Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5#ifndef __ASM_PGTABLE_H
6#define __ASM_PGTABLE_H
7
8#include <asm/bug.h>
9#include <asm/proc-fns.h>
10
11#include <asm/memory.h>
12#include <asm/mte.h>
13#include <asm/pgtable-hwdef.h>
14#include <asm/pgtable-prot.h>
15#include <asm/tlbflush.h>
16
17/*
18 * VMALLOC range.
19 *
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap
22 */
23#define VMALLOC_START (MODULES_END)
24#if VA_BITS == VA_BITS_MIN
25#define VMALLOC_END (VMEMMAP_START - SZ_8M)
26#else
27#define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28#define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29#endif
30
31#define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32
33#ifndef __ASSEMBLY__
34
35#include <asm/cmpxchg.h>
36#include <asm/fixmap.h>
37#include <asm/por.h>
38#include <linux/mmdebug.h>
39#include <linux/mm_types.h>
40#include <linux/sched.h>
41#include <linux/page_table_check.h>
42
43#ifdef CONFIG_TRANSPARENT_HUGEPAGE
44#define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
45
46/* Set stride and tlb_level in flush_*_tlb_range */
47#define flush_pmd_tlb_range(vma, addr, end) \
48 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
49#define flush_pud_tlb_range(vma, addr, end) \
50 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
51#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
52
53/*
54 * Outside of a few very special situations (e.g. hibernation), we always
55 * use broadcast TLB invalidation instructions, therefore a spurious page
56 * fault on one CPU which has been handled concurrently by another CPU
57 * does not need to perform additional invalidation.
58 */
59#define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
60
61/*
62 * ZERO_PAGE is a global shared page that is always zero: used
63 * for zero-mapped memory areas etc..
64 */
65extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
66#define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
67
68#define pte_ERROR(e) \
69 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
70
71/*
72 * Macros to convert between a physical address and its placement in a
73 * page table entry, taking care of 52-bit addresses.
74 */
75#ifdef CONFIG_ARM64_PA_BITS_52
76static inline phys_addr_t __pte_to_phys(pte_t pte)
77{
78 pte_val(pte) &= ~PTE_MAYBE_SHARED;
79 return (pte_val(pte) & PTE_ADDR_LOW) |
80 ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
81}
82static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
83{
84 return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
85}
86#else
87#define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_LOW)
88#define __phys_to_pte_val(phys) (phys)
89#endif
90
91#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
92#define pfn_pte(pfn,prot) \
93 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
94
95#define pte_none(pte) (!pte_val(pte))
96#define __pte_clear(mm, addr, ptep) \
97 __set_pte(ptep, __pte(0))
98#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
99
100/*
101 * The following only work if pte_present(). Undefined behaviour otherwise.
102 */
103#define pte_present(pte) (pte_valid(pte) || pte_present_invalid(pte))
104#define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
105#define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
106#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
107#define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY))
108#define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
109#define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
110#define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
111#define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
112#define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
113 PTE_ATTRINDX(MT_NORMAL_TAGGED))
114
115#define pte_cont_addr_end(addr, end) \
116({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
117 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
118})
119
120#define pmd_cont_addr_end(addr, end) \
121({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
122 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
123})
124
125#define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte))
126#define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
127#define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
128
129#define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
130#define pte_present_invalid(pte) \
131 ((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
132/*
133 * Execute-only user mappings do not have the PTE_USER bit set. All valid
134 * kernel mappings have the PTE_UXN bit set.
135 */
136#define pte_valid_not_user(pte) \
137 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
138/*
139 * Returns true if the pte is valid and has the contiguous bit set.
140 */
141#define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte))
142/*
143 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
144 * so that we don't erroneously return false for pages that have been
145 * remapped as PROT_NONE but are yet to be flushed from the TLB.
146 * Note that we can't make any assumptions based on the state of the access
147 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
148 * TLB.
149 */
150#define pte_accessible(mm, pte) \
151 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
152
153static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
154{
155 u64 por;
156
157 if (!system_supports_poe())
158 return true;
159
160 por = read_sysreg_s(SYS_POR_EL0);
161
162 if (write)
163 return por_elx_allows_write(por, pkey);
164
165 if (execute)
166 return por_elx_allows_exec(por, pkey);
167
168 return por_elx_allows_read(por, pkey);
169}
170
171/*
172 * p??_access_permitted() is true for valid user mappings (PTE_USER
173 * bit set, subject to the write permission check). For execute-only
174 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
175 * not set) must return false. PROT_NONE mappings do not have the
176 * PTE_VALID bit set.
177 */
178#define pte_access_permitted_no_overlay(pte, write) \
179 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
180#define pte_access_permitted(pte, write) \
181 (pte_access_permitted_no_overlay(pte, write) && \
182 por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
183#define pmd_access_permitted(pmd, write) \
184 (pte_access_permitted(pmd_pte(pmd), (write)))
185#define pud_access_permitted(pud, write) \
186 (pte_access_permitted(pud_pte(pud), (write)))
187
188static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
189{
190 pte_val(pte) &= ~pgprot_val(prot);
191 return pte;
192}
193
194static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
195{
196 pte_val(pte) |= pgprot_val(prot);
197 return pte;
198}
199
200static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
201{
202 pmd_val(pmd) &= ~pgprot_val(prot);
203 return pmd;
204}
205
206static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
207{
208 pmd_val(pmd) |= pgprot_val(prot);
209 return pmd;
210}
211
212static inline pte_t pte_mkwrite_novma(pte_t pte)
213{
214 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
215 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
216 return pte;
217}
218
219static inline pte_t pte_mkclean(pte_t pte)
220{
221 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
222 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
223
224 return pte;
225}
226
227static inline pte_t pte_mkdirty(pte_t pte)
228{
229 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
230
231 if (pte_write(pte))
232 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
233
234 return pte;
235}
236
237static inline pte_t pte_wrprotect(pte_t pte)
238{
239 /*
240 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
241 * clear), set the PTE_DIRTY bit.
242 */
243 if (pte_hw_dirty(pte))
244 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
245
246 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
247 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
248 return pte;
249}
250
251static inline pte_t pte_mkold(pte_t pte)
252{
253 return clear_pte_bit(pte, __pgprot(PTE_AF));
254}
255
256static inline pte_t pte_mkyoung(pte_t pte)
257{
258 return set_pte_bit(pte, __pgprot(PTE_AF));
259}
260
261static inline pte_t pte_mkspecial(pte_t pte)
262{
263 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
264}
265
266static inline pte_t pte_mkcont(pte_t pte)
267{
268 return set_pte_bit(pte, __pgprot(PTE_CONT));
269}
270
271static inline pte_t pte_mknoncont(pte_t pte)
272{
273 return clear_pte_bit(pte, __pgprot(PTE_CONT));
274}
275
276static inline pte_t pte_mkvalid(pte_t pte)
277{
278 return set_pte_bit(pte, __pgprot(PTE_VALID));
279}
280
281static inline pte_t pte_mkinvalid(pte_t pte)
282{
283 pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
284 pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
285 return pte;
286}
287
288static inline pmd_t pmd_mkcont(pmd_t pmd)
289{
290 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
291}
292
293static inline pte_t pte_mkdevmap(pte_t pte)
294{
295 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
296}
297
298#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
299static inline int pte_uffd_wp(pte_t pte)
300{
301 return !!(pte_val(pte) & PTE_UFFD_WP);
302}
303
304static inline pte_t pte_mkuffd_wp(pte_t pte)
305{
306 return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
307}
308
309static inline pte_t pte_clear_uffd_wp(pte_t pte)
310{
311 return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
312}
313#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
314
315static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
316{
317 WRITE_ONCE(*ptep, pte);
318}
319
320static inline void __set_pte(pte_t *ptep, pte_t pte)
321{
322 __set_pte_nosync(ptep, pte);
323
324 /*
325 * Only if the new pte is valid and kernel, otherwise TLB maintenance
326 * or update_mmu_cache() have the necessary barriers.
327 */
328 if (pte_valid_not_user(pte)) {
329 dsb(ishst);
330 isb();
331 }
332}
333
334static inline pte_t __ptep_get(pte_t *ptep)
335{
336 return READ_ONCE(*ptep);
337}
338
339extern void __sync_icache_dcache(pte_t pteval);
340bool pgattr_change_is_safe(pteval_t old, pteval_t new);
341
342/*
343 * PTE bits configuration in the presence of hardware Dirty Bit Management
344 * (PTE_WRITE == PTE_DBM):
345 *
346 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
347 * 0 0 | 1 0 0
348 * 0 1 | 1 1 0
349 * 1 0 | 1 0 1
350 * 1 1 | 0 1 x
351 *
352 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
353 * the page fault mechanism. Checking the dirty status of a pte becomes:
354 *
355 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
356 */
357
358static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
359 pte_t pte)
360{
361 pte_t old_pte;
362
363 if (!IS_ENABLED(CONFIG_DEBUG_VM))
364 return;
365
366 old_pte = __ptep_get(ptep);
367
368 if (!pte_valid(old_pte) || !pte_valid(pte))
369 return;
370 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
371 return;
372
373 /*
374 * Check for potential race with hardware updates of the pte
375 * (__ptep_set_access_flags safely changes valid ptes without going
376 * through an invalid entry).
377 */
378 VM_WARN_ONCE(!pte_young(pte),
379 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
380 __func__, pte_val(old_pte), pte_val(pte));
381 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
382 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
383 __func__, pte_val(old_pte), pte_val(pte));
384 VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
385 "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
386 __func__, pte_val(old_pte), pte_val(pte));
387}
388
389static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
390{
391 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
392 __sync_icache_dcache(pte);
393
394 /*
395 * If the PTE would provide user space access to the tags associated
396 * with it then ensure that the MTE tags are synchronised. Although
397 * pte_access_permitted_no_overlay() returns false for exec only
398 * mappings, they don't expose tags (instruction fetches don't check
399 * tags).
400 */
401 if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
402 !pte_special(pte) && pte_tagged(pte))
403 mte_sync_tags(pte, nr_pages);
404}
405
406/*
407 * Select all bits except the pfn
408 */
409#define pte_pgprot pte_pgprot
410static inline pgprot_t pte_pgprot(pte_t pte)
411{
412 unsigned long pfn = pte_pfn(pte);
413
414 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
415}
416
417#define pte_advance_pfn pte_advance_pfn
418static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
419{
420 return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
421}
422
423static inline void __set_ptes(struct mm_struct *mm,
424 unsigned long __always_unused addr,
425 pte_t *ptep, pte_t pte, unsigned int nr)
426{
427 page_table_check_ptes_set(mm, ptep, pte, nr);
428 __sync_cache_and_tags(pte, nr);
429
430 for (;;) {
431 __check_safe_pte_update(mm, ptep, pte);
432 __set_pte(ptep, pte);
433 if (--nr == 0)
434 break;
435 ptep++;
436 pte = pte_advance_pfn(pte, 1);
437 }
438}
439
440/*
441 * Hugetlb definitions.
442 */
443#define HUGE_MAX_HSTATE 4
444#define HPAGE_SHIFT PMD_SHIFT
445#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
446#define HPAGE_MASK (~(HPAGE_SIZE - 1))
447#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
448
449static inline pte_t pgd_pte(pgd_t pgd)
450{
451 return __pte(pgd_val(pgd));
452}
453
454static inline pte_t p4d_pte(p4d_t p4d)
455{
456 return __pte(p4d_val(p4d));
457}
458
459static inline pte_t pud_pte(pud_t pud)
460{
461 return __pte(pud_val(pud));
462}
463
464static inline pud_t pte_pud(pte_t pte)
465{
466 return __pud(pte_val(pte));
467}
468
469static inline pmd_t pud_pmd(pud_t pud)
470{
471 return __pmd(pud_val(pud));
472}
473
474static inline pte_t pmd_pte(pmd_t pmd)
475{
476 return __pte(pmd_val(pmd));
477}
478
479static inline pmd_t pte_pmd(pte_t pte)
480{
481 return __pmd(pte_val(pte));
482}
483
484static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
485{
486 return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
487}
488
489static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
490{
491 return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
492}
493
494static inline pte_t pte_swp_mkexclusive(pte_t pte)
495{
496 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
497}
498
499static inline int pte_swp_exclusive(pte_t pte)
500{
501 return pte_val(pte) & PTE_SWP_EXCLUSIVE;
502}
503
504static inline pte_t pte_swp_clear_exclusive(pte_t pte)
505{
506 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
507}
508
509#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
510static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
511{
512 return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
513}
514
515static inline int pte_swp_uffd_wp(pte_t pte)
516{
517 return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
518}
519
520static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
521{
522 return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
523}
524#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
525
526#ifdef CONFIG_NUMA_BALANCING
527/*
528 * See the comment in include/linux/pgtable.h
529 */
530static inline int pte_protnone(pte_t pte)
531{
532 /*
533 * pte_present_invalid() tells us that the pte is invalid from HW
534 * perspective but present from SW perspective, so the fields are to be
535 * interpretted as per the HW layout. The second 2 checks are the unique
536 * encoding that we use for PROT_NONE. It is insufficient to only use
537 * the first check because we share the same encoding scheme with pmds
538 * which support pmd_mkinvalid(), so can be present-invalid without
539 * being PROT_NONE.
540 */
541 return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
542}
543
544static inline int pmd_protnone(pmd_t pmd)
545{
546 return pte_protnone(pmd_pte(pmd));
547}
548#endif
549
550#define pmd_present(pmd) pte_present(pmd_pte(pmd))
551
552/*
553 * THP definitions.
554 */
555
556#ifdef CONFIG_TRANSPARENT_HUGEPAGE
557static inline int pmd_trans_huge(pmd_t pmd)
558{
559 return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
560}
561#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
562
563#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
564#define pmd_young(pmd) pte_young(pmd_pte(pmd))
565#define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
566#define pmd_user(pmd) pte_user(pmd_pte(pmd))
567#define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd))
568#define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
569#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
570#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
571#define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
572#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
573#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
574#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
575#define pmd_mkinvalid(pmd) pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
576#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
577#define pmd_uffd_wp(pmd) pte_uffd_wp(pmd_pte(pmd))
578#define pmd_mkuffd_wp(pmd) pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
579#define pmd_clear_uffd_wp(pmd) pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
580#define pmd_swp_uffd_wp(pmd) pte_swp_uffd_wp(pmd_pte(pmd))
581#define pmd_swp_mkuffd_wp(pmd) pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
582#define pmd_swp_clear_uffd_wp(pmd) \
583 pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
584#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
585
586#define pmd_write(pmd) pte_write(pmd_pte(pmd))
587
588#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
589
590#ifdef CONFIG_TRANSPARENT_HUGEPAGE
591#define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
592#endif
593static inline pmd_t pmd_mkdevmap(pmd_t pmd)
594{
595 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
596}
597
598#ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
599#define pmd_special(pte) (!!((pmd_val(pte) & PTE_SPECIAL)))
600static inline pmd_t pmd_mkspecial(pmd_t pmd)
601{
602 return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
603}
604#endif
605
606#define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
607#define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
608#define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
609#define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
610#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
611
612#define pud_young(pud) pte_young(pud_pte(pud))
613#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
614#define pud_write(pud) pte_write(pud_pte(pud))
615
616#define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
617
618#define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
619#define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
620#define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
621#define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
622
623#ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
624#define pud_special(pte) pte_special(pud_pte(pud))
625#define pud_mkspecial(pte) pte_pud(pte_mkspecial(pud_pte(pud)))
626#endif
627
628#define pmd_pgprot pmd_pgprot
629static inline pgprot_t pmd_pgprot(pmd_t pmd)
630{
631 unsigned long pfn = pmd_pfn(pmd);
632
633 return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
634}
635
636#define pud_pgprot pud_pgprot
637static inline pgprot_t pud_pgprot(pud_t pud)
638{
639 unsigned long pfn = pud_pfn(pud);
640
641 return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
642}
643
644static inline void __set_pte_at(struct mm_struct *mm,
645 unsigned long __always_unused addr,
646 pte_t *ptep, pte_t pte, unsigned int nr)
647{
648 __sync_cache_and_tags(pte, nr);
649 __check_safe_pte_update(mm, ptep, pte);
650 __set_pte(ptep, pte);
651}
652
653static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
654 pmd_t *pmdp, pmd_t pmd)
655{
656 page_table_check_pmd_set(mm, pmdp, pmd);
657 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
658 PMD_SIZE >> PAGE_SHIFT);
659}
660
661static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
662 pud_t *pudp, pud_t pud)
663{
664 page_table_check_pud_set(mm, pudp, pud);
665 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
666 PUD_SIZE >> PAGE_SHIFT);
667}
668
669#define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
670#define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
671
672#define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
673#define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
674
675#define __pgprot_modify(prot,mask,bits) \
676 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
677
678#define pgprot_nx(prot) \
679 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
680
681#define pgprot_decrypted(prot) \
682 __pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED)
683#define pgprot_encrypted(prot) \
684 __pgprot_modify(prot, PROT_NS_SHARED, 0)
685
686/*
687 * Mark the prot value as uncacheable and unbufferable.
688 */
689#define pgprot_noncached(prot) \
690 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
691#define pgprot_writecombine(prot) \
692 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
693#define pgprot_device(prot) \
694 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
695#define pgprot_tagged(prot) \
696 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
697#define pgprot_mhp pgprot_tagged
698/*
699 * DMA allocations for non-coherent devices use what the Arm architecture calls
700 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
701 * and merging of writes. This is different from "Device-nGnR[nE]" memory which
702 * is intended for MMIO and thus forbids speculation, preserves access size,
703 * requires strict alignment and can also force write responses to come from the
704 * endpoint.
705 */
706#define pgprot_dmacoherent(prot) \
707 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
708 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
709
710#define __HAVE_PHYS_MEM_ACCESS_PROT
711struct file;
712extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
713 unsigned long size, pgprot_t vma_prot);
714
715#define pmd_none(pmd) (!pmd_val(pmd))
716
717#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
718 PMD_TYPE_TABLE)
719#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
720 PMD_TYPE_SECT)
721#define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
722#define pmd_bad(pmd) (!pmd_table(pmd))
723
724#define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
725#define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
726
727#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
728static inline bool pud_sect(pud_t pud) { return false; }
729static inline bool pud_table(pud_t pud) { return true; }
730#else
731#define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
732 PUD_TYPE_SECT)
733#define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
734 PUD_TYPE_TABLE)
735#endif
736
737extern pgd_t init_pg_dir[];
738extern pgd_t init_pg_end[];
739extern pgd_t swapper_pg_dir[];
740extern pgd_t idmap_pg_dir[];
741extern pgd_t tramp_pg_dir[];
742extern pgd_t reserved_pg_dir[];
743
744extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
745
746static inline bool in_swapper_pgdir(void *addr)
747{
748 return ((unsigned long)addr & PAGE_MASK) ==
749 ((unsigned long)swapper_pg_dir & PAGE_MASK);
750}
751
752static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
753{
754#ifdef __PAGETABLE_PMD_FOLDED
755 if (in_swapper_pgdir(pmdp)) {
756 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
757 return;
758 }
759#endif /* __PAGETABLE_PMD_FOLDED */
760
761 WRITE_ONCE(*pmdp, pmd);
762
763 if (pmd_valid(pmd)) {
764 dsb(ishst);
765 isb();
766 }
767}
768
769static inline void pmd_clear(pmd_t *pmdp)
770{
771 set_pmd(pmdp, __pmd(0));
772}
773
774static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
775{
776 return __pmd_to_phys(pmd);
777}
778
779static inline unsigned long pmd_page_vaddr(pmd_t pmd)
780{
781 return (unsigned long)__va(pmd_page_paddr(pmd));
782}
783
784/* Find an entry in the third-level page table. */
785#define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
786
787#define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
788#define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
789#define pte_clear_fixmap() clear_fixmap(FIX_PTE)
790
791#define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
792
793/* use ONLY for statically allocated translation tables */
794#define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
795
796/*
797 * Conversion functions: convert a page and protection to a page entry,
798 * and a page entry and page directory to the page they refer to.
799 */
800#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
801
802#if CONFIG_PGTABLE_LEVELS > 2
803
804#define pmd_ERROR(e) \
805 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
806
807#define pud_none(pud) (!pud_val(pud))
808#define pud_bad(pud) (!pud_table(pud))
809#define pud_present(pud) pte_present(pud_pte(pud))
810#ifndef __PAGETABLE_PMD_FOLDED
811#define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
812#else
813#define pud_leaf(pud) false
814#endif
815#define pud_valid(pud) pte_valid(pud_pte(pud))
816#define pud_user(pud) pte_user(pud_pte(pud))
817#define pud_user_exec(pud) pte_user_exec(pud_pte(pud))
818
819static inline bool pgtable_l4_enabled(void);
820
821static inline void set_pud(pud_t *pudp, pud_t pud)
822{
823 if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
824 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
825 return;
826 }
827
828 WRITE_ONCE(*pudp, pud);
829
830 if (pud_valid(pud)) {
831 dsb(ishst);
832 isb();
833 }
834}
835
836static inline void pud_clear(pud_t *pudp)
837{
838 set_pud(pudp, __pud(0));
839}
840
841static inline phys_addr_t pud_page_paddr(pud_t pud)
842{
843 return __pud_to_phys(pud);
844}
845
846static inline pmd_t *pud_pgtable(pud_t pud)
847{
848 return (pmd_t *)__va(pud_page_paddr(pud));
849}
850
851/* Find an entry in the second-level page table. */
852#define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
853
854#define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
855#define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
856#define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
857
858#define pud_page(pud) phys_to_page(__pud_to_phys(pud))
859
860/* use ONLY for statically allocated translation tables */
861#define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
862
863#else
864
865#define pud_valid(pud) false
866#define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
867#define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */
868
869/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
870#define pmd_set_fixmap(addr) NULL
871#define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
872#define pmd_clear_fixmap()
873
874#define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
875
876#endif /* CONFIG_PGTABLE_LEVELS > 2 */
877
878#if CONFIG_PGTABLE_LEVELS > 3
879
880static __always_inline bool pgtable_l4_enabled(void)
881{
882 if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
883 return true;
884 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
885 return vabits_actual == VA_BITS;
886 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
887}
888
889static inline bool mm_pud_folded(const struct mm_struct *mm)
890{
891 return !pgtable_l4_enabled();
892}
893#define mm_pud_folded mm_pud_folded
894
895#define pud_ERROR(e) \
896 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
897
898#define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d))
899#define p4d_bad(p4d) (pgtable_l4_enabled() && !(p4d_val(p4d) & P4D_TABLE_BIT))
900#define p4d_present(p4d) (!p4d_none(p4d))
901
902static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
903{
904 if (in_swapper_pgdir(p4dp)) {
905 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
906 return;
907 }
908
909 WRITE_ONCE(*p4dp, p4d);
910 dsb(ishst);
911 isb();
912}
913
914static inline void p4d_clear(p4d_t *p4dp)
915{
916 if (pgtable_l4_enabled())
917 set_p4d(p4dp, __p4d(0));
918}
919
920static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
921{
922 return __p4d_to_phys(p4d);
923}
924
925#define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
926
927static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
928{
929 /* Ensure that 'p4dp' indexes a page table according to 'addr' */
930 VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D);
931
932 return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
933}
934
935static inline pud_t *p4d_pgtable(p4d_t p4d)
936{
937 return (pud_t *)__va(p4d_page_paddr(p4d));
938}
939
940static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
941{
942 BUG_ON(!pgtable_l4_enabled());
943
944 return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
945}
946
947static inline
948pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
949{
950 if (!pgtable_l4_enabled())
951 return p4d_to_folded_pud(p4dp, addr);
952 return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
953}
954#define pud_offset_lockless pud_offset_lockless
955
956static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
957{
958 return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
959}
960#define pud_offset pud_offset
961
962static inline pud_t *pud_set_fixmap(unsigned long addr)
963{
964 if (!pgtable_l4_enabled())
965 return NULL;
966 return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
967}
968
969static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
970{
971 if (!pgtable_l4_enabled())
972 return p4d_to_folded_pud(p4dp, addr);
973 return pud_set_fixmap(pud_offset_phys(p4dp, addr));
974}
975
976static inline void pud_clear_fixmap(void)
977{
978 if (pgtable_l4_enabled())
979 clear_fixmap(FIX_PUD);
980}
981
982/* use ONLY for statically allocated translation tables */
983static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
984{
985 if (!pgtable_l4_enabled())
986 return p4d_to_folded_pud(p4dp, addr);
987 return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
988}
989
990#define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
991
992#else
993
994static inline bool pgtable_l4_enabled(void) { return false; }
995
996#define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
997
998/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
999#define pud_set_fixmap(addr) NULL
1000#define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
1001#define pud_clear_fixmap()
1002
1003#define pud_offset_kimg(dir,addr) ((pud_t *)dir)
1004
1005#endif /* CONFIG_PGTABLE_LEVELS > 3 */
1006
1007#if CONFIG_PGTABLE_LEVELS > 4
1008
1009static __always_inline bool pgtable_l5_enabled(void)
1010{
1011 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1012 return vabits_actual == VA_BITS;
1013 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1014}
1015
1016static inline bool mm_p4d_folded(const struct mm_struct *mm)
1017{
1018 return !pgtable_l5_enabled();
1019}
1020#define mm_p4d_folded mm_p4d_folded
1021
1022#define p4d_ERROR(e) \
1023 pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1024
1025#define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd))
1026#define pgd_bad(pgd) (pgtable_l5_enabled() && !(pgd_val(pgd) & PGD_TABLE_BIT))
1027#define pgd_present(pgd) (!pgd_none(pgd))
1028
1029static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1030{
1031 if (in_swapper_pgdir(pgdp)) {
1032 set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1033 return;
1034 }
1035
1036 WRITE_ONCE(*pgdp, pgd);
1037 dsb(ishst);
1038 isb();
1039}
1040
1041static inline void pgd_clear(pgd_t *pgdp)
1042{
1043 if (pgtable_l5_enabled())
1044 set_pgd(pgdp, __pgd(0));
1045}
1046
1047static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1048{
1049 return __pgd_to_phys(pgd);
1050}
1051
1052#define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1053
1054static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1055{
1056 /* Ensure that 'pgdp' indexes a page table according to 'addr' */
1057 VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD);
1058
1059 return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1060}
1061
1062static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1063{
1064 BUG_ON(!pgtable_l5_enabled());
1065
1066 return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1067}
1068
1069static inline
1070p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1071{
1072 if (!pgtable_l5_enabled())
1073 return pgd_to_folded_p4d(pgdp, addr);
1074 return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1075}
1076#define p4d_offset_lockless p4d_offset_lockless
1077
1078static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1079{
1080 return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1081}
1082
1083static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1084{
1085 if (!pgtable_l5_enabled())
1086 return NULL;
1087 return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1088}
1089
1090static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1091{
1092 if (!pgtable_l5_enabled())
1093 return pgd_to_folded_p4d(pgdp, addr);
1094 return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1095}
1096
1097static inline void p4d_clear_fixmap(void)
1098{
1099 if (pgtable_l5_enabled())
1100 clear_fixmap(FIX_P4D);
1101}
1102
1103/* use ONLY for statically allocated translation tables */
1104static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1105{
1106 if (!pgtable_l5_enabled())
1107 return pgd_to_folded_p4d(pgdp, addr);
1108 return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1109}
1110
1111#define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1112
1113#else
1114
1115static inline bool pgtable_l5_enabled(void) { return false; }
1116
1117#define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1118
1119/* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1120#define p4d_set_fixmap(addr) NULL
1121#define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp)
1122#define p4d_clear_fixmap()
1123
1124#define p4d_offset_kimg(dir,addr) ((p4d_t *)dir)
1125
1126static inline
1127p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1128{
1129 /*
1130 * With runtime folding of the pud, pud_offset_lockless() passes
1131 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1132 * will offset the pointer assuming that it points into
1133 * a page-table page. However, the fast GUP path passes us a
1134 * pgd_t allocated on the stack and so we must use the original
1135 * pointer in 'pgdp' to construct the p4d pointer instead of
1136 * using the generic p4d_offset_lockless() implementation.
1137 *
1138 * Note: reusing the original pointer means that we may
1139 * dereference the same (live) page-table entry multiple times.
1140 * This is safe because it is still only loaded once in the
1141 * context of each level and the CPU guarantees same-address
1142 * read-after-read ordering.
1143 */
1144 return p4d_offset(pgdp, addr);
1145}
1146#define p4d_offset_lockless p4d_offset_lockless_folded
1147
1148#endif /* CONFIG_PGTABLE_LEVELS > 4 */
1149
1150#define pgd_ERROR(e) \
1151 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1152
1153#define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1154#define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
1155
1156static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1157{
1158 /*
1159 * Normal and Normal-Tagged are two different memory types and indices
1160 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1161 */
1162 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1163 PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1164 PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1165
1166 /* preserve the hardware dirty information */
1167 if (pte_hw_dirty(pte))
1168 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1169
1170 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1171 /*
1172 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1173 * dirtiness again.
1174 */
1175 if (pte_sw_dirty(pte))
1176 pte = pte_mkdirty(pte);
1177 return pte;
1178}
1179
1180static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1181{
1182 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1183}
1184
1185extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1186 unsigned long address, pte_t *ptep,
1187 pte_t entry, int dirty);
1188
1189#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1190#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1191static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1192 unsigned long address, pmd_t *pmdp,
1193 pmd_t entry, int dirty)
1194{
1195 return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1196 pmd_pte(entry), dirty);
1197}
1198
1199static inline int pud_devmap(pud_t pud)
1200{
1201 return 0;
1202}
1203
1204static inline int pgd_devmap(pgd_t pgd)
1205{
1206 return 0;
1207}
1208#endif
1209
1210#ifdef CONFIG_PAGE_TABLE_CHECK
1211static inline bool pte_user_accessible_page(pte_t pte)
1212{
1213 return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1214}
1215
1216static inline bool pmd_user_accessible_page(pmd_t pmd)
1217{
1218 return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1219}
1220
1221static inline bool pud_user_accessible_page(pud_t pud)
1222{
1223 return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1224}
1225#endif
1226
1227/*
1228 * Atomic pte/pmd modifications.
1229 */
1230static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1231 unsigned long address,
1232 pte_t *ptep)
1233{
1234 pte_t old_pte, pte;
1235
1236 pte = __ptep_get(ptep);
1237 do {
1238 old_pte = pte;
1239 pte = pte_mkold(pte);
1240 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1241 pte_val(old_pte), pte_val(pte));
1242 } while (pte_val(pte) != pte_val(old_pte));
1243
1244 return pte_young(pte);
1245}
1246
1247static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1248 unsigned long address, pte_t *ptep)
1249{
1250 int young = __ptep_test_and_clear_young(vma, address, ptep);
1251
1252 if (young) {
1253 /*
1254 * We can elide the trailing DSB here since the worst that can
1255 * happen is that a CPU continues to use the young entry in its
1256 * TLB and we mistakenly reclaim the associated page. The
1257 * window for such an event is bounded by the next
1258 * context-switch, which provides a DSB to complete the TLB
1259 * invalidation.
1260 */
1261 flush_tlb_page_nosync(vma, address);
1262 }
1263
1264 return young;
1265}
1266
1267#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
1268#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1269static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1270 unsigned long address,
1271 pmd_t *pmdp)
1272{
1273 /* Operation applies to PMD table entry only if FEAT_HAFT is enabled */
1274 VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft());
1275 return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1276}
1277#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1278
1279static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1280 unsigned long address, pte_t *ptep)
1281{
1282 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1283
1284 page_table_check_pte_clear(mm, pte);
1285
1286 return pte;
1287}
1288
1289static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1290 pte_t *ptep, unsigned int nr, int full)
1291{
1292 for (;;) {
1293 __ptep_get_and_clear(mm, addr, ptep);
1294 if (--nr == 0)
1295 break;
1296 ptep++;
1297 addr += PAGE_SIZE;
1298 }
1299}
1300
1301static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1302 unsigned long addr, pte_t *ptep,
1303 unsigned int nr, int full)
1304{
1305 pte_t pte, tmp_pte;
1306
1307 pte = __ptep_get_and_clear(mm, addr, ptep);
1308 while (--nr) {
1309 ptep++;
1310 addr += PAGE_SIZE;
1311 tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1312 if (pte_dirty(tmp_pte))
1313 pte = pte_mkdirty(pte);
1314 if (pte_young(tmp_pte))
1315 pte = pte_mkyoung(pte);
1316 }
1317 return pte;
1318}
1319
1320#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1321#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1322static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1323 unsigned long address, pmd_t *pmdp)
1324{
1325 pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
1326
1327 page_table_check_pmd_clear(mm, pmd);
1328
1329 return pmd;
1330}
1331#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1332
1333static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1334 unsigned long address, pte_t *ptep,
1335 pte_t pte)
1336{
1337 pte_t old_pte;
1338
1339 do {
1340 old_pte = pte;
1341 pte = pte_wrprotect(pte);
1342 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1343 pte_val(old_pte), pte_val(pte));
1344 } while (pte_val(pte) != pte_val(old_pte));
1345}
1346
1347/*
1348 * __ptep_set_wrprotect - mark read-only while transferring potential hardware
1349 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1350 */
1351static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1352 unsigned long address, pte_t *ptep)
1353{
1354 ___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1355}
1356
1357static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1358 pte_t *ptep, unsigned int nr)
1359{
1360 unsigned int i;
1361
1362 for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1363 __ptep_set_wrprotect(mm, address, ptep);
1364}
1365
1366static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1367 unsigned long addr, pte_t *ptep,
1368 pte_t pte, cydp_t flags)
1369{
1370 pte_t old_pte;
1371
1372 do {
1373 old_pte = pte;
1374
1375 if (flags & CYDP_CLEAR_YOUNG)
1376 pte = pte_mkold(pte);
1377 if (flags & CYDP_CLEAR_DIRTY)
1378 pte = pte_mkclean(pte);
1379
1380 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1381 pte_val(old_pte), pte_val(pte));
1382 } while (pte_val(pte) != pte_val(old_pte));
1383}
1384
1385static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1386 unsigned long addr, pte_t *ptep,
1387 unsigned int nr, cydp_t flags)
1388{
1389 pte_t pte;
1390
1391 for (;;) {
1392 pte = __ptep_get(ptep);
1393
1394 if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1395 __set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1396 else
1397 __clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1398
1399 if (--nr == 0)
1400 break;
1401 ptep++;
1402 addr += PAGE_SIZE;
1403 }
1404}
1405
1406#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1407#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1408static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1409 unsigned long address, pmd_t *pmdp)
1410{
1411 __ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1412}
1413
1414#define pmdp_establish pmdp_establish
1415static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1416 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1417{
1418 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1419 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1420}
1421#endif
1422
1423/*
1424 * Encode and decode a swap entry:
1425 * bits 0-1: present (must be zero)
1426 * bits 2: remember PG_anon_exclusive
1427 * bit 3: remember uffd-wp state
1428 * bits 6-10: swap type
1429 * bit 11: PTE_PRESENT_INVALID (must be zero)
1430 * bits 12-61: swap offset
1431 */
1432#define __SWP_TYPE_SHIFT 6
1433#define __SWP_TYPE_BITS 5
1434#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
1435#define __SWP_OFFSET_SHIFT 12
1436#define __SWP_OFFSET_BITS 50
1437#define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
1438
1439#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1440#define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1441#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1442
1443#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1444#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
1445
1446#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1447#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1448#define __swp_entry_to_pmd(swp) __pmd((swp).val)
1449#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1450
1451/*
1452 * Ensure that there are not more swap files than can be encoded in the kernel
1453 * PTEs.
1454 */
1455#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1456
1457#ifdef CONFIG_ARM64_MTE
1458
1459#define __HAVE_ARCH_PREPARE_TO_SWAP
1460extern int arch_prepare_to_swap(struct folio *folio);
1461
1462#define __HAVE_ARCH_SWAP_INVALIDATE
1463static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1464{
1465 if (system_supports_mte())
1466 mte_invalidate_tags(type, offset);
1467}
1468
1469static inline void arch_swap_invalidate_area(int type)
1470{
1471 if (system_supports_mte())
1472 mte_invalidate_tags_area(type);
1473}
1474
1475#define __HAVE_ARCH_SWAP_RESTORE
1476extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1477
1478#endif /* CONFIG_ARM64_MTE */
1479
1480/*
1481 * On AArch64, the cache coherency is handled via the __set_ptes() function.
1482 */
1483static inline void update_mmu_cache_range(struct vm_fault *vmf,
1484 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1485 unsigned int nr)
1486{
1487 /*
1488 * We don't do anything here, so there's a very small chance of
1489 * us retaking a user fault which we just fixed up. The alternative
1490 * is doing a dsb(ishst), but that penalises the fastpath.
1491 */
1492}
1493
1494#define update_mmu_cache(vma, addr, ptep) \
1495 update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1496#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1497
1498#ifdef CONFIG_ARM64_PA_BITS_52
1499#define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1500#else
1501#define phys_to_ttbr(addr) (addr)
1502#endif
1503
1504/*
1505 * On arm64 without hardware Access Flag, copying from user will fail because
1506 * the pte is old and cannot be marked young. So we always end up with zeroed
1507 * page after fork() + CoW for pfn mappings. We don't always have a
1508 * hardware-managed access flag on arm64.
1509 */
1510#define arch_has_hw_pte_young cpu_has_hw_af
1511
1512#ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
1513#define arch_has_hw_nonleaf_pmd_young system_supports_haft
1514#endif
1515
1516/*
1517 * Experimentally, it's cheap to set the access flag in hardware and we
1518 * benefit from prefaulting mappings as 'old' to start with.
1519 */
1520#define arch_wants_old_prefaulted_pte cpu_has_hw_af
1521
1522static inline bool pud_sect_supported(void)
1523{
1524 return PAGE_SIZE == SZ_4K;
1525}
1526
1527
1528#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1529#define ptep_modify_prot_start ptep_modify_prot_start
1530extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1531 unsigned long addr, pte_t *ptep);
1532
1533#define ptep_modify_prot_commit ptep_modify_prot_commit
1534extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1535 unsigned long addr, pte_t *ptep,
1536 pte_t old_pte, pte_t new_pte);
1537
1538#ifdef CONFIG_ARM64_CONTPTE
1539
1540/*
1541 * The contpte APIs are used to transparently manage the contiguous bit in ptes
1542 * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1543 * a private implementation detail of the public ptep API (see below).
1544 */
1545extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1546 pte_t *ptep, pte_t pte);
1547extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1548 pte_t *ptep, pte_t pte);
1549extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1550extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1551extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1552 pte_t *ptep, pte_t pte, unsigned int nr);
1553extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1554 pte_t *ptep, unsigned int nr, int full);
1555extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1556 unsigned long addr, pte_t *ptep,
1557 unsigned int nr, int full);
1558extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1559 unsigned long addr, pte_t *ptep);
1560extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1561 unsigned long addr, pte_t *ptep);
1562extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1563 pte_t *ptep, unsigned int nr);
1564extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1565 unsigned long addr, pte_t *ptep,
1566 pte_t entry, int dirty);
1567extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1568 unsigned long addr, pte_t *ptep,
1569 unsigned int nr, cydp_t flags);
1570
1571static __always_inline void contpte_try_fold(struct mm_struct *mm,
1572 unsigned long addr, pte_t *ptep, pte_t pte)
1573{
1574 /*
1575 * Only bother trying if both the virtual and physical addresses are
1576 * aligned and correspond to the last entry in a contig range. The core
1577 * code mostly modifies ranges from low to high, so this is the likely
1578 * the last modification in the contig range, so a good time to fold.
1579 * We can't fold special mappings, because there is no associated folio.
1580 */
1581
1582 const unsigned long contmask = CONT_PTES - 1;
1583 bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1584
1585 if (unlikely(valign)) {
1586 bool palign = (pte_pfn(pte) & contmask) == contmask;
1587
1588 if (unlikely(palign &&
1589 pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1590 __contpte_try_fold(mm, addr, ptep, pte);
1591 }
1592}
1593
1594static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1595 unsigned long addr, pte_t *ptep, pte_t pte)
1596{
1597 if (unlikely(pte_valid_cont(pte)))
1598 __contpte_try_unfold(mm, addr, ptep, pte);
1599}
1600
1601#define pte_batch_hint pte_batch_hint
1602static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1603{
1604 if (!pte_valid_cont(pte))
1605 return 1;
1606
1607 return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1608}
1609
1610/*
1611 * The below functions constitute the public API that arm64 presents to the
1612 * core-mm to manipulate PTE entries within their page tables (or at least this
1613 * is the subset of the API that arm64 needs to implement). These public
1614 * versions will automatically and transparently apply the contiguous bit where
1615 * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1616 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1617 * private versions, which are prefixed with double underscore. All of these
1618 * APIs except for ptep_get_lockless() are expected to be called with the PTL
1619 * held. Although the contiguous bit is considered private to the
1620 * implementation, it is deliberately allowed to leak through the getters (e.g.
1621 * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1622 * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1623 * its possible a pte will be passed to a setter with the contiguous bit set, so
1624 * we explicitly clear the contiguous bit in those cases to prevent accidentally
1625 * setting it in the pgtable.
1626 */
1627
1628#define ptep_get ptep_get
1629static inline pte_t ptep_get(pte_t *ptep)
1630{
1631 pte_t pte = __ptep_get(ptep);
1632
1633 if (likely(!pte_valid_cont(pte)))
1634 return pte;
1635
1636 return contpte_ptep_get(ptep, pte);
1637}
1638
1639#define ptep_get_lockless ptep_get_lockless
1640static inline pte_t ptep_get_lockless(pte_t *ptep)
1641{
1642 pte_t pte = __ptep_get(ptep);
1643
1644 if (likely(!pte_valid_cont(pte)))
1645 return pte;
1646
1647 return contpte_ptep_get_lockless(ptep);
1648}
1649
1650static inline void set_pte(pte_t *ptep, pte_t pte)
1651{
1652 /*
1653 * We don't have the mm or vaddr so cannot unfold contig entries (since
1654 * it requires tlb maintenance). set_pte() is not used in core code, so
1655 * this should never even be called. Regardless do our best to service
1656 * any call and emit a warning if there is any attempt to set a pte on
1657 * top of an existing contig range.
1658 */
1659 pte_t orig_pte = __ptep_get(ptep);
1660
1661 WARN_ON_ONCE(pte_valid_cont(orig_pte));
1662 __set_pte(ptep, pte_mknoncont(pte));
1663}
1664
1665#define set_ptes set_ptes
1666static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1667 pte_t *ptep, pte_t pte, unsigned int nr)
1668{
1669 pte = pte_mknoncont(pte);
1670
1671 if (likely(nr == 1)) {
1672 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1673 __set_ptes(mm, addr, ptep, pte, 1);
1674 contpte_try_fold(mm, addr, ptep, pte);
1675 } else {
1676 contpte_set_ptes(mm, addr, ptep, pte, nr);
1677 }
1678}
1679
1680static inline void pte_clear(struct mm_struct *mm,
1681 unsigned long addr, pte_t *ptep)
1682{
1683 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1684 __pte_clear(mm, addr, ptep);
1685}
1686
1687#define clear_full_ptes clear_full_ptes
1688static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1689 pte_t *ptep, unsigned int nr, int full)
1690{
1691 if (likely(nr == 1)) {
1692 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1693 __clear_full_ptes(mm, addr, ptep, nr, full);
1694 } else {
1695 contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1696 }
1697}
1698
1699#define get_and_clear_full_ptes get_and_clear_full_ptes
1700static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1701 unsigned long addr, pte_t *ptep,
1702 unsigned int nr, int full)
1703{
1704 pte_t pte;
1705
1706 if (likely(nr == 1)) {
1707 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1708 pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1709 } else {
1710 pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1711 }
1712
1713 return pte;
1714}
1715
1716#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1717static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1718 unsigned long addr, pte_t *ptep)
1719{
1720 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1721 return __ptep_get_and_clear(mm, addr, ptep);
1722}
1723
1724#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1725static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1726 unsigned long addr, pte_t *ptep)
1727{
1728 pte_t orig_pte = __ptep_get(ptep);
1729
1730 if (likely(!pte_valid_cont(orig_pte)))
1731 return __ptep_test_and_clear_young(vma, addr, ptep);
1732
1733 return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1734}
1735
1736#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1737static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1738 unsigned long addr, pte_t *ptep)
1739{
1740 pte_t orig_pte = __ptep_get(ptep);
1741
1742 if (likely(!pte_valid_cont(orig_pte)))
1743 return __ptep_clear_flush_young(vma, addr, ptep);
1744
1745 return contpte_ptep_clear_flush_young(vma, addr, ptep);
1746}
1747
1748#define wrprotect_ptes wrprotect_ptes
1749static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1750 unsigned long addr, pte_t *ptep, unsigned int nr)
1751{
1752 if (likely(nr == 1)) {
1753 /*
1754 * Optimization: wrprotect_ptes() can only be called for present
1755 * ptes so we only need to check contig bit as condition for
1756 * unfold, and we can remove the contig bit from the pte we read
1757 * to avoid re-reading. This speeds up fork() which is sensitive
1758 * for order-0 folios. Equivalent to contpte_try_unfold().
1759 */
1760 pte_t orig_pte = __ptep_get(ptep);
1761
1762 if (unlikely(pte_cont(orig_pte))) {
1763 __contpte_try_unfold(mm, addr, ptep, orig_pte);
1764 orig_pte = pte_mknoncont(orig_pte);
1765 }
1766 ___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1767 } else {
1768 contpte_wrprotect_ptes(mm, addr, ptep, nr);
1769 }
1770}
1771
1772#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1773static inline void ptep_set_wrprotect(struct mm_struct *mm,
1774 unsigned long addr, pte_t *ptep)
1775{
1776 wrprotect_ptes(mm, addr, ptep, 1);
1777}
1778
1779#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1780static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1781 unsigned long addr, pte_t *ptep,
1782 pte_t entry, int dirty)
1783{
1784 pte_t orig_pte = __ptep_get(ptep);
1785
1786 entry = pte_mknoncont(entry);
1787
1788 if (likely(!pte_valid_cont(orig_pte)))
1789 return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1790
1791 return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1792}
1793
1794#define clear_young_dirty_ptes clear_young_dirty_ptes
1795static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1796 unsigned long addr, pte_t *ptep,
1797 unsigned int nr, cydp_t flags)
1798{
1799 if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1800 __clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1801 else
1802 contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1803}
1804
1805#else /* CONFIG_ARM64_CONTPTE */
1806
1807#define ptep_get __ptep_get
1808#define set_pte __set_pte
1809#define set_ptes __set_ptes
1810#define pte_clear __pte_clear
1811#define clear_full_ptes __clear_full_ptes
1812#define get_and_clear_full_ptes __get_and_clear_full_ptes
1813#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1814#define ptep_get_and_clear __ptep_get_and_clear
1815#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1816#define ptep_test_and_clear_young __ptep_test_and_clear_young
1817#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1818#define ptep_clear_flush_young __ptep_clear_flush_young
1819#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1820#define ptep_set_wrprotect __ptep_set_wrprotect
1821#define wrprotect_ptes __wrprotect_ptes
1822#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1823#define ptep_set_access_flags __ptep_set_access_flags
1824#define clear_young_dirty_ptes __clear_young_dirty_ptes
1825
1826#endif /* CONFIG_ARM64_CONTPTE */
1827
1828#endif /* !__ASSEMBLY__ */
1829
1830#endif /* __ASM_PGTABLE_H */