at v6.14 317 lines 9.3 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2 3/* 4 * Linux-specific definitions for managing interactions with Microsoft's 5 * Hyper-V hypervisor. The definitions in this file are architecture 6 * independent. See arch/<arch>/include/asm/mshyperv.h for definitions 7 * that are specific to architecture <arch>. 8 * 9 * Definitions that are derived from Hyper-V code or headers should not go in 10 * this file, but should instead go in the relevant files in include/hyperv. 11 * 12 * Copyright (C) 2019, Microsoft, Inc. 13 * 14 * Author : Michael Kelley <mikelley@microsoft.com> 15 */ 16 17#ifndef _ASM_GENERIC_MSHYPERV_H 18#define _ASM_GENERIC_MSHYPERV_H 19 20#include <linux/types.h> 21#include <linux/atomic.h> 22#include <linux/bitops.h> 23#include <acpi/acpi_numa.h> 24#include <linux/cpumask.h> 25#include <linux/nmi.h> 26#include <asm/ptrace.h> 27#include <hyperv/hvhdk.h> 28 29#define VTPM_BASE_ADDRESS 0xfed40000 30 31struct ms_hyperv_info { 32 u32 features; 33 u32 priv_high; 34 u32 misc_features; 35 u32 hints; 36 u32 nested_features; 37 u32 max_vp_index; 38 u32 max_lp_index; 39 u8 vtl; 40 union { 41 u32 isolation_config_a; 42 struct { 43 u32 paravisor_present : 1; 44 u32 reserved_a1 : 31; 45 }; 46 }; 47 union { 48 u32 isolation_config_b; 49 struct { 50 u32 cvm_type : 4; 51 u32 reserved_b1 : 1; 52 u32 shared_gpa_boundary_active : 1; 53 u32 shared_gpa_boundary_bits : 6; 54 u32 reserved_b2 : 20; 55 }; 56 }; 57 u64 shared_gpa_boundary; 58}; 59extern struct ms_hyperv_info ms_hyperv; 60extern bool hv_nested; 61 62extern void * __percpu *hyperv_pcpu_input_arg; 63extern void * __percpu *hyperv_pcpu_output_arg; 64 65extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr); 66extern u64 hv_do_fast_hypercall8(u16 control, u64 input8); 67bool hv_isolation_type_snp(void); 68bool hv_isolation_type_tdx(void); 69 70static inline struct hv_proximity_domain_info hv_numa_node_to_pxm_info(int node) 71{ 72 struct hv_proximity_domain_info pxm_info = {}; 73 74 if (node != NUMA_NO_NODE) { 75 pxm_info.domain_id = node_to_pxm(node); 76 pxm_info.flags.proximity_info_valid = 1; 77 pxm_info.flags.proximity_preferred = 1; 78 } 79 80 return pxm_info; 81} 82 83/* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */ 84static inline int hv_result(u64 status) 85{ 86 return status & HV_HYPERCALL_RESULT_MASK; 87} 88 89static inline bool hv_result_success(u64 status) 90{ 91 return hv_result(status) == HV_STATUS_SUCCESS; 92} 93 94static inline unsigned int hv_repcomp(u64 status) 95{ 96 /* Bits [43:32] of status have 'Reps completed' data. */ 97 return (status & HV_HYPERCALL_REP_COMP_MASK) >> 98 HV_HYPERCALL_REP_COMP_OFFSET; 99} 100 101/* 102 * Rep hypercalls. Callers of this functions are supposed to ensure that 103 * rep_count and varhead_size comply with Hyper-V hypercall definition. 104 */ 105static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size, 106 void *input, void *output) 107{ 108 u64 control = code; 109 u64 status; 110 u16 rep_comp; 111 112 control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET; 113 control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET; 114 115 do { 116 status = hv_do_hypercall(control, input, output); 117 if (!hv_result_success(status)) 118 return status; 119 120 rep_comp = hv_repcomp(status); 121 122 control &= ~HV_HYPERCALL_REP_START_MASK; 123 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET; 124 125 touch_nmi_watchdog(); 126 } while (rep_comp < rep_count); 127 128 return status; 129} 130 131/* Generate the guest OS identifier as described in the Hyper-V TLFS */ 132static inline u64 hv_generate_guest_id(u64 kernel_version) 133{ 134 u64 guest_id; 135 136 guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48); 137 guest_id |= (kernel_version << 16); 138 139 return guest_id; 140} 141 142/* Free the message slot and signal end-of-message if required */ 143static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type) 144{ 145 /* 146 * On crash we're reading some other CPU's message page and we need 147 * to be careful: this other CPU may already had cleared the header 148 * and the host may already had delivered some other message there. 149 * In case we blindly write msg->header.message_type we're going 150 * to lose it. We can still lose a message of the same type but 151 * we count on the fact that there can only be one 152 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages 153 * on crash. 154 */ 155 if (cmpxchg(&msg->header.message_type, old_msg_type, 156 HVMSG_NONE) != old_msg_type) 157 return; 158 159 /* 160 * The cmxchg() above does an implicit memory barrier to 161 * ensure the write to MessageType (ie set to 162 * HVMSG_NONE) happens before we read the 163 * MessagePending and EOMing. Otherwise, the EOMing 164 * will not deliver any more messages since there is 165 * no empty slot 166 */ 167 if (msg->header.message_flags.msg_pending) { 168 /* 169 * This will cause message queue rescan to 170 * possibly deliver another msg from the 171 * hypervisor 172 */ 173 hv_set_msr(HV_MSR_EOM, 0); 174 } 175} 176 177int hv_get_hypervisor_version(union hv_hypervisor_version_info *info); 178 179void hv_setup_vmbus_handler(void (*handler)(void)); 180void hv_remove_vmbus_handler(void); 181void hv_setup_stimer0_handler(void (*handler)(void)); 182void hv_remove_stimer0_handler(void); 183 184void hv_setup_kexec_handler(void (*handler)(void)); 185void hv_remove_kexec_handler(void); 186void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)); 187void hv_remove_crash_handler(void); 188 189extern int vmbus_interrupt; 190extern int vmbus_irq; 191 192extern bool hv_root_partition; 193 194#if IS_ENABLED(CONFIG_HYPERV) 195/* 196 * Hypervisor's notion of virtual processor ID is different from 197 * Linux' notion of CPU ID. This information can only be retrieved 198 * in the context of the calling CPU. Setup a map for easy access 199 * to this information. 200 */ 201extern u32 *hv_vp_index; 202extern u32 hv_max_vp_index; 203 204extern u64 (*hv_read_reference_counter)(void); 205 206/* Sentinel value for an uninitialized entry in hv_vp_index array */ 207#define VP_INVAL U32_MAX 208 209int __init hv_common_init(void); 210void __init hv_common_free(void); 211void __init ms_hyperv_late_init(void); 212int hv_common_cpu_init(unsigned int cpu); 213int hv_common_cpu_die(unsigned int cpu); 214 215void *hv_alloc_hyperv_page(void); 216void *hv_alloc_hyperv_zeroed_page(void); 217void hv_free_hyperv_page(void *addr); 218 219/** 220 * hv_cpu_number_to_vp_number() - Map CPU to VP. 221 * @cpu_number: CPU number in Linux terms 222 * 223 * This function returns the mapping between the Linux processor 224 * number and the hypervisor's virtual processor number, useful 225 * in making hypercalls and such that talk about specific 226 * processors. 227 * 228 * Return: Virtual processor number in Hyper-V terms 229 */ 230static inline int hv_cpu_number_to_vp_number(int cpu_number) 231{ 232 return hv_vp_index[cpu_number]; 233} 234 235static inline int __cpumask_to_vpset(struct hv_vpset *vpset, 236 const struct cpumask *cpus, 237 bool (*func)(int cpu)) 238{ 239 int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; 240 int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK; 241 242 /* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */ 243 if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS) 244 return 0; 245 246 /* 247 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex 248 * structs are not cleared between calls, we risk flushing unneeded 249 * vCPUs otherwise. 250 */ 251 for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++) 252 vpset->bank_contents[vcpu_bank] = 0; 253 254 /* 255 * Some banks may end up being empty but this is acceptable. 256 */ 257 for_each_cpu(cpu, cpus) { 258 if (func && func(cpu)) 259 continue; 260 vcpu = hv_cpu_number_to_vp_number(cpu); 261 if (vcpu == VP_INVAL) 262 return -1; 263 vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK; 264 vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK; 265 __set_bit(vcpu_offset, (unsigned long *) 266 &vpset->bank_contents[vcpu_bank]); 267 if (vcpu_bank >= nr_bank) 268 nr_bank = vcpu_bank + 1; 269 } 270 vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); 271 return nr_bank; 272} 273 274/* 275 * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant, 276 * 'func' is called for each CPU present in cpumask. If 'func' returns 277 * true, that CPU is skipped -- i.e., that CPU from cpumask is *not* 278 * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are 279 * skipped. 280 */ 281static inline int cpumask_to_vpset(struct hv_vpset *vpset, 282 const struct cpumask *cpus) 283{ 284 return __cpumask_to_vpset(vpset, cpus, NULL); 285} 286 287static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset, 288 const struct cpumask *cpus, 289 bool (*func)(int cpu)) 290{ 291 return __cpumask_to_vpset(vpset, cpus, func); 292} 293 294void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die); 295bool hv_is_hyperv_initialized(void); 296bool hv_is_hibernation_supported(void); 297enum hv_isolation_type hv_get_isolation_type(void); 298bool hv_is_isolation_supported(void); 299bool hv_isolation_type_snp(void); 300u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size); 301u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2); 302void hyperv_cleanup(void); 303bool hv_query_ext_cap(u64 cap_query); 304void hv_setup_dma_ops(struct device *dev, bool coherent); 305#else /* CONFIG_HYPERV */ 306static inline bool hv_is_hyperv_initialized(void) { return false; } 307static inline bool hv_is_hibernation_supported(void) { return false; } 308static inline void hyperv_cleanup(void) {} 309static inline void ms_hyperv_late_init(void) {} 310static inline bool hv_is_isolation_supported(void) { return false; } 311static inline enum hv_isolation_type hv_get_isolation_type(void) 312{ 313 return HV_ISOLATION_TYPE_NONE; 314} 315#endif /* CONFIG_HYPERV */ 316 317#endif