Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/sched/mm.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include "iostat.h"
21#include <trace/events/f2fs.h>
22
23#define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
24
25static struct kmem_cache *nat_entry_slab;
26static struct kmem_cache *free_nid_slab;
27static struct kmem_cache *nat_entry_set_slab;
28static struct kmem_cache *fsync_node_entry_slab;
29
30/*
31 * Check whether the given nid is within node id range.
32 */
33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34{
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43}
44
45bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46{
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 enum extent_type etype = type == READ_EXTENT_CACHE ?
90 EX_READ : EX_BLOCK_AGE;
91 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93 mem_size = (atomic_read(&eti->total_ext_tree) *
94 sizeof(struct extent_tree) +
95 atomic_read(&eti->total_ext_node) *
96 sizeof(struct extent_node)) >> PAGE_SHIFT;
97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 } else if (type == DISCARD_CACHE) {
99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 } else if (type == COMPRESS_PAGE) {
103#ifdef CONFIG_F2FS_FS_COMPRESSION
104 unsigned long free_ram = val.freeram;
105
106 /*
107 * free memory is lower than watermark or cached page count
108 * exceed threshold, deny caching compress page.
109 */
110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 (COMPRESS_MAPPING(sbi)->nrpages <
112 free_ram * sbi->compress_percent / 100);
113#else
114 res = false;
115#endif
116 } else {
117 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 return true;
119 }
120 return res;
121}
122
123static void clear_node_page_dirty(struct page *page)
124{
125 if (PageDirty(page)) {
126 f2fs_clear_page_cache_dirty_tag(page_folio(page));
127 clear_page_dirty_for_io(page);
128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 }
130 ClearPageUptodate(page);
131}
132
133static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134{
135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136}
137
138static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139{
140 struct page *src_page;
141 struct page *dst_page;
142 pgoff_t dst_off;
143 void *src_addr;
144 void *dst_addr;
145 struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149 /* get current nat block page with lock */
150 src_page = get_current_nat_page(sbi, nid);
151 if (IS_ERR(src_page))
152 return src_page;
153 dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 f2fs_bug_on(sbi, PageDirty(src_page));
155
156 src_addr = page_address(src_page);
157 dst_addr = page_address(dst_page);
158 memcpy(dst_addr, src_addr, PAGE_SIZE);
159 set_page_dirty(dst_page);
160 f2fs_put_page(src_page, 1);
161
162 set_to_next_nat(nm_i, nid);
163
164 return dst_page;
165}
166
167static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 nid_t nid, bool no_fail)
169{
170 struct nat_entry *new;
171
172 new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 GFP_F2FS_ZERO, no_fail, sbi);
174 if (new) {
175 nat_set_nid(new, nid);
176 nat_reset_flag(new);
177 }
178 return new;
179}
180
181static void __free_nat_entry(struct nat_entry *e)
182{
183 kmem_cache_free(nat_entry_slab, e);
184}
185
186/* must be locked by nat_tree_lock */
187static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189{
190 if (no_fail)
191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 return NULL;
194
195 if (raw_ne)
196 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198 spin_lock(&nm_i->nat_list_lock);
199 list_add_tail(&ne->list, &nm_i->nat_entries);
200 spin_unlock(&nm_i->nat_list_lock);
201
202 nm_i->nat_cnt[TOTAL_NAT]++;
203 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 return ne;
205}
206
207static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208{
209 struct nat_entry *ne;
210
211 ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213 /* for recent accessed nat entry, move it to tail of lru list */
214 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 spin_lock(&nm_i->nat_list_lock);
216 if (!list_empty(&ne->list))
217 list_move_tail(&ne->list, &nm_i->nat_entries);
218 spin_unlock(&nm_i->nat_list_lock);
219 }
220
221 return ne;
222}
223
224static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 nid_t start, unsigned int nr, struct nat_entry **ep)
226{
227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228}
229
230static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231{
232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 nm_i->nat_cnt[TOTAL_NAT]--;
234 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 __free_nat_entry(e);
236}
237
238static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 struct nat_entry *ne)
240{
241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 struct nat_entry_set *head;
243
244 head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 if (!head) {
246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 GFP_NOFS, true, NULL);
248
249 INIT_LIST_HEAD(&head->entry_list);
250 INIT_LIST_HEAD(&head->set_list);
251 head->set = set;
252 head->entry_cnt = 0;
253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 }
255 return head;
256}
257
258static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 struct nat_entry *ne)
260{
261 struct nat_entry_set *head;
262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264 if (!new_ne)
265 head = __grab_nat_entry_set(nm_i, ne);
266
267 /*
268 * update entry_cnt in below condition:
269 * 1. update NEW_ADDR to valid block address;
270 * 2. update old block address to new one;
271 */
272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 !get_nat_flag(ne, IS_DIRTY)))
274 head->entry_cnt++;
275
276 set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278 if (get_nat_flag(ne, IS_DIRTY))
279 goto refresh_list;
280
281 nm_i->nat_cnt[DIRTY_NAT]++;
282 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 set_nat_flag(ne, IS_DIRTY, true);
284refresh_list:
285 spin_lock(&nm_i->nat_list_lock);
286 if (new_ne)
287 list_del_init(&ne->list);
288 else
289 list_move_tail(&ne->list, &head->entry_list);
290 spin_unlock(&nm_i->nat_list_lock);
291}
292
293static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 struct nat_entry_set *set, struct nat_entry *ne)
295{
296 spin_lock(&nm_i->nat_list_lock);
297 list_move_tail(&ne->list, &nm_i->nat_entries);
298 spin_unlock(&nm_i->nat_list_lock);
299
300 set_nat_flag(ne, IS_DIRTY, false);
301 set->entry_cnt--;
302 nm_i->nat_cnt[DIRTY_NAT]--;
303 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304}
305
306static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308{
309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 start, nr);
311}
312
313bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314{
315 return NODE_MAPPING(sbi) == page->mapping &&
316 IS_DNODE(page) && is_cold_node(page);
317}
318
319void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320{
321 spin_lock_init(&sbi->fsync_node_lock);
322 INIT_LIST_HEAD(&sbi->fsync_node_list);
323 sbi->fsync_seg_id = 0;
324 sbi->fsync_node_num = 0;
325}
326
327static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 struct page *page)
329{
330 struct fsync_node_entry *fn;
331 unsigned long flags;
332 unsigned int seq_id;
333
334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 GFP_NOFS, true, NULL);
336
337 get_page(page);
338 fn->page = page;
339 INIT_LIST_HEAD(&fn->list);
340
341 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 list_add_tail(&fn->list, &sbi->fsync_node_list);
343 fn->seq_id = sbi->fsync_seg_id++;
344 seq_id = fn->seq_id;
345 sbi->fsync_node_num++;
346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348 return seq_id;
349}
350
351void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352{
353 struct fsync_node_entry *fn;
354 unsigned long flags;
355
356 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 if (fn->page == page) {
359 list_del(&fn->list);
360 sbi->fsync_node_num--;
361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 kmem_cache_free(fsync_node_entry_slab, fn);
363 put_page(page);
364 return;
365 }
366 }
367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 f2fs_bug_on(sbi, 1);
369}
370
371void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372{
373 unsigned long flags;
374
375 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 sbi->fsync_seg_id = 0;
377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378}
379
380int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381{
382 struct f2fs_nm_info *nm_i = NM_I(sbi);
383 struct nat_entry *e;
384 bool need = false;
385
386 f2fs_down_read(&nm_i->nat_tree_lock);
387 e = __lookup_nat_cache(nm_i, nid);
388 if (e) {
389 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 !get_nat_flag(e, HAS_FSYNCED_INODE))
391 need = true;
392 }
393 f2fs_up_read(&nm_i->nat_tree_lock);
394 return need;
395}
396
397bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398{
399 struct f2fs_nm_info *nm_i = NM_I(sbi);
400 struct nat_entry *e;
401 bool is_cp = true;
402
403 f2fs_down_read(&nm_i->nat_tree_lock);
404 e = __lookup_nat_cache(nm_i, nid);
405 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 is_cp = false;
407 f2fs_up_read(&nm_i->nat_tree_lock);
408 return is_cp;
409}
410
411bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412{
413 struct f2fs_nm_info *nm_i = NM_I(sbi);
414 struct nat_entry *e;
415 bool need_update = true;
416
417 f2fs_down_read(&nm_i->nat_tree_lock);
418 e = __lookup_nat_cache(nm_i, ino);
419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 (get_nat_flag(e, IS_CHECKPOINTED) ||
421 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 need_update = false;
423 f2fs_up_read(&nm_i->nat_tree_lock);
424 return need_update;
425}
426
427/* must be locked by nat_tree_lock */
428static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 struct f2fs_nat_entry *ne)
430{
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *new, *e;
433
434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 return;
437
438 new = __alloc_nat_entry(sbi, nid, false);
439 if (!new)
440 return;
441
442 f2fs_down_write(&nm_i->nat_tree_lock);
443 e = __lookup_nat_cache(nm_i, nid);
444 if (!e)
445 e = __init_nat_entry(nm_i, new, ne, false);
446 else
447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 nat_get_blkaddr(e) !=
449 le32_to_cpu(ne->block_addr) ||
450 nat_get_version(e) != ne->version);
451 f2fs_up_write(&nm_i->nat_tree_lock);
452 if (e != new)
453 __free_nat_entry(new);
454}
455
456static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 block_t new_blkaddr, bool fsync_done)
458{
459 struct f2fs_nm_info *nm_i = NM_I(sbi);
460 struct nat_entry *e;
461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463 f2fs_down_write(&nm_i->nat_tree_lock);
464 e = __lookup_nat_cache(nm_i, ni->nid);
465 if (!e) {
466 e = __init_nat_entry(nm_i, new, NULL, true);
467 copy_node_info(&e->ni, ni);
468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 } else if (new_blkaddr == NEW_ADDR) {
470 /*
471 * when nid is reallocated,
472 * previous nat entry can be remained in nat cache.
473 * So, reinitialize it with new information.
474 */
475 copy_node_info(&e->ni, ni);
476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 }
478 /* let's free early to reduce memory consumption */
479 if (e != new)
480 __free_nat_entry(new);
481
482 /* sanity check */
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 new_blkaddr == NULL_ADDR);
486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 new_blkaddr == NEW_ADDR);
488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 new_blkaddr == NEW_ADDR);
490
491 /* increment version no as node is removed */
492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 unsigned char version = nat_get_version(e);
494
495 nat_set_version(e, inc_node_version(version));
496 }
497
498 /* change address */
499 nat_set_blkaddr(e, new_blkaddr);
500 if (!__is_valid_data_blkaddr(new_blkaddr))
501 set_nat_flag(e, IS_CHECKPOINTED, false);
502 __set_nat_cache_dirty(nm_i, e);
503
504 /* update fsync_mark if its inode nat entry is still alive */
505 if (ni->nid != ni->ino)
506 e = __lookup_nat_cache(nm_i, ni->ino);
507 if (e) {
508 if (fsync_done && ni->nid == ni->ino)
509 set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 }
512 f2fs_up_write(&nm_i->nat_tree_lock);
513}
514
515int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516{
517 struct f2fs_nm_info *nm_i = NM_I(sbi);
518 int nr = nr_shrink;
519
520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 return 0;
522
523 spin_lock(&nm_i->nat_list_lock);
524 while (nr_shrink) {
525 struct nat_entry *ne;
526
527 if (list_empty(&nm_i->nat_entries))
528 break;
529
530 ne = list_first_entry(&nm_i->nat_entries,
531 struct nat_entry, list);
532 list_del(&ne->list);
533 spin_unlock(&nm_i->nat_list_lock);
534
535 __del_from_nat_cache(nm_i, ne);
536 nr_shrink--;
537
538 spin_lock(&nm_i->nat_list_lock);
539 }
540 spin_unlock(&nm_i->nat_list_lock);
541
542 f2fs_up_write(&nm_i->nat_tree_lock);
543 return nr - nr_shrink;
544}
545
546int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 struct node_info *ni, bool checkpoint_context)
548{
549 struct f2fs_nm_info *nm_i = NM_I(sbi);
550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 struct f2fs_journal *journal = curseg->journal;
552 nid_t start_nid = START_NID(nid);
553 struct f2fs_nat_block *nat_blk;
554 struct page *page = NULL;
555 struct f2fs_nat_entry ne;
556 struct nat_entry *e;
557 pgoff_t index;
558 block_t blkaddr;
559 int i;
560
561 ni->flag = 0;
562 ni->nid = nid;
563retry:
564 /* Check nat cache */
565 f2fs_down_read(&nm_i->nat_tree_lock);
566 e = __lookup_nat_cache(nm_i, nid);
567 if (e) {
568 ni->ino = nat_get_ino(e);
569 ni->blk_addr = nat_get_blkaddr(e);
570 ni->version = nat_get_version(e);
571 f2fs_up_read(&nm_i->nat_tree_lock);
572 return 0;
573 }
574
575 /*
576 * Check current segment summary by trying to grab journal_rwsem first.
577 * This sem is on the critical path on the checkpoint requiring the above
578 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
579 * while not bothering checkpoint.
580 */
581 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
582 down_read(&curseg->journal_rwsem);
583 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
584 !down_read_trylock(&curseg->journal_rwsem)) {
585 f2fs_up_read(&nm_i->nat_tree_lock);
586 goto retry;
587 }
588
589 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
590 if (i >= 0) {
591 ne = nat_in_journal(journal, i);
592 node_info_from_raw_nat(ni, &ne);
593 }
594 up_read(&curseg->journal_rwsem);
595 if (i >= 0) {
596 f2fs_up_read(&nm_i->nat_tree_lock);
597 goto cache;
598 }
599
600 /* Fill node_info from nat page */
601 index = current_nat_addr(sbi, nid);
602 f2fs_up_read(&nm_i->nat_tree_lock);
603
604 page = f2fs_get_meta_page(sbi, index);
605 if (IS_ERR(page))
606 return PTR_ERR(page);
607
608 nat_blk = (struct f2fs_nat_block *)page_address(page);
609 ne = nat_blk->entries[nid - start_nid];
610 node_info_from_raw_nat(ni, &ne);
611 f2fs_put_page(page, 1);
612cache:
613 blkaddr = le32_to_cpu(ne.block_addr);
614 if (__is_valid_data_blkaddr(blkaddr) &&
615 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
616 return -EFAULT;
617
618 /* cache nat entry */
619 cache_nat_entry(sbi, nid, &ne);
620 return 0;
621}
622
623/*
624 * readahead MAX_RA_NODE number of node pages.
625 */
626static void f2fs_ra_node_pages(struct page *parent, int start, int n)
627{
628 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
629 struct blk_plug plug;
630 int i, end;
631 nid_t nid;
632
633 blk_start_plug(&plug);
634
635 /* Then, try readahead for siblings of the desired node */
636 end = start + n;
637 end = min(end, (int)NIDS_PER_BLOCK);
638 for (i = start; i < end; i++) {
639 nid = get_nid(parent, i, false);
640 f2fs_ra_node_page(sbi, nid);
641 }
642
643 blk_finish_plug(&plug);
644}
645
646pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
647{
648 const long direct_index = ADDRS_PER_INODE(dn->inode);
649 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
650 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
651 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
652 int cur_level = dn->cur_level;
653 int max_level = dn->max_level;
654 pgoff_t base = 0;
655
656 if (!dn->max_level)
657 return pgofs + 1;
658
659 while (max_level-- > cur_level)
660 skipped_unit *= NIDS_PER_BLOCK;
661
662 switch (dn->max_level) {
663 case 3:
664 base += 2 * indirect_blks;
665 fallthrough;
666 case 2:
667 base += 2 * direct_blks;
668 fallthrough;
669 case 1:
670 base += direct_index;
671 break;
672 default:
673 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
674 }
675
676 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
677}
678
679/*
680 * The maximum depth is four.
681 * Offset[0] will have raw inode offset.
682 */
683static int get_node_path(struct inode *inode, long block,
684 int offset[4], unsigned int noffset[4])
685{
686 const long direct_index = ADDRS_PER_INODE(inode);
687 const long direct_blks = ADDRS_PER_BLOCK(inode);
688 const long dptrs_per_blk = NIDS_PER_BLOCK;
689 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
690 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
691 int n = 0;
692 int level = 0;
693
694 noffset[0] = 0;
695
696 if (block < direct_index) {
697 offset[n] = block;
698 goto got;
699 }
700 block -= direct_index;
701 if (block < direct_blks) {
702 offset[n++] = NODE_DIR1_BLOCK;
703 noffset[n] = 1;
704 offset[n] = block;
705 level = 1;
706 goto got;
707 }
708 block -= direct_blks;
709 if (block < direct_blks) {
710 offset[n++] = NODE_DIR2_BLOCK;
711 noffset[n] = 2;
712 offset[n] = block;
713 level = 1;
714 goto got;
715 }
716 block -= direct_blks;
717 if (block < indirect_blks) {
718 offset[n++] = NODE_IND1_BLOCK;
719 noffset[n] = 3;
720 offset[n++] = block / direct_blks;
721 noffset[n] = 4 + offset[n - 1];
722 offset[n] = block % direct_blks;
723 level = 2;
724 goto got;
725 }
726 block -= indirect_blks;
727 if (block < indirect_blks) {
728 offset[n++] = NODE_IND2_BLOCK;
729 noffset[n] = 4 + dptrs_per_blk;
730 offset[n++] = block / direct_blks;
731 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
732 offset[n] = block % direct_blks;
733 level = 2;
734 goto got;
735 }
736 block -= indirect_blks;
737 if (block < dindirect_blks) {
738 offset[n++] = NODE_DIND_BLOCK;
739 noffset[n] = 5 + (dptrs_per_blk * 2);
740 offset[n++] = block / indirect_blks;
741 noffset[n] = 6 + (dptrs_per_blk * 2) +
742 offset[n - 1] * (dptrs_per_blk + 1);
743 offset[n++] = (block / direct_blks) % dptrs_per_blk;
744 noffset[n] = 7 + (dptrs_per_blk * 2) +
745 offset[n - 2] * (dptrs_per_blk + 1) +
746 offset[n - 1];
747 offset[n] = block % direct_blks;
748 level = 3;
749 goto got;
750 } else {
751 return -E2BIG;
752 }
753got:
754 return level;
755}
756
757/*
758 * Caller should call f2fs_put_dnode(dn).
759 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
760 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
761 */
762int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
763{
764 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
765 struct page *npage[4];
766 struct page *parent = NULL;
767 int offset[4];
768 unsigned int noffset[4];
769 nid_t nids[4];
770 int level, i = 0;
771 int err = 0;
772
773 level = get_node_path(dn->inode, index, offset, noffset);
774 if (level < 0)
775 return level;
776
777 nids[0] = dn->inode->i_ino;
778 npage[0] = dn->inode_page;
779
780 if (!npage[0]) {
781 npage[0] = f2fs_get_node_page(sbi, nids[0]);
782 if (IS_ERR(npage[0]))
783 return PTR_ERR(npage[0]);
784 }
785
786 /* if inline_data is set, should not report any block indices */
787 if (f2fs_has_inline_data(dn->inode) && index) {
788 err = -ENOENT;
789 f2fs_put_page(npage[0], 1);
790 goto release_out;
791 }
792
793 parent = npage[0];
794 if (level != 0)
795 nids[1] = get_nid(parent, offset[0], true);
796 dn->inode_page = npage[0];
797 dn->inode_page_locked = true;
798
799 /* get indirect or direct nodes */
800 for (i = 1; i <= level; i++) {
801 bool done = false;
802
803 if (!nids[i] && mode == ALLOC_NODE) {
804 /* alloc new node */
805 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
806 err = -ENOSPC;
807 goto release_pages;
808 }
809
810 dn->nid = nids[i];
811 npage[i] = f2fs_new_node_page(dn, noffset[i]);
812 if (IS_ERR(npage[i])) {
813 f2fs_alloc_nid_failed(sbi, nids[i]);
814 err = PTR_ERR(npage[i]);
815 goto release_pages;
816 }
817
818 set_nid(parent, offset[i - 1], nids[i], i == 1);
819 f2fs_alloc_nid_done(sbi, nids[i]);
820 done = true;
821 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
822 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
823 if (IS_ERR(npage[i])) {
824 err = PTR_ERR(npage[i]);
825 goto release_pages;
826 }
827 done = true;
828 }
829 if (i == 1) {
830 dn->inode_page_locked = false;
831 unlock_page(parent);
832 } else {
833 f2fs_put_page(parent, 1);
834 }
835
836 if (!done) {
837 npage[i] = f2fs_get_node_page(sbi, nids[i]);
838 if (IS_ERR(npage[i])) {
839 err = PTR_ERR(npage[i]);
840 f2fs_put_page(npage[0], 0);
841 goto release_out;
842 }
843 }
844 if (i < level) {
845 parent = npage[i];
846 nids[i + 1] = get_nid(parent, offset[i], false);
847 }
848 }
849 dn->nid = nids[level];
850 dn->ofs_in_node = offset[level];
851 dn->node_page = npage[level];
852 dn->data_blkaddr = f2fs_data_blkaddr(dn);
853
854 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
855 f2fs_sb_has_readonly(sbi)) {
856 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
857 unsigned int ofs_in_node = dn->ofs_in_node;
858 pgoff_t fofs = index;
859 unsigned int c_len;
860 block_t blkaddr;
861
862 /* should align fofs and ofs_in_node to cluster_size */
863 if (fofs % cluster_size) {
864 fofs = round_down(fofs, cluster_size);
865 ofs_in_node = round_down(ofs_in_node, cluster_size);
866 }
867
868 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
869 if (!c_len)
870 goto out;
871
872 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
873 if (blkaddr == COMPRESS_ADDR)
874 blkaddr = data_blkaddr(dn->inode, dn->node_page,
875 ofs_in_node + 1);
876
877 f2fs_update_read_extent_tree_range_compressed(dn->inode,
878 fofs, blkaddr, cluster_size, c_len);
879 }
880out:
881 return 0;
882
883release_pages:
884 f2fs_put_page(parent, 1);
885 if (i > 1)
886 f2fs_put_page(npage[0], 0);
887release_out:
888 dn->inode_page = NULL;
889 dn->node_page = NULL;
890 if (err == -ENOENT) {
891 dn->cur_level = i;
892 dn->max_level = level;
893 dn->ofs_in_node = offset[level];
894 }
895 return err;
896}
897
898static int truncate_node(struct dnode_of_data *dn)
899{
900 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
901 struct node_info ni;
902 int err;
903 pgoff_t index;
904
905 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
906 if (err)
907 return err;
908
909 if (ni.blk_addr != NEW_ADDR &&
910 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
911 f2fs_err_ratelimited(sbi,
912 "nat entry is corrupted, run fsck to fix it, ino:%u, "
913 "nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
914 set_sbi_flag(sbi, SBI_NEED_FSCK);
915 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
916 return -EFSCORRUPTED;
917 }
918
919 /* Deallocate node address */
920 f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
921 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
922 set_node_addr(sbi, &ni, NULL_ADDR, false);
923
924 if (dn->nid == dn->inode->i_ino) {
925 f2fs_remove_orphan_inode(sbi, dn->nid);
926 dec_valid_inode_count(sbi);
927 f2fs_inode_synced(dn->inode);
928 }
929
930 clear_node_page_dirty(dn->node_page);
931 set_sbi_flag(sbi, SBI_IS_DIRTY);
932
933 index = page_folio(dn->node_page)->index;
934 f2fs_put_page(dn->node_page, 1);
935
936 invalidate_mapping_pages(NODE_MAPPING(sbi),
937 index, index);
938
939 dn->node_page = NULL;
940 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
941
942 return 0;
943}
944
945static int truncate_dnode(struct dnode_of_data *dn)
946{
947 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
948 struct page *page;
949 int err;
950
951 if (dn->nid == 0)
952 return 1;
953
954 /* get direct node */
955 page = f2fs_get_node_page(sbi, dn->nid);
956 if (PTR_ERR(page) == -ENOENT)
957 return 1;
958 else if (IS_ERR(page))
959 return PTR_ERR(page);
960
961 if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
962 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
963 dn->inode->i_ino, dn->nid, ino_of_node(page));
964 set_sbi_flag(sbi, SBI_NEED_FSCK);
965 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
966 f2fs_put_page(page, 1);
967 return -EFSCORRUPTED;
968 }
969
970 /* Make dnode_of_data for parameter */
971 dn->node_page = page;
972 dn->ofs_in_node = 0;
973 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
974 err = truncate_node(dn);
975 if (err) {
976 f2fs_put_page(page, 1);
977 return err;
978 }
979
980 return 1;
981}
982
983static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
984 int ofs, int depth)
985{
986 struct dnode_of_data rdn = *dn;
987 struct page *page;
988 struct f2fs_node *rn;
989 nid_t child_nid;
990 unsigned int child_nofs;
991 int freed = 0;
992 int i, ret;
993
994 if (dn->nid == 0)
995 return NIDS_PER_BLOCK + 1;
996
997 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
998
999 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
1000 if (IS_ERR(page)) {
1001 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
1002 return PTR_ERR(page);
1003 }
1004
1005 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
1006
1007 rn = F2FS_NODE(page);
1008 if (depth < 3) {
1009 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1010 child_nid = le32_to_cpu(rn->in.nid[i]);
1011 if (child_nid == 0)
1012 continue;
1013 rdn.nid = child_nid;
1014 ret = truncate_dnode(&rdn);
1015 if (ret < 0)
1016 goto out_err;
1017 if (set_nid(page, i, 0, false))
1018 dn->node_changed = true;
1019 }
1020 } else {
1021 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1022 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1023 child_nid = le32_to_cpu(rn->in.nid[i]);
1024 if (child_nid == 0) {
1025 child_nofs += NIDS_PER_BLOCK + 1;
1026 continue;
1027 }
1028 rdn.nid = child_nid;
1029 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1030 if (ret == (NIDS_PER_BLOCK + 1)) {
1031 if (set_nid(page, i, 0, false))
1032 dn->node_changed = true;
1033 child_nofs += ret;
1034 } else if (ret < 0 && ret != -ENOENT) {
1035 goto out_err;
1036 }
1037 }
1038 freed = child_nofs;
1039 }
1040
1041 if (!ofs) {
1042 /* remove current indirect node */
1043 dn->node_page = page;
1044 ret = truncate_node(dn);
1045 if (ret)
1046 goto out_err;
1047 freed++;
1048 } else {
1049 f2fs_put_page(page, 1);
1050 }
1051 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1052 return freed;
1053
1054out_err:
1055 f2fs_put_page(page, 1);
1056 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1057 return ret;
1058}
1059
1060static int truncate_partial_nodes(struct dnode_of_data *dn,
1061 struct f2fs_inode *ri, int *offset, int depth)
1062{
1063 struct page *pages[2];
1064 nid_t nid[3];
1065 nid_t child_nid;
1066 int err = 0;
1067 int i;
1068 int idx = depth - 2;
1069
1070 nid[0] = get_nid(dn->inode_page, offset[0], true);
1071 if (!nid[0])
1072 return 0;
1073
1074 /* get indirect nodes in the path */
1075 for (i = 0; i < idx + 1; i++) {
1076 /* reference count'll be increased */
1077 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1078 if (IS_ERR(pages[i])) {
1079 err = PTR_ERR(pages[i]);
1080 idx = i - 1;
1081 goto fail;
1082 }
1083 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1084 }
1085
1086 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1087
1088 /* free direct nodes linked to a partial indirect node */
1089 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1090 child_nid = get_nid(pages[idx], i, false);
1091 if (!child_nid)
1092 continue;
1093 dn->nid = child_nid;
1094 err = truncate_dnode(dn);
1095 if (err < 0)
1096 goto fail;
1097 if (set_nid(pages[idx], i, 0, false))
1098 dn->node_changed = true;
1099 }
1100
1101 if (offset[idx + 1] == 0) {
1102 dn->node_page = pages[idx];
1103 dn->nid = nid[idx];
1104 err = truncate_node(dn);
1105 if (err)
1106 goto fail;
1107 } else {
1108 f2fs_put_page(pages[idx], 1);
1109 }
1110 offset[idx]++;
1111 offset[idx + 1] = 0;
1112 idx--;
1113fail:
1114 for (i = idx; i >= 0; i--)
1115 f2fs_put_page(pages[i], 1);
1116
1117 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1118
1119 return err;
1120}
1121
1122/*
1123 * All the block addresses of data and nodes should be nullified.
1124 */
1125int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1126{
1127 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1128 int err = 0, cont = 1;
1129 int level, offset[4], noffset[4];
1130 unsigned int nofs = 0;
1131 struct f2fs_inode *ri;
1132 struct dnode_of_data dn;
1133 struct page *page;
1134
1135 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1136
1137 level = get_node_path(inode, from, offset, noffset);
1138 if (level < 0) {
1139 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1140 return level;
1141 }
1142
1143 page = f2fs_get_node_page(sbi, inode->i_ino);
1144 if (IS_ERR(page)) {
1145 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1146 return PTR_ERR(page);
1147 }
1148
1149 set_new_dnode(&dn, inode, page, NULL, 0);
1150 unlock_page(page);
1151
1152 ri = F2FS_INODE(page);
1153 switch (level) {
1154 case 0:
1155 case 1:
1156 nofs = noffset[1];
1157 break;
1158 case 2:
1159 nofs = noffset[1];
1160 if (!offset[level - 1])
1161 goto skip_partial;
1162 err = truncate_partial_nodes(&dn, ri, offset, level);
1163 if (err < 0 && err != -ENOENT)
1164 goto fail;
1165 nofs += 1 + NIDS_PER_BLOCK;
1166 break;
1167 case 3:
1168 nofs = 5 + 2 * NIDS_PER_BLOCK;
1169 if (!offset[level - 1])
1170 goto skip_partial;
1171 err = truncate_partial_nodes(&dn, ri, offset, level);
1172 if (err < 0 && err != -ENOENT)
1173 goto fail;
1174 break;
1175 default:
1176 BUG();
1177 }
1178
1179skip_partial:
1180 while (cont) {
1181 dn.nid = get_nid(page, offset[0], true);
1182 switch (offset[0]) {
1183 case NODE_DIR1_BLOCK:
1184 case NODE_DIR2_BLOCK:
1185 err = truncate_dnode(&dn);
1186 break;
1187
1188 case NODE_IND1_BLOCK:
1189 case NODE_IND2_BLOCK:
1190 err = truncate_nodes(&dn, nofs, offset[1], 2);
1191 break;
1192
1193 case NODE_DIND_BLOCK:
1194 err = truncate_nodes(&dn, nofs, offset[1], 3);
1195 cont = 0;
1196 break;
1197
1198 default:
1199 BUG();
1200 }
1201 if (err == -ENOENT) {
1202 set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
1203 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1204 f2fs_err_ratelimited(sbi,
1205 "truncate node fail, ino:%lu, nid:%u, "
1206 "offset[0]:%d, offset[1]:%d, nofs:%d",
1207 inode->i_ino, dn.nid, offset[0],
1208 offset[1], nofs);
1209 err = 0;
1210 }
1211 if (err < 0)
1212 goto fail;
1213 if (offset[1] == 0 && get_nid(page, offset[0], true)) {
1214 lock_page(page);
1215 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1216 set_nid(page, offset[0], 0, true);
1217 unlock_page(page);
1218 }
1219 offset[1] = 0;
1220 offset[0]++;
1221 nofs += err;
1222 }
1223fail:
1224 f2fs_put_page(page, 0);
1225 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1226 return err > 0 ? 0 : err;
1227}
1228
1229/* caller must lock inode page */
1230int f2fs_truncate_xattr_node(struct inode *inode)
1231{
1232 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1233 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1234 struct dnode_of_data dn;
1235 struct page *npage;
1236 int err;
1237
1238 if (!nid)
1239 return 0;
1240
1241 npage = f2fs_get_node_page(sbi, nid);
1242 if (IS_ERR(npage))
1243 return PTR_ERR(npage);
1244
1245 set_new_dnode(&dn, inode, NULL, npage, nid);
1246 err = truncate_node(&dn);
1247 if (err) {
1248 f2fs_put_page(npage, 1);
1249 return err;
1250 }
1251
1252 f2fs_i_xnid_write(inode, 0);
1253
1254 return 0;
1255}
1256
1257/*
1258 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1259 * f2fs_unlock_op().
1260 */
1261int f2fs_remove_inode_page(struct inode *inode)
1262{
1263 struct dnode_of_data dn;
1264 int err;
1265
1266 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1267 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1268 if (err)
1269 return err;
1270
1271 err = f2fs_truncate_xattr_node(inode);
1272 if (err) {
1273 f2fs_put_dnode(&dn);
1274 return err;
1275 }
1276
1277 /* remove potential inline_data blocks */
1278 if (!IS_DEVICE_ALIASING(inode) &&
1279 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1280 S_ISLNK(inode->i_mode)))
1281 f2fs_truncate_data_blocks_range(&dn, 1);
1282
1283 /* 0 is possible, after f2fs_new_inode() has failed */
1284 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1285 f2fs_put_dnode(&dn);
1286 return -EIO;
1287 }
1288
1289 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1290 f2fs_warn(F2FS_I_SB(inode),
1291 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1292 inode->i_ino, (unsigned long long)inode->i_blocks);
1293 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1294 }
1295
1296 /* will put inode & node pages */
1297 err = truncate_node(&dn);
1298 if (err) {
1299 f2fs_put_dnode(&dn);
1300 return err;
1301 }
1302 return 0;
1303}
1304
1305struct page *f2fs_new_inode_page(struct inode *inode)
1306{
1307 struct dnode_of_data dn;
1308
1309 /* allocate inode page for new inode */
1310 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1311
1312 /* caller should f2fs_put_page(page, 1); */
1313 return f2fs_new_node_page(&dn, 0);
1314}
1315
1316struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1317{
1318 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1319 struct node_info new_ni;
1320 struct page *page;
1321 int err;
1322
1323 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1324 return ERR_PTR(-EPERM);
1325
1326 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1327 if (!page)
1328 return ERR_PTR(-ENOMEM);
1329
1330 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1331 goto fail;
1332
1333#ifdef CONFIG_F2FS_CHECK_FS
1334 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1335 if (err) {
1336 dec_valid_node_count(sbi, dn->inode, !ofs);
1337 goto fail;
1338 }
1339 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1340 err = -EFSCORRUPTED;
1341 dec_valid_node_count(sbi, dn->inode, !ofs);
1342 set_sbi_flag(sbi, SBI_NEED_FSCK);
1343 f2fs_warn_ratelimited(sbi,
1344 "f2fs_new_node_page: inconsistent nat entry, "
1345 "ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1346 new_ni.ino, new_ni.nid, new_ni.blk_addr,
1347 new_ni.version, new_ni.flag);
1348 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1349 goto fail;
1350 }
1351#endif
1352 new_ni.nid = dn->nid;
1353 new_ni.ino = dn->inode->i_ino;
1354 new_ni.blk_addr = NULL_ADDR;
1355 new_ni.flag = 0;
1356 new_ni.version = 0;
1357 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1358
1359 f2fs_wait_on_page_writeback(page, NODE, true, true);
1360 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1361 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1362 if (!PageUptodate(page))
1363 SetPageUptodate(page);
1364 if (set_page_dirty(page))
1365 dn->node_changed = true;
1366
1367 if (f2fs_has_xattr_block(ofs))
1368 f2fs_i_xnid_write(dn->inode, dn->nid);
1369
1370 if (ofs == 0)
1371 inc_valid_inode_count(sbi);
1372 return page;
1373fail:
1374 clear_node_page_dirty(page);
1375 f2fs_put_page(page, 1);
1376 return ERR_PTR(err);
1377}
1378
1379/*
1380 * Caller should do after getting the following values.
1381 * 0: f2fs_put_page(page, 0)
1382 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1383 */
1384static int read_node_page(struct page *page, blk_opf_t op_flags)
1385{
1386 struct folio *folio = page_folio(page);
1387 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1388 struct node_info ni;
1389 struct f2fs_io_info fio = {
1390 .sbi = sbi,
1391 .type = NODE,
1392 .op = REQ_OP_READ,
1393 .op_flags = op_flags,
1394 .page = page,
1395 .encrypted_page = NULL,
1396 };
1397 int err;
1398
1399 if (folio_test_uptodate(folio)) {
1400 if (!f2fs_inode_chksum_verify(sbi, page)) {
1401 folio_clear_uptodate(folio);
1402 return -EFSBADCRC;
1403 }
1404 return LOCKED_PAGE;
1405 }
1406
1407 err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1408 if (err)
1409 return err;
1410
1411 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1412 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1413 folio_clear_uptodate(folio);
1414 return -ENOENT;
1415 }
1416
1417 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1418
1419 err = f2fs_submit_page_bio(&fio);
1420
1421 if (!err)
1422 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1423
1424 return err;
1425}
1426
1427/*
1428 * Readahead a node page
1429 */
1430void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1431{
1432 struct page *apage;
1433 int err;
1434
1435 if (!nid)
1436 return;
1437 if (f2fs_check_nid_range(sbi, nid))
1438 return;
1439
1440 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1441 if (apage)
1442 return;
1443
1444 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1445 if (!apage)
1446 return;
1447
1448 err = read_node_page(apage, REQ_RAHEAD);
1449 f2fs_put_page(apage, err ? 1 : 0);
1450}
1451
1452static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1453 struct page *parent, int start)
1454{
1455 struct page *page;
1456 int err;
1457
1458 if (!nid)
1459 return ERR_PTR(-ENOENT);
1460 if (f2fs_check_nid_range(sbi, nid))
1461 return ERR_PTR(-EINVAL);
1462repeat:
1463 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1464 if (!page)
1465 return ERR_PTR(-ENOMEM);
1466
1467 err = read_node_page(page, 0);
1468 if (err < 0) {
1469 goto out_put_err;
1470 } else if (err == LOCKED_PAGE) {
1471 err = 0;
1472 goto page_hit;
1473 }
1474
1475 if (parent)
1476 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1477
1478 lock_page(page);
1479
1480 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1481 f2fs_put_page(page, 1);
1482 goto repeat;
1483 }
1484
1485 if (unlikely(!PageUptodate(page))) {
1486 err = -EIO;
1487 goto out_err;
1488 }
1489
1490 if (!f2fs_inode_chksum_verify(sbi, page)) {
1491 err = -EFSBADCRC;
1492 goto out_err;
1493 }
1494page_hit:
1495 if (likely(nid == nid_of_node(page)))
1496 return page;
1497
1498 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1499 nid, nid_of_node(page), ino_of_node(page),
1500 ofs_of_node(page), cpver_of_node(page),
1501 next_blkaddr_of_node(page));
1502 set_sbi_flag(sbi, SBI_NEED_FSCK);
1503 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1504 err = -EFSCORRUPTED;
1505out_err:
1506 ClearPageUptodate(page);
1507out_put_err:
1508 /* ENOENT comes from read_node_page which is not an error. */
1509 if (err != -ENOENT)
1510 f2fs_handle_page_eio(sbi, page_folio(page), NODE);
1511 f2fs_put_page(page, 1);
1512 return ERR_PTR(err);
1513}
1514
1515struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1516{
1517 return __get_node_page(sbi, nid, NULL, 0);
1518}
1519
1520struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1521{
1522 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1523 nid_t nid = get_nid(parent, start, false);
1524
1525 return __get_node_page(sbi, nid, parent, start);
1526}
1527
1528static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1529{
1530 struct inode *inode;
1531 struct page *page;
1532 int ret;
1533
1534 /* should flush inline_data before evict_inode */
1535 inode = ilookup(sbi->sb, ino);
1536 if (!inode)
1537 return;
1538
1539 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1540 FGP_LOCK|FGP_NOWAIT, 0);
1541 if (!page)
1542 goto iput_out;
1543
1544 if (!PageUptodate(page))
1545 goto page_out;
1546
1547 if (!PageDirty(page))
1548 goto page_out;
1549
1550 if (!clear_page_dirty_for_io(page))
1551 goto page_out;
1552
1553 ret = f2fs_write_inline_data(inode, page_folio(page));
1554 inode_dec_dirty_pages(inode);
1555 f2fs_remove_dirty_inode(inode);
1556 if (ret)
1557 set_page_dirty(page);
1558page_out:
1559 f2fs_put_page(page, 1);
1560iput_out:
1561 iput(inode);
1562}
1563
1564static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1565{
1566 pgoff_t index;
1567 struct folio_batch fbatch;
1568 struct page *last_page = NULL;
1569 int nr_folios;
1570
1571 folio_batch_init(&fbatch);
1572 index = 0;
1573
1574 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1575 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1576 &fbatch))) {
1577 int i;
1578
1579 for (i = 0; i < nr_folios; i++) {
1580 struct page *page = &fbatch.folios[i]->page;
1581
1582 if (unlikely(f2fs_cp_error(sbi))) {
1583 f2fs_put_page(last_page, 0);
1584 folio_batch_release(&fbatch);
1585 return ERR_PTR(-EIO);
1586 }
1587
1588 if (!IS_DNODE(page) || !is_cold_node(page))
1589 continue;
1590 if (ino_of_node(page) != ino)
1591 continue;
1592
1593 lock_page(page);
1594
1595 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1596continue_unlock:
1597 unlock_page(page);
1598 continue;
1599 }
1600 if (ino_of_node(page) != ino)
1601 goto continue_unlock;
1602
1603 if (!PageDirty(page)) {
1604 /* someone wrote it for us */
1605 goto continue_unlock;
1606 }
1607
1608 if (last_page)
1609 f2fs_put_page(last_page, 0);
1610
1611 get_page(page);
1612 last_page = page;
1613 unlock_page(page);
1614 }
1615 folio_batch_release(&fbatch);
1616 cond_resched();
1617 }
1618 return last_page;
1619}
1620
1621static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1622 struct writeback_control *wbc, bool do_balance,
1623 enum iostat_type io_type, unsigned int *seq_id)
1624{
1625 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1626 struct folio *folio = page_folio(page);
1627 nid_t nid;
1628 struct node_info ni;
1629 struct f2fs_io_info fio = {
1630 .sbi = sbi,
1631 .ino = ino_of_node(page),
1632 .type = NODE,
1633 .op = REQ_OP_WRITE,
1634 .op_flags = wbc_to_write_flags(wbc),
1635 .page = page,
1636 .encrypted_page = NULL,
1637 .submitted = 0,
1638 .io_type = io_type,
1639 .io_wbc = wbc,
1640 };
1641 unsigned int seq;
1642
1643 trace_f2fs_writepage(folio, NODE);
1644
1645 if (unlikely(f2fs_cp_error(sbi))) {
1646 /* keep node pages in remount-ro mode */
1647 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1648 goto redirty_out;
1649 folio_clear_uptodate(folio);
1650 dec_page_count(sbi, F2FS_DIRTY_NODES);
1651 folio_unlock(folio);
1652 return 0;
1653 }
1654
1655 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1656 goto redirty_out;
1657
1658 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1659 wbc->sync_mode == WB_SYNC_NONE &&
1660 IS_DNODE(page) && is_cold_node(page))
1661 goto redirty_out;
1662
1663 /* get old block addr of this node page */
1664 nid = nid_of_node(page);
1665 f2fs_bug_on(sbi, folio->index != nid);
1666
1667 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1668 goto redirty_out;
1669
1670 if (wbc->for_reclaim) {
1671 if (!f2fs_down_read_trylock(&sbi->node_write))
1672 goto redirty_out;
1673 } else {
1674 f2fs_down_read(&sbi->node_write);
1675 }
1676
1677 /* This page is already truncated */
1678 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1679 folio_clear_uptodate(folio);
1680 dec_page_count(sbi, F2FS_DIRTY_NODES);
1681 f2fs_up_read(&sbi->node_write);
1682 folio_unlock(folio);
1683 return 0;
1684 }
1685
1686 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1687 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1688 DATA_GENERIC_ENHANCE)) {
1689 f2fs_up_read(&sbi->node_write);
1690 goto redirty_out;
1691 }
1692
1693 if (atomic && !test_opt(sbi, NOBARRIER))
1694 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1695
1696 /* should add to global list before clearing PAGECACHE status */
1697 if (f2fs_in_warm_node_list(sbi, page)) {
1698 seq = f2fs_add_fsync_node_entry(sbi, page);
1699 if (seq_id)
1700 *seq_id = seq;
1701 }
1702
1703 folio_start_writeback(folio);
1704
1705 fio.old_blkaddr = ni.blk_addr;
1706 f2fs_do_write_node_page(nid, &fio);
1707 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1708 dec_page_count(sbi, F2FS_DIRTY_NODES);
1709 f2fs_up_read(&sbi->node_write);
1710
1711 if (wbc->for_reclaim) {
1712 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1713 submitted = NULL;
1714 }
1715
1716 folio_unlock(folio);
1717
1718 if (unlikely(f2fs_cp_error(sbi))) {
1719 f2fs_submit_merged_write(sbi, NODE);
1720 submitted = NULL;
1721 }
1722 if (submitted)
1723 *submitted = fio.submitted;
1724
1725 if (do_balance)
1726 f2fs_balance_fs(sbi, false);
1727 return 0;
1728
1729redirty_out:
1730 folio_redirty_for_writepage(wbc, folio);
1731 return AOP_WRITEPAGE_ACTIVATE;
1732}
1733
1734int f2fs_move_node_page(struct page *node_page, int gc_type)
1735{
1736 int err = 0;
1737
1738 if (gc_type == FG_GC) {
1739 struct writeback_control wbc = {
1740 .sync_mode = WB_SYNC_ALL,
1741 .nr_to_write = 1,
1742 .for_reclaim = 0,
1743 };
1744
1745 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1746
1747 set_page_dirty(node_page);
1748
1749 if (!clear_page_dirty_for_io(node_page)) {
1750 err = -EAGAIN;
1751 goto out_page;
1752 }
1753
1754 if (__write_node_page(node_page, false, NULL,
1755 &wbc, false, FS_GC_NODE_IO, NULL)) {
1756 err = -EAGAIN;
1757 unlock_page(node_page);
1758 }
1759 goto release_page;
1760 } else {
1761 /* set page dirty and write it */
1762 if (!folio_test_writeback(page_folio(node_page)))
1763 set_page_dirty(node_page);
1764 }
1765out_page:
1766 unlock_page(node_page);
1767release_page:
1768 f2fs_put_page(node_page, 0);
1769 return err;
1770}
1771
1772static int f2fs_write_node_page(struct page *page,
1773 struct writeback_control *wbc)
1774{
1775 return __write_node_page(page, false, NULL, wbc, false,
1776 FS_NODE_IO, NULL);
1777}
1778
1779int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1780 struct writeback_control *wbc, bool atomic,
1781 unsigned int *seq_id)
1782{
1783 pgoff_t index;
1784 struct folio_batch fbatch;
1785 int ret = 0;
1786 struct page *last_page = NULL;
1787 bool marked = false;
1788 nid_t ino = inode->i_ino;
1789 int nr_folios;
1790 int nwritten = 0;
1791
1792 if (atomic) {
1793 last_page = last_fsync_dnode(sbi, ino);
1794 if (IS_ERR_OR_NULL(last_page))
1795 return PTR_ERR_OR_ZERO(last_page);
1796 }
1797retry:
1798 folio_batch_init(&fbatch);
1799 index = 0;
1800
1801 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1802 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1803 &fbatch))) {
1804 int i;
1805
1806 for (i = 0; i < nr_folios; i++) {
1807 struct page *page = &fbatch.folios[i]->page;
1808 bool submitted = false;
1809
1810 if (unlikely(f2fs_cp_error(sbi))) {
1811 f2fs_put_page(last_page, 0);
1812 folio_batch_release(&fbatch);
1813 ret = -EIO;
1814 goto out;
1815 }
1816
1817 if (!IS_DNODE(page) || !is_cold_node(page))
1818 continue;
1819 if (ino_of_node(page) != ino)
1820 continue;
1821
1822 lock_page(page);
1823
1824 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1825continue_unlock:
1826 unlock_page(page);
1827 continue;
1828 }
1829 if (ino_of_node(page) != ino)
1830 goto continue_unlock;
1831
1832 if (!PageDirty(page) && page != last_page) {
1833 /* someone wrote it for us */
1834 goto continue_unlock;
1835 }
1836
1837 f2fs_wait_on_page_writeback(page, NODE, true, true);
1838
1839 set_fsync_mark(page, 0);
1840 set_dentry_mark(page, 0);
1841
1842 if (!atomic || page == last_page) {
1843 set_fsync_mark(page, 1);
1844 percpu_counter_inc(&sbi->rf_node_block_count);
1845 if (IS_INODE(page)) {
1846 if (is_inode_flag_set(inode,
1847 FI_DIRTY_INODE))
1848 f2fs_update_inode(inode, page);
1849 set_dentry_mark(page,
1850 f2fs_need_dentry_mark(sbi, ino));
1851 }
1852 /* may be written by other thread */
1853 if (!PageDirty(page))
1854 set_page_dirty(page);
1855 }
1856
1857 if (!clear_page_dirty_for_io(page))
1858 goto continue_unlock;
1859
1860 ret = __write_node_page(page, atomic &&
1861 page == last_page,
1862 &submitted, wbc, true,
1863 FS_NODE_IO, seq_id);
1864 if (ret) {
1865 unlock_page(page);
1866 f2fs_put_page(last_page, 0);
1867 break;
1868 } else if (submitted) {
1869 nwritten++;
1870 }
1871
1872 if (page == last_page) {
1873 f2fs_put_page(page, 0);
1874 marked = true;
1875 break;
1876 }
1877 }
1878 folio_batch_release(&fbatch);
1879 cond_resched();
1880
1881 if (ret || marked)
1882 break;
1883 }
1884 if (!ret && atomic && !marked) {
1885 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1886 ino, page_folio(last_page)->index);
1887 lock_page(last_page);
1888 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1889 set_page_dirty(last_page);
1890 unlock_page(last_page);
1891 goto retry;
1892 }
1893out:
1894 if (nwritten)
1895 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1896 return ret ? -EIO : 0;
1897}
1898
1899static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1900{
1901 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1902 bool clean;
1903
1904 if (inode->i_ino != ino)
1905 return 0;
1906
1907 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1908 return 0;
1909
1910 spin_lock(&sbi->inode_lock[DIRTY_META]);
1911 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1912 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1913
1914 if (clean)
1915 return 0;
1916
1917 inode = igrab(inode);
1918 if (!inode)
1919 return 0;
1920 return 1;
1921}
1922
1923static bool flush_dirty_inode(struct page *page)
1924{
1925 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1926 struct inode *inode;
1927 nid_t ino = ino_of_node(page);
1928
1929 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1930 if (!inode)
1931 return false;
1932
1933 f2fs_update_inode(inode, page);
1934 unlock_page(page);
1935
1936 iput(inode);
1937 return true;
1938}
1939
1940void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1941{
1942 pgoff_t index = 0;
1943 struct folio_batch fbatch;
1944 int nr_folios;
1945
1946 folio_batch_init(&fbatch);
1947
1948 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1949 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1950 &fbatch))) {
1951 int i;
1952
1953 for (i = 0; i < nr_folios; i++) {
1954 struct page *page = &fbatch.folios[i]->page;
1955
1956 if (!IS_INODE(page))
1957 continue;
1958
1959 lock_page(page);
1960
1961 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1962continue_unlock:
1963 unlock_page(page);
1964 continue;
1965 }
1966
1967 if (!PageDirty(page)) {
1968 /* someone wrote it for us */
1969 goto continue_unlock;
1970 }
1971
1972 /* flush inline_data, if it's async context. */
1973 if (page_private_inline(page)) {
1974 clear_page_private_inline(page);
1975 unlock_page(page);
1976 flush_inline_data(sbi, ino_of_node(page));
1977 continue;
1978 }
1979 unlock_page(page);
1980 }
1981 folio_batch_release(&fbatch);
1982 cond_resched();
1983 }
1984}
1985
1986int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1987 struct writeback_control *wbc,
1988 bool do_balance, enum iostat_type io_type)
1989{
1990 pgoff_t index;
1991 struct folio_batch fbatch;
1992 int step = 0;
1993 int nwritten = 0;
1994 int ret = 0;
1995 int nr_folios, done = 0;
1996
1997 folio_batch_init(&fbatch);
1998
1999next_step:
2000 index = 0;
2001
2002 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
2003 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2004 &fbatch))) {
2005 int i;
2006
2007 for (i = 0; i < nr_folios; i++) {
2008 struct page *page = &fbatch.folios[i]->page;
2009 bool submitted = false;
2010
2011 /* give a priority to WB_SYNC threads */
2012 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2013 wbc->sync_mode == WB_SYNC_NONE) {
2014 done = 1;
2015 break;
2016 }
2017
2018 /*
2019 * flushing sequence with step:
2020 * 0. indirect nodes
2021 * 1. dentry dnodes
2022 * 2. file dnodes
2023 */
2024 if (step == 0 && IS_DNODE(page))
2025 continue;
2026 if (step == 1 && (!IS_DNODE(page) ||
2027 is_cold_node(page)))
2028 continue;
2029 if (step == 2 && (!IS_DNODE(page) ||
2030 !is_cold_node(page)))
2031 continue;
2032lock_node:
2033 if (wbc->sync_mode == WB_SYNC_ALL)
2034 lock_page(page);
2035 else if (!trylock_page(page))
2036 continue;
2037
2038 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2039continue_unlock:
2040 unlock_page(page);
2041 continue;
2042 }
2043
2044 if (!PageDirty(page)) {
2045 /* someone wrote it for us */
2046 goto continue_unlock;
2047 }
2048
2049 /* flush inline_data/inode, if it's async context. */
2050 if (!do_balance)
2051 goto write_node;
2052
2053 /* flush inline_data */
2054 if (page_private_inline(page)) {
2055 clear_page_private_inline(page);
2056 unlock_page(page);
2057 flush_inline_data(sbi, ino_of_node(page));
2058 goto lock_node;
2059 }
2060
2061 /* flush dirty inode */
2062 if (IS_INODE(page) && flush_dirty_inode(page))
2063 goto lock_node;
2064write_node:
2065 f2fs_wait_on_page_writeback(page, NODE, true, true);
2066
2067 if (!clear_page_dirty_for_io(page))
2068 goto continue_unlock;
2069
2070 set_fsync_mark(page, 0);
2071 set_dentry_mark(page, 0);
2072
2073 ret = __write_node_page(page, false, &submitted,
2074 wbc, do_balance, io_type, NULL);
2075 if (ret)
2076 unlock_page(page);
2077 else if (submitted)
2078 nwritten++;
2079
2080 if (--wbc->nr_to_write == 0)
2081 break;
2082 }
2083 folio_batch_release(&fbatch);
2084 cond_resched();
2085
2086 if (wbc->nr_to_write == 0) {
2087 step = 2;
2088 break;
2089 }
2090 }
2091
2092 if (step < 2) {
2093 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2094 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2095 goto out;
2096 step++;
2097 goto next_step;
2098 }
2099out:
2100 if (nwritten)
2101 f2fs_submit_merged_write(sbi, NODE);
2102
2103 if (unlikely(f2fs_cp_error(sbi)))
2104 return -EIO;
2105 return ret;
2106}
2107
2108int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2109 unsigned int seq_id)
2110{
2111 struct fsync_node_entry *fn;
2112 struct page *page;
2113 struct list_head *head = &sbi->fsync_node_list;
2114 unsigned long flags;
2115 unsigned int cur_seq_id = 0;
2116
2117 while (seq_id && cur_seq_id < seq_id) {
2118 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2119 if (list_empty(head)) {
2120 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2121 break;
2122 }
2123 fn = list_first_entry(head, struct fsync_node_entry, list);
2124 if (fn->seq_id > seq_id) {
2125 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2126 break;
2127 }
2128 cur_seq_id = fn->seq_id;
2129 page = fn->page;
2130 get_page(page);
2131 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2132
2133 f2fs_wait_on_page_writeback(page, NODE, true, false);
2134
2135 put_page(page);
2136 }
2137
2138 return filemap_check_errors(NODE_MAPPING(sbi));
2139}
2140
2141static int f2fs_write_node_pages(struct address_space *mapping,
2142 struct writeback_control *wbc)
2143{
2144 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2145 struct blk_plug plug;
2146 long diff;
2147
2148 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2149 goto skip_write;
2150
2151 /* balancing f2fs's metadata in background */
2152 f2fs_balance_fs_bg(sbi, true);
2153
2154 /* collect a number of dirty node pages and write together */
2155 if (wbc->sync_mode != WB_SYNC_ALL &&
2156 get_pages(sbi, F2FS_DIRTY_NODES) <
2157 nr_pages_to_skip(sbi, NODE))
2158 goto skip_write;
2159
2160 if (wbc->sync_mode == WB_SYNC_ALL)
2161 atomic_inc(&sbi->wb_sync_req[NODE]);
2162 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2163 /* to avoid potential deadlock */
2164 if (current->plug)
2165 blk_finish_plug(current->plug);
2166 goto skip_write;
2167 }
2168
2169 trace_f2fs_writepages(mapping->host, wbc, NODE);
2170
2171 diff = nr_pages_to_write(sbi, NODE, wbc);
2172 blk_start_plug(&plug);
2173 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2174 blk_finish_plug(&plug);
2175 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2176
2177 if (wbc->sync_mode == WB_SYNC_ALL)
2178 atomic_dec(&sbi->wb_sync_req[NODE]);
2179 return 0;
2180
2181skip_write:
2182 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2183 trace_f2fs_writepages(mapping->host, wbc, NODE);
2184 return 0;
2185}
2186
2187static bool f2fs_dirty_node_folio(struct address_space *mapping,
2188 struct folio *folio)
2189{
2190 trace_f2fs_set_page_dirty(folio, NODE);
2191
2192 if (!folio_test_uptodate(folio))
2193 folio_mark_uptodate(folio);
2194#ifdef CONFIG_F2FS_CHECK_FS
2195 if (IS_INODE(&folio->page))
2196 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2197#endif
2198 if (filemap_dirty_folio(mapping, folio)) {
2199 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2200 set_page_private_reference(&folio->page);
2201 return true;
2202 }
2203 return false;
2204}
2205
2206/*
2207 * Structure of the f2fs node operations
2208 */
2209const struct address_space_operations f2fs_node_aops = {
2210 .writepage = f2fs_write_node_page,
2211 .writepages = f2fs_write_node_pages,
2212 .dirty_folio = f2fs_dirty_node_folio,
2213 .invalidate_folio = f2fs_invalidate_folio,
2214 .release_folio = f2fs_release_folio,
2215 .migrate_folio = filemap_migrate_folio,
2216};
2217
2218static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2219 nid_t n)
2220{
2221 return radix_tree_lookup(&nm_i->free_nid_root, n);
2222}
2223
2224static int __insert_free_nid(struct f2fs_sb_info *sbi,
2225 struct free_nid *i)
2226{
2227 struct f2fs_nm_info *nm_i = NM_I(sbi);
2228 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2229
2230 if (err)
2231 return err;
2232
2233 nm_i->nid_cnt[FREE_NID]++;
2234 list_add_tail(&i->list, &nm_i->free_nid_list);
2235 return 0;
2236}
2237
2238static void __remove_free_nid(struct f2fs_sb_info *sbi,
2239 struct free_nid *i, enum nid_state state)
2240{
2241 struct f2fs_nm_info *nm_i = NM_I(sbi);
2242
2243 f2fs_bug_on(sbi, state != i->state);
2244 nm_i->nid_cnt[state]--;
2245 if (state == FREE_NID)
2246 list_del(&i->list);
2247 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2248}
2249
2250static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2251 enum nid_state org_state, enum nid_state dst_state)
2252{
2253 struct f2fs_nm_info *nm_i = NM_I(sbi);
2254
2255 f2fs_bug_on(sbi, org_state != i->state);
2256 i->state = dst_state;
2257 nm_i->nid_cnt[org_state]--;
2258 nm_i->nid_cnt[dst_state]++;
2259
2260 switch (dst_state) {
2261 case PREALLOC_NID:
2262 list_del(&i->list);
2263 break;
2264 case FREE_NID:
2265 list_add_tail(&i->list, &nm_i->free_nid_list);
2266 break;
2267 default:
2268 BUG_ON(1);
2269 }
2270}
2271
2272bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2273{
2274 struct f2fs_nm_info *nm_i = NM_I(sbi);
2275 unsigned int i;
2276 bool ret = true;
2277
2278 f2fs_down_read(&nm_i->nat_tree_lock);
2279 for (i = 0; i < nm_i->nat_blocks; i++) {
2280 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2281 ret = false;
2282 break;
2283 }
2284 }
2285 f2fs_up_read(&nm_i->nat_tree_lock);
2286
2287 return ret;
2288}
2289
2290static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2291 bool set, bool build)
2292{
2293 struct f2fs_nm_info *nm_i = NM_I(sbi);
2294 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2295 unsigned int nid_ofs = nid - START_NID(nid);
2296
2297 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2298 return;
2299
2300 if (set) {
2301 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2302 return;
2303 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2304 nm_i->free_nid_count[nat_ofs]++;
2305 } else {
2306 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2307 return;
2308 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2309 if (!build)
2310 nm_i->free_nid_count[nat_ofs]--;
2311 }
2312}
2313
2314/* return if the nid is recognized as free */
2315static bool add_free_nid(struct f2fs_sb_info *sbi,
2316 nid_t nid, bool build, bool update)
2317{
2318 struct f2fs_nm_info *nm_i = NM_I(sbi);
2319 struct free_nid *i, *e;
2320 struct nat_entry *ne;
2321 int err = -EINVAL;
2322 bool ret = false;
2323
2324 /* 0 nid should not be used */
2325 if (unlikely(nid == 0))
2326 return false;
2327
2328 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2329 return false;
2330
2331 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2332 i->nid = nid;
2333 i->state = FREE_NID;
2334
2335 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2336
2337 spin_lock(&nm_i->nid_list_lock);
2338
2339 if (build) {
2340 /*
2341 * Thread A Thread B
2342 * - f2fs_create
2343 * - f2fs_new_inode
2344 * - f2fs_alloc_nid
2345 * - __insert_nid_to_list(PREALLOC_NID)
2346 * - f2fs_balance_fs_bg
2347 * - f2fs_build_free_nids
2348 * - __f2fs_build_free_nids
2349 * - scan_nat_page
2350 * - add_free_nid
2351 * - __lookup_nat_cache
2352 * - f2fs_add_link
2353 * - f2fs_init_inode_metadata
2354 * - f2fs_new_inode_page
2355 * - f2fs_new_node_page
2356 * - set_node_addr
2357 * - f2fs_alloc_nid_done
2358 * - __remove_nid_from_list(PREALLOC_NID)
2359 * - __insert_nid_to_list(FREE_NID)
2360 */
2361 ne = __lookup_nat_cache(nm_i, nid);
2362 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2363 nat_get_blkaddr(ne) != NULL_ADDR))
2364 goto err_out;
2365
2366 e = __lookup_free_nid_list(nm_i, nid);
2367 if (e) {
2368 if (e->state == FREE_NID)
2369 ret = true;
2370 goto err_out;
2371 }
2372 }
2373 ret = true;
2374 err = __insert_free_nid(sbi, i);
2375err_out:
2376 if (update) {
2377 update_free_nid_bitmap(sbi, nid, ret, build);
2378 if (!build)
2379 nm_i->available_nids++;
2380 }
2381 spin_unlock(&nm_i->nid_list_lock);
2382 radix_tree_preload_end();
2383
2384 if (err)
2385 kmem_cache_free(free_nid_slab, i);
2386 return ret;
2387}
2388
2389static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2390{
2391 struct f2fs_nm_info *nm_i = NM_I(sbi);
2392 struct free_nid *i;
2393 bool need_free = false;
2394
2395 spin_lock(&nm_i->nid_list_lock);
2396 i = __lookup_free_nid_list(nm_i, nid);
2397 if (i && i->state == FREE_NID) {
2398 __remove_free_nid(sbi, i, FREE_NID);
2399 need_free = true;
2400 }
2401 spin_unlock(&nm_i->nid_list_lock);
2402
2403 if (need_free)
2404 kmem_cache_free(free_nid_slab, i);
2405}
2406
2407static int scan_nat_page(struct f2fs_sb_info *sbi,
2408 struct page *nat_page, nid_t start_nid)
2409{
2410 struct f2fs_nm_info *nm_i = NM_I(sbi);
2411 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2412 block_t blk_addr;
2413 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2414 int i;
2415
2416 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2417
2418 i = start_nid % NAT_ENTRY_PER_BLOCK;
2419
2420 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2421 if (unlikely(start_nid >= nm_i->max_nid))
2422 break;
2423
2424 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2425
2426 if (blk_addr == NEW_ADDR)
2427 return -EFSCORRUPTED;
2428
2429 if (blk_addr == NULL_ADDR) {
2430 add_free_nid(sbi, start_nid, true, true);
2431 } else {
2432 spin_lock(&NM_I(sbi)->nid_list_lock);
2433 update_free_nid_bitmap(sbi, start_nid, false, true);
2434 spin_unlock(&NM_I(sbi)->nid_list_lock);
2435 }
2436 }
2437
2438 return 0;
2439}
2440
2441static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2442{
2443 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2444 struct f2fs_journal *journal = curseg->journal;
2445 int i;
2446
2447 down_read(&curseg->journal_rwsem);
2448 for (i = 0; i < nats_in_cursum(journal); i++) {
2449 block_t addr;
2450 nid_t nid;
2451
2452 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2453 nid = le32_to_cpu(nid_in_journal(journal, i));
2454 if (addr == NULL_ADDR)
2455 add_free_nid(sbi, nid, true, false);
2456 else
2457 remove_free_nid(sbi, nid);
2458 }
2459 up_read(&curseg->journal_rwsem);
2460}
2461
2462static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2463{
2464 struct f2fs_nm_info *nm_i = NM_I(sbi);
2465 unsigned int i, idx;
2466 nid_t nid;
2467
2468 f2fs_down_read(&nm_i->nat_tree_lock);
2469
2470 for (i = 0; i < nm_i->nat_blocks; i++) {
2471 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2472 continue;
2473 if (!nm_i->free_nid_count[i])
2474 continue;
2475 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2476 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2477 NAT_ENTRY_PER_BLOCK, idx);
2478 if (idx >= NAT_ENTRY_PER_BLOCK)
2479 break;
2480
2481 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2482 add_free_nid(sbi, nid, true, false);
2483
2484 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2485 goto out;
2486 }
2487 }
2488out:
2489 scan_curseg_cache(sbi);
2490
2491 f2fs_up_read(&nm_i->nat_tree_lock);
2492}
2493
2494static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2495 bool sync, bool mount)
2496{
2497 struct f2fs_nm_info *nm_i = NM_I(sbi);
2498 int i = 0, ret;
2499 nid_t nid = nm_i->next_scan_nid;
2500
2501 if (unlikely(nid >= nm_i->max_nid))
2502 nid = 0;
2503
2504 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2505 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2506
2507 /* Enough entries */
2508 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2509 return 0;
2510
2511 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2512 return 0;
2513
2514 if (!mount) {
2515 /* try to find free nids in free_nid_bitmap */
2516 scan_free_nid_bits(sbi);
2517
2518 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2519 return 0;
2520 }
2521
2522 /* readahead nat pages to be scanned */
2523 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2524 META_NAT, true);
2525
2526 f2fs_down_read(&nm_i->nat_tree_lock);
2527
2528 while (1) {
2529 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2530 nm_i->nat_block_bitmap)) {
2531 struct page *page = get_current_nat_page(sbi, nid);
2532
2533 if (IS_ERR(page)) {
2534 ret = PTR_ERR(page);
2535 } else {
2536 ret = scan_nat_page(sbi, page, nid);
2537 f2fs_put_page(page, 1);
2538 }
2539
2540 if (ret) {
2541 f2fs_up_read(&nm_i->nat_tree_lock);
2542
2543 if (ret == -EFSCORRUPTED) {
2544 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2545 set_sbi_flag(sbi, SBI_NEED_FSCK);
2546 f2fs_handle_error(sbi,
2547 ERROR_INCONSISTENT_NAT);
2548 }
2549
2550 return ret;
2551 }
2552 }
2553
2554 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2555 if (unlikely(nid >= nm_i->max_nid))
2556 nid = 0;
2557
2558 if (++i >= FREE_NID_PAGES)
2559 break;
2560 }
2561
2562 /* go to the next free nat pages to find free nids abundantly */
2563 nm_i->next_scan_nid = nid;
2564
2565 /* find free nids from current sum_pages */
2566 scan_curseg_cache(sbi);
2567
2568 f2fs_up_read(&nm_i->nat_tree_lock);
2569
2570 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2571 nm_i->ra_nid_pages, META_NAT, false);
2572
2573 return 0;
2574}
2575
2576int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2577{
2578 int ret;
2579
2580 mutex_lock(&NM_I(sbi)->build_lock);
2581 ret = __f2fs_build_free_nids(sbi, sync, mount);
2582 mutex_unlock(&NM_I(sbi)->build_lock);
2583
2584 return ret;
2585}
2586
2587/*
2588 * If this function returns success, caller can obtain a new nid
2589 * from second parameter of this function.
2590 * The returned nid could be used ino as well as nid when inode is created.
2591 */
2592bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2593{
2594 struct f2fs_nm_info *nm_i = NM_I(sbi);
2595 struct free_nid *i = NULL;
2596retry:
2597 if (time_to_inject(sbi, FAULT_ALLOC_NID))
2598 return false;
2599
2600 spin_lock(&nm_i->nid_list_lock);
2601
2602 if (unlikely(nm_i->available_nids == 0)) {
2603 spin_unlock(&nm_i->nid_list_lock);
2604 return false;
2605 }
2606
2607 /* We should not use stale free nids created by f2fs_build_free_nids */
2608 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2609 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2610 i = list_first_entry(&nm_i->free_nid_list,
2611 struct free_nid, list);
2612 *nid = i->nid;
2613
2614 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2615 nm_i->available_nids--;
2616
2617 update_free_nid_bitmap(sbi, *nid, false, false);
2618
2619 spin_unlock(&nm_i->nid_list_lock);
2620 return true;
2621 }
2622 spin_unlock(&nm_i->nid_list_lock);
2623
2624 /* Let's scan nat pages and its caches to get free nids */
2625 if (!f2fs_build_free_nids(sbi, true, false))
2626 goto retry;
2627 return false;
2628}
2629
2630/*
2631 * f2fs_alloc_nid() should be called prior to this function.
2632 */
2633void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2634{
2635 struct f2fs_nm_info *nm_i = NM_I(sbi);
2636 struct free_nid *i;
2637
2638 spin_lock(&nm_i->nid_list_lock);
2639 i = __lookup_free_nid_list(nm_i, nid);
2640 f2fs_bug_on(sbi, !i);
2641 __remove_free_nid(sbi, i, PREALLOC_NID);
2642 spin_unlock(&nm_i->nid_list_lock);
2643
2644 kmem_cache_free(free_nid_slab, i);
2645}
2646
2647/*
2648 * f2fs_alloc_nid() should be called prior to this function.
2649 */
2650void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2651{
2652 struct f2fs_nm_info *nm_i = NM_I(sbi);
2653 struct free_nid *i;
2654 bool need_free = false;
2655
2656 if (!nid)
2657 return;
2658
2659 spin_lock(&nm_i->nid_list_lock);
2660 i = __lookup_free_nid_list(nm_i, nid);
2661 f2fs_bug_on(sbi, !i);
2662
2663 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2664 __remove_free_nid(sbi, i, PREALLOC_NID);
2665 need_free = true;
2666 } else {
2667 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2668 }
2669
2670 nm_i->available_nids++;
2671
2672 update_free_nid_bitmap(sbi, nid, true, false);
2673
2674 spin_unlock(&nm_i->nid_list_lock);
2675
2676 if (need_free)
2677 kmem_cache_free(free_nid_slab, i);
2678}
2679
2680int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2681{
2682 struct f2fs_nm_info *nm_i = NM_I(sbi);
2683 int nr = nr_shrink;
2684
2685 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2686 return 0;
2687
2688 if (!mutex_trylock(&nm_i->build_lock))
2689 return 0;
2690
2691 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2692 struct free_nid *i, *next;
2693 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2694
2695 spin_lock(&nm_i->nid_list_lock);
2696 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2697 if (!nr_shrink || !batch ||
2698 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2699 break;
2700 __remove_free_nid(sbi, i, FREE_NID);
2701 kmem_cache_free(free_nid_slab, i);
2702 nr_shrink--;
2703 batch--;
2704 }
2705 spin_unlock(&nm_i->nid_list_lock);
2706 }
2707
2708 mutex_unlock(&nm_i->build_lock);
2709
2710 return nr - nr_shrink;
2711}
2712
2713int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2714{
2715 void *src_addr, *dst_addr;
2716 size_t inline_size;
2717 struct page *ipage;
2718 struct f2fs_inode *ri;
2719
2720 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2721 if (IS_ERR(ipage))
2722 return PTR_ERR(ipage);
2723
2724 ri = F2FS_INODE(page);
2725 if (ri->i_inline & F2FS_INLINE_XATTR) {
2726 if (!f2fs_has_inline_xattr(inode)) {
2727 set_inode_flag(inode, FI_INLINE_XATTR);
2728 stat_inc_inline_xattr(inode);
2729 }
2730 } else {
2731 if (f2fs_has_inline_xattr(inode)) {
2732 stat_dec_inline_xattr(inode);
2733 clear_inode_flag(inode, FI_INLINE_XATTR);
2734 }
2735 goto update_inode;
2736 }
2737
2738 dst_addr = inline_xattr_addr(inode, ipage);
2739 src_addr = inline_xattr_addr(inode, page);
2740 inline_size = inline_xattr_size(inode);
2741
2742 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2743 memcpy(dst_addr, src_addr, inline_size);
2744update_inode:
2745 f2fs_update_inode(inode, ipage);
2746 f2fs_put_page(ipage, 1);
2747 return 0;
2748}
2749
2750int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2751{
2752 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2753 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2754 nid_t new_xnid;
2755 struct dnode_of_data dn;
2756 struct node_info ni;
2757 struct page *xpage;
2758 int err;
2759
2760 if (!prev_xnid)
2761 goto recover_xnid;
2762
2763 /* 1: invalidate the previous xattr nid */
2764 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2765 if (err)
2766 return err;
2767
2768 f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
2769 dec_valid_node_count(sbi, inode, false);
2770 set_node_addr(sbi, &ni, NULL_ADDR, false);
2771
2772recover_xnid:
2773 /* 2: update xattr nid in inode */
2774 if (!f2fs_alloc_nid(sbi, &new_xnid))
2775 return -ENOSPC;
2776
2777 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2778 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2779 if (IS_ERR(xpage)) {
2780 f2fs_alloc_nid_failed(sbi, new_xnid);
2781 return PTR_ERR(xpage);
2782 }
2783
2784 f2fs_alloc_nid_done(sbi, new_xnid);
2785 f2fs_update_inode_page(inode);
2786
2787 /* 3: update and set xattr node page dirty */
2788 if (page) {
2789 memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2790 VALID_XATTR_BLOCK_SIZE);
2791 set_page_dirty(xpage);
2792 }
2793 f2fs_put_page(xpage, 1);
2794
2795 return 0;
2796}
2797
2798int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2799{
2800 struct f2fs_inode *src, *dst;
2801 nid_t ino = ino_of_node(page);
2802 struct node_info old_ni, new_ni;
2803 struct page *ipage;
2804 int err;
2805
2806 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2807 if (err)
2808 return err;
2809
2810 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2811 return -EINVAL;
2812retry:
2813 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2814 if (!ipage) {
2815 memalloc_retry_wait(GFP_NOFS);
2816 goto retry;
2817 }
2818
2819 /* Should not use this inode from free nid list */
2820 remove_free_nid(sbi, ino);
2821
2822 if (!PageUptodate(ipage))
2823 SetPageUptodate(ipage);
2824 fill_node_footer(ipage, ino, ino, 0, true);
2825 set_cold_node(ipage, false);
2826
2827 src = F2FS_INODE(page);
2828 dst = F2FS_INODE(ipage);
2829
2830 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2831 dst->i_size = 0;
2832 dst->i_blocks = cpu_to_le64(1);
2833 dst->i_links = cpu_to_le32(1);
2834 dst->i_xattr_nid = 0;
2835 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2836 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2837 dst->i_extra_isize = src->i_extra_isize;
2838
2839 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2840 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2841 i_inline_xattr_size))
2842 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2843
2844 if (f2fs_sb_has_project_quota(sbi) &&
2845 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2846 i_projid))
2847 dst->i_projid = src->i_projid;
2848
2849 if (f2fs_sb_has_inode_crtime(sbi) &&
2850 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2851 i_crtime_nsec)) {
2852 dst->i_crtime = src->i_crtime;
2853 dst->i_crtime_nsec = src->i_crtime_nsec;
2854 }
2855 }
2856
2857 new_ni = old_ni;
2858 new_ni.ino = ino;
2859
2860 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2861 WARN_ON(1);
2862 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2863 inc_valid_inode_count(sbi);
2864 set_page_dirty(ipage);
2865 f2fs_put_page(ipage, 1);
2866 return 0;
2867}
2868
2869int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2870 unsigned int segno, struct f2fs_summary_block *sum)
2871{
2872 struct f2fs_node *rn;
2873 struct f2fs_summary *sum_entry;
2874 block_t addr;
2875 int i, idx, last_offset, nrpages;
2876
2877 /* scan the node segment */
2878 last_offset = BLKS_PER_SEG(sbi);
2879 addr = START_BLOCK(sbi, segno);
2880 sum_entry = &sum->entries[0];
2881
2882 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2883 nrpages = bio_max_segs(last_offset - i);
2884
2885 /* readahead node pages */
2886 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2887
2888 for (idx = addr; idx < addr + nrpages; idx++) {
2889 struct page *page = f2fs_get_tmp_page(sbi, idx);
2890
2891 if (IS_ERR(page))
2892 return PTR_ERR(page);
2893
2894 rn = F2FS_NODE(page);
2895 sum_entry->nid = rn->footer.nid;
2896 sum_entry->version = 0;
2897 sum_entry->ofs_in_node = 0;
2898 sum_entry++;
2899 f2fs_put_page(page, 1);
2900 }
2901
2902 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2903 addr + nrpages);
2904 }
2905 return 0;
2906}
2907
2908static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2909{
2910 struct f2fs_nm_info *nm_i = NM_I(sbi);
2911 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2912 struct f2fs_journal *journal = curseg->journal;
2913 int i;
2914
2915 down_write(&curseg->journal_rwsem);
2916 for (i = 0; i < nats_in_cursum(journal); i++) {
2917 struct nat_entry *ne;
2918 struct f2fs_nat_entry raw_ne;
2919 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2920
2921 if (f2fs_check_nid_range(sbi, nid))
2922 continue;
2923
2924 raw_ne = nat_in_journal(journal, i);
2925
2926 ne = __lookup_nat_cache(nm_i, nid);
2927 if (!ne) {
2928 ne = __alloc_nat_entry(sbi, nid, true);
2929 __init_nat_entry(nm_i, ne, &raw_ne, true);
2930 }
2931
2932 /*
2933 * if a free nat in journal has not been used after last
2934 * checkpoint, we should remove it from available nids,
2935 * since later we will add it again.
2936 */
2937 if (!get_nat_flag(ne, IS_DIRTY) &&
2938 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2939 spin_lock(&nm_i->nid_list_lock);
2940 nm_i->available_nids--;
2941 spin_unlock(&nm_i->nid_list_lock);
2942 }
2943
2944 __set_nat_cache_dirty(nm_i, ne);
2945 }
2946 update_nats_in_cursum(journal, -i);
2947 up_write(&curseg->journal_rwsem);
2948}
2949
2950static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2951 struct list_head *head, int max)
2952{
2953 struct nat_entry_set *cur;
2954
2955 if (nes->entry_cnt >= max)
2956 goto add_out;
2957
2958 list_for_each_entry(cur, head, set_list) {
2959 if (cur->entry_cnt >= nes->entry_cnt) {
2960 list_add(&nes->set_list, cur->set_list.prev);
2961 return;
2962 }
2963 }
2964add_out:
2965 list_add_tail(&nes->set_list, head);
2966}
2967
2968static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2969 unsigned int valid)
2970{
2971 if (valid == 0) {
2972 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2973 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2974 return;
2975 }
2976
2977 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2978 if (valid == NAT_ENTRY_PER_BLOCK)
2979 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2980 else
2981 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2982}
2983
2984static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2985 struct page *page)
2986{
2987 struct f2fs_nm_info *nm_i = NM_I(sbi);
2988 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2989 struct f2fs_nat_block *nat_blk = page_address(page);
2990 int valid = 0;
2991 int i = 0;
2992
2993 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2994 return;
2995
2996 if (nat_index == 0) {
2997 valid = 1;
2998 i = 1;
2999 }
3000 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
3001 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
3002 valid++;
3003 }
3004
3005 __update_nat_bits(nm_i, nat_index, valid);
3006}
3007
3008void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
3009{
3010 struct f2fs_nm_info *nm_i = NM_I(sbi);
3011 unsigned int nat_ofs;
3012
3013 f2fs_down_read(&nm_i->nat_tree_lock);
3014
3015 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
3016 unsigned int valid = 0, nid_ofs = 0;
3017
3018 /* handle nid zero due to it should never be used */
3019 if (unlikely(nat_ofs == 0)) {
3020 valid = 1;
3021 nid_ofs = 1;
3022 }
3023
3024 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
3025 if (!test_bit_le(nid_ofs,
3026 nm_i->free_nid_bitmap[nat_ofs]))
3027 valid++;
3028 }
3029
3030 __update_nat_bits(nm_i, nat_ofs, valid);
3031 }
3032
3033 f2fs_up_read(&nm_i->nat_tree_lock);
3034}
3035
3036static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3037 struct nat_entry_set *set, struct cp_control *cpc)
3038{
3039 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3040 struct f2fs_journal *journal = curseg->journal;
3041 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3042 bool to_journal = true;
3043 struct f2fs_nat_block *nat_blk;
3044 struct nat_entry *ne, *cur;
3045 struct page *page = NULL;
3046
3047 /*
3048 * there are two steps to flush nat entries:
3049 * #1, flush nat entries to journal in current hot data summary block.
3050 * #2, flush nat entries to nat page.
3051 */
3052 if ((cpc->reason & CP_UMOUNT) ||
3053 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3054 to_journal = false;
3055
3056 if (to_journal) {
3057 down_write(&curseg->journal_rwsem);
3058 } else {
3059 page = get_next_nat_page(sbi, start_nid);
3060 if (IS_ERR(page))
3061 return PTR_ERR(page);
3062
3063 nat_blk = page_address(page);
3064 f2fs_bug_on(sbi, !nat_blk);
3065 }
3066
3067 /* flush dirty nats in nat entry set */
3068 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3069 struct f2fs_nat_entry *raw_ne;
3070 nid_t nid = nat_get_nid(ne);
3071 int offset;
3072
3073 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3074
3075 if (to_journal) {
3076 offset = f2fs_lookup_journal_in_cursum(journal,
3077 NAT_JOURNAL, nid, 1);
3078 f2fs_bug_on(sbi, offset < 0);
3079 raw_ne = &nat_in_journal(journal, offset);
3080 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3081 } else {
3082 raw_ne = &nat_blk->entries[nid - start_nid];
3083 }
3084 raw_nat_from_node_info(raw_ne, &ne->ni);
3085 nat_reset_flag(ne);
3086 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3087 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3088 add_free_nid(sbi, nid, false, true);
3089 } else {
3090 spin_lock(&NM_I(sbi)->nid_list_lock);
3091 update_free_nid_bitmap(sbi, nid, false, false);
3092 spin_unlock(&NM_I(sbi)->nid_list_lock);
3093 }
3094 }
3095
3096 if (to_journal) {
3097 up_write(&curseg->journal_rwsem);
3098 } else {
3099 update_nat_bits(sbi, start_nid, page);
3100 f2fs_put_page(page, 1);
3101 }
3102
3103 /* Allow dirty nats by node block allocation in write_begin */
3104 if (!set->entry_cnt) {
3105 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3106 kmem_cache_free(nat_entry_set_slab, set);
3107 }
3108 return 0;
3109}
3110
3111/*
3112 * This function is called during the checkpointing process.
3113 */
3114int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3115{
3116 struct f2fs_nm_info *nm_i = NM_I(sbi);
3117 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3118 struct f2fs_journal *journal = curseg->journal;
3119 struct nat_entry_set *setvec[NAT_VEC_SIZE];
3120 struct nat_entry_set *set, *tmp;
3121 unsigned int found;
3122 nid_t set_idx = 0;
3123 LIST_HEAD(sets);
3124 int err = 0;
3125
3126 /*
3127 * during unmount, let's flush nat_bits before checking
3128 * nat_cnt[DIRTY_NAT].
3129 */
3130 if (cpc->reason & CP_UMOUNT) {
3131 f2fs_down_write(&nm_i->nat_tree_lock);
3132 remove_nats_in_journal(sbi);
3133 f2fs_up_write(&nm_i->nat_tree_lock);
3134 }
3135
3136 if (!nm_i->nat_cnt[DIRTY_NAT])
3137 return 0;
3138
3139 f2fs_down_write(&nm_i->nat_tree_lock);
3140
3141 /*
3142 * if there are no enough space in journal to store dirty nat
3143 * entries, remove all entries from journal and merge them
3144 * into nat entry set.
3145 */
3146 if (cpc->reason & CP_UMOUNT ||
3147 !__has_cursum_space(journal,
3148 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3149 remove_nats_in_journal(sbi);
3150
3151 while ((found = __gang_lookup_nat_set(nm_i,
3152 set_idx, NAT_VEC_SIZE, setvec))) {
3153 unsigned idx;
3154
3155 set_idx = setvec[found - 1]->set + 1;
3156 for (idx = 0; idx < found; idx++)
3157 __adjust_nat_entry_set(setvec[idx], &sets,
3158 MAX_NAT_JENTRIES(journal));
3159 }
3160
3161 /* flush dirty nats in nat entry set */
3162 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3163 err = __flush_nat_entry_set(sbi, set, cpc);
3164 if (err)
3165 break;
3166 }
3167
3168 f2fs_up_write(&nm_i->nat_tree_lock);
3169 /* Allow dirty nats by node block allocation in write_begin */
3170
3171 return err;
3172}
3173
3174static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3175{
3176 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3177 struct f2fs_nm_info *nm_i = NM_I(sbi);
3178 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3179 unsigned int i;
3180 __u64 cp_ver = cur_cp_version(ckpt);
3181 block_t nat_bits_addr;
3182
3183 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3184 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3185 F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3186 if (!nm_i->nat_bits)
3187 return -ENOMEM;
3188
3189 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3190 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3191
3192 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3193 return 0;
3194
3195 nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3196 nm_i->nat_bits_blocks;
3197 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3198 struct page *page;
3199
3200 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3201 if (IS_ERR(page))
3202 return PTR_ERR(page);
3203
3204 memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3205 page_address(page), F2FS_BLKSIZE);
3206 f2fs_put_page(page, 1);
3207 }
3208
3209 cp_ver |= (cur_cp_crc(ckpt) << 32);
3210 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3211 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3212 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3213 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3214 return 0;
3215 }
3216
3217 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3218 return 0;
3219}
3220
3221static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3222{
3223 struct f2fs_nm_info *nm_i = NM_I(sbi);
3224 unsigned int i = 0;
3225 nid_t nid, last_nid;
3226
3227 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3228 return;
3229
3230 for (i = 0; i < nm_i->nat_blocks; i++) {
3231 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3232 if (i >= nm_i->nat_blocks)
3233 break;
3234
3235 __set_bit_le(i, nm_i->nat_block_bitmap);
3236
3237 nid = i * NAT_ENTRY_PER_BLOCK;
3238 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3239
3240 spin_lock(&NM_I(sbi)->nid_list_lock);
3241 for (; nid < last_nid; nid++)
3242 update_free_nid_bitmap(sbi, nid, true, true);
3243 spin_unlock(&NM_I(sbi)->nid_list_lock);
3244 }
3245
3246 for (i = 0; i < nm_i->nat_blocks; i++) {
3247 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3248 if (i >= nm_i->nat_blocks)
3249 break;
3250
3251 __set_bit_le(i, nm_i->nat_block_bitmap);
3252 }
3253}
3254
3255static int init_node_manager(struct f2fs_sb_info *sbi)
3256{
3257 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3258 struct f2fs_nm_info *nm_i = NM_I(sbi);
3259 unsigned char *version_bitmap;
3260 unsigned int nat_segs;
3261 int err;
3262
3263 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3264
3265 /* segment_count_nat includes pair segment so divide to 2. */
3266 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3267 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3268 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3269
3270 /* not used nids: 0, node, meta, (and root counted as valid node) */
3271 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3272 F2FS_RESERVED_NODE_NUM;
3273 nm_i->nid_cnt[FREE_NID] = 0;
3274 nm_i->nid_cnt[PREALLOC_NID] = 0;
3275 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3276 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3277 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3278 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3279
3280 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3281 INIT_LIST_HEAD(&nm_i->free_nid_list);
3282 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3283 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3284 INIT_LIST_HEAD(&nm_i->nat_entries);
3285 spin_lock_init(&nm_i->nat_list_lock);
3286
3287 mutex_init(&nm_i->build_lock);
3288 spin_lock_init(&nm_i->nid_list_lock);
3289 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3290
3291 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3292 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3293 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3294 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3295 GFP_KERNEL);
3296 if (!nm_i->nat_bitmap)
3297 return -ENOMEM;
3298
3299 err = __get_nat_bitmaps(sbi);
3300 if (err)
3301 return err;
3302
3303#ifdef CONFIG_F2FS_CHECK_FS
3304 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3305 GFP_KERNEL);
3306 if (!nm_i->nat_bitmap_mir)
3307 return -ENOMEM;
3308#endif
3309
3310 return 0;
3311}
3312
3313static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3314{
3315 struct f2fs_nm_info *nm_i = NM_I(sbi);
3316 int i;
3317
3318 nm_i->free_nid_bitmap =
3319 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3320 nm_i->nat_blocks),
3321 GFP_KERNEL);
3322 if (!nm_i->free_nid_bitmap)
3323 return -ENOMEM;
3324
3325 for (i = 0; i < nm_i->nat_blocks; i++) {
3326 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3327 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3328 if (!nm_i->free_nid_bitmap[i])
3329 return -ENOMEM;
3330 }
3331
3332 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3333 GFP_KERNEL);
3334 if (!nm_i->nat_block_bitmap)
3335 return -ENOMEM;
3336
3337 nm_i->free_nid_count =
3338 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3339 nm_i->nat_blocks),
3340 GFP_KERNEL);
3341 if (!nm_i->free_nid_count)
3342 return -ENOMEM;
3343 return 0;
3344}
3345
3346int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3347{
3348 int err;
3349
3350 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3351 GFP_KERNEL);
3352 if (!sbi->nm_info)
3353 return -ENOMEM;
3354
3355 err = init_node_manager(sbi);
3356 if (err)
3357 return err;
3358
3359 err = init_free_nid_cache(sbi);
3360 if (err)
3361 return err;
3362
3363 /* load free nid status from nat_bits table */
3364 load_free_nid_bitmap(sbi);
3365
3366 return f2fs_build_free_nids(sbi, true, true);
3367}
3368
3369void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3370{
3371 struct f2fs_nm_info *nm_i = NM_I(sbi);
3372 struct free_nid *i, *next_i;
3373 void *vec[NAT_VEC_SIZE];
3374 struct nat_entry **natvec = (struct nat_entry **)vec;
3375 struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3376 nid_t nid = 0;
3377 unsigned int found;
3378
3379 if (!nm_i)
3380 return;
3381
3382 /* destroy free nid list */
3383 spin_lock(&nm_i->nid_list_lock);
3384 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3385 __remove_free_nid(sbi, i, FREE_NID);
3386 spin_unlock(&nm_i->nid_list_lock);
3387 kmem_cache_free(free_nid_slab, i);
3388 spin_lock(&nm_i->nid_list_lock);
3389 }
3390 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3391 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3392 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3393 spin_unlock(&nm_i->nid_list_lock);
3394
3395 /* destroy nat cache */
3396 f2fs_down_write(&nm_i->nat_tree_lock);
3397 while ((found = __gang_lookup_nat_cache(nm_i,
3398 nid, NAT_VEC_SIZE, natvec))) {
3399 unsigned idx;
3400
3401 nid = nat_get_nid(natvec[found - 1]) + 1;
3402 for (idx = 0; idx < found; idx++) {
3403 spin_lock(&nm_i->nat_list_lock);
3404 list_del(&natvec[idx]->list);
3405 spin_unlock(&nm_i->nat_list_lock);
3406
3407 __del_from_nat_cache(nm_i, natvec[idx]);
3408 }
3409 }
3410 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3411
3412 /* destroy nat set cache */
3413 nid = 0;
3414 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3415 while ((found = __gang_lookup_nat_set(nm_i,
3416 nid, NAT_VEC_SIZE, setvec))) {
3417 unsigned idx;
3418
3419 nid = setvec[found - 1]->set + 1;
3420 for (idx = 0; idx < found; idx++) {
3421 /* entry_cnt is not zero, when cp_error was occurred */
3422 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3423 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3424 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3425 }
3426 }
3427 f2fs_up_write(&nm_i->nat_tree_lock);
3428
3429 kvfree(nm_i->nat_block_bitmap);
3430 if (nm_i->free_nid_bitmap) {
3431 int i;
3432
3433 for (i = 0; i < nm_i->nat_blocks; i++)
3434 kvfree(nm_i->free_nid_bitmap[i]);
3435 kvfree(nm_i->free_nid_bitmap);
3436 }
3437 kvfree(nm_i->free_nid_count);
3438
3439 kvfree(nm_i->nat_bitmap);
3440 kvfree(nm_i->nat_bits);
3441#ifdef CONFIG_F2FS_CHECK_FS
3442 kvfree(nm_i->nat_bitmap_mir);
3443#endif
3444 sbi->nm_info = NULL;
3445 kfree(nm_i);
3446}
3447
3448int __init f2fs_create_node_manager_caches(void)
3449{
3450 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3451 sizeof(struct nat_entry));
3452 if (!nat_entry_slab)
3453 goto fail;
3454
3455 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3456 sizeof(struct free_nid));
3457 if (!free_nid_slab)
3458 goto destroy_nat_entry;
3459
3460 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3461 sizeof(struct nat_entry_set));
3462 if (!nat_entry_set_slab)
3463 goto destroy_free_nid;
3464
3465 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3466 sizeof(struct fsync_node_entry));
3467 if (!fsync_node_entry_slab)
3468 goto destroy_nat_entry_set;
3469 return 0;
3470
3471destroy_nat_entry_set:
3472 kmem_cache_destroy(nat_entry_set_slab);
3473destroy_free_nid:
3474 kmem_cache_destroy(free_nid_slab);
3475destroy_nat_entry:
3476 kmem_cache_destroy(nat_entry_slab);
3477fail:
3478 return -ENOMEM;
3479}
3480
3481void f2fs_destroy_node_manager_caches(void)
3482{
3483 kmem_cache_destroy(fsync_node_entry_slab);
3484 kmem_cache_destroy(nat_entry_set_slab);
3485 kmem_cache_destroy(free_nid_slab);
3486 kmem_cache_destroy(nat_entry_slab);
3487}