Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct io_bitmap;
11struct vm86;
12
13#include <asm/math_emu.h>
14#include <asm/segment.h>
15#include <asm/types.h>
16#include <uapi/asm/sigcontext.h>
17#include <asm/current.h>
18#include <asm/cpufeatures.h>
19#include <asm/cpuid.h>
20#include <asm/page.h>
21#include <asm/pgtable_types.h>
22#include <asm/percpu.h>
23#include <asm/desc_defs.h>
24#include <asm/nops.h>
25#include <asm/special_insns.h>
26#include <asm/fpu/types.h>
27#include <asm/unwind_hints.h>
28#include <asm/vmxfeatures.h>
29#include <asm/vdso/processor.h>
30#include <asm/shstk.h>
31
32#include <linux/personality.h>
33#include <linux/cache.h>
34#include <linux/threads.h>
35#include <linux/math64.h>
36#include <linux/err.h>
37#include <linux/irqflags.h>
38#include <linux/mem_encrypt.h>
39
40/*
41 * We handle most unaligned accesses in hardware. On the other hand
42 * unaligned DMA can be quite expensive on some Nehalem processors.
43 *
44 * Based on this we disable the IP header alignment in network drivers.
45 */
46#define NET_IP_ALIGN 0
47
48#define HBP_NUM 4
49
50/*
51 * These alignment constraints are for performance in the vSMP case,
52 * but in the task_struct case we must also meet hardware imposed
53 * alignment requirements of the FPU state:
54 */
55#ifdef CONFIG_X86_VSMP
56# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
57# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
58#else
59# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
60# define ARCH_MIN_MMSTRUCT_ALIGN 0
61#endif
62
63enum tlb_infos {
64 ENTRIES,
65 NR_INFO
66};
67
68extern u16 __read_mostly tlb_lli_4k[NR_INFO];
69extern u16 __read_mostly tlb_lli_2m[NR_INFO];
70extern u16 __read_mostly tlb_lli_4m[NR_INFO];
71extern u16 __read_mostly tlb_lld_4k[NR_INFO];
72extern u16 __read_mostly tlb_lld_2m[NR_INFO];
73extern u16 __read_mostly tlb_lld_4m[NR_INFO];
74extern u16 __read_mostly tlb_lld_1g[NR_INFO];
75
76/*
77 * CPU type and hardware bug flags. Kept separately for each CPU.
78 */
79
80struct cpuinfo_topology {
81 // Real APIC ID read from the local APIC
82 u32 apicid;
83 // The initial APIC ID provided by CPUID
84 u32 initial_apicid;
85
86 // Physical package ID
87 u32 pkg_id;
88
89 // Physical die ID on AMD, Relative on Intel
90 u32 die_id;
91
92 // Compute unit ID - AMD specific
93 u32 cu_id;
94
95 // Core ID relative to the package
96 u32 core_id;
97
98 // Logical ID mappings
99 u32 logical_pkg_id;
100 u32 logical_die_id;
101 u32 logical_core_id;
102
103 // AMD Node ID and Nodes per Package info
104 u32 amd_node_id;
105
106 // Cache level topology IDs
107 u32 llc_id;
108 u32 l2c_id;
109
110 // Hardware defined CPU-type
111 union {
112 u32 cpu_type;
113 struct {
114 // CPUID.1A.EAX[23-0]
115 u32 intel_native_model_id :24;
116 // CPUID.1A.EAX[31-24]
117 u32 intel_type :8;
118 };
119 struct {
120 // CPUID 0x80000026.EBX
121 u32 amd_num_processors :16,
122 amd_power_eff_ranking :8,
123 amd_native_model_id :4,
124 amd_type :4;
125 };
126 };
127};
128
129struct cpuinfo_x86 {
130 union {
131 /*
132 * The particular ordering (low-to-high) of (vendor,
133 * family, model) is done in case range of models, like
134 * it is usually done on AMD, need to be compared.
135 */
136 struct {
137 __u8 x86_model;
138 /* CPU family */
139 __u8 x86;
140 /* CPU vendor */
141 __u8 x86_vendor;
142 __u8 x86_reserved;
143 };
144 /* combined vendor, family, model */
145 __u32 x86_vfm;
146 };
147 __u8 x86_stepping;
148#ifdef CONFIG_X86_64
149 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
150 int x86_tlbsize;
151#endif
152#ifdef CONFIG_X86_VMX_FEATURE_NAMES
153 __u32 vmx_capability[NVMXINTS];
154#endif
155 __u8 x86_virt_bits;
156 __u8 x86_phys_bits;
157 /* Max extended CPUID function supported: */
158 __u32 extended_cpuid_level;
159 /* Maximum supported CPUID level, -1=no CPUID: */
160 int cpuid_level;
161 /*
162 * Align to size of unsigned long because the x86_capability array
163 * is passed to bitops which require the alignment. Use unnamed
164 * union to enforce the array is aligned to size of unsigned long.
165 */
166 union {
167 __u32 x86_capability[NCAPINTS + NBUGINTS];
168 unsigned long x86_capability_alignment;
169 };
170 char x86_vendor_id[16];
171 char x86_model_id[64];
172 struct cpuinfo_topology topo;
173 /* in KB - valid for CPUS which support this call: */
174 unsigned int x86_cache_size;
175 int x86_cache_alignment; /* In bytes */
176 /* Cache QoS architectural values, valid only on the BSP: */
177 int x86_cache_max_rmid; /* max index */
178 int x86_cache_occ_scale; /* scale to bytes */
179 int x86_cache_mbm_width_offset;
180 int x86_power;
181 unsigned long loops_per_jiffy;
182 /* protected processor identification number */
183 u64 ppin;
184 u16 x86_clflush_size;
185 /* number of cores as seen by the OS: */
186 u16 booted_cores;
187 /* Index into per_cpu list: */
188 u16 cpu_index;
189 /* Is SMT active on this core? */
190 bool smt_active;
191 u32 microcode;
192 /* Address space bits used by the cache internally */
193 u8 x86_cache_bits;
194 unsigned initialized : 1;
195} __randomize_layout;
196
197#define X86_VENDOR_INTEL 0
198#define X86_VENDOR_CYRIX 1
199#define X86_VENDOR_AMD 2
200#define X86_VENDOR_UMC 3
201#define X86_VENDOR_CENTAUR 5
202#define X86_VENDOR_TRANSMETA 7
203#define X86_VENDOR_NSC 8
204#define X86_VENDOR_HYGON 9
205#define X86_VENDOR_ZHAOXIN 10
206#define X86_VENDOR_VORTEX 11
207#define X86_VENDOR_NUM 12
208
209#define X86_VENDOR_UNKNOWN 0xff
210
211/*
212 * capabilities of CPUs
213 */
214extern struct cpuinfo_x86 boot_cpu_data;
215extern struct cpuinfo_x86 new_cpu_data;
216
217extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
218extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
219
220DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
221#define cpu_data(cpu) per_cpu(cpu_info, cpu)
222
223extern const struct seq_operations cpuinfo_op;
224
225#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
226
227extern void cpu_detect(struct cpuinfo_x86 *c);
228
229static inline unsigned long long l1tf_pfn_limit(void)
230{
231 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
232}
233
234void init_cpu_devs(void);
235void get_cpu_vendor(struct cpuinfo_x86 *c);
236extern void early_cpu_init(void);
237extern void identify_secondary_cpu(struct cpuinfo_x86 *);
238extern void print_cpu_info(struct cpuinfo_x86 *);
239void print_cpu_msr(struct cpuinfo_x86 *);
240
241/*
242 * Friendlier CR3 helpers.
243 */
244static inline unsigned long read_cr3_pa(void)
245{
246 return __read_cr3() & CR3_ADDR_MASK;
247}
248
249static inline unsigned long native_read_cr3_pa(void)
250{
251 return __native_read_cr3() & CR3_ADDR_MASK;
252}
253
254static inline void load_cr3(pgd_t *pgdir)
255{
256 write_cr3(__sme_pa(pgdir));
257}
258
259/*
260 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
261 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
262 * unrelated to the task-switch mechanism:
263 */
264#ifdef CONFIG_X86_32
265/* This is the TSS defined by the hardware. */
266struct x86_hw_tss {
267 unsigned short back_link, __blh;
268 unsigned long sp0;
269 unsigned short ss0, __ss0h;
270 unsigned long sp1;
271
272 /*
273 * We don't use ring 1, so ss1 is a convenient scratch space in
274 * the same cacheline as sp0. We use ss1 to cache the value in
275 * MSR_IA32_SYSENTER_CS. When we context switch
276 * MSR_IA32_SYSENTER_CS, we first check if the new value being
277 * written matches ss1, and, if it's not, then we wrmsr the new
278 * value and update ss1.
279 *
280 * The only reason we context switch MSR_IA32_SYSENTER_CS is
281 * that we set it to zero in vm86 tasks to avoid corrupting the
282 * stack if we were to go through the sysenter path from vm86
283 * mode.
284 */
285 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
286
287 unsigned short __ss1h;
288 unsigned long sp2;
289 unsigned short ss2, __ss2h;
290 unsigned long __cr3;
291 unsigned long ip;
292 unsigned long flags;
293 unsigned long ax;
294 unsigned long cx;
295 unsigned long dx;
296 unsigned long bx;
297 unsigned long sp;
298 unsigned long bp;
299 unsigned long si;
300 unsigned long di;
301 unsigned short es, __esh;
302 unsigned short cs, __csh;
303 unsigned short ss, __ssh;
304 unsigned short ds, __dsh;
305 unsigned short fs, __fsh;
306 unsigned short gs, __gsh;
307 unsigned short ldt, __ldth;
308 unsigned short trace;
309 unsigned short io_bitmap_base;
310
311} __attribute__((packed));
312#else
313struct x86_hw_tss {
314 u32 reserved1;
315 u64 sp0;
316 u64 sp1;
317
318 /*
319 * Since Linux does not use ring 2, the 'sp2' slot is unused by
320 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
321 * the user RSP value.
322 */
323 u64 sp2;
324
325 u64 reserved2;
326 u64 ist[7];
327 u32 reserved3;
328 u32 reserved4;
329 u16 reserved5;
330 u16 io_bitmap_base;
331
332} __attribute__((packed));
333#endif
334
335/*
336 * IO-bitmap sizes:
337 */
338#define IO_BITMAP_BITS 65536
339#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
340#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
341
342#define IO_BITMAP_OFFSET_VALID_MAP \
343 (offsetof(struct tss_struct, io_bitmap.bitmap) - \
344 offsetof(struct tss_struct, x86_tss))
345
346#define IO_BITMAP_OFFSET_VALID_ALL \
347 (offsetof(struct tss_struct, io_bitmap.mapall) - \
348 offsetof(struct tss_struct, x86_tss))
349
350#ifdef CONFIG_X86_IOPL_IOPERM
351/*
352 * sizeof(unsigned long) coming from an extra "long" at the end of the
353 * iobitmap. The limit is inclusive, i.e. the last valid byte.
354 */
355# define __KERNEL_TSS_LIMIT \
356 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
357 sizeof(unsigned long) - 1)
358#else
359# define __KERNEL_TSS_LIMIT \
360 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
361#endif
362
363/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
364#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
365
366struct entry_stack {
367 char stack[PAGE_SIZE];
368};
369
370struct entry_stack_page {
371 struct entry_stack stack;
372} __aligned(PAGE_SIZE);
373
374/*
375 * All IO bitmap related data stored in the TSS:
376 */
377struct x86_io_bitmap {
378 /* The sequence number of the last active bitmap. */
379 u64 prev_sequence;
380
381 /*
382 * Store the dirty size of the last io bitmap offender. The next
383 * one will have to do the cleanup as the switch out to a non io
384 * bitmap user will just set x86_tss.io_bitmap_base to a value
385 * outside of the TSS limit. So for sane tasks there is no need to
386 * actually touch the io_bitmap at all.
387 */
388 unsigned int prev_max;
389
390 /*
391 * The extra 1 is there because the CPU will access an
392 * additional byte beyond the end of the IO permission
393 * bitmap. The extra byte must be all 1 bits, and must
394 * be within the limit.
395 */
396 unsigned long bitmap[IO_BITMAP_LONGS + 1];
397
398 /*
399 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
400 * except the additional byte at the end.
401 */
402 unsigned long mapall[IO_BITMAP_LONGS + 1];
403};
404
405struct tss_struct {
406 /*
407 * The fixed hardware portion. This must not cross a page boundary
408 * at risk of violating the SDM's advice and potentially triggering
409 * errata.
410 */
411 struct x86_hw_tss x86_tss;
412
413 struct x86_io_bitmap io_bitmap;
414} __aligned(PAGE_SIZE);
415
416DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
417
418/* Per CPU interrupt stacks */
419struct irq_stack {
420 char stack[IRQ_STACK_SIZE];
421} __aligned(IRQ_STACK_SIZE);
422
423#ifdef CONFIG_X86_64
424struct fixed_percpu_data {
425 /*
426 * GCC hardcodes the stack canary as %gs:40. Since the
427 * irq_stack is the object at %gs:0, we reserve the bottom
428 * 48 bytes of the irq stack for the canary.
429 *
430 * Once we are willing to require -mstack-protector-guard-symbol=
431 * support for x86_64 stackprotector, we can get rid of this.
432 */
433 char gs_base[40];
434 unsigned long stack_canary;
435};
436
437DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
438DECLARE_INIT_PER_CPU(fixed_percpu_data);
439
440static inline unsigned long cpu_kernelmode_gs_base(int cpu)
441{
442 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
443}
444
445extern asmlinkage void entry_SYSCALL32_ignore(void);
446
447/* Save actual FS/GS selectors and bases to current->thread */
448void current_save_fsgs(void);
449#else /* X86_64 */
450#ifdef CONFIG_STACKPROTECTOR
451DECLARE_PER_CPU(unsigned long, __stack_chk_guard);
452#endif
453#endif /* !X86_64 */
454
455struct perf_event;
456
457struct thread_struct {
458 /* Cached TLS descriptors: */
459 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
460#ifdef CONFIG_X86_32
461 unsigned long sp0;
462#endif
463 unsigned long sp;
464#ifdef CONFIG_X86_32
465 unsigned long sysenter_cs;
466#else
467 unsigned short es;
468 unsigned short ds;
469 unsigned short fsindex;
470 unsigned short gsindex;
471#endif
472
473#ifdef CONFIG_X86_64
474 unsigned long fsbase;
475 unsigned long gsbase;
476#else
477 /*
478 * XXX: this could presumably be unsigned short. Alternatively,
479 * 32-bit kernels could be taught to use fsindex instead.
480 */
481 unsigned long fs;
482 unsigned long gs;
483#endif
484
485 /* Save middle states of ptrace breakpoints */
486 struct perf_event *ptrace_bps[HBP_NUM];
487 /* Debug status used for traps, single steps, etc... */
488 unsigned long virtual_dr6;
489 /* Keep track of the exact dr7 value set by the user */
490 unsigned long ptrace_dr7;
491 /* Fault info: */
492 unsigned long cr2;
493 unsigned long trap_nr;
494 unsigned long error_code;
495#ifdef CONFIG_VM86
496 /* Virtual 86 mode info */
497 struct vm86 *vm86;
498#endif
499 /* IO permissions: */
500 struct io_bitmap *io_bitmap;
501
502 /*
503 * IOPL. Privilege level dependent I/O permission which is
504 * emulated via the I/O bitmap to prevent user space from disabling
505 * interrupts.
506 */
507 unsigned long iopl_emul;
508
509 unsigned int iopl_warn:1;
510
511 /*
512 * Protection Keys Register for Userspace. Loaded immediately on
513 * context switch. Store it in thread_struct to avoid a lookup in
514 * the tasks's FPU xstate buffer. This value is only valid when a
515 * task is scheduled out. For 'current' the authoritative source of
516 * PKRU is the hardware itself.
517 */
518 u32 pkru;
519
520#ifdef CONFIG_X86_USER_SHADOW_STACK
521 unsigned long features;
522 unsigned long features_locked;
523
524 struct thread_shstk shstk;
525#endif
526
527 /* Floating point and extended processor state */
528 struct fpu fpu;
529 /*
530 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
531 * the end.
532 */
533};
534
535extern void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size);
536
537static inline void arch_thread_struct_whitelist(unsigned long *offset,
538 unsigned long *size)
539{
540 fpu_thread_struct_whitelist(offset, size);
541}
542
543static inline void
544native_load_sp0(unsigned long sp0)
545{
546 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
547}
548
549static __always_inline void native_swapgs(void)
550{
551#ifdef CONFIG_X86_64
552 asm volatile("swapgs" ::: "memory");
553#endif
554}
555
556static __always_inline unsigned long current_top_of_stack(void)
557{
558 /*
559 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
560 * and around vm86 mode and sp0 on x86_64 is special because of the
561 * entry trampoline.
562 */
563 if (IS_ENABLED(CONFIG_USE_X86_SEG_SUPPORT))
564 return this_cpu_read_const(const_pcpu_hot.top_of_stack);
565
566 return this_cpu_read_stable(pcpu_hot.top_of_stack);
567}
568
569static __always_inline bool on_thread_stack(void)
570{
571 return (unsigned long)(current_top_of_stack() -
572 current_stack_pointer) < THREAD_SIZE;
573}
574
575#ifdef CONFIG_PARAVIRT_XXL
576#include <asm/paravirt.h>
577#else
578
579static inline void load_sp0(unsigned long sp0)
580{
581 native_load_sp0(sp0);
582}
583
584#endif /* CONFIG_PARAVIRT_XXL */
585
586unsigned long __get_wchan(struct task_struct *p);
587
588extern void select_idle_routine(void);
589extern void amd_e400_c1e_apic_setup(void);
590
591extern unsigned long boot_option_idle_override;
592
593enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
594 IDLE_POLL};
595
596extern void enable_sep_cpu(void);
597
598
599/* Defined in head.S */
600extern struct desc_ptr early_gdt_descr;
601
602extern void switch_gdt_and_percpu_base(int);
603extern void load_direct_gdt(int);
604extern void load_fixmap_gdt(int);
605extern void cpu_init(void);
606extern void cpu_init_exception_handling(bool boot_cpu);
607extern void cpu_init_replace_early_idt(void);
608extern void cr4_init(void);
609
610extern void set_task_blockstep(struct task_struct *task, bool on);
611
612/* Boot loader type from the setup header: */
613extern int bootloader_type;
614extern int bootloader_version;
615
616extern char ignore_fpu_irq;
617
618#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
619#define ARCH_HAS_PREFETCHW
620
621#ifdef CONFIG_X86_32
622# define BASE_PREFETCH ""
623# define ARCH_HAS_PREFETCH
624#else
625# define BASE_PREFETCH "prefetcht0 %1"
626#endif
627
628/*
629 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
630 *
631 * It's not worth to care about 3dnow prefetches for the K6
632 * because they are microcoded there and very slow.
633 */
634static inline void prefetch(const void *x)
635{
636 alternative_input(BASE_PREFETCH, "prefetchnta %1",
637 X86_FEATURE_XMM,
638 "m" (*(const char *)x));
639}
640
641/*
642 * 3dnow prefetch to get an exclusive cache line.
643 * Useful for spinlocks to avoid one state transition in the
644 * cache coherency protocol:
645 */
646static __always_inline void prefetchw(const void *x)
647{
648 alternative_input(BASE_PREFETCH, "prefetchw %1",
649 X86_FEATURE_3DNOWPREFETCH,
650 "m" (*(const char *)x));
651}
652
653#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
654 TOP_OF_KERNEL_STACK_PADDING)
655
656#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
657
658#define task_pt_regs(task) \
659({ \
660 unsigned long __ptr = (unsigned long)task_stack_page(task); \
661 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
662 ((struct pt_regs *)__ptr) - 1; \
663})
664
665#ifdef CONFIG_X86_32
666#define INIT_THREAD { \
667 .sp0 = TOP_OF_INIT_STACK, \
668 .sysenter_cs = __KERNEL_CS, \
669}
670
671#define KSTK_ESP(task) (task_pt_regs(task)->sp)
672
673#else
674extern unsigned long __top_init_kernel_stack[];
675
676#define INIT_THREAD { \
677 .sp = (unsigned long)&__top_init_kernel_stack, \
678}
679
680extern unsigned long KSTK_ESP(struct task_struct *task);
681
682#endif /* CONFIG_X86_64 */
683
684extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
685 unsigned long new_sp);
686
687/*
688 * This decides where the kernel will search for a free chunk of vm
689 * space during mmap's.
690 */
691#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
692#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
693
694#define KSTK_EIP(task) (task_pt_regs(task)->ip)
695
696/* Get/set a process' ability to use the timestamp counter instruction */
697#define GET_TSC_CTL(adr) get_tsc_mode((adr))
698#define SET_TSC_CTL(val) set_tsc_mode((val))
699
700extern int get_tsc_mode(unsigned long adr);
701extern int set_tsc_mode(unsigned int val);
702
703DECLARE_PER_CPU(u64, msr_misc_features_shadow);
704
705static inline u32 per_cpu_llc_id(unsigned int cpu)
706{
707 return per_cpu(cpu_info.topo.llc_id, cpu);
708}
709
710static inline u32 per_cpu_l2c_id(unsigned int cpu)
711{
712 return per_cpu(cpu_info.topo.l2c_id, cpu);
713}
714
715#ifdef CONFIG_CPU_SUP_AMD
716/*
717 * Issue a DIV 0/1 insn to clear any division data from previous DIV
718 * operations.
719 */
720static __always_inline void amd_clear_divider(void)
721{
722 asm volatile(ALTERNATIVE("", "div %2\n\t", X86_BUG_DIV0)
723 :: "a" (0), "d" (0), "r" (1));
724}
725
726extern void amd_check_microcode(void);
727#else
728static inline void amd_clear_divider(void) { }
729static inline void amd_check_microcode(void) { }
730#endif
731
732extern unsigned long arch_align_stack(unsigned long sp);
733void free_init_pages(const char *what, unsigned long begin, unsigned long end);
734extern void free_kernel_image_pages(const char *what, void *begin, void *end);
735
736void default_idle(void);
737#ifdef CONFIG_XEN
738bool xen_set_default_idle(void);
739#else
740#define xen_set_default_idle 0
741#endif
742
743void __noreturn stop_this_cpu(void *dummy);
744void microcode_check(struct cpuinfo_x86 *prev_info);
745void store_cpu_caps(struct cpuinfo_x86 *info);
746
747enum l1tf_mitigations {
748 L1TF_MITIGATION_OFF,
749 L1TF_MITIGATION_FLUSH_NOWARN,
750 L1TF_MITIGATION_FLUSH,
751 L1TF_MITIGATION_FLUSH_NOSMT,
752 L1TF_MITIGATION_FULL,
753 L1TF_MITIGATION_FULL_FORCE
754};
755
756extern enum l1tf_mitigations l1tf_mitigation;
757
758enum mds_mitigations {
759 MDS_MITIGATION_OFF,
760 MDS_MITIGATION_FULL,
761 MDS_MITIGATION_VMWERV,
762};
763
764extern bool gds_ucode_mitigated(void);
765
766/*
767 * Make previous memory operations globally visible before
768 * a WRMSR.
769 *
770 * MFENCE makes writes visible, but only affects load/store
771 * instructions. WRMSR is unfortunately not a load/store
772 * instruction and is unaffected by MFENCE. The LFENCE ensures
773 * that the WRMSR is not reordered.
774 *
775 * Most WRMSRs are full serializing instructions themselves and
776 * do not require this barrier. This is only required for the
777 * IA32_TSC_DEADLINE and X2APIC MSRs.
778 */
779static inline void weak_wrmsr_fence(void)
780{
781 alternative("mfence; lfence", "", ALT_NOT(X86_FEATURE_APIC_MSRS_FENCE));
782}
783
784#endif /* _ASM_X86_PROCESSOR_H */