Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/kernel.h>
18#include <linux/page_counter.h>
19#include <linux/vmpressure.h>
20#include <linux/eventfd.h>
21#include <linux/mm.h>
22#include <linux/vmstat.h>
23#include <linux/writeback.h>
24#include <linux/page-flags.h>
25#include <linux/shrinker.h>
26
27struct mem_cgroup;
28struct obj_cgroup;
29struct page;
30struct mm_struct;
31struct kmem_cache;
32
33/* Cgroup-specific page state, on top of universal node page state */
34enum memcg_stat_item {
35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 MEMCG_SOCK,
37 MEMCG_PERCPU_B,
38 MEMCG_VMALLOC,
39 MEMCG_KMEM,
40 MEMCG_ZSWAP_B,
41 MEMCG_ZSWAPPED,
42 MEMCG_NR_STAT,
43};
44
45enum memcg_memory_event {
46 MEMCG_LOW,
47 MEMCG_HIGH,
48 MEMCG_MAX,
49 MEMCG_OOM,
50 MEMCG_OOM_KILL,
51 MEMCG_OOM_GROUP_KILL,
52 MEMCG_SWAP_HIGH,
53 MEMCG_SWAP_MAX,
54 MEMCG_SWAP_FAIL,
55 MEMCG_NR_MEMORY_EVENTS,
56};
57
58struct mem_cgroup_reclaim_cookie {
59 pg_data_t *pgdat;
60 int generation;
61};
62
63#ifdef CONFIG_MEMCG
64
65#define MEM_CGROUP_ID_SHIFT 16
66
67struct mem_cgroup_id {
68 int id;
69 refcount_t ref;
70};
71
72struct memcg_vmstats_percpu;
73struct memcg1_events_percpu;
74struct memcg_vmstats;
75struct lruvec_stats_percpu;
76struct lruvec_stats;
77
78struct mem_cgroup_reclaim_iter {
79 struct mem_cgroup *position;
80 /* scan generation, increased every round-trip */
81 atomic_t generation;
82};
83
84/*
85 * per-node information in memory controller.
86 */
87struct mem_cgroup_per_node {
88 /* Keep the read-only fields at the start */
89 struct mem_cgroup *memcg; /* Back pointer, we cannot */
90 /* use container_of */
91
92 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
93 struct lruvec_stats *lruvec_stats;
94 struct shrinker_info __rcu *shrinker_info;
95
96#ifdef CONFIG_MEMCG_V1
97 /*
98 * Memcg-v1 only stuff in middle as buffer between read mostly fields
99 * and update often fields to avoid false sharing. If v1 stuff is
100 * not present, an explicit padding is needed.
101 */
102
103 struct rb_node tree_node; /* RB tree node */
104 unsigned long usage_in_excess;/* Set to the value by which */
105 /* the soft limit is exceeded*/
106 bool on_tree;
107#else
108 CACHELINE_PADDING(_pad1_);
109#endif
110
111 /* Fields which get updated often at the end. */
112 struct lruvec lruvec;
113 CACHELINE_PADDING(_pad2_);
114 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
115 struct mem_cgroup_reclaim_iter iter;
116};
117
118struct mem_cgroup_threshold {
119 struct eventfd_ctx *eventfd;
120 unsigned long threshold;
121};
122
123/* For threshold */
124struct mem_cgroup_threshold_ary {
125 /* An array index points to threshold just below or equal to usage. */
126 int current_threshold;
127 /* Size of entries[] */
128 unsigned int size;
129 /* Array of thresholds */
130 struct mem_cgroup_threshold entries[] __counted_by(size);
131};
132
133struct mem_cgroup_thresholds {
134 /* Primary thresholds array */
135 struct mem_cgroup_threshold_ary *primary;
136 /*
137 * Spare threshold array.
138 * This is needed to make mem_cgroup_unregister_event() "never fail".
139 * It must be able to store at least primary->size - 1 entries.
140 */
141 struct mem_cgroup_threshold_ary *spare;
142};
143
144/*
145 * Remember four most recent foreign writebacks with dirty pages in this
146 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
147 * one in a given round, we're likely to catch it later if it keeps
148 * foreign-dirtying, so a fairly low count should be enough.
149 *
150 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
151 */
152#define MEMCG_CGWB_FRN_CNT 4
153
154struct memcg_cgwb_frn {
155 u64 bdi_id; /* bdi->id of the foreign inode */
156 int memcg_id; /* memcg->css.id of foreign inode */
157 u64 at; /* jiffies_64 at the time of dirtying */
158 struct wb_completion done; /* tracks in-flight foreign writebacks */
159};
160
161/*
162 * Bucket for arbitrarily byte-sized objects charged to a memory
163 * cgroup. The bucket can be reparented in one piece when the cgroup
164 * is destroyed, without having to round up the individual references
165 * of all live memory objects in the wild.
166 */
167struct obj_cgroup {
168 struct percpu_ref refcnt;
169 struct mem_cgroup *memcg;
170 atomic_t nr_charged_bytes;
171 union {
172 struct list_head list; /* protected by objcg_lock */
173 struct rcu_head rcu;
174 };
175};
176
177/*
178 * The memory controller data structure. The memory controller controls both
179 * page cache and RSS per cgroup. We would eventually like to provide
180 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181 * to help the administrator determine what knobs to tune.
182 */
183struct mem_cgroup {
184 struct cgroup_subsys_state css;
185
186 /* Private memcg ID. Used to ID objects that outlive the cgroup */
187 struct mem_cgroup_id id;
188
189 /* Accounted resources */
190 struct page_counter memory; /* Both v1 & v2 */
191
192 union {
193 struct page_counter swap; /* v2 only */
194 struct page_counter memsw; /* v1 only */
195 };
196
197 /* registered local peak watchers */
198 struct list_head memory_peaks;
199 struct list_head swap_peaks;
200 spinlock_t peaks_lock;
201
202 /* Range enforcement for interrupt charges */
203 struct work_struct high_work;
204
205#ifdef CONFIG_ZSWAP
206 unsigned long zswap_max;
207
208 /*
209 * Prevent pages from this memcg from being written back from zswap to
210 * swap, and from being swapped out on zswap store failures.
211 */
212 bool zswap_writeback;
213#endif
214
215 /* vmpressure notifications */
216 struct vmpressure vmpressure;
217
218 /*
219 * Should the OOM killer kill all belonging tasks, had it kill one?
220 */
221 bool oom_group;
222
223 int swappiness;
224
225 /* memory.events and memory.events.local */
226 struct cgroup_file events_file;
227 struct cgroup_file events_local_file;
228
229 /* handle for "memory.swap.events" */
230 struct cgroup_file swap_events_file;
231
232 /* memory.stat */
233 struct memcg_vmstats *vmstats;
234
235 /* memory.events */
236 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
237 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
238
239 /*
240 * Hint of reclaim pressure for socket memroy management. Note
241 * that this indicator should NOT be used in legacy cgroup mode
242 * where socket memory is accounted/charged separately.
243 */
244 unsigned long socket_pressure;
245
246 int kmemcg_id;
247 /*
248 * memcg->objcg is wiped out as a part of the objcg repaprenting
249 * process. memcg->orig_objcg preserves a pointer (and a reference)
250 * to the original objcg until the end of live of memcg.
251 */
252 struct obj_cgroup __rcu *objcg;
253 struct obj_cgroup *orig_objcg;
254 /* list of inherited objcgs, protected by objcg_lock */
255 struct list_head objcg_list;
256
257 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
258
259#ifdef CONFIG_CGROUP_WRITEBACK
260 struct list_head cgwb_list;
261 struct wb_domain cgwb_domain;
262 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
263#endif
264
265#ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 struct deferred_split deferred_split_queue;
267#endif
268
269#ifdef CONFIG_LRU_GEN_WALKS_MMU
270 /* per-memcg mm_struct list */
271 struct lru_gen_mm_list mm_list;
272#endif
273
274#ifdef CONFIG_MEMCG_V1
275 /* Legacy consumer-oriented counters */
276 struct page_counter kmem; /* v1 only */
277 struct page_counter tcpmem; /* v1 only */
278
279 struct memcg1_events_percpu __percpu *events_percpu;
280
281 unsigned long soft_limit;
282
283 /* protected by memcg_oom_lock */
284 bool oom_lock;
285 int under_oom;
286
287 /* OOM-Killer disable */
288 int oom_kill_disable;
289
290 /* protect arrays of thresholds */
291 struct mutex thresholds_lock;
292
293 /* thresholds for memory usage. RCU-protected */
294 struct mem_cgroup_thresholds thresholds;
295
296 /* thresholds for mem+swap usage. RCU-protected */
297 struct mem_cgroup_thresholds memsw_thresholds;
298
299 /* For oom notifier event fd */
300 struct list_head oom_notify;
301
302 /* Legacy tcp memory accounting */
303 bool tcpmem_active;
304 int tcpmem_pressure;
305
306 /* List of events which userspace want to receive */
307 struct list_head event_list;
308 spinlock_t event_list_lock;
309#endif /* CONFIG_MEMCG_V1 */
310
311 struct mem_cgroup_per_node *nodeinfo[];
312};
313
314/*
315 * size of first charge trial.
316 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
317 * workload.
318 */
319#define MEMCG_CHARGE_BATCH 64U
320
321extern struct mem_cgroup *root_mem_cgroup;
322
323enum page_memcg_data_flags {
324 /* page->memcg_data is a pointer to an slabobj_ext vector */
325 MEMCG_DATA_OBJEXTS = (1UL << 0),
326 /* page has been accounted as a non-slab kernel page */
327 MEMCG_DATA_KMEM = (1UL << 1),
328 /* the next bit after the last actual flag */
329 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
330};
331
332#define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS
333
334#else /* CONFIG_MEMCG */
335
336#define __FIRST_OBJEXT_FLAG (1UL << 0)
337
338#endif /* CONFIG_MEMCG */
339
340enum objext_flags {
341 /* slabobj_ext vector failed to allocate */
342 OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
343 /* the next bit after the last actual flag */
344 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1),
345};
346
347#define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
348
349#ifdef CONFIG_MEMCG
350
351static inline bool folio_memcg_kmem(struct folio *folio);
352
353/*
354 * After the initialization objcg->memcg is always pointing at
355 * a valid memcg, but can be atomically swapped to the parent memcg.
356 *
357 * The caller must ensure that the returned memcg won't be released.
358 */
359static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
360{
361 lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
362 return READ_ONCE(objcg->memcg);
363}
364
365/*
366 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367 * @folio: Pointer to the folio.
368 *
369 * Returns a pointer to the memory cgroup associated with the folio,
370 * or NULL. This function assumes that the folio is known to have a
371 * proper memory cgroup pointer. It's not safe to call this function
372 * against some type of folios, e.g. slab folios or ex-slab folios or
373 * kmem folios.
374 */
375static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376{
377 unsigned long memcg_data = folio->memcg_data;
378
379 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
381 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382
383 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
384}
385
386/*
387 * __folio_objcg - get the object cgroup associated with a kmem folio.
388 * @folio: Pointer to the folio.
389 *
390 * Returns a pointer to the object cgroup associated with the folio,
391 * or NULL. This function assumes that the folio is known to have a
392 * proper object cgroup pointer. It's not safe to call this function
393 * against some type of folios, e.g. slab folios or ex-slab folios or
394 * LRU folios.
395 */
396static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397{
398 unsigned long memcg_data = folio->memcg_data;
399
400 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
402 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403
404 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
405}
406
407/*
408 * folio_memcg - Get the memory cgroup associated with a folio.
409 * @folio: Pointer to the folio.
410 *
411 * Returns a pointer to the memory cgroup associated with the folio,
412 * or NULL. This function assumes that the folio is known to have a
413 * proper memory cgroup pointer. It's not safe to call this function
414 * against some type of folios, e.g. slab folios or ex-slab folios.
415 *
416 * For a non-kmem folio any of the following ensures folio and memcg binding
417 * stability:
418 *
419 * - the folio lock
420 * - LRU isolation
421 * - exclusive reference
422 *
423 * For a kmem folio a caller should hold an rcu read lock to protect memcg
424 * associated with a kmem folio from being released.
425 */
426static inline struct mem_cgroup *folio_memcg(struct folio *folio)
427{
428 if (folio_memcg_kmem(folio))
429 return obj_cgroup_memcg(__folio_objcg(folio));
430 return __folio_memcg(folio);
431}
432
433/*
434 * folio_memcg_charged - If a folio is charged to a memory cgroup.
435 * @folio: Pointer to the folio.
436 *
437 * Returns true if folio is charged to a memory cgroup, otherwise returns false.
438 */
439static inline bool folio_memcg_charged(struct folio *folio)
440{
441 if (folio_memcg_kmem(folio))
442 return __folio_objcg(folio) != NULL;
443 return __folio_memcg(folio) != NULL;
444}
445
446/*
447 * folio_memcg_check - Get the memory cgroup associated with a folio.
448 * @folio: Pointer to the folio.
449 *
450 * Returns a pointer to the memory cgroup associated with the folio,
451 * or NULL. This function unlike folio_memcg() can take any folio
452 * as an argument. It has to be used in cases when it's not known if a folio
453 * has an associated memory cgroup pointer or an object cgroups vector or
454 * an object cgroup.
455 *
456 * For a non-kmem folio any of the following ensures folio and memcg binding
457 * stability:
458 *
459 * - the folio lock
460 * - LRU isolation
461 * - exclusive reference
462 *
463 * For a kmem folio a caller should hold an rcu read lock to protect memcg
464 * associated with a kmem folio from being released.
465 */
466static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
467{
468 /*
469 * Because folio->memcg_data might be changed asynchronously
470 * for slabs, READ_ONCE() should be used here.
471 */
472 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
473
474 if (memcg_data & MEMCG_DATA_OBJEXTS)
475 return NULL;
476
477 if (memcg_data & MEMCG_DATA_KMEM) {
478 struct obj_cgroup *objcg;
479
480 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
481 return obj_cgroup_memcg(objcg);
482 }
483
484 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
485}
486
487static inline struct mem_cgroup *page_memcg_check(struct page *page)
488{
489 if (PageTail(page))
490 return NULL;
491 return folio_memcg_check((struct folio *)page);
492}
493
494static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
495{
496 struct mem_cgroup *memcg;
497
498 rcu_read_lock();
499retry:
500 memcg = obj_cgroup_memcg(objcg);
501 if (unlikely(!css_tryget(&memcg->css)))
502 goto retry;
503 rcu_read_unlock();
504
505 return memcg;
506}
507
508/*
509 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
510 * @folio: Pointer to the folio.
511 *
512 * Checks if the folio has MemcgKmem flag set. The caller must ensure
513 * that the folio has an associated memory cgroup. It's not safe to call
514 * this function against some types of folios, e.g. slab folios.
515 */
516static inline bool folio_memcg_kmem(struct folio *folio)
517{
518 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
519 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
520 return folio->memcg_data & MEMCG_DATA_KMEM;
521}
522
523static inline bool PageMemcgKmem(struct page *page)
524{
525 return folio_memcg_kmem(page_folio(page));
526}
527
528static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
529{
530 return (memcg == root_mem_cgroup);
531}
532
533static inline bool mem_cgroup_disabled(void)
534{
535 return !cgroup_subsys_enabled(memory_cgrp_subsys);
536}
537
538static inline void mem_cgroup_protection(struct mem_cgroup *root,
539 struct mem_cgroup *memcg,
540 unsigned long *min,
541 unsigned long *low)
542{
543 *min = *low = 0;
544
545 if (mem_cgroup_disabled())
546 return;
547
548 /*
549 * There is no reclaim protection applied to a targeted reclaim.
550 * We are special casing this specific case here because
551 * mem_cgroup_calculate_protection is not robust enough to keep
552 * the protection invariant for calculated effective values for
553 * parallel reclaimers with different reclaim target. This is
554 * especially a problem for tail memcgs (as they have pages on LRU)
555 * which would want to have effective values 0 for targeted reclaim
556 * but a different value for external reclaim.
557 *
558 * Example
559 * Let's have global and A's reclaim in parallel:
560 * |
561 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
562 * |\
563 * | C (low = 1G, usage = 2.5G)
564 * B (low = 1G, usage = 0.5G)
565 *
566 * For the global reclaim
567 * A.elow = A.low
568 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
569 * C.elow = min(C.usage, C.low)
570 *
571 * With the effective values resetting we have A reclaim
572 * A.elow = 0
573 * B.elow = B.low
574 * C.elow = C.low
575 *
576 * If the global reclaim races with A's reclaim then
577 * B.elow = C.elow = 0 because children_low_usage > A.elow)
578 * is possible and reclaiming B would be violating the protection.
579 *
580 */
581 if (root == memcg)
582 return;
583
584 *min = READ_ONCE(memcg->memory.emin);
585 *low = READ_ONCE(memcg->memory.elow);
586}
587
588void mem_cgroup_calculate_protection(struct mem_cgroup *root,
589 struct mem_cgroup *memcg);
590
591static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
592 struct mem_cgroup *memcg)
593{
594 /*
595 * The root memcg doesn't account charges, and doesn't support
596 * protection. The target memcg's protection is ignored, see
597 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
598 */
599 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
600 memcg == target;
601}
602
603static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
604 struct mem_cgroup *memcg)
605{
606 if (mem_cgroup_unprotected(target, memcg))
607 return false;
608
609 return READ_ONCE(memcg->memory.elow) >=
610 page_counter_read(&memcg->memory);
611}
612
613static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
614 struct mem_cgroup *memcg)
615{
616 if (mem_cgroup_unprotected(target, memcg))
617 return false;
618
619 return READ_ONCE(memcg->memory.emin) >=
620 page_counter_read(&memcg->memory);
621}
622
623int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
624
625/**
626 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
627 * @folio: Folio to charge.
628 * @mm: mm context of the allocating task.
629 * @gfp: Reclaim mode.
630 *
631 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
632 * pages according to @gfp if necessary. If @mm is NULL, try to
633 * charge to the active memcg.
634 *
635 * Do not use this for folios allocated for swapin.
636 *
637 * Return: 0 on success. Otherwise, an error code is returned.
638 */
639static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
640 gfp_t gfp)
641{
642 if (mem_cgroup_disabled())
643 return 0;
644 return __mem_cgroup_charge(folio, mm, gfp);
645}
646
647int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp);
648
649int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
650 gfp_t gfp, swp_entry_t entry);
651
652void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages);
653
654void __mem_cgroup_uncharge(struct folio *folio);
655
656/**
657 * mem_cgroup_uncharge - Uncharge a folio.
658 * @folio: Folio to uncharge.
659 *
660 * Uncharge a folio previously charged with mem_cgroup_charge().
661 */
662static inline void mem_cgroup_uncharge(struct folio *folio)
663{
664 if (mem_cgroup_disabled())
665 return;
666 __mem_cgroup_uncharge(folio);
667}
668
669void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
670static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
671{
672 if (mem_cgroup_disabled())
673 return;
674 __mem_cgroup_uncharge_folios(folios);
675}
676
677void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
678void mem_cgroup_migrate(struct folio *old, struct folio *new);
679
680/**
681 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
682 * @memcg: memcg of the wanted lruvec
683 * @pgdat: pglist_data
684 *
685 * Returns the lru list vector holding pages for a given @memcg &
686 * @pgdat combination. This can be the node lruvec, if the memory
687 * controller is disabled.
688 */
689static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
690 struct pglist_data *pgdat)
691{
692 struct mem_cgroup_per_node *mz;
693 struct lruvec *lruvec;
694
695 if (mem_cgroup_disabled()) {
696 lruvec = &pgdat->__lruvec;
697 goto out;
698 }
699
700 if (!memcg)
701 memcg = root_mem_cgroup;
702
703 mz = memcg->nodeinfo[pgdat->node_id];
704 lruvec = &mz->lruvec;
705out:
706 /*
707 * Since a node can be onlined after the mem_cgroup was created,
708 * we have to be prepared to initialize lruvec->pgdat here;
709 * and if offlined then reonlined, we need to reinitialize it.
710 */
711 if (unlikely(lruvec->pgdat != pgdat))
712 lruvec->pgdat = pgdat;
713 return lruvec;
714}
715
716/**
717 * folio_lruvec - return lruvec for isolating/putting an LRU folio
718 * @folio: Pointer to the folio.
719 *
720 * This function relies on folio->mem_cgroup being stable.
721 */
722static inline struct lruvec *folio_lruvec(struct folio *folio)
723{
724 struct mem_cgroup *memcg = folio_memcg(folio);
725
726 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
727 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
728}
729
730struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
731
732struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
733
734struct mem_cgroup *get_mem_cgroup_from_current(void);
735
736struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
737
738struct lruvec *folio_lruvec_lock(struct folio *folio);
739struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
740struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
741 unsigned long *flags);
742
743#ifdef CONFIG_DEBUG_VM
744void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
745#else
746static inline
747void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
748{
749}
750#endif
751
752static inline
753struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
754 return css ? container_of(css, struct mem_cgroup, css) : NULL;
755}
756
757static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
758{
759 return percpu_ref_tryget(&objcg->refcnt);
760}
761
762static inline void obj_cgroup_get(struct obj_cgroup *objcg)
763{
764 percpu_ref_get(&objcg->refcnt);
765}
766
767static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
768 unsigned long nr)
769{
770 percpu_ref_get_many(&objcg->refcnt, nr);
771}
772
773static inline void obj_cgroup_put(struct obj_cgroup *objcg)
774{
775 if (objcg)
776 percpu_ref_put(&objcg->refcnt);
777}
778
779static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
780{
781 return !memcg || css_tryget(&memcg->css);
782}
783
784static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
785{
786 return !memcg || css_tryget_online(&memcg->css);
787}
788
789static inline void mem_cgroup_put(struct mem_cgroup *memcg)
790{
791 if (memcg)
792 css_put(&memcg->css);
793}
794
795#define mem_cgroup_from_counter(counter, member) \
796 container_of(counter, struct mem_cgroup, member)
797
798struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
799 struct mem_cgroup *,
800 struct mem_cgroup_reclaim_cookie *);
801void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
802void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
803 int (*)(struct task_struct *, void *), void *arg);
804
805static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
806{
807 if (mem_cgroup_disabled())
808 return 0;
809
810 return memcg->id.id;
811}
812struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
813
814#ifdef CONFIG_SHRINKER_DEBUG
815static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
816{
817 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
818}
819
820struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
821#endif
822
823static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
824{
825 return mem_cgroup_from_css(seq_css(m));
826}
827
828static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
829{
830 struct mem_cgroup_per_node *mz;
831
832 if (mem_cgroup_disabled())
833 return NULL;
834
835 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
836 return mz->memcg;
837}
838
839/**
840 * parent_mem_cgroup - find the accounting parent of a memcg
841 * @memcg: memcg whose parent to find
842 *
843 * Returns the parent memcg, or NULL if this is the root.
844 */
845static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
846{
847 return mem_cgroup_from_css(memcg->css.parent);
848}
849
850static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
851 struct mem_cgroup *root)
852{
853 if (root == memcg)
854 return true;
855 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
856}
857
858static inline bool mm_match_cgroup(struct mm_struct *mm,
859 struct mem_cgroup *memcg)
860{
861 struct mem_cgroup *task_memcg;
862 bool match = false;
863
864 rcu_read_lock();
865 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
866 if (task_memcg)
867 match = mem_cgroup_is_descendant(task_memcg, memcg);
868 rcu_read_unlock();
869 return match;
870}
871
872struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
873ino_t page_cgroup_ino(struct page *page);
874
875static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
876{
877 if (mem_cgroup_disabled())
878 return true;
879 return !!(memcg->css.flags & CSS_ONLINE);
880}
881
882void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
883 int zid, int nr_pages);
884
885static inline
886unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
887 enum lru_list lru, int zone_idx)
888{
889 struct mem_cgroup_per_node *mz;
890
891 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
892 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
893}
894
895void mem_cgroup_handle_over_high(gfp_t gfp_mask);
896
897unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
898
899unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
900
901void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
902 struct task_struct *p);
903
904void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
905
906struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
907 struct mem_cgroup *oom_domain);
908void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
909
910void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
911 int val);
912
913/* idx can be of type enum memcg_stat_item or node_stat_item */
914static inline void mod_memcg_state(struct mem_cgroup *memcg,
915 enum memcg_stat_item idx, int val)
916{
917 unsigned long flags;
918
919 local_irq_save(flags);
920 __mod_memcg_state(memcg, idx, val);
921 local_irq_restore(flags);
922}
923
924static inline void mod_memcg_page_state(struct page *page,
925 enum memcg_stat_item idx, int val)
926{
927 struct mem_cgroup *memcg;
928
929 if (mem_cgroup_disabled())
930 return;
931
932 rcu_read_lock();
933 memcg = folio_memcg(page_folio(page));
934 if (memcg)
935 mod_memcg_state(memcg, idx, val);
936 rcu_read_unlock();
937}
938
939unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
940unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
941unsigned long lruvec_page_state_local(struct lruvec *lruvec,
942 enum node_stat_item idx);
943
944void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
945void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
946
947void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
948
949static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
950 int val)
951{
952 unsigned long flags;
953
954 local_irq_save(flags);
955 __mod_lruvec_kmem_state(p, idx, val);
956 local_irq_restore(flags);
957}
958
959void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
960 unsigned long count);
961
962static inline void count_memcg_events(struct mem_cgroup *memcg,
963 enum vm_event_item idx,
964 unsigned long count)
965{
966 unsigned long flags;
967
968 local_irq_save(flags);
969 __count_memcg_events(memcg, idx, count);
970 local_irq_restore(flags);
971}
972
973static inline void count_memcg_folio_events(struct folio *folio,
974 enum vm_event_item idx, unsigned long nr)
975{
976 struct mem_cgroup *memcg = folio_memcg(folio);
977
978 if (memcg)
979 count_memcg_events(memcg, idx, nr);
980}
981
982static inline void count_memcg_events_mm(struct mm_struct *mm,
983 enum vm_event_item idx, unsigned long count)
984{
985 struct mem_cgroup *memcg;
986
987 if (mem_cgroup_disabled())
988 return;
989
990 rcu_read_lock();
991 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
992 if (likely(memcg))
993 count_memcg_events(memcg, idx, count);
994 rcu_read_unlock();
995}
996
997static inline void count_memcg_event_mm(struct mm_struct *mm,
998 enum vm_event_item idx)
999{
1000 count_memcg_events_mm(mm, idx, 1);
1001}
1002
1003static inline void memcg_memory_event(struct mem_cgroup *memcg,
1004 enum memcg_memory_event event)
1005{
1006 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1007 event == MEMCG_SWAP_FAIL;
1008
1009 atomic_long_inc(&memcg->memory_events_local[event]);
1010 if (!swap_event)
1011 cgroup_file_notify(&memcg->events_local_file);
1012
1013 do {
1014 atomic_long_inc(&memcg->memory_events[event]);
1015 if (swap_event)
1016 cgroup_file_notify(&memcg->swap_events_file);
1017 else
1018 cgroup_file_notify(&memcg->events_file);
1019
1020 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1021 break;
1022 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1023 break;
1024 } while ((memcg = parent_mem_cgroup(memcg)) &&
1025 !mem_cgroup_is_root(memcg));
1026}
1027
1028static inline void memcg_memory_event_mm(struct mm_struct *mm,
1029 enum memcg_memory_event event)
1030{
1031 struct mem_cgroup *memcg;
1032
1033 if (mem_cgroup_disabled())
1034 return;
1035
1036 rcu_read_lock();
1037 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1038 if (likely(memcg))
1039 memcg_memory_event(memcg, event);
1040 rcu_read_unlock();
1041}
1042
1043void split_page_memcg(struct page *head, int old_order, int new_order);
1044
1045static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1046{
1047 struct mem_cgroup *memcg;
1048 u64 id;
1049
1050 if (mem_cgroup_disabled())
1051 return 0;
1052
1053 rcu_read_lock();
1054 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1055 if (!memcg)
1056 memcg = root_mem_cgroup;
1057 id = cgroup_id(memcg->css.cgroup);
1058 rcu_read_unlock();
1059 return id;
1060}
1061
1062#else /* CONFIG_MEMCG */
1063
1064#define MEM_CGROUP_ID_SHIFT 0
1065
1066static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1067{
1068 return NULL;
1069}
1070
1071static inline bool folio_memcg_charged(struct folio *folio)
1072{
1073 return false;
1074}
1075
1076static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1077{
1078 return NULL;
1079}
1080
1081static inline struct mem_cgroup *page_memcg_check(struct page *page)
1082{
1083 return NULL;
1084}
1085
1086static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1087{
1088 return NULL;
1089}
1090
1091static inline bool folio_memcg_kmem(struct folio *folio)
1092{
1093 return false;
1094}
1095
1096static inline bool PageMemcgKmem(struct page *page)
1097{
1098 return false;
1099}
1100
1101static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1102{
1103 return true;
1104}
1105
1106static inline bool mem_cgroup_disabled(void)
1107{
1108 return true;
1109}
1110
1111static inline void memcg_memory_event(struct mem_cgroup *memcg,
1112 enum memcg_memory_event event)
1113{
1114}
1115
1116static inline void memcg_memory_event_mm(struct mm_struct *mm,
1117 enum memcg_memory_event event)
1118{
1119}
1120
1121static inline void mem_cgroup_protection(struct mem_cgroup *root,
1122 struct mem_cgroup *memcg,
1123 unsigned long *min,
1124 unsigned long *low)
1125{
1126 *min = *low = 0;
1127}
1128
1129static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1130 struct mem_cgroup *memcg)
1131{
1132}
1133
1134static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1135 struct mem_cgroup *memcg)
1136{
1137 return true;
1138}
1139static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1140 struct mem_cgroup *memcg)
1141{
1142 return false;
1143}
1144
1145static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1146 struct mem_cgroup *memcg)
1147{
1148 return false;
1149}
1150
1151static inline int mem_cgroup_charge(struct folio *folio,
1152 struct mm_struct *mm, gfp_t gfp)
1153{
1154 return 0;
1155}
1156
1157static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp)
1158{
1159 return 0;
1160}
1161
1162static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1163 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1164{
1165 return 0;
1166}
1167
1168static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr)
1169{
1170}
1171
1172static inline void mem_cgroup_uncharge(struct folio *folio)
1173{
1174}
1175
1176static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1177{
1178}
1179
1180static inline void mem_cgroup_replace_folio(struct folio *old,
1181 struct folio *new)
1182{
1183}
1184
1185static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1186{
1187}
1188
1189static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1190 struct pglist_data *pgdat)
1191{
1192 return &pgdat->__lruvec;
1193}
1194
1195static inline struct lruvec *folio_lruvec(struct folio *folio)
1196{
1197 struct pglist_data *pgdat = folio_pgdat(folio);
1198 return &pgdat->__lruvec;
1199}
1200
1201static inline
1202void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1203{
1204}
1205
1206static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1207{
1208 return NULL;
1209}
1210
1211static inline bool mm_match_cgroup(struct mm_struct *mm,
1212 struct mem_cgroup *memcg)
1213{
1214 return true;
1215}
1216
1217static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1218{
1219 return NULL;
1220}
1221
1222static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1223{
1224 return NULL;
1225}
1226
1227static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1228{
1229 return NULL;
1230}
1231
1232static inline
1233struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1234{
1235 return NULL;
1236}
1237
1238static inline void obj_cgroup_get(struct obj_cgroup *objcg)
1239{
1240}
1241
1242static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1243{
1244}
1245
1246static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1247{
1248 return true;
1249}
1250
1251static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1252{
1253 return true;
1254}
1255
1256static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1257{
1258}
1259
1260static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1261{
1262 struct pglist_data *pgdat = folio_pgdat(folio);
1263
1264 spin_lock(&pgdat->__lruvec.lru_lock);
1265 return &pgdat->__lruvec;
1266}
1267
1268static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1269{
1270 struct pglist_data *pgdat = folio_pgdat(folio);
1271
1272 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1273 return &pgdat->__lruvec;
1274}
1275
1276static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1277 unsigned long *flagsp)
1278{
1279 struct pglist_data *pgdat = folio_pgdat(folio);
1280
1281 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1282 return &pgdat->__lruvec;
1283}
1284
1285static inline struct mem_cgroup *
1286mem_cgroup_iter(struct mem_cgroup *root,
1287 struct mem_cgroup *prev,
1288 struct mem_cgroup_reclaim_cookie *reclaim)
1289{
1290 return NULL;
1291}
1292
1293static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1294 struct mem_cgroup *prev)
1295{
1296}
1297
1298static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1299 int (*fn)(struct task_struct *, void *), void *arg)
1300{
1301}
1302
1303static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1304{
1305 return 0;
1306}
1307
1308static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1309{
1310 WARN_ON_ONCE(id);
1311 /* XXX: This should always return root_mem_cgroup */
1312 return NULL;
1313}
1314
1315#ifdef CONFIG_SHRINKER_DEBUG
1316static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1317{
1318 return 0;
1319}
1320
1321static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1322{
1323 return NULL;
1324}
1325#endif
1326
1327static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1328{
1329 return NULL;
1330}
1331
1332static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1333{
1334 return NULL;
1335}
1336
1337static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1338{
1339 return true;
1340}
1341
1342static inline
1343unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1344 enum lru_list lru, int zone_idx)
1345{
1346 return 0;
1347}
1348
1349static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1350{
1351 return 0;
1352}
1353
1354static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1355{
1356 return 0;
1357}
1358
1359static inline void
1360mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1361{
1362}
1363
1364static inline void
1365mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1366{
1367}
1368
1369static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1370{
1371}
1372
1373static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1374 struct task_struct *victim, struct mem_cgroup *oom_domain)
1375{
1376 return NULL;
1377}
1378
1379static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1380{
1381}
1382
1383static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1384 enum memcg_stat_item idx,
1385 int nr)
1386{
1387}
1388
1389static inline void mod_memcg_state(struct mem_cgroup *memcg,
1390 enum memcg_stat_item idx,
1391 int nr)
1392{
1393}
1394
1395static inline void mod_memcg_page_state(struct page *page,
1396 enum memcg_stat_item idx, int val)
1397{
1398}
1399
1400static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1401{
1402 return 0;
1403}
1404
1405static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1406 enum node_stat_item idx)
1407{
1408 return node_page_state(lruvec_pgdat(lruvec), idx);
1409}
1410
1411static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1412 enum node_stat_item idx)
1413{
1414 return node_page_state(lruvec_pgdat(lruvec), idx);
1415}
1416
1417static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1418{
1419}
1420
1421static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1422{
1423}
1424
1425static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1426 int val)
1427{
1428 struct page *page = virt_to_head_page(p);
1429
1430 __mod_node_page_state(page_pgdat(page), idx, val);
1431}
1432
1433static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1434 int val)
1435{
1436 struct page *page = virt_to_head_page(p);
1437
1438 mod_node_page_state(page_pgdat(page), idx, val);
1439}
1440
1441static inline void count_memcg_events(struct mem_cgroup *memcg,
1442 enum vm_event_item idx,
1443 unsigned long count)
1444{
1445}
1446
1447static inline void __count_memcg_events(struct mem_cgroup *memcg,
1448 enum vm_event_item idx,
1449 unsigned long count)
1450{
1451}
1452
1453static inline void count_memcg_folio_events(struct folio *folio,
1454 enum vm_event_item idx, unsigned long nr)
1455{
1456}
1457
1458static inline void count_memcg_events_mm(struct mm_struct *mm,
1459 enum vm_event_item idx, unsigned long count)
1460{
1461}
1462
1463static inline
1464void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1465{
1466}
1467
1468static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1469{
1470}
1471
1472static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1473{
1474 return 0;
1475}
1476#endif /* CONFIG_MEMCG */
1477
1478/*
1479 * Extended information for slab objects stored as an array in page->memcg_data
1480 * if MEMCG_DATA_OBJEXTS is set.
1481 */
1482struct slabobj_ext {
1483#ifdef CONFIG_MEMCG
1484 struct obj_cgroup *objcg;
1485#endif
1486#ifdef CONFIG_MEM_ALLOC_PROFILING
1487 union codetag_ref ref;
1488#endif
1489} __aligned(8);
1490
1491static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1492{
1493 __mod_lruvec_kmem_state(p, idx, 1);
1494}
1495
1496static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1497{
1498 __mod_lruvec_kmem_state(p, idx, -1);
1499}
1500
1501static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1502{
1503 struct mem_cgroup *memcg;
1504
1505 memcg = lruvec_memcg(lruvec);
1506 if (!memcg)
1507 return NULL;
1508 memcg = parent_mem_cgroup(memcg);
1509 if (!memcg)
1510 return NULL;
1511 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1512}
1513
1514static inline void unlock_page_lruvec(struct lruvec *lruvec)
1515{
1516 spin_unlock(&lruvec->lru_lock);
1517}
1518
1519static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1520{
1521 spin_unlock_irq(&lruvec->lru_lock);
1522}
1523
1524static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1525 unsigned long flags)
1526{
1527 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1528}
1529
1530/* Test requires a stable folio->memcg binding, see folio_memcg() */
1531static inline bool folio_matches_lruvec(struct folio *folio,
1532 struct lruvec *lruvec)
1533{
1534 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1535 lruvec_memcg(lruvec) == folio_memcg(folio);
1536}
1537
1538/* Don't lock again iff page's lruvec locked */
1539static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1540 struct lruvec *locked_lruvec)
1541{
1542 if (locked_lruvec) {
1543 if (folio_matches_lruvec(folio, locked_lruvec))
1544 return locked_lruvec;
1545
1546 unlock_page_lruvec_irq(locked_lruvec);
1547 }
1548
1549 return folio_lruvec_lock_irq(folio);
1550}
1551
1552/* Don't lock again iff folio's lruvec locked */
1553static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1554 struct lruvec **lruvecp, unsigned long *flags)
1555{
1556 if (*lruvecp) {
1557 if (folio_matches_lruvec(folio, *lruvecp))
1558 return;
1559
1560 unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1561 }
1562
1563 *lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1564}
1565
1566#ifdef CONFIG_CGROUP_WRITEBACK
1567
1568struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1569void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1570 unsigned long *pheadroom, unsigned long *pdirty,
1571 unsigned long *pwriteback);
1572
1573void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1574 struct bdi_writeback *wb);
1575
1576static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1577 struct bdi_writeback *wb)
1578{
1579 struct mem_cgroup *memcg;
1580
1581 if (mem_cgroup_disabled())
1582 return;
1583
1584 memcg = folio_memcg(folio);
1585 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1586 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1587}
1588
1589void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1590
1591#else /* CONFIG_CGROUP_WRITEBACK */
1592
1593static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1594{
1595 return NULL;
1596}
1597
1598static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1599 unsigned long *pfilepages,
1600 unsigned long *pheadroom,
1601 unsigned long *pdirty,
1602 unsigned long *pwriteback)
1603{
1604}
1605
1606static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1607 struct bdi_writeback *wb)
1608{
1609}
1610
1611static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1612{
1613}
1614
1615#endif /* CONFIG_CGROUP_WRITEBACK */
1616
1617struct sock;
1618bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1619 gfp_t gfp_mask);
1620void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1621#ifdef CONFIG_MEMCG
1622extern struct static_key_false memcg_sockets_enabled_key;
1623#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1624void mem_cgroup_sk_alloc(struct sock *sk);
1625void mem_cgroup_sk_free(struct sock *sk);
1626static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1627{
1628#ifdef CONFIG_MEMCG_V1
1629 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1630 return !!memcg->tcpmem_pressure;
1631#endif /* CONFIG_MEMCG_V1 */
1632 do {
1633 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1634 return true;
1635 } while ((memcg = parent_mem_cgroup(memcg)));
1636 return false;
1637}
1638
1639int alloc_shrinker_info(struct mem_cgroup *memcg);
1640void free_shrinker_info(struct mem_cgroup *memcg);
1641void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1642void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1643#else
1644#define mem_cgroup_sockets_enabled 0
1645static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1646static inline void mem_cgroup_sk_free(struct sock *sk) { };
1647static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1648{
1649 return false;
1650}
1651
1652static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1653 int nid, int shrinker_id)
1654{
1655}
1656#endif
1657
1658#ifdef CONFIG_MEMCG
1659bool mem_cgroup_kmem_disabled(void);
1660int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1661void __memcg_kmem_uncharge_page(struct page *page, int order);
1662
1663/*
1664 * The returned objcg pointer is safe to use without additional
1665 * protection within a scope. The scope is defined either by
1666 * the current task (similar to the "current" global variable)
1667 * or by set_active_memcg() pair.
1668 * Please, use obj_cgroup_get() to get a reference if the pointer
1669 * needs to be used outside of the local scope.
1670 */
1671struct obj_cgroup *current_obj_cgroup(void);
1672struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1673
1674static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1675{
1676 struct obj_cgroup *objcg = current_obj_cgroup();
1677
1678 if (objcg)
1679 obj_cgroup_get(objcg);
1680
1681 return objcg;
1682}
1683
1684int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1685void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1686
1687extern struct static_key_false memcg_bpf_enabled_key;
1688static inline bool memcg_bpf_enabled(void)
1689{
1690 return static_branch_likely(&memcg_bpf_enabled_key);
1691}
1692
1693extern struct static_key_false memcg_kmem_online_key;
1694
1695static inline bool memcg_kmem_online(void)
1696{
1697 return static_branch_likely(&memcg_kmem_online_key);
1698}
1699
1700static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1701 int order)
1702{
1703 if (memcg_kmem_online())
1704 return __memcg_kmem_charge_page(page, gfp, order);
1705 return 0;
1706}
1707
1708static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1709{
1710 if (memcg_kmem_online())
1711 __memcg_kmem_uncharge_page(page, order);
1712}
1713
1714/*
1715 * A helper for accessing memcg's kmem_id, used for getting
1716 * corresponding LRU lists.
1717 */
1718static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1719{
1720 return memcg ? memcg->kmemcg_id : -1;
1721}
1722
1723struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1724
1725static inline void count_objcg_events(struct obj_cgroup *objcg,
1726 enum vm_event_item idx,
1727 unsigned long count)
1728{
1729 struct mem_cgroup *memcg;
1730
1731 if (!memcg_kmem_online())
1732 return;
1733
1734 rcu_read_lock();
1735 memcg = obj_cgroup_memcg(objcg);
1736 count_memcg_events(memcg, idx, count);
1737 rcu_read_unlock();
1738}
1739
1740#else
1741static inline bool mem_cgroup_kmem_disabled(void)
1742{
1743 return true;
1744}
1745
1746static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1747 int order)
1748{
1749 return 0;
1750}
1751
1752static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1753{
1754}
1755
1756static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1757 int order)
1758{
1759 return 0;
1760}
1761
1762static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1763{
1764}
1765
1766static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1767{
1768 return NULL;
1769}
1770
1771static inline bool memcg_bpf_enabled(void)
1772{
1773 return false;
1774}
1775
1776static inline bool memcg_kmem_online(void)
1777{
1778 return false;
1779}
1780
1781static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1782{
1783 return -1;
1784}
1785
1786static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1787{
1788 return NULL;
1789}
1790
1791static inline void count_objcg_events(struct obj_cgroup *objcg,
1792 enum vm_event_item idx,
1793 unsigned long count)
1794{
1795}
1796
1797#endif /* CONFIG_MEMCG */
1798
1799#if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1800bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1801void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1802void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1803bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1804#else
1805static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1806{
1807 return true;
1808}
1809static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1810 size_t size)
1811{
1812}
1813static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1814 size_t size)
1815{
1816}
1817static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1818{
1819 /* if zswap is disabled, do not block pages going to the swapping device */
1820 return true;
1821}
1822#endif
1823
1824
1825/* Cgroup v1-related declarations */
1826
1827#ifdef CONFIG_MEMCG_V1
1828unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1829 gfp_t gfp_mask,
1830 unsigned long *total_scanned);
1831
1832bool mem_cgroup_oom_synchronize(bool wait);
1833
1834static inline bool task_in_memcg_oom(struct task_struct *p)
1835{
1836 return p->memcg_in_oom;
1837}
1838
1839static inline void mem_cgroup_enter_user_fault(void)
1840{
1841 WARN_ON(current->in_user_fault);
1842 current->in_user_fault = 1;
1843}
1844
1845static inline void mem_cgroup_exit_user_fault(void)
1846{
1847 WARN_ON(!current->in_user_fault);
1848 current->in_user_fault = 0;
1849}
1850
1851#else /* CONFIG_MEMCG_V1 */
1852static inline
1853unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1854 gfp_t gfp_mask,
1855 unsigned long *total_scanned)
1856{
1857 return 0;
1858}
1859
1860static inline bool task_in_memcg_oom(struct task_struct *p)
1861{
1862 return false;
1863}
1864
1865static inline bool mem_cgroup_oom_synchronize(bool wait)
1866{
1867 return false;
1868}
1869
1870static inline void mem_cgroup_enter_user_fault(void)
1871{
1872}
1873
1874static inline void mem_cgroup_exit_user_fault(void)
1875{
1876}
1877
1878#endif /* CONFIG_MEMCG_V1 */
1879
1880#endif /* _LINUX_MEMCONTROL_H */