at v6.14 80 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/sched/stat.h> 14#include <linux/bug.h> 15#include <linux/minmax.h> 16#include <linux/mm.h> 17#include <linux/mmu_notifier.h> 18#include <linux/preempt.h> 19#include <linux/msi.h> 20#include <linux/slab.h> 21#include <linux/vmalloc.h> 22#include <linux/rcupdate.h> 23#include <linux/ratelimit.h> 24#include <linux/err.h> 25#include <linux/irqflags.h> 26#include <linux/context_tracking.h> 27#include <linux/irqbypass.h> 28#include <linux/rcuwait.h> 29#include <linux/refcount.h> 30#include <linux/nospec.h> 31#include <linux/notifier.h> 32#include <linux/ftrace.h> 33#include <linux/hashtable.h> 34#include <linux/instrumentation.h> 35#include <linux/interval_tree.h> 36#include <linux/rbtree.h> 37#include <linux/xarray.h> 38#include <asm/signal.h> 39 40#include <linux/kvm.h> 41#include <linux/kvm_para.h> 42 43#include <linux/kvm_types.h> 44 45#include <asm/kvm_host.h> 46#include <linux/kvm_dirty_ring.h> 47 48#ifndef KVM_MAX_VCPU_IDS 49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50#endif 51 52/* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57#define KVM_MEMSLOT_INVALID (1UL << 16) 58 59/* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80/* Two fragments for cross MMIO pages. */ 81#define KVM_MAX_MMIO_FRAGMENTS 2 82 83#ifndef KVM_MAX_NR_ADDRESS_SPACES 84#define KVM_MAX_NR_ADDRESS_SPACES 1 85#endif 86 87/* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94#define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100#define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4) 101 102/* 103 * error pfns indicate that the gfn is in slot but faild to 104 * translate it to pfn on host. 105 */ 106static inline bool is_error_pfn(kvm_pfn_t pfn) 107{ 108 return !!(pfn & KVM_PFN_ERR_MASK); 109} 110 111/* 112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 113 * by a pending signal. Note, the signal may or may not be fatal. 114 */ 115static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 116{ 117 return pfn == KVM_PFN_ERR_SIGPENDING; 118} 119 120/* 121 * error_noslot pfns indicate that the gfn can not be 122 * translated to pfn - it is not in slot or failed to 123 * translate it to pfn. 124 */ 125static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 126{ 127 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 128} 129 130/* noslot pfn indicates that the gfn is not in slot. */ 131static inline bool is_noslot_pfn(kvm_pfn_t pfn) 132{ 133 return pfn == KVM_PFN_NOSLOT; 134} 135 136/* 137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 138 * provide own defines and kvm_is_error_hva 139 */ 140#ifndef KVM_HVA_ERR_BAD 141 142#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 143#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 144 145static inline bool kvm_is_error_hva(unsigned long addr) 146{ 147 return addr >= PAGE_OFFSET; 148} 149 150#endif 151 152static inline bool kvm_is_error_gpa(gpa_t gpa) 153{ 154 return gpa == INVALID_GPA; 155} 156 157#define KVM_REQUEST_MASK GENMASK(7,0) 158#define KVM_REQUEST_NO_WAKEUP BIT(8) 159#define KVM_REQUEST_WAIT BIT(9) 160#define KVM_REQUEST_NO_ACTION BIT(10) 161/* 162 * Architecture-independent vcpu->requests bit members 163 * Bits 3-7 are reserved for more arch-independent bits. 164 */ 165#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 166#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167#define KVM_REQ_UNBLOCK 2 168#define KVM_REQ_DIRTY_RING_SOFT_FULL 3 169#define KVM_REQUEST_ARCH_BASE 8 170 171/* 172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 177 * guarantee the vCPU received an IPI and has actually exited guest mode. 178 */ 179#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 180 181#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 184}) 185#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 186 187bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 188 unsigned long *vcpu_bitmap); 189bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 190 191#define KVM_USERSPACE_IRQ_SOURCE_ID 0 192#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 193 194extern struct mutex kvm_lock; 195extern struct list_head vm_list; 196 197struct kvm_io_range { 198 gpa_t addr; 199 int len; 200 struct kvm_io_device *dev; 201}; 202 203#define NR_IOBUS_DEVS 1000 204 205struct kvm_io_bus { 206 int dev_count; 207 int ioeventfd_count; 208 struct kvm_io_range range[]; 209}; 210 211enum kvm_bus { 212 KVM_MMIO_BUS, 213 KVM_PIO_BUS, 214 KVM_VIRTIO_CCW_NOTIFY_BUS, 215 KVM_FAST_MMIO_BUS, 216 KVM_IOCSR_BUS, 217 KVM_NR_BUSES 218}; 219 220int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 221 int len, const void *val); 222int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 223 gpa_t addr, int len, const void *val, long cookie); 224int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 225 int len, void *val); 226int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 227 int len, struct kvm_io_device *dev); 228int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 229 struct kvm_io_device *dev); 230struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 231 gpa_t addr); 232 233#ifdef CONFIG_KVM_ASYNC_PF 234struct kvm_async_pf { 235 struct work_struct work; 236 struct list_head link; 237 struct list_head queue; 238 struct kvm_vcpu *vcpu; 239 gpa_t cr2_or_gpa; 240 unsigned long addr; 241 struct kvm_arch_async_pf arch; 242 bool wakeup_all; 243 bool notpresent_injected; 244}; 245 246void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 247void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 248bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 249 unsigned long hva, struct kvm_arch_async_pf *arch); 250int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 251#endif 252 253#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 254union kvm_mmu_notifier_arg { 255 unsigned long attributes; 256}; 257 258enum kvm_gfn_range_filter { 259 KVM_FILTER_SHARED = BIT(0), 260 KVM_FILTER_PRIVATE = BIT(1), 261}; 262 263struct kvm_gfn_range { 264 struct kvm_memory_slot *slot; 265 gfn_t start; 266 gfn_t end; 267 union kvm_mmu_notifier_arg arg; 268 enum kvm_gfn_range_filter attr_filter; 269 bool may_block; 270}; 271bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 272bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 273bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 274#endif 275 276enum { 277 OUTSIDE_GUEST_MODE, 278 IN_GUEST_MODE, 279 EXITING_GUEST_MODE, 280 READING_SHADOW_PAGE_TABLES, 281}; 282 283struct kvm_host_map { 284 /* 285 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 286 * a 'struct page' for it. When using mem= kernel parameter some memory 287 * can be used as guest memory but they are not managed by host 288 * kernel). 289 */ 290 struct page *pinned_page; 291 struct page *page; 292 void *hva; 293 kvm_pfn_t pfn; 294 kvm_pfn_t gfn; 295 bool writable; 296}; 297 298/* 299 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 300 * directly to check for that. 301 */ 302static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 303{ 304 return !!map->hva; 305} 306 307static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 308{ 309 return single_task_running() && !need_resched() && ktime_before(cur, stop); 310} 311 312/* 313 * Sometimes a large or cross-page mmio needs to be broken up into separate 314 * exits for userspace servicing. 315 */ 316struct kvm_mmio_fragment { 317 gpa_t gpa; 318 void *data; 319 unsigned len; 320}; 321 322struct kvm_vcpu { 323 struct kvm *kvm; 324#ifdef CONFIG_PREEMPT_NOTIFIERS 325 struct preempt_notifier preempt_notifier; 326#endif 327 int cpu; 328 int vcpu_id; /* id given by userspace at creation */ 329 int vcpu_idx; /* index into kvm->vcpu_array */ 330 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 331#ifdef CONFIG_PROVE_RCU 332 int srcu_depth; 333#endif 334 int mode; 335 u64 requests; 336 unsigned long guest_debug; 337 338 struct mutex mutex; 339 struct kvm_run *run; 340 341#ifndef __KVM_HAVE_ARCH_WQP 342 struct rcuwait wait; 343#endif 344 struct pid *pid; 345 rwlock_t pid_lock; 346 int sigset_active; 347 sigset_t sigset; 348 unsigned int halt_poll_ns; 349 bool valid_wakeup; 350 351#ifdef CONFIG_HAS_IOMEM 352 int mmio_needed; 353 int mmio_read_completed; 354 int mmio_is_write; 355 int mmio_cur_fragment; 356 int mmio_nr_fragments; 357 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 358#endif 359 360#ifdef CONFIG_KVM_ASYNC_PF 361 struct { 362 u32 queued; 363 struct list_head queue; 364 struct list_head done; 365 spinlock_t lock; 366 } async_pf; 367#endif 368 369#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 370 /* 371 * Cpu relax intercept or pause loop exit optimization 372 * in_spin_loop: set when a vcpu does a pause loop exit 373 * or cpu relax intercepted. 374 * dy_eligible: indicates whether vcpu is eligible for directed yield. 375 */ 376 struct { 377 bool in_spin_loop; 378 bool dy_eligible; 379 } spin_loop; 380#endif 381 bool wants_to_run; 382 bool preempted; 383 bool ready; 384 bool scheduled_out; 385 struct kvm_vcpu_arch arch; 386 struct kvm_vcpu_stat stat; 387 char stats_id[KVM_STATS_NAME_SIZE]; 388 struct kvm_dirty_ring dirty_ring; 389 390 /* 391 * The most recently used memslot by this vCPU and the slots generation 392 * for which it is valid. 393 * No wraparound protection is needed since generations won't overflow in 394 * thousands of years, even assuming 1M memslot operations per second. 395 */ 396 struct kvm_memory_slot *last_used_slot; 397 u64 last_used_slot_gen; 398}; 399 400/* 401 * Start accounting time towards a guest. 402 * Must be called before entering guest context. 403 */ 404static __always_inline void guest_timing_enter_irqoff(void) 405{ 406 /* 407 * This is running in ioctl context so its safe to assume that it's the 408 * stime pending cputime to flush. 409 */ 410 instrumentation_begin(); 411 vtime_account_guest_enter(); 412 instrumentation_end(); 413} 414 415/* 416 * Enter guest context and enter an RCU extended quiescent state. 417 * 418 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 419 * unsafe to use any code which may directly or indirectly use RCU, tracing 420 * (including IRQ flag tracing), or lockdep. All code in this period must be 421 * non-instrumentable. 422 */ 423static __always_inline void guest_context_enter_irqoff(void) 424{ 425 /* 426 * KVM does not hold any references to rcu protected data when it 427 * switches CPU into a guest mode. In fact switching to a guest mode 428 * is very similar to exiting to userspace from rcu point of view. In 429 * addition CPU may stay in a guest mode for quite a long time (up to 430 * one time slice). Lets treat guest mode as quiescent state, just like 431 * we do with user-mode execution. 432 */ 433 if (!context_tracking_guest_enter()) { 434 instrumentation_begin(); 435 rcu_virt_note_context_switch(); 436 instrumentation_end(); 437 } 438} 439 440/* 441 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 442 * guest_state_enter_irqoff(). 443 */ 444static __always_inline void guest_enter_irqoff(void) 445{ 446 guest_timing_enter_irqoff(); 447 guest_context_enter_irqoff(); 448} 449 450/** 451 * guest_state_enter_irqoff - Fixup state when entering a guest 452 * 453 * Entry to a guest will enable interrupts, but the kernel state is interrupts 454 * disabled when this is invoked. Also tell RCU about it. 455 * 456 * 1) Trace interrupts on state 457 * 2) Invoke context tracking if enabled to adjust RCU state 458 * 3) Tell lockdep that interrupts are enabled 459 * 460 * Invoked from architecture specific code before entering a guest. 461 * Must be called with interrupts disabled and the caller must be 462 * non-instrumentable. 463 * The caller has to invoke guest_timing_enter_irqoff() before this. 464 * 465 * Note: this is analogous to exit_to_user_mode(). 466 */ 467static __always_inline void guest_state_enter_irqoff(void) 468{ 469 instrumentation_begin(); 470 trace_hardirqs_on_prepare(); 471 lockdep_hardirqs_on_prepare(); 472 instrumentation_end(); 473 474 guest_context_enter_irqoff(); 475 lockdep_hardirqs_on(CALLER_ADDR0); 476} 477 478/* 479 * Exit guest context and exit an RCU extended quiescent state. 480 * 481 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 482 * unsafe to use any code which may directly or indirectly use RCU, tracing 483 * (including IRQ flag tracing), or lockdep. All code in this period must be 484 * non-instrumentable. 485 */ 486static __always_inline void guest_context_exit_irqoff(void) 487{ 488 /* 489 * Guest mode is treated as a quiescent state, see 490 * guest_context_enter_irqoff() for more details. 491 */ 492 if (!context_tracking_guest_exit()) { 493 instrumentation_begin(); 494 rcu_virt_note_context_switch(); 495 instrumentation_end(); 496 } 497} 498 499/* 500 * Stop accounting time towards a guest. 501 * Must be called after exiting guest context. 502 */ 503static __always_inline void guest_timing_exit_irqoff(void) 504{ 505 instrumentation_begin(); 506 /* Flush the guest cputime we spent on the guest */ 507 vtime_account_guest_exit(); 508 instrumentation_end(); 509} 510 511/* 512 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 513 * guest_timing_exit_irqoff(). 514 */ 515static __always_inline void guest_exit_irqoff(void) 516{ 517 guest_context_exit_irqoff(); 518 guest_timing_exit_irqoff(); 519} 520 521static inline void guest_exit(void) 522{ 523 unsigned long flags; 524 525 local_irq_save(flags); 526 guest_exit_irqoff(); 527 local_irq_restore(flags); 528} 529 530/** 531 * guest_state_exit_irqoff - Establish state when returning from guest mode 532 * 533 * Entry from a guest disables interrupts, but guest mode is traced as 534 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 535 * 536 * 1) Tell lockdep that interrupts are disabled 537 * 2) Invoke context tracking if enabled to reactivate RCU 538 * 3) Trace interrupts off state 539 * 540 * Invoked from architecture specific code after exiting a guest. 541 * Must be invoked with interrupts disabled and the caller must be 542 * non-instrumentable. 543 * The caller has to invoke guest_timing_exit_irqoff() after this. 544 * 545 * Note: this is analogous to enter_from_user_mode(). 546 */ 547static __always_inline void guest_state_exit_irqoff(void) 548{ 549 lockdep_hardirqs_off(CALLER_ADDR0); 550 guest_context_exit_irqoff(); 551 552 instrumentation_begin(); 553 trace_hardirqs_off_finish(); 554 instrumentation_end(); 555} 556 557static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 558{ 559 /* 560 * The memory barrier ensures a previous write to vcpu->requests cannot 561 * be reordered with the read of vcpu->mode. It pairs with the general 562 * memory barrier following the write of vcpu->mode in VCPU RUN. 563 */ 564 smp_mb__before_atomic(); 565 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 566} 567 568/* 569 * Some of the bitops functions do not support too long bitmaps. 570 * This number must be determined not to exceed such limits. 571 */ 572#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 573 574/* 575 * Since at idle each memslot belongs to two memslot sets it has to contain 576 * two embedded nodes for each data structure that it forms a part of. 577 * 578 * Two memslot sets (one active and one inactive) are necessary so the VM 579 * continues to run on one memslot set while the other is being modified. 580 * 581 * These two memslot sets normally point to the same set of memslots. 582 * They can, however, be desynchronized when performing a memslot management 583 * operation by replacing the memslot to be modified by its copy. 584 * After the operation is complete, both memslot sets once again point to 585 * the same, common set of memslot data. 586 * 587 * The memslots themselves are independent of each other so they can be 588 * individually added or deleted. 589 */ 590struct kvm_memory_slot { 591 struct hlist_node id_node[2]; 592 struct interval_tree_node hva_node[2]; 593 struct rb_node gfn_node[2]; 594 gfn_t base_gfn; 595 unsigned long npages; 596 unsigned long *dirty_bitmap; 597 struct kvm_arch_memory_slot arch; 598 unsigned long userspace_addr; 599 u32 flags; 600 short id; 601 u16 as_id; 602 603#ifdef CONFIG_KVM_PRIVATE_MEM 604 struct { 605 /* 606 * Writes protected by kvm->slots_lock. Acquiring a 607 * reference via kvm_gmem_get_file() is protected by 608 * either kvm->slots_lock or kvm->srcu. 609 */ 610 struct file *file; 611 pgoff_t pgoff; 612 } gmem; 613#endif 614}; 615 616static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 617{ 618 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 619} 620 621static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 622{ 623 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 624} 625 626static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 627{ 628 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 629} 630 631static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 632{ 633 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 634 635 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 636} 637 638#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 639#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 640#endif 641 642struct kvm_s390_adapter_int { 643 u64 ind_addr; 644 u64 summary_addr; 645 u64 ind_offset; 646 u32 summary_offset; 647 u32 adapter_id; 648}; 649 650struct kvm_hv_sint { 651 u32 vcpu; 652 u32 sint; 653}; 654 655struct kvm_xen_evtchn { 656 u32 port; 657 u32 vcpu_id; 658 int vcpu_idx; 659 u32 priority; 660}; 661 662struct kvm_kernel_irq_routing_entry { 663 u32 gsi; 664 u32 type; 665 int (*set)(struct kvm_kernel_irq_routing_entry *e, 666 struct kvm *kvm, int irq_source_id, int level, 667 bool line_status); 668 union { 669 struct { 670 unsigned irqchip; 671 unsigned pin; 672 } irqchip; 673 struct { 674 u32 address_lo; 675 u32 address_hi; 676 u32 data; 677 u32 flags; 678 u32 devid; 679 } msi; 680 struct kvm_s390_adapter_int adapter; 681 struct kvm_hv_sint hv_sint; 682 struct kvm_xen_evtchn xen_evtchn; 683 }; 684 struct hlist_node link; 685}; 686 687#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 688struct kvm_irq_routing_table { 689 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 690 u32 nr_rt_entries; 691 /* 692 * Array indexed by gsi. Each entry contains list of irq chips 693 * the gsi is connected to. 694 */ 695 struct hlist_head map[] __counted_by(nr_rt_entries); 696}; 697#endif 698 699bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 700 701#ifndef KVM_INTERNAL_MEM_SLOTS 702#define KVM_INTERNAL_MEM_SLOTS 0 703#endif 704 705#define KVM_MEM_SLOTS_NUM SHRT_MAX 706#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 707 708#if KVM_MAX_NR_ADDRESS_SPACES == 1 709static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 710{ 711 return KVM_MAX_NR_ADDRESS_SPACES; 712} 713 714static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 715{ 716 return 0; 717} 718#endif 719 720/* 721 * Arch code must define kvm_arch_has_private_mem if support for private memory 722 * is enabled. 723 */ 724#if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 725static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 726{ 727 return false; 728} 729#endif 730 731#ifndef kvm_arch_has_readonly_mem 732static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 733{ 734 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 735} 736#endif 737 738struct kvm_memslots { 739 u64 generation; 740 atomic_long_t last_used_slot; 741 struct rb_root_cached hva_tree; 742 struct rb_root gfn_tree; 743 /* 744 * The mapping table from slot id to memslot. 745 * 746 * 7-bit bucket count matches the size of the old id to index array for 747 * 512 slots, while giving good performance with this slot count. 748 * Higher bucket counts bring only small performance improvements but 749 * always result in higher memory usage (even for lower memslot counts). 750 */ 751 DECLARE_HASHTABLE(id_hash, 7); 752 int node_idx; 753}; 754 755struct kvm { 756#ifdef KVM_HAVE_MMU_RWLOCK 757 rwlock_t mmu_lock; 758#else 759 spinlock_t mmu_lock; 760#endif /* KVM_HAVE_MMU_RWLOCK */ 761 762 struct mutex slots_lock; 763 764 /* 765 * Protects the arch-specific fields of struct kvm_memory_slots in 766 * use by the VM. To be used under the slots_lock (above) or in a 767 * kvm->srcu critical section where acquiring the slots_lock would 768 * lead to deadlock with the synchronize_srcu in 769 * kvm_swap_active_memslots(). 770 */ 771 struct mutex slots_arch_lock; 772 struct mm_struct *mm; /* userspace tied to this vm */ 773 unsigned long nr_memslot_pages; 774 /* The two memslot sets - active and inactive (per address space) */ 775 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 776 /* The current active memslot set for each address space */ 777 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 778 struct xarray vcpu_array; 779 /* 780 * Protected by slots_lock, but can be read outside if an 781 * incorrect answer is acceptable. 782 */ 783 atomic_t nr_memslots_dirty_logging; 784 785 /* Used to wait for completion of MMU notifiers. */ 786 spinlock_t mn_invalidate_lock; 787 unsigned long mn_active_invalidate_count; 788 struct rcuwait mn_memslots_update_rcuwait; 789 790 /* For management / invalidation of gfn_to_pfn_caches */ 791 spinlock_t gpc_lock; 792 struct list_head gpc_list; 793 794 /* 795 * created_vcpus is protected by kvm->lock, and is incremented 796 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 797 * incremented after storing the kvm_vcpu pointer in vcpus, 798 * and is accessed atomically. 799 */ 800 atomic_t online_vcpus; 801 int max_vcpus; 802 int created_vcpus; 803 int last_boosted_vcpu; 804 struct list_head vm_list; 805 struct mutex lock; 806 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 807#ifdef CONFIG_HAVE_KVM_IRQCHIP 808 struct { 809 spinlock_t lock; 810 struct list_head items; 811 /* resampler_list update side is protected by resampler_lock. */ 812 struct list_head resampler_list; 813 struct mutex resampler_lock; 814 } irqfds; 815#endif 816 struct list_head ioeventfds; 817 struct kvm_vm_stat stat; 818 struct kvm_arch arch; 819 refcount_t users_count; 820#ifdef CONFIG_KVM_MMIO 821 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 822 spinlock_t ring_lock; 823 struct list_head coalesced_zones; 824#endif 825 826 struct mutex irq_lock; 827#ifdef CONFIG_HAVE_KVM_IRQCHIP 828 /* 829 * Update side is protected by irq_lock. 830 */ 831 struct kvm_irq_routing_table __rcu *irq_routing; 832 833 struct hlist_head irq_ack_notifier_list; 834#endif 835 836#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 837 struct mmu_notifier mmu_notifier; 838 unsigned long mmu_invalidate_seq; 839 long mmu_invalidate_in_progress; 840 gfn_t mmu_invalidate_range_start; 841 gfn_t mmu_invalidate_range_end; 842#endif 843 struct list_head devices; 844 u64 manual_dirty_log_protect; 845 struct dentry *debugfs_dentry; 846 struct kvm_stat_data **debugfs_stat_data; 847 struct srcu_struct srcu; 848 struct srcu_struct irq_srcu; 849 pid_t userspace_pid; 850 bool override_halt_poll_ns; 851 unsigned int max_halt_poll_ns; 852 u32 dirty_ring_size; 853 bool dirty_ring_with_bitmap; 854 bool vm_bugged; 855 bool vm_dead; 856 857#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 858 struct notifier_block pm_notifier; 859#endif 860#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 861 /* Protected by slots_locks (for writes) and RCU (for reads) */ 862 struct xarray mem_attr_array; 863#endif 864 char stats_id[KVM_STATS_NAME_SIZE]; 865}; 866 867#define kvm_err(fmt, ...) \ 868 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 869#define kvm_info(fmt, ...) \ 870 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 871#define kvm_debug(fmt, ...) \ 872 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 873#define kvm_debug_ratelimited(fmt, ...) \ 874 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 875 ## __VA_ARGS__) 876#define kvm_pr_unimpl(fmt, ...) \ 877 pr_err_ratelimited("kvm [%i]: " fmt, \ 878 task_tgid_nr(current), ## __VA_ARGS__) 879 880/* The guest did something we don't support. */ 881#define vcpu_unimpl(vcpu, fmt, ...) \ 882 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 883 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 884 885#define vcpu_debug(vcpu, fmt, ...) \ 886 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 887#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 888 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 889 ## __VA_ARGS__) 890#define vcpu_err(vcpu, fmt, ...) \ 891 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 892 893static inline void kvm_vm_dead(struct kvm *kvm) 894{ 895 kvm->vm_dead = true; 896 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 897} 898 899static inline void kvm_vm_bugged(struct kvm *kvm) 900{ 901 kvm->vm_bugged = true; 902 kvm_vm_dead(kvm); 903} 904 905 906#define KVM_BUG(cond, kvm, fmt...) \ 907({ \ 908 bool __ret = !!(cond); \ 909 \ 910 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 911 kvm_vm_bugged(kvm); \ 912 unlikely(__ret); \ 913}) 914 915#define KVM_BUG_ON(cond, kvm) \ 916({ \ 917 bool __ret = !!(cond); \ 918 \ 919 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 920 kvm_vm_bugged(kvm); \ 921 unlikely(__ret); \ 922}) 923 924/* 925 * Note, "data corruption" refers to corruption of host kernel data structures, 926 * not guest data. Guest data corruption, suspected or confirmed, that is tied 927 * and contained to a single VM should *never* BUG() and potentially panic the 928 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 929 * is corrupted and that corruption can have a cascading effect to other parts 930 * of the hosts and/or to other VMs. 931 */ 932#define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 933({ \ 934 bool __ret = !!(cond); \ 935 \ 936 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 937 BUG_ON(__ret); \ 938 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 939 kvm_vm_bugged(kvm); \ 940 unlikely(__ret); \ 941}) 942 943static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 944{ 945#ifdef CONFIG_PROVE_RCU 946 WARN_ONCE(vcpu->srcu_depth++, 947 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 948#endif 949 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 950} 951 952static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 953{ 954 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 955 956#ifdef CONFIG_PROVE_RCU 957 WARN_ONCE(--vcpu->srcu_depth, 958 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 959#endif 960} 961 962static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 963{ 964 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 965} 966 967static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 968{ 969 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 970 lockdep_is_held(&kvm->slots_lock) || 971 !refcount_read(&kvm->users_count)); 972} 973 974static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 975{ 976 int num_vcpus = atomic_read(&kvm->online_vcpus); 977 978 /* 979 * Explicitly verify the target vCPU is online, as the anti-speculation 980 * logic only limits the CPU's ability to speculate, e.g. given a "bad" 981 * index, clamping the index to 0 would return vCPU0, not NULL. 982 */ 983 if (i >= num_vcpus) 984 return NULL; 985 986 i = array_index_nospec(i, num_vcpus); 987 988 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 989 smp_rmb(); 990 return xa_load(&kvm->vcpu_array, i); 991} 992 993#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 994 if (atomic_read(&kvm->online_vcpus)) \ 995 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 996 (atomic_read(&kvm->online_vcpus) - 1)) 997 998static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 999{ 1000 struct kvm_vcpu *vcpu = NULL; 1001 unsigned long i; 1002 1003 if (id < 0) 1004 return NULL; 1005 if (id < KVM_MAX_VCPUS) 1006 vcpu = kvm_get_vcpu(kvm, id); 1007 if (vcpu && vcpu->vcpu_id == id) 1008 return vcpu; 1009 kvm_for_each_vcpu(i, vcpu, kvm) 1010 if (vcpu->vcpu_id == id) 1011 return vcpu; 1012 return NULL; 1013} 1014 1015void kvm_destroy_vcpus(struct kvm *kvm); 1016 1017void vcpu_load(struct kvm_vcpu *vcpu); 1018void vcpu_put(struct kvm_vcpu *vcpu); 1019 1020#ifdef __KVM_HAVE_IOAPIC 1021void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 1022void kvm_arch_post_irq_routing_update(struct kvm *kvm); 1023#else 1024static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1025{ 1026} 1027static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 1028{ 1029} 1030#endif 1031 1032#ifdef CONFIG_HAVE_KVM_IRQCHIP 1033int kvm_irqfd_init(void); 1034void kvm_irqfd_exit(void); 1035#else 1036static inline int kvm_irqfd_init(void) 1037{ 1038 return 0; 1039} 1040 1041static inline void kvm_irqfd_exit(void) 1042{ 1043} 1044#endif 1045int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1046void kvm_exit(void); 1047 1048void kvm_get_kvm(struct kvm *kvm); 1049bool kvm_get_kvm_safe(struct kvm *kvm); 1050void kvm_put_kvm(struct kvm *kvm); 1051bool file_is_kvm(struct file *file); 1052void kvm_put_kvm_no_destroy(struct kvm *kvm); 1053 1054static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1055{ 1056 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1057 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1058 lockdep_is_held(&kvm->slots_lock) || 1059 !refcount_read(&kvm->users_count)); 1060} 1061 1062static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1063{ 1064 return __kvm_memslots(kvm, 0); 1065} 1066 1067static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1068{ 1069 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1070 1071 return __kvm_memslots(vcpu->kvm, as_id); 1072} 1073 1074static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1075{ 1076 return RB_EMPTY_ROOT(&slots->gfn_tree); 1077} 1078 1079bool kvm_are_all_memslots_empty(struct kvm *kvm); 1080 1081#define kvm_for_each_memslot(memslot, bkt, slots) \ 1082 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1083 if (WARN_ON_ONCE(!memslot->npages)) { \ 1084 } else 1085 1086static inline 1087struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1088{ 1089 struct kvm_memory_slot *slot; 1090 int idx = slots->node_idx; 1091 1092 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1093 if (slot->id == id) 1094 return slot; 1095 } 1096 1097 return NULL; 1098} 1099 1100/* Iterator used for walking memslots that overlap a gfn range. */ 1101struct kvm_memslot_iter { 1102 struct kvm_memslots *slots; 1103 struct rb_node *node; 1104 struct kvm_memory_slot *slot; 1105}; 1106 1107static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1108{ 1109 iter->node = rb_next(iter->node); 1110 if (!iter->node) 1111 return; 1112 1113 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1114} 1115 1116static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1117 struct kvm_memslots *slots, 1118 gfn_t start) 1119{ 1120 int idx = slots->node_idx; 1121 struct rb_node *tmp; 1122 struct kvm_memory_slot *slot; 1123 1124 iter->slots = slots; 1125 1126 /* 1127 * Find the so called "upper bound" of a key - the first node that has 1128 * its key strictly greater than the searched one (the start gfn in our case). 1129 */ 1130 iter->node = NULL; 1131 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1132 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1133 if (start < slot->base_gfn) { 1134 iter->node = tmp; 1135 tmp = tmp->rb_left; 1136 } else { 1137 tmp = tmp->rb_right; 1138 } 1139 } 1140 1141 /* 1142 * Find the slot with the lowest gfn that can possibly intersect with 1143 * the range, so we'll ideally have slot start <= range start 1144 */ 1145 if (iter->node) { 1146 /* 1147 * A NULL previous node means that the very first slot 1148 * already has a higher start gfn. 1149 * In this case slot start > range start. 1150 */ 1151 tmp = rb_prev(iter->node); 1152 if (tmp) 1153 iter->node = tmp; 1154 } else { 1155 /* a NULL node below means no slots */ 1156 iter->node = rb_last(&slots->gfn_tree); 1157 } 1158 1159 if (iter->node) { 1160 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1161 1162 /* 1163 * It is possible in the slot start < range start case that the 1164 * found slot ends before or at range start (slot end <= range start) 1165 * and so it does not overlap the requested range. 1166 * 1167 * In such non-overlapping case the next slot (if it exists) will 1168 * already have slot start > range start, otherwise the logic above 1169 * would have found it instead of the current slot. 1170 */ 1171 if (iter->slot->base_gfn + iter->slot->npages <= start) 1172 kvm_memslot_iter_next(iter); 1173 } 1174} 1175 1176static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1177{ 1178 if (!iter->node) 1179 return false; 1180 1181 /* 1182 * If this slot starts beyond or at the end of the range so does 1183 * every next one 1184 */ 1185 return iter->slot->base_gfn < end; 1186} 1187 1188/* Iterate over each memslot at least partially intersecting [start, end) range */ 1189#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1190 for (kvm_memslot_iter_start(iter, slots, start); \ 1191 kvm_memslot_iter_is_valid(iter, end); \ 1192 kvm_memslot_iter_next(iter)) 1193 1194struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1195struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1196struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1197 1198/* 1199 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1200 * - create a new memory slot 1201 * - delete an existing memory slot 1202 * - modify an existing memory slot 1203 * -- move it in the guest physical memory space 1204 * -- just change its flags 1205 * 1206 * Since flags can be changed by some of these operations, the following 1207 * differentiation is the best we can do for kvm_set_memory_region(): 1208 */ 1209enum kvm_mr_change { 1210 KVM_MR_CREATE, 1211 KVM_MR_DELETE, 1212 KVM_MR_MOVE, 1213 KVM_MR_FLAGS_ONLY, 1214}; 1215 1216int kvm_set_internal_memslot(struct kvm *kvm, 1217 const struct kvm_userspace_memory_region2 *mem); 1218void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1219void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1220int kvm_arch_prepare_memory_region(struct kvm *kvm, 1221 const struct kvm_memory_slot *old, 1222 struct kvm_memory_slot *new, 1223 enum kvm_mr_change change); 1224void kvm_arch_commit_memory_region(struct kvm *kvm, 1225 struct kvm_memory_slot *old, 1226 const struct kvm_memory_slot *new, 1227 enum kvm_mr_change change); 1228/* flush all memory translations */ 1229void kvm_arch_flush_shadow_all(struct kvm *kvm); 1230/* flush memory translations pointing to 'slot' */ 1231void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1232 struct kvm_memory_slot *slot); 1233 1234int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 1235 struct page **pages, int nr_pages); 1236 1237struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write); 1238static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1239{ 1240 return __gfn_to_page(kvm, gfn, true); 1241} 1242 1243unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1244unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1245unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1246unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1247 bool *writable); 1248 1249static inline void kvm_release_page_unused(struct page *page) 1250{ 1251 if (!page) 1252 return; 1253 1254 put_page(page); 1255} 1256 1257void kvm_release_page_clean(struct page *page); 1258void kvm_release_page_dirty(struct page *page); 1259 1260static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page, 1261 bool unused, bool dirty) 1262{ 1263 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused); 1264 1265 if (!page) 1266 return; 1267 1268 /* 1269 * If the page that KVM got from the *primary MMU* is writable, and KVM 1270 * installed or reused a SPTE, mark the page/folio dirty. Note, this 1271 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if 1272 * the GFN is write-protected. Folios can't be safely marked dirty 1273 * outside of mmu_lock as doing so could race with writeback on the 1274 * folio. As a result, KVM can't mark folios dirty in the fast page 1275 * fault handler, and so KVM must (somewhat) speculatively mark the 1276 * folio dirty if KVM could locklessly make the SPTE writable. 1277 */ 1278 if (unused) 1279 kvm_release_page_unused(page); 1280 else if (dirty) 1281 kvm_release_page_dirty(page); 1282 else 1283 kvm_release_page_clean(page); 1284} 1285 1286kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 1287 unsigned int foll, bool *writable, 1288 struct page **refcounted_page); 1289 1290static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 1291 bool write, bool *writable, 1292 struct page **refcounted_page) 1293{ 1294 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, 1295 write ? FOLL_WRITE : 0, writable, refcounted_page); 1296} 1297 1298int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1299 int len); 1300int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1301int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1302 void *data, unsigned long len); 1303int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1304 void *data, unsigned int offset, 1305 unsigned long len); 1306int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1307 int offset, int len); 1308int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1309 unsigned long len); 1310int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1311 void *data, unsigned long len); 1312int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1313 void *data, unsigned int offset, 1314 unsigned long len); 1315int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1316 gpa_t gpa, unsigned long len); 1317 1318#define __kvm_get_guest(kvm, gfn, offset, v) \ 1319({ \ 1320 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1321 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1322 int __ret = -EFAULT; \ 1323 \ 1324 if (!kvm_is_error_hva(__addr)) \ 1325 __ret = get_user(v, __uaddr); \ 1326 __ret; \ 1327}) 1328 1329#define kvm_get_guest(kvm, gpa, v) \ 1330({ \ 1331 gpa_t __gpa = gpa; \ 1332 struct kvm *__kvm = kvm; \ 1333 \ 1334 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1335 offset_in_page(__gpa), v); \ 1336}) 1337 1338#define __kvm_put_guest(kvm, gfn, offset, v) \ 1339({ \ 1340 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1341 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1342 int __ret = -EFAULT; \ 1343 \ 1344 if (!kvm_is_error_hva(__addr)) \ 1345 __ret = put_user(v, __uaddr); \ 1346 if (!__ret) \ 1347 mark_page_dirty(kvm, gfn); \ 1348 __ret; \ 1349}) 1350 1351#define kvm_put_guest(kvm, gpa, v) \ 1352({ \ 1353 gpa_t __gpa = gpa; \ 1354 struct kvm *__kvm = kvm; \ 1355 \ 1356 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1357 offset_in_page(__gpa), v); \ 1358}) 1359 1360int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1361bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1362bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1363unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1364void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1365void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1366 1367int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map, 1368 bool writable); 1369void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map); 1370 1371static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, 1372 struct kvm_host_map *map) 1373{ 1374 return __kvm_vcpu_map(vcpu, gpa, map, true); 1375} 1376 1377static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa, 1378 struct kvm_host_map *map) 1379{ 1380 return __kvm_vcpu_map(vcpu, gpa, map, false); 1381} 1382 1383unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1384unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1385int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1386 int len); 1387int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1388 unsigned long len); 1389int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1390 unsigned long len); 1391int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1392 int offset, int len); 1393int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1394 unsigned long len); 1395void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1396 1397/** 1398 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1399 * 1400 * @gpc: struct gfn_to_pfn_cache object. 1401 * @kvm: pointer to kvm instance. 1402 * 1403 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1404 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1405 * the caller before init). 1406 */ 1407void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1408 1409/** 1410 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1411 * physical address. 1412 * 1413 * @gpc: struct gfn_to_pfn_cache object. 1414 * @gpa: guest physical address to map. 1415 * @len: sanity check; the range being access must fit a single page. 1416 * 1417 * @return: 0 for success. 1418 * -EINVAL for a mapping which would cross a page boundary. 1419 * -EFAULT for an untranslatable guest physical address. 1420 * 1421 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1422 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1423 * to ensure that the cache is valid before accessing the target page. 1424 */ 1425int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1426 1427/** 1428 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1429 * 1430 * @gpc: struct gfn_to_pfn_cache object. 1431 * @hva: userspace virtual address to map. 1432 * @len: sanity check; the range being access must fit a single page. 1433 * 1434 * @return: 0 for success. 1435 * -EINVAL for a mapping which would cross a page boundary. 1436 * -EFAULT for an untranslatable guest physical address. 1437 * 1438 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1439 * merely bypasses a layer of address translation. 1440 */ 1441int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1442 1443/** 1444 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1445 * 1446 * @gpc: struct gfn_to_pfn_cache object. 1447 * @len: sanity check; the range being access must fit a single page. 1448 * 1449 * @return: %true if the cache is still valid and the address matches. 1450 * %false if the cache is not valid. 1451 * 1452 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1453 * while calling this function, and then continue to hold the lock until the 1454 * access is complete. 1455 * 1456 * Callers in IN_GUEST_MODE may do so without locking, although they should 1457 * still hold a read lock on kvm->scru for the memslot checks. 1458 */ 1459bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1460 1461/** 1462 * kvm_gpc_refresh - update a previously initialized cache. 1463 * 1464 * @gpc: struct gfn_to_pfn_cache object. 1465 * @len: sanity check; the range being access must fit a single page. 1466 * 1467 * @return: 0 for success. 1468 * -EINVAL for a mapping which would cross a page boundary. 1469 * -EFAULT for an untranslatable guest physical address. 1470 * 1471 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1472 * return from this function does not mean the page can be immediately 1473 * accessed because it may have raced with an invalidation. Callers must 1474 * still lock and check the cache status, as this function does not return 1475 * with the lock still held to permit access. 1476 */ 1477int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1478 1479/** 1480 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1481 * 1482 * @gpc: struct gfn_to_pfn_cache object. 1483 * 1484 * This removes a cache from the VM's list to be processed on MMU notifier 1485 * invocation. 1486 */ 1487void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1488 1489static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1490{ 1491 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1492} 1493 1494static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1495{ 1496 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1497} 1498 1499void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1500void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1501 1502void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1503bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1504void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1505void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1506bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1507void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1508int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1509void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1510 1511void kvm_flush_remote_tlbs(struct kvm *kvm); 1512void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1513void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1514 const struct kvm_memory_slot *memslot); 1515 1516#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1517int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1518int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1519int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1520void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1521void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1522#endif 1523 1524void kvm_mmu_invalidate_begin(struct kvm *kvm); 1525void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1526void kvm_mmu_invalidate_end(struct kvm *kvm); 1527bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1528 1529long kvm_arch_dev_ioctl(struct file *filp, 1530 unsigned int ioctl, unsigned long arg); 1531long kvm_arch_vcpu_ioctl(struct file *filp, 1532 unsigned int ioctl, unsigned long arg); 1533vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1534 1535int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1536 1537void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1538 struct kvm_memory_slot *slot, 1539 gfn_t gfn_offset, 1540 unsigned long mask); 1541void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1542 1543#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1544int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1545int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1546 int *is_dirty, struct kvm_memory_slot **memslot); 1547#endif 1548 1549int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1550 bool line_status); 1551int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1552 struct kvm_enable_cap *cap); 1553int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1554long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1555 unsigned long arg); 1556 1557int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1558int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1559 1560int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1561 struct kvm_translation *tr); 1562 1563int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1564int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1565int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1566 struct kvm_sregs *sregs); 1567int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1568 struct kvm_sregs *sregs); 1569int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1570 struct kvm_mp_state *mp_state); 1571int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1572 struct kvm_mp_state *mp_state); 1573int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1574 struct kvm_guest_debug *dbg); 1575int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1576 1577void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1578void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1579int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1580int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1581void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1582void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1583 1584#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1585int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1586#endif 1587 1588#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1589void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1590#else 1591static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1592#endif 1593 1594#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1595/* 1596 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under 1597 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of 1598 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling 1599 * sequence, and at the end of the generic hardware disabling sequence. 1600 */ 1601void kvm_arch_enable_virtualization(void); 1602void kvm_arch_disable_virtualization(void); 1603/* 1604 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to 1605 * do the actual twiddling of hardware bits. The hooks are called on all 1606 * online CPUs when KVM enables/disabled virtualization, and on a single CPU 1607 * when that CPU is onlined/offlined (including for Resume/Suspend). 1608 */ 1609int kvm_arch_enable_virtualization_cpu(void); 1610void kvm_arch_disable_virtualization_cpu(void); 1611#endif 1612int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1613bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1614int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1615bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1616bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1617bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1618void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1619void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1620 1621#ifndef __KVM_HAVE_ARCH_VM_ALLOC 1622/* 1623 * All architectures that want to use vzalloc currently also 1624 * need their own kvm_arch_alloc_vm implementation. 1625 */ 1626static inline struct kvm *kvm_arch_alloc_vm(void) 1627{ 1628 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1629} 1630#endif 1631 1632static inline void __kvm_arch_free_vm(struct kvm *kvm) 1633{ 1634 kvfree(kvm); 1635} 1636 1637#ifndef __KVM_HAVE_ARCH_VM_FREE 1638static inline void kvm_arch_free_vm(struct kvm *kvm) 1639{ 1640 __kvm_arch_free_vm(kvm); 1641} 1642#endif 1643 1644#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1645static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1646{ 1647 return -ENOTSUPP; 1648} 1649#else 1650int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1651#endif 1652 1653#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1654static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1655 gfn_t gfn, u64 nr_pages) 1656{ 1657 return -EOPNOTSUPP; 1658} 1659#else 1660int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1661#endif 1662 1663#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1664void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1665void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1666bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1667#else 1668static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1669{ 1670} 1671 1672static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1673{ 1674} 1675 1676static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1677{ 1678 return false; 1679} 1680#endif 1681#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1682void kvm_arch_start_assignment(struct kvm *kvm); 1683void kvm_arch_end_assignment(struct kvm *kvm); 1684bool kvm_arch_has_assigned_device(struct kvm *kvm); 1685#else 1686static inline void kvm_arch_start_assignment(struct kvm *kvm) 1687{ 1688} 1689 1690static inline void kvm_arch_end_assignment(struct kvm *kvm) 1691{ 1692} 1693 1694static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1695{ 1696 return false; 1697} 1698#endif 1699 1700static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1701{ 1702#ifdef __KVM_HAVE_ARCH_WQP 1703 return vcpu->arch.waitp; 1704#else 1705 return &vcpu->wait; 1706#endif 1707} 1708 1709/* 1710 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1711 * true if the vCPU was blocking and was awakened, false otherwise. 1712 */ 1713static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1714{ 1715 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1716} 1717 1718static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1719{ 1720 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1721} 1722 1723#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1724/* 1725 * returns true if the virtual interrupt controller is initialized and 1726 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1727 * controller is dynamically instantiated and this is not always true. 1728 */ 1729bool kvm_arch_intc_initialized(struct kvm *kvm); 1730#else 1731static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1732{ 1733 return true; 1734} 1735#endif 1736 1737#ifdef CONFIG_GUEST_PERF_EVENTS 1738unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1739 1740void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1741void kvm_unregister_perf_callbacks(void); 1742#else 1743static inline void kvm_register_perf_callbacks(void *ign) {} 1744static inline void kvm_unregister_perf_callbacks(void) {} 1745#endif /* CONFIG_GUEST_PERF_EVENTS */ 1746 1747int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1748void kvm_arch_destroy_vm(struct kvm *kvm); 1749void kvm_arch_sync_events(struct kvm *kvm); 1750 1751int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1752 1753struct kvm_irq_ack_notifier { 1754 struct hlist_node link; 1755 unsigned gsi; 1756 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1757}; 1758 1759int kvm_irq_map_gsi(struct kvm *kvm, 1760 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1761int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1762 1763int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1764 bool line_status); 1765int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1766 int irq_source_id, int level, bool line_status); 1767int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1768 struct kvm *kvm, int irq_source_id, 1769 int level, bool line_status); 1770bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1771void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1772void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1773void kvm_register_irq_ack_notifier(struct kvm *kvm, 1774 struct kvm_irq_ack_notifier *kian); 1775void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1776 struct kvm_irq_ack_notifier *kian); 1777int kvm_request_irq_source_id(struct kvm *kvm); 1778void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1779bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1780 1781/* 1782 * Returns a pointer to the memslot if it contains gfn. 1783 * Otherwise returns NULL. 1784 */ 1785static inline struct kvm_memory_slot * 1786try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1787{ 1788 if (!slot) 1789 return NULL; 1790 1791 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1792 return slot; 1793 else 1794 return NULL; 1795} 1796 1797/* 1798 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1799 * 1800 * With "approx" set returns the memslot also when the address falls 1801 * in a hole. In that case one of the memslots bordering the hole is 1802 * returned. 1803 */ 1804static inline struct kvm_memory_slot * 1805search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1806{ 1807 struct kvm_memory_slot *slot; 1808 struct rb_node *node; 1809 int idx = slots->node_idx; 1810 1811 slot = NULL; 1812 for (node = slots->gfn_tree.rb_node; node; ) { 1813 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1814 if (gfn >= slot->base_gfn) { 1815 if (gfn < slot->base_gfn + slot->npages) 1816 return slot; 1817 node = node->rb_right; 1818 } else 1819 node = node->rb_left; 1820 } 1821 1822 return approx ? slot : NULL; 1823} 1824 1825static inline struct kvm_memory_slot * 1826____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1827{ 1828 struct kvm_memory_slot *slot; 1829 1830 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1831 slot = try_get_memslot(slot, gfn); 1832 if (slot) 1833 return slot; 1834 1835 slot = search_memslots(slots, gfn, approx); 1836 if (slot) { 1837 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1838 return slot; 1839 } 1840 1841 return NULL; 1842} 1843 1844/* 1845 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1846 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1847 * because that would bloat other code too much. 1848 */ 1849static inline struct kvm_memory_slot * 1850__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1851{ 1852 return ____gfn_to_memslot(slots, gfn, false); 1853} 1854 1855static inline unsigned long 1856__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1857{ 1858 /* 1859 * The index was checked originally in search_memslots. To avoid 1860 * that a malicious guest builds a Spectre gadget out of e.g. page 1861 * table walks, do not let the processor speculate loads outside 1862 * the guest's registered memslots. 1863 */ 1864 unsigned long offset = gfn - slot->base_gfn; 1865 offset = array_index_nospec(offset, slot->npages); 1866 return slot->userspace_addr + offset * PAGE_SIZE; 1867} 1868 1869static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1870{ 1871 return gfn_to_memslot(kvm, gfn)->id; 1872} 1873 1874static inline gfn_t 1875hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1876{ 1877 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1878 1879 return slot->base_gfn + gfn_offset; 1880} 1881 1882static inline gpa_t gfn_to_gpa(gfn_t gfn) 1883{ 1884 return (gpa_t)gfn << PAGE_SHIFT; 1885} 1886 1887static inline gfn_t gpa_to_gfn(gpa_t gpa) 1888{ 1889 return (gfn_t)(gpa >> PAGE_SHIFT); 1890} 1891 1892static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1893{ 1894 return (hpa_t)pfn << PAGE_SHIFT; 1895} 1896 1897static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1898{ 1899 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1900 1901 return !kvm_is_error_hva(hva); 1902} 1903 1904static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1905{ 1906 lockdep_assert_held(&gpc->lock); 1907 1908 if (!gpc->memslot) 1909 return; 1910 1911 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1912} 1913 1914enum kvm_stat_kind { 1915 KVM_STAT_VM, 1916 KVM_STAT_VCPU, 1917}; 1918 1919struct kvm_stat_data { 1920 struct kvm *kvm; 1921 const struct _kvm_stats_desc *desc; 1922 enum kvm_stat_kind kind; 1923}; 1924 1925struct _kvm_stats_desc { 1926 struct kvm_stats_desc desc; 1927 char name[KVM_STATS_NAME_SIZE]; 1928}; 1929 1930#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1931 .flags = type | unit | base | \ 1932 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1933 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1934 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1935 .exponent = exp, \ 1936 .size = sz, \ 1937 .bucket_size = bsz 1938 1939#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1940 { \ 1941 { \ 1942 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1943 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1944 }, \ 1945 .name = #stat, \ 1946 } 1947#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1948 { \ 1949 { \ 1950 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1951 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1952 }, \ 1953 .name = #stat, \ 1954 } 1955#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1956 { \ 1957 { \ 1958 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1959 .offset = offsetof(struct kvm_vm_stat, stat) \ 1960 }, \ 1961 .name = #stat, \ 1962 } 1963#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1964 { \ 1965 { \ 1966 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1967 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1968 }, \ 1969 .name = #stat, \ 1970 } 1971/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1972#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1973 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1974 1975#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1976 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1977 unit, base, exponent, 1, 0) 1978#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1979 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1980 unit, base, exponent, 1, 0) 1981#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1982 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1983 unit, base, exponent, 1, 0) 1984#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1985 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1986 unit, base, exponent, sz, bsz) 1987#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1988 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1989 unit, base, exponent, sz, 0) 1990 1991/* Cumulative counter, read/write */ 1992#define STATS_DESC_COUNTER(SCOPE, name) \ 1993 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1994 KVM_STATS_BASE_POW10, 0) 1995/* Instantaneous counter, read only */ 1996#define STATS_DESC_ICOUNTER(SCOPE, name) \ 1997 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1998 KVM_STATS_BASE_POW10, 0) 1999/* Peak counter, read/write */ 2000#define STATS_DESC_PCOUNTER(SCOPE, name) \ 2001 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 2002 KVM_STATS_BASE_POW10, 0) 2003 2004/* Instantaneous boolean value, read only */ 2005#define STATS_DESC_IBOOLEAN(SCOPE, name) \ 2006 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2007 KVM_STATS_BASE_POW10, 0) 2008/* Peak (sticky) boolean value, read/write */ 2009#define STATS_DESC_PBOOLEAN(SCOPE, name) \ 2010 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2011 KVM_STATS_BASE_POW10, 0) 2012 2013/* Cumulative time in nanosecond */ 2014#define STATS_DESC_TIME_NSEC(SCOPE, name) \ 2015 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2016 KVM_STATS_BASE_POW10, -9) 2017/* Linear histogram for time in nanosecond */ 2018#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 2019 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2020 KVM_STATS_BASE_POW10, -9, sz, bsz) 2021/* Logarithmic histogram for time in nanosecond */ 2022#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 2023 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2024 KVM_STATS_BASE_POW10, -9, sz) 2025 2026#define KVM_GENERIC_VM_STATS() \ 2027 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 2028 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 2029 2030#define KVM_GENERIC_VCPU_STATS() \ 2031 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 2032 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 2033 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 2034 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 2035 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 2036 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 2037 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 2038 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 2039 HALT_POLL_HIST_COUNT), \ 2040 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 2041 HALT_POLL_HIST_COUNT), \ 2042 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 2043 HALT_POLL_HIST_COUNT), \ 2044 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 2045 2046ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 2047 const struct _kvm_stats_desc *desc, 2048 void *stats, size_t size_stats, 2049 char __user *user_buffer, size_t size, loff_t *offset); 2050 2051/** 2052 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 2053 * statistics data. 2054 * 2055 * @data: start address of the stats data 2056 * @size: the number of bucket of the stats data 2057 * @value: the new value used to update the linear histogram's bucket 2058 * @bucket_size: the size (width) of a bucket 2059 */ 2060static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 2061 u64 value, size_t bucket_size) 2062{ 2063 size_t index = div64_u64(value, bucket_size); 2064 2065 index = min(index, size - 1); 2066 ++data[index]; 2067} 2068 2069/** 2070 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 2071 * statistics data. 2072 * 2073 * @data: start address of the stats data 2074 * @size: the number of bucket of the stats data 2075 * @value: the new value used to update the logarithmic histogram's bucket 2076 */ 2077static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 2078{ 2079 size_t index = fls64(value); 2080 2081 index = min(index, size - 1); 2082 ++data[index]; 2083} 2084 2085#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2086 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2087#define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2088 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2089 2090 2091extern const struct kvm_stats_header kvm_vm_stats_header; 2092extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2093extern const struct kvm_stats_header kvm_vcpu_stats_header; 2094extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2095 2096#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2097static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2098{ 2099 if (unlikely(kvm->mmu_invalidate_in_progress)) 2100 return 1; 2101 /* 2102 * Ensure the read of mmu_invalidate_in_progress happens before 2103 * the read of mmu_invalidate_seq. This interacts with the 2104 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2105 * that the caller either sees the old (non-zero) value of 2106 * mmu_invalidate_in_progress or the new (incremented) value of 2107 * mmu_invalidate_seq. 2108 * 2109 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2110 * than under kvm->mmu_lock, for scalability, so can't rely on 2111 * kvm->mmu_lock to keep things ordered. 2112 */ 2113 smp_rmb(); 2114 if (kvm->mmu_invalidate_seq != mmu_seq) 2115 return 1; 2116 return 0; 2117} 2118 2119static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2120 unsigned long mmu_seq, 2121 gfn_t gfn) 2122{ 2123 lockdep_assert_held(&kvm->mmu_lock); 2124 /* 2125 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2126 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2127 * that might be being invalidated. Note that it may include some false 2128 * positives, due to shortcuts when handing concurrent invalidations. 2129 */ 2130 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2131 /* 2132 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2133 * but before updating the range is a KVM bug. 2134 */ 2135 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2136 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2137 return 1; 2138 2139 if (gfn >= kvm->mmu_invalidate_range_start && 2140 gfn < kvm->mmu_invalidate_range_end) 2141 return 1; 2142 } 2143 2144 if (kvm->mmu_invalidate_seq != mmu_seq) 2145 return 1; 2146 return 0; 2147} 2148 2149/* 2150 * This lockless version of the range-based retry check *must* be paired with a 2151 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2152 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2153 * get false negatives and false positives. 2154 */ 2155static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2156 unsigned long mmu_seq, 2157 gfn_t gfn) 2158{ 2159 /* 2160 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2161 * are always read from memory, e.g. so that checking for retry in a 2162 * loop won't result in an infinite retry loop. Don't force loads for 2163 * start+end, as the key to avoiding infinite retry loops is observing 2164 * the 1=>0 transition of in-progress, i.e. getting false negatives 2165 * due to stale start+end values is acceptable. 2166 */ 2167 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2168 gfn >= kvm->mmu_invalidate_range_start && 2169 gfn < kvm->mmu_invalidate_range_end) 2170 return true; 2171 2172 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2173} 2174#endif 2175 2176#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2177 2178#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2179 2180bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2181int kvm_set_irq_routing(struct kvm *kvm, 2182 const struct kvm_irq_routing_entry *entries, 2183 unsigned nr, 2184 unsigned flags); 2185int kvm_init_irq_routing(struct kvm *kvm); 2186int kvm_set_routing_entry(struct kvm *kvm, 2187 struct kvm_kernel_irq_routing_entry *e, 2188 const struct kvm_irq_routing_entry *ue); 2189void kvm_free_irq_routing(struct kvm *kvm); 2190 2191#else 2192 2193static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2194 2195static inline int kvm_init_irq_routing(struct kvm *kvm) 2196{ 2197 return 0; 2198} 2199 2200#endif 2201 2202int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2203 2204void kvm_eventfd_init(struct kvm *kvm); 2205int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2206 2207#ifdef CONFIG_HAVE_KVM_IRQCHIP 2208int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2209void kvm_irqfd_release(struct kvm *kvm); 2210bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2211 unsigned int irqchip, 2212 unsigned int pin); 2213void kvm_irq_routing_update(struct kvm *); 2214#else 2215static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2216{ 2217 return -EINVAL; 2218} 2219 2220static inline void kvm_irqfd_release(struct kvm *kvm) {} 2221 2222static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2223 unsigned int irqchip, 2224 unsigned int pin) 2225{ 2226 return false; 2227} 2228#endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2229 2230void kvm_arch_irq_routing_update(struct kvm *kvm); 2231 2232static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2233{ 2234 /* 2235 * Ensure the rest of the request is published to kvm_check_request's 2236 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2237 */ 2238 smp_wmb(); 2239 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2240} 2241 2242static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2243{ 2244 /* 2245 * Request that don't require vCPU action should never be logged in 2246 * vcpu->requests. The vCPU won't clear the request, so it will stay 2247 * logged indefinitely and prevent the vCPU from entering the guest. 2248 */ 2249 BUILD_BUG_ON(!__builtin_constant_p(req) || 2250 (req & KVM_REQUEST_NO_ACTION)); 2251 2252 __kvm_make_request(req, vcpu); 2253} 2254 2255static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2256{ 2257 return READ_ONCE(vcpu->requests); 2258} 2259 2260static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2261{ 2262 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2263} 2264 2265static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2266{ 2267 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2268} 2269 2270static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2271{ 2272 if (kvm_test_request(req, vcpu)) { 2273 kvm_clear_request(req, vcpu); 2274 2275 /* 2276 * Ensure the rest of the request is visible to kvm_check_request's 2277 * caller. Paired with the smp_wmb in kvm_make_request. 2278 */ 2279 smp_mb__after_atomic(); 2280 return true; 2281 } else { 2282 return false; 2283 } 2284} 2285 2286#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2287extern bool kvm_rebooting; 2288#endif 2289 2290extern unsigned int halt_poll_ns; 2291extern unsigned int halt_poll_ns_grow; 2292extern unsigned int halt_poll_ns_grow_start; 2293extern unsigned int halt_poll_ns_shrink; 2294 2295struct kvm_device { 2296 const struct kvm_device_ops *ops; 2297 struct kvm *kvm; 2298 void *private; 2299 struct list_head vm_node; 2300}; 2301 2302/* create, destroy, and name are mandatory */ 2303struct kvm_device_ops { 2304 const char *name; 2305 2306 /* 2307 * create is called holding kvm->lock and any operations not suitable 2308 * to do while holding the lock should be deferred to init (see 2309 * below). 2310 */ 2311 int (*create)(struct kvm_device *dev, u32 type); 2312 2313 /* 2314 * init is called after create if create is successful and is called 2315 * outside of holding kvm->lock. 2316 */ 2317 void (*init)(struct kvm_device *dev); 2318 2319 /* 2320 * Destroy is responsible for freeing dev. 2321 * 2322 * Destroy may be called before or after destructors are called 2323 * on emulated I/O regions, depending on whether a reference is 2324 * held by a vcpu or other kvm component that gets destroyed 2325 * after the emulated I/O. 2326 */ 2327 void (*destroy)(struct kvm_device *dev); 2328 2329 /* 2330 * Release is an alternative method to free the device. It is 2331 * called when the device file descriptor is closed. Once 2332 * release is called, the destroy method will not be called 2333 * anymore as the device is removed from the device list of 2334 * the VM. kvm->lock is held. 2335 */ 2336 void (*release)(struct kvm_device *dev); 2337 2338 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2339 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2340 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2341 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2342 unsigned long arg); 2343 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2344}; 2345 2346struct kvm_device *kvm_device_from_filp(struct file *filp); 2347int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2348void kvm_unregister_device_ops(u32 type); 2349 2350extern struct kvm_device_ops kvm_mpic_ops; 2351extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2352extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2353 2354#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2355 2356static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2357{ 2358 vcpu->spin_loop.in_spin_loop = val; 2359} 2360static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2361{ 2362 vcpu->spin_loop.dy_eligible = val; 2363} 2364 2365#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2366 2367static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2368{ 2369} 2370 2371static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2372{ 2373} 2374#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2375 2376static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2377{ 2378 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2379 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2380} 2381 2382struct kvm_vcpu *kvm_get_running_vcpu(void); 2383struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2384 2385#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2386bool kvm_arch_has_irq_bypass(void); 2387int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2388 struct irq_bypass_producer *); 2389void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2390 struct irq_bypass_producer *); 2391void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2392void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2393int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2394 uint32_t guest_irq, bool set); 2395bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2396 struct kvm_kernel_irq_routing_entry *); 2397#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2398 2399#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2400/* If we wakeup during the poll time, was it a sucessful poll? */ 2401static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2402{ 2403 return vcpu->valid_wakeup; 2404} 2405 2406#else 2407static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2408{ 2409 return true; 2410} 2411#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2412 2413#ifdef CONFIG_HAVE_KVM_NO_POLL 2414/* Callback that tells if we must not poll */ 2415bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2416#else 2417static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2418{ 2419 return false; 2420} 2421#endif /* CONFIG_HAVE_KVM_NO_POLL */ 2422 2423#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2424long kvm_arch_vcpu_async_ioctl(struct file *filp, 2425 unsigned int ioctl, unsigned long arg); 2426#else 2427static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2428 unsigned int ioctl, 2429 unsigned long arg) 2430{ 2431 return -ENOIOCTLCMD; 2432} 2433#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2434 2435void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2436 2437#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2438int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2439#else 2440static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2441{ 2442 return 0; 2443} 2444#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2445 2446#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2447static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2448{ 2449 vcpu->run->exit_reason = KVM_EXIT_INTR; 2450 vcpu->stat.signal_exits++; 2451} 2452#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2453 2454/* 2455 * If more than one page is being (un)accounted, @virt must be the address of 2456 * the first page of a block of pages what were allocated together (i.e 2457 * accounted together). 2458 * 2459 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2460 * is thread-safe. 2461 */ 2462static inline void kvm_account_pgtable_pages(void *virt, int nr) 2463{ 2464 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2465} 2466 2467/* 2468 * This defines how many reserved entries we want to keep before we 2469 * kick the vcpu to the userspace to avoid dirty ring full. This 2470 * value can be tuned to higher if e.g. PML is enabled on the host. 2471 */ 2472#define KVM_DIRTY_RING_RSVD_ENTRIES 64 2473 2474/* Max number of entries allowed for each kvm dirty ring */ 2475#define KVM_DIRTY_RING_MAX_ENTRIES 65536 2476 2477static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2478 gpa_t gpa, gpa_t size, 2479 bool is_write, bool is_exec, 2480 bool is_private) 2481{ 2482 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2483 vcpu->run->memory_fault.gpa = gpa; 2484 vcpu->run->memory_fault.size = size; 2485 2486 /* RWX flags are not (yet) defined or communicated to userspace. */ 2487 vcpu->run->memory_fault.flags = 0; 2488 if (is_private) 2489 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2490} 2491 2492#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2493static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2494{ 2495 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2496} 2497 2498bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2499 unsigned long mask, unsigned long attrs); 2500bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2501 struct kvm_gfn_range *range); 2502bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2503 struct kvm_gfn_range *range); 2504 2505static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2506{ 2507 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2508 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2509} 2510#else 2511static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2512{ 2513 return false; 2514} 2515#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2516 2517#ifdef CONFIG_KVM_PRIVATE_MEM 2518int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2519 gfn_t gfn, kvm_pfn_t *pfn, struct page **page, 2520 int *max_order); 2521#else 2522static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2523 struct kvm_memory_slot *slot, gfn_t gfn, 2524 kvm_pfn_t *pfn, struct page **page, 2525 int *max_order) 2526{ 2527 KVM_BUG_ON(1, kvm); 2528 return -EIO; 2529} 2530#endif /* CONFIG_KVM_PRIVATE_MEM */ 2531 2532#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2533int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2534#endif 2535 2536#ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM 2537/** 2538 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2539 * 2540 * @kvm: KVM instance 2541 * @gfn: starting GFN to be populated 2542 * @src: userspace-provided buffer containing data to copy into GFN range 2543 * (passed to @post_populate, and incremented on each iteration 2544 * if not NULL) 2545 * @npages: number of pages to copy from userspace-buffer 2546 * @post_populate: callback to issue for each gmem page that backs the GPA 2547 * range 2548 * @opaque: opaque data to pass to @post_populate callback 2549 * 2550 * This is primarily intended for cases where a gmem-backed GPA range needs 2551 * to be initialized with userspace-provided data prior to being mapped into 2552 * the guest as a private page. This should be called with the slots->lock 2553 * held so that caller-enforced invariants regarding the expected memory 2554 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2555 * 2556 * Returns the number of pages that were populated. 2557 */ 2558typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2559 void __user *src, int order, void *opaque); 2560 2561long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2562 kvm_gmem_populate_cb post_populate, void *opaque); 2563#endif 2564 2565#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2566void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2567#endif 2568 2569#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2570long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2571 struct kvm_pre_fault_memory *range); 2572#endif 2573 2574#endif