Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2
3#include "bcachefs.h"
4#include "bkey_buf.h"
5#include "btree_locking.h"
6#include "btree_update.h"
7#include "btree_update_interior.h"
8#include "btree_write_buffer.h"
9#include "disk_accounting.h"
10#include "error.h"
11#include "extents.h"
12#include "journal.h"
13#include "journal_io.h"
14#include "journal_reclaim.h"
15
16#include <linux/prefetch.h>
17#include <linux/sort.h>
18
19static int bch2_btree_write_buffer_journal_flush(struct journal *,
20 struct journal_entry_pin *, u64);
21
22static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
23{
24 return (cmp_int(l->hi, r->hi) ?:
25 cmp_int(l->mi, r->mi) ?:
26 cmp_int(l->lo, r->lo)) >= 0;
27}
28
29static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
30{
31#ifdef CONFIG_X86_64
32 int cmp;
33
34 asm("mov (%[l]), %%rax;"
35 "sub (%[r]), %%rax;"
36 "mov 8(%[l]), %%rax;"
37 "sbb 8(%[r]), %%rax;"
38 "mov 16(%[l]), %%rax;"
39 "sbb 16(%[r]), %%rax;"
40 : "=@ccae" (cmp)
41 : [l] "r" (l), [r] "r" (r)
42 : "rax", "cc");
43
44 EBUG_ON(cmp != __wb_key_ref_cmp(l, r));
45 return cmp;
46#else
47 return __wb_key_ref_cmp(l, r);
48#endif
49}
50
51static int wb_key_seq_cmp(const void *_l, const void *_r)
52{
53 const struct btree_write_buffered_key *l = _l;
54 const struct btree_write_buffered_key *r = _r;
55
56 return cmp_int(l->journal_seq, r->journal_seq);
57}
58
59/* Compare excluding idx, the low 24 bits: */
60static inline bool wb_key_eq(const void *_l, const void *_r)
61{
62 const struct wb_key_ref *l = _l;
63 const struct wb_key_ref *r = _r;
64
65 return !((l->hi ^ r->hi)|
66 (l->mi ^ r->mi)|
67 ((l->lo >> 24) ^ (r->lo >> 24)));
68}
69
70static noinline void wb_sort(struct wb_key_ref *base, size_t num)
71{
72 size_t n = num, a = num / 2;
73
74 if (!a) /* num < 2 || size == 0 */
75 return;
76
77 for (;;) {
78 size_t b, c, d;
79
80 if (a) /* Building heap: sift down --a */
81 --a;
82 else if (--n) /* Sorting: Extract root to --n */
83 swap(base[0], base[n]);
84 else /* Sort complete */
85 break;
86
87 /*
88 * Sift element at "a" down into heap. This is the
89 * "bottom-up" variant, which significantly reduces
90 * calls to cmp_func(): we find the sift-down path all
91 * the way to the leaves (one compare per level), then
92 * backtrack to find where to insert the target element.
93 *
94 * Because elements tend to sift down close to the leaves,
95 * this uses fewer compares than doing two per level
96 * on the way down. (A bit more than half as many on
97 * average, 3/4 worst-case.)
98 */
99 for (b = a; c = 2*b + 1, (d = c + 1) < n;)
100 b = wb_key_ref_cmp(base + c, base + d) ? c : d;
101 if (d == n) /* Special case last leaf with no sibling */
102 b = c;
103
104 /* Now backtrack from "b" to the correct location for "a" */
105 while (b != a && wb_key_ref_cmp(base + a, base + b))
106 b = (b - 1) / 2;
107 c = b; /* Where "a" belongs */
108 while (b != a) { /* Shift it into place */
109 b = (b - 1) / 2;
110 swap(base[b], base[c]);
111 }
112 }
113}
114
115static noinline int wb_flush_one_slowpath(struct btree_trans *trans,
116 struct btree_iter *iter,
117 struct btree_write_buffered_key *wb)
118{
119 struct btree_path *path = btree_iter_path(trans, iter);
120
121 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
122
123 trans->journal_res.seq = wb->journal_seq;
124
125 return bch2_trans_update(trans, iter, &wb->k,
126 BTREE_UPDATE_internal_snapshot_node) ?:
127 bch2_trans_commit(trans, NULL, NULL,
128 BCH_TRANS_COMMIT_no_enospc|
129 BCH_TRANS_COMMIT_no_check_rw|
130 BCH_TRANS_COMMIT_no_journal_res|
131 BCH_TRANS_COMMIT_journal_reclaim);
132}
133
134static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter,
135 struct btree_write_buffered_key *wb,
136 bool *write_locked,
137 bool *accounting_accumulated,
138 size_t *fast)
139{
140 struct btree_path *path;
141 int ret;
142
143 EBUG_ON(!wb->journal_seq);
144 EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq);
145 EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq);
146
147 ret = bch2_btree_iter_traverse(iter);
148 if (ret)
149 return ret;
150
151 if (!*accounting_accumulated && wb->k.k.type == KEY_TYPE_accounting) {
152 struct bkey u;
153 struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, iter), &u);
154
155 if (k.k->type == KEY_TYPE_accounting)
156 bch2_accounting_accumulate(bkey_i_to_accounting(&wb->k),
157 bkey_s_c_to_accounting(k));
158 }
159 *accounting_accumulated = true;
160
161 /*
162 * We can't clone a path that has write locks: unshare it now, before
163 * set_pos and traverse():
164 */
165 if (btree_iter_path(trans, iter)->ref > 1)
166 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_);
167
168 path = btree_iter_path(trans, iter);
169
170 if (!*write_locked) {
171 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
172 if (ret)
173 return ret;
174
175 bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
176 *write_locked = true;
177 }
178
179 if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) {
180 *write_locked = false;
181 return wb_flush_one_slowpath(trans, iter, wb);
182 }
183
184 bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
185 (*fast)++;
186 return 0;
187}
188
189/*
190 * Update a btree with a write buffered key using the journal seq of the
191 * original write buffer insert.
192 *
193 * It is not safe to rejournal the key once it has been inserted into the write
194 * buffer because that may break recovery ordering. For example, the key may
195 * have already been modified in the active write buffer in a seq that comes
196 * before the current transaction. If we were to journal this key again and
197 * crash, recovery would process updates in the wrong order.
198 */
199static int
200btree_write_buffered_insert(struct btree_trans *trans,
201 struct btree_write_buffered_key *wb)
202{
203 struct btree_iter iter;
204 int ret;
205
206 bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
207 BTREE_ITER_cached|BTREE_ITER_intent);
208
209 trans->journal_res.seq = wb->journal_seq;
210
211 ret = bch2_btree_iter_traverse(&iter) ?:
212 bch2_trans_update(trans, &iter, &wb->k,
213 BTREE_UPDATE_internal_snapshot_node);
214 bch2_trans_iter_exit(trans, &iter);
215 return ret;
216}
217
218static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb)
219{
220 struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer);
221 struct journal *j = &c->journal;
222
223 if (!wb->inc.keys.nr)
224 return;
225
226 bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin,
227 bch2_btree_write_buffer_journal_flush);
228
229 darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr));
230 darray_resize(&wb->sorted, wb->flushing.keys.size);
231
232 if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) {
233 swap(wb->flushing.keys, wb->inc.keys);
234 goto out;
235 }
236
237 size_t nr = min(darray_room(wb->flushing.keys),
238 wb->sorted.size - wb->flushing.keys.nr);
239 nr = min(nr, wb->inc.keys.nr);
240
241 memcpy(&darray_top(wb->flushing.keys),
242 wb->inc.keys.data,
243 sizeof(wb->inc.keys.data[0]) * nr);
244
245 memmove(wb->inc.keys.data,
246 wb->inc.keys.data + nr,
247 sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr));
248
249 wb->flushing.keys.nr += nr;
250 wb->inc.keys.nr -= nr;
251out:
252 if (!wb->inc.keys.nr)
253 bch2_journal_pin_drop(j, &wb->inc.pin);
254 else
255 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin,
256 bch2_btree_write_buffer_journal_flush);
257
258 if (j->watermark) {
259 spin_lock(&j->lock);
260 bch2_journal_set_watermark(j);
261 spin_unlock(&j->lock);
262 }
263
264 BUG_ON(wb->sorted.size < wb->flushing.keys.nr);
265}
266
267static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans)
268{
269 struct bch_fs *c = trans->c;
270 struct journal *j = &c->journal;
271 struct btree_write_buffer *wb = &c->btree_write_buffer;
272 struct btree_iter iter = { NULL };
273 size_t overwritten = 0, fast = 0, slowpath = 0, could_not_insert = 0;
274 bool write_locked = false;
275 bool accounting_replay_done = test_bit(BCH_FS_accounting_replay_done, &c->flags);
276 int ret = 0;
277
278 ret = bch2_journal_error(&c->journal);
279 if (ret)
280 return ret;
281
282 bch2_trans_unlock(trans);
283 bch2_trans_begin(trans);
284
285 mutex_lock(&wb->inc.lock);
286 move_keys_from_inc_to_flushing(wb);
287 mutex_unlock(&wb->inc.lock);
288
289 for (size_t i = 0; i < wb->flushing.keys.nr; i++) {
290 wb->sorted.data[i].idx = i;
291 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree;
292 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos));
293 }
294 wb->sorted.nr = wb->flushing.keys.nr;
295
296 /*
297 * We first sort so that we can detect and skip redundant updates, and
298 * then we attempt to flush in sorted btree order, as this is most
299 * efficient.
300 *
301 * However, since we're not flushing in the order they appear in the
302 * journal we won't be able to drop our journal pin until everything is
303 * flushed - which means this could deadlock the journal if we weren't
304 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail
305 * if it would block taking a journal reservation.
306 *
307 * If that happens, simply skip the key so we can optimistically insert
308 * as many keys as possible in the fast path.
309 */
310 wb_sort(wb->sorted.data, wb->sorted.nr);
311
312 darray_for_each(wb->sorted, i) {
313 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx];
314
315 BUG_ON(!btree_type_uses_write_buffer(k->btree));
316
317 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++)
318 prefetch(&wb->flushing.keys.data[n->idx]);
319
320 BUG_ON(!k->journal_seq);
321
322 if (!accounting_replay_done &&
323 k->k.k.type == KEY_TYPE_accounting) {
324 slowpath++;
325 continue;
326 }
327
328 if (i + 1 < &darray_top(wb->sorted) &&
329 wb_key_eq(i, i + 1)) {
330 struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx];
331
332 if (k->k.k.type == KEY_TYPE_accounting &&
333 n->k.k.type == KEY_TYPE_accounting)
334 bch2_accounting_accumulate(bkey_i_to_accounting(&n->k),
335 bkey_i_to_s_c_accounting(&k->k));
336
337 overwritten++;
338 n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq);
339 k->journal_seq = 0;
340 continue;
341 }
342
343 if (write_locked) {
344 struct btree_path *path = btree_iter_path(trans, &iter);
345
346 if (path->btree_id != i->btree ||
347 bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) {
348 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
349 write_locked = false;
350
351 ret = lockrestart_do(trans,
352 bch2_btree_iter_traverse(&iter) ?:
353 bch2_foreground_maybe_merge(trans, iter.path, 0,
354 BCH_WATERMARK_reclaim|
355 BCH_TRANS_COMMIT_journal_reclaim|
356 BCH_TRANS_COMMIT_no_check_rw|
357 BCH_TRANS_COMMIT_no_enospc));
358 if (ret)
359 goto err;
360 }
361 }
362
363 if (!iter.path || iter.btree_id != k->btree) {
364 bch2_trans_iter_exit(trans, &iter);
365 bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p,
366 BTREE_ITER_intent|BTREE_ITER_all_snapshots);
367 }
368
369 bch2_btree_iter_set_pos(&iter, k->k.k.p);
370 btree_iter_path(trans, &iter)->preserve = false;
371
372 bool accounting_accumulated = false;
373 do {
374 if (race_fault()) {
375 ret = -BCH_ERR_journal_reclaim_would_deadlock;
376 break;
377 }
378
379 ret = wb_flush_one(trans, &iter, k, &write_locked,
380 &accounting_accumulated, &fast);
381 if (!write_locked)
382 bch2_trans_begin(trans);
383 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart));
384
385 if (!ret) {
386 k->journal_seq = 0;
387 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
388 slowpath++;
389 ret = 0;
390 } else
391 break;
392 }
393
394 if (write_locked) {
395 struct btree_path *path = btree_iter_path(trans, &iter);
396 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
397 }
398 bch2_trans_iter_exit(trans, &iter);
399
400 if (ret)
401 goto err;
402
403 if (slowpath) {
404 /*
405 * Flush in the order they were present in the journal, so that
406 * we can release journal pins:
407 * The fastpath zapped the seq of keys that were successfully flushed so
408 * we can skip those here.
409 */
410 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr);
411
412 sort(wb->flushing.keys.data,
413 wb->flushing.keys.nr,
414 sizeof(wb->flushing.keys.data[0]),
415 wb_key_seq_cmp, NULL);
416
417 darray_for_each(wb->flushing.keys, i) {
418 if (!i->journal_seq)
419 continue;
420
421 if (!accounting_replay_done &&
422 i->k.k.type == KEY_TYPE_accounting) {
423 could_not_insert++;
424 continue;
425 }
426
427 if (!could_not_insert)
428 bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin,
429 bch2_btree_write_buffer_journal_flush);
430
431 bch2_trans_begin(trans);
432
433 ret = commit_do(trans, NULL, NULL,
434 BCH_WATERMARK_reclaim|
435 BCH_TRANS_COMMIT_journal_reclaim|
436 BCH_TRANS_COMMIT_no_check_rw|
437 BCH_TRANS_COMMIT_no_enospc|
438 BCH_TRANS_COMMIT_no_journal_res ,
439 btree_write_buffered_insert(trans, i));
440 if (ret)
441 goto err;
442
443 i->journal_seq = 0;
444 }
445
446 /*
447 * If journal replay hasn't finished with accounting keys we
448 * can't flush accounting keys at all - condense them and leave
449 * them for next time.
450 *
451 * Q: Can the write buffer overflow?
452 * A Shouldn't be any actual risk. It's just new accounting
453 * updates that the write buffer can't flush, and those are only
454 * going to be generated by interior btree node updates as
455 * journal replay has to split/rewrite nodes to make room for
456 * its updates.
457 *
458 * And for those new acounting updates, updates to the same
459 * counters get accumulated as they're flushed from the journal
460 * to the write buffer - see the patch for eytzingcer tree
461 * accumulated. So we could only overflow if the number of
462 * distinct counters touched somehow was very large.
463 */
464 if (could_not_insert) {
465 struct btree_write_buffered_key *dst = wb->flushing.keys.data;
466
467 darray_for_each(wb->flushing.keys, i)
468 if (i->journal_seq)
469 *dst++ = *i;
470 wb->flushing.keys.nr = dst - wb->flushing.keys.data;
471 }
472 }
473err:
474 if (ret || !could_not_insert) {
475 bch2_journal_pin_drop(j, &wb->flushing.pin);
476 wb->flushing.keys.nr = 0;
477 }
478
479 bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret));
480 trace_write_buffer_flush(trans, wb->flushing.keys.nr, overwritten, fast, 0);
481 return ret;
482}
483
484static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf)
485{
486 struct journal_keys_to_wb dst;
487 int ret = 0;
488
489 bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq));
490
491 for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) {
492 jset_entry_for_each_key(entry, k) {
493 ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k);
494 if (ret)
495 goto out;
496 }
497
498 entry->type = BCH_JSET_ENTRY_btree_keys;
499 }
500out:
501 ret = bch2_journal_keys_to_write_buffer_end(c, &dst) ?: ret;
502 return ret;
503}
504
505static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 max_seq)
506{
507 struct journal *j = &c->journal;
508 struct journal_buf *buf;
509 bool blocked;
510 int ret = 0;
511
512 while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, max_seq, &blocked))) {
513 ret = bch2_journal_keys_to_write_buffer(c, buf);
514
515 if (!blocked && !ret) {
516 spin_lock(&j->lock);
517 buf->need_flush_to_write_buffer = false;
518 spin_unlock(&j->lock);
519 }
520
521 mutex_unlock(&j->buf_lock);
522
523 if (blocked) {
524 bch2_journal_unblock(j);
525 break;
526 }
527 }
528
529 return ret;
530}
531
532static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 max_seq,
533 bool *did_work)
534{
535 struct bch_fs *c = trans->c;
536 struct btree_write_buffer *wb = &c->btree_write_buffer;
537 int ret = 0, fetch_from_journal_err;
538
539 do {
540 bch2_trans_unlock(trans);
541
542 fetch_from_journal_err = fetch_wb_keys_from_journal(c, max_seq);
543
544 *did_work |= wb->inc.keys.nr || wb->flushing.keys.nr;
545
546 /*
547 * On memory allocation failure, bch2_btree_write_buffer_flush_locked()
548 * is not guaranteed to empty wb->inc:
549 */
550 mutex_lock(&wb->flushing.lock);
551 ret = bch2_btree_write_buffer_flush_locked(trans);
552 mutex_unlock(&wb->flushing.lock);
553 } while (!ret &&
554 (fetch_from_journal_err ||
555 (wb->inc.pin.seq && wb->inc.pin.seq <= max_seq) ||
556 (wb->flushing.pin.seq && wb->flushing.pin.seq <= max_seq)));
557
558 return ret;
559}
560
561static int bch2_btree_write_buffer_journal_flush(struct journal *j,
562 struct journal_entry_pin *_pin, u64 seq)
563{
564 struct bch_fs *c = container_of(j, struct bch_fs, journal);
565 bool did_work = false;
566
567 return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq, &did_work));
568}
569
570int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
571{
572 struct bch_fs *c = trans->c;
573 bool did_work = false;
574
575 trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_);
576
577 return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal), &did_work);
578}
579
580/*
581 * The write buffer requires flushing when going RO: keys in the journal for the
582 * write buffer don't have a journal pin yet
583 */
584bool bch2_btree_write_buffer_flush_going_ro(struct bch_fs *c)
585{
586 if (bch2_journal_error(&c->journal))
587 return false;
588
589 bool did_work = false;
590 bch2_trans_run(c, btree_write_buffer_flush_seq(trans,
591 journal_cur_seq(&c->journal), &did_work));
592 return did_work;
593}
594
595int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans)
596{
597 struct bch_fs *c = trans->c;
598 struct btree_write_buffer *wb = &c->btree_write_buffer;
599 int ret = 0;
600
601 if (mutex_trylock(&wb->flushing.lock)) {
602 ret = bch2_btree_write_buffer_flush_locked(trans);
603 mutex_unlock(&wb->flushing.lock);
604 }
605
606 return ret;
607}
608
609int bch2_btree_write_buffer_tryflush(struct btree_trans *trans)
610{
611 struct bch_fs *c = trans->c;
612
613 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer))
614 return -BCH_ERR_erofs_no_writes;
615
616 int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans);
617 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
618 return ret;
619}
620
621/*
622 * In check and repair code, when checking references to write buffer btrees we
623 * need to issue a flush before we have a definitive error: this issues a flush
624 * if this is a key we haven't yet checked.
625 */
626int bch2_btree_write_buffer_maybe_flush(struct btree_trans *trans,
627 struct bkey_s_c referring_k,
628 struct bkey_buf *last_flushed)
629{
630 struct bch_fs *c = trans->c;
631 struct bkey_buf tmp;
632 int ret = 0;
633
634 bch2_bkey_buf_init(&tmp);
635
636 if (!bkey_and_val_eq(referring_k, bkey_i_to_s_c(last_flushed->k))) {
637 if (trace_write_buffer_maybe_flush_enabled()) {
638 struct printbuf buf = PRINTBUF;
639
640 bch2_bkey_val_to_text(&buf, c, referring_k);
641 trace_write_buffer_maybe_flush(trans, _RET_IP_, buf.buf);
642 printbuf_exit(&buf);
643 }
644
645 bch2_bkey_buf_reassemble(&tmp, c, referring_k);
646
647 if (bkey_is_btree_ptr(referring_k.k)) {
648 bch2_trans_unlock(trans);
649 bch2_btree_interior_updates_flush(c);
650 }
651
652 ret = bch2_btree_write_buffer_flush_sync(trans);
653 if (ret)
654 goto err;
655
656 bch2_bkey_buf_copy(last_flushed, c, tmp.k);
657 ret = -BCH_ERR_transaction_restart_write_buffer_flush;
658 }
659err:
660 bch2_bkey_buf_exit(&tmp, c);
661 return ret;
662}
663
664static void bch2_btree_write_buffer_flush_work(struct work_struct *work)
665{
666 struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work);
667 struct btree_write_buffer *wb = &c->btree_write_buffer;
668 int ret;
669
670 mutex_lock(&wb->flushing.lock);
671 do {
672 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
673 } while (!ret && bch2_btree_write_buffer_should_flush(c));
674 mutex_unlock(&wb->flushing.lock);
675
676 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
677}
678
679static void wb_accounting_sort(struct btree_write_buffer *wb)
680{
681 eytzinger0_sort(wb->accounting.data, wb->accounting.nr,
682 sizeof(wb->accounting.data[0]),
683 wb_key_cmp, NULL);
684}
685
686int bch2_accounting_key_to_wb_slowpath(struct bch_fs *c, enum btree_id btree,
687 struct bkey_i_accounting *k)
688{
689 struct btree_write_buffer *wb = &c->btree_write_buffer;
690 struct btree_write_buffered_key new = { .btree = btree };
691
692 bkey_copy(&new.k, &k->k_i);
693
694 int ret = darray_push(&wb->accounting, new);
695 if (ret)
696 return ret;
697
698 wb_accounting_sort(wb);
699 return 0;
700}
701
702int bch2_journal_key_to_wb_slowpath(struct bch_fs *c,
703 struct journal_keys_to_wb *dst,
704 enum btree_id btree, struct bkey_i *k)
705{
706 struct btree_write_buffer *wb = &c->btree_write_buffer;
707 int ret;
708retry:
709 ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL);
710 if (!ret && dst->wb == &wb->flushing)
711 ret = darray_resize(&wb->sorted, wb->flushing.keys.size);
712
713 if (unlikely(ret)) {
714 if (dst->wb == &c->btree_write_buffer.flushing) {
715 mutex_unlock(&dst->wb->lock);
716 dst->wb = &c->btree_write_buffer.inc;
717 bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin,
718 bch2_btree_write_buffer_journal_flush);
719 goto retry;
720 }
721
722 return ret;
723 }
724
725 dst->room = darray_room(dst->wb->keys);
726 if (dst->wb == &wb->flushing)
727 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
728 BUG_ON(!dst->room);
729 BUG_ON(!dst->seq);
730
731 struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys);
732 wb_k->journal_seq = dst->seq;
733 wb_k->btree = btree;
734 bkey_copy(&wb_k->k, k);
735 dst->wb->keys.nr++;
736 dst->room--;
737 return 0;
738}
739
740void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq)
741{
742 struct btree_write_buffer *wb = &c->btree_write_buffer;
743
744 if (mutex_trylock(&wb->flushing.lock)) {
745 mutex_lock(&wb->inc.lock);
746 move_keys_from_inc_to_flushing(wb);
747
748 /*
749 * Attempt to skip wb->inc, and add keys directly to
750 * wb->flushing, saving us a copy later:
751 */
752
753 if (!wb->inc.keys.nr) {
754 dst->wb = &wb->flushing;
755 } else {
756 mutex_unlock(&wb->flushing.lock);
757 dst->wb = &wb->inc;
758 }
759 } else {
760 mutex_lock(&wb->inc.lock);
761 dst->wb = &wb->inc;
762 }
763
764 dst->room = darray_room(dst->wb->keys);
765 if (dst->wb == &wb->flushing)
766 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
767 dst->seq = seq;
768
769 bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin,
770 bch2_btree_write_buffer_journal_flush);
771
772 darray_for_each(wb->accounting, i)
773 memset(&i->k.v, 0, bkey_val_bytes(&i->k.k));
774}
775
776int bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst)
777{
778 struct btree_write_buffer *wb = &c->btree_write_buffer;
779 unsigned live_accounting_keys = 0;
780 int ret = 0;
781
782 darray_for_each(wb->accounting, i)
783 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&i->k))) {
784 i->journal_seq = dst->seq;
785 live_accounting_keys++;
786 ret = __bch2_journal_key_to_wb(c, dst, i->btree, &i->k);
787 if (ret)
788 break;
789 }
790
791 if (live_accounting_keys * 2 < wb->accounting.nr) {
792 struct btree_write_buffered_key *dst = wb->accounting.data;
793
794 darray_for_each(wb->accounting, src)
795 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&src->k)))
796 *dst++ = *src;
797 wb->accounting.nr = dst - wb->accounting.data;
798 wb_accounting_sort(wb);
799 }
800
801 if (!dst->wb->keys.nr)
802 bch2_journal_pin_drop(&c->journal, &dst->wb->pin);
803
804 if (bch2_btree_write_buffer_should_flush(c) &&
805 __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) &&
806 !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work))
807 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
808
809 if (dst->wb == &wb->flushing)
810 mutex_unlock(&wb->flushing.lock);
811 mutex_unlock(&wb->inc.lock);
812
813 return ret;
814}
815
816static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size)
817{
818 if (wb->keys.size >= new_size)
819 return 0;
820
821 if (!mutex_trylock(&wb->lock))
822 return -EINTR;
823
824 int ret = darray_resize(&wb->keys, new_size);
825 mutex_unlock(&wb->lock);
826 return ret;
827}
828
829int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size)
830{
831 struct btree_write_buffer *wb = &c->btree_write_buffer;
832
833 return wb_keys_resize(&wb->flushing, new_size) ?:
834 wb_keys_resize(&wb->inc, new_size);
835}
836
837void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
838{
839 struct btree_write_buffer *wb = &c->btree_write_buffer;
840
841 BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) &&
842 !bch2_journal_error(&c->journal));
843
844 darray_exit(&wb->accounting);
845 darray_exit(&wb->sorted);
846 darray_exit(&wb->flushing.keys);
847 darray_exit(&wb->inc.keys);
848}
849
850int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
851{
852 struct btree_write_buffer *wb = &c->btree_write_buffer;
853
854 mutex_init(&wb->inc.lock);
855 mutex_init(&wb->flushing.lock);
856 INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work);
857
858 /* Will be resized by journal as needed: */
859 unsigned initial_size = 1 << 16;
860
861 return darray_make_room(&wb->inc.keys, initial_size) ?:
862 darray_make_room(&wb->flushing.keys, initial_size) ?:
863 darray_make_room(&wb->sorted, initial_size);
864}