at v6.14 13 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_COMPILER_H 3#define __LINUX_COMPILER_H 4 5#include <linux/compiler_types.h> 6 7#ifndef __ASSEMBLY__ 8 9#ifdef __KERNEL__ 10 11/* 12 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code 13 * to disable branch tracing on a per file basis. 14 */ 15void ftrace_likely_update(struct ftrace_likely_data *f, int val, 16 int expect, int is_constant); 17#if defined(CONFIG_TRACE_BRANCH_PROFILING) \ 18 && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) 19#define likely_notrace(x) __builtin_expect(!!(x), 1) 20#define unlikely_notrace(x) __builtin_expect(!!(x), 0) 21 22#define __branch_check__(x, expect, is_constant) ({ \ 23 long ______r; \ 24 static struct ftrace_likely_data \ 25 __aligned(4) \ 26 __section("_ftrace_annotated_branch") \ 27 ______f = { \ 28 .data.func = __func__, \ 29 .data.file = __FILE__, \ 30 .data.line = __LINE__, \ 31 }; \ 32 ______r = __builtin_expect(!!(x), expect); \ 33 ftrace_likely_update(&______f, ______r, \ 34 expect, is_constant); \ 35 ______r; \ 36 }) 37 38/* 39 * Using __builtin_constant_p(x) to ignore cases where the return 40 * value is always the same. This idea is taken from a similar patch 41 * written by Daniel Walker. 42 */ 43# ifndef likely 44# define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x))) 45# endif 46# ifndef unlikely 47# define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x))) 48# endif 49 50#ifdef CONFIG_PROFILE_ALL_BRANCHES 51/* 52 * "Define 'is'", Bill Clinton 53 * "Define 'if'", Steven Rostedt 54 */ 55#define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) ) 56 57#define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond)) 58 59#define __trace_if_value(cond) ({ \ 60 static struct ftrace_branch_data \ 61 __aligned(4) \ 62 __section("_ftrace_branch") \ 63 __if_trace = { \ 64 .func = __func__, \ 65 .file = __FILE__, \ 66 .line = __LINE__, \ 67 }; \ 68 (cond) ? \ 69 (__if_trace.miss_hit[1]++,1) : \ 70 (__if_trace.miss_hit[0]++,0); \ 71}) 72 73#endif /* CONFIG_PROFILE_ALL_BRANCHES */ 74 75#else 76# define likely(x) __builtin_expect(!!(x), 1) 77# define unlikely(x) __builtin_expect(!!(x), 0) 78# define likely_notrace(x) likely(x) 79# define unlikely_notrace(x) unlikely(x) 80#endif 81 82/* Optimization barrier */ 83#ifndef barrier 84/* The "volatile" is due to gcc bugs */ 85# define barrier() __asm__ __volatile__("": : :"memory") 86#endif 87 88#ifndef barrier_data 89/* 90 * This version is i.e. to prevent dead stores elimination on @ptr 91 * where gcc and llvm may behave differently when otherwise using 92 * normal barrier(): while gcc behavior gets along with a normal 93 * barrier(), llvm needs an explicit input variable to be assumed 94 * clobbered. The issue is as follows: while the inline asm might 95 * access any memory it wants, the compiler could have fit all of 96 * @ptr into memory registers instead, and since @ptr never escaped 97 * from that, it proved that the inline asm wasn't touching any of 98 * it. This version works well with both compilers, i.e. we're telling 99 * the compiler that the inline asm absolutely may see the contents 100 * of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495 101 */ 102# define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory") 103#endif 104 105/* workaround for GCC PR82365 if needed */ 106#ifndef barrier_before_unreachable 107# define barrier_before_unreachable() do { } while (0) 108#endif 109 110/* Unreachable code */ 111#ifdef CONFIG_OBJTOOL 112/* Annotate a C jump table to allow objtool to follow the code flow */ 113#define __annotate_jump_table __section(".data.rel.ro.c_jump_table") 114#else /* !CONFIG_OBJTOOL */ 115#define __annotate_jump_table 116#endif /* CONFIG_OBJTOOL */ 117 118/* 119 * Mark a position in code as unreachable. This can be used to 120 * suppress control flow warnings after asm blocks that transfer 121 * control elsewhere. 122 */ 123#define unreachable() do { \ 124 barrier_before_unreachable(); \ 125 __builtin_unreachable(); \ 126} while (0) 127 128/* 129 * KENTRY - kernel entry point 130 * This can be used to annotate symbols (functions or data) that are used 131 * without their linker symbol being referenced explicitly. For example, 132 * interrupt vector handlers, or functions in the kernel image that are found 133 * programatically. 134 * 135 * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those 136 * are handled in their own way (with KEEP() in linker scripts). 137 * 138 * KENTRY can be avoided if the symbols in question are marked as KEEP() in the 139 * linker script. For example an architecture could KEEP() its entire 140 * boot/exception vector code rather than annotate each function and data. 141 */ 142#ifndef KENTRY 143# define KENTRY(sym) \ 144 extern typeof(sym) sym; \ 145 static const unsigned long __kentry_##sym \ 146 __used \ 147 __attribute__((__section__("___kentry+" #sym))) \ 148 = (unsigned long)&sym; 149#endif 150 151#ifndef RELOC_HIDE 152# define RELOC_HIDE(ptr, off) \ 153 ({ unsigned long __ptr; \ 154 __ptr = (unsigned long) (ptr); \ 155 (typeof(ptr)) (__ptr + (off)); }) 156#endif 157 158#define absolute_pointer(val) RELOC_HIDE((void *)(val), 0) 159 160#ifndef OPTIMIZER_HIDE_VAR 161/* Make the optimizer believe the variable can be manipulated arbitrarily. */ 162#define OPTIMIZER_HIDE_VAR(var) \ 163 __asm__ ("" : "=r" (var) : "0" (var)) 164#endif 165 166#define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__) 167 168/** 169 * data_race - mark an expression as containing intentional data races 170 * 171 * This data_race() macro is useful for situations in which data races 172 * should be forgiven. One example is diagnostic code that accesses 173 * shared variables but is not a part of the core synchronization design. 174 * For example, if accesses to a given variable are protected by a lock, 175 * except for diagnostic code, then the accesses under the lock should 176 * be plain C-language accesses and those in the diagnostic code should 177 * use data_race(). This way, KCSAN will complain if buggy lockless 178 * accesses to that variable are introduced, even if the buggy accesses 179 * are protected by READ_ONCE() or WRITE_ONCE(). 180 * 181 * This macro *does not* affect normal code generation, but is a hint 182 * to tooling that data races here are to be ignored. If the access must 183 * be atomic *and* KCSAN should ignore the access, use both data_race() 184 * and READ_ONCE(), for example, data_race(READ_ONCE(x)). 185 */ 186#define data_race(expr) \ 187({ \ 188 __kcsan_disable_current(); \ 189 __auto_type __v = (expr); \ 190 __kcsan_enable_current(); \ 191 __v; \ 192}) 193 194#ifdef __CHECKER__ 195#define __BUILD_BUG_ON_ZERO_MSG(e, msg) (0) 196#else /* __CHECKER__ */ 197#define __BUILD_BUG_ON_ZERO_MSG(e, msg) ((int)sizeof(struct {_Static_assert(!(e), msg);})) 198#endif /* __CHECKER__ */ 199 200/* &a[0] degrades to a pointer: a different type from an array */ 201#define __is_array(a) (!__same_type((a), &(a)[0])) 202#define __must_be_array(a) __BUILD_BUG_ON_ZERO_MSG(!__is_array(a), \ 203 "must be array") 204 205#define __is_byte_array(a) (__is_array(a) && sizeof((a)[0]) == 1) 206#define __must_be_byte_array(a) __BUILD_BUG_ON_ZERO_MSG(!__is_byte_array(a), \ 207 "must be byte array") 208 209/* Require C Strings (i.e. NUL-terminated) lack the "nonstring" attribute. */ 210#define __must_be_cstr(p) \ 211 __BUILD_BUG_ON_ZERO_MSG(__annotated(p, nonstring), "must be cstr (NUL-terminated)") 212 213#endif /* __KERNEL__ */ 214 215/** 216 * offset_to_ptr - convert a relative memory offset to an absolute pointer 217 * @off: the address of the 32-bit offset value 218 */ 219static inline void *offset_to_ptr(const int *off) 220{ 221 return (void *)((unsigned long)off + *off); 222} 223 224#endif /* __ASSEMBLY__ */ 225 226#ifdef CONFIG_64BIT 227#define ARCH_SEL(a,b) a 228#else 229#define ARCH_SEL(a,b) b 230#endif 231 232/* 233 * Force the compiler to emit 'sym' as a symbol, so that we can reference 234 * it from inline assembler. Necessary in case 'sym' could be inlined 235 * otherwise, or eliminated entirely due to lack of references that are 236 * visible to the compiler. 237 */ 238#define ___ADDRESSABLE(sym, __attrs) \ 239 static void * __used __attrs \ 240 __UNIQUE_ID(__PASTE(__addressable_,sym)) = (void *)(uintptr_t)&sym; 241 242#define __ADDRESSABLE(sym) \ 243 ___ADDRESSABLE(sym, __section(".discard.addressable")) 244 245#define __ADDRESSABLE_ASM(sym) \ 246 .pushsection .discard.addressable,"aw"; \ 247 .align ARCH_SEL(8,4); \ 248 ARCH_SEL(.quad, .long) __stringify(sym); \ 249 .popsection; 250 251#define __ADDRESSABLE_ASM_STR(sym) __stringify(__ADDRESSABLE_ASM(sym)) 252 253/* 254 * This returns a constant expression while determining if an argument is 255 * a constant expression, most importantly without evaluating the argument. 256 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> 257 * 258 * Details: 259 * - sizeof() return an integer constant expression, and does not evaluate 260 * the value of its operand; it only examines the type of its operand. 261 * - The results of comparing two integer constant expressions is also 262 * an integer constant expression. 263 * - The first literal "8" isn't important. It could be any literal value. 264 * - The second literal "8" is to avoid warnings about unaligned pointers; 265 * this could otherwise just be "1". 266 * - (long)(x) is used to avoid warnings about 64-bit types on 32-bit 267 * architectures. 268 * - The C Standard defines "null pointer constant", "(void *)0", as 269 * distinct from other void pointers. 270 * - If (x) is an integer constant expression, then the "* 0l" resolves 271 * it into an integer constant expression of value 0. Since it is cast to 272 * "void *", this makes the second operand a null pointer constant. 273 * - If (x) is not an integer constant expression, then the second operand 274 * resolves to a void pointer (but not a null pointer constant: the value 275 * is not an integer constant 0). 276 * - The conditional operator's third operand, "(int *)8", is an object 277 * pointer (to type "int"). 278 * - The behavior (including the return type) of the conditional operator 279 * ("operand1 ? operand2 : operand3") depends on the kind of expressions 280 * given for the second and third operands. This is the central mechanism 281 * of the macro: 282 * - When one operand is a null pointer constant (i.e. when x is an integer 283 * constant expression) and the other is an object pointer (i.e. our 284 * third operand), the conditional operator returns the type of the 285 * object pointer operand (i.e. "int *"). Here, within the sizeof(), we 286 * would then get: 287 * sizeof(*((int *)(...)) == sizeof(int) == 4 288 * - When one operand is a void pointer (i.e. when x is not an integer 289 * constant expression) and the other is an object pointer (i.e. our 290 * third operand), the conditional operator returns a "void *" type. 291 * Here, within the sizeof(), we would then get: 292 * sizeof(*((void *)(...)) == sizeof(void) == 1 293 * - The equality comparison to "sizeof(int)" therefore depends on (x): 294 * sizeof(int) == sizeof(int) (x) was a constant expression 295 * sizeof(int) != sizeof(void) (x) was not a constant expression 296 */ 297#define __is_constexpr(x) \ 298 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) 299 300/* 301 * Whether 'type' is a signed type or an unsigned type. Supports scalar types, 302 * bool and also pointer types. 303 */ 304#define is_signed_type(type) (((type)(-1)) < (__force type)1) 305#define is_unsigned_type(type) (!is_signed_type(type)) 306 307/* 308 * Useful shorthand for "is this condition known at compile-time?" 309 * 310 * Note that the condition may involve non-constant values, 311 * but the compiler may know enough about the details of the 312 * values to determine that the condition is statically true. 313 */ 314#define statically_true(x) (__builtin_constant_p(x) && (x)) 315 316/* 317 * Similar to statically_true() but produces a constant expression 318 * 319 * To be used in conjunction with macros, such as BUILD_BUG_ON_ZERO(), 320 * which require their input to be a constant expression and for which 321 * statically_true() would otherwise fail. 322 * 323 * This is a trade-off: const_true() requires all its operands to be 324 * compile time constants. Else, it would always returns false even on 325 * the most trivial cases like: 326 * 327 * true || non_const_var 328 * 329 * On the opposite, statically_true() is able to fold more complex 330 * tautologies and will return true on expressions such as: 331 * 332 * !(non_const_var * 8 % 4) 333 * 334 * For the general case, statically_true() is better. 335 */ 336#define const_true(x) __builtin_choose_expr(__is_constexpr(x), x, false) 337 338/* 339 * This is needed in functions which generate the stack canary, see 340 * arch/x86/kernel/smpboot.c::start_secondary() for an example. 341 */ 342#define prevent_tail_call_optimization() mb() 343 344#include <asm/rwonce.h> 345 346#endif /* __LINUX_COMPILER_H */