Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/devres.c - device resource management
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8
9#include <linux/device.h>
10#include <linux/module.h>
11#include <linux/slab.h>
12#include <linux/percpu.h>
13
14#include <asm/sections.h>
15
16#include "base.h"
17#include "trace.h"
18
19struct devres_node {
20 struct list_head entry;
21 dr_release_t release;
22 const char *name;
23 size_t size;
24};
25
26struct devres {
27 struct devres_node node;
28 /*
29 * Some archs want to perform DMA into kmalloc caches
30 * and need a guaranteed alignment larger than
31 * the alignment of a 64-bit integer.
32 * Thus we use ARCH_DMA_MINALIGN for data[] which will force the same
33 * alignment for struct devres when allocated by kmalloc().
34 */
35 u8 __aligned(ARCH_DMA_MINALIGN) data[];
36};
37
38struct devres_group {
39 struct devres_node node[2];
40 void *id;
41 int color;
42 /* -- 8 pointers */
43};
44
45static void set_node_dbginfo(struct devres_node *node, const char *name,
46 size_t size)
47{
48 node->name = name;
49 node->size = size;
50}
51
52#ifdef CONFIG_DEBUG_DEVRES
53static int log_devres = 0;
54module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
55
56static void devres_dbg(struct device *dev, struct devres_node *node,
57 const char *op)
58{
59 if (unlikely(log_devres))
60 dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n",
61 op, node, node->name, node->size);
62}
63#else /* CONFIG_DEBUG_DEVRES */
64#define devres_dbg(dev, node, op) do {} while (0)
65#endif /* CONFIG_DEBUG_DEVRES */
66
67static void devres_log(struct device *dev, struct devres_node *node,
68 const char *op)
69{
70 trace_devres_log(dev, op, node, node->name, node->size);
71 devres_dbg(dev, node, op);
72}
73
74/*
75 * Release functions for devres group. These callbacks are used only
76 * for identification.
77 */
78static void group_open_release(struct device *dev, void *res)
79{
80 /* noop */
81}
82
83static void group_close_release(struct device *dev, void *res)
84{
85 /* noop */
86}
87
88static struct devres_group *node_to_group(struct devres_node *node)
89{
90 if (node->release == &group_open_release)
91 return container_of(node, struct devres_group, node[0]);
92 if (node->release == &group_close_release)
93 return container_of(node, struct devres_group, node[1]);
94 return NULL;
95}
96
97static bool check_dr_size(size_t size, size_t *tot_size)
98{
99 /* We must catch any near-SIZE_MAX cases that could overflow. */
100 if (unlikely(check_add_overflow(sizeof(struct devres),
101 size, tot_size)))
102 return false;
103
104 /* Actually allocate the full kmalloc bucket size. */
105 *tot_size = kmalloc_size_roundup(*tot_size);
106
107 return true;
108}
109
110static __always_inline struct devres *alloc_dr(dr_release_t release,
111 size_t size, gfp_t gfp, int nid)
112{
113 size_t tot_size;
114 struct devres *dr;
115
116 if (!check_dr_size(size, &tot_size))
117 return NULL;
118
119 dr = kmalloc_node_track_caller(tot_size, gfp, nid);
120 if (unlikely(!dr))
121 return NULL;
122
123 /* No need to clear memory twice */
124 if (!(gfp & __GFP_ZERO))
125 memset(dr, 0, offsetof(struct devres, data));
126
127 INIT_LIST_HEAD(&dr->node.entry);
128 dr->node.release = release;
129 return dr;
130}
131
132static void add_dr(struct device *dev, struct devres_node *node)
133{
134 devres_log(dev, node, "ADD");
135 BUG_ON(!list_empty(&node->entry));
136 list_add_tail(&node->entry, &dev->devres_head);
137}
138
139static void replace_dr(struct device *dev,
140 struct devres_node *old, struct devres_node *new)
141{
142 devres_log(dev, old, "REPLACE");
143 BUG_ON(!list_empty(&new->entry));
144 list_replace(&old->entry, &new->entry);
145}
146
147/**
148 * __devres_alloc_node - Allocate device resource data
149 * @release: Release function devres will be associated with
150 * @size: Allocation size
151 * @gfp: Allocation flags
152 * @nid: NUMA node
153 * @name: Name of the resource
154 *
155 * Allocate devres of @size bytes. The allocated area is zeroed, then
156 * associated with @release. The returned pointer can be passed to
157 * other devres_*() functions.
158 *
159 * RETURNS:
160 * Pointer to allocated devres on success, NULL on failure.
161 */
162void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
163 const char *name)
164{
165 struct devres *dr;
166
167 dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
168 if (unlikely(!dr))
169 return NULL;
170 set_node_dbginfo(&dr->node, name, size);
171 return dr->data;
172}
173EXPORT_SYMBOL_GPL(__devres_alloc_node);
174
175/**
176 * devres_for_each_res - Resource iterator
177 * @dev: Device to iterate resource from
178 * @release: Look for resources associated with this release function
179 * @match: Match function (optional)
180 * @match_data: Data for the match function
181 * @fn: Function to be called for each matched resource.
182 * @data: Data for @fn, the 3rd parameter of @fn
183 *
184 * Call @fn for each devres of @dev which is associated with @release
185 * and for which @match returns 1.
186 *
187 * RETURNS:
188 * void
189 */
190void devres_for_each_res(struct device *dev, dr_release_t release,
191 dr_match_t match, void *match_data,
192 void (*fn)(struct device *, void *, void *),
193 void *data)
194{
195 struct devres_node *node;
196 struct devres_node *tmp;
197 unsigned long flags;
198
199 if (!fn)
200 return;
201
202 spin_lock_irqsave(&dev->devres_lock, flags);
203 list_for_each_entry_safe_reverse(node, tmp,
204 &dev->devres_head, entry) {
205 struct devres *dr = container_of(node, struct devres, node);
206
207 if (node->release != release)
208 continue;
209 if (match && !match(dev, dr->data, match_data))
210 continue;
211 fn(dev, dr->data, data);
212 }
213 spin_unlock_irqrestore(&dev->devres_lock, flags);
214}
215EXPORT_SYMBOL_GPL(devres_for_each_res);
216
217/**
218 * devres_free - Free device resource data
219 * @res: Pointer to devres data to free
220 *
221 * Free devres created with devres_alloc().
222 */
223void devres_free(void *res)
224{
225 if (res) {
226 struct devres *dr = container_of(res, struct devres, data);
227
228 BUG_ON(!list_empty(&dr->node.entry));
229 kfree(dr);
230 }
231}
232EXPORT_SYMBOL_GPL(devres_free);
233
234/**
235 * devres_add - Register device resource
236 * @dev: Device to add resource to
237 * @res: Resource to register
238 *
239 * Register devres @res to @dev. @res should have been allocated
240 * using devres_alloc(). On driver detach, the associated release
241 * function will be invoked and devres will be freed automatically.
242 */
243void devres_add(struct device *dev, void *res)
244{
245 struct devres *dr = container_of(res, struct devres, data);
246 unsigned long flags;
247
248 spin_lock_irqsave(&dev->devres_lock, flags);
249 add_dr(dev, &dr->node);
250 spin_unlock_irqrestore(&dev->devres_lock, flags);
251}
252EXPORT_SYMBOL_GPL(devres_add);
253
254static struct devres *find_dr(struct device *dev, dr_release_t release,
255 dr_match_t match, void *match_data)
256{
257 struct devres_node *node;
258
259 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
260 struct devres *dr = container_of(node, struct devres, node);
261
262 if (node->release != release)
263 continue;
264 if (match && !match(dev, dr->data, match_data))
265 continue;
266 return dr;
267 }
268
269 return NULL;
270}
271
272/**
273 * devres_find - Find device resource
274 * @dev: Device to lookup resource from
275 * @release: Look for resources associated with this release function
276 * @match: Match function (optional)
277 * @match_data: Data for the match function
278 *
279 * Find the latest devres of @dev which is associated with @release
280 * and for which @match returns 1. If @match is NULL, it's considered
281 * to match all.
282 *
283 * RETURNS:
284 * Pointer to found devres, NULL if not found.
285 */
286void *devres_find(struct device *dev, dr_release_t release,
287 dr_match_t match, void *match_data)
288{
289 struct devres *dr;
290 unsigned long flags;
291
292 spin_lock_irqsave(&dev->devres_lock, flags);
293 dr = find_dr(dev, release, match, match_data);
294 spin_unlock_irqrestore(&dev->devres_lock, flags);
295
296 if (dr)
297 return dr->data;
298 return NULL;
299}
300EXPORT_SYMBOL_GPL(devres_find);
301
302/**
303 * devres_get - Find devres, if non-existent, add one atomically
304 * @dev: Device to lookup or add devres for
305 * @new_res: Pointer to new initialized devres to add if not found
306 * @match: Match function (optional)
307 * @match_data: Data for the match function
308 *
309 * Find the latest devres of @dev which has the same release function
310 * as @new_res and for which @match return 1. If found, @new_res is
311 * freed; otherwise, @new_res is added atomically.
312 *
313 * RETURNS:
314 * Pointer to found or added devres.
315 */
316void *devres_get(struct device *dev, void *new_res,
317 dr_match_t match, void *match_data)
318{
319 struct devres *new_dr = container_of(new_res, struct devres, data);
320 struct devres *dr;
321 unsigned long flags;
322
323 spin_lock_irqsave(&dev->devres_lock, flags);
324 dr = find_dr(dev, new_dr->node.release, match, match_data);
325 if (!dr) {
326 add_dr(dev, &new_dr->node);
327 dr = new_dr;
328 new_res = NULL;
329 }
330 spin_unlock_irqrestore(&dev->devres_lock, flags);
331 devres_free(new_res);
332
333 return dr->data;
334}
335EXPORT_SYMBOL_GPL(devres_get);
336
337/**
338 * devres_remove - Find a device resource and remove it
339 * @dev: Device to find resource from
340 * @release: Look for resources associated with this release function
341 * @match: Match function (optional)
342 * @match_data: Data for the match function
343 *
344 * Find the latest devres of @dev associated with @release and for
345 * which @match returns 1. If @match is NULL, it's considered to
346 * match all. If found, the resource is removed atomically and
347 * returned.
348 *
349 * RETURNS:
350 * Pointer to removed devres on success, NULL if not found.
351 */
352void *devres_remove(struct device *dev, dr_release_t release,
353 dr_match_t match, void *match_data)
354{
355 struct devres *dr;
356 unsigned long flags;
357
358 spin_lock_irqsave(&dev->devres_lock, flags);
359 dr = find_dr(dev, release, match, match_data);
360 if (dr) {
361 list_del_init(&dr->node.entry);
362 devres_log(dev, &dr->node, "REM");
363 }
364 spin_unlock_irqrestore(&dev->devres_lock, flags);
365
366 if (dr)
367 return dr->data;
368 return NULL;
369}
370EXPORT_SYMBOL_GPL(devres_remove);
371
372/**
373 * devres_destroy - Find a device resource and destroy it
374 * @dev: Device to find resource from
375 * @release: Look for resources associated with this release function
376 * @match: Match function (optional)
377 * @match_data: Data for the match function
378 *
379 * Find the latest devres of @dev associated with @release and for
380 * which @match returns 1. If @match is NULL, it's considered to
381 * match all. If found, the resource is removed atomically and freed.
382 *
383 * Note that the release function for the resource will not be called,
384 * only the devres-allocated data will be freed. The caller becomes
385 * responsible for freeing any other data.
386 *
387 * RETURNS:
388 * 0 if devres is found and freed, -ENOENT if not found.
389 */
390int devres_destroy(struct device *dev, dr_release_t release,
391 dr_match_t match, void *match_data)
392{
393 void *res;
394
395 res = devres_remove(dev, release, match, match_data);
396 if (unlikely(!res))
397 return -ENOENT;
398
399 devres_free(res);
400 return 0;
401}
402EXPORT_SYMBOL_GPL(devres_destroy);
403
404
405/**
406 * devres_release - Find a device resource and destroy it, calling release
407 * @dev: Device to find resource from
408 * @release: Look for resources associated with this release function
409 * @match: Match function (optional)
410 * @match_data: Data for the match function
411 *
412 * Find the latest devres of @dev associated with @release and for
413 * which @match returns 1. If @match is NULL, it's considered to
414 * match all. If found, the resource is removed atomically, the
415 * release function called and the resource freed.
416 *
417 * RETURNS:
418 * 0 if devres is found and freed, -ENOENT if not found.
419 */
420int devres_release(struct device *dev, dr_release_t release,
421 dr_match_t match, void *match_data)
422{
423 void *res;
424
425 res = devres_remove(dev, release, match, match_data);
426 if (unlikely(!res))
427 return -ENOENT;
428
429 (*release)(dev, res);
430 devres_free(res);
431 return 0;
432}
433EXPORT_SYMBOL_GPL(devres_release);
434
435static int remove_nodes(struct device *dev,
436 struct list_head *first, struct list_head *end,
437 struct list_head *todo)
438{
439 struct devres_node *node, *n;
440 int cnt = 0, nr_groups = 0;
441
442 /* First pass - move normal devres entries to @todo and clear
443 * devres_group colors.
444 */
445 node = list_entry(first, struct devres_node, entry);
446 list_for_each_entry_safe_from(node, n, end, entry) {
447 struct devres_group *grp;
448
449 grp = node_to_group(node);
450 if (grp) {
451 /* clear color of group markers in the first pass */
452 grp->color = 0;
453 nr_groups++;
454 } else {
455 /* regular devres entry */
456 if (&node->entry == first)
457 first = first->next;
458 list_move_tail(&node->entry, todo);
459 cnt++;
460 }
461 }
462
463 if (!nr_groups)
464 return cnt;
465
466 /* Second pass - Scan groups and color them. A group gets
467 * color value of two iff the group is wholly contained in
468 * [current node, end). That is, for a closed group, both opening
469 * and closing markers should be in the range, while just the
470 * opening marker is enough for an open group.
471 */
472 node = list_entry(first, struct devres_node, entry);
473 list_for_each_entry_safe_from(node, n, end, entry) {
474 struct devres_group *grp;
475
476 grp = node_to_group(node);
477 BUG_ON(!grp || list_empty(&grp->node[0].entry));
478
479 grp->color++;
480 if (list_empty(&grp->node[1].entry))
481 grp->color++;
482
483 BUG_ON(grp->color <= 0 || grp->color > 2);
484 if (grp->color == 2) {
485 /* No need to update current node or end. The removed
486 * nodes are always before both.
487 */
488 list_move_tail(&grp->node[0].entry, todo);
489 list_del_init(&grp->node[1].entry);
490 }
491 }
492
493 return cnt;
494}
495
496static void release_nodes(struct device *dev, struct list_head *todo)
497{
498 struct devres *dr, *tmp;
499
500 /* Release. Note that both devres and devres_group are
501 * handled as devres in the following loop. This is safe.
502 */
503 list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) {
504 devres_log(dev, &dr->node, "REL");
505 dr->node.release(dev, dr->data);
506 kfree(dr);
507 }
508}
509
510/**
511 * devres_release_all - Release all managed resources
512 * @dev: Device to release resources for
513 *
514 * Release all resources associated with @dev. This function is
515 * called on driver detach.
516 */
517int devres_release_all(struct device *dev)
518{
519 unsigned long flags;
520 LIST_HEAD(todo);
521 int cnt;
522
523 /* Looks like an uninitialized device structure */
524 if (WARN_ON(dev->devres_head.next == NULL))
525 return -ENODEV;
526
527 /* Nothing to release if list is empty */
528 if (list_empty(&dev->devres_head))
529 return 0;
530
531 spin_lock_irqsave(&dev->devres_lock, flags);
532 cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo);
533 spin_unlock_irqrestore(&dev->devres_lock, flags);
534
535 release_nodes(dev, &todo);
536 return cnt;
537}
538
539/**
540 * devres_open_group - Open a new devres group
541 * @dev: Device to open devres group for
542 * @id: Separator ID
543 * @gfp: Allocation flags
544 *
545 * Open a new devres group for @dev with @id. For @id, using a
546 * pointer to an object which won't be used for another group is
547 * recommended. If @id is NULL, address-wise unique ID is created.
548 *
549 * RETURNS:
550 * ID of the new group, NULL on failure.
551 */
552void *devres_open_group(struct device *dev, void *id, gfp_t gfp)
553{
554 struct devres_group *grp;
555 unsigned long flags;
556
557 grp = kmalloc(sizeof(*grp), gfp);
558 if (unlikely(!grp))
559 return NULL;
560
561 grp->node[0].release = &group_open_release;
562 grp->node[1].release = &group_close_release;
563 INIT_LIST_HEAD(&grp->node[0].entry);
564 INIT_LIST_HEAD(&grp->node[1].entry);
565 set_node_dbginfo(&grp->node[0], "grp<", 0);
566 set_node_dbginfo(&grp->node[1], "grp>", 0);
567 grp->id = grp;
568 if (id)
569 grp->id = id;
570 grp->color = 0;
571
572 spin_lock_irqsave(&dev->devres_lock, flags);
573 add_dr(dev, &grp->node[0]);
574 spin_unlock_irqrestore(&dev->devres_lock, flags);
575 return grp->id;
576}
577EXPORT_SYMBOL_GPL(devres_open_group);
578
579/* Find devres group with ID @id. If @id is NULL, look for the latest. */
580static struct devres_group *find_group(struct device *dev, void *id)
581{
582 struct devres_node *node;
583
584 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
585 struct devres_group *grp;
586
587 if (node->release != &group_open_release)
588 continue;
589
590 grp = container_of(node, struct devres_group, node[0]);
591
592 if (id) {
593 if (grp->id == id)
594 return grp;
595 } else if (list_empty(&grp->node[1].entry))
596 return grp;
597 }
598
599 return NULL;
600}
601
602/**
603 * devres_close_group - Close a devres group
604 * @dev: Device to close devres group for
605 * @id: ID of target group, can be NULL
606 *
607 * Close the group identified by @id. If @id is NULL, the latest open
608 * group is selected.
609 */
610void devres_close_group(struct device *dev, void *id)
611{
612 struct devres_group *grp;
613 unsigned long flags;
614
615 spin_lock_irqsave(&dev->devres_lock, flags);
616
617 grp = find_group(dev, id);
618 if (grp)
619 add_dr(dev, &grp->node[1]);
620 else
621 WARN_ON(1);
622
623 spin_unlock_irqrestore(&dev->devres_lock, flags);
624}
625EXPORT_SYMBOL_GPL(devres_close_group);
626
627/**
628 * devres_remove_group - Remove a devres group
629 * @dev: Device to remove group for
630 * @id: ID of target group, can be NULL
631 *
632 * Remove the group identified by @id. If @id is NULL, the latest
633 * open group is selected. Note that removing a group doesn't affect
634 * any other resources.
635 */
636void devres_remove_group(struct device *dev, void *id)
637{
638 struct devres_group *grp;
639 unsigned long flags;
640
641 spin_lock_irqsave(&dev->devres_lock, flags);
642
643 grp = find_group(dev, id);
644 if (grp) {
645 list_del_init(&grp->node[0].entry);
646 list_del_init(&grp->node[1].entry);
647 devres_log(dev, &grp->node[0], "REM");
648 } else
649 WARN_ON(1);
650
651 spin_unlock_irqrestore(&dev->devres_lock, flags);
652
653 kfree(grp);
654}
655EXPORT_SYMBOL_GPL(devres_remove_group);
656
657/**
658 * devres_release_group - Release resources in a devres group
659 * @dev: Device to release group for
660 * @id: ID of target group, can be NULL
661 *
662 * Release all resources in the group identified by @id. If @id is
663 * NULL, the latest open group is selected. The selected group and
664 * groups properly nested inside the selected group are removed.
665 *
666 * RETURNS:
667 * The number of released non-group resources.
668 */
669int devres_release_group(struct device *dev, void *id)
670{
671 struct devres_group *grp;
672 unsigned long flags;
673 LIST_HEAD(todo);
674 int cnt = 0;
675
676 spin_lock_irqsave(&dev->devres_lock, flags);
677
678 grp = find_group(dev, id);
679 if (grp) {
680 struct list_head *first = &grp->node[0].entry;
681 struct list_head *end = &dev->devres_head;
682
683 if (!list_empty(&grp->node[1].entry))
684 end = grp->node[1].entry.next;
685
686 cnt = remove_nodes(dev, first, end, &todo);
687 spin_unlock_irqrestore(&dev->devres_lock, flags);
688
689 release_nodes(dev, &todo);
690 } else {
691 WARN_ON(1);
692 spin_unlock_irqrestore(&dev->devres_lock, flags);
693 }
694
695 return cnt;
696}
697EXPORT_SYMBOL_GPL(devres_release_group);
698
699/*
700 * Custom devres actions allow inserting a simple function call
701 * into the teardown sequence.
702 */
703
704struct action_devres {
705 void *data;
706 void (*action)(void *);
707};
708
709static int devm_action_match(struct device *dev, void *res, void *p)
710{
711 struct action_devres *devres = res;
712 struct action_devres *target = p;
713
714 return devres->action == target->action &&
715 devres->data == target->data;
716}
717
718static void devm_action_release(struct device *dev, void *res)
719{
720 struct action_devres *devres = res;
721
722 devres->action(devres->data);
723}
724
725/**
726 * __devm_add_action() - add a custom action to list of managed resources
727 * @dev: Device that owns the action
728 * @action: Function that should be called
729 * @data: Pointer to data passed to @action implementation
730 * @name: Name of the resource (for debugging purposes)
731 *
732 * This adds a custom action to the list of managed resources so that
733 * it gets executed as part of standard resource unwinding.
734 */
735int __devm_add_action(struct device *dev, void (*action)(void *), void *data, const char *name)
736{
737 struct action_devres *devres;
738
739 devres = __devres_alloc_node(devm_action_release, sizeof(struct action_devres),
740 GFP_KERNEL, NUMA_NO_NODE, name);
741 if (!devres)
742 return -ENOMEM;
743
744 devres->data = data;
745 devres->action = action;
746
747 devres_add(dev, devres);
748 return 0;
749}
750EXPORT_SYMBOL_GPL(__devm_add_action);
751
752/**
753 * devm_remove_action_nowarn() - removes previously added custom action
754 * @dev: Device that owns the action
755 * @action: Function implementing the action
756 * @data: Pointer to data passed to @action implementation
757 *
758 * Removes instance of @action previously added by devm_add_action().
759 * Both action and data should match one of the existing entries.
760 *
761 * In contrast to devm_remove_action(), this function does not WARN() if no
762 * entry could have been found.
763 *
764 * This should only be used if the action is contained in an object with
765 * independent lifetime management, e.g. the Devres rust abstraction.
766 *
767 * Causing the warning from regular driver code most likely indicates an abuse
768 * of the devres API.
769 *
770 * Returns: 0 on success, -ENOENT if no entry could have been found.
771 */
772int devm_remove_action_nowarn(struct device *dev,
773 void (*action)(void *),
774 void *data)
775{
776 struct action_devres devres = {
777 .data = data,
778 .action = action,
779 };
780
781 return devres_destroy(dev, devm_action_release, devm_action_match,
782 &devres);
783}
784EXPORT_SYMBOL_GPL(devm_remove_action_nowarn);
785
786/**
787 * devm_release_action() - release previously added custom action
788 * @dev: Device that owns the action
789 * @action: Function implementing the action
790 * @data: Pointer to data passed to @action implementation
791 *
792 * Releases and removes instance of @action previously added by
793 * devm_add_action(). Both action and data should match one of the
794 * existing entries.
795 */
796void devm_release_action(struct device *dev, void (*action)(void *), void *data)
797{
798 struct action_devres devres = {
799 .data = data,
800 .action = action,
801 };
802
803 WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
804 &devres));
805
806}
807EXPORT_SYMBOL_GPL(devm_release_action);
808
809/*
810 * Managed kmalloc/kfree
811 */
812static void devm_kmalloc_release(struct device *dev, void *res)
813{
814 /* noop */
815}
816
817static int devm_kmalloc_match(struct device *dev, void *res, void *data)
818{
819 return res == data;
820}
821
822/**
823 * devm_kmalloc - Resource-managed kmalloc
824 * @dev: Device to allocate memory for
825 * @size: Allocation size
826 * @gfp: Allocation gfp flags
827 *
828 * Managed kmalloc. Memory allocated with this function is
829 * automatically freed on driver detach. Like all other devres
830 * resources, guaranteed alignment is unsigned long long.
831 *
832 * RETURNS:
833 * Pointer to allocated memory on success, NULL on failure.
834 */
835void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
836{
837 struct devres *dr;
838
839 if (unlikely(!size))
840 return ZERO_SIZE_PTR;
841
842 /* use raw alloc_dr for kmalloc caller tracing */
843 dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
844 if (unlikely(!dr))
845 return NULL;
846
847 /*
848 * This is named devm_kzalloc_release for historical reasons
849 * The initial implementation did not support kmalloc, only kzalloc
850 */
851 set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
852 devres_add(dev, dr->data);
853 return dr->data;
854}
855EXPORT_SYMBOL_GPL(devm_kmalloc);
856
857/**
858 * devm_krealloc - Resource-managed krealloc()
859 * @dev: Device to re-allocate memory for
860 * @ptr: Pointer to the memory chunk to re-allocate
861 * @new_size: New allocation size
862 * @gfp: Allocation gfp flags
863 *
864 * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
865 * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
866 * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
867 * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
868 * change the order in which the release callback for the re-alloc'ed devres
869 * will be called (except when falling back to devm_kmalloc() or when freeing
870 * resources when new_size is zero). The contents of the memory are preserved
871 * up to the lesser of new and old sizes.
872 */
873void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
874{
875 size_t total_new_size, total_old_size;
876 struct devres *old_dr, *new_dr;
877 unsigned long flags;
878
879 if (unlikely(!new_size)) {
880 devm_kfree(dev, ptr);
881 return ZERO_SIZE_PTR;
882 }
883
884 if (unlikely(ZERO_OR_NULL_PTR(ptr)))
885 return devm_kmalloc(dev, new_size, gfp);
886
887 if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
888 /*
889 * We cannot reliably realloc a const string returned by
890 * devm_kstrdup_const().
891 */
892 return NULL;
893
894 if (!check_dr_size(new_size, &total_new_size))
895 return NULL;
896
897 total_old_size = ksize(container_of(ptr, struct devres, data));
898 if (total_old_size == 0) {
899 WARN(1, "Pointer doesn't point to dynamically allocated memory.");
900 return NULL;
901 }
902
903 /*
904 * If new size is smaller or equal to the actual number of bytes
905 * allocated previously - just return the same pointer.
906 */
907 if (total_new_size <= total_old_size)
908 return ptr;
909
910 /*
911 * Otherwise: allocate new, larger chunk. We need to allocate before
912 * taking the lock as most probably the caller uses GFP_KERNEL.
913 * alloc_dr() will call check_dr_size() to reserve extra memory
914 * for struct devres automatically, so size @new_size user request
915 * is delivered to it directly as devm_kmalloc() does.
916 */
917 new_dr = alloc_dr(devm_kmalloc_release,
918 new_size, gfp, dev_to_node(dev));
919 if (!new_dr)
920 return NULL;
921
922 /*
923 * The spinlock protects the linked list against concurrent
924 * modifications but not the resource itself.
925 */
926 spin_lock_irqsave(&dev->devres_lock, flags);
927
928 old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
929 if (!old_dr) {
930 spin_unlock_irqrestore(&dev->devres_lock, flags);
931 kfree(new_dr);
932 WARN(1, "Memory chunk not managed or managed by a different device.");
933 return NULL;
934 }
935
936 replace_dr(dev, &old_dr->node, &new_dr->node);
937
938 spin_unlock_irqrestore(&dev->devres_lock, flags);
939
940 /*
941 * We can copy the memory contents after releasing the lock as we're
942 * no longer modifying the list links.
943 */
944 memcpy(new_dr->data, old_dr->data,
945 total_old_size - offsetof(struct devres, data));
946 /*
947 * Same for releasing the old devres - it's now been removed from the
948 * list. This is also the reason why we must not use devm_kfree() - the
949 * links are no longer valid.
950 */
951 kfree(old_dr);
952
953 return new_dr->data;
954}
955EXPORT_SYMBOL_GPL(devm_krealloc);
956
957/**
958 * devm_kstrdup - Allocate resource managed space and
959 * copy an existing string into that.
960 * @dev: Device to allocate memory for
961 * @s: the string to duplicate
962 * @gfp: the GFP mask used in the devm_kmalloc() call when
963 * allocating memory
964 * RETURNS:
965 * Pointer to allocated string on success, NULL on failure.
966 */
967char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
968{
969 size_t size;
970 char *buf;
971
972 if (!s)
973 return NULL;
974
975 size = strlen(s) + 1;
976 buf = devm_kmalloc(dev, size, gfp);
977 if (buf)
978 memcpy(buf, s, size);
979 return buf;
980}
981EXPORT_SYMBOL_GPL(devm_kstrdup);
982
983/**
984 * devm_kstrdup_const - resource managed conditional string duplication
985 * @dev: device for which to duplicate the string
986 * @s: the string to duplicate
987 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
988 *
989 * Strings allocated by devm_kstrdup_const will be automatically freed when
990 * the associated device is detached.
991 *
992 * RETURNS:
993 * Source string if it is in .rodata section otherwise it falls back to
994 * devm_kstrdup.
995 */
996const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
997{
998 if (is_kernel_rodata((unsigned long)s))
999 return s;
1000
1001 return devm_kstrdup(dev, s, gfp);
1002}
1003EXPORT_SYMBOL_GPL(devm_kstrdup_const);
1004
1005/**
1006 * devm_kvasprintf - Allocate resource managed space and format a string
1007 * into that.
1008 * @dev: Device to allocate memory for
1009 * @gfp: the GFP mask used in the devm_kmalloc() call when
1010 * allocating memory
1011 * @fmt: The printf()-style format string
1012 * @ap: Arguments for the format string
1013 * RETURNS:
1014 * Pointer to allocated string on success, NULL on failure.
1015 */
1016char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
1017 va_list ap)
1018{
1019 unsigned int len;
1020 char *p;
1021 va_list aq;
1022
1023 va_copy(aq, ap);
1024 len = vsnprintf(NULL, 0, fmt, aq);
1025 va_end(aq);
1026
1027 p = devm_kmalloc(dev, len+1, gfp);
1028 if (!p)
1029 return NULL;
1030
1031 vsnprintf(p, len+1, fmt, ap);
1032
1033 return p;
1034}
1035EXPORT_SYMBOL(devm_kvasprintf);
1036
1037/**
1038 * devm_kasprintf - Allocate resource managed space and format a string
1039 * into that.
1040 * @dev: Device to allocate memory for
1041 * @gfp: the GFP mask used in the devm_kmalloc() call when
1042 * allocating memory
1043 * @fmt: The printf()-style format string
1044 * @...: Arguments for the format string
1045 * RETURNS:
1046 * Pointer to allocated string on success, NULL on failure.
1047 */
1048char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1049{
1050 va_list ap;
1051 char *p;
1052
1053 va_start(ap, fmt);
1054 p = devm_kvasprintf(dev, gfp, fmt, ap);
1055 va_end(ap);
1056
1057 return p;
1058}
1059EXPORT_SYMBOL_GPL(devm_kasprintf);
1060
1061/**
1062 * devm_kfree - Resource-managed kfree
1063 * @dev: Device this memory belongs to
1064 * @p: Memory to free
1065 *
1066 * Free memory allocated with devm_kmalloc().
1067 */
1068void devm_kfree(struct device *dev, const void *p)
1069{
1070 int rc;
1071
1072 /*
1073 * Special cases: pointer to a string in .rodata returned by
1074 * devm_kstrdup_const() or NULL/ZERO ptr.
1075 */
1076 if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1077 return;
1078
1079 rc = devres_destroy(dev, devm_kmalloc_release,
1080 devm_kmalloc_match, (void *)p);
1081 WARN_ON(rc);
1082}
1083EXPORT_SYMBOL_GPL(devm_kfree);
1084
1085/**
1086 * devm_kmemdup - Resource-managed kmemdup
1087 * @dev: Device this memory belongs to
1088 * @src: Memory region to duplicate
1089 * @len: Memory region length
1090 * @gfp: GFP mask to use
1091 *
1092 * Duplicate region of a memory using resource managed kmalloc
1093 */
1094void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1095{
1096 void *p;
1097
1098 p = devm_kmalloc(dev, len, gfp);
1099 if (p)
1100 memcpy(p, src, len);
1101
1102 return p;
1103}
1104EXPORT_SYMBOL_GPL(devm_kmemdup);
1105
1106struct pages_devres {
1107 unsigned long addr;
1108 unsigned int order;
1109};
1110
1111static int devm_pages_match(struct device *dev, void *res, void *p)
1112{
1113 struct pages_devres *devres = res;
1114 struct pages_devres *target = p;
1115
1116 return devres->addr == target->addr;
1117}
1118
1119static void devm_pages_release(struct device *dev, void *res)
1120{
1121 struct pages_devres *devres = res;
1122
1123 free_pages(devres->addr, devres->order);
1124}
1125
1126/**
1127 * devm_get_free_pages - Resource-managed __get_free_pages
1128 * @dev: Device to allocate memory for
1129 * @gfp_mask: Allocation gfp flags
1130 * @order: Allocation size is (1 << order) pages
1131 *
1132 * Managed get_free_pages. Memory allocated with this function is
1133 * automatically freed on driver detach.
1134 *
1135 * RETURNS:
1136 * Address of allocated memory on success, 0 on failure.
1137 */
1138
1139unsigned long devm_get_free_pages(struct device *dev,
1140 gfp_t gfp_mask, unsigned int order)
1141{
1142 struct pages_devres *devres;
1143 unsigned long addr;
1144
1145 addr = __get_free_pages(gfp_mask, order);
1146
1147 if (unlikely(!addr))
1148 return 0;
1149
1150 devres = devres_alloc(devm_pages_release,
1151 sizeof(struct pages_devres), GFP_KERNEL);
1152 if (unlikely(!devres)) {
1153 free_pages(addr, order);
1154 return 0;
1155 }
1156
1157 devres->addr = addr;
1158 devres->order = order;
1159
1160 devres_add(dev, devres);
1161 return addr;
1162}
1163EXPORT_SYMBOL_GPL(devm_get_free_pages);
1164
1165/**
1166 * devm_free_pages - Resource-managed free_pages
1167 * @dev: Device this memory belongs to
1168 * @addr: Memory to free
1169 *
1170 * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1171 * there is no need to supply the @order.
1172 */
1173void devm_free_pages(struct device *dev, unsigned long addr)
1174{
1175 struct pages_devres devres = { .addr = addr };
1176
1177 WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1178 &devres));
1179}
1180EXPORT_SYMBOL_GPL(devm_free_pages);
1181
1182static void devm_percpu_release(struct device *dev, void *pdata)
1183{
1184 void __percpu *p;
1185
1186 p = *(void __percpu **)pdata;
1187 free_percpu(p);
1188}
1189
1190static int devm_percpu_match(struct device *dev, void *data, void *p)
1191{
1192 struct devres *devr = container_of(data, struct devres, data);
1193
1194 return *(void **)devr->data == p;
1195}
1196
1197/**
1198 * __devm_alloc_percpu - Resource-managed alloc_percpu
1199 * @dev: Device to allocate per-cpu memory for
1200 * @size: Size of per-cpu memory to allocate
1201 * @align: Alignment of per-cpu memory to allocate
1202 *
1203 * Managed alloc_percpu. Per-cpu memory allocated with this function is
1204 * automatically freed on driver detach.
1205 *
1206 * RETURNS:
1207 * Pointer to allocated memory on success, NULL on failure.
1208 */
1209void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1210 size_t align)
1211{
1212 void *p;
1213 void __percpu *pcpu;
1214
1215 pcpu = __alloc_percpu(size, align);
1216 if (!pcpu)
1217 return NULL;
1218
1219 p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1220 if (!p) {
1221 free_percpu(pcpu);
1222 return NULL;
1223 }
1224
1225 *(void __percpu **)p = pcpu;
1226
1227 devres_add(dev, p);
1228
1229 return pcpu;
1230}
1231EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1232
1233/**
1234 * devm_free_percpu - Resource-managed free_percpu
1235 * @dev: Device this memory belongs to
1236 * @pdata: Per-cpu memory to free
1237 *
1238 * Free memory allocated with devm_alloc_percpu().
1239 */
1240void devm_free_percpu(struct device *dev, void __percpu *pdata)
1241{
1242 /*
1243 * Use devres_release() to prevent memory leakage as
1244 * devm_free_pages() does.
1245 */
1246 WARN_ON(devres_release(dev, devm_percpu_release, devm_percpu_match,
1247 (void *)(__force unsigned long)pdata));
1248}
1249EXPORT_SYMBOL_GPL(devm_free_percpu);