; 661}; 662 663/* Isolate for asynchronous migration */ 664#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 665/* Isolate unevictable pages */ 666#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 667 668/* LRU Isolation modes. */ 669typedef unsigned __bitwise isolate_mode_t; 670 671enum zone_watermarks { 672 WMARK_MIN, 673 WMARK_LOW, 674 WMARK_HIGH, 675 WMARK_PROMO, 676 NR_WMARK 677}; 678 679/* 680 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists 681 * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list 682 * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. 683 */ 684#ifdef CONFIG_TRANSPARENT_HUGEPAGE 685#define NR_PCP_THP 2 686#else 687#define NR_PCP_THP 0 688#endif 689#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 690#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 691 692/* 693 * Flags used in pcp->flags field. 694 * 695 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the 696 * previous page freeing. To avoid to drain PCP for an accident 697 * high-order page freeing. 698 * 699 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before 700 * draining PCP for consecutive high-order pages freeing without 701 * allocation if data cache slice of CPU is large enough. To reduce 702 * zone lock contention and keep cache-hot pages reusing. 703 */ 704#define PCPF_PREV_FREE_HIGH_ORDER BIT(0) 705#define PCPF_FREE_HIGH_BATCH BIT(1) 706 707struct per_cpu_pages { 708 spinlock_t lock; /* Protects lists field */ 709 int count; /* number of pages in the list */ 710 int high; /* high watermark, emptying needed */ 711 int high_min; /* min high watermark */ 712 int high_max; /* max high watermark */ 713 int batch; /* chunk size for buddy add/remove */ 714 u8 flags; /* protected by pcp->lock */ 715 u8 alloc_factor; /* batch scaling factor during allocate */ 716#ifdef CONFIG_NUMA 717 u8 expire; /* When 0, remote pagesets are drained */ 718#endif 719 short free_count; /* consecutive free count */ 720 721 /* Lists of pages, one per migrate type stored on the pcp-lists */ 722 struct list_head lists[NR_PCP_LISTS]; 723} ____cacheline_aligned_in_smp; 724 725struct per_cpu_zonestat { 726#ifdef CONFIG_SMP 727 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 728 s8 stat_threshold; 729#endif 730#ifdef CONFIG_NUMA 731 /* 732 * Low priority inaccurate counters that are only folded 733 * on demand. Use a large type to avoid the overhead of 734 * folding during refresh_cpu_vm_stats. 735 */ 736 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 737#endif 738}; 739 740struct per_cpu_nodestat { 741 s8 stat_threshold; 742 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 743}; 744 745#endif /* !__GENERATING_BOUNDS.H */ 746 747enum zone_type { 748 /* 749 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 750 * to DMA to all of the addressable memory (ZONE_NORMAL). 751 * On architectures where this area covers the whole 32 bit address 752 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 753 * DMA addressing constraints. This distinction is important as a 32bit 754 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 755 * platforms may need both zones as they support peripherals with 756 * different DMA addressing limitations. 757 */ 758#ifdef CONFIG_ZONE_DMA 759 ZONE_DMA, 760#endif 761#ifdef CONFIG_ZONE_DMA32 762 ZONE_DMA32, 763#endif 764 /* 765 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 766 * performed on pages in ZONE_NORMAL if the DMA devices support 767 * transfers to all addressable memory. 768 */ 769 ZONE_NORMAL, 770#ifdef CONFIG_HIGHMEM 771 /* 772 * A memory area that is only addressable by the kernel through 773 * mapping portions into its own address space. This is for example 774 * used by i386 to allow the kernel to address the memory beyond 775 * 900MB. The kernel will set up special mappings (page 776 * table entries on i386) for each page that the kernel needs to 777 * access. 778 */ 779 ZONE_HIGHMEM, 780#endif 781 /* 782 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 783 * movable pages with few exceptional cases described below. Main use 784 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 785 * likely to succeed, and to locally limit unmovable allocations - e.g., 786 * to increase the number of THP/huge pages. Notable special cases are: 787 * 788 * 1. Pinned pages: (long-term) pinning of movable pages might 789 * essentially turn such pages unmovable. Therefore, we do not allow 790 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 791 * faulted, they come from the right zone right away. However, it is 792 * still possible that address space already has pages in 793 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 794 * touches that memory before pinning). In such case we migrate them 795 * to a different zone. When migration fails - pinning fails. 796 * 2. memblock allocations: kernelcore/movablecore setups might create 797 * situations where ZONE_MOVABLE contains unmovable allocations 798 * after boot. Memory offlining and allocations fail early. 799 * 3. Memory holes: kernelcore/movablecore setups might create very rare 800 * situations where ZONE_MOVABLE contains memory holes after boot, 801 * for example, if we have sections that are only partially 802 * populated. Memory offlining and allocations fail early. 803 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 804 * memory offlining, such pages cannot be allocated. 805 * 5. Unmovable PG_offline pages: in paravirtualized environments, 806 * hotplugged memory blocks might only partially be managed by the 807 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 808 * parts not manged by the buddy are unmovable PG_offline pages. In 809 * some cases (virtio-mem), such pages can be skipped during 810 * memory offlining, however, cannot be moved/allocated. These 811 * techniques might use alloc_contig_range() to hide previously 812 * exposed pages from the buddy again (e.g., to implement some sort 813 * of memory unplug in virtio-mem). 814 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 815 * situations where ZERO_PAGE(0) which is allocated differently 816 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 817 * cannot be migrated. 818 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 819 * memory to the MOVABLE zone, the vmemmap pages are also placed in 820 * such zone. Such pages cannot be really moved around as they are 821 * self-stored in the range, but they are treated as movable when 822 * the range they describe is about to be offlined. 823 * 824 * In general, no unmovable allocations that degrade memory offlining 825 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 826 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 827 * if has_unmovable_pages() states that there are no unmovable pages, 828 * there can be false negatives). 829 */ 830 ZONE_MOVABLE, 831#ifdef CONFIG_ZONE_DEVICE 832 ZONE_DEVICE, 833#endif 834 __MAX_NR_ZONES 835 836}; 837 838#ifndef __GENERATING_BOUNDS_H 839 840#define ASYNC_AND_SYNC 2 841 842struct zone { 843 /* Read-mostly fields */ 844 845 /* zone watermarks, access with *_wmark_pages(zone) macros */ 846 unsigned long _watermark[NR_WMARK]; 847 unsigned long watermark_boost; 848 849 unsigned long nr_reserved_highatomic; 850 unsigned long nr_free_highatomic; 851 852 /* 853 * We don't know if the memory that we're going to allocate will be 854 * freeable or/and it will be released eventually, so to avoid totally 855 * wasting several GB of ram we must reserve some of the lower zone 856 * memory (otherwise we risk to run OOM on the lower zones despite 857 * there being tons of freeable ram on the higher zones). This array is 858 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 859 * changes. 860 */ 861 long lowmem_reserve[MAX_NR_ZONES]; 862 863#ifdef CONFIG_NUMA 864 int node; 865#endif 866 struct pglist_data *zone_pgdat; 867 struct per_cpu_pages __percpu *per_cpu_pageset; 868 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 869 /* 870 * the high and batch values are copied to individual pagesets for 871 * faster access 872 */ 873 int pageset_high_min; 874 int pageset_high_max; 875 int pageset_batch; 876 877#ifndef CONFIG_SPARSEMEM 878 /* 879 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 880 * In SPARSEMEM, this map is stored in struct mem_section 881 */ 882 unsigned long *pageblock_flags; 883#endif /* CONFIG_SPARSEMEM */ 884 885 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 886 unsigned long zone_start_pfn; 887 888 /* 889 * spanned_pages is the total pages spanned by the zone, including 890 * holes, which is calculated as: 891 * spanned_pages = zone_end_pfn - zone_start_pfn; 892 * 893 * present_pages is physical pages existing within the zone, which 894 * is calculated as: 895 * present_pages = spanned_pages - absent_pages(pages in holes); 896 * 897 * present_early_pages is present pages existing within the zone 898 * located on memory available since early boot, excluding hotplugged 899 * memory. 900 * 901 * managed_pages is present pages managed by the buddy system, which 902 * is calculated as (reserved_pages includes pages allocated by the 903 * bootmem allocator): 904 * managed_pages = present_pages - reserved_pages; 905 * 906 * cma pages is present pages that are assigned for CMA use 907 * (MIGRATE_CMA). 908 * 909 * So present_pages may be used by memory hotplug or memory power 910 * management logic to figure out unmanaged pages by checking 911 * (present_pages - managed_pages). And managed_pages should be used 912 * by page allocator and vm scanner to calculate all kinds of watermarks 913 * and thresholds. 914 * 915 * Locking rules: 916 * 917 * zone_start_pfn and spanned_pages are protected by span_seqlock. 918 * It is a seqlock because it has to be read outside of zone->lock, 919 * and it is done in the main allocator path. But, it is written 920 * quite infrequently. 921 * 922 * The span_seq lock is declared along with zone->lock because it is 923 * frequently read in proximity to zone->lock. It's good to 924 * give them a chance of being in the same cacheline. 925 * 926 * Write access to present_pages at runtime should be protected by 927 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 928 * present_pages should use get_online_mems() to get a stable value. 929 */ 930 atomic_long_t managed_pages; 931 unsigned long spanned_pages; 932 unsigned long present_pages; 933#if defined(CONFIG_MEMORY_HOTPLUG) 934 unsigned long present_early_pages; 935#endif 936#ifdef CONFIG_CMA 937 unsigned long cma_pages; 938#endif 939 940 const char *name; 941 942#ifdef CONFIG_MEMORY_ISOLATION 943 /* 944 * Number of isolated pageblock. It is used to solve incorrect 945 * freepage counting problem due to racy retrieving migratetype 946 * of pageblock. Protected by zone->lock. 947 */ 948 unsigned long nr_isolate_pageblock; 949#endif 950 951#ifdef CONFIG_MEMORY_HOTPLUG 952 /* see spanned/present_pages for more description */ 953 seqlock_t span_seqlock; 954#endif 955 956 int initialized; 957 958 /* Write-intensive fields used from the page allocator */ 959 CACHELINE_PADDING(_pad1_); 960 961 /* free areas of different sizes */ 962 struct free_area free_area[NR_PAGE_ORDERS]; 963 964#ifdef CONFIG_UNACCEPTED_MEMORY 965 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ 966 struct list_head unaccepted_pages; 967#endif 968 969 /* zone flags, see below */ 970 unsigned long flags; 971 972 /* Primarily protects free_area */ 973 spinlock_t lock; 974 975 /* Write-intensive fields used by compaction and vmstats. */ 976 CACHELINE_PADDING(_pad2_); 977 978 /* 979 * When free pages are below this point, additional steps are taken 980 * when reading the number of free pages to avoid per-cpu counter 981 * drift allowing watermarks to be breached 982 */ 983 unsigned long percpu_drift_mark; 984 985#if defined CONFIG_COMPACTION || defined CONFIG_CMA 986 /* pfn where compaction free scanner should start */ 987 unsigned long compact_cached_free_pfn; 988 /* pfn where compaction migration scanner should start */ 989 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 990 unsigned long compact_init_migrate_pfn; 991 unsigned long compact_init_free_pfn; 992#endif 993 994#ifdef CONFIG_COMPACTION 995 /* 996 * On compaction failure, 1<<compact_defer_shift compactions 997 * are skipped before trying again. The number attempted since 998 * last failure is tracked with compact_considered. 999 * compact_order_failed is the minimum compaction failed order. 1000 */ 1001 unsigned int compact_considered; 1002 unsigned int compact_defer_shift; 1003 int compact_order_failed; 1004#endif 1005 1006#if defined CONFIG_COMPACTION || defined CONFIG_CMA 1007 /* Set to true when the PG_migrate_skip bits should be cleared */ 1008 bool compact_blockskip_flush; 1009#endif 1010 1011 bool contiguous; 1012 1013 CACHELINE_PADDING(_pad3_); 1014 /* Zone statistics */ 1015 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 1016 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 1017} ____cacheline_internodealigned_in_smp; 1018 1019enum pgdat_flags { 1020 PGDAT_DIRTY, /* reclaim scanning has recently found 1021 * many dirty file pages at the tail 1022 * of the LRU. 1023 */ 1024 PGDAT_WRITEBACK, /* reclaim scanning has recently found 1025 * many pages under writeback 1026 */ 1027 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 1028}; 1029 1030enum zone_flags { 1031 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 1032 * Cleared when kswapd is woken. 1033 */ 1034 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1035 ZONE_BELOW_HIGH, /* zone is below high watermark. */ 1036}; 1037 1038static inline unsigned long wmark_pages(const struct zone *z, 1039 enum zone_watermarks w) 1040{ 1041 return z->_watermark[w] + z->watermark_boost; 1042} 1043 1044static inline unsigned long min_wmark_pages(const struct zone *z) 1045{ 1046 return wmark_pages(z, WMARK_MIN); 1047} 1048 1049static inline unsigned long low_wmark_pages(const struct zone *z) 1050{ 1051 return wmark_pages(z, WMARK_LOW); 1052} 1053 1054static inline unsigned long high_wmark_pages(const struct zone *z) 1055{ 1056 return wmark_pages(z, WMARK_HIGH); 1057} 1058 1059static inline unsigned long promo_wmark_pages(const struct zone *z) 1060{ 1061 return wmark_pages(z, WMARK_PROMO); 1062} 1063 1064static inline unsigned long zone_managed_pages(struct zone *zone) 1065{ 1066 return (unsigned long)atomic_long_read(&zone->managed_pages); 1067} 1068 1069static inline unsigned long zone_cma_pages(struct zone *zone) 1070{ 1071#ifdef CONFIG_CMA 1072 return zone->cma_pages; 1073#else 1074 return 0; 1075#endif 1076} 1077 1078static inline unsigned long zone_end_pfn(const struct zone *zone) 1079{ 1080 return zone->zone_start_pfn + zone->spanned_pages; 1081} 1082 1083static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1084{ 1085 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1086} 1087 1088static inline bool zone_is_initialized(struct zone *zone) 1089{ 1090 return zone->initialized; 1091} 1092 1093static inline bool zone_is_empty(struct zone *zone) 1094{ 1095 return zone->spanned_pages == 0; 1096} 1097 1098#ifndef BUILD_VDSO32_64 1099/* 1100 * The zone field is never updated after free_area_init_core() 1101 * sets it, so none of the operations on it need to be atomic. 1102 */ 1103 1104/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1105#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1106#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1107#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1108#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1109#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1110#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1111#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1112 1113/* 1114 * Define the bit shifts to access each section. For non-existent 1115 * sections we define the shift as 0; that plus a 0 mask ensures 1116 * the compiler will optimise away reference to them. 1117 */ 1118#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1119#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1120#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1121#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1122#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1123 1124/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1125#ifdef NODE_NOT_IN_PAGE_FLAGS 1126#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1127#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1128 SECTIONS_PGOFF : ZONES_PGOFF) 1129#else 1130#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1131#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1132 NODES_PGOFF : ZONES_PGOFF) 1133#endif 1134 1135#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1136 1137#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1138#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1139#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1140#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1141#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1142#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1143 1144static inline enum zone_type page_zonenum(const struct page *page) 1145{ 1146 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1147 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1148} 1149 1150static inline enum zone_type folio_zonenum(const struct folio *folio) 1151{ 1152 return page_zonenum(&folio->page); 1153} 1154 1155#ifdef CONFIG_ZONE_DEVICE 1156static inline bool is_zone_device_page(const struct page *page) 1157{ 1158 return page_zonenum(page) == ZONE_DEVICE; 1159} 1160 1161/* 1162 * Consecutive zone device pages should not be merged into the same sgl 1163 * or bvec segment with other types of pages or if they belong to different 1164 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1165 * without scanning the entire segment. This helper returns true either if 1166 * both pages are not zone device pages or both pages are zone device pages 1167 * with the same pgmap. 1168 */ 1169static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1170 const struct page *b) 1171{ 1172 if (is_zone_device_page(a) != is_zone_device_page(b)) 1173 return false; 1174 if (!is_zone_device_page(a)) 1175 return true; 1176 return a->pgmap == b->pgmap; 1177} 1178 1179extern void memmap_init_zone_device(struct zone *, unsigned long, 1180 unsigned long, struct dev_pagemap *); 1181#else 1182static inline bool is_zone_device_page(const struct page *page) 1183{ 1184 return false; 1185} 1186static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1187 const struct page *b) 1188{ 1189 return true; 1190} 1191#endif 1192 1193static inline bool folio_is_zone_device(const struct folio *folio) 1194{ 1195 return is_zone_device_page(&folio->page); 1196} 1197 1198static inline bool is_zone_movable_page(const struct page *page) 1199{ 1200 return page_zonenum(page) == ZONE_MOVABLE; 1201} 1202 1203static inline bool folio_is_zone_movable(const struct folio *folio) 1204{ 1205 return folio_zonenum(folio) == ZONE_MOVABLE; 1206} 1207#endif 1208 1209/* 1210 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1211 * intersection with the given zone 1212 */ 1213static inline bool zone_intersects(struct zone *zone, 1214 unsigned long start_pfn, unsigned long nr_pages) 1215{ 1216 if (zone_is_empty(zone)) 1217 return false; 1218 if (start_pfn >= zone_end_pfn(zone) || 1219 start_pfn + nr_pages <= zone->zone_start_pfn) 1220 return false; 1221 1222 return true; 1223} 1224 1225/* 1226 * The "priority" of VM scanning is how much of the queues we will scan in one 1227 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1228 * queues ("queue_length >> 12") during an aging round. 1229 */ 1230#define DEF_PRIORITY 12 1231 1232/* Maximum number of zones on a zonelist */ 1233#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1234 1235enum { 1236 ZONELIST_FALLBACK, /* zonelist with fallback */ 1237#ifdef CONFIG_NUMA 1238 /* 1239 * The NUMA zonelists are doubled because we need zonelists that 1240 * restrict the allocations to a single node for __GFP_THISNODE. 1241 */ 1242 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1243#endif 1244 MAX_ZONELISTS 1245}; 1246 1247/* 1248 * This struct contains information about a zone in a zonelist. It is stored 1249 * here to avoid dereferences into large structures and lookups of tables 1250 */ 1251struct zoneref { 1252 struct zone *zone; /* Pointer to actual zone */ 1253 int zone_idx; /* zone_idx(zoneref->zone) */ 1254}; 1255 1256/* 1257 * One allocation request operates on a zonelist. A zonelist 1258 * is a list of zones, the first one is the 'goal' of the 1259 * allocation, the other zones are fallback zones, in decreasing 1260 * priority. 1261 * 1262 * To speed the reading of the zonelist, the zonerefs contain the zone index 1263 * of the entry being read. Helper functions to access information given 1264 * a struct zoneref are 1265 * 1266 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1267 * zonelist_zone_idx() - Return the index of the zone for an entry 1268 * zonelist_node_idx() - Return the index of the node for an entry 1269 */ 1270struct zonelist { 1271 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1272}; 1273 1274/* 1275 * The array of struct pages for flatmem. 1276 * It must be declared for SPARSEMEM as well because there are configurations 1277 * that rely on that. 1278 */ 1279extern struct page *mem_map; 1280 1281#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1282struct deferred_split { 1283 spinlock_t split_queue_lock; 1284 struct list_head split_queue; 1285 unsigned long split_queue_len; 1286}; 1287#endif 1288 1289#ifdef CONFIG_MEMORY_FAILURE 1290/* 1291 * Per NUMA node memory failure handling statistics. 1292 */ 1293struct memory_failure_stats { 1294 /* 1295 * Number of raw pages poisoned. 1296 * Cases not accounted: memory outside kernel control, offline page, 1297 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1298 * error events, and unpoison actions from hwpoison_unpoison. 1299 */ 1300 unsigned long total; 1301 /* 1302 * Recovery results of poisoned raw pages handled by memory_failure, 1303 * in sync with mf_result. 1304 * total = ignored + failed + delayed + recovered. 1305 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1306 */ 1307 unsigned long ignored; 1308 unsigned long failed; 1309 unsigned long delayed; 1310 unsigned long recovered; 1311}; 1312#endif 1313 1314/* 1315 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1316 * it's memory layout. On UMA machines there is a single pglist_data which 1317 * describes the whole memory. 1318 * 1319 * Memory statistics and page replacement data structures are maintained on a 1320 * per-zone basis. 1321 */ 1322typedef struct pglist_data { 1323 /* 1324 * node_zones contains just the zones for THIS node. Not all of the 1325 * zones may be populated, but it is the full list. It is referenced by 1326 * this node's node_zonelists as well as other node's node_zonelists. 1327 */ 1328 struct zone node_zones[MAX_NR_ZONES]; 1329 1330 /* 1331 * node_zonelists contains references to all zones in all nodes. 1332 * Generally the first zones will be references to this node's 1333 * node_zones. 1334 */ 1335 struct zonelist node_zonelists[MAX_ZONELISTS]; 1336 1337 int nr_zones; /* number of populated zones in this node */ 1338#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1339 struct page *node_mem_map; 1340#ifdef CONFIG_PAGE_EXTENSION 1341 struct page_ext *node_page_ext; 1342#endif 1343#endif 1344#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1345 /* 1346 * Must be held any time you expect node_start_pfn, 1347 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1348 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1349 * init. 1350 * 1351 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1352 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1353 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1354 * 1355 * Nests above zone->lock and zone->span_seqlock 1356 */ 1357 spinlock_t node_size_lock; 1358#endif 1359 unsigned long node_start_pfn; 1360 unsigned long node_present_pages; /* total number of physical pages */ 1361 unsigned long node_spanned_pages; /* total size of physical page 1362 range, including holes */ 1363 int node_id; 1364 wait_queue_head_t kswapd_wait; 1365 wait_queue_head_t pfmemalloc_wait; 1366 1367 /* workqueues for throttling reclaim for different reasons. */ 1368 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1369 1370 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1371 unsigned long nr_reclaim_start; /* nr pages written while throttled 1372 * when throttling started. */ 1373#ifdef CONFIG_MEMORY_HOTPLUG 1374 struct mutex kswapd_lock; 1375#endif 1376 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1377 int kswapd_order; 1378 enum zone_type kswapd_highest_zoneidx; 1379 1380 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1381 1382#ifdef CONFIG_COMPACTION 1383 int kcompactd_max_order; 1384 enum zone_type kcompactd_highest_zoneidx; 1385 wait_queue_head_t kcompactd_wait; 1386 struct task_struct *kcompactd; 1387 bool proactive_compact_trigger; 1388#endif 1389 /* 1390 * This is a per-node reserve of pages that are not available 1391 * to userspace allocations. 1392 */ 1393 unsigned long totalreserve_pages; 1394 1395#ifdef CONFIG_NUMA 1396 /* 1397 * node reclaim becomes active if more unmapped pages exist. 1398 */ 1399 unsigned long min_unmapped_pages; 1400 unsigned long min_slab_pages; 1401#endif /* CONFIG_NUMA */ 1402 1403 /* Write-intensive fields used by page reclaim */ 1404 CACHELINE_PADDING(_pad1_); 1405 1406#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1407 /* 1408 * If memory initialisation on large machines is deferred then this 1409 * is the first PFN that needs to be initialised. 1410 */ 1411 unsigned long first_deferred_pfn; 1412#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1413 1414#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1415 struct deferred_split deferred_split_queue; 1416#endif 1417 1418#ifdef CONFIG_NUMA_BALANCING 1419 /* start time in ms of current promote rate limit period */ 1420 unsigned int nbp_rl_start; 1421 /* number of promote candidate pages at start time of current rate limit period */ 1422 unsigned long nbp_rl_nr_cand; 1423 /* promote threshold in ms */ 1424 unsigned int nbp_threshold; 1425 /* start time in ms of current promote threshold adjustment period */ 1426 unsigned int nbp_th_start; 1427 /* 1428 * number of promote candidate pages at start time of current promote 1429 * threshold adjustment period 1430 */ 1431 unsigned long nbp_th_nr_cand; 1432#endif 1433 /* Fields commonly accessed by the page reclaim scanner */ 1434 1435 /* 1436 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1437 * 1438 * Use mem_cgroup_lruvec() to look up lruvecs. 1439 */ 1440 struct lruvec __lruvec; 1441 1442 unsigned long flags; 1443 1444#ifdef CONFIG_LRU_GEN 1445 /* kswap mm walk data */ 1446 struct lru_gen_mm_walk mm_walk; 1447 /* lru_gen_folio list */ 1448 struct lru_gen_memcg memcg_lru; 1449#endif 1450 1451 CACHELINE_PADDING(_pad2_); 1452 1453 /* Per-node vmstats */ 1454 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1455 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1456#ifdef CONFIG_NUMA 1457 struct memory_tier __rcu *memtier; 1458#endif 1459#ifdef CONFIG_MEMORY_FAILURE 1460 struct memory_failure_stats mf_stats; 1461#endif 1462} pg_data_t; 1463 1464#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1465#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1466 1467#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1468#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1469 1470static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1471{ 1472 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1473} 1474 1475#include <linux/memory_hotplug.h> 1476 1477void build_all_zonelists(pg_data_t *pgdat); 1478void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1479 enum zone_type highest_zoneidx); 1480bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1481 int highest_zoneidx, unsigned int alloc_flags, 1482 long free_pages); 1483bool zone_watermark_ok(struct zone *z, unsigned int order, 1484 unsigned long mark, int highest_zoneidx, 1485 unsigned int alloc_flags); 1486bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1487 unsigned long mark, int highest_zoneidx); 1488/* 1489 * Memory initialization context, use to differentiate memory added by 1490 * the platform statically or via memory hotplug interface. 1491 */ 1492enum meminit_context { 1493 MEMINIT_EARLY, 1494 MEMINIT_HOTPLUG, 1495}; 1496 1497extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1498 unsigned long size); 1499 1500extern void lruvec_init(struct lruvec *lruvec); 1501 1502static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1503{ 1504#ifdef CONFIG_MEMCG 1505 return lruvec->pgdat; 1506#else 1507 return container_of(lruvec, struct pglist_data, __lruvec); 1508#endif 1509} 1510 1511#ifdef CONFIG_HAVE_MEMORYLESS_NODES 1512int local_memory_node(int node_id); 1513#else 1514static inline int local_memory_node(int node_id) { return node_id; }; 1515#endif 1516 1517/* 1518 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1519 */ 1520#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1521 1522#ifdef CONFIG_ZONE_DEVICE 1523static inline bool zone_is_zone_device(struct zone *zone) 1524{ 1525 return zone_idx(zone) == ZONE_DEVICE; 1526} 1527#else 1528static inline bool zone_is_zone_device(struct zone *zone) 1529{ 1530 return false; 1531} 1532#endif 1533 1534/* 1535 * Returns true if a zone has pages managed by the buddy allocator. 1536 * All the reclaim decisions have to use this function rather than 1537 * populated_zone(). If the whole zone is reserved then we can easily 1538 * end up with populated_zone() && !managed_zone(). 1539 */ 1540static inline bool managed_zone(struct zone *zone) 1541{ 1542 return zone_managed_pages(zone); 1543} 1544 1545/* Returns true if a zone has memory */ 1546static inline bool populated_zone(struct zone *zone) 1547{ 1548 return zone->present_pages; 1549} 1550 1551#ifdef CONFIG_NUMA 1552static inline int zone_to_nid(struct zone *zone) 1553{ 1554 return zone->node; 1555} 1556 1557static inline void zone_set_nid(struct zone *zone, int nid) 1558{ 1559 zone->node = nid; 1560} 1561#else 1562static inline int zone_to_nid(struct zone *zone) 1563{ 1564 return 0; 1565} 1566 1567static inline void zone_set_nid(struct zone *zone, int nid) {} 1568#endif 1569 1570extern int movable_zone; 1571 1572static inline int is_highmem_idx(enum zone_type idx) 1573{ 1574#ifdef CONFIG_HIGHMEM 1575 return (idx == ZONE_HIGHMEM || 1576 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1577#else 1578 return 0; 1579#endif 1580} 1581 1582/** 1583 * is_highmem - helper function to quickly check if a struct zone is a 1584 * highmem zone or not. This is an attempt to keep references 1585 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1586 * @zone: pointer to struct zone variable 1587 * Return: 1 for a highmem zone, 0 otherwise 1588 */ 1589static inline int is_highmem(struct zone *zone) 1590{ 1591 return is_highmem_idx(zone_idx(zone)); 1592} 1593 1594#ifdef CONFIG_ZONE_DMA 1595bool has_managed_dma(void); 1596#else 1597static inline bool has_managed_dma(void) 1598{ 1599 return false; 1600} 1601#endif 1602 1603 1604#ifndef CONFIG_NUMA 1605 1606extern struct pglist_data contig_page_data; 1607static inline struct pglist_data *NODE_DATA(int nid) 1608{ 1609 return &contig_page_data; 1610} 1611 1612#else /* CONFIG_NUMA */ 1613 1614#include <asm/mmzone.h> 1615 1616#endif /* !CONFIG_NUMA */ 1617 1618extern struct pglist_data *first_online_pgdat(void); 1619extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1620extern struct zone *next_zone(struct zone *zone); 1621 1622/** 1623 * for_each_online_pgdat - helper macro to iterate over all online nodes 1624 * @pgdat: pointer to a pg_data_t variable 1625 */ 1626#define for_each_online_pgdat(pgdat) \ 1627 for (pgdat = first_online_pgdat(); \ 1628 pgdat; \ 1629 pgdat = next_online_pgdat(pgdat)) 1630/** 1631 * for_each_zone - helper macro to iterate over all memory zones 1632 * @zone: pointer to struct zone variable 1633 * 1634 * The user only needs to declare the zone variable, for_each_zone 1635 * fills it in. 1636 */ 1637#define for_each_zone(zone) \ 1638 for (zone = (first_online_pgdat())->node_zones; \ 1639 zone; \ 1640 zone = next_zone(zone)) 1641 1642#define for_each_populated_zone(zone) \ 1643 for (zone = (first_online_pgdat())->node_zones; \ 1644 zone; \ 1645 zone = next_zone(zone)) \ 1646 if (!populated_zone(zone)) \ 1647 ; /* do nothing */ \ 1648 else 1649 1650static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1651{ 1652 return zoneref->zone; 1653} 1654 1655static inline int zonelist_zone_idx(struct zoneref *zoneref) 1656{ 1657 return zoneref->zone_idx; 1658} 1659 1660static inline int zonelist_node_idx(struct zoneref *zoneref) 1661{ 1662 return zone_to_nid(zoneref->zone); 1663} 1664 1665struct zoneref *__next_zones_zonelist(struct zoneref *z, 1666 enum zone_type highest_zoneidx, 1667 nodemask_t *nodes); 1668 1669/** 1670 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1671 * @z: The cursor used as a starting point for the search 1672 * @highest_zoneidx: The zone index of the highest zone to return 1673 * @nodes: An optional nodemask to filter the zonelist with 1674 * 1675 * This function returns the next zone at or below a given zone index that is 1676 * within the allowed nodemask using a cursor as the starting point for the 1677 * search. The zoneref returned is a cursor that represents the current zone 1678 * being examined. It should be advanced by one before calling 1679 * next_zones_zonelist again. 1680 * 1681 * Return: the next zone at or below highest_zoneidx within the allowed 1682 * nodemask using a cursor within a zonelist as a starting point 1683 */ 1684static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1685 enum zone_type highest_zoneidx, 1686 nodemask_t *nodes) 1687{ 1688 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1689 return z; 1690 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1691} 1692 1693/** 1694 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1695 * @zonelist: The zonelist to search for a suitable zone 1696 * @highest_zoneidx: The zone index of the highest zone to return 1697 * @nodes: An optional nodemask to filter the zonelist with 1698 * 1699 * This function returns the first zone at or below a given zone index that is 1700 * within the allowed nodemask. The zoneref returned is a cursor that can be 1701 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1702 * one before calling. 1703 * 1704 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1705 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1706 * update due to cpuset modification. 1707 * 1708 * Return: Zoneref pointer for the first suitable zone found 1709 */ 1710static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1711 enum zone_type highest_zoneidx, 1712 nodemask_t *nodes) 1713{ 1714 return next_zones_zonelist(zonelist->_zonerefs, 1715 highest_zoneidx, nodes); 1716} 1717 1718/** 1719 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1720 * @zone: The current zone in the iterator 1721 * @z: The current pointer within zonelist->_zonerefs being iterated 1722 * @zlist: The zonelist being iterated 1723 * @highidx: The zone index of the highest zone to return 1724 * @nodemask: Nodemask allowed by the allocator 1725 * 1726 * This iterator iterates though all zones at or below a given zone index and 1727 * within a given nodemask 1728 */ 1729#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1730 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1731 zone; \ 1732 z = next_zones_zonelist(++z, highidx, nodemask), \ 1733 zone = zonelist_zone(z)) 1734 1735#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1736 for (zone = zonelist_zone(z); \ 1737 zone; \ 1738 z = next_zones_zonelist(++z, highidx, nodemask), \ 1739 zone = zonelist_zone(z)) 1740 1741 1742/** 1743 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1744 * @zone: The current zone in the iterator 1745 * @z: The current pointer within zonelist->zones being iterated 1746 * @zlist: The zonelist being iterated 1747 * @highidx: The zone index of the highest zone to return 1748 * 1749 * This iterator iterates though all zones at or below a given zone index. 1750 */ 1751#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1752 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1753 1754/* Whether the 'nodes' are all movable nodes */ 1755static inline bool movable_only_nodes(nodemask_t *nodes) 1756{ 1757 struct zonelist *zonelist; 1758 struct zoneref *z; 1759 int nid; 1760 1761 if (nodes_empty(*nodes)) 1762 return false; 1763 1764 /* 1765 * We can chose arbitrary node from the nodemask to get a 1766 * zonelist as they are interlinked. We just need to find 1767 * at least one zone that can satisfy kernel allocations. 1768 */ 1769 nid = first_node(*nodes); 1770 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1771 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1772 return (!zonelist_zone(z)) ? true : false; 1773} 1774 1775 1776#ifdef CONFIG_SPARSEMEM 1777#include <asm/sparsemem.h> 1778#endif 1779 1780#ifdef CONFIG_FLATMEM 1781#define pfn_to_nid(pfn) (0) 1782#endif 1783 1784#ifdef CONFIG_SPARSEMEM 1785 1786/* 1787 * PA_SECTION_SHIFT physical address to/from section number 1788 * PFN_SECTION_SHIFT pfn to/from section number 1789 */ 1790#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1791#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1792 1793#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1794 1795#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1796#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1797 1798#define SECTION_BLOCKFLAGS_BITS \ 1799 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1800 1801#if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1802#error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE 1803#endif 1804 1805static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1806{ 1807 return pfn >> PFN_SECTION_SHIFT; 1808} 1809static inline unsigned long section_nr_to_pfn(unsigned long sec) 1810{ 1811 return sec << PFN_SECTION_SHIFT; 1812} 1813 1814#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1815#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1816 1817#define SUBSECTION_SHIFT 21 1818#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1819 1820#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1821#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1822#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1823 1824#if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1825#error Subsection size exceeds section size 1826#else 1827#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1828#endif 1829 1830#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1831#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1832 1833struct mem_section_usage { 1834 struct rcu_head rcu; 1835#ifdef CONFIG_SPARSEMEM_VMEMMAP 1836 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1837#endif 1838 /* See declaration of similar field in struct zone */ 1839 unsigned long pageblock_flags[0]; 1840}; 1841 1842void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1843 1844struct page; 1845struct page_ext; 1846struct mem_section { 1847 /* 1848 * This is, logically, a pointer to an array of struct 1849 * pages. However, it is stored with some other magic. 1850 * (see sparse.c::sparse_init_one_section()) 1851 * 1852 * Additionally during early boot we encode node id of 1853 * the location of the section here to guide allocation. 1854 * (see sparse.c::memory_present()) 1855 * 1856 * Making it a UL at least makes someone do a cast 1857 * before using it wrong. 1858 */ 1859 unsigned long section_mem_map; 1860 1861 struct mem_section_usage *usage; 1862#ifdef CONFIG_PAGE_EXTENSION 1863 /* 1864 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1865 * section. (see page_ext.h about this.) 1866 */ 1867 struct page_ext *page_ext; 1868 unsigned long pad; 1869#endif 1870 /* 1871 * WARNING: mem_section must be a power-of-2 in size for the 1872 * calculation and use of SECTION_ROOT_MASK to make sense. 1873 */ 1874}; 1875 1876#ifdef CONFIG_SPARSEMEM_EXTREME 1877#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1878#else 1879#define SECTIONS_PER_ROOT 1 1880#endif 1881 1882#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1883#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1884#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1885 1886#ifdef CONFIG_SPARSEMEM_EXTREME 1887extern struct mem_section **mem_section; 1888#else 1889extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1890#endif 1891 1892static inline unsigned long *section_to_usemap(struct mem_section *ms) 1893{ 1894 return ms->usage->pageblock_flags; 1895} 1896 1897static inline struct mem_section *__nr_to_section(unsigned long nr) 1898{ 1899 unsigned long root = SECTION_NR_TO_ROOT(nr); 1900 1901 if (unlikely(root >= NR_SECTION_ROOTS)) 1902 return NULL; 1903 1904#ifdef CONFIG_SPARSEMEM_EXTREME 1905 if (!mem_section || !mem_section[root]) 1906 return NULL; 1907#endif 1908 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1909} 1910extern size_t mem_section_usage_size(void); 1911 1912/* 1913 * We use the lower bits of the mem_map pointer to store 1914 * a little bit of information. The pointer is calculated 1915 * as mem_map - section_nr_to_pfn(pnum). The result is 1916 * aligned to the minimum alignment of the two values: 1917 * 1. All mem_map arrays are page-aligned. 1918 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1919 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1920 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1921 * worst combination is powerpc with 256k pages, 1922 * which results in PFN_SECTION_SHIFT equal 6. 1923 * To sum it up, at least 6 bits are available on all architectures. 1924 * However, we can exceed 6 bits on some other architectures except 1925 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1926 * with the worst case of 64K pages on arm64) if we make sure the 1927 * exceeded bit is not applicable to powerpc. 1928 */ 1929enum { 1930 SECTION_MARKED_PRESENT_BIT, 1931 SECTION_HAS_MEM_MAP_BIT, 1932 SECTION_IS_ONLINE_BIT, 1933 SECTION_IS_EARLY_BIT, 1934#ifdef CONFIG_ZONE_DEVICE 1935 SECTION_TAINT_ZONE_DEVICE_BIT, 1936#endif 1937 SECTION_MAP_LAST_BIT, 1938}; 1939 1940#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1941#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1942#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1943#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1944#ifdef CONFIG_ZONE_DEVICE 1945#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1946#endif 1947#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1948#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1949 1950static inline struct page *__section_mem_map_addr(struct mem_section *section) 1951{ 1952 unsigned long map = section->section_mem_map; 1953 map &= SECTION_MAP_MASK; 1954 return (struct page *)map; 1955} 1956 1957static inline int present_section(struct mem_section *section) 1958{ 1959 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1960} 1961 1962static inline int present_section_nr(unsigned long nr) 1963{ 1964 return present_section(__nr_to_section(nr)); 1965} 1966 1967static inline int valid_section(struct mem_section *section) 1968{ 1969 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1970} 1971 1972static inline int early_section(struct mem_section *section) 1973{ 1974 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1975} 1976 1977static inline int valid_section_nr(unsigned long nr) 1978{ 1979 return valid_section(__nr_to_section(nr)); 1980} 1981 1982static inline int online_section(struct mem_section *section) 1983{ 1984 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1985} 1986 1987#ifdef CONFIG_ZONE_DEVICE 1988static inline int online_device_section(struct mem_section *section) 1989{ 1990 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1991 1992 return section && ((section->section_mem_map & flags) == flags); 1993} 1994#else 1995static inline int online_device_section(struct mem_section *section) 1996{ 1997 return 0; 1998} 1999#endif 2000 2001static inline int online_section_nr(unsigned long nr) 2002{ 2003 return online_section(__nr_to_section(nr)); 2004} 2005 2006#ifdef CONFIG_MEMORY_HOTPLUG 2007void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 2008void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 2009#endif 2010 2011static inline struct mem_section *__pfn_to_section(unsigned long pfn) 2012{ 2013 return __nr_to_section(pfn_to_section_nr(pfn)); 2014} 2015 2016extern unsigned long __highest_present_section_nr; 2017 2018static inline int subsection_map_index(unsigned long pfn) 2019{ 2020 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 2021} 2022 2023#ifdef CONFIG_SPARSEMEM_VMEMMAP 2024static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2025{ 2026 int idx = subsection_map_index(pfn); 2027 struct mem_section_usage *usage = READ_ONCE(ms->usage); 2028 2029 return usage ? test_bit(idx, usage->subsection_map) : 0; 2030} 2031#else 2032static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2033{ 2034 return 1; 2035} 2036#endif 2037 2038#ifndef CONFIG_HAVE_ARCH_PFN_VALID 2039/** 2040 * pfn_valid - check if there is a valid memory map entry for a PFN 2041 * @pfn: the page frame number to check 2042 * 2043 * Check if there is a valid memory map entry aka struct page for the @pfn. 2044 * Note, that availability of the memory map entry does not imply that 2045 * there is actual usable memory at that @pfn. The struct page may 2046 * represent a hole or an unusable page frame. 2047 * 2048 * Return: 1 for PFNs that have memory map entries and 0 otherwise 2049 */ 2050static inline int pfn_valid(unsigned long pfn) 2051{ 2052 struct mem_section *ms; 2053 int ret; 2054 2055 /* 2056 * Ensure the upper PAGE_SHIFT bits are clear in the 2057 * pfn. Else it might lead to false positives when 2058 * some of the upper bits are set, but the lower bits 2059 * match a valid pfn. 2060 */ 2061 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2062 return 0; 2063 2064 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2065 return 0; 2066 ms = __pfn_to_section(pfn); 2067 rcu_read_lock_sched(); 2068 if (!valid_section(ms)) { 2069 rcu_read_unlock_sched(); 2070 return 0; 2071 } 2072 /* 2073 * Traditionally early sections always returned pfn_valid() for 2074 * the entire section-sized span. 2075 */ 2076 ret = early_section(ms) || pfn_section_valid(ms, pfn); 2077 rcu_read_unlock_sched(); 2078 2079 return ret; 2080} 2081#endif 2082 2083static inline int pfn_in_present_section(unsigned long pfn) 2084{ 2085 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2086 return 0; 2087 return present_section(__pfn_to_section(pfn)); 2088} 2089 2090static inline unsigned long next_present_section_nr(unsigned long section_nr) 2091{ 2092 while (++section_nr <= __highest_present_section_nr) { 2093 if (present_section_nr(section_nr)) 2094 return section_nr; 2095 } 2096 2097 return -1; 2098} 2099 2100/* 2101 * These are _only_ used during initialisation, therefore they 2102 * can use __initdata ... They could have names to indicate 2103 * this restriction. 2104 */ 2105#ifdef CONFIG_NUMA 2106#define pfn_to_nid(pfn) \ 2107({ \ 2108 unsigned long __pfn_to_nid_pfn = (pfn); \ 2109 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2110}) 2111#else 2112#define pfn_to_nid(pfn) (0) 2113#endif 2114 2115void sparse_init(void); 2116#else 2117#define sparse_init() do {} while (0) 2118#define sparse_index_init(_sec, _nid) do {} while (0) 2119#define pfn_in_present_section pfn_valid 2120#define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2121#endif /* CONFIG_SPARSEMEM */ 2122 2123#endif /* !__GENERATING_BOUNDS.H */ 2124#endif /* !__ASSEMBLY__ */ 2125#endif /* _LINUX_MMZONE_H */