at v6.14 50 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * 4 * Copyright (c) 2011, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 12#ifndef _HYPERV_H 13#define _HYPERV_H 14 15#include <uapi/linux/hyperv.h> 16 17#include <linux/mm.h> 18#include <linux/types.h> 19#include <linux/scatterlist.h> 20#include <linux/list.h> 21#include <linux/timer.h> 22#include <linux/completion.h> 23#include <linux/device.h> 24#include <linux/mod_devicetable.h> 25#include <linux/interrupt.h> 26#include <linux/reciprocal_div.h> 27#include <hyperv/hvhdk.h> 28 29#define MAX_PAGE_BUFFER_COUNT 32 30#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 31 32#pragma pack(push, 1) 33 34/* 35 * Types for GPADL, decides is how GPADL header is created. 36 * 37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the 38 * same as HV_HYP_PAGE_SIZE. 39 * 40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers 41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put 42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each 43 * HV_HYP_PAGE will be different between different types of GPADL, for example 44 * if PAGE_SIZE is 64K: 45 * 46 * BUFFER: 47 * 48 * gva: |-- 64k --|-- 64k --| ... | 49 * gpa: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | 50 * index: 0 1 2 15 16 17 18 .. 31 32 ... 51 * | | ... | | | ... | ... 52 * v V V V V V 53 * gpadl: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... | 54 * index: 0 1 2 ... 15 16 17 18 .. 31 32 ... 55 * 56 * RING: 57 * 58 * | header | data | header | data | 59 * gva: |-- 64k --|-- 64k --| ... |-- 64k --|-- 64k --| ... | 60 * gpa: | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... | 61 * index: 0 1 16 17 18 31 ... n n+1 n+16 ... 2n 62 * | / / / | / / 63 * | / / / | / / 64 * | / / ... / ... | / ... / 65 * | / / / | / / 66 * | / / / | / / 67 * V V V V V V v 68 * gpadl: | 4k | 4k | ... | ... | 4k | 4k | ... | 69 * index: 0 1 2 ... 16 ... n-15 n-14 n-13 ... 2n-30 70 */ 71enum hv_gpadl_type { 72 HV_GPADL_BUFFER, 73 HV_GPADL_RING 74}; 75 76/* Single-page buffer */ 77struct hv_page_buffer { 78 u32 len; 79 u32 offset; 80 u64 pfn; 81}; 82 83/* Multiple-page buffer */ 84struct hv_multipage_buffer { 85 /* Length and Offset determines the # of pfns in the array */ 86 u32 len; 87 u32 offset; 88 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 89}; 90 91/* 92 * Multiple-page buffer array; the pfn array is variable size: 93 * The number of entries in the PFN array is determined by 94 * "len" and "offset". 95 */ 96struct hv_mpb_array { 97 /* Length and Offset determines the # of pfns in the array */ 98 u32 len; 99 u32 offset; 100 u64 pfn_array[]; 101}; 102 103/* 0x18 includes the proprietary packet header */ 104#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 105 (sizeof(struct hv_page_buffer) * \ 106 MAX_PAGE_BUFFER_COUNT)) 107#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 108 sizeof(struct hv_multipage_buffer)) 109 110 111#pragma pack(pop) 112 113struct hv_ring_buffer { 114 /* Offset in bytes from the start of ring data below */ 115 u32 write_index; 116 117 /* Offset in bytes from the start of ring data below */ 118 u32 read_index; 119 120 u32 interrupt_mask; 121 122 /* 123 * WS2012/Win8 and later versions of Hyper-V implement interrupt 124 * driven flow management. The feature bit feat_pending_send_sz 125 * is set by the host on the host->guest ring buffer, and by the 126 * guest on the guest->host ring buffer. 127 * 128 * The meaning of the feature bit is a bit complex in that it has 129 * semantics that apply to both ring buffers. If the guest sets 130 * the feature bit in the guest->host ring buffer, the guest is 131 * telling the host that: 132 * 1) It will set the pending_send_sz field in the guest->host ring 133 * buffer when it is waiting for space to become available, and 134 * 2) It will read the pending_send_sz field in the host->guest 135 * ring buffer and interrupt the host when it frees enough space 136 * 137 * Similarly, if the host sets the feature bit in the host->guest 138 * ring buffer, the host is telling the guest that: 139 * 1) It will set the pending_send_sz field in the host->guest ring 140 * buffer when it is waiting for space to become available, and 141 * 2) It will read the pending_send_sz field in the guest->host 142 * ring buffer and interrupt the guest when it frees enough space 143 * 144 * If either the guest or host does not set the feature bit that it 145 * owns, that guest or host must do polling if it encounters a full 146 * ring buffer, and not signal the other end with an interrupt. 147 */ 148 u32 pending_send_sz; 149 u32 reserved1[12]; 150 union { 151 struct { 152 u32 feat_pending_send_sz:1; 153 }; 154 u32 value; 155 } feature_bits; 156 157 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 158 u8 reserved2[PAGE_SIZE - 68]; 159 160 /* 161 * Ring data starts here + RingDataStartOffset 162 * !!! DO NOT place any fields below this !!! 163 */ 164 u8 buffer[]; 165} __packed; 166 167 168/* 169 * If the requested ring buffer size is at least 8 times the size of the 170 * header, steal space from the ring buffer for the header. Otherwise, add 171 * space for the header so that is doesn't take too much of the ring buffer 172 * space. 173 * 174 * The factor of 8 is somewhat arbitrary. The goal is to prevent adding a 175 * relatively small header (4 Kbytes on x86) to a large-ish power-of-2 ring 176 * buffer size (such as 128 Kbytes) and so end up making a nearly twice as 177 * large allocation that will be almost half wasted. As a contrasting example, 178 * on ARM64 with 64 Kbyte page size, we don't want to take 64 Kbytes for the 179 * header from a 128 Kbyte allocation, leaving only 64 Kbytes for the ring. 180 * In this latter case, we must add 64 Kbytes for the header and not worry 181 * about what's wasted. 182 */ 183#define VMBUS_HEADER_ADJ(payload_sz) \ 184 ((payload_sz) >= 8 * sizeof(struct hv_ring_buffer) ? \ 185 0 : sizeof(struct hv_ring_buffer)) 186 187/* Calculate the proper size of a ringbuffer, it must be page-aligned */ 188#define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(VMBUS_HEADER_ADJ(payload_sz) + \ 189 (payload_sz)) 190 191struct hv_ring_buffer_info { 192 struct hv_ring_buffer *ring_buffer; 193 u32 ring_size; /* Include the shared header */ 194 struct reciprocal_value ring_size_div10_reciprocal; 195 spinlock_t ring_lock; 196 197 u32 ring_datasize; /* < ring_size */ 198 u32 priv_read_index; 199 /* 200 * The ring buffer mutex lock. This lock prevents the ring buffer from 201 * being freed while the ring buffer is being accessed. 202 */ 203 struct mutex ring_buffer_mutex; 204 205 /* Buffer that holds a copy of an incoming host packet */ 206 void *pkt_buffer; 207 u32 pkt_buffer_size; 208}; 209 210 211static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 212{ 213 u32 read_loc, write_loc, dsize, read; 214 215 dsize = rbi->ring_datasize; 216 read_loc = rbi->ring_buffer->read_index; 217 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 218 219 read = write_loc >= read_loc ? (write_loc - read_loc) : 220 (dsize - read_loc) + write_loc; 221 222 return read; 223} 224 225static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 226{ 227 u32 read_loc, write_loc, dsize, write; 228 229 dsize = rbi->ring_datasize; 230 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 231 write_loc = rbi->ring_buffer->write_index; 232 233 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 234 read_loc - write_loc; 235 return write; 236} 237 238static inline u32 hv_get_avail_to_write_percent( 239 const struct hv_ring_buffer_info *rbi) 240{ 241 u32 avail_write = hv_get_bytes_to_write(rbi); 242 243 return reciprocal_divide( 244 (avail_write << 3) + (avail_write << 1), 245 rbi->ring_size_div10_reciprocal); 246} 247 248/* 249 * VMBUS version is 32 bit entity broken up into 250 * two 16 bit quantities: major_number. minor_number. 251 * 252 * 0 . 13 (Windows Server 2008) 253 * 1 . 1 (Windows 7, WS2008 R2) 254 * 2 . 4 (Windows 8, WS2012) 255 * 3 . 0 (Windows 8.1, WS2012 R2) 256 * 4 . 0 (Windows 10) 257 * 4 . 1 (Windows 10 RS3) 258 * 5 . 0 (Newer Windows 10) 259 * 5 . 1 (Windows 10 RS4) 260 * 5 . 2 (Windows Server 2019, RS5) 261 * 5 . 3 (Windows Server 2022) 262 * 263 * The WS2008 and WIN7 versions are listed here for 264 * completeness but are no longer supported in the 265 * Linux kernel. 266 */ 267 268#define VERSION_WS2008 ((0 << 16) | (13)) 269#define VERSION_WIN7 ((1 << 16) | (1)) 270#define VERSION_WIN8 ((2 << 16) | (4)) 271#define VERSION_WIN8_1 ((3 << 16) | (0)) 272#define VERSION_WIN10 ((4 << 16) | (0)) 273#define VERSION_WIN10_V4_1 ((4 << 16) | (1)) 274#define VERSION_WIN10_V5 ((5 << 16) | (0)) 275#define VERSION_WIN10_V5_1 ((5 << 16) | (1)) 276#define VERSION_WIN10_V5_2 ((5 << 16) | (2)) 277#define VERSION_WIN10_V5_3 ((5 << 16) | (3)) 278 279/* Make maximum size of pipe payload of 16K */ 280#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 281 282/* Define PipeMode values. */ 283#define VMBUS_PIPE_TYPE_BYTE 0x00000000 284#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 285 286/* The size of the user defined data buffer for non-pipe offers. */ 287#define MAX_USER_DEFINED_BYTES 120 288 289/* The size of the user defined data buffer for pipe offers. */ 290#define MAX_PIPE_USER_DEFINED_BYTES 116 291 292/* 293 * At the center of the Channel Management library is the Channel Offer. This 294 * struct contains the fundamental information about an offer. 295 */ 296struct vmbus_channel_offer { 297 guid_t if_type; 298 guid_t if_instance; 299 300 /* 301 * These two fields are not currently used. 302 */ 303 u64 reserved1; 304 u64 reserved2; 305 306 u16 chn_flags; 307 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 308 309 union { 310 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 311 struct { 312 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 313 } std; 314 315 /* 316 * Pipes: 317 * The following structure is an integrated pipe protocol, which 318 * is implemented on top of standard user-defined data. Pipe 319 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 320 * use. 321 */ 322 struct { 323 u32 pipe_mode; 324 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 325 } pipe; 326 } u; 327 /* 328 * The sub_channel_index is defined in Win8: a value of zero means a 329 * primary channel and a value of non-zero means a sub-channel. 330 * 331 * Before Win8, the field is reserved, meaning it's always zero. 332 */ 333 u16 sub_channel_index; 334 u16 reserved3; 335} __packed; 336 337/* Server Flags */ 338#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 339#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 340#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 341#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 342#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 343#define VMBUS_CHANNEL_PARENT_OFFER 0x200 344#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 345#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 346 347struct vmpacket_descriptor { 348 u16 type; 349 u16 offset8; 350 u16 len8; 351 u16 flags; 352 u64 trans_id; 353} __packed; 354 355struct vmpacket_header { 356 u32 prev_pkt_start_offset; 357 struct vmpacket_descriptor descriptor; 358} __packed; 359 360struct vmtransfer_page_range { 361 u32 byte_count; 362 u32 byte_offset; 363} __packed; 364 365struct vmtransfer_page_packet_header { 366 struct vmpacket_descriptor d; 367 u16 xfer_pageset_id; 368 u8 sender_owns_set; 369 u8 reserved; 370 u32 range_cnt; 371 struct vmtransfer_page_range ranges[]; 372} __packed; 373 374struct vmgpadl_packet_header { 375 struct vmpacket_descriptor d; 376 u32 gpadl; 377 u32 reserved; 378} __packed; 379 380struct vmadd_remove_transfer_page_set { 381 struct vmpacket_descriptor d; 382 u32 gpadl; 383 u16 xfer_pageset_id; 384 u16 reserved; 385} __packed; 386 387/* 388 * This structure defines a range in guest physical space that can be made to 389 * look virtually contiguous. 390 */ 391struct gpa_range { 392 u32 byte_count; 393 u32 byte_offset; 394 u64 pfn_array[]; 395}; 396 397/* 398 * This is the format for an Establish Gpadl packet, which contains a handle by 399 * which this GPADL will be known and a set of GPA ranges associated with it. 400 * This can be converted to a MDL by the guest OS. If there are multiple GPA 401 * ranges, then the resulting MDL will be "chained," representing multiple VA 402 * ranges. 403 */ 404struct vmestablish_gpadl { 405 struct vmpacket_descriptor d; 406 u32 gpadl; 407 u32 range_cnt; 408 struct gpa_range range[1]; 409} __packed; 410 411/* 412 * This is the format for a Teardown Gpadl packet, which indicates that the 413 * GPADL handle in the Establish Gpadl packet will never be referenced again. 414 */ 415struct vmteardown_gpadl { 416 struct vmpacket_descriptor d; 417 u32 gpadl; 418 u32 reserved; /* for alignment to a 8-byte boundary */ 419} __packed; 420 421/* 422 * This is the format for a GPA-Direct packet, which contains a set of GPA 423 * ranges, in addition to commands and/or data. 424 */ 425struct vmdata_gpa_direct { 426 struct vmpacket_descriptor d; 427 u32 reserved; 428 u32 range_cnt; 429 struct gpa_range range[1]; 430} __packed; 431 432/* This is the format for a Additional Data Packet. */ 433struct vmadditional_data { 434 struct vmpacket_descriptor d; 435 u64 total_bytes; 436 u32 offset; 437 u32 byte_cnt; 438 unsigned char data[1]; 439} __packed; 440 441union vmpacket_largest_possible_header { 442 struct vmpacket_descriptor simple_hdr; 443 struct vmtransfer_page_packet_header xfer_page_hdr; 444 struct vmgpadl_packet_header gpadl_hdr; 445 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 446 struct vmestablish_gpadl establish_gpadl_hdr; 447 struct vmteardown_gpadl teardown_gpadl_hdr; 448 struct vmdata_gpa_direct data_gpa_direct_hdr; 449}; 450 451#define VMPACKET_DATA_START_ADDRESS(__packet) \ 452 (void *)(((unsigned char *)__packet) + \ 453 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 454 455#define VMPACKET_DATA_LENGTH(__packet) \ 456 ((((struct vmpacket_descriptor)__packet)->len8 - \ 457 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 458 459#define VMPACKET_TRANSFER_MODE(__packet) \ 460 (((struct IMPACT)__packet)->type) 461 462enum vmbus_packet_type { 463 VM_PKT_INVALID = 0x0, 464 VM_PKT_SYNCH = 0x1, 465 VM_PKT_ADD_XFER_PAGESET = 0x2, 466 VM_PKT_RM_XFER_PAGESET = 0x3, 467 VM_PKT_ESTABLISH_GPADL = 0x4, 468 VM_PKT_TEARDOWN_GPADL = 0x5, 469 VM_PKT_DATA_INBAND = 0x6, 470 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 471 VM_PKT_DATA_USING_GPADL = 0x8, 472 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 473 VM_PKT_CANCEL_REQUEST = 0xa, 474 VM_PKT_COMP = 0xb, 475 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 476 VM_PKT_ADDITIONAL_DATA = 0xd 477}; 478 479#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 480 481 482/* Version 1 messages */ 483enum vmbus_channel_message_type { 484 CHANNELMSG_INVALID = 0, 485 CHANNELMSG_OFFERCHANNEL = 1, 486 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 487 CHANNELMSG_REQUESTOFFERS = 3, 488 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 489 CHANNELMSG_OPENCHANNEL = 5, 490 CHANNELMSG_OPENCHANNEL_RESULT = 6, 491 CHANNELMSG_CLOSECHANNEL = 7, 492 CHANNELMSG_GPADL_HEADER = 8, 493 CHANNELMSG_GPADL_BODY = 9, 494 CHANNELMSG_GPADL_CREATED = 10, 495 CHANNELMSG_GPADL_TEARDOWN = 11, 496 CHANNELMSG_GPADL_TORNDOWN = 12, 497 CHANNELMSG_RELID_RELEASED = 13, 498 CHANNELMSG_INITIATE_CONTACT = 14, 499 CHANNELMSG_VERSION_RESPONSE = 15, 500 CHANNELMSG_UNLOAD = 16, 501 CHANNELMSG_UNLOAD_RESPONSE = 17, 502 CHANNELMSG_18 = 18, 503 CHANNELMSG_19 = 19, 504 CHANNELMSG_20 = 20, 505 CHANNELMSG_TL_CONNECT_REQUEST = 21, 506 CHANNELMSG_MODIFYCHANNEL = 22, 507 CHANNELMSG_TL_CONNECT_RESULT = 23, 508 CHANNELMSG_MODIFYCHANNEL_RESPONSE = 24, 509 CHANNELMSG_COUNT 510}; 511 512/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */ 513#define INVALID_RELID U32_MAX 514 515struct vmbus_channel_message_header { 516 enum vmbus_channel_message_type msgtype; 517 u32 padding; 518} __packed; 519 520/* Query VMBus Version parameters */ 521struct vmbus_channel_query_vmbus_version { 522 struct vmbus_channel_message_header header; 523 u32 version; 524} __packed; 525 526/* VMBus Version Supported parameters */ 527struct vmbus_channel_version_supported { 528 struct vmbus_channel_message_header header; 529 u8 version_supported; 530} __packed; 531 532/* Offer Channel parameters */ 533struct vmbus_channel_offer_channel { 534 struct vmbus_channel_message_header header; 535 struct vmbus_channel_offer offer; 536 u32 child_relid; 537 u8 monitorid; 538 /* 539 * win7 and beyond splits this field into a bit field. 540 */ 541 u8 monitor_allocated:1; 542 u8 reserved:7; 543 /* 544 * These are new fields added in win7 and later. 545 * Do not access these fields without checking the 546 * negotiated protocol. 547 * 548 * If "is_dedicated_interrupt" is set, we must not set the 549 * associated bit in the channel bitmap while sending the 550 * interrupt to the host. 551 * 552 * connection_id is to be used in signaling the host. 553 */ 554 u16 is_dedicated_interrupt:1; 555 u16 reserved1:15; 556 u32 connection_id; 557} __packed; 558 559/* Rescind Offer parameters */ 560struct vmbus_channel_rescind_offer { 561 struct vmbus_channel_message_header header; 562 u32 child_relid; 563} __packed; 564 565/* 566 * Request Offer -- no parameters, SynIC message contains the partition ID 567 * Set Snoop -- no parameters, SynIC message contains the partition ID 568 * Clear Snoop -- no parameters, SynIC message contains the partition ID 569 * All Offers Delivered -- no parameters, SynIC message contains the partition 570 * ID 571 * Flush Client -- no parameters, SynIC message contains the partition ID 572 */ 573 574/* Open Channel parameters */ 575struct vmbus_channel_open_channel { 576 struct vmbus_channel_message_header header; 577 578 /* Identifies the specific VMBus channel that is being opened. */ 579 u32 child_relid; 580 581 /* ID making a particular open request at a channel offer unique. */ 582 u32 openid; 583 584 /* GPADL for the channel's ring buffer. */ 585 u32 ringbuffer_gpadlhandle; 586 587 /* 588 * Starting with win8, this field will be used to specify 589 * the target virtual processor on which to deliver the interrupt for 590 * the host to guest communication. 591 * Prior to win8, incoming channel interrupts would only 592 * be delivered on cpu 0. Setting this value to 0 would 593 * preserve the earlier behavior. 594 */ 595 u32 target_vp; 596 597 /* 598 * The upstream ring buffer begins at offset zero in the memory 599 * described by RingBufferGpadlHandle. The downstream ring buffer 600 * follows it at this offset (in pages). 601 */ 602 u32 downstream_ringbuffer_pageoffset; 603 604 /* User-specific data to be passed along to the server endpoint. */ 605 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 606} __packed; 607 608/* Open Channel Result parameters */ 609struct vmbus_channel_open_result { 610 struct vmbus_channel_message_header header; 611 u32 child_relid; 612 u32 openid; 613 u32 status; 614} __packed; 615 616/* Modify Channel Result parameters */ 617struct vmbus_channel_modifychannel_response { 618 struct vmbus_channel_message_header header; 619 u32 child_relid; 620 u32 status; 621} __packed; 622 623/* Close channel parameters; */ 624struct vmbus_channel_close_channel { 625 struct vmbus_channel_message_header header; 626 u32 child_relid; 627} __packed; 628 629/* Channel Message GPADL */ 630#define GPADL_TYPE_RING_BUFFER 1 631#define GPADL_TYPE_SERVER_SAVE_AREA 2 632#define GPADL_TYPE_TRANSACTION 8 633 634/* 635 * The number of PFNs in a GPADL message is defined by the number of 636 * pages that would be spanned by ByteCount and ByteOffset. If the 637 * implied number of PFNs won't fit in this packet, there will be a 638 * follow-up packet that contains more. 639 */ 640struct vmbus_channel_gpadl_header { 641 struct vmbus_channel_message_header header; 642 u32 child_relid; 643 u32 gpadl; 644 u16 range_buflen; 645 u16 rangecount; 646 struct gpa_range range[]; 647} __packed; 648 649/* This is the followup packet that contains more PFNs. */ 650struct vmbus_channel_gpadl_body { 651 struct vmbus_channel_message_header header; 652 u32 msgnumber; 653 u32 gpadl; 654 u64 pfn[]; 655} __packed; 656 657struct vmbus_channel_gpadl_created { 658 struct vmbus_channel_message_header header; 659 u32 child_relid; 660 u32 gpadl; 661 u32 creation_status; 662} __packed; 663 664struct vmbus_channel_gpadl_teardown { 665 struct vmbus_channel_message_header header; 666 u32 child_relid; 667 u32 gpadl; 668} __packed; 669 670struct vmbus_channel_gpadl_torndown { 671 struct vmbus_channel_message_header header; 672 u32 gpadl; 673} __packed; 674 675struct vmbus_channel_relid_released { 676 struct vmbus_channel_message_header header; 677 u32 child_relid; 678} __packed; 679 680struct vmbus_channel_initiate_contact { 681 struct vmbus_channel_message_header header; 682 u32 vmbus_version_requested; 683 u32 target_vcpu; /* The VCPU the host should respond to */ 684 union { 685 u64 interrupt_page; 686 struct { 687 u8 msg_sint; 688 u8 msg_vtl; 689 u8 reserved[6]; 690 }; 691 }; 692 u64 monitor_page1; 693 u64 monitor_page2; 694} __packed; 695 696/* Hyper-V socket: guest's connect()-ing to host */ 697struct vmbus_channel_tl_connect_request { 698 struct vmbus_channel_message_header header; 699 guid_t guest_endpoint_id; 700 guid_t host_service_id; 701} __packed; 702 703/* Modify Channel parameters, cf. vmbus_send_modifychannel() */ 704struct vmbus_channel_modifychannel { 705 struct vmbus_channel_message_header header; 706 u32 child_relid; 707 u32 target_vp; 708} __packed; 709 710struct vmbus_channel_version_response { 711 struct vmbus_channel_message_header header; 712 u8 version_supported; 713 714 u8 connection_state; 715 u16 padding; 716 717 /* 718 * On new hosts that support VMBus protocol 5.0, we must use 719 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, 720 * and for subsequent messages, we must use the Message Connection ID 721 * field in the host-returned Version Response Message. 722 * 723 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). 724 */ 725 u32 msg_conn_id; 726} __packed; 727 728enum vmbus_channel_state { 729 CHANNEL_OFFER_STATE, 730 CHANNEL_OPENING_STATE, 731 CHANNEL_OPEN_STATE, 732 CHANNEL_OPENED_STATE, 733}; 734 735/* 736 * Represents each channel msg on the vmbus connection This is a 737 * variable-size data structure depending on the msg type itself 738 */ 739struct vmbus_channel_msginfo { 740 /* Bookkeeping stuff */ 741 struct list_head msglistentry; 742 743 /* So far, this is only used to handle gpadl body message */ 744 struct list_head submsglist; 745 746 /* Synchronize the request/response if needed */ 747 struct completion waitevent; 748 struct vmbus_channel *waiting_channel; 749 union { 750 struct vmbus_channel_version_supported version_supported; 751 struct vmbus_channel_open_result open_result; 752 struct vmbus_channel_gpadl_torndown gpadl_torndown; 753 struct vmbus_channel_gpadl_created gpadl_created; 754 struct vmbus_channel_version_response version_response; 755 struct vmbus_channel_modifychannel_response modify_response; 756 } response; 757 758 u32 msgsize; 759 /* 760 * The channel message that goes out on the "wire". 761 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 762 */ 763 unsigned char msg[]; 764}; 765 766struct vmbus_close_msg { 767 struct vmbus_channel_msginfo info; 768 struct vmbus_channel_close_channel msg; 769}; 770 771enum vmbus_device_type { 772 HV_IDE = 0, 773 HV_SCSI, 774 HV_FC, 775 HV_NIC, 776 HV_ND, 777 HV_PCIE, 778 HV_FB, 779 HV_KBD, 780 HV_MOUSE, 781 HV_KVP, 782 HV_TS, 783 HV_HB, 784 HV_SHUTDOWN, 785 HV_FCOPY, 786 HV_BACKUP, 787 HV_DM, 788 HV_UNKNOWN, 789}; 790 791/* 792 * Provides request ids for VMBus. Encapsulates guest memory 793 * addresses and stores the next available slot in req_arr 794 * to generate new ids in constant time. 795 */ 796struct vmbus_requestor { 797 u64 *req_arr; 798 unsigned long *req_bitmap; /* is a given slot available? */ 799 u32 size; 800 u64 next_request_id; 801 spinlock_t req_lock; /* provides atomicity */ 802}; 803 804#define VMBUS_NO_RQSTOR U64_MAX 805#define VMBUS_RQST_ERROR (U64_MAX - 1) 806#define VMBUS_RQST_ADDR_ANY U64_MAX 807/* NetVSC-specific */ 808#define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2) 809/* StorVSC-specific */ 810#define VMBUS_RQST_INIT (U64_MAX - 2) 811#define VMBUS_RQST_RESET (U64_MAX - 3) 812 813struct vmbus_device { 814 /* preferred ring buffer size in KB, 0 means no preferred size for this device */ 815 size_t pref_ring_size; 816 u16 dev_type; 817 guid_t guid; 818 bool perf_device; 819 bool allowed_in_isolated; 820}; 821 822#define VMBUS_DEFAULT_MAX_PKT_SIZE 4096 823 824struct vmbus_gpadl { 825 u32 gpadl_handle; 826 u32 size; 827 void *buffer; 828 bool decrypted; 829}; 830 831struct vmbus_channel { 832 struct list_head listentry; 833 834 struct hv_device *device_obj; 835 836 enum vmbus_channel_state state; 837 838 struct vmbus_channel_offer_channel offermsg; 839 /* 840 * These are based on the OfferMsg.MonitorId. 841 * Save it here for easy access. 842 */ 843 u8 monitor_grp; 844 u8 monitor_bit; 845 846 bool rescind; /* got rescind msg */ 847 bool rescind_ref; /* got rescind msg, got channel reference */ 848 struct completion rescind_event; 849 850 struct vmbus_gpadl ringbuffer_gpadlhandle; 851 852 /* Allocated memory for ring buffer */ 853 struct page *ringbuffer_page; 854 u32 ringbuffer_pagecount; 855 u32 ringbuffer_send_offset; 856 struct hv_ring_buffer_info outbound; /* send to parent */ 857 struct hv_ring_buffer_info inbound; /* receive from parent */ 858 859 struct vmbus_close_msg close_msg; 860 861 /* Statistics */ 862 u64 interrupts; /* Host to Guest interrupts */ 863 u64 sig_events; /* Guest to Host events */ 864 865 /* 866 * Guest to host interrupts caused by the outbound ring buffer changing 867 * from empty to not empty. 868 */ 869 u64 intr_out_empty; 870 871 /* 872 * Indicates that a full outbound ring buffer was encountered. The flag 873 * is set to true when a full outbound ring buffer is encountered and 874 * set to false when a write to the outbound ring buffer is completed. 875 */ 876 bool out_full_flag; 877 878 /* Channel callback's invoked in softirq context */ 879 struct tasklet_struct callback_event; 880 void (*onchannel_callback)(void *context); 881 void *channel_callback_context; 882 883 void (*change_target_cpu_callback)(struct vmbus_channel *channel, 884 u32 old, u32 new); 885 886 /* 887 * Synchronize channel scheduling and channel removal; see the inline 888 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb(). 889 */ 890 spinlock_t sched_lock; 891 892 /* 893 * A channel can be marked for one of three modes of reading: 894 * BATCHED - callback called from taslket and should read 895 * channel until empty. Interrupts from the host 896 * are masked while read is in process (default). 897 * DIRECT - callback called from tasklet (softirq). 898 * ISR - callback called in interrupt context and must 899 * invoke its own deferred processing. 900 * Host interrupts are disabled and must be re-enabled 901 * when ring is empty. 902 */ 903 enum hv_callback_mode { 904 HV_CALL_BATCHED, 905 HV_CALL_DIRECT, 906 HV_CALL_ISR 907 } callback_mode; 908 909 bool is_dedicated_interrupt; 910 u64 sig_event; 911 912 /* 913 * Starting with win8, this field will be used to specify the 914 * target CPU on which to deliver the interrupt for the host 915 * to guest communication. 916 * 917 * Prior to win8, incoming channel interrupts would only be 918 * delivered on CPU 0. Setting this value to 0 would preserve 919 * the earlier behavior. 920 */ 921 u32 target_cpu; 922 /* 923 * Support for sub-channels. For high performance devices, 924 * it will be useful to have multiple sub-channels to support 925 * a scalable communication infrastructure with the host. 926 * The support for sub-channels is implemented as an extension 927 * to the current infrastructure. 928 * The initial offer is considered the primary channel and this 929 * offer message will indicate if the host supports sub-channels. 930 * The guest is free to ask for sub-channels to be offered and can 931 * open these sub-channels as a normal "primary" channel. However, 932 * all sub-channels will have the same type and instance guids as the 933 * primary channel. Requests sent on a given channel will result in a 934 * response on the same channel. 935 */ 936 937 /* 938 * Sub-channel creation callback. This callback will be called in 939 * process context when a sub-channel offer is received from the host. 940 * The guest can open the sub-channel in the context of this callback. 941 */ 942 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 943 944 /* 945 * Channel rescind callback. Some channels (the hvsock ones), need to 946 * register a callback which is invoked in vmbus_onoffer_rescind(). 947 */ 948 void (*chn_rescind_callback)(struct vmbus_channel *channel); 949 950 /* 951 * All Sub-channels of a primary channel are linked here. 952 */ 953 struct list_head sc_list; 954 /* 955 * The primary channel this sub-channel belongs to. 956 * This will be NULL for the primary channel. 957 */ 958 struct vmbus_channel *primary_channel; 959 /* 960 * Support per-channel state for use by vmbus drivers. 961 */ 962 void *per_channel_state; 963 964 /* 965 * Defer freeing channel until after all cpu's have 966 * gone through grace period. 967 */ 968 struct rcu_head rcu; 969 970 /* 971 * For sysfs per-channel properties. 972 */ 973 struct kobject kobj; 974 975 /* 976 * For performance critical channels (storage, networking 977 * etc,), Hyper-V has a mechanism to enhance the throughput 978 * at the expense of latency: 979 * When the host is to be signaled, we just set a bit in a shared page 980 * and this bit will be inspected by the hypervisor within a certain 981 * window and if the bit is set, the host will be signaled. The window 982 * of time is the monitor latency - currently around 100 usecs. This 983 * mechanism improves throughput by: 984 * 985 * A) Making the host more efficient - each time it wakes up, 986 * potentially it will process more number of packets. The 987 * monitor latency allows a batch to build up. 988 * B) By deferring the hypercall to signal, we will also minimize 989 * the interrupts. 990 * 991 * Clearly, these optimizations improve throughput at the expense of 992 * latency. Furthermore, since the channel is shared for both 993 * control and data messages, control messages currently suffer 994 * unnecessary latency adversely impacting performance and boot 995 * time. To fix this issue, permit tagging the channel as being 996 * in "low latency" mode. In this mode, we will bypass the monitor 997 * mechanism. 998 */ 999 bool low_latency; 1000 1001 bool probe_done; 1002 1003 /* 1004 * Cache the device ID here for easy access; this is useful, in 1005 * particular, in situations where the channel's device_obj has 1006 * not been allocated/initialized yet. 1007 */ 1008 u16 device_id; 1009 1010 /* 1011 * We must offload the handling of the primary/sub channels 1012 * from the single-threaded vmbus_connection.work_queue to 1013 * two different workqueue, otherwise we can block 1014 * vmbus_connection.work_queue and hang: see vmbus_process_offer(). 1015 */ 1016 struct work_struct add_channel_work; 1017 1018 /* 1019 * Guest to host interrupts caused by the inbound ring buffer changing 1020 * from full to not full while a packet is waiting. 1021 */ 1022 u64 intr_in_full; 1023 1024 /* 1025 * The total number of write operations that encountered a full 1026 * outbound ring buffer. 1027 */ 1028 u64 out_full_total; 1029 1030 /* 1031 * The number of write operations that were the first to encounter a 1032 * full outbound ring buffer. 1033 */ 1034 u64 out_full_first; 1035 1036 /* enabling/disabling fuzz testing on the channel (default is false)*/ 1037 bool fuzz_testing_state; 1038 1039 /* 1040 * Interrupt delay will delay the guest from emptying the ring buffer 1041 * for a specific amount of time. The delay is in microseconds and will 1042 * be between 1 to a maximum of 1000, its default is 0 (no delay). 1043 * The Message delay will delay guest reading on a per message basis 1044 * in microseconds between 1 to 1000 with the default being 0 1045 * (no delay). 1046 */ 1047 u32 fuzz_testing_interrupt_delay; 1048 u32 fuzz_testing_message_delay; 1049 1050 /* callback to generate a request ID from a request address */ 1051 u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr); 1052 /* callback to retrieve a request address from a request ID */ 1053 u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id); 1054 1055 /* request/transaction ids for VMBus */ 1056 struct vmbus_requestor requestor; 1057 u32 rqstor_size; 1058 1059 /* The max size of a packet on this channel */ 1060 u32 max_pkt_size; 1061}; 1062 1063#define lock_requestor(channel, flags) \ 1064do { \ 1065 struct vmbus_requestor *rqstor = &(channel)->requestor; \ 1066 \ 1067 spin_lock_irqsave(&rqstor->req_lock, flags); \ 1068} while (0) 1069 1070static __always_inline void unlock_requestor(struct vmbus_channel *channel, 1071 unsigned long flags) 1072{ 1073 struct vmbus_requestor *rqstor = &channel->requestor; 1074 1075 spin_unlock_irqrestore(&rqstor->req_lock, flags); 1076} 1077 1078u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr); 1079u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1080 u64 rqst_addr); 1081u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1082 u64 rqst_addr); 1083u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id); 1084 1085static inline bool is_hvsock_offer(const struct vmbus_channel_offer_channel *o) 1086{ 1087 return !!(o->offer.chn_flags & VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 1088} 1089 1090static inline bool is_hvsock_channel(const struct vmbus_channel *c) 1091{ 1092 return is_hvsock_offer(&c->offermsg); 1093} 1094 1095static inline bool is_sub_channel(const struct vmbus_channel *c) 1096{ 1097 return c->offermsg.offer.sub_channel_index != 0; 1098} 1099 1100static inline void set_channel_read_mode(struct vmbus_channel *c, 1101 enum hv_callback_mode mode) 1102{ 1103 c->callback_mode = mode; 1104} 1105 1106static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 1107{ 1108 c->per_channel_state = s; 1109} 1110 1111static inline void *get_per_channel_state(struct vmbus_channel *c) 1112{ 1113 return c->per_channel_state; 1114} 1115 1116static inline void set_channel_pending_send_size(struct vmbus_channel *c, 1117 u32 size) 1118{ 1119 unsigned long flags; 1120 1121 if (size) { 1122 spin_lock_irqsave(&c->outbound.ring_lock, flags); 1123 ++c->out_full_total; 1124 1125 if (!c->out_full_flag) { 1126 ++c->out_full_first; 1127 c->out_full_flag = true; 1128 } 1129 spin_unlock_irqrestore(&c->outbound.ring_lock, flags); 1130 } else { 1131 c->out_full_flag = false; 1132 } 1133 1134 c->outbound.ring_buffer->pending_send_sz = size; 1135} 1136 1137void vmbus_onmessage(struct vmbus_channel_message_header *hdr); 1138 1139int vmbus_request_offers(void); 1140 1141/* 1142 * APIs for managing sub-channels. 1143 */ 1144 1145void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1146 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1147 1148void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1149 void (*chn_rescind_cb)(struct vmbus_channel *)); 1150 1151/* The format must be the same as struct vmdata_gpa_direct */ 1152struct vmbus_channel_packet_page_buffer { 1153 u16 type; 1154 u16 dataoffset8; 1155 u16 length8; 1156 u16 flags; 1157 u64 transactionid; 1158 u32 reserved; 1159 u32 rangecount; 1160 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1161} __packed; 1162 1163/* The format must be the same as struct vmdata_gpa_direct */ 1164struct vmbus_channel_packet_multipage_buffer { 1165 u16 type; 1166 u16 dataoffset8; 1167 u16 length8; 1168 u16 flags; 1169 u64 transactionid; 1170 u32 reserved; 1171 u32 rangecount; /* Always 1 in this case */ 1172 struct hv_multipage_buffer range; 1173} __packed; 1174 1175/* The format must be the same as struct vmdata_gpa_direct */ 1176struct vmbus_packet_mpb_array { 1177 u16 type; 1178 u16 dataoffset8; 1179 u16 length8; 1180 u16 flags; 1181 u64 transactionid; 1182 u32 reserved; 1183 u32 rangecount; /* Always 1 in this case */ 1184 struct hv_mpb_array range; 1185} __packed; 1186 1187int vmbus_alloc_ring(struct vmbus_channel *channel, 1188 u32 send_size, u32 recv_size); 1189void vmbus_free_ring(struct vmbus_channel *channel); 1190 1191int vmbus_connect_ring(struct vmbus_channel *channel, 1192 void (*onchannel_callback)(void *context), 1193 void *context); 1194int vmbus_disconnect_ring(struct vmbus_channel *channel); 1195 1196extern int vmbus_open(struct vmbus_channel *channel, 1197 u32 send_ringbuffersize, 1198 u32 recv_ringbuffersize, 1199 void *userdata, 1200 u32 userdatalen, 1201 void (*onchannel_callback)(void *context), 1202 void *context); 1203 1204extern void vmbus_close(struct vmbus_channel *channel); 1205 1206extern int vmbus_sendpacket_getid(struct vmbus_channel *channel, 1207 void *buffer, 1208 u32 bufferLen, 1209 u64 requestid, 1210 u64 *trans_id, 1211 enum vmbus_packet_type type, 1212 u32 flags); 1213extern int vmbus_sendpacket(struct vmbus_channel *channel, 1214 void *buffer, 1215 u32 bufferLen, 1216 u64 requestid, 1217 enum vmbus_packet_type type, 1218 u32 flags); 1219 1220extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1221 struct hv_page_buffer pagebuffers[], 1222 u32 pagecount, 1223 void *buffer, 1224 u32 bufferlen, 1225 u64 requestid); 1226 1227extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1228 struct vmbus_packet_mpb_array *mpb, 1229 u32 desc_size, 1230 void *buffer, 1231 u32 bufferlen, 1232 u64 requestid); 1233 1234extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1235 void *kbuffer, 1236 u32 size, 1237 struct vmbus_gpadl *gpadl); 1238 1239extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1240 struct vmbus_gpadl *gpadl); 1241 1242void vmbus_reset_channel_cb(struct vmbus_channel *channel); 1243 1244extern int vmbus_recvpacket(struct vmbus_channel *channel, 1245 void *buffer, 1246 u32 bufferlen, 1247 u32 *buffer_actual_len, 1248 u64 *requestid); 1249 1250extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1251 void *buffer, 1252 u32 bufferlen, 1253 u32 *buffer_actual_len, 1254 u64 *requestid); 1255 1256/* Base driver object */ 1257struct hv_driver { 1258 const char *name; 1259 1260 /* 1261 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1262 * channel flag, actually doesn't mean a synthetic device because the 1263 * offer's if_type/if_instance can change for every new hvsock 1264 * connection. 1265 * 1266 * However, to facilitate the notification of new-offer/rescind-offer 1267 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1268 * a special vmbus device, and hence we need the below flag to 1269 * indicate if the driver is the hvsock driver or not: we need to 1270 * specially treat the hvosck offer & driver in vmbus_match(). 1271 */ 1272 bool hvsock; 1273 1274 /* the device type supported by this driver */ 1275 guid_t dev_type; 1276 const struct hv_vmbus_device_id *id_table; 1277 1278 struct device_driver driver; 1279 1280 /* dynamic device GUID's */ 1281 struct { 1282 spinlock_t lock; 1283 struct list_head list; 1284 } dynids; 1285 1286 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1287 void (*remove)(struct hv_device *dev); 1288 void (*shutdown)(struct hv_device *); 1289 1290 int (*suspend)(struct hv_device *); 1291 int (*resume)(struct hv_device *); 1292 1293}; 1294 1295/* Base device object */ 1296struct hv_device { 1297 /* the device type id of this device */ 1298 guid_t dev_type; 1299 1300 /* the device instance id of this device */ 1301 guid_t dev_instance; 1302 u16 vendor_id; 1303 u16 device_id; 1304 1305 struct device device; 1306 /* 1307 * Driver name to force a match. Do not set directly, because core 1308 * frees it. Use driver_set_override() to set or clear it. 1309 */ 1310 const char *driver_override; 1311 1312 struct vmbus_channel *channel; 1313 struct kset *channels_kset; 1314 struct device_dma_parameters dma_parms; 1315 u64 dma_mask; 1316 1317 /* place holder to keep track of the dir for hv device in debugfs */ 1318 struct dentry *debug_dir; 1319 1320}; 1321 1322 1323#define device_to_hv_device(d) container_of_const(d, struct hv_device, device) 1324#define drv_to_hv_drv(d) container_of_const(d, struct hv_driver, driver) 1325 1326static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1327{ 1328 dev_set_drvdata(&dev->device, data); 1329} 1330 1331static inline void *hv_get_drvdata(struct hv_device *dev) 1332{ 1333 return dev_get_drvdata(&dev->device); 1334} 1335 1336struct hv_ring_buffer_debug_info { 1337 u32 current_interrupt_mask; 1338 u32 current_read_index; 1339 u32 current_write_index; 1340 u32 bytes_avail_toread; 1341 u32 bytes_avail_towrite; 1342}; 1343 1344 1345int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 1346 struct hv_ring_buffer_debug_info *debug_info); 1347 1348bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel); 1349 1350/* Vmbus interface */ 1351#define vmbus_driver_register(driver) \ 1352 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1353int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1354 struct module *owner, 1355 const char *mod_name); 1356void vmbus_driver_unregister(struct hv_driver *hv_driver); 1357 1358void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1359 1360int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1361 resource_size_t min, resource_size_t max, 1362 resource_size_t size, resource_size_t align, 1363 bool fb_overlap_ok); 1364void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1365 1366/* 1367 * GUID definitions of various offer types - services offered to the guest. 1368 */ 1369 1370/* 1371 * Network GUID 1372 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1373 */ 1374#define HV_NIC_GUID \ 1375 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1376 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1377 1378/* 1379 * IDE GUID 1380 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1381 */ 1382#define HV_IDE_GUID \ 1383 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1384 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1385 1386/* 1387 * SCSI GUID 1388 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1389 */ 1390#define HV_SCSI_GUID \ 1391 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1392 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1393 1394/* 1395 * Shutdown GUID 1396 * {0e0b6031-5213-4934-818b-38d90ced39db} 1397 */ 1398#define HV_SHUTDOWN_GUID \ 1399 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1400 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1401 1402/* 1403 * Time Synch GUID 1404 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1405 */ 1406#define HV_TS_GUID \ 1407 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1408 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1409 1410/* 1411 * Heartbeat GUID 1412 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1413 */ 1414#define HV_HEART_BEAT_GUID \ 1415 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1416 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1417 1418/* 1419 * KVP GUID 1420 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1421 */ 1422#define HV_KVP_GUID \ 1423 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1424 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1425 1426/* 1427 * Dynamic memory GUID 1428 * {525074dc-8985-46e2-8057-a307dc18a502} 1429 */ 1430#define HV_DM_GUID \ 1431 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1432 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1433 1434/* 1435 * Mouse GUID 1436 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1437 */ 1438#define HV_MOUSE_GUID \ 1439 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1440 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1441 1442/* 1443 * Keyboard GUID 1444 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1445 */ 1446#define HV_KBD_GUID \ 1447 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1448 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1449 1450/* 1451 * VSS (Backup/Restore) GUID 1452 */ 1453#define HV_VSS_GUID \ 1454 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1455 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1456/* 1457 * Synthetic Video GUID 1458 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1459 */ 1460#define HV_SYNTHVID_GUID \ 1461 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1462 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1463 1464/* 1465 * Synthetic FC GUID 1466 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1467 */ 1468#define HV_SYNTHFC_GUID \ 1469 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1470 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1471 1472/* 1473 * Guest File Copy Service 1474 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1475 */ 1476 1477#define HV_FCOPY_GUID \ 1478 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1479 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1480 1481/* 1482 * NetworkDirect. This is the guest RDMA service. 1483 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1484 */ 1485#define HV_ND_GUID \ 1486 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1487 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1488 1489/* 1490 * PCI Express Pass Through 1491 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1492 */ 1493 1494#define HV_PCIE_GUID \ 1495 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1496 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1497 1498/* 1499 * Linux doesn't support these 4 devices: the first two are for 1500 * Automatic Virtual Machine Activation, the third is for 1501 * Remote Desktop Virtualization, and the fourth is Initial 1502 * Machine Configuration (IMC) used only by Windows guests. 1503 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1504 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1505 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1506 * {c376c1c3-d276-48d2-90a9-c04748072c60} 1507 */ 1508 1509#define HV_AVMA1_GUID \ 1510 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1511 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1512 1513#define HV_AVMA2_GUID \ 1514 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1515 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1516 1517#define HV_RDV_GUID \ 1518 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1519 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1520 1521#define HV_IMC_GUID \ 1522 .guid = GUID_INIT(0xc376c1c3, 0xd276, 0x48d2, 0x90, 0xa9, \ 1523 0xc0, 0x47, 0x48, 0x07, 0x2c, 0x60) 1524 1525/* 1526 * Common header for Hyper-V ICs 1527 */ 1528 1529#define ICMSGTYPE_NEGOTIATE 0 1530#define ICMSGTYPE_HEARTBEAT 1 1531#define ICMSGTYPE_KVPEXCHANGE 2 1532#define ICMSGTYPE_SHUTDOWN 3 1533#define ICMSGTYPE_TIMESYNC 4 1534#define ICMSGTYPE_VSS 5 1535#define ICMSGTYPE_FCOPY 7 1536 1537#define ICMSGHDRFLAG_TRANSACTION 1 1538#define ICMSGHDRFLAG_REQUEST 2 1539#define ICMSGHDRFLAG_RESPONSE 4 1540 1541 1542/* 1543 * While we want to handle util services as regular devices, 1544 * there is only one instance of each of these services; so 1545 * we statically allocate the service specific state. 1546 */ 1547 1548struct hv_util_service { 1549 u8 *recv_buffer; 1550 void *channel; 1551 void (*util_cb)(void *); 1552 int (*util_init)(struct hv_util_service *); 1553 int (*util_init_transport)(void); 1554 void (*util_deinit)(void); 1555 int (*util_pre_suspend)(void); 1556 int (*util_pre_resume)(void); 1557}; 1558 1559struct vmbuspipe_hdr { 1560 u32 flags; 1561 u32 msgsize; 1562} __packed; 1563 1564struct ic_version { 1565 u16 major; 1566 u16 minor; 1567} __packed; 1568 1569struct icmsg_hdr { 1570 struct ic_version icverframe; 1571 u16 icmsgtype; 1572 struct ic_version icvermsg; 1573 u16 icmsgsize; 1574 u32 status; 1575 u8 ictransaction_id; 1576 u8 icflags; 1577 u8 reserved[2]; 1578} __packed; 1579 1580#define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100 1581#define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr)) 1582#define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \ 1583 (ICMSG_HDR + sizeof(struct icmsg_negotiate) + \ 1584 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version))) 1585 1586struct icmsg_negotiate { 1587 u16 icframe_vercnt; 1588 u16 icmsg_vercnt; 1589 u32 reserved; 1590 struct ic_version icversion_data[]; /* any size array */ 1591} __packed; 1592 1593struct shutdown_msg_data { 1594 u32 reason_code; 1595 u32 timeout_seconds; 1596 u32 flags; 1597 u8 display_message[2048]; 1598} __packed; 1599 1600struct heartbeat_msg_data { 1601 u64 seq_num; 1602 u32 reserved[8]; 1603} __packed; 1604 1605/* Time Sync IC defs */ 1606#define ICTIMESYNCFLAG_PROBE 0 1607#define ICTIMESYNCFLAG_SYNC 1 1608#define ICTIMESYNCFLAG_SAMPLE 2 1609 1610#ifdef __x86_64__ 1611#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1612#else 1613#define WLTIMEDELTA 116444736000000000LL 1614#endif 1615 1616struct ictimesync_data { 1617 u64 parenttime; 1618 u64 childtime; 1619 u64 roundtriptime; 1620 u8 flags; 1621} __packed; 1622 1623struct ictimesync_ref_data { 1624 u64 parenttime; 1625 u64 vmreferencetime; 1626 u8 flags; 1627 char leapflags; 1628 char stratum; 1629 u8 reserved[3]; 1630} __packed; 1631 1632struct hyperv_service_callback { 1633 u8 msg_type; 1634 char *log_msg; 1635 guid_t data; 1636 struct vmbus_channel *channel; 1637 void (*callback)(void *context); 1638}; 1639 1640struct hv_dma_range { 1641 dma_addr_t dma; 1642 u32 mapping_size; 1643}; 1644 1645#define MAX_SRV_VER 0x7ffffff 1646extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen, 1647 const int *fw_version, int fw_vercnt, 1648 const int *srv_version, int srv_vercnt, 1649 int *nego_fw_version, int *nego_srv_version); 1650 1651void hv_process_channel_removal(struct vmbus_channel *channel); 1652 1653void vmbus_setevent(struct vmbus_channel *channel); 1654/* 1655 * Negotiated version with the Host. 1656 */ 1657 1658extern __u32 vmbus_proto_version; 1659 1660int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id, 1661 const guid_t *shv_host_servie_id); 1662int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp); 1663void vmbus_set_event(struct vmbus_channel *channel); 1664 1665/* Get the start of the ring buffer. */ 1666static inline void * 1667hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1668{ 1669 return ring_info->ring_buffer->buffer; 1670} 1671 1672/* 1673 * Mask off host interrupt callback notifications 1674 */ 1675static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1676{ 1677 rbi->ring_buffer->interrupt_mask = 1; 1678 1679 /* make sure mask update is not reordered */ 1680 virt_mb(); 1681} 1682 1683/* 1684 * Re-enable host callback and return number of outstanding bytes 1685 */ 1686static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1687{ 1688 1689 rbi->ring_buffer->interrupt_mask = 0; 1690 1691 /* make sure mask update is not reordered */ 1692 virt_mb(); 1693 1694 /* 1695 * Now check to see if the ring buffer is still empty. 1696 * If it is not, we raced and we need to process new 1697 * incoming messages. 1698 */ 1699 return hv_get_bytes_to_read(rbi); 1700} 1701 1702/* 1703 * An API to support in-place processing of incoming VMBUS packets. 1704 */ 1705 1706/* Get data payload associated with descriptor */ 1707static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1708{ 1709 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1710} 1711 1712/* Get data size associated with descriptor */ 1713static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1714{ 1715 return (desc->len8 << 3) - (desc->offset8 << 3); 1716} 1717 1718/* Get packet length associated with descriptor */ 1719static inline u32 hv_pkt_len(const struct vmpacket_descriptor *desc) 1720{ 1721 return desc->len8 << 3; 1722} 1723 1724struct vmpacket_descriptor * 1725hv_pkt_iter_first(struct vmbus_channel *channel); 1726 1727struct vmpacket_descriptor * 1728__hv_pkt_iter_next(struct vmbus_channel *channel, 1729 const struct vmpacket_descriptor *pkt); 1730 1731void hv_pkt_iter_close(struct vmbus_channel *channel); 1732 1733static inline struct vmpacket_descriptor * 1734hv_pkt_iter_next(struct vmbus_channel *channel, 1735 const struct vmpacket_descriptor *pkt) 1736{ 1737 struct vmpacket_descriptor *nxt; 1738 1739 nxt = __hv_pkt_iter_next(channel, pkt); 1740 if (!nxt) 1741 hv_pkt_iter_close(channel); 1742 1743 return nxt; 1744} 1745 1746#define foreach_vmbus_pkt(pkt, channel) \ 1747 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1748 pkt = hv_pkt_iter_next(channel, pkt)) 1749 1750/* 1751 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver 1752 * sends requests to read and write blocks. Each block must be 128 bytes or 1753 * smaller. Optionally, the VF driver can register a callback function which 1754 * will be invoked when the host says that one or more of the first 64 block 1755 * IDs is "invalid" which means that the VF driver should reread them. 1756 */ 1757#define HV_CONFIG_BLOCK_SIZE_MAX 128 1758 1759int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len, 1760 unsigned int block_id, unsigned int *bytes_returned); 1761int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len, 1762 unsigned int block_id); 1763int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context, 1764 void (*block_invalidate)(void *context, 1765 u64 block_mask)); 1766 1767struct hyperv_pci_block_ops { 1768 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len, 1769 unsigned int block_id, unsigned int *bytes_returned); 1770 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len, 1771 unsigned int block_id); 1772 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context, 1773 void (*block_invalidate)(void *context, 1774 u64 block_mask)); 1775}; 1776 1777extern struct hyperv_pci_block_ops hvpci_block_ops; 1778 1779static inline unsigned long virt_to_hvpfn(void *addr) 1780{ 1781 phys_addr_t paddr; 1782 1783 if (is_vmalloc_addr(addr)) 1784 paddr = page_to_phys(vmalloc_to_page(addr)) + 1785 offset_in_page(addr); 1786 else 1787 paddr = __pa(addr); 1788 1789 return paddr >> HV_HYP_PAGE_SHIFT; 1790} 1791 1792#define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE) 1793#define offset_in_hvpage(ptr) ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK) 1794#define HVPFN_UP(x) (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT) 1795#define HVPFN_DOWN(x) ((x) >> HV_HYP_PAGE_SHIFT) 1796#define page_to_hvpfn(page) (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE) 1797 1798#endif /* _HYPERV_H */