Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/pgalloc_tag.h>
9#include <linux/bug.h>
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/atomic.h>
14#include <linux/debug_locks.h>
15#include <linux/mm_types.h>
16#include <linux/mmap_lock.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/percpu-refcount.h>
20#include <linux/bit_spinlock.h>
21#include <linux/shrinker.h>
22#include <linux/resource.h>
23#include <linux/page_ext.h>
24#include <linux/err.h>
25#include <linux/page-flags.h>
26#include <linux/page_ref.h>
27#include <linux/overflow.h>
28#include <linux/sizes.h>
29#include <linux/sched.h>
30#include <linux/pgtable.h>
31#include <linux/kasan.h>
32#include <linux/memremap.h>
33#include <linux/slab.h>
34#include <linux/cacheinfo.h>
35
36struct mempolicy;
37struct anon_vma;
38struct anon_vma_chain;
39struct user_struct;
40struct pt_regs;
41struct folio_batch;
42
43extern int sysctl_page_lock_unfairness;
44
45void mm_core_init(void);
46void init_mm_internals(void);
47
48#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
49extern unsigned long max_mapnr;
50
51static inline void set_max_mapnr(unsigned long limit)
52{
53 max_mapnr = limit;
54}
55#else
56static inline void set_max_mapnr(unsigned long limit) { }
57#endif
58
59extern atomic_long_t _totalram_pages;
60static inline unsigned long totalram_pages(void)
61{
62 return (unsigned long)atomic_long_read(&_totalram_pages);
63}
64
65static inline void totalram_pages_inc(void)
66{
67 atomic_long_inc(&_totalram_pages);
68}
69
70static inline void totalram_pages_dec(void)
71{
72 atomic_long_dec(&_totalram_pages);
73}
74
75static inline void totalram_pages_add(long count)
76{
77 atomic_long_add(count, &_totalram_pages);
78}
79
80extern void * high_memory;
81extern int page_cluster;
82extern const int page_cluster_max;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern int mmap_rnd_bits_max __ro_after_init;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
101#ifndef DIRECT_MAP_PHYSMEM_END
102# ifdef MAX_PHYSMEM_BITS
103# define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
104# else
105# define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
106# endif
107#endif
108
109#include <asm/page.h>
110#include <asm/processor.h>
111
112#ifndef __pa_symbol
113#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
114#endif
115
116#ifndef page_to_virt
117#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
118#endif
119
120#ifndef lm_alias
121#define lm_alias(x) __va(__pa_symbol(x))
122#endif
123
124/*
125 * To prevent common memory management code establishing
126 * a zero page mapping on a read fault.
127 * This macro should be defined within <asm/pgtable.h>.
128 * s390 does this to prevent multiplexing of hardware bits
129 * related to the physical page in case of virtualization.
130 */
131#ifndef mm_forbids_zeropage
132#define mm_forbids_zeropage(X) (0)
133#endif
134
135/*
136 * On some architectures it is expensive to call memset() for small sizes.
137 * If an architecture decides to implement their own version of
138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139 * define their own version of this macro in <asm/pgtable.h>
140 */
141#if BITS_PER_LONG == 64
142/* This function must be updated when the size of struct page grows above 96
143 * or reduces below 56. The idea that compiler optimizes out switch()
144 * statement, and only leaves move/store instructions. Also the compiler can
145 * combine write statements if they are both assignments and can be reordered,
146 * this can result in several of the writes here being dropped.
147 */
148#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
149static inline void __mm_zero_struct_page(struct page *page)
150{
151 unsigned long *_pp = (void *)page;
152
153 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
154 BUILD_BUG_ON(sizeof(struct page) & 7);
155 BUILD_BUG_ON(sizeof(struct page) < 56);
156 BUILD_BUG_ON(sizeof(struct page) > 96);
157
158 switch (sizeof(struct page)) {
159 case 96:
160 _pp[11] = 0;
161 fallthrough;
162 case 88:
163 _pp[10] = 0;
164 fallthrough;
165 case 80:
166 _pp[9] = 0;
167 fallthrough;
168 case 72:
169 _pp[8] = 0;
170 fallthrough;
171 case 64:
172 _pp[7] = 0;
173 fallthrough;
174 case 56:
175 _pp[6] = 0;
176 _pp[5] = 0;
177 _pp[4] = 0;
178 _pp[3] = 0;
179 _pp[2] = 0;
180 _pp[1] = 0;
181 _pp[0] = 0;
182 }
183}
184#else
185#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
186#endif
187
188/*
189 * Default maximum number of active map areas, this limits the number of vmas
190 * per mm struct. Users can overwrite this number by sysctl but there is a
191 * problem.
192 *
193 * When a program's coredump is generated as ELF format, a section is created
194 * per a vma. In ELF, the number of sections is represented in unsigned short.
195 * This means the number of sections should be smaller than 65535 at coredump.
196 * Because the kernel adds some informative sections to a image of program at
197 * generating coredump, we need some margin. The number of extra sections is
198 * 1-3 now and depends on arch. We use "5" as safe margin, here.
199 *
200 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
201 * not a hard limit any more. Although some userspace tools can be surprised by
202 * that.
203 */
204#define MAPCOUNT_ELF_CORE_MARGIN (5)
205#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
206
207extern int sysctl_max_map_count;
208
209extern unsigned long sysctl_user_reserve_kbytes;
210extern unsigned long sysctl_admin_reserve_kbytes;
211
212extern int sysctl_overcommit_memory;
213extern int sysctl_overcommit_ratio;
214extern unsigned long sysctl_overcommit_kbytes;
215
216int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
217 loff_t *);
218int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
219 loff_t *);
220int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
221 loff_t *);
222
223#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
224#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
225#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
226#else
227#define nth_page(page,n) ((page) + (n))
228#define folio_page_idx(folio, p) ((p) - &(folio)->page)
229#endif
230
231/* to align the pointer to the (next) page boundary */
232#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
233
234/* to align the pointer to the (prev) page boundary */
235#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
236
237/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
238#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
239
240static inline struct folio *lru_to_folio(struct list_head *head)
241{
242 return list_entry((head)->prev, struct folio, lru);
243}
244
245void setup_initial_init_mm(void *start_code, void *end_code,
246 void *end_data, void *brk);
247
248/*
249 * Linux kernel virtual memory manager primitives.
250 * The idea being to have a "virtual" mm in the same way
251 * we have a virtual fs - giving a cleaner interface to the
252 * mm details, and allowing different kinds of memory mappings
253 * (from shared memory to executable loading to arbitrary
254 * mmap() functions).
255 */
256
257struct vm_area_struct *vm_area_alloc(struct mm_struct *);
258struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
259void vm_area_free(struct vm_area_struct *);
260/* Use only if VMA has no other users */
261void __vm_area_free(struct vm_area_struct *vma);
262
263#ifndef CONFIG_MMU
264extern struct rb_root nommu_region_tree;
265extern struct rw_semaphore nommu_region_sem;
266
267extern unsigned int kobjsize(const void *objp);
268#endif
269
270/*
271 * vm_flags in vm_area_struct, see mm_types.h.
272 * When changing, update also include/trace/events/mmflags.h
273 */
274#define VM_NONE 0x00000000
275
276#define VM_READ 0x00000001 /* currently active flags */
277#define VM_WRITE 0x00000002
278#define VM_EXEC 0x00000004
279#define VM_SHARED 0x00000008
280
281/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
282#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
283#define VM_MAYWRITE 0x00000020
284#define VM_MAYEXEC 0x00000040
285#define VM_MAYSHARE 0x00000080
286
287#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
288#ifdef CONFIG_MMU
289#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
290#else /* CONFIG_MMU */
291#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
292#define VM_UFFD_MISSING 0
293#endif /* CONFIG_MMU */
294#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
295#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
296
297#define VM_LOCKED 0x00002000
298#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
299
300 /* Used by sys_madvise() */
301#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
302#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
303
304#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
305#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
306#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
307#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
308#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
309#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
310#define VM_SYNC 0x00800000 /* Synchronous page faults */
311#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
312#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
313#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
314
315#ifdef CONFIG_MEM_SOFT_DIRTY
316# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
317#else
318# define VM_SOFTDIRTY 0
319#endif
320
321#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
322#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
323#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
324#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
325
326#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
327#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
328#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
329#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
330#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
331#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
332#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
333#define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
334#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
335#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
336#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
337#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
338#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
339#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
340#define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
341#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
342
343#ifdef CONFIG_ARCH_HAS_PKEYS
344# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
345# define VM_PKEY_BIT0 VM_HIGH_ARCH_0
346# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
347# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
348#if CONFIG_ARCH_PKEY_BITS > 3
349# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
350#else
351# define VM_PKEY_BIT3 0
352#endif
353#if CONFIG_ARCH_PKEY_BITS > 4
354# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
355#else
356# define VM_PKEY_BIT4 0
357#endif
358#endif /* CONFIG_ARCH_HAS_PKEYS */
359
360#ifdef CONFIG_X86_USER_SHADOW_STACK
361/*
362 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
363 * support core mm.
364 *
365 * These VMAs will get a single end guard page. This helps userspace protect
366 * itself from attacks. A single page is enough for current shadow stack archs
367 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
368 * for more details on the guard size.
369 */
370# define VM_SHADOW_STACK VM_HIGH_ARCH_5
371#endif
372
373#if defined(CONFIG_ARM64_GCS)
374/*
375 * arm64's Guarded Control Stack implements similar functionality and
376 * has similar constraints to shadow stacks.
377 */
378# define VM_SHADOW_STACK VM_HIGH_ARCH_6
379#endif
380
381#ifndef VM_SHADOW_STACK
382# define VM_SHADOW_STACK VM_NONE
383#endif
384
385#if defined(CONFIG_X86)
386# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
387#elif defined(CONFIG_PPC64)
388# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
389#elif defined(CONFIG_PARISC)
390# define VM_GROWSUP VM_ARCH_1
391#elif defined(CONFIG_SPARC64)
392# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
393# define VM_ARCH_CLEAR VM_SPARC_ADI
394#elif defined(CONFIG_ARM64)
395# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
396# define VM_ARCH_CLEAR VM_ARM64_BTI
397#elif !defined(CONFIG_MMU)
398# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
399#endif
400
401#if defined(CONFIG_ARM64_MTE)
402# define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
403# define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
404#else
405# define VM_MTE VM_NONE
406# define VM_MTE_ALLOWED VM_NONE
407#endif
408
409#ifndef VM_GROWSUP
410# define VM_GROWSUP VM_NONE
411#endif
412
413#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
414# define VM_UFFD_MINOR_BIT 38
415# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
416#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
417# define VM_UFFD_MINOR VM_NONE
418#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
419
420/*
421 * This flag is used to connect VFIO to arch specific KVM code. It
422 * indicates that the memory under this VMA is safe for use with any
423 * non-cachable memory type inside KVM. Some VFIO devices, on some
424 * platforms, are thought to be unsafe and can cause machine crashes
425 * if KVM does not lock down the memory type.
426 */
427#ifdef CONFIG_64BIT
428#define VM_ALLOW_ANY_UNCACHED_BIT 39
429#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
430#else
431#define VM_ALLOW_ANY_UNCACHED VM_NONE
432#endif
433
434#ifdef CONFIG_64BIT
435#define VM_DROPPABLE_BIT 40
436#define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
437#elif defined(CONFIG_PPC32)
438#define VM_DROPPABLE VM_ARCH_1
439#else
440#define VM_DROPPABLE VM_NONE
441#endif
442
443#ifdef CONFIG_64BIT
444/* VM is sealed, in vm_flags */
445#define VM_SEALED _BITUL(63)
446#endif
447
448/* Bits set in the VMA until the stack is in its final location */
449#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
450
451#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
452
453/* Common data flag combinations */
454#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
455 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
456#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
457 VM_MAYWRITE | VM_MAYEXEC)
458#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
459 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
460
461#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
462#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
463#endif
464
465#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
466#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
467#endif
468
469#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
470
471#ifdef CONFIG_STACK_GROWSUP
472#define VM_STACK VM_GROWSUP
473#define VM_STACK_EARLY VM_GROWSDOWN
474#else
475#define VM_STACK VM_GROWSDOWN
476#define VM_STACK_EARLY 0
477#endif
478
479#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
480
481/* VMA basic access permission flags */
482#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
483
484
485/*
486 * Special vmas that are non-mergable, non-mlock()able.
487 */
488#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
489
490/* This mask prevents VMA from being scanned with khugepaged */
491#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
492
493/* This mask defines which mm->def_flags a process can inherit its parent */
494#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
495
496/* This mask represents all the VMA flag bits used by mlock */
497#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
498
499/* Arch-specific flags to clear when updating VM flags on protection change */
500#ifndef VM_ARCH_CLEAR
501# define VM_ARCH_CLEAR VM_NONE
502#endif
503#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
504
505/*
506 * mapping from the currently active vm_flags protection bits (the
507 * low four bits) to a page protection mask..
508 */
509
510/*
511 * The default fault flags that should be used by most of the
512 * arch-specific page fault handlers.
513 */
514#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
515 FAULT_FLAG_KILLABLE | \
516 FAULT_FLAG_INTERRUPTIBLE)
517
518/**
519 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
520 * @flags: Fault flags.
521 *
522 * This is mostly used for places where we want to try to avoid taking
523 * the mmap_lock for too long a time when waiting for another condition
524 * to change, in which case we can try to be polite to release the
525 * mmap_lock in the first round to avoid potential starvation of other
526 * processes that would also want the mmap_lock.
527 *
528 * Return: true if the page fault allows retry and this is the first
529 * attempt of the fault handling; false otherwise.
530 */
531static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
532{
533 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
534 (!(flags & FAULT_FLAG_TRIED));
535}
536
537#define FAULT_FLAG_TRACE \
538 { FAULT_FLAG_WRITE, "WRITE" }, \
539 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
540 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
541 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
542 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
543 { FAULT_FLAG_TRIED, "TRIED" }, \
544 { FAULT_FLAG_USER, "USER" }, \
545 { FAULT_FLAG_REMOTE, "REMOTE" }, \
546 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
547 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
548 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
549
550/*
551 * vm_fault is filled by the pagefault handler and passed to the vma's
552 * ->fault function. The vma's ->fault is responsible for returning a bitmask
553 * of VM_FAULT_xxx flags that give details about how the fault was handled.
554 *
555 * MM layer fills up gfp_mask for page allocations but fault handler might
556 * alter it if its implementation requires a different allocation context.
557 *
558 * pgoff should be used in favour of virtual_address, if possible.
559 */
560struct vm_fault {
561 const struct {
562 struct vm_area_struct *vma; /* Target VMA */
563 gfp_t gfp_mask; /* gfp mask to be used for allocations */
564 pgoff_t pgoff; /* Logical page offset based on vma */
565 unsigned long address; /* Faulting virtual address - masked */
566 unsigned long real_address; /* Faulting virtual address - unmasked */
567 };
568 enum fault_flag flags; /* FAULT_FLAG_xxx flags
569 * XXX: should really be 'const' */
570 pmd_t *pmd; /* Pointer to pmd entry matching
571 * the 'address' */
572 pud_t *pud; /* Pointer to pud entry matching
573 * the 'address'
574 */
575 union {
576 pte_t orig_pte; /* Value of PTE at the time of fault */
577 pmd_t orig_pmd; /* Value of PMD at the time of fault,
578 * used by PMD fault only.
579 */
580 };
581
582 struct page *cow_page; /* Page handler may use for COW fault */
583 struct page *page; /* ->fault handlers should return a
584 * page here, unless VM_FAULT_NOPAGE
585 * is set (which is also implied by
586 * VM_FAULT_ERROR).
587 */
588 /* These three entries are valid only while holding ptl lock */
589 pte_t *pte; /* Pointer to pte entry matching
590 * the 'address'. NULL if the page
591 * table hasn't been allocated.
592 */
593 spinlock_t *ptl; /* Page table lock.
594 * Protects pte page table if 'pte'
595 * is not NULL, otherwise pmd.
596 */
597 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
598 * vm_ops->map_pages() sets up a page
599 * table from atomic context.
600 * do_fault_around() pre-allocates
601 * page table to avoid allocation from
602 * atomic context.
603 */
604};
605
606/*
607 * These are the virtual MM functions - opening of an area, closing and
608 * unmapping it (needed to keep files on disk up-to-date etc), pointer
609 * to the functions called when a no-page or a wp-page exception occurs.
610 */
611struct vm_operations_struct {
612 void (*open)(struct vm_area_struct * area);
613 /**
614 * @close: Called when the VMA is being removed from the MM.
615 * Context: User context. May sleep. Caller holds mmap_lock.
616 */
617 void (*close)(struct vm_area_struct * area);
618 /* Called any time before splitting to check if it's allowed */
619 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
620 int (*mremap)(struct vm_area_struct *area);
621 /*
622 * Called by mprotect() to make driver-specific permission
623 * checks before mprotect() is finalised. The VMA must not
624 * be modified. Returns 0 if mprotect() can proceed.
625 */
626 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
627 unsigned long end, unsigned long newflags);
628 vm_fault_t (*fault)(struct vm_fault *vmf);
629 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
630 vm_fault_t (*map_pages)(struct vm_fault *vmf,
631 pgoff_t start_pgoff, pgoff_t end_pgoff);
632 unsigned long (*pagesize)(struct vm_area_struct * area);
633
634 /* notification that a previously read-only page is about to become
635 * writable, if an error is returned it will cause a SIGBUS */
636 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
637
638 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
639 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
640
641 /* called by access_process_vm when get_user_pages() fails, typically
642 * for use by special VMAs. See also generic_access_phys() for a generic
643 * implementation useful for any iomem mapping.
644 */
645 int (*access)(struct vm_area_struct *vma, unsigned long addr,
646 void *buf, int len, int write);
647
648 /* Called by the /proc/PID/maps code to ask the vma whether it
649 * has a special name. Returning non-NULL will also cause this
650 * vma to be dumped unconditionally. */
651 const char *(*name)(struct vm_area_struct *vma);
652
653#ifdef CONFIG_NUMA
654 /*
655 * set_policy() op must add a reference to any non-NULL @new mempolicy
656 * to hold the policy upon return. Caller should pass NULL @new to
657 * remove a policy and fall back to surrounding context--i.e. do not
658 * install a MPOL_DEFAULT policy, nor the task or system default
659 * mempolicy.
660 */
661 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
662
663 /*
664 * get_policy() op must add reference [mpol_get()] to any policy at
665 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
666 * in mm/mempolicy.c will do this automatically.
667 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
668 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
669 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
670 * must return NULL--i.e., do not "fallback" to task or system default
671 * policy.
672 */
673 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
674 unsigned long addr, pgoff_t *ilx);
675#endif
676 /*
677 * Called by vm_normal_page() for special PTEs to find the
678 * page for @addr. This is useful if the default behavior
679 * (using pte_page()) would not find the correct page.
680 */
681 struct page *(*find_special_page)(struct vm_area_struct *vma,
682 unsigned long addr);
683};
684
685#ifdef CONFIG_NUMA_BALANCING
686static inline void vma_numab_state_init(struct vm_area_struct *vma)
687{
688 vma->numab_state = NULL;
689}
690static inline void vma_numab_state_free(struct vm_area_struct *vma)
691{
692 kfree(vma->numab_state);
693}
694#else
695static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
696static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
697#endif /* CONFIG_NUMA_BALANCING */
698
699#ifdef CONFIG_PER_VMA_LOCK
700/*
701 * Try to read-lock a vma. The function is allowed to occasionally yield false
702 * locked result to avoid performance overhead, in which case we fall back to
703 * using mmap_lock. The function should never yield false unlocked result.
704 */
705static inline bool vma_start_read(struct vm_area_struct *vma)
706{
707 /*
708 * Check before locking. A race might cause false locked result.
709 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
710 * ACQUIRE semantics, because this is just a lockless check whose result
711 * we don't rely on for anything - the mm_lock_seq read against which we
712 * need ordering is below.
713 */
714 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq.sequence))
715 return false;
716
717 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
718 return false;
719
720 /*
721 * Overflow might produce false locked result.
722 * False unlocked result is impossible because we modify and check
723 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
724 * modification invalidates all existing locks.
725 *
726 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
727 * racing with vma_end_write_all(), we only start reading from the VMA
728 * after it has been unlocked.
729 * This pairs with RELEASE semantics in vma_end_write_all().
730 */
731 if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&vma->vm_mm->mm_lock_seq))) {
732 up_read(&vma->vm_lock->lock);
733 return false;
734 }
735 return true;
736}
737
738static inline void vma_end_read(struct vm_area_struct *vma)
739{
740 rcu_read_lock(); /* keeps vma alive till the end of up_read */
741 up_read(&vma->vm_lock->lock);
742 rcu_read_unlock();
743}
744
745/* WARNING! Can only be used if mmap_lock is expected to be write-locked */
746static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq)
747{
748 mmap_assert_write_locked(vma->vm_mm);
749
750 /*
751 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
752 * mm->mm_lock_seq can't be concurrently modified.
753 */
754 *mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence;
755 return (vma->vm_lock_seq == *mm_lock_seq);
756}
757
758/*
759 * Begin writing to a VMA.
760 * Exclude concurrent readers under the per-VMA lock until the currently
761 * write-locked mmap_lock is dropped or downgraded.
762 */
763static inline void vma_start_write(struct vm_area_struct *vma)
764{
765 unsigned int mm_lock_seq;
766
767 if (__is_vma_write_locked(vma, &mm_lock_seq))
768 return;
769
770 down_write(&vma->vm_lock->lock);
771 /*
772 * We should use WRITE_ONCE() here because we can have concurrent reads
773 * from the early lockless pessimistic check in vma_start_read().
774 * We don't really care about the correctness of that early check, but
775 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
776 */
777 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
778 up_write(&vma->vm_lock->lock);
779}
780
781static inline void vma_assert_write_locked(struct vm_area_struct *vma)
782{
783 unsigned int mm_lock_seq;
784
785 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
786}
787
788static inline void vma_assert_locked(struct vm_area_struct *vma)
789{
790 if (!rwsem_is_locked(&vma->vm_lock->lock))
791 vma_assert_write_locked(vma);
792}
793
794static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
795{
796 /* When detaching vma should be write-locked */
797 if (detached)
798 vma_assert_write_locked(vma);
799 vma->detached = detached;
800}
801
802static inline void release_fault_lock(struct vm_fault *vmf)
803{
804 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
805 vma_end_read(vmf->vma);
806 else
807 mmap_read_unlock(vmf->vma->vm_mm);
808}
809
810static inline void assert_fault_locked(struct vm_fault *vmf)
811{
812 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
813 vma_assert_locked(vmf->vma);
814 else
815 mmap_assert_locked(vmf->vma->vm_mm);
816}
817
818struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
819 unsigned long address);
820
821#else /* CONFIG_PER_VMA_LOCK */
822
823static inline bool vma_start_read(struct vm_area_struct *vma)
824 { return false; }
825static inline void vma_end_read(struct vm_area_struct *vma) {}
826static inline void vma_start_write(struct vm_area_struct *vma) {}
827static inline void vma_assert_write_locked(struct vm_area_struct *vma)
828 { mmap_assert_write_locked(vma->vm_mm); }
829static inline void vma_mark_detached(struct vm_area_struct *vma,
830 bool detached) {}
831
832static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
833 unsigned long address)
834{
835 return NULL;
836}
837
838static inline void vma_assert_locked(struct vm_area_struct *vma)
839{
840 mmap_assert_locked(vma->vm_mm);
841}
842
843static inline void release_fault_lock(struct vm_fault *vmf)
844{
845 mmap_read_unlock(vmf->vma->vm_mm);
846}
847
848static inline void assert_fault_locked(struct vm_fault *vmf)
849{
850 mmap_assert_locked(vmf->vma->vm_mm);
851}
852
853#endif /* CONFIG_PER_VMA_LOCK */
854
855extern const struct vm_operations_struct vma_dummy_vm_ops;
856
857/*
858 * WARNING: vma_init does not initialize vma->vm_lock.
859 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
860 */
861static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
862{
863 memset(vma, 0, sizeof(*vma));
864 vma->vm_mm = mm;
865 vma->vm_ops = &vma_dummy_vm_ops;
866 INIT_LIST_HEAD(&vma->anon_vma_chain);
867 vma_mark_detached(vma, false);
868 vma_numab_state_init(vma);
869}
870
871/* Use when VMA is not part of the VMA tree and needs no locking */
872static inline void vm_flags_init(struct vm_area_struct *vma,
873 vm_flags_t flags)
874{
875 ACCESS_PRIVATE(vma, __vm_flags) = flags;
876}
877
878/*
879 * Use when VMA is part of the VMA tree and modifications need coordination
880 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
881 * it should be locked explicitly beforehand.
882 */
883static inline void vm_flags_reset(struct vm_area_struct *vma,
884 vm_flags_t flags)
885{
886 vma_assert_write_locked(vma);
887 vm_flags_init(vma, flags);
888}
889
890static inline void vm_flags_reset_once(struct vm_area_struct *vma,
891 vm_flags_t flags)
892{
893 vma_assert_write_locked(vma);
894 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
895}
896
897static inline void vm_flags_set(struct vm_area_struct *vma,
898 vm_flags_t flags)
899{
900 vma_start_write(vma);
901 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
902}
903
904static inline void vm_flags_clear(struct vm_area_struct *vma,
905 vm_flags_t flags)
906{
907 vma_start_write(vma);
908 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
909}
910
911/*
912 * Use only if VMA is not part of the VMA tree or has no other users and
913 * therefore needs no locking.
914 */
915static inline void __vm_flags_mod(struct vm_area_struct *vma,
916 vm_flags_t set, vm_flags_t clear)
917{
918 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
919}
920
921/*
922 * Use only when the order of set/clear operations is unimportant, otherwise
923 * use vm_flags_{set|clear} explicitly.
924 */
925static inline void vm_flags_mod(struct vm_area_struct *vma,
926 vm_flags_t set, vm_flags_t clear)
927{
928 vma_start_write(vma);
929 __vm_flags_mod(vma, set, clear);
930}
931
932static inline void vma_set_anonymous(struct vm_area_struct *vma)
933{
934 vma->vm_ops = NULL;
935}
936
937static inline bool vma_is_anonymous(struct vm_area_struct *vma)
938{
939 return !vma->vm_ops;
940}
941
942/*
943 * Indicate if the VMA is a heap for the given task; for
944 * /proc/PID/maps that is the heap of the main task.
945 */
946static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
947{
948 return vma->vm_start < vma->vm_mm->brk &&
949 vma->vm_end > vma->vm_mm->start_brk;
950}
951
952/*
953 * Indicate if the VMA is a stack for the given task; for
954 * /proc/PID/maps that is the stack of the main task.
955 */
956static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
957{
958 /*
959 * We make no effort to guess what a given thread considers to be
960 * its "stack". It's not even well-defined for programs written
961 * languages like Go.
962 */
963 return vma->vm_start <= vma->vm_mm->start_stack &&
964 vma->vm_end >= vma->vm_mm->start_stack;
965}
966
967static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
968{
969 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
970
971 if (!maybe_stack)
972 return false;
973
974 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
975 VM_STACK_INCOMPLETE_SETUP)
976 return true;
977
978 return false;
979}
980
981static inline bool vma_is_foreign(struct vm_area_struct *vma)
982{
983 if (!current->mm)
984 return true;
985
986 if (current->mm != vma->vm_mm)
987 return true;
988
989 return false;
990}
991
992static inline bool vma_is_accessible(struct vm_area_struct *vma)
993{
994 return vma->vm_flags & VM_ACCESS_FLAGS;
995}
996
997static inline bool is_shared_maywrite(vm_flags_t vm_flags)
998{
999 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
1000 (VM_SHARED | VM_MAYWRITE);
1001}
1002
1003static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1004{
1005 return is_shared_maywrite(vma->vm_flags);
1006}
1007
1008static inline
1009struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1010{
1011 return mas_find(&vmi->mas, max - 1);
1012}
1013
1014static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1015{
1016 /*
1017 * Uses mas_find() to get the first VMA when the iterator starts.
1018 * Calling mas_next() could skip the first entry.
1019 */
1020 return mas_find(&vmi->mas, ULONG_MAX);
1021}
1022
1023static inline
1024struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1025{
1026 return mas_next_range(&vmi->mas, ULONG_MAX);
1027}
1028
1029
1030static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1031{
1032 return mas_prev(&vmi->mas, 0);
1033}
1034
1035static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1036 unsigned long start, unsigned long end, gfp_t gfp)
1037{
1038 __mas_set_range(&vmi->mas, start, end - 1);
1039 mas_store_gfp(&vmi->mas, NULL, gfp);
1040 if (unlikely(mas_is_err(&vmi->mas)))
1041 return -ENOMEM;
1042
1043 return 0;
1044}
1045
1046/* Free any unused preallocations */
1047static inline void vma_iter_free(struct vma_iterator *vmi)
1048{
1049 mas_destroy(&vmi->mas);
1050}
1051
1052static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1053 struct vm_area_struct *vma)
1054{
1055 vmi->mas.index = vma->vm_start;
1056 vmi->mas.last = vma->vm_end - 1;
1057 mas_store(&vmi->mas, vma);
1058 if (unlikely(mas_is_err(&vmi->mas)))
1059 return -ENOMEM;
1060
1061 return 0;
1062}
1063
1064static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1065{
1066 mas_pause(&vmi->mas);
1067}
1068
1069static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1070{
1071 mas_set(&vmi->mas, addr);
1072}
1073
1074#define for_each_vma(__vmi, __vma) \
1075 while (((__vma) = vma_next(&(__vmi))) != NULL)
1076
1077/* The MM code likes to work with exclusive end addresses */
1078#define for_each_vma_range(__vmi, __vma, __end) \
1079 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1080
1081#ifdef CONFIG_SHMEM
1082/*
1083 * The vma_is_shmem is not inline because it is used only by slow
1084 * paths in userfault.
1085 */
1086bool vma_is_shmem(struct vm_area_struct *vma);
1087bool vma_is_anon_shmem(struct vm_area_struct *vma);
1088#else
1089static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1090static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1091#endif
1092
1093int vma_is_stack_for_current(struct vm_area_struct *vma);
1094
1095/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1096#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1097
1098struct mmu_gather;
1099struct inode;
1100
1101/*
1102 * compound_order() can be called without holding a reference, which means
1103 * that niceties like page_folio() don't work. These callers should be
1104 * prepared to handle wild return values. For example, PG_head may be
1105 * set before the order is initialised, or this may be a tail page.
1106 * See compaction.c for some good examples.
1107 */
1108static inline unsigned int compound_order(struct page *page)
1109{
1110 struct folio *folio = (struct folio *)page;
1111
1112 if (!test_bit(PG_head, &folio->flags))
1113 return 0;
1114 return folio->_flags_1 & 0xff;
1115}
1116
1117/**
1118 * folio_order - The allocation order of a folio.
1119 * @folio: The folio.
1120 *
1121 * A folio is composed of 2^order pages. See get_order() for the definition
1122 * of order.
1123 *
1124 * Return: The order of the folio.
1125 */
1126static inline unsigned int folio_order(const struct folio *folio)
1127{
1128 if (!folio_test_large(folio))
1129 return 0;
1130 return folio->_flags_1 & 0xff;
1131}
1132
1133#include <linux/huge_mm.h>
1134
1135/*
1136 * Methods to modify the page usage count.
1137 *
1138 * What counts for a page usage:
1139 * - cache mapping (page->mapping)
1140 * - private data (page->private)
1141 * - page mapped in a task's page tables, each mapping
1142 * is counted separately
1143 *
1144 * Also, many kernel routines increase the page count before a critical
1145 * routine so they can be sure the page doesn't go away from under them.
1146 */
1147
1148/*
1149 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1150 */
1151static inline int put_page_testzero(struct page *page)
1152{
1153 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1154 return page_ref_dec_and_test(page);
1155}
1156
1157static inline int folio_put_testzero(struct folio *folio)
1158{
1159 return put_page_testzero(&folio->page);
1160}
1161
1162/*
1163 * Try to grab a ref unless the page has a refcount of zero, return false if
1164 * that is the case.
1165 * This can be called when MMU is off so it must not access
1166 * any of the virtual mappings.
1167 */
1168static inline bool get_page_unless_zero(struct page *page)
1169{
1170 return page_ref_add_unless(page, 1, 0);
1171}
1172
1173static inline struct folio *folio_get_nontail_page(struct page *page)
1174{
1175 if (unlikely(!get_page_unless_zero(page)))
1176 return NULL;
1177 return (struct folio *)page;
1178}
1179
1180extern int page_is_ram(unsigned long pfn);
1181
1182enum {
1183 REGION_INTERSECTS,
1184 REGION_DISJOINT,
1185 REGION_MIXED,
1186};
1187
1188int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1189 unsigned long desc);
1190
1191/* Support for virtually mapped pages */
1192struct page *vmalloc_to_page(const void *addr);
1193unsigned long vmalloc_to_pfn(const void *addr);
1194
1195/*
1196 * Determine if an address is within the vmalloc range
1197 *
1198 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1199 * is no special casing required.
1200 */
1201#ifdef CONFIG_MMU
1202extern bool is_vmalloc_addr(const void *x);
1203extern int is_vmalloc_or_module_addr(const void *x);
1204#else
1205static inline bool is_vmalloc_addr(const void *x)
1206{
1207 return false;
1208}
1209static inline int is_vmalloc_or_module_addr(const void *x)
1210{
1211 return 0;
1212}
1213#endif
1214
1215/*
1216 * How many times the entire folio is mapped as a single unit (eg by a
1217 * PMD or PUD entry). This is probably not what you want, except for
1218 * debugging purposes or implementation of other core folio_*() primitives.
1219 */
1220static inline int folio_entire_mapcount(const struct folio *folio)
1221{
1222 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1223 return atomic_read(&folio->_entire_mapcount) + 1;
1224}
1225
1226static inline int folio_large_mapcount(const struct folio *folio)
1227{
1228 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1229 return atomic_read(&folio->_large_mapcount) + 1;
1230}
1231
1232/**
1233 * folio_mapcount() - Number of mappings of this folio.
1234 * @folio: The folio.
1235 *
1236 * The folio mapcount corresponds to the number of present user page table
1237 * entries that reference any part of a folio. Each such present user page
1238 * table entry must be paired with exactly on folio reference.
1239 *
1240 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1241 * exactly once.
1242 *
1243 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1244 * references the entire folio counts exactly once, even when such special
1245 * page table entries are comprised of multiple ordinary page table entries.
1246 *
1247 * Will report 0 for pages which cannot be mapped into userspace, such as
1248 * slab, page tables and similar.
1249 *
1250 * Return: The number of times this folio is mapped.
1251 */
1252static inline int folio_mapcount(const struct folio *folio)
1253{
1254 int mapcount;
1255
1256 if (likely(!folio_test_large(folio))) {
1257 mapcount = atomic_read(&folio->_mapcount) + 1;
1258 if (page_mapcount_is_type(mapcount))
1259 mapcount = 0;
1260 return mapcount;
1261 }
1262 return folio_large_mapcount(folio);
1263}
1264
1265/**
1266 * folio_mapped - Is this folio mapped into userspace?
1267 * @folio: The folio.
1268 *
1269 * Return: True if any page in this folio is referenced by user page tables.
1270 */
1271static inline bool folio_mapped(const struct folio *folio)
1272{
1273 return folio_mapcount(folio) >= 1;
1274}
1275
1276/*
1277 * Return true if this page is mapped into pagetables.
1278 * For compound page it returns true if any sub-page of compound page is mapped,
1279 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1280 */
1281static inline bool page_mapped(const struct page *page)
1282{
1283 return folio_mapped(page_folio(page));
1284}
1285
1286static inline struct page *virt_to_head_page(const void *x)
1287{
1288 struct page *page = virt_to_page(x);
1289
1290 return compound_head(page);
1291}
1292
1293static inline struct folio *virt_to_folio(const void *x)
1294{
1295 struct page *page = virt_to_page(x);
1296
1297 return page_folio(page);
1298}
1299
1300void __folio_put(struct folio *folio);
1301
1302void split_page(struct page *page, unsigned int order);
1303void folio_copy(struct folio *dst, struct folio *src);
1304int folio_mc_copy(struct folio *dst, struct folio *src);
1305
1306unsigned long nr_free_buffer_pages(void);
1307
1308/* Returns the number of bytes in this potentially compound page. */
1309static inline unsigned long page_size(struct page *page)
1310{
1311 return PAGE_SIZE << compound_order(page);
1312}
1313
1314/* Returns the number of bits needed for the number of bytes in a page */
1315static inline unsigned int page_shift(struct page *page)
1316{
1317 return PAGE_SHIFT + compound_order(page);
1318}
1319
1320/**
1321 * thp_order - Order of a transparent huge page.
1322 * @page: Head page of a transparent huge page.
1323 */
1324static inline unsigned int thp_order(struct page *page)
1325{
1326 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1327 return compound_order(page);
1328}
1329
1330/**
1331 * thp_size - Size of a transparent huge page.
1332 * @page: Head page of a transparent huge page.
1333 *
1334 * Return: Number of bytes in this page.
1335 */
1336static inline unsigned long thp_size(struct page *page)
1337{
1338 return PAGE_SIZE << thp_order(page);
1339}
1340
1341#ifdef CONFIG_MMU
1342/*
1343 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1344 * servicing faults for write access. In the normal case, do always want
1345 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1346 * that do not have writing enabled, when used by access_process_vm.
1347 */
1348static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1349{
1350 if (likely(vma->vm_flags & VM_WRITE))
1351 pte = pte_mkwrite(pte, vma);
1352 return pte;
1353}
1354
1355vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1356void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1357 struct page *page, unsigned int nr, unsigned long addr);
1358
1359vm_fault_t finish_fault(struct vm_fault *vmf);
1360#endif
1361
1362/*
1363 * Multiple processes may "see" the same page. E.g. for untouched
1364 * mappings of /dev/null, all processes see the same page full of
1365 * zeroes, and text pages of executables and shared libraries have
1366 * only one copy in memory, at most, normally.
1367 *
1368 * For the non-reserved pages, page_count(page) denotes a reference count.
1369 * page_count() == 0 means the page is free. page->lru is then used for
1370 * freelist management in the buddy allocator.
1371 * page_count() > 0 means the page has been allocated.
1372 *
1373 * Pages are allocated by the slab allocator in order to provide memory
1374 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1375 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1376 * unless a particular usage is carefully commented. (the responsibility of
1377 * freeing the kmalloc memory is the caller's, of course).
1378 *
1379 * A page may be used by anyone else who does a __get_free_page().
1380 * In this case, page_count still tracks the references, and should only
1381 * be used through the normal accessor functions. The top bits of page->flags
1382 * and page->virtual store page management information, but all other fields
1383 * are unused and could be used privately, carefully. The management of this
1384 * page is the responsibility of the one who allocated it, and those who have
1385 * subsequently been given references to it.
1386 *
1387 * The other pages (we may call them "pagecache pages") are completely
1388 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1389 * The following discussion applies only to them.
1390 *
1391 * A pagecache page contains an opaque `private' member, which belongs to the
1392 * page's address_space. Usually, this is the address of a circular list of
1393 * the page's disk buffers. PG_private must be set to tell the VM to call
1394 * into the filesystem to release these pages.
1395 *
1396 * A page may belong to an inode's memory mapping. In this case, page->mapping
1397 * is the pointer to the inode, and page->index is the file offset of the page,
1398 * in units of PAGE_SIZE.
1399 *
1400 * If pagecache pages are not associated with an inode, they are said to be
1401 * anonymous pages. These may become associated with the swapcache, and in that
1402 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1403 *
1404 * In either case (swapcache or inode backed), the pagecache itself holds one
1405 * reference to the page. Setting PG_private should also increment the
1406 * refcount. The each user mapping also has a reference to the page.
1407 *
1408 * The pagecache pages are stored in a per-mapping radix tree, which is
1409 * rooted at mapping->i_pages, and indexed by offset.
1410 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1411 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1412 *
1413 * All pagecache pages may be subject to I/O:
1414 * - inode pages may need to be read from disk,
1415 * - inode pages which have been modified and are MAP_SHARED may need
1416 * to be written back to the inode on disk,
1417 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1418 * modified may need to be swapped out to swap space and (later) to be read
1419 * back into memory.
1420 */
1421
1422#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1423DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1424
1425bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1426static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1427{
1428 if (!static_branch_unlikely(&devmap_managed_key))
1429 return false;
1430 if (!folio_is_zone_device(folio))
1431 return false;
1432 return __put_devmap_managed_folio_refs(folio, refs);
1433}
1434#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1435static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1436{
1437 return false;
1438}
1439#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1440
1441/* 127: arbitrary random number, small enough to assemble well */
1442#define folio_ref_zero_or_close_to_overflow(folio) \
1443 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1444
1445/**
1446 * folio_get - Increment the reference count on a folio.
1447 * @folio: The folio.
1448 *
1449 * Context: May be called in any context, as long as you know that
1450 * you have a refcount on the folio. If you do not already have one,
1451 * folio_try_get() may be the right interface for you to use.
1452 */
1453static inline void folio_get(struct folio *folio)
1454{
1455 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1456 folio_ref_inc(folio);
1457}
1458
1459static inline void get_page(struct page *page)
1460{
1461 struct folio *folio = page_folio(page);
1462 if (WARN_ON_ONCE(folio_test_slab(folio)))
1463 return;
1464 folio_get(folio);
1465}
1466
1467static inline __must_check bool try_get_page(struct page *page)
1468{
1469 page = compound_head(page);
1470 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1471 return false;
1472 page_ref_inc(page);
1473 return true;
1474}
1475
1476/**
1477 * folio_put - Decrement the reference count on a folio.
1478 * @folio: The folio.
1479 *
1480 * If the folio's reference count reaches zero, the memory will be
1481 * released back to the page allocator and may be used by another
1482 * allocation immediately. Do not access the memory or the struct folio
1483 * after calling folio_put() unless you can be sure that it wasn't the
1484 * last reference.
1485 *
1486 * Context: May be called in process or interrupt context, but not in NMI
1487 * context. May be called while holding a spinlock.
1488 */
1489static inline void folio_put(struct folio *folio)
1490{
1491 if (folio_put_testzero(folio))
1492 __folio_put(folio);
1493}
1494
1495/**
1496 * folio_put_refs - Reduce the reference count on a folio.
1497 * @folio: The folio.
1498 * @refs: The amount to subtract from the folio's reference count.
1499 *
1500 * If the folio's reference count reaches zero, the memory will be
1501 * released back to the page allocator and may be used by another
1502 * allocation immediately. Do not access the memory or the struct folio
1503 * after calling folio_put_refs() unless you can be sure that these weren't
1504 * the last references.
1505 *
1506 * Context: May be called in process or interrupt context, but not in NMI
1507 * context. May be called while holding a spinlock.
1508 */
1509static inline void folio_put_refs(struct folio *folio, int refs)
1510{
1511 if (folio_ref_sub_and_test(folio, refs))
1512 __folio_put(folio);
1513}
1514
1515void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1516
1517/*
1518 * union release_pages_arg - an array of pages or folios
1519 *
1520 * release_pages() releases a simple array of multiple pages, and
1521 * accepts various different forms of said page array: either
1522 * a regular old boring array of pages, an array of folios, or
1523 * an array of encoded page pointers.
1524 *
1525 * The transparent union syntax for this kind of "any of these
1526 * argument types" is all kinds of ugly, so look away.
1527 */
1528typedef union {
1529 struct page **pages;
1530 struct folio **folios;
1531 struct encoded_page **encoded_pages;
1532} release_pages_arg __attribute__ ((__transparent_union__));
1533
1534void release_pages(release_pages_arg, int nr);
1535
1536/**
1537 * folios_put - Decrement the reference count on an array of folios.
1538 * @folios: The folios.
1539 *
1540 * Like folio_put(), but for a batch of folios. This is more efficient
1541 * than writing the loop yourself as it will optimise the locks which need
1542 * to be taken if the folios are freed. The folios batch is returned
1543 * empty and ready to be reused for another batch; there is no need to
1544 * reinitialise it.
1545 *
1546 * Context: May be called in process or interrupt context, but not in NMI
1547 * context. May be called while holding a spinlock.
1548 */
1549static inline void folios_put(struct folio_batch *folios)
1550{
1551 folios_put_refs(folios, NULL);
1552}
1553
1554static inline void put_page(struct page *page)
1555{
1556 struct folio *folio = page_folio(page);
1557
1558 if (folio_test_slab(folio))
1559 return;
1560
1561 /*
1562 * For some devmap managed pages we need to catch refcount transition
1563 * from 2 to 1:
1564 */
1565 if (put_devmap_managed_folio_refs(folio, 1))
1566 return;
1567 folio_put(folio);
1568}
1569
1570/*
1571 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1572 * the page's refcount so that two separate items are tracked: the original page
1573 * reference count, and also a new count of how many pin_user_pages() calls were
1574 * made against the page. ("gup-pinned" is another term for the latter).
1575 *
1576 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1577 * distinct from normal pages. As such, the unpin_user_page() call (and its
1578 * variants) must be used in order to release gup-pinned pages.
1579 *
1580 * Choice of value:
1581 *
1582 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1583 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1584 * simpler, due to the fact that adding an even power of two to the page
1585 * refcount has the effect of using only the upper N bits, for the code that
1586 * counts up using the bias value. This means that the lower bits are left for
1587 * the exclusive use of the original code that increments and decrements by one
1588 * (or at least, by much smaller values than the bias value).
1589 *
1590 * Of course, once the lower bits overflow into the upper bits (and this is
1591 * OK, because subtraction recovers the original values), then visual inspection
1592 * no longer suffices to directly view the separate counts. However, for normal
1593 * applications that don't have huge page reference counts, this won't be an
1594 * issue.
1595 *
1596 * Locking: the lockless algorithm described in folio_try_get_rcu()
1597 * provides safe operation for get_user_pages(), folio_mkclean() and
1598 * other calls that race to set up page table entries.
1599 */
1600#define GUP_PIN_COUNTING_BIAS (1U << 10)
1601
1602void unpin_user_page(struct page *page);
1603void unpin_folio(struct folio *folio);
1604void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1605 bool make_dirty);
1606void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1607 bool make_dirty);
1608void unpin_user_pages(struct page **pages, unsigned long npages);
1609void unpin_user_folio(struct folio *folio, unsigned long npages);
1610void unpin_folios(struct folio **folios, unsigned long nfolios);
1611
1612static inline bool is_cow_mapping(vm_flags_t flags)
1613{
1614 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1615}
1616
1617#ifndef CONFIG_MMU
1618static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1619{
1620 /*
1621 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1622 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1623 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1624 * underlying memory if ptrace is active, so this is only possible if
1625 * ptrace does not apply. Note that there is no mprotect() to upgrade
1626 * write permissions later.
1627 */
1628 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1629}
1630#endif
1631
1632#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1633#define SECTION_IN_PAGE_FLAGS
1634#endif
1635
1636/*
1637 * The identification function is mainly used by the buddy allocator for
1638 * determining if two pages could be buddies. We are not really identifying
1639 * the zone since we could be using the section number id if we do not have
1640 * node id available in page flags.
1641 * We only guarantee that it will return the same value for two combinable
1642 * pages in a zone.
1643 */
1644static inline int page_zone_id(struct page *page)
1645{
1646 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1647}
1648
1649#ifdef NODE_NOT_IN_PAGE_FLAGS
1650int page_to_nid(const struct page *page);
1651#else
1652static inline int page_to_nid(const struct page *page)
1653{
1654 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1655}
1656#endif
1657
1658static inline int folio_nid(const struct folio *folio)
1659{
1660 return page_to_nid(&folio->page);
1661}
1662
1663#ifdef CONFIG_NUMA_BALANCING
1664/* page access time bits needs to hold at least 4 seconds */
1665#define PAGE_ACCESS_TIME_MIN_BITS 12
1666#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1667#define PAGE_ACCESS_TIME_BUCKETS \
1668 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1669#else
1670#define PAGE_ACCESS_TIME_BUCKETS 0
1671#endif
1672
1673#define PAGE_ACCESS_TIME_MASK \
1674 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1675
1676static inline int cpu_pid_to_cpupid(int cpu, int pid)
1677{
1678 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1679}
1680
1681static inline int cpupid_to_pid(int cpupid)
1682{
1683 return cpupid & LAST__PID_MASK;
1684}
1685
1686static inline int cpupid_to_cpu(int cpupid)
1687{
1688 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1689}
1690
1691static inline int cpupid_to_nid(int cpupid)
1692{
1693 return cpu_to_node(cpupid_to_cpu(cpupid));
1694}
1695
1696static inline bool cpupid_pid_unset(int cpupid)
1697{
1698 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1699}
1700
1701static inline bool cpupid_cpu_unset(int cpupid)
1702{
1703 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1704}
1705
1706static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1707{
1708 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1709}
1710
1711#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1712#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1713static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1714{
1715 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1716}
1717
1718static inline int folio_last_cpupid(struct folio *folio)
1719{
1720 return folio->_last_cpupid;
1721}
1722static inline void page_cpupid_reset_last(struct page *page)
1723{
1724 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1725}
1726#else
1727static inline int folio_last_cpupid(struct folio *folio)
1728{
1729 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1730}
1731
1732int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1733
1734static inline void page_cpupid_reset_last(struct page *page)
1735{
1736 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1737}
1738#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1739
1740static inline int folio_xchg_access_time(struct folio *folio, int time)
1741{
1742 int last_time;
1743
1744 last_time = folio_xchg_last_cpupid(folio,
1745 time >> PAGE_ACCESS_TIME_BUCKETS);
1746 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1747}
1748
1749static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1750{
1751 unsigned int pid_bit;
1752
1753 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1754 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1755 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1756 }
1757}
1758
1759bool folio_use_access_time(struct folio *folio);
1760#else /* !CONFIG_NUMA_BALANCING */
1761static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1762{
1763 return folio_nid(folio); /* XXX */
1764}
1765
1766static inline int folio_xchg_access_time(struct folio *folio, int time)
1767{
1768 return 0;
1769}
1770
1771static inline int folio_last_cpupid(struct folio *folio)
1772{
1773 return folio_nid(folio); /* XXX */
1774}
1775
1776static inline int cpupid_to_nid(int cpupid)
1777{
1778 return -1;
1779}
1780
1781static inline int cpupid_to_pid(int cpupid)
1782{
1783 return -1;
1784}
1785
1786static inline int cpupid_to_cpu(int cpupid)
1787{
1788 return -1;
1789}
1790
1791static inline int cpu_pid_to_cpupid(int nid, int pid)
1792{
1793 return -1;
1794}
1795
1796static inline bool cpupid_pid_unset(int cpupid)
1797{
1798 return true;
1799}
1800
1801static inline void page_cpupid_reset_last(struct page *page)
1802{
1803}
1804
1805static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1806{
1807 return false;
1808}
1809
1810static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1811{
1812}
1813static inline bool folio_use_access_time(struct folio *folio)
1814{
1815 return false;
1816}
1817#endif /* CONFIG_NUMA_BALANCING */
1818
1819#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1820
1821/*
1822 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1823 * setting tags for all pages to native kernel tag value 0xff, as the default
1824 * value 0x00 maps to 0xff.
1825 */
1826
1827static inline u8 page_kasan_tag(const struct page *page)
1828{
1829 u8 tag = KASAN_TAG_KERNEL;
1830
1831 if (kasan_enabled()) {
1832 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1833 tag ^= 0xff;
1834 }
1835
1836 return tag;
1837}
1838
1839static inline void page_kasan_tag_set(struct page *page, u8 tag)
1840{
1841 unsigned long old_flags, flags;
1842
1843 if (!kasan_enabled())
1844 return;
1845
1846 tag ^= 0xff;
1847 old_flags = READ_ONCE(page->flags);
1848 do {
1849 flags = old_flags;
1850 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1851 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1852 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1853}
1854
1855static inline void page_kasan_tag_reset(struct page *page)
1856{
1857 if (kasan_enabled())
1858 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1859}
1860
1861#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1862
1863static inline u8 page_kasan_tag(const struct page *page)
1864{
1865 return 0xff;
1866}
1867
1868static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1869static inline void page_kasan_tag_reset(struct page *page) { }
1870
1871#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1872
1873static inline struct zone *page_zone(const struct page *page)
1874{
1875 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1876}
1877
1878static inline pg_data_t *page_pgdat(const struct page *page)
1879{
1880 return NODE_DATA(page_to_nid(page));
1881}
1882
1883static inline struct zone *folio_zone(const struct folio *folio)
1884{
1885 return page_zone(&folio->page);
1886}
1887
1888static inline pg_data_t *folio_pgdat(const struct folio *folio)
1889{
1890 return page_pgdat(&folio->page);
1891}
1892
1893#ifdef SECTION_IN_PAGE_FLAGS
1894static inline void set_page_section(struct page *page, unsigned long section)
1895{
1896 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1897 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1898}
1899
1900static inline unsigned long page_to_section(const struct page *page)
1901{
1902 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1903}
1904#endif
1905
1906/**
1907 * folio_pfn - Return the Page Frame Number of a folio.
1908 * @folio: The folio.
1909 *
1910 * A folio may contain multiple pages. The pages have consecutive
1911 * Page Frame Numbers.
1912 *
1913 * Return: The Page Frame Number of the first page in the folio.
1914 */
1915static inline unsigned long folio_pfn(const struct folio *folio)
1916{
1917 return page_to_pfn(&folio->page);
1918}
1919
1920static inline struct folio *pfn_folio(unsigned long pfn)
1921{
1922 return page_folio(pfn_to_page(pfn));
1923}
1924
1925/**
1926 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1927 * @folio: The folio.
1928 *
1929 * This function checks if a folio has been pinned via a call to
1930 * a function in the pin_user_pages() family.
1931 *
1932 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1933 * because it means "definitely not pinned for DMA", but true means "probably
1934 * pinned for DMA, but possibly a false positive due to having at least
1935 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1936 *
1937 * False positives are OK, because: a) it's unlikely for a folio to
1938 * get that many refcounts, and b) all the callers of this routine are
1939 * expected to be able to deal gracefully with a false positive.
1940 *
1941 * For large folios, the result will be exactly correct. That's because
1942 * we have more tracking data available: the _pincount field is used
1943 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1944 *
1945 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1946 *
1947 * Return: True, if it is likely that the folio has been "dma-pinned".
1948 * False, if the folio is definitely not dma-pinned.
1949 */
1950static inline bool folio_maybe_dma_pinned(struct folio *folio)
1951{
1952 if (folio_test_large(folio))
1953 return atomic_read(&folio->_pincount) > 0;
1954
1955 /*
1956 * folio_ref_count() is signed. If that refcount overflows, then
1957 * folio_ref_count() returns a negative value, and callers will avoid
1958 * further incrementing the refcount.
1959 *
1960 * Here, for that overflow case, use the sign bit to count a little
1961 * bit higher via unsigned math, and thus still get an accurate result.
1962 */
1963 return ((unsigned int)folio_ref_count(folio)) >=
1964 GUP_PIN_COUNTING_BIAS;
1965}
1966
1967/*
1968 * This should most likely only be called during fork() to see whether we
1969 * should break the cow immediately for an anon page on the src mm.
1970 *
1971 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1972 */
1973static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1974 struct folio *folio)
1975{
1976 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1977
1978 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1979 return false;
1980
1981 return folio_maybe_dma_pinned(folio);
1982}
1983
1984/**
1985 * is_zero_page - Query if a page is a zero page
1986 * @page: The page to query
1987 *
1988 * This returns true if @page is one of the permanent zero pages.
1989 */
1990static inline bool is_zero_page(const struct page *page)
1991{
1992 return is_zero_pfn(page_to_pfn(page));
1993}
1994
1995/**
1996 * is_zero_folio - Query if a folio is a zero page
1997 * @folio: The folio to query
1998 *
1999 * This returns true if @folio is one of the permanent zero pages.
2000 */
2001static inline bool is_zero_folio(const struct folio *folio)
2002{
2003 return is_zero_page(&folio->page);
2004}
2005
2006/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2007#ifdef CONFIG_MIGRATION
2008static inline bool folio_is_longterm_pinnable(struct folio *folio)
2009{
2010#ifdef CONFIG_CMA
2011 int mt = folio_migratetype(folio);
2012
2013 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2014 return false;
2015#endif
2016 /* The zero page can be "pinned" but gets special handling. */
2017 if (is_zero_folio(folio))
2018 return true;
2019
2020 /* Coherent device memory must always allow eviction. */
2021 if (folio_is_device_coherent(folio))
2022 return false;
2023
2024 /* Otherwise, non-movable zone folios can be pinned. */
2025 return !folio_is_zone_movable(folio);
2026
2027}
2028#else
2029static inline bool folio_is_longterm_pinnable(struct folio *folio)
2030{
2031 return true;
2032}
2033#endif
2034
2035static inline void set_page_zone(struct page *page, enum zone_type zone)
2036{
2037 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2038 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2039}
2040
2041static inline void set_page_node(struct page *page, unsigned long node)
2042{
2043 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2044 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2045}
2046
2047static inline void set_page_links(struct page *page, enum zone_type zone,
2048 unsigned long node, unsigned long pfn)
2049{
2050 set_page_zone(page, zone);
2051 set_page_node(page, node);
2052#ifdef SECTION_IN_PAGE_FLAGS
2053 set_page_section(page, pfn_to_section_nr(pfn));
2054#endif
2055}
2056
2057/**
2058 * folio_nr_pages - The number of pages in the folio.
2059 * @folio: The folio.
2060 *
2061 * Return: A positive power of two.
2062 */
2063static inline long folio_nr_pages(const struct folio *folio)
2064{
2065 if (!folio_test_large(folio))
2066 return 1;
2067#ifdef CONFIG_64BIT
2068 return folio->_folio_nr_pages;
2069#else
2070 return 1L << (folio->_flags_1 & 0xff);
2071#endif
2072}
2073
2074/* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2075#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2076#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2077#else
2078#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2079#endif
2080
2081/*
2082 * compound_nr() returns the number of pages in this potentially compound
2083 * page. compound_nr() can be called on a tail page, and is defined to
2084 * return 1 in that case.
2085 */
2086static inline unsigned long compound_nr(struct page *page)
2087{
2088 struct folio *folio = (struct folio *)page;
2089
2090 if (!test_bit(PG_head, &folio->flags))
2091 return 1;
2092#ifdef CONFIG_64BIT
2093 return folio->_folio_nr_pages;
2094#else
2095 return 1L << (folio->_flags_1 & 0xff);
2096#endif
2097}
2098
2099/**
2100 * thp_nr_pages - The number of regular pages in this huge page.
2101 * @page: The head page of a huge page.
2102 */
2103static inline int thp_nr_pages(struct page *page)
2104{
2105 return folio_nr_pages((struct folio *)page);
2106}
2107
2108/**
2109 * folio_next - Move to the next physical folio.
2110 * @folio: The folio we're currently operating on.
2111 *
2112 * If you have physically contiguous memory which may span more than
2113 * one folio (eg a &struct bio_vec), use this function to move from one
2114 * folio to the next. Do not use it if the memory is only virtually
2115 * contiguous as the folios are almost certainly not adjacent to each
2116 * other. This is the folio equivalent to writing ``page++``.
2117 *
2118 * Context: We assume that the folios are refcounted and/or locked at a
2119 * higher level and do not adjust the reference counts.
2120 * Return: The next struct folio.
2121 */
2122static inline struct folio *folio_next(struct folio *folio)
2123{
2124 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2125}
2126
2127/**
2128 * folio_shift - The size of the memory described by this folio.
2129 * @folio: The folio.
2130 *
2131 * A folio represents a number of bytes which is a power-of-two in size.
2132 * This function tells you which power-of-two the folio is. See also
2133 * folio_size() and folio_order().
2134 *
2135 * Context: The caller should have a reference on the folio to prevent
2136 * it from being split. It is not necessary for the folio to be locked.
2137 * Return: The base-2 logarithm of the size of this folio.
2138 */
2139static inline unsigned int folio_shift(const struct folio *folio)
2140{
2141 return PAGE_SHIFT + folio_order(folio);
2142}
2143
2144/**
2145 * folio_size - The number of bytes in a folio.
2146 * @folio: The folio.
2147 *
2148 * Context: The caller should have a reference on the folio to prevent
2149 * it from being split. It is not necessary for the folio to be locked.
2150 * Return: The number of bytes in this folio.
2151 */
2152static inline size_t folio_size(const struct folio *folio)
2153{
2154 return PAGE_SIZE << folio_order(folio);
2155}
2156
2157/**
2158 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2159 * tables of more than one MM
2160 * @folio: The folio.
2161 *
2162 * This function checks if the folio is currently mapped into more than one
2163 * MM ("mapped shared"), or if the folio is only mapped into a single MM
2164 * ("mapped exclusively").
2165 *
2166 * For KSM folios, this function also returns "mapped shared" when a folio is
2167 * mapped multiple times into the same MM, because the individual page mappings
2168 * are independent.
2169 *
2170 * As precise information is not easily available for all folios, this function
2171 * estimates the number of MMs ("sharers") that are currently mapping a folio
2172 * using the number of times the first page of the folio is currently mapped
2173 * into page tables.
2174 *
2175 * For small anonymous folios and anonymous hugetlb folios, the return
2176 * value will be exactly correct: non-KSM folios can only be mapped at most once
2177 * into an MM, and they cannot be partially mapped. KSM folios are
2178 * considered shared even if mapped multiple times into the same MM.
2179 *
2180 * For other folios, the result can be fuzzy:
2181 * #. For partially-mappable large folios (THP), the return value can wrongly
2182 * indicate "mapped exclusively" (false negative) when the folio is
2183 * only partially mapped into at least one MM.
2184 * #. For pagecache folios (including hugetlb), the return value can wrongly
2185 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2186 * cover the same file range.
2187 *
2188 * Further, this function only considers current page table mappings that
2189 * are tracked using the folio mapcount(s).
2190 *
2191 * This function does not consider:
2192 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2193 * pagecache, temporary unmapping for migration).
2194 * #. If the folio is mapped differently (VM_PFNMAP).
2195 * #. If hugetlb page table sharing applies. Callers might want to check
2196 * hugetlb_pmd_shared().
2197 *
2198 * Return: Whether the folio is estimated to be mapped into more than one MM.
2199 */
2200static inline bool folio_likely_mapped_shared(struct folio *folio)
2201{
2202 int mapcount = folio_mapcount(folio);
2203
2204 /* Only partially-mappable folios require more care. */
2205 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2206 return mapcount > 1;
2207
2208 /* A single mapping implies "mapped exclusively". */
2209 if (mapcount <= 1)
2210 return false;
2211
2212 /* If any page is mapped more than once we treat it "mapped shared". */
2213 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2214 return true;
2215
2216 /* Let's guess based on the first subpage. */
2217 return atomic_read(&folio->_mapcount) > 0;
2218}
2219
2220#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2221static inline int arch_make_folio_accessible(struct folio *folio)
2222{
2223 return 0;
2224}
2225#endif
2226
2227/*
2228 * Some inline functions in vmstat.h depend on page_zone()
2229 */
2230#include <linux/vmstat.h>
2231
2232#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2233#define HASHED_PAGE_VIRTUAL
2234#endif
2235
2236#if defined(WANT_PAGE_VIRTUAL)
2237static inline void *page_address(const struct page *page)
2238{
2239 return page->virtual;
2240}
2241static inline void set_page_address(struct page *page, void *address)
2242{
2243 page->virtual = address;
2244}
2245#define page_address_init() do { } while(0)
2246#endif
2247
2248#if defined(HASHED_PAGE_VIRTUAL)
2249void *page_address(const struct page *page);
2250void set_page_address(struct page *page, void *virtual);
2251void page_address_init(void);
2252#endif
2253
2254static __always_inline void *lowmem_page_address(const struct page *page)
2255{
2256 return page_to_virt(page);
2257}
2258
2259#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2260#define page_address(page) lowmem_page_address(page)
2261#define set_page_address(page, address) do { } while(0)
2262#define page_address_init() do { } while(0)
2263#endif
2264
2265static inline void *folio_address(const struct folio *folio)
2266{
2267 return page_address(&folio->page);
2268}
2269
2270/*
2271 * Return true only if the page has been allocated with
2272 * ALLOC_NO_WATERMARKS and the low watermark was not
2273 * met implying that the system is under some pressure.
2274 */
2275static inline bool page_is_pfmemalloc(const struct page *page)
2276{
2277 /*
2278 * lru.next has bit 1 set if the page is allocated from the
2279 * pfmemalloc reserves. Callers may simply overwrite it if
2280 * they do not need to preserve that information.
2281 */
2282 return (uintptr_t)page->lru.next & BIT(1);
2283}
2284
2285/*
2286 * Return true only if the folio has been allocated with
2287 * ALLOC_NO_WATERMARKS and the low watermark was not
2288 * met implying that the system is under some pressure.
2289 */
2290static inline bool folio_is_pfmemalloc(const struct folio *folio)
2291{
2292 /*
2293 * lru.next has bit 1 set if the page is allocated from the
2294 * pfmemalloc reserves. Callers may simply overwrite it if
2295 * they do not need to preserve that information.
2296 */
2297 return (uintptr_t)folio->lru.next & BIT(1);
2298}
2299
2300/*
2301 * Only to be called by the page allocator on a freshly allocated
2302 * page.
2303 */
2304static inline void set_page_pfmemalloc(struct page *page)
2305{
2306 page->lru.next = (void *)BIT(1);
2307}
2308
2309static inline void clear_page_pfmemalloc(struct page *page)
2310{
2311 page->lru.next = NULL;
2312}
2313
2314/*
2315 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2316 */
2317extern void pagefault_out_of_memory(void);
2318
2319#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2320#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2321#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2322
2323/*
2324 * Parameter block passed down to zap_pte_range in exceptional cases.
2325 */
2326struct zap_details {
2327 struct folio *single_folio; /* Locked folio to be unmapped */
2328 bool even_cows; /* Zap COWed private pages too? */
2329 bool reclaim_pt; /* Need reclaim page tables? */
2330 zap_flags_t zap_flags; /* Extra flags for zapping */
2331};
2332
2333/*
2334 * Whether to drop the pte markers, for example, the uffd-wp information for
2335 * file-backed memory. This should only be specified when we will completely
2336 * drop the page in the mm, either by truncation or unmapping of the vma. By
2337 * default, the flag is not set.
2338 */
2339#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2340/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2341#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2342
2343#ifdef CONFIG_SCHED_MM_CID
2344void sched_mm_cid_before_execve(struct task_struct *t);
2345void sched_mm_cid_after_execve(struct task_struct *t);
2346void sched_mm_cid_fork(struct task_struct *t);
2347void sched_mm_cid_exit_signals(struct task_struct *t);
2348static inline int task_mm_cid(struct task_struct *t)
2349{
2350 return t->mm_cid;
2351}
2352#else
2353static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2354static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2355static inline void sched_mm_cid_fork(struct task_struct *t) { }
2356static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2357static inline int task_mm_cid(struct task_struct *t)
2358{
2359 /*
2360 * Use the processor id as a fall-back when the mm cid feature is
2361 * disabled. This provides functional per-cpu data structure accesses
2362 * in user-space, althrough it won't provide the memory usage benefits.
2363 */
2364 return raw_smp_processor_id();
2365}
2366#endif
2367
2368#ifdef CONFIG_MMU
2369extern bool can_do_mlock(void);
2370#else
2371static inline bool can_do_mlock(void) { return false; }
2372#endif
2373extern int user_shm_lock(size_t, struct ucounts *);
2374extern void user_shm_unlock(size_t, struct ucounts *);
2375
2376struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2377 pte_t pte);
2378struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2379 pte_t pte);
2380struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2381 unsigned long addr, pmd_t pmd);
2382struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2383 pmd_t pmd);
2384
2385void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2386 unsigned long size);
2387void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2388 unsigned long size, struct zap_details *details);
2389static inline void zap_vma_pages(struct vm_area_struct *vma)
2390{
2391 zap_page_range_single(vma, vma->vm_start,
2392 vma->vm_end - vma->vm_start, NULL);
2393}
2394void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2395 struct vm_area_struct *start_vma, unsigned long start,
2396 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2397
2398struct mmu_notifier_range;
2399
2400void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2401 unsigned long end, unsigned long floor, unsigned long ceiling);
2402int
2403copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2404int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2405 void *buf, int len, int write);
2406
2407struct follow_pfnmap_args {
2408 /**
2409 * Inputs:
2410 * @vma: Pointer to @vm_area_struct struct
2411 * @address: the virtual address to walk
2412 */
2413 struct vm_area_struct *vma;
2414 unsigned long address;
2415 /**
2416 * Internals:
2417 *
2418 * The caller shouldn't touch any of these.
2419 */
2420 spinlock_t *lock;
2421 pte_t *ptep;
2422 /**
2423 * Outputs:
2424 *
2425 * @pfn: the PFN of the address
2426 * @pgprot: the pgprot_t of the mapping
2427 * @writable: whether the mapping is writable
2428 * @special: whether the mapping is a special mapping (real PFN maps)
2429 */
2430 unsigned long pfn;
2431 pgprot_t pgprot;
2432 bool writable;
2433 bool special;
2434};
2435int follow_pfnmap_start(struct follow_pfnmap_args *args);
2436void follow_pfnmap_end(struct follow_pfnmap_args *args);
2437
2438extern void truncate_pagecache(struct inode *inode, loff_t new);
2439extern void truncate_setsize(struct inode *inode, loff_t newsize);
2440void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2441void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2442int generic_error_remove_folio(struct address_space *mapping,
2443 struct folio *folio);
2444
2445struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2446 unsigned long address, struct pt_regs *regs);
2447
2448#ifdef CONFIG_MMU
2449extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2450 unsigned long address, unsigned int flags,
2451 struct pt_regs *regs);
2452extern int fixup_user_fault(struct mm_struct *mm,
2453 unsigned long address, unsigned int fault_flags,
2454 bool *unlocked);
2455void unmap_mapping_pages(struct address_space *mapping,
2456 pgoff_t start, pgoff_t nr, bool even_cows);
2457void unmap_mapping_range(struct address_space *mapping,
2458 loff_t const holebegin, loff_t const holelen, int even_cows);
2459#else
2460static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2461 unsigned long address, unsigned int flags,
2462 struct pt_regs *regs)
2463{
2464 /* should never happen if there's no MMU */
2465 BUG();
2466 return VM_FAULT_SIGBUS;
2467}
2468static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2469 unsigned int fault_flags, bool *unlocked)
2470{
2471 /* should never happen if there's no MMU */
2472 BUG();
2473 return -EFAULT;
2474}
2475static inline void unmap_mapping_pages(struct address_space *mapping,
2476 pgoff_t start, pgoff_t nr, bool even_cows) { }
2477static inline void unmap_mapping_range(struct address_space *mapping,
2478 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2479#endif
2480
2481static inline void unmap_shared_mapping_range(struct address_space *mapping,
2482 loff_t const holebegin, loff_t const holelen)
2483{
2484 unmap_mapping_range(mapping, holebegin, holelen, 0);
2485}
2486
2487static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2488 unsigned long addr);
2489
2490extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2491 void *buf, int len, unsigned int gup_flags);
2492extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2493 void *buf, int len, unsigned int gup_flags);
2494
2495long get_user_pages_remote(struct mm_struct *mm,
2496 unsigned long start, unsigned long nr_pages,
2497 unsigned int gup_flags, struct page **pages,
2498 int *locked);
2499long pin_user_pages_remote(struct mm_struct *mm,
2500 unsigned long start, unsigned long nr_pages,
2501 unsigned int gup_flags, struct page **pages,
2502 int *locked);
2503
2504/*
2505 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2506 */
2507static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2508 unsigned long addr,
2509 int gup_flags,
2510 struct vm_area_struct **vmap)
2511{
2512 struct page *page;
2513 struct vm_area_struct *vma;
2514 int got;
2515
2516 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2517 return ERR_PTR(-EINVAL);
2518
2519 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2520
2521 if (got < 0)
2522 return ERR_PTR(got);
2523
2524 vma = vma_lookup(mm, addr);
2525 if (WARN_ON_ONCE(!vma)) {
2526 put_page(page);
2527 return ERR_PTR(-EINVAL);
2528 }
2529
2530 *vmap = vma;
2531 return page;
2532}
2533
2534long get_user_pages(unsigned long start, unsigned long nr_pages,
2535 unsigned int gup_flags, struct page **pages);
2536long pin_user_pages(unsigned long start, unsigned long nr_pages,
2537 unsigned int gup_flags, struct page **pages);
2538long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2539 struct page **pages, unsigned int gup_flags);
2540long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2541 struct page **pages, unsigned int gup_flags);
2542long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2543 struct folio **folios, unsigned int max_folios,
2544 pgoff_t *offset);
2545int folio_add_pins(struct folio *folio, unsigned int pins);
2546
2547int get_user_pages_fast(unsigned long start, int nr_pages,
2548 unsigned int gup_flags, struct page **pages);
2549int pin_user_pages_fast(unsigned long start, int nr_pages,
2550 unsigned int gup_flags, struct page **pages);
2551void folio_add_pin(struct folio *folio);
2552
2553int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2554int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2555 struct task_struct *task, bool bypass_rlim);
2556
2557struct kvec;
2558struct page *get_dump_page(unsigned long addr);
2559
2560bool folio_mark_dirty(struct folio *folio);
2561bool folio_mark_dirty_lock(struct folio *folio);
2562bool set_page_dirty(struct page *page);
2563int set_page_dirty_lock(struct page *page);
2564
2565int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2566
2567/*
2568 * Flags used by change_protection(). For now we make it a bitmap so
2569 * that we can pass in multiple flags just like parameters. However
2570 * for now all the callers are only use one of the flags at the same
2571 * time.
2572 */
2573/*
2574 * Whether we should manually check if we can map individual PTEs writable,
2575 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2576 * PTEs automatically in a writable mapping.
2577 */
2578#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2579/* Whether this protection change is for NUMA hints */
2580#define MM_CP_PROT_NUMA (1UL << 1)
2581/* Whether this change is for write protecting */
2582#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2583#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2584#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2585 MM_CP_UFFD_WP_RESOLVE)
2586
2587bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2588 pte_t pte);
2589extern long change_protection(struct mmu_gather *tlb,
2590 struct vm_area_struct *vma, unsigned long start,
2591 unsigned long end, unsigned long cp_flags);
2592extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2593 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2594 unsigned long start, unsigned long end, unsigned long newflags);
2595
2596/*
2597 * doesn't attempt to fault and will return short.
2598 */
2599int get_user_pages_fast_only(unsigned long start, int nr_pages,
2600 unsigned int gup_flags, struct page **pages);
2601
2602static inline bool get_user_page_fast_only(unsigned long addr,
2603 unsigned int gup_flags, struct page **pagep)
2604{
2605 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2606}
2607/*
2608 * per-process(per-mm_struct) statistics.
2609 */
2610static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2611{
2612 return percpu_counter_read_positive(&mm->rss_stat[member]);
2613}
2614
2615void mm_trace_rss_stat(struct mm_struct *mm, int member);
2616
2617static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2618{
2619 percpu_counter_add(&mm->rss_stat[member], value);
2620
2621 mm_trace_rss_stat(mm, member);
2622}
2623
2624static inline void inc_mm_counter(struct mm_struct *mm, int member)
2625{
2626 percpu_counter_inc(&mm->rss_stat[member]);
2627
2628 mm_trace_rss_stat(mm, member);
2629}
2630
2631static inline void dec_mm_counter(struct mm_struct *mm, int member)
2632{
2633 percpu_counter_dec(&mm->rss_stat[member]);
2634
2635 mm_trace_rss_stat(mm, member);
2636}
2637
2638/* Optimized variant when folio is already known not to be anon */
2639static inline int mm_counter_file(struct folio *folio)
2640{
2641 if (folio_test_swapbacked(folio))
2642 return MM_SHMEMPAGES;
2643 return MM_FILEPAGES;
2644}
2645
2646static inline int mm_counter(struct folio *folio)
2647{
2648 if (folio_test_anon(folio))
2649 return MM_ANONPAGES;
2650 return mm_counter_file(folio);
2651}
2652
2653static inline unsigned long get_mm_rss(struct mm_struct *mm)
2654{
2655 return get_mm_counter(mm, MM_FILEPAGES) +
2656 get_mm_counter(mm, MM_ANONPAGES) +
2657 get_mm_counter(mm, MM_SHMEMPAGES);
2658}
2659
2660static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2661{
2662 return max(mm->hiwater_rss, get_mm_rss(mm));
2663}
2664
2665static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2666{
2667 return max(mm->hiwater_vm, mm->total_vm);
2668}
2669
2670static inline void update_hiwater_rss(struct mm_struct *mm)
2671{
2672 unsigned long _rss = get_mm_rss(mm);
2673
2674 if ((mm)->hiwater_rss < _rss)
2675 (mm)->hiwater_rss = _rss;
2676}
2677
2678static inline void update_hiwater_vm(struct mm_struct *mm)
2679{
2680 if (mm->hiwater_vm < mm->total_vm)
2681 mm->hiwater_vm = mm->total_vm;
2682}
2683
2684static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2685{
2686 mm->hiwater_rss = get_mm_rss(mm);
2687}
2688
2689static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2690 struct mm_struct *mm)
2691{
2692 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2693
2694 if (*maxrss < hiwater_rss)
2695 *maxrss = hiwater_rss;
2696}
2697
2698#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2699static inline int pte_special(pte_t pte)
2700{
2701 return 0;
2702}
2703
2704static inline pte_t pte_mkspecial(pte_t pte)
2705{
2706 return pte;
2707}
2708#endif
2709
2710#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2711static inline bool pmd_special(pmd_t pmd)
2712{
2713 return false;
2714}
2715
2716static inline pmd_t pmd_mkspecial(pmd_t pmd)
2717{
2718 return pmd;
2719}
2720#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2721
2722#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2723static inline bool pud_special(pud_t pud)
2724{
2725 return false;
2726}
2727
2728static inline pud_t pud_mkspecial(pud_t pud)
2729{
2730 return pud;
2731}
2732#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2733
2734#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2735static inline int pte_devmap(pte_t pte)
2736{
2737 return 0;
2738}
2739#endif
2740
2741extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2742 spinlock_t **ptl);
2743static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2744 spinlock_t **ptl)
2745{
2746 pte_t *ptep;
2747 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2748 return ptep;
2749}
2750
2751#ifdef __PAGETABLE_P4D_FOLDED
2752static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2753 unsigned long address)
2754{
2755 return 0;
2756}
2757#else
2758int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2759#endif
2760
2761#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2762static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2763 unsigned long address)
2764{
2765 return 0;
2766}
2767static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2768static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2769
2770#else
2771int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2772
2773static inline void mm_inc_nr_puds(struct mm_struct *mm)
2774{
2775 if (mm_pud_folded(mm))
2776 return;
2777 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2778}
2779
2780static inline void mm_dec_nr_puds(struct mm_struct *mm)
2781{
2782 if (mm_pud_folded(mm))
2783 return;
2784 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2785}
2786#endif
2787
2788#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2789static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2790 unsigned long address)
2791{
2792 return 0;
2793}
2794
2795static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2796static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2797
2798#else
2799int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2800
2801static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2802{
2803 if (mm_pmd_folded(mm))
2804 return;
2805 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2806}
2807
2808static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2809{
2810 if (mm_pmd_folded(mm))
2811 return;
2812 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2813}
2814#endif
2815
2816#ifdef CONFIG_MMU
2817static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2818{
2819 atomic_long_set(&mm->pgtables_bytes, 0);
2820}
2821
2822static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2823{
2824 return atomic_long_read(&mm->pgtables_bytes);
2825}
2826
2827static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2828{
2829 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2830}
2831
2832static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2833{
2834 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2835}
2836#else
2837
2838static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2839static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2840{
2841 return 0;
2842}
2843
2844static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2845static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2846#endif
2847
2848int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2849int __pte_alloc_kernel(pmd_t *pmd);
2850
2851#if defined(CONFIG_MMU)
2852
2853static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2854 unsigned long address)
2855{
2856 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2857 NULL : p4d_offset(pgd, address);
2858}
2859
2860static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2861 unsigned long address)
2862{
2863 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2864 NULL : pud_offset(p4d, address);
2865}
2866
2867static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2868{
2869 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2870 NULL: pmd_offset(pud, address);
2871}
2872#endif /* CONFIG_MMU */
2873
2874static inline struct ptdesc *virt_to_ptdesc(const void *x)
2875{
2876 return page_ptdesc(virt_to_page(x));
2877}
2878
2879static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2880{
2881 return page_to_virt(ptdesc_page(pt));
2882}
2883
2884static inline void *ptdesc_address(const struct ptdesc *pt)
2885{
2886 return folio_address(ptdesc_folio(pt));
2887}
2888
2889static inline bool pagetable_is_reserved(struct ptdesc *pt)
2890{
2891 return folio_test_reserved(ptdesc_folio(pt));
2892}
2893
2894/**
2895 * pagetable_alloc - Allocate pagetables
2896 * @gfp: GFP flags
2897 * @order: desired pagetable order
2898 *
2899 * pagetable_alloc allocates memory for page tables as well as a page table
2900 * descriptor to describe that memory.
2901 *
2902 * Return: The ptdesc describing the allocated page tables.
2903 */
2904static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2905{
2906 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2907
2908 return page_ptdesc(page);
2909}
2910#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2911
2912/**
2913 * pagetable_free - Free pagetables
2914 * @pt: The page table descriptor
2915 *
2916 * pagetable_free frees the memory of all page tables described by a page
2917 * table descriptor and the memory for the descriptor itself.
2918 */
2919static inline void pagetable_free(struct ptdesc *pt)
2920{
2921 struct page *page = ptdesc_page(pt);
2922
2923 __free_pages(page, compound_order(page));
2924}
2925
2926#if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2927#if ALLOC_SPLIT_PTLOCKS
2928void __init ptlock_cache_init(void);
2929bool ptlock_alloc(struct ptdesc *ptdesc);
2930void ptlock_free(struct ptdesc *ptdesc);
2931
2932static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2933{
2934 return ptdesc->ptl;
2935}
2936#else /* ALLOC_SPLIT_PTLOCKS */
2937static inline void ptlock_cache_init(void)
2938{
2939}
2940
2941static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2942{
2943 return true;
2944}
2945
2946static inline void ptlock_free(struct ptdesc *ptdesc)
2947{
2948}
2949
2950static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2951{
2952 return &ptdesc->ptl;
2953}
2954#endif /* ALLOC_SPLIT_PTLOCKS */
2955
2956static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2957{
2958 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2959}
2960
2961static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2962{
2963 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2964 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2965 return ptlock_ptr(virt_to_ptdesc(pte));
2966}
2967
2968static inline bool ptlock_init(struct ptdesc *ptdesc)
2969{
2970 /*
2971 * prep_new_page() initialize page->private (and therefore page->ptl)
2972 * with 0. Make sure nobody took it in use in between.
2973 *
2974 * It can happen if arch try to use slab for page table allocation:
2975 * slab code uses page->slab_cache, which share storage with page->ptl.
2976 */
2977 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2978 if (!ptlock_alloc(ptdesc))
2979 return false;
2980 spin_lock_init(ptlock_ptr(ptdesc));
2981 return true;
2982}
2983
2984#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2985/*
2986 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2987 */
2988static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2989{
2990 return &mm->page_table_lock;
2991}
2992static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2993{
2994 return &mm->page_table_lock;
2995}
2996static inline void ptlock_cache_init(void) {}
2997static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2998static inline void ptlock_free(struct ptdesc *ptdesc) {}
2999#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3000
3001static inline void __pagetable_ctor(struct ptdesc *ptdesc)
3002{
3003 struct folio *folio = ptdesc_folio(ptdesc);
3004
3005 __folio_set_pgtable(folio);
3006 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3007}
3008
3009static inline void pagetable_dtor(struct ptdesc *ptdesc)
3010{
3011 struct folio *folio = ptdesc_folio(ptdesc);
3012
3013 ptlock_free(ptdesc);
3014 __folio_clear_pgtable(folio);
3015 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3016}
3017
3018static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3019{
3020 pagetable_dtor(ptdesc);
3021 pagetable_free(ptdesc);
3022}
3023
3024static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
3025{
3026 if (!ptlock_init(ptdesc))
3027 return false;
3028 __pagetable_ctor(ptdesc);
3029 return true;
3030}
3031
3032pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3033static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3034 pmd_t *pmdvalp)
3035{
3036 pte_t *pte;
3037
3038 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3039 return pte;
3040}
3041static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3042{
3043 return __pte_offset_map(pmd, addr, NULL);
3044}
3045
3046pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3047 unsigned long addr, spinlock_t **ptlp);
3048static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3049 unsigned long addr, spinlock_t **ptlp)
3050{
3051 pte_t *pte;
3052
3053 __cond_lock(RCU, __cond_lock(*ptlp,
3054 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3055 return pte;
3056}
3057
3058pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3059 unsigned long addr, spinlock_t **ptlp);
3060pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3061 unsigned long addr, pmd_t *pmdvalp,
3062 spinlock_t **ptlp);
3063
3064#define pte_unmap_unlock(pte, ptl) do { \
3065 spin_unlock(ptl); \
3066 pte_unmap(pte); \
3067} while (0)
3068
3069#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3070
3071#define pte_alloc_map(mm, pmd, address) \
3072 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3073
3074#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3075 (pte_alloc(mm, pmd) ? \
3076 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3077
3078#define pte_alloc_kernel(pmd, address) \
3079 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3080 NULL: pte_offset_kernel(pmd, address))
3081
3082#if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3083
3084static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3085{
3086 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3087 return virt_to_page((void *)((unsigned long) pmd & mask));
3088}
3089
3090static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3091{
3092 return page_ptdesc(pmd_pgtable_page(pmd));
3093}
3094
3095static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3096{
3097 return ptlock_ptr(pmd_ptdesc(pmd));
3098}
3099
3100static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3101{
3102#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3103 ptdesc->pmd_huge_pte = NULL;
3104#endif
3105 return ptlock_init(ptdesc);
3106}
3107
3108#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3109
3110#else
3111
3112static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3113{
3114 return &mm->page_table_lock;
3115}
3116
3117static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3118
3119#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3120
3121#endif
3122
3123static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3124{
3125 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3126 spin_lock(ptl);
3127 return ptl;
3128}
3129
3130static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3131{
3132 if (!pmd_ptlock_init(ptdesc))
3133 return false;
3134 ptdesc_pmd_pts_init(ptdesc);
3135 __pagetable_ctor(ptdesc);
3136 return true;
3137}
3138
3139/*
3140 * No scalability reason to split PUD locks yet, but follow the same pattern
3141 * as the PMD locks to make it easier if we decide to. The VM should not be
3142 * considered ready to switch to split PUD locks yet; there may be places
3143 * which need to be converted from page_table_lock.
3144 */
3145static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3146{
3147 return &mm->page_table_lock;
3148}
3149
3150static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3151{
3152 spinlock_t *ptl = pud_lockptr(mm, pud);
3153
3154 spin_lock(ptl);
3155 return ptl;
3156}
3157
3158static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3159{
3160 __pagetable_ctor(ptdesc);
3161}
3162
3163static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3164{
3165 __pagetable_ctor(ptdesc);
3166}
3167
3168static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3169{
3170 __pagetable_ctor(ptdesc);
3171}
3172
3173extern void __init pagecache_init(void);
3174extern void free_initmem(void);
3175
3176/*
3177 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3178 * into the buddy system. The freed pages will be poisoned with pattern
3179 * "poison" if it's within range [0, UCHAR_MAX].
3180 * Return pages freed into the buddy system.
3181 */
3182extern unsigned long free_reserved_area(void *start, void *end,
3183 int poison, const char *s);
3184
3185extern void adjust_managed_page_count(struct page *page, long count);
3186
3187extern void reserve_bootmem_region(phys_addr_t start,
3188 phys_addr_t end, int nid);
3189
3190/* Free the reserved page into the buddy system, so it gets managed. */
3191void free_reserved_page(struct page *page);
3192#define free_highmem_page(page) free_reserved_page(page)
3193
3194static inline void mark_page_reserved(struct page *page)
3195{
3196 SetPageReserved(page);
3197 adjust_managed_page_count(page, -1);
3198}
3199
3200static inline void free_reserved_ptdesc(struct ptdesc *pt)
3201{
3202 free_reserved_page(ptdesc_page(pt));
3203}
3204
3205/*
3206 * Default method to free all the __init memory into the buddy system.
3207 * The freed pages will be poisoned with pattern "poison" if it's within
3208 * range [0, UCHAR_MAX].
3209 * Return pages freed into the buddy system.
3210 */
3211static inline unsigned long free_initmem_default(int poison)
3212{
3213 extern char __init_begin[], __init_end[];
3214
3215 return free_reserved_area(&__init_begin, &__init_end,
3216 poison, "unused kernel image (initmem)");
3217}
3218
3219static inline unsigned long get_num_physpages(void)
3220{
3221 int nid;
3222 unsigned long phys_pages = 0;
3223
3224 for_each_online_node(nid)
3225 phys_pages += node_present_pages(nid);
3226
3227 return phys_pages;
3228}
3229
3230/*
3231 * Using memblock node mappings, an architecture may initialise its
3232 * zones, allocate the backing mem_map and account for memory holes in an
3233 * architecture independent manner.
3234 *
3235 * An architecture is expected to register range of page frames backed by
3236 * physical memory with memblock_add[_node]() before calling
3237 * free_area_init() passing in the PFN each zone ends at. At a basic
3238 * usage, an architecture is expected to do something like
3239 *
3240 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3241 * max_highmem_pfn};
3242 * for_each_valid_physical_page_range()
3243 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3244 * free_area_init(max_zone_pfns);
3245 */
3246void free_area_init(unsigned long *max_zone_pfn);
3247unsigned long node_map_pfn_alignment(void);
3248extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3249 unsigned long end_pfn);
3250extern void get_pfn_range_for_nid(unsigned int nid,
3251 unsigned long *start_pfn, unsigned long *end_pfn);
3252
3253#ifndef CONFIG_NUMA
3254static inline int early_pfn_to_nid(unsigned long pfn)
3255{
3256 return 0;
3257}
3258#else
3259/* please see mm/page_alloc.c */
3260extern int __meminit early_pfn_to_nid(unsigned long pfn);
3261#endif
3262
3263extern void mem_init(void);
3264extern void __init mmap_init(void);
3265
3266extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3267static inline void show_mem(void)
3268{
3269 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3270}
3271extern long si_mem_available(void);
3272extern void si_meminfo(struct sysinfo * val);
3273extern void si_meminfo_node(struct sysinfo *val, int nid);
3274
3275extern __printf(3, 4)
3276void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3277
3278extern void setup_per_cpu_pageset(void);
3279
3280/* nommu.c */
3281extern atomic_long_t mmap_pages_allocated;
3282extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3283
3284/* interval_tree.c */
3285void vma_interval_tree_insert(struct vm_area_struct *node,
3286 struct rb_root_cached *root);
3287void vma_interval_tree_insert_after(struct vm_area_struct *node,
3288 struct vm_area_struct *prev,
3289 struct rb_root_cached *root);
3290void vma_interval_tree_remove(struct vm_area_struct *node,
3291 struct rb_root_cached *root);
3292struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3293 unsigned long start, unsigned long last);
3294struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3295 unsigned long start, unsigned long last);
3296
3297#define vma_interval_tree_foreach(vma, root, start, last) \
3298 for (vma = vma_interval_tree_iter_first(root, start, last); \
3299 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3300
3301void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3302 struct rb_root_cached *root);
3303void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3304 struct rb_root_cached *root);
3305struct anon_vma_chain *
3306anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3307 unsigned long start, unsigned long last);
3308struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3309 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3310#ifdef CONFIG_DEBUG_VM_RB
3311void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3312#endif
3313
3314#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3315 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3316 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3317
3318/* mmap.c */
3319extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3320extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3321extern void exit_mmap(struct mm_struct *);
3322int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3323bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3324 unsigned long addr, bool write);
3325
3326static inline int check_data_rlimit(unsigned long rlim,
3327 unsigned long new,
3328 unsigned long start,
3329 unsigned long end_data,
3330 unsigned long start_data)
3331{
3332 if (rlim < RLIM_INFINITY) {
3333 if (((new - start) + (end_data - start_data)) > rlim)
3334 return -ENOSPC;
3335 }
3336
3337 return 0;
3338}
3339
3340extern int mm_take_all_locks(struct mm_struct *mm);
3341extern void mm_drop_all_locks(struct mm_struct *mm);
3342
3343extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3344extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3345extern struct file *get_mm_exe_file(struct mm_struct *mm);
3346extern struct file *get_task_exe_file(struct task_struct *task);
3347
3348extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3349extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3350
3351extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3352 const struct vm_special_mapping *sm);
3353extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3354 unsigned long addr, unsigned long len,
3355 unsigned long flags,
3356 const struct vm_special_mapping *spec);
3357
3358unsigned long randomize_stack_top(unsigned long stack_top);
3359unsigned long randomize_page(unsigned long start, unsigned long range);
3360
3361unsigned long
3362__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3363 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3364
3365static inline unsigned long
3366get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3367 unsigned long pgoff, unsigned long flags)
3368{
3369 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3370}
3371
3372extern unsigned long do_mmap(struct file *file, unsigned long addr,
3373 unsigned long len, unsigned long prot, unsigned long flags,
3374 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3375 struct list_head *uf);
3376extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3377 unsigned long start, size_t len, struct list_head *uf,
3378 bool unlock);
3379int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3380 struct mm_struct *mm, unsigned long start,
3381 unsigned long end, struct list_head *uf, bool unlock);
3382extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3383 struct list_head *uf);
3384extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3385
3386#ifdef CONFIG_MMU
3387extern int __mm_populate(unsigned long addr, unsigned long len,
3388 int ignore_errors);
3389static inline void mm_populate(unsigned long addr, unsigned long len)
3390{
3391 /* Ignore errors */
3392 (void) __mm_populate(addr, len, 1);
3393}
3394#else
3395static inline void mm_populate(unsigned long addr, unsigned long len) {}
3396#endif
3397
3398/* This takes the mm semaphore itself */
3399extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3400extern int vm_munmap(unsigned long, size_t);
3401extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3402 unsigned long, unsigned long,
3403 unsigned long, unsigned long);
3404
3405struct vm_unmapped_area_info {
3406#define VM_UNMAPPED_AREA_TOPDOWN 1
3407 unsigned long flags;
3408 unsigned long length;
3409 unsigned long low_limit;
3410 unsigned long high_limit;
3411 unsigned long align_mask;
3412 unsigned long align_offset;
3413 unsigned long start_gap;
3414};
3415
3416extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3417
3418/* truncate.c */
3419extern void truncate_inode_pages(struct address_space *, loff_t);
3420extern void truncate_inode_pages_range(struct address_space *,
3421 loff_t lstart, loff_t lend);
3422extern void truncate_inode_pages_final(struct address_space *);
3423
3424/* generic vm_area_ops exported for stackable file systems */
3425extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3426extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3427 pgoff_t start_pgoff, pgoff_t end_pgoff);
3428extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3429
3430extern unsigned long stack_guard_gap;
3431/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3432int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3433struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3434
3435/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3436extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3437extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3438 struct vm_area_struct **pprev);
3439
3440/*
3441 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3442 * NULL if none. Assume start_addr < end_addr.
3443 */
3444struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3445 unsigned long start_addr, unsigned long end_addr);
3446
3447/**
3448 * vma_lookup() - Find a VMA at a specific address
3449 * @mm: The process address space.
3450 * @addr: The user address.
3451 *
3452 * Return: The vm_area_struct at the given address, %NULL otherwise.
3453 */
3454static inline
3455struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3456{
3457 return mtree_load(&mm->mm_mt, addr);
3458}
3459
3460static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3461{
3462 if (vma->vm_flags & VM_GROWSDOWN)
3463 return stack_guard_gap;
3464
3465 /* See reasoning around the VM_SHADOW_STACK definition */
3466 if (vma->vm_flags & VM_SHADOW_STACK)
3467 return PAGE_SIZE;
3468
3469 return 0;
3470}
3471
3472static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3473{
3474 unsigned long gap = stack_guard_start_gap(vma);
3475 unsigned long vm_start = vma->vm_start;
3476
3477 vm_start -= gap;
3478 if (vm_start > vma->vm_start)
3479 vm_start = 0;
3480 return vm_start;
3481}
3482
3483static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3484{
3485 unsigned long vm_end = vma->vm_end;
3486
3487 if (vma->vm_flags & VM_GROWSUP) {
3488 vm_end += stack_guard_gap;
3489 if (vm_end < vma->vm_end)
3490 vm_end = -PAGE_SIZE;
3491 }
3492 return vm_end;
3493}
3494
3495static inline unsigned long vma_pages(struct vm_area_struct *vma)
3496{
3497 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3498}
3499
3500/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3501static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3502 unsigned long vm_start, unsigned long vm_end)
3503{
3504 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3505
3506 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3507 vma = NULL;
3508
3509 return vma;
3510}
3511
3512static inline bool range_in_vma(struct vm_area_struct *vma,
3513 unsigned long start, unsigned long end)
3514{
3515 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3516}
3517
3518#ifdef CONFIG_MMU
3519pgprot_t vm_get_page_prot(unsigned long vm_flags);
3520void vma_set_page_prot(struct vm_area_struct *vma);
3521#else
3522static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3523{
3524 return __pgprot(0);
3525}
3526static inline void vma_set_page_prot(struct vm_area_struct *vma)
3527{
3528 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3529}
3530#endif
3531
3532void vma_set_file(struct vm_area_struct *vma, struct file *file);
3533
3534#ifdef CONFIG_NUMA_BALANCING
3535unsigned long change_prot_numa(struct vm_area_struct *vma,
3536 unsigned long start, unsigned long end);
3537#endif
3538
3539struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3540 unsigned long addr);
3541int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3542 unsigned long pfn, unsigned long size, pgprot_t);
3543int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3544 unsigned long pfn, unsigned long size, pgprot_t prot);
3545int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3546int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3547 struct page **pages, unsigned long *num);
3548int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3549 unsigned long num);
3550int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3551 unsigned long num);
3552vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3553 unsigned long pfn);
3554vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3555 unsigned long pfn, pgprot_t pgprot);
3556vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3557 pfn_t pfn);
3558vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3559 unsigned long addr, pfn_t pfn);
3560int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3561
3562static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3563 unsigned long addr, struct page *page)
3564{
3565 int err = vm_insert_page(vma, addr, page);
3566
3567 if (err == -ENOMEM)
3568 return VM_FAULT_OOM;
3569 if (err < 0 && err != -EBUSY)
3570 return VM_FAULT_SIGBUS;
3571
3572 return VM_FAULT_NOPAGE;
3573}
3574
3575#ifndef io_remap_pfn_range
3576static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3577 unsigned long addr, unsigned long pfn,
3578 unsigned long size, pgprot_t prot)
3579{
3580 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3581}
3582#endif
3583
3584static inline vm_fault_t vmf_error(int err)
3585{
3586 if (err == -ENOMEM)
3587 return VM_FAULT_OOM;
3588 else if (err == -EHWPOISON)
3589 return VM_FAULT_HWPOISON;
3590 return VM_FAULT_SIGBUS;
3591}
3592
3593/*
3594 * Convert errno to return value for ->page_mkwrite() calls.
3595 *
3596 * This should eventually be merged with vmf_error() above, but will need a
3597 * careful audit of all vmf_error() callers.
3598 */
3599static inline vm_fault_t vmf_fs_error(int err)
3600{
3601 if (err == 0)
3602 return VM_FAULT_LOCKED;
3603 if (err == -EFAULT || err == -EAGAIN)
3604 return VM_FAULT_NOPAGE;
3605 if (err == -ENOMEM)
3606 return VM_FAULT_OOM;
3607 /* -ENOSPC, -EDQUOT, -EIO ... */
3608 return VM_FAULT_SIGBUS;
3609}
3610
3611static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3612{
3613 if (vm_fault & VM_FAULT_OOM)
3614 return -ENOMEM;
3615 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3616 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3617 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3618 return -EFAULT;
3619 return 0;
3620}
3621
3622/*
3623 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3624 * a (NUMA hinting) fault is required.
3625 */
3626static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3627 unsigned int flags)
3628{
3629 /*
3630 * If callers don't want to honor NUMA hinting faults, no need to
3631 * determine if we would actually have to trigger a NUMA hinting fault.
3632 */
3633 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3634 return true;
3635
3636 /*
3637 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3638 *
3639 * Requiring a fault here even for inaccessible VMAs would mean that
3640 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3641 * refuses to process NUMA hinting faults in inaccessible VMAs.
3642 */
3643 return !vma_is_accessible(vma);
3644}
3645
3646typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3647extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3648 unsigned long size, pte_fn_t fn, void *data);
3649extern int apply_to_existing_page_range(struct mm_struct *mm,
3650 unsigned long address, unsigned long size,
3651 pte_fn_t fn, void *data);
3652
3653#ifdef CONFIG_PAGE_POISONING
3654extern void __kernel_poison_pages(struct page *page, int numpages);
3655extern void __kernel_unpoison_pages(struct page *page, int numpages);
3656extern bool _page_poisoning_enabled_early;
3657DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3658static inline bool page_poisoning_enabled(void)
3659{
3660 return _page_poisoning_enabled_early;
3661}
3662/*
3663 * For use in fast paths after init_mem_debugging() has run, or when a
3664 * false negative result is not harmful when called too early.
3665 */
3666static inline bool page_poisoning_enabled_static(void)
3667{
3668 return static_branch_unlikely(&_page_poisoning_enabled);
3669}
3670static inline void kernel_poison_pages(struct page *page, int numpages)
3671{
3672 if (page_poisoning_enabled_static())
3673 __kernel_poison_pages(page, numpages);
3674}
3675static inline void kernel_unpoison_pages(struct page *page, int numpages)
3676{
3677 if (page_poisoning_enabled_static())
3678 __kernel_unpoison_pages(page, numpages);
3679}
3680#else
3681static inline bool page_poisoning_enabled(void) { return false; }
3682static inline bool page_poisoning_enabled_static(void) { return false; }
3683static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3684static inline void kernel_poison_pages(struct page *page, int numpages) { }
3685static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3686#endif
3687
3688DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3689static inline bool want_init_on_alloc(gfp_t flags)
3690{
3691 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3692 &init_on_alloc))
3693 return true;
3694 return flags & __GFP_ZERO;
3695}
3696
3697DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3698static inline bool want_init_on_free(void)
3699{
3700 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3701 &init_on_free);
3702}
3703
3704extern bool _debug_pagealloc_enabled_early;
3705DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3706
3707static inline bool debug_pagealloc_enabled(void)
3708{
3709 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3710 _debug_pagealloc_enabled_early;
3711}
3712
3713/*
3714 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3715 * or when a false negative result is not harmful when called too early.
3716 */
3717static inline bool debug_pagealloc_enabled_static(void)
3718{
3719 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3720 return false;
3721
3722 return static_branch_unlikely(&_debug_pagealloc_enabled);
3723}
3724
3725/*
3726 * To support DEBUG_PAGEALLOC architecture must ensure that
3727 * __kernel_map_pages() never fails
3728 */
3729extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3730#ifdef CONFIG_DEBUG_PAGEALLOC
3731static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3732{
3733 if (debug_pagealloc_enabled_static())
3734 __kernel_map_pages(page, numpages, 1);
3735}
3736
3737static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3738{
3739 if (debug_pagealloc_enabled_static())
3740 __kernel_map_pages(page, numpages, 0);
3741}
3742
3743extern unsigned int _debug_guardpage_minorder;
3744DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3745
3746static inline unsigned int debug_guardpage_minorder(void)
3747{
3748 return _debug_guardpage_minorder;
3749}
3750
3751static inline bool debug_guardpage_enabled(void)
3752{
3753 return static_branch_unlikely(&_debug_guardpage_enabled);
3754}
3755
3756static inline bool page_is_guard(struct page *page)
3757{
3758 if (!debug_guardpage_enabled())
3759 return false;
3760
3761 return PageGuard(page);
3762}
3763
3764bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3765static inline bool set_page_guard(struct zone *zone, struct page *page,
3766 unsigned int order)
3767{
3768 if (!debug_guardpage_enabled())
3769 return false;
3770 return __set_page_guard(zone, page, order);
3771}
3772
3773void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3774static inline void clear_page_guard(struct zone *zone, struct page *page,
3775 unsigned int order)
3776{
3777 if (!debug_guardpage_enabled())
3778 return;
3779 __clear_page_guard(zone, page, order);
3780}
3781
3782#else /* CONFIG_DEBUG_PAGEALLOC */
3783static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3784static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3785static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3786static inline bool debug_guardpage_enabled(void) { return false; }
3787static inline bool page_is_guard(struct page *page) { return false; }
3788static inline bool set_page_guard(struct zone *zone, struct page *page,
3789 unsigned int order) { return false; }
3790static inline void clear_page_guard(struct zone *zone, struct page *page,
3791 unsigned int order) {}
3792#endif /* CONFIG_DEBUG_PAGEALLOC */
3793
3794#ifdef __HAVE_ARCH_GATE_AREA
3795extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3796extern int in_gate_area_no_mm(unsigned long addr);
3797extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3798#else
3799static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3800{
3801 return NULL;
3802}
3803static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3804static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3805{
3806 return 0;
3807}
3808#endif /* __HAVE_ARCH_GATE_AREA */
3809
3810extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3811
3812#ifdef CONFIG_SYSCTL
3813extern int sysctl_drop_caches;
3814int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3815 loff_t *);
3816#endif
3817
3818void drop_slab(void);
3819
3820#ifndef CONFIG_MMU
3821#define randomize_va_space 0
3822#else
3823extern int randomize_va_space;
3824#endif
3825
3826const char * arch_vma_name(struct vm_area_struct *vma);
3827#ifdef CONFIG_MMU
3828void print_vma_addr(char *prefix, unsigned long rip);
3829#else
3830static inline void print_vma_addr(char *prefix, unsigned long rip)
3831{
3832}
3833#endif
3834
3835void *sparse_buffer_alloc(unsigned long size);
3836struct page * __populate_section_memmap(unsigned long pfn,
3837 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3838 struct dev_pagemap *pgmap);
3839pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3840p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3841pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3842pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3843pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3844 struct vmem_altmap *altmap, struct page *reuse);
3845void *vmemmap_alloc_block(unsigned long size, int node);
3846struct vmem_altmap;
3847void *vmemmap_alloc_block_buf(unsigned long size, int node,
3848 struct vmem_altmap *altmap);
3849void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3850void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3851 unsigned long addr, unsigned long next);
3852int vmemmap_check_pmd(pmd_t *pmd, int node,
3853 unsigned long addr, unsigned long next);
3854int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3855 int node, struct vmem_altmap *altmap);
3856int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3857 int node, struct vmem_altmap *altmap);
3858int vmemmap_populate(unsigned long start, unsigned long end, int node,
3859 struct vmem_altmap *altmap);
3860void vmemmap_populate_print_last(void);
3861#ifdef CONFIG_MEMORY_HOTPLUG
3862void vmemmap_free(unsigned long start, unsigned long end,
3863 struct vmem_altmap *altmap);
3864#endif
3865
3866#ifdef CONFIG_SPARSEMEM_VMEMMAP
3867static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3868{
3869 /* number of pfns from base where pfn_to_page() is valid */
3870 if (altmap)
3871 return altmap->reserve + altmap->free;
3872 return 0;
3873}
3874
3875static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3876 unsigned long nr_pfns)
3877{
3878 altmap->alloc -= nr_pfns;
3879}
3880#else
3881static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3882{
3883 return 0;
3884}
3885
3886static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3887 unsigned long nr_pfns)
3888{
3889}
3890#endif
3891
3892#define VMEMMAP_RESERVE_NR 2
3893#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3894static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3895 struct dev_pagemap *pgmap)
3896{
3897 unsigned long nr_pages;
3898 unsigned long nr_vmemmap_pages;
3899
3900 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3901 return false;
3902
3903 nr_pages = pgmap_vmemmap_nr(pgmap);
3904 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3905 /*
3906 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3907 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3908 */
3909 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3910}
3911/*
3912 * If we don't have an architecture override, use the generic rule
3913 */
3914#ifndef vmemmap_can_optimize
3915#define vmemmap_can_optimize __vmemmap_can_optimize
3916#endif
3917
3918#else
3919static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3920 struct dev_pagemap *pgmap)
3921{
3922 return false;
3923}
3924#endif
3925
3926void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3927 unsigned long nr_pages);
3928
3929enum mf_flags {
3930 MF_COUNT_INCREASED = 1 << 0,
3931 MF_ACTION_REQUIRED = 1 << 1,
3932 MF_MUST_KILL = 1 << 2,
3933 MF_SOFT_OFFLINE = 1 << 3,
3934 MF_UNPOISON = 1 << 4,
3935 MF_SW_SIMULATED = 1 << 5,
3936 MF_NO_RETRY = 1 << 6,
3937 MF_MEM_PRE_REMOVE = 1 << 7,
3938};
3939int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3940 unsigned long count, int mf_flags);
3941extern int memory_failure(unsigned long pfn, int flags);
3942extern void memory_failure_queue_kick(int cpu);
3943extern int unpoison_memory(unsigned long pfn);
3944extern atomic_long_t num_poisoned_pages __read_mostly;
3945extern int soft_offline_page(unsigned long pfn, int flags);
3946#ifdef CONFIG_MEMORY_FAILURE
3947/*
3948 * Sysfs entries for memory failure handling statistics.
3949 */
3950extern const struct attribute_group memory_failure_attr_group;
3951extern void memory_failure_queue(unsigned long pfn, int flags);
3952extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3953 bool *migratable_cleared);
3954void num_poisoned_pages_inc(unsigned long pfn);
3955void num_poisoned_pages_sub(unsigned long pfn, long i);
3956#else
3957static inline void memory_failure_queue(unsigned long pfn, int flags)
3958{
3959}
3960
3961static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3962 bool *migratable_cleared)
3963{
3964 return 0;
3965}
3966
3967static inline void num_poisoned_pages_inc(unsigned long pfn)
3968{
3969}
3970
3971static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3972{
3973}
3974#endif
3975
3976#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3977extern void memblk_nr_poison_inc(unsigned long pfn);
3978extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3979#else
3980static inline void memblk_nr_poison_inc(unsigned long pfn)
3981{
3982}
3983
3984static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3985{
3986}
3987#endif
3988
3989#ifndef arch_memory_failure
3990static inline int arch_memory_failure(unsigned long pfn, int flags)
3991{
3992 return -ENXIO;
3993}
3994#endif
3995
3996#ifndef arch_is_platform_page
3997static inline bool arch_is_platform_page(u64 paddr)
3998{
3999 return false;
4000}
4001#endif
4002
4003/*
4004 * Error handlers for various types of pages.
4005 */
4006enum mf_result {
4007 MF_IGNORED, /* Error: cannot be handled */
4008 MF_FAILED, /* Error: handling failed */
4009 MF_DELAYED, /* Will be handled later */
4010 MF_RECOVERED, /* Successfully recovered */
4011};
4012
4013enum mf_action_page_type {
4014 MF_MSG_KERNEL,
4015 MF_MSG_KERNEL_HIGH_ORDER,
4016 MF_MSG_DIFFERENT_COMPOUND,
4017 MF_MSG_HUGE,
4018 MF_MSG_FREE_HUGE,
4019 MF_MSG_GET_HWPOISON,
4020 MF_MSG_UNMAP_FAILED,
4021 MF_MSG_DIRTY_SWAPCACHE,
4022 MF_MSG_CLEAN_SWAPCACHE,
4023 MF_MSG_DIRTY_MLOCKED_LRU,
4024 MF_MSG_CLEAN_MLOCKED_LRU,
4025 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4026 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4027 MF_MSG_DIRTY_LRU,
4028 MF_MSG_CLEAN_LRU,
4029 MF_MSG_TRUNCATED_LRU,
4030 MF_MSG_BUDDY,
4031 MF_MSG_DAX,
4032 MF_MSG_UNSPLIT_THP,
4033 MF_MSG_ALREADY_POISONED,
4034 MF_MSG_UNKNOWN,
4035};
4036
4037#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4038void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4039int copy_user_large_folio(struct folio *dst, struct folio *src,
4040 unsigned long addr_hint,
4041 struct vm_area_struct *vma);
4042long copy_folio_from_user(struct folio *dst_folio,
4043 const void __user *usr_src,
4044 bool allow_pagefault);
4045
4046/**
4047 * vma_is_special_huge - Are transhuge page-table entries considered special?
4048 * @vma: Pointer to the struct vm_area_struct to consider
4049 *
4050 * Whether transhuge page-table entries are considered "special" following
4051 * the definition in vm_normal_page().
4052 *
4053 * Return: true if transhuge page-table entries should be considered special,
4054 * false otherwise.
4055 */
4056static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4057{
4058 return vma_is_dax(vma) || (vma->vm_file &&
4059 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4060}
4061
4062#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4063
4064#if MAX_NUMNODES > 1
4065void __init setup_nr_node_ids(void);
4066#else
4067static inline void setup_nr_node_ids(void) {}
4068#endif
4069
4070extern int memcmp_pages(struct page *page1, struct page *page2);
4071
4072static inline int pages_identical(struct page *page1, struct page *page2)
4073{
4074 return !memcmp_pages(page1, page2);
4075}
4076
4077#ifdef CONFIG_MAPPING_DIRTY_HELPERS
4078unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4079 pgoff_t first_index, pgoff_t nr,
4080 pgoff_t bitmap_pgoff,
4081 unsigned long *bitmap,
4082 pgoff_t *start,
4083 pgoff_t *end);
4084
4085unsigned long wp_shared_mapping_range(struct address_space *mapping,
4086 pgoff_t first_index, pgoff_t nr);
4087#endif
4088
4089extern int sysctl_nr_trim_pages;
4090
4091#ifdef CONFIG_ANON_VMA_NAME
4092int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4093 unsigned long len_in,
4094 struct anon_vma_name *anon_name);
4095#else
4096static inline int
4097madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4098 unsigned long len_in, struct anon_vma_name *anon_name) {
4099 return 0;
4100}
4101#endif
4102
4103#ifdef CONFIG_UNACCEPTED_MEMORY
4104
4105bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4106void accept_memory(phys_addr_t start, unsigned long size);
4107
4108#else
4109
4110static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4111 unsigned long size)
4112{
4113 return false;
4114}
4115
4116static inline void accept_memory(phys_addr_t start, unsigned long size)
4117{
4118}
4119
4120#endif
4121
4122static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4123{
4124 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4125}
4126
4127void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4128void vma_pgtable_walk_end(struct vm_area_struct *vma);
4129
4130int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4131
4132#ifdef CONFIG_64BIT
4133int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4134#else
4135static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4136{
4137 /* noop on 32 bit */
4138 return 0;
4139}
4140#endif
4141
4142/*
4143 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4144 * be zeroed or not.
4145 */
4146static inline bool user_alloc_needs_zeroing(void)
4147{
4148 /*
4149 * for user folios, arch with cache aliasing requires cache flush and
4150 * arc changes folio->flags to make icache coherent with dcache, so
4151 * always return false to make caller use
4152 * clear_user_page()/clear_user_highpage().
4153 */
4154 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4155 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4156 &init_on_alloc);
4157}
4158
4159int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4160int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4161int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4162
4163#endif /* _LINUX_MM_H */