Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitmap.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/isolation.h>
81#include <linux/sched/mm.h>
82#include <linux/smpboot.h>
83#include <linux/mutex.h>
84#include <linux/rwsem.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/ethtool_netlink.h>
96#include <linux/skbuff.h>
97#include <linux/kthread.h>
98#include <linux/bpf.h>
99#include <linux/bpf_trace.h>
100#include <net/net_namespace.h>
101#include <net/sock.h>
102#include <net/busy_poll.h>
103#include <linux/rtnetlink.h>
104#include <linux/stat.h>
105#include <net/dsa.h>
106#include <net/dst.h>
107#include <net/dst_metadata.h>
108#include <net/gro.h>
109#include <net/netdev_queues.h>
110#include <net/pkt_sched.h>
111#include <net/pkt_cls.h>
112#include <net/checksum.h>
113#include <net/xfrm.h>
114#include <net/tcx.h>
115#include <linux/highmem.h>
116#include <linux/init.h>
117#include <linux/module.h>
118#include <linux/netpoll.h>
119#include <linux/rcupdate.h>
120#include <linux/delay.h>
121#include <net/iw_handler.h>
122#include <asm/current.h>
123#include <linux/audit.h>
124#include <linux/dmaengine.h>
125#include <linux/err.h>
126#include <linux/ctype.h>
127#include <linux/if_arp.h>
128#include <linux/if_vlan.h>
129#include <linux/ip.h>
130#include <net/ip.h>
131#include <net/mpls.h>
132#include <linux/ipv6.h>
133#include <linux/in.h>
134#include <linux/jhash.h>
135#include <linux/random.h>
136#include <trace/events/napi.h>
137#include <trace/events/net.h>
138#include <trace/events/skb.h>
139#include <trace/events/qdisc.h>
140#include <trace/events/xdp.h>
141#include <linux/inetdevice.h>
142#include <linux/cpu_rmap.h>
143#include <linux/static_key.h>
144#include <linux/hashtable.h>
145#include <linux/vmalloc.h>
146#include <linux/if_macvlan.h>
147#include <linux/errqueue.h>
148#include <linux/hrtimer.h>
149#include <linux/netfilter_netdev.h>
150#include <linux/crash_dump.h>
151#include <linux/sctp.h>
152#include <net/udp_tunnel.h>
153#include <linux/net_namespace.h>
154#include <linux/indirect_call_wrapper.h>
155#include <net/devlink.h>
156#include <linux/pm_runtime.h>
157#include <linux/prandom.h>
158#include <linux/once_lite.h>
159#include <net/netdev_rx_queue.h>
160#include <net/page_pool/types.h>
161#include <net/page_pool/helpers.h>
162#include <net/rps.h>
163#include <linux/phy_link_topology.h>
164
165#include "dev.h"
166#include "devmem.h"
167#include "net-sysfs.h"
168
169static DEFINE_SPINLOCK(ptype_lock);
170struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171
172static int netif_rx_internal(struct sk_buff *skb);
173static int call_netdevice_notifiers_extack(unsigned long val,
174 struct net_device *dev,
175 struct netlink_ext_ack *extack);
176
177static DEFINE_MUTEX(ifalias_mutex);
178
179/* protects napi_hash addition/deletion and napi_gen_id */
180static DEFINE_SPINLOCK(napi_hash_lock);
181
182static unsigned int napi_gen_id = NR_CPUS;
183static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
184
185static inline void dev_base_seq_inc(struct net *net)
186{
187 unsigned int val = net->dev_base_seq + 1;
188
189 WRITE_ONCE(net->dev_base_seq, val ?: 1);
190}
191
192static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193{
194 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195
196 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197}
198
199static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200{
201 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202}
203
204#ifndef CONFIG_PREEMPT_RT
205
206static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207
208static int __init setup_backlog_napi_threads(char *arg)
209{
210 static_branch_enable(&use_backlog_threads_key);
211 return 0;
212}
213early_param("thread_backlog_napi", setup_backlog_napi_threads);
214
215static bool use_backlog_threads(void)
216{
217 return static_branch_unlikely(&use_backlog_threads_key);
218}
219
220#else
221
222static bool use_backlog_threads(void)
223{
224 return true;
225}
226
227#endif
228
229static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 unsigned long *flags)
231{
232 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 else
235 local_irq_save(*flags);
236}
237
238static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239{
240 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 spin_lock_irq(&sd->input_pkt_queue.lock);
242 else
243 local_irq_disable();
244}
245
246static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 unsigned long *flags)
248{
249 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 else
252 local_irq_restore(*flags);
253}
254
255static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256{
257 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 spin_unlock_irq(&sd->input_pkt_queue.lock);
259 else
260 local_irq_enable();
261}
262
263static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 const char *name)
265{
266 struct netdev_name_node *name_node;
267
268 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 if (!name_node)
270 return NULL;
271 INIT_HLIST_NODE(&name_node->hlist);
272 name_node->dev = dev;
273 name_node->name = name;
274 return name_node;
275}
276
277static struct netdev_name_node *
278netdev_name_node_head_alloc(struct net_device *dev)
279{
280 struct netdev_name_node *name_node;
281
282 name_node = netdev_name_node_alloc(dev, dev->name);
283 if (!name_node)
284 return NULL;
285 INIT_LIST_HEAD(&name_node->list);
286 return name_node;
287}
288
289static void netdev_name_node_free(struct netdev_name_node *name_node)
290{
291 kfree(name_node);
292}
293
294static void netdev_name_node_add(struct net *net,
295 struct netdev_name_node *name_node)
296{
297 hlist_add_head_rcu(&name_node->hlist,
298 dev_name_hash(net, name_node->name));
299}
300
301static void netdev_name_node_del(struct netdev_name_node *name_node)
302{
303 hlist_del_rcu(&name_node->hlist);
304}
305
306static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 const char *name)
308{
309 struct hlist_head *head = dev_name_hash(net, name);
310 struct netdev_name_node *name_node;
311
312 hlist_for_each_entry(name_node, head, hlist)
313 if (!strcmp(name_node->name, name))
314 return name_node;
315 return NULL;
316}
317
318static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 const char *name)
320{
321 struct hlist_head *head = dev_name_hash(net, name);
322 struct netdev_name_node *name_node;
323
324 hlist_for_each_entry_rcu(name_node, head, hlist)
325 if (!strcmp(name_node->name, name))
326 return name_node;
327 return NULL;
328}
329
330bool netdev_name_in_use(struct net *net, const char *name)
331{
332 return netdev_name_node_lookup(net, name);
333}
334EXPORT_SYMBOL(netdev_name_in_use);
335
336int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337{
338 struct netdev_name_node *name_node;
339 struct net *net = dev_net(dev);
340
341 name_node = netdev_name_node_lookup(net, name);
342 if (name_node)
343 return -EEXIST;
344 name_node = netdev_name_node_alloc(dev, name);
345 if (!name_node)
346 return -ENOMEM;
347 netdev_name_node_add(net, name_node);
348 /* The node that holds dev->name acts as a head of per-device list. */
349 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350
351 return 0;
352}
353
354static void netdev_name_node_alt_free(struct rcu_head *head)
355{
356 struct netdev_name_node *name_node =
357 container_of(head, struct netdev_name_node, rcu);
358
359 kfree(name_node->name);
360 netdev_name_node_free(name_node);
361}
362
363static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364{
365 netdev_name_node_del(name_node);
366 list_del(&name_node->list);
367 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368}
369
370int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371{
372 struct netdev_name_node *name_node;
373 struct net *net = dev_net(dev);
374
375 name_node = netdev_name_node_lookup(net, name);
376 if (!name_node)
377 return -ENOENT;
378 /* lookup might have found our primary name or a name belonging
379 * to another device.
380 */
381 if (name_node == dev->name_node || name_node->dev != dev)
382 return -EINVAL;
383
384 __netdev_name_node_alt_destroy(name_node);
385 return 0;
386}
387
388static void netdev_name_node_alt_flush(struct net_device *dev)
389{
390 struct netdev_name_node *name_node, *tmp;
391
392 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 list_del(&name_node->list);
394 netdev_name_node_alt_free(&name_node->rcu);
395 }
396}
397
398/* Device list insertion */
399static void list_netdevice(struct net_device *dev)
400{
401 struct netdev_name_node *name_node;
402 struct net *net = dev_net(dev);
403
404 ASSERT_RTNL();
405
406 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 netdev_name_node_add(net, dev->name_node);
408 hlist_add_head_rcu(&dev->index_hlist,
409 dev_index_hash(net, dev->ifindex));
410
411 netdev_for_each_altname(dev, name_node)
412 netdev_name_node_add(net, name_node);
413
414 /* We reserved the ifindex, this can't fail */
415 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416
417 dev_base_seq_inc(net);
418}
419
420/* Device list removal
421 * caller must respect a RCU grace period before freeing/reusing dev
422 */
423static void unlist_netdevice(struct net_device *dev)
424{
425 struct netdev_name_node *name_node;
426 struct net *net = dev_net(dev);
427
428 ASSERT_RTNL();
429
430 xa_erase(&net->dev_by_index, dev->ifindex);
431
432 netdev_for_each_altname(dev, name_node)
433 netdev_name_node_del(name_node);
434
435 /* Unlink dev from the device chain */
436 list_del_rcu(&dev->dev_list);
437 netdev_name_node_del(dev->name_node);
438 hlist_del_rcu(&dev->index_hlist);
439
440 dev_base_seq_inc(dev_net(dev));
441}
442
443/*
444 * Our notifier list
445 */
446
447static RAW_NOTIFIER_HEAD(netdev_chain);
448
449/*
450 * Device drivers call our routines to queue packets here. We empty the
451 * queue in the local softnet handler.
452 */
453
454DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456};
457EXPORT_PER_CPU_SYMBOL(softnet_data);
458
459/* Page_pool has a lockless array/stack to alloc/recycle pages.
460 * PP consumers must pay attention to run APIs in the appropriate context
461 * (e.g. NAPI context).
462 */
463DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464
465#ifdef CONFIG_LOCKDEP
466/*
467 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468 * according to dev->type
469 */
470static const unsigned short netdev_lock_type[] = {
471 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486
487static const char *const netdev_lock_name[] = {
488 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503
504static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506
507static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508{
509 int i;
510
511 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 if (netdev_lock_type[i] == dev_type)
513 return i;
514 /* the last key is used by default */
515 return ARRAY_SIZE(netdev_lock_type) - 1;
516}
517
518static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 unsigned short dev_type)
520{
521 int i;
522
523 i = netdev_lock_pos(dev_type);
524 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 netdev_lock_name[i]);
526}
527
528static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529{
530 int i;
531
532 i = netdev_lock_pos(dev->type);
533 lockdep_set_class_and_name(&dev->addr_list_lock,
534 &netdev_addr_lock_key[i],
535 netdev_lock_name[i]);
536}
537#else
538static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 unsigned short dev_type)
540{
541}
542
543static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544{
545}
546#endif
547
548/*******************************************************************************
549 *
550 * Protocol management and registration routines
551 *
552 *******************************************************************************/
553
554
555/*
556 * Add a protocol ID to the list. Now that the input handler is
557 * smarter we can dispense with all the messy stuff that used to be
558 * here.
559 *
560 * BEWARE!!! Protocol handlers, mangling input packets,
561 * MUST BE last in hash buckets and checking protocol handlers
562 * MUST start from promiscuous ptype_all chain in net_bh.
563 * It is true now, do not change it.
564 * Explanation follows: if protocol handler, mangling packet, will
565 * be the first on list, it is not able to sense, that packet
566 * is cloned and should be copied-on-write, so that it will
567 * change it and subsequent readers will get broken packet.
568 * --ANK (980803)
569 */
570
571static inline struct list_head *ptype_head(const struct packet_type *pt)
572{
573 if (pt->type == htons(ETH_P_ALL))
574 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 else
576 return pt->dev ? &pt->dev->ptype_specific :
577 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578}
579
580/**
581 * dev_add_pack - add packet handler
582 * @pt: packet type declaration
583 *
584 * Add a protocol handler to the networking stack. The passed &packet_type
585 * is linked into kernel lists and may not be freed until it has been
586 * removed from the kernel lists.
587 *
588 * This call does not sleep therefore it can not
589 * guarantee all CPU's that are in middle of receiving packets
590 * will see the new packet type (until the next received packet).
591 */
592
593void dev_add_pack(struct packet_type *pt)
594{
595 struct list_head *head = ptype_head(pt);
596
597 spin_lock(&ptype_lock);
598 list_add_rcu(&pt->list, head);
599 spin_unlock(&ptype_lock);
600}
601EXPORT_SYMBOL(dev_add_pack);
602
603/**
604 * __dev_remove_pack - remove packet handler
605 * @pt: packet type declaration
606 *
607 * Remove a protocol handler that was previously added to the kernel
608 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
609 * from the kernel lists and can be freed or reused once this function
610 * returns.
611 *
612 * The packet type might still be in use by receivers
613 * and must not be freed until after all the CPU's have gone
614 * through a quiescent state.
615 */
616void __dev_remove_pack(struct packet_type *pt)
617{
618 struct list_head *head = ptype_head(pt);
619 struct packet_type *pt1;
620
621 spin_lock(&ptype_lock);
622
623 list_for_each_entry(pt1, head, list) {
624 if (pt == pt1) {
625 list_del_rcu(&pt->list);
626 goto out;
627 }
628 }
629
630 pr_warn("dev_remove_pack: %p not found\n", pt);
631out:
632 spin_unlock(&ptype_lock);
633}
634EXPORT_SYMBOL(__dev_remove_pack);
635
636/**
637 * dev_remove_pack - remove packet handler
638 * @pt: packet type declaration
639 *
640 * Remove a protocol handler that was previously added to the kernel
641 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
642 * from the kernel lists and can be freed or reused once this function
643 * returns.
644 *
645 * This call sleeps to guarantee that no CPU is looking at the packet
646 * type after return.
647 */
648void dev_remove_pack(struct packet_type *pt)
649{
650 __dev_remove_pack(pt);
651
652 synchronize_net();
653}
654EXPORT_SYMBOL(dev_remove_pack);
655
656
657/*******************************************************************************
658 *
659 * Device Interface Subroutines
660 *
661 *******************************************************************************/
662
663/**
664 * dev_get_iflink - get 'iflink' value of a interface
665 * @dev: targeted interface
666 *
667 * Indicates the ifindex the interface is linked to.
668 * Physical interfaces have the same 'ifindex' and 'iflink' values.
669 */
670
671int dev_get_iflink(const struct net_device *dev)
672{
673 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 return dev->netdev_ops->ndo_get_iflink(dev);
675
676 return READ_ONCE(dev->ifindex);
677}
678EXPORT_SYMBOL(dev_get_iflink);
679
680/**
681 * dev_fill_metadata_dst - Retrieve tunnel egress information.
682 * @dev: targeted interface
683 * @skb: The packet.
684 *
685 * For better visibility of tunnel traffic OVS needs to retrieve
686 * egress tunnel information for a packet. Following API allows
687 * user to get this info.
688 */
689int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690{
691 struct ip_tunnel_info *info;
692
693 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
694 return -EINVAL;
695
696 info = skb_tunnel_info_unclone(skb);
697 if (!info)
698 return -ENOMEM;
699 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 return -EINVAL;
701
702 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703}
704EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705
706static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707{
708 int k = stack->num_paths++;
709
710 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 return NULL;
712
713 return &stack->path[k];
714}
715
716int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 struct net_device_path_stack *stack)
718{
719 const struct net_device *last_dev;
720 struct net_device_path_ctx ctx = {
721 .dev = dev,
722 };
723 struct net_device_path *path;
724 int ret = 0;
725
726 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 stack->num_paths = 0;
728 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 last_dev = ctx.dev;
730 path = dev_fwd_path(stack);
731 if (!path)
732 return -1;
733
734 memset(path, 0, sizeof(struct net_device_path));
735 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 if (ret < 0)
737 return -1;
738
739 if (WARN_ON_ONCE(last_dev == ctx.dev))
740 return -1;
741 }
742
743 if (!ctx.dev)
744 return ret;
745
746 path = dev_fwd_path(stack);
747 if (!path)
748 return -1;
749 path->type = DEV_PATH_ETHERNET;
750 path->dev = ctx.dev;
751
752 return ret;
753}
754EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755
756/* must be called under rcu_read_lock(), as we dont take a reference */
757static struct napi_struct *napi_by_id(unsigned int napi_id)
758{
759 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
760 struct napi_struct *napi;
761
762 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
763 if (napi->napi_id == napi_id)
764 return napi;
765
766 return NULL;
767}
768
769/* must be called under rcu_read_lock(), as we dont take a reference */
770static struct napi_struct *
771netdev_napi_by_id(struct net *net, unsigned int napi_id)
772{
773 struct napi_struct *napi;
774
775 napi = napi_by_id(napi_id);
776 if (!napi)
777 return NULL;
778
779 if (WARN_ON_ONCE(!napi->dev))
780 return NULL;
781 if (!net_eq(net, dev_net(napi->dev)))
782 return NULL;
783
784 return napi;
785}
786
787/**
788 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
789 * @net: the applicable net namespace
790 * @napi_id: ID of a NAPI of a target device
791 *
792 * Find a NAPI instance with @napi_id. Lock its device.
793 * The device must be in %NETREG_REGISTERED state for lookup to succeed.
794 * netdev_unlock() must be called to release it.
795 *
796 * Return: pointer to NAPI, its device with lock held, NULL if not found.
797 */
798struct napi_struct *
799netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
800{
801 struct napi_struct *napi;
802 struct net_device *dev;
803
804 rcu_read_lock();
805 napi = netdev_napi_by_id(net, napi_id);
806 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
807 rcu_read_unlock();
808 return NULL;
809 }
810
811 dev = napi->dev;
812 dev_hold(dev);
813 rcu_read_unlock();
814
815 dev = __netdev_put_lock(dev);
816 if (!dev)
817 return NULL;
818
819 rcu_read_lock();
820 napi = netdev_napi_by_id(net, napi_id);
821 if (napi && napi->dev != dev)
822 napi = NULL;
823 rcu_read_unlock();
824
825 if (!napi)
826 netdev_unlock(dev);
827 return napi;
828}
829
830/**
831 * __dev_get_by_name - find a device by its name
832 * @net: the applicable net namespace
833 * @name: name to find
834 *
835 * Find an interface by name. Must be called under RTNL semaphore.
836 * If the name is found a pointer to the device is returned.
837 * If the name is not found then %NULL is returned. The
838 * reference counters are not incremented so the caller must be
839 * careful with locks.
840 */
841
842struct net_device *__dev_get_by_name(struct net *net, const char *name)
843{
844 struct netdev_name_node *node_name;
845
846 node_name = netdev_name_node_lookup(net, name);
847 return node_name ? node_name->dev : NULL;
848}
849EXPORT_SYMBOL(__dev_get_by_name);
850
851/**
852 * dev_get_by_name_rcu - find a device by its name
853 * @net: the applicable net namespace
854 * @name: name to find
855 *
856 * Find an interface by name.
857 * If the name is found a pointer to the device is returned.
858 * If the name is not found then %NULL is returned.
859 * The reference counters are not incremented so the caller must be
860 * careful with locks. The caller must hold RCU lock.
861 */
862
863struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
864{
865 struct netdev_name_node *node_name;
866
867 node_name = netdev_name_node_lookup_rcu(net, name);
868 return node_name ? node_name->dev : NULL;
869}
870EXPORT_SYMBOL(dev_get_by_name_rcu);
871
872/* Deprecated for new users, call netdev_get_by_name() instead */
873struct net_device *dev_get_by_name(struct net *net, const char *name)
874{
875 struct net_device *dev;
876
877 rcu_read_lock();
878 dev = dev_get_by_name_rcu(net, name);
879 dev_hold(dev);
880 rcu_read_unlock();
881 return dev;
882}
883EXPORT_SYMBOL(dev_get_by_name);
884
885/**
886 * netdev_get_by_name() - find a device by its name
887 * @net: the applicable net namespace
888 * @name: name to find
889 * @tracker: tracking object for the acquired reference
890 * @gfp: allocation flags for the tracker
891 *
892 * Find an interface by name. This can be called from any
893 * context and does its own locking. The returned handle has
894 * the usage count incremented and the caller must use netdev_put() to
895 * release it when it is no longer needed. %NULL is returned if no
896 * matching device is found.
897 */
898struct net_device *netdev_get_by_name(struct net *net, const char *name,
899 netdevice_tracker *tracker, gfp_t gfp)
900{
901 struct net_device *dev;
902
903 dev = dev_get_by_name(net, name);
904 if (dev)
905 netdev_tracker_alloc(dev, tracker, gfp);
906 return dev;
907}
908EXPORT_SYMBOL(netdev_get_by_name);
909
910/**
911 * __dev_get_by_index - find a device by its ifindex
912 * @net: the applicable net namespace
913 * @ifindex: index of device
914 *
915 * Search for an interface by index. Returns %NULL if the device
916 * is not found or a pointer to the device. The device has not
917 * had its reference counter increased so the caller must be careful
918 * about locking. The caller must hold the RTNL semaphore.
919 */
920
921struct net_device *__dev_get_by_index(struct net *net, int ifindex)
922{
923 struct net_device *dev;
924 struct hlist_head *head = dev_index_hash(net, ifindex);
925
926 hlist_for_each_entry(dev, head, index_hlist)
927 if (dev->ifindex == ifindex)
928 return dev;
929
930 return NULL;
931}
932EXPORT_SYMBOL(__dev_get_by_index);
933
934/**
935 * dev_get_by_index_rcu - find a device by its ifindex
936 * @net: the applicable net namespace
937 * @ifindex: index of device
938 *
939 * Search for an interface by index. Returns %NULL if the device
940 * is not found or a pointer to the device. The device has not
941 * had its reference counter increased so the caller must be careful
942 * about locking. The caller must hold RCU lock.
943 */
944
945struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
946{
947 struct net_device *dev;
948 struct hlist_head *head = dev_index_hash(net, ifindex);
949
950 hlist_for_each_entry_rcu(dev, head, index_hlist)
951 if (dev->ifindex == ifindex)
952 return dev;
953
954 return NULL;
955}
956EXPORT_SYMBOL(dev_get_by_index_rcu);
957
958/* Deprecated for new users, call netdev_get_by_index() instead */
959struct net_device *dev_get_by_index(struct net *net, int ifindex)
960{
961 struct net_device *dev;
962
963 rcu_read_lock();
964 dev = dev_get_by_index_rcu(net, ifindex);
965 dev_hold(dev);
966 rcu_read_unlock();
967 return dev;
968}
969EXPORT_SYMBOL(dev_get_by_index);
970
971/**
972 * netdev_get_by_index() - find a device by its ifindex
973 * @net: the applicable net namespace
974 * @ifindex: index of device
975 * @tracker: tracking object for the acquired reference
976 * @gfp: allocation flags for the tracker
977 *
978 * Search for an interface by index. Returns NULL if the device
979 * is not found or a pointer to the device. The device returned has
980 * had a reference added and the pointer is safe until the user calls
981 * netdev_put() to indicate they have finished with it.
982 */
983struct net_device *netdev_get_by_index(struct net *net, int ifindex,
984 netdevice_tracker *tracker, gfp_t gfp)
985{
986 struct net_device *dev;
987
988 dev = dev_get_by_index(net, ifindex);
989 if (dev)
990 netdev_tracker_alloc(dev, tracker, gfp);
991 return dev;
992}
993EXPORT_SYMBOL(netdev_get_by_index);
994
995/**
996 * dev_get_by_napi_id - find a device by napi_id
997 * @napi_id: ID of the NAPI struct
998 *
999 * Search for an interface by NAPI ID. Returns %NULL if the device
1000 * is not found or a pointer to the device. The device has not had
1001 * its reference counter increased so the caller must be careful
1002 * about locking. The caller must hold RCU lock.
1003 */
1004struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1005{
1006 struct napi_struct *napi;
1007
1008 WARN_ON_ONCE(!rcu_read_lock_held());
1009
1010 if (napi_id < MIN_NAPI_ID)
1011 return NULL;
1012
1013 napi = napi_by_id(napi_id);
1014
1015 return napi ? napi->dev : NULL;
1016}
1017
1018/* Release the held reference on the net_device, and if the net_device
1019 * is still registered try to lock the instance lock. If device is being
1020 * unregistered NULL will be returned (but the reference has been released,
1021 * either way!)
1022 *
1023 * This helper is intended for locking net_device after it has been looked up
1024 * using a lockless lookup helper. Lock prevents the instance from going away.
1025 */
1026struct net_device *__netdev_put_lock(struct net_device *dev)
1027{
1028 netdev_lock(dev);
1029 if (dev->reg_state > NETREG_REGISTERED) {
1030 netdev_unlock(dev);
1031 dev_put(dev);
1032 return NULL;
1033 }
1034 dev_put(dev);
1035 return dev;
1036}
1037
1038/**
1039 * netdev_get_by_index_lock() - find a device by its ifindex
1040 * @net: the applicable net namespace
1041 * @ifindex: index of device
1042 *
1043 * Search for an interface by index. If a valid device
1044 * with @ifindex is found it will be returned with netdev->lock held.
1045 * netdev_unlock() must be called to release it.
1046 *
1047 * Return: pointer to a device with lock held, NULL if not found.
1048 */
1049struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1050{
1051 struct net_device *dev;
1052
1053 dev = dev_get_by_index(net, ifindex);
1054 if (!dev)
1055 return NULL;
1056
1057 return __netdev_put_lock(dev);
1058}
1059
1060struct net_device *
1061netdev_xa_find_lock(struct net *net, struct net_device *dev,
1062 unsigned long *index)
1063{
1064 if (dev)
1065 netdev_unlock(dev);
1066
1067 do {
1068 rcu_read_lock();
1069 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1070 if (!dev) {
1071 rcu_read_unlock();
1072 return NULL;
1073 }
1074 dev_hold(dev);
1075 rcu_read_unlock();
1076
1077 dev = __netdev_put_lock(dev);
1078 if (dev)
1079 return dev;
1080
1081 (*index)++;
1082 } while (true);
1083}
1084
1085static DEFINE_SEQLOCK(netdev_rename_lock);
1086
1087void netdev_copy_name(struct net_device *dev, char *name)
1088{
1089 unsigned int seq;
1090
1091 do {
1092 seq = read_seqbegin(&netdev_rename_lock);
1093 strscpy(name, dev->name, IFNAMSIZ);
1094 } while (read_seqretry(&netdev_rename_lock, seq));
1095}
1096
1097/**
1098 * netdev_get_name - get a netdevice name, knowing its ifindex.
1099 * @net: network namespace
1100 * @name: a pointer to the buffer where the name will be stored.
1101 * @ifindex: the ifindex of the interface to get the name from.
1102 */
1103int netdev_get_name(struct net *net, char *name, int ifindex)
1104{
1105 struct net_device *dev;
1106 int ret;
1107
1108 rcu_read_lock();
1109
1110 dev = dev_get_by_index_rcu(net, ifindex);
1111 if (!dev) {
1112 ret = -ENODEV;
1113 goto out;
1114 }
1115
1116 netdev_copy_name(dev, name);
1117
1118 ret = 0;
1119out:
1120 rcu_read_unlock();
1121 return ret;
1122}
1123
1124static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1125 const char *ha)
1126{
1127 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1128}
1129
1130/**
1131 * dev_getbyhwaddr_rcu - find a device by its hardware address
1132 * @net: the applicable net namespace
1133 * @type: media type of device
1134 * @ha: hardware address
1135 *
1136 * Search for an interface by MAC address. Returns NULL if the device
1137 * is not found or a pointer to the device.
1138 * The caller must hold RCU.
1139 * The returned device has not had its ref count increased
1140 * and the caller must therefore be careful about locking
1141 *
1142 */
1143
1144struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1145 const char *ha)
1146{
1147 struct net_device *dev;
1148
1149 for_each_netdev_rcu(net, dev)
1150 if (dev_addr_cmp(dev, type, ha))
1151 return dev;
1152
1153 return NULL;
1154}
1155EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1156
1157/**
1158 * dev_getbyhwaddr() - find a device by its hardware address
1159 * @net: the applicable net namespace
1160 * @type: media type of device
1161 * @ha: hardware address
1162 *
1163 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1164 * rtnl_lock.
1165 *
1166 * Context: rtnl_lock() must be held.
1167 * Return: pointer to the net_device, or NULL if not found
1168 */
1169struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1170 const char *ha)
1171{
1172 struct net_device *dev;
1173
1174 ASSERT_RTNL();
1175 for_each_netdev(net, dev)
1176 if (dev_addr_cmp(dev, type, ha))
1177 return dev;
1178
1179 return NULL;
1180}
1181EXPORT_SYMBOL(dev_getbyhwaddr);
1182
1183struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1184{
1185 struct net_device *dev, *ret = NULL;
1186
1187 rcu_read_lock();
1188 for_each_netdev_rcu(net, dev)
1189 if (dev->type == type) {
1190 dev_hold(dev);
1191 ret = dev;
1192 break;
1193 }
1194 rcu_read_unlock();
1195 return ret;
1196}
1197EXPORT_SYMBOL(dev_getfirstbyhwtype);
1198
1199/**
1200 * __dev_get_by_flags - find any device with given flags
1201 * @net: the applicable net namespace
1202 * @if_flags: IFF_* values
1203 * @mask: bitmask of bits in if_flags to check
1204 *
1205 * Search for any interface with the given flags. Returns NULL if a device
1206 * is not found or a pointer to the device. Must be called inside
1207 * rtnl_lock(), and result refcount is unchanged.
1208 */
1209
1210struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1211 unsigned short mask)
1212{
1213 struct net_device *dev, *ret;
1214
1215 ASSERT_RTNL();
1216
1217 ret = NULL;
1218 for_each_netdev(net, dev) {
1219 if (((dev->flags ^ if_flags) & mask) == 0) {
1220 ret = dev;
1221 break;
1222 }
1223 }
1224 return ret;
1225}
1226EXPORT_SYMBOL(__dev_get_by_flags);
1227
1228/**
1229 * dev_valid_name - check if name is okay for network device
1230 * @name: name string
1231 *
1232 * Network device names need to be valid file names to
1233 * allow sysfs to work. We also disallow any kind of
1234 * whitespace.
1235 */
1236bool dev_valid_name(const char *name)
1237{
1238 if (*name == '\0')
1239 return false;
1240 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1241 return false;
1242 if (!strcmp(name, ".") || !strcmp(name, ".."))
1243 return false;
1244
1245 while (*name) {
1246 if (*name == '/' || *name == ':' || isspace(*name))
1247 return false;
1248 name++;
1249 }
1250 return true;
1251}
1252EXPORT_SYMBOL(dev_valid_name);
1253
1254/**
1255 * __dev_alloc_name - allocate a name for a device
1256 * @net: network namespace to allocate the device name in
1257 * @name: name format string
1258 * @res: result name string
1259 *
1260 * Passed a format string - eg "lt%d" it will try and find a suitable
1261 * id. It scans list of devices to build up a free map, then chooses
1262 * the first empty slot. The caller must hold the dev_base or rtnl lock
1263 * while allocating the name and adding the device in order to avoid
1264 * duplicates.
1265 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1266 * Returns the number of the unit assigned or a negative errno code.
1267 */
1268
1269static int __dev_alloc_name(struct net *net, const char *name, char *res)
1270{
1271 int i = 0;
1272 const char *p;
1273 const int max_netdevices = 8*PAGE_SIZE;
1274 unsigned long *inuse;
1275 struct net_device *d;
1276 char buf[IFNAMSIZ];
1277
1278 /* Verify the string as this thing may have come from the user.
1279 * There must be one "%d" and no other "%" characters.
1280 */
1281 p = strchr(name, '%');
1282 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1283 return -EINVAL;
1284
1285 /* Use one page as a bit array of possible slots */
1286 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1287 if (!inuse)
1288 return -ENOMEM;
1289
1290 for_each_netdev(net, d) {
1291 struct netdev_name_node *name_node;
1292
1293 netdev_for_each_altname(d, name_node) {
1294 if (!sscanf(name_node->name, name, &i))
1295 continue;
1296 if (i < 0 || i >= max_netdevices)
1297 continue;
1298
1299 /* avoid cases where sscanf is not exact inverse of printf */
1300 snprintf(buf, IFNAMSIZ, name, i);
1301 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1302 __set_bit(i, inuse);
1303 }
1304 if (!sscanf(d->name, name, &i))
1305 continue;
1306 if (i < 0 || i >= max_netdevices)
1307 continue;
1308
1309 /* avoid cases where sscanf is not exact inverse of printf */
1310 snprintf(buf, IFNAMSIZ, name, i);
1311 if (!strncmp(buf, d->name, IFNAMSIZ))
1312 __set_bit(i, inuse);
1313 }
1314
1315 i = find_first_zero_bit(inuse, max_netdevices);
1316 bitmap_free(inuse);
1317 if (i == max_netdevices)
1318 return -ENFILE;
1319
1320 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1321 strscpy(buf, name, IFNAMSIZ);
1322 snprintf(res, IFNAMSIZ, buf, i);
1323 return i;
1324}
1325
1326/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1327static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1328 const char *want_name, char *out_name,
1329 int dup_errno)
1330{
1331 if (!dev_valid_name(want_name))
1332 return -EINVAL;
1333
1334 if (strchr(want_name, '%'))
1335 return __dev_alloc_name(net, want_name, out_name);
1336
1337 if (netdev_name_in_use(net, want_name))
1338 return -dup_errno;
1339 if (out_name != want_name)
1340 strscpy(out_name, want_name, IFNAMSIZ);
1341 return 0;
1342}
1343
1344/**
1345 * dev_alloc_name - allocate a name for a device
1346 * @dev: device
1347 * @name: name format string
1348 *
1349 * Passed a format string - eg "lt%d" it will try and find a suitable
1350 * id. It scans list of devices to build up a free map, then chooses
1351 * the first empty slot. The caller must hold the dev_base or rtnl lock
1352 * while allocating the name and adding the device in order to avoid
1353 * duplicates.
1354 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1355 * Returns the number of the unit assigned or a negative errno code.
1356 */
1357
1358int dev_alloc_name(struct net_device *dev, const char *name)
1359{
1360 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1361}
1362EXPORT_SYMBOL(dev_alloc_name);
1363
1364static int dev_get_valid_name(struct net *net, struct net_device *dev,
1365 const char *name)
1366{
1367 int ret;
1368
1369 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1370 return ret < 0 ? ret : 0;
1371}
1372
1373/**
1374 * dev_change_name - change name of a device
1375 * @dev: device
1376 * @newname: name (or format string) must be at least IFNAMSIZ
1377 *
1378 * Change name of a device, can pass format strings "eth%d".
1379 * for wildcarding.
1380 */
1381int dev_change_name(struct net_device *dev, const char *newname)
1382{
1383 struct net *net = dev_net(dev);
1384 unsigned char old_assign_type;
1385 char oldname[IFNAMSIZ];
1386 int err = 0;
1387 int ret;
1388
1389 ASSERT_RTNL_NET(net);
1390
1391 if (!strncmp(newname, dev->name, IFNAMSIZ))
1392 return 0;
1393
1394 memcpy(oldname, dev->name, IFNAMSIZ);
1395
1396 write_seqlock_bh(&netdev_rename_lock);
1397 err = dev_get_valid_name(net, dev, newname);
1398 write_sequnlock_bh(&netdev_rename_lock);
1399
1400 if (err < 0)
1401 return err;
1402
1403 if (oldname[0] && !strchr(oldname, '%'))
1404 netdev_info(dev, "renamed from %s%s\n", oldname,
1405 dev->flags & IFF_UP ? " (while UP)" : "");
1406
1407 old_assign_type = dev->name_assign_type;
1408 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1409
1410rollback:
1411 ret = device_rename(&dev->dev, dev->name);
1412 if (ret) {
1413 write_seqlock_bh(&netdev_rename_lock);
1414 memcpy(dev->name, oldname, IFNAMSIZ);
1415 write_sequnlock_bh(&netdev_rename_lock);
1416 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1417 return ret;
1418 }
1419
1420 netdev_adjacent_rename_links(dev, oldname);
1421
1422 netdev_name_node_del(dev->name_node);
1423
1424 synchronize_net();
1425
1426 netdev_name_node_add(net, dev->name_node);
1427
1428 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1429 ret = notifier_to_errno(ret);
1430
1431 if (ret) {
1432 /* err >= 0 after dev_alloc_name() or stores the first errno */
1433 if (err >= 0) {
1434 err = ret;
1435 write_seqlock_bh(&netdev_rename_lock);
1436 memcpy(dev->name, oldname, IFNAMSIZ);
1437 write_sequnlock_bh(&netdev_rename_lock);
1438 memcpy(oldname, newname, IFNAMSIZ);
1439 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1440 old_assign_type = NET_NAME_RENAMED;
1441 goto rollback;
1442 } else {
1443 netdev_err(dev, "name change rollback failed: %d\n",
1444 ret);
1445 }
1446 }
1447
1448 return err;
1449}
1450
1451/**
1452 * dev_set_alias - change ifalias of a device
1453 * @dev: device
1454 * @alias: name up to IFALIASZ
1455 * @len: limit of bytes to copy from info
1456 *
1457 * Set ifalias for a device,
1458 */
1459int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1460{
1461 struct dev_ifalias *new_alias = NULL;
1462
1463 if (len >= IFALIASZ)
1464 return -EINVAL;
1465
1466 if (len) {
1467 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1468 if (!new_alias)
1469 return -ENOMEM;
1470
1471 memcpy(new_alias->ifalias, alias, len);
1472 new_alias->ifalias[len] = 0;
1473 }
1474
1475 mutex_lock(&ifalias_mutex);
1476 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1477 mutex_is_locked(&ifalias_mutex));
1478 mutex_unlock(&ifalias_mutex);
1479
1480 if (new_alias)
1481 kfree_rcu(new_alias, rcuhead);
1482
1483 return len;
1484}
1485EXPORT_SYMBOL(dev_set_alias);
1486
1487/**
1488 * dev_get_alias - get ifalias of a device
1489 * @dev: device
1490 * @name: buffer to store name of ifalias
1491 * @len: size of buffer
1492 *
1493 * get ifalias for a device. Caller must make sure dev cannot go
1494 * away, e.g. rcu read lock or own a reference count to device.
1495 */
1496int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1497{
1498 const struct dev_ifalias *alias;
1499 int ret = 0;
1500
1501 rcu_read_lock();
1502 alias = rcu_dereference(dev->ifalias);
1503 if (alias)
1504 ret = snprintf(name, len, "%s", alias->ifalias);
1505 rcu_read_unlock();
1506
1507 return ret;
1508}
1509
1510/**
1511 * netdev_features_change - device changes features
1512 * @dev: device to cause notification
1513 *
1514 * Called to indicate a device has changed features.
1515 */
1516void netdev_features_change(struct net_device *dev)
1517{
1518 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1519}
1520EXPORT_SYMBOL(netdev_features_change);
1521
1522/**
1523 * netdev_state_change - device changes state
1524 * @dev: device to cause notification
1525 *
1526 * Called to indicate a device has changed state. This function calls
1527 * the notifier chains for netdev_chain and sends a NEWLINK message
1528 * to the routing socket.
1529 */
1530void netdev_state_change(struct net_device *dev)
1531{
1532 if (dev->flags & IFF_UP) {
1533 struct netdev_notifier_change_info change_info = {
1534 .info.dev = dev,
1535 };
1536
1537 call_netdevice_notifiers_info(NETDEV_CHANGE,
1538 &change_info.info);
1539 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1540 }
1541}
1542EXPORT_SYMBOL(netdev_state_change);
1543
1544/**
1545 * __netdev_notify_peers - notify network peers about existence of @dev,
1546 * to be called when rtnl lock is already held.
1547 * @dev: network device
1548 *
1549 * Generate traffic such that interested network peers are aware of
1550 * @dev, such as by generating a gratuitous ARP. This may be used when
1551 * a device wants to inform the rest of the network about some sort of
1552 * reconfiguration such as a failover event or virtual machine
1553 * migration.
1554 */
1555void __netdev_notify_peers(struct net_device *dev)
1556{
1557 ASSERT_RTNL();
1558 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1559 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1560}
1561EXPORT_SYMBOL(__netdev_notify_peers);
1562
1563/**
1564 * netdev_notify_peers - notify network peers about existence of @dev
1565 * @dev: network device
1566 *
1567 * Generate traffic such that interested network peers are aware of
1568 * @dev, such as by generating a gratuitous ARP. This may be used when
1569 * a device wants to inform the rest of the network about some sort of
1570 * reconfiguration such as a failover event or virtual machine
1571 * migration.
1572 */
1573void netdev_notify_peers(struct net_device *dev)
1574{
1575 rtnl_lock();
1576 __netdev_notify_peers(dev);
1577 rtnl_unlock();
1578}
1579EXPORT_SYMBOL(netdev_notify_peers);
1580
1581static int napi_threaded_poll(void *data);
1582
1583static int napi_kthread_create(struct napi_struct *n)
1584{
1585 int err = 0;
1586
1587 /* Create and wake up the kthread once to put it in
1588 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1589 * warning and work with loadavg.
1590 */
1591 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1592 n->dev->name, n->napi_id);
1593 if (IS_ERR(n->thread)) {
1594 err = PTR_ERR(n->thread);
1595 pr_err("kthread_run failed with err %d\n", err);
1596 n->thread = NULL;
1597 }
1598
1599 return err;
1600}
1601
1602static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1603{
1604 const struct net_device_ops *ops = dev->netdev_ops;
1605 int ret;
1606
1607 ASSERT_RTNL();
1608 dev_addr_check(dev);
1609
1610 if (!netif_device_present(dev)) {
1611 /* may be detached because parent is runtime-suspended */
1612 if (dev->dev.parent)
1613 pm_runtime_resume(dev->dev.parent);
1614 if (!netif_device_present(dev))
1615 return -ENODEV;
1616 }
1617
1618 /* Block netpoll from trying to do any rx path servicing.
1619 * If we don't do this there is a chance ndo_poll_controller
1620 * or ndo_poll may be running while we open the device
1621 */
1622 netpoll_poll_disable(dev);
1623
1624 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1625 ret = notifier_to_errno(ret);
1626 if (ret)
1627 return ret;
1628
1629 set_bit(__LINK_STATE_START, &dev->state);
1630
1631 if (ops->ndo_validate_addr)
1632 ret = ops->ndo_validate_addr(dev);
1633
1634 if (!ret && ops->ndo_open)
1635 ret = ops->ndo_open(dev);
1636
1637 netpoll_poll_enable(dev);
1638
1639 if (ret)
1640 clear_bit(__LINK_STATE_START, &dev->state);
1641 else {
1642 netif_set_up(dev, true);
1643 dev_set_rx_mode(dev);
1644 dev_activate(dev);
1645 add_device_randomness(dev->dev_addr, dev->addr_len);
1646 }
1647
1648 return ret;
1649}
1650
1651/**
1652 * dev_open - prepare an interface for use.
1653 * @dev: device to open
1654 * @extack: netlink extended ack
1655 *
1656 * Takes a device from down to up state. The device's private open
1657 * function is invoked and then the multicast lists are loaded. Finally
1658 * the device is moved into the up state and a %NETDEV_UP message is
1659 * sent to the netdev notifier chain.
1660 *
1661 * Calling this function on an active interface is a nop. On a failure
1662 * a negative errno code is returned.
1663 */
1664int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1665{
1666 int ret;
1667
1668 if (dev->flags & IFF_UP)
1669 return 0;
1670
1671 ret = __dev_open(dev, extack);
1672 if (ret < 0)
1673 return ret;
1674
1675 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1676 call_netdevice_notifiers(NETDEV_UP, dev);
1677
1678 return ret;
1679}
1680EXPORT_SYMBOL(dev_open);
1681
1682static void __dev_close_many(struct list_head *head)
1683{
1684 struct net_device *dev;
1685
1686 ASSERT_RTNL();
1687 might_sleep();
1688
1689 list_for_each_entry(dev, head, close_list) {
1690 /* Temporarily disable netpoll until the interface is down */
1691 netpoll_poll_disable(dev);
1692
1693 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1694
1695 clear_bit(__LINK_STATE_START, &dev->state);
1696
1697 /* Synchronize to scheduled poll. We cannot touch poll list, it
1698 * can be even on different cpu. So just clear netif_running().
1699 *
1700 * dev->stop() will invoke napi_disable() on all of it's
1701 * napi_struct instances on this device.
1702 */
1703 smp_mb__after_atomic(); /* Commit netif_running(). */
1704 }
1705
1706 dev_deactivate_many(head);
1707
1708 list_for_each_entry(dev, head, close_list) {
1709 const struct net_device_ops *ops = dev->netdev_ops;
1710
1711 /*
1712 * Call the device specific close. This cannot fail.
1713 * Only if device is UP
1714 *
1715 * We allow it to be called even after a DETACH hot-plug
1716 * event.
1717 */
1718 if (ops->ndo_stop)
1719 ops->ndo_stop(dev);
1720
1721 netif_set_up(dev, false);
1722 netpoll_poll_enable(dev);
1723 }
1724}
1725
1726static void __dev_close(struct net_device *dev)
1727{
1728 LIST_HEAD(single);
1729
1730 list_add(&dev->close_list, &single);
1731 __dev_close_many(&single);
1732 list_del(&single);
1733}
1734
1735void dev_close_many(struct list_head *head, bool unlink)
1736{
1737 struct net_device *dev, *tmp;
1738
1739 /* Remove the devices that don't need to be closed */
1740 list_for_each_entry_safe(dev, tmp, head, close_list)
1741 if (!(dev->flags & IFF_UP))
1742 list_del_init(&dev->close_list);
1743
1744 __dev_close_many(head);
1745
1746 list_for_each_entry_safe(dev, tmp, head, close_list) {
1747 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1748 call_netdevice_notifiers(NETDEV_DOWN, dev);
1749 if (unlink)
1750 list_del_init(&dev->close_list);
1751 }
1752}
1753EXPORT_SYMBOL(dev_close_many);
1754
1755/**
1756 * dev_close - shutdown an interface.
1757 * @dev: device to shutdown
1758 *
1759 * This function moves an active device into down state. A
1760 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1761 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1762 * chain.
1763 */
1764void dev_close(struct net_device *dev)
1765{
1766 if (dev->flags & IFF_UP) {
1767 LIST_HEAD(single);
1768
1769 list_add(&dev->close_list, &single);
1770 dev_close_many(&single, true);
1771 list_del(&single);
1772 }
1773}
1774EXPORT_SYMBOL(dev_close);
1775
1776
1777/**
1778 * dev_disable_lro - disable Large Receive Offload on a device
1779 * @dev: device
1780 *
1781 * Disable Large Receive Offload (LRO) on a net device. Must be
1782 * called under RTNL. This is needed if received packets may be
1783 * forwarded to another interface.
1784 */
1785void dev_disable_lro(struct net_device *dev)
1786{
1787 struct net_device *lower_dev;
1788 struct list_head *iter;
1789
1790 dev->wanted_features &= ~NETIF_F_LRO;
1791 netdev_update_features(dev);
1792
1793 if (unlikely(dev->features & NETIF_F_LRO))
1794 netdev_WARN(dev, "failed to disable LRO!\n");
1795
1796 netdev_for_each_lower_dev(dev, lower_dev, iter)
1797 dev_disable_lro(lower_dev);
1798}
1799EXPORT_SYMBOL(dev_disable_lro);
1800
1801/**
1802 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1803 * @dev: device
1804 *
1805 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1806 * called under RTNL. This is needed if Generic XDP is installed on
1807 * the device.
1808 */
1809static void dev_disable_gro_hw(struct net_device *dev)
1810{
1811 dev->wanted_features &= ~NETIF_F_GRO_HW;
1812 netdev_update_features(dev);
1813
1814 if (unlikely(dev->features & NETIF_F_GRO_HW))
1815 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1816}
1817
1818const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1819{
1820#define N(val) \
1821 case NETDEV_##val: \
1822 return "NETDEV_" __stringify(val);
1823 switch (cmd) {
1824 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1825 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1826 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1827 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1828 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1829 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1830 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1831 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1832 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1833 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1834 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1835 N(XDP_FEAT_CHANGE)
1836 }
1837#undef N
1838 return "UNKNOWN_NETDEV_EVENT";
1839}
1840EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1841
1842static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1843 struct net_device *dev)
1844{
1845 struct netdev_notifier_info info = {
1846 .dev = dev,
1847 };
1848
1849 return nb->notifier_call(nb, val, &info);
1850}
1851
1852static int call_netdevice_register_notifiers(struct notifier_block *nb,
1853 struct net_device *dev)
1854{
1855 int err;
1856
1857 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1858 err = notifier_to_errno(err);
1859 if (err)
1860 return err;
1861
1862 if (!(dev->flags & IFF_UP))
1863 return 0;
1864
1865 call_netdevice_notifier(nb, NETDEV_UP, dev);
1866 return 0;
1867}
1868
1869static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1870 struct net_device *dev)
1871{
1872 if (dev->flags & IFF_UP) {
1873 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1874 dev);
1875 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1876 }
1877 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1878}
1879
1880static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1881 struct net *net)
1882{
1883 struct net_device *dev;
1884 int err;
1885
1886 for_each_netdev(net, dev) {
1887 err = call_netdevice_register_notifiers(nb, dev);
1888 if (err)
1889 goto rollback;
1890 }
1891 return 0;
1892
1893rollback:
1894 for_each_netdev_continue_reverse(net, dev)
1895 call_netdevice_unregister_notifiers(nb, dev);
1896 return err;
1897}
1898
1899static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1900 struct net *net)
1901{
1902 struct net_device *dev;
1903
1904 for_each_netdev(net, dev)
1905 call_netdevice_unregister_notifiers(nb, dev);
1906}
1907
1908static int dev_boot_phase = 1;
1909
1910/**
1911 * register_netdevice_notifier - register a network notifier block
1912 * @nb: notifier
1913 *
1914 * Register a notifier to be called when network device events occur.
1915 * The notifier passed is linked into the kernel structures and must
1916 * not be reused until it has been unregistered. A negative errno code
1917 * is returned on a failure.
1918 *
1919 * When registered all registration and up events are replayed
1920 * to the new notifier to allow device to have a race free
1921 * view of the network device list.
1922 */
1923
1924int register_netdevice_notifier(struct notifier_block *nb)
1925{
1926 struct net *net;
1927 int err;
1928
1929 /* Close race with setup_net() and cleanup_net() */
1930 down_write(&pernet_ops_rwsem);
1931
1932 /* When RTNL is removed, we need protection for netdev_chain. */
1933 rtnl_lock();
1934
1935 err = raw_notifier_chain_register(&netdev_chain, nb);
1936 if (err)
1937 goto unlock;
1938 if (dev_boot_phase)
1939 goto unlock;
1940 for_each_net(net) {
1941 __rtnl_net_lock(net);
1942 err = call_netdevice_register_net_notifiers(nb, net);
1943 __rtnl_net_unlock(net);
1944 if (err)
1945 goto rollback;
1946 }
1947
1948unlock:
1949 rtnl_unlock();
1950 up_write(&pernet_ops_rwsem);
1951 return err;
1952
1953rollback:
1954 for_each_net_continue_reverse(net) {
1955 __rtnl_net_lock(net);
1956 call_netdevice_unregister_net_notifiers(nb, net);
1957 __rtnl_net_unlock(net);
1958 }
1959
1960 raw_notifier_chain_unregister(&netdev_chain, nb);
1961 goto unlock;
1962}
1963EXPORT_SYMBOL(register_netdevice_notifier);
1964
1965/**
1966 * unregister_netdevice_notifier - unregister a network notifier block
1967 * @nb: notifier
1968 *
1969 * Unregister a notifier previously registered by
1970 * register_netdevice_notifier(). The notifier is unlinked into the
1971 * kernel structures and may then be reused. A negative errno code
1972 * is returned on a failure.
1973 *
1974 * After unregistering unregister and down device events are synthesized
1975 * for all devices on the device list to the removed notifier to remove
1976 * the need for special case cleanup code.
1977 */
1978
1979int unregister_netdevice_notifier(struct notifier_block *nb)
1980{
1981 struct net *net;
1982 int err;
1983
1984 /* Close race with setup_net() and cleanup_net() */
1985 down_write(&pernet_ops_rwsem);
1986 rtnl_lock();
1987 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1988 if (err)
1989 goto unlock;
1990
1991 for_each_net(net) {
1992 __rtnl_net_lock(net);
1993 call_netdevice_unregister_net_notifiers(nb, net);
1994 __rtnl_net_unlock(net);
1995 }
1996
1997unlock:
1998 rtnl_unlock();
1999 up_write(&pernet_ops_rwsem);
2000 return err;
2001}
2002EXPORT_SYMBOL(unregister_netdevice_notifier);
2003
2004static int __register_netdevice_notifier_net(struct net *net,
2005 struct notifier_block *nb,
2006 bool ignore_call_fail)
2007{
2008 int err;
2009
2010 err = raw_notifier_chain_register(&net->netdev_chain, nb);
2011 if (err)
2012 return err;
2013 if (dev_boot_phase)
2014 return 0;
2015
2016 err = call_netdevice_register_net_notifiers(nb, net);
2017 if (err && !ignore_call_fail)
2018 goto chain_unregister;
2019
2020 return 0;
2021
2022chain_unregister:
2023 raw_notifier_chain_unregister(&net->netdev_chain, nb);
2024 return err;
2025}
2026
2027static int __unregister_netdevice_notifier_net(struct net *net,
2028 struct notifier_block *nb)
2029{
2030 int err;
2031
2032 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2033 if (err)
2034 return err;
2035
2036 call_netdevice_unregister_net_notifiers(nb, net);
2037 return 0;
2038}
2039
2040/**
2041 * register_netdevice_notifier_net - register a per-netns network notifier block
2042 * @net: network namespace
2043 * @nb: notifier
2044 *
2045 * Register a notifier to be called when network device events occur.
2046 * The notifier passed is linked into the kernel structures and must
2047 * not be reused until it has been unregistered. A negative errno code
2048 * is returned on a failure.
2049 *
2050 * When registered all registration and up events are replayed
2051 * to the new notifier to allow device to have a race free
2052 * view of the network device list.
2053 */
2054
2055int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2056{
2057 int err;
2058
2059 rtnl_net_lock(net);
2060 err = __register_netdevice_notifier_net(net, nb, false);
2061 rtnl_net_unlock(net);
2062
2063 return err;
2064}
2065EXPORT_SYMBOL(register_netdevice_notifier_net);
2066
2067/**
2068 * unregister_netdevice_notifier_net - unregister a per-netns
2069 * network notifier block
2070 * @net: network namespace
2071 * @nb: notifier
2072 *
2073 * Unregister a notifier previously registered by
2074 * register_netdevice_notifier_net(). The notifier is unlinked from the
2075 * kernel structures and may then be reused. A negative errno code
2076 * is returned on a failure.
2077 *
2078 * After unregistering unregister and down device events are synthesized
2079 * for all devices on the device list to the removed notifier to remove
2080 * the need for special case cleanup code.
2081 */
2082
2083int unregister_netdevice_notifier_net(struct net *net,
2084 struct notifier_block *nb)
2085{
2086 int err;
2087
2088 rtnl_net_lock(net);
2089 err = __unregister_netdevice_notifier_net(net, nb);
2090 rtnl_net_unlock(net);
2091
2092 return err;
2093}
2094EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2095
2096static void __move_netdevice_notifier_net(struct net *src_net,
2097 struct net *dst_net,
2098 struct notifier_block *nb)
2099{
2100 __unregister_netdevice_notifier_net(src_net, nb);
2101 __register_netdevice_notifier_net(dst_net, nb, true);
2102}
2103
2104static void rtnl_net_dev_lock(struct net_device *dev)
2105{
2106 bool again;
2107
2108 do {
2109 struct net *net;
2110
2111 again = false;
2112
2113 /* netns might be being dismantled. */
2114 rcu_read_lock();
2115 net = dev_net_rcu(dev);
2116 net_passive_inc(net);
2117 rcu_read_unlock();
2118
2119 rtnl_net_lock(net);
2120
2121#ifdef CONFIG_NET_NS
2122 /* dev might have been moved to another netns. */
2123 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2124 rtnl_net_unlock(net);
2125 net_passive_dec(net);
2126 again = true;
2127 }
2128#endif
2129 } while (again);
2130}
2131
2132static void rtnl_net_dev_unlock(struct net_device *dev)
2133{
2134 struct net *net = dev_net(dev);
2135
2136 rtnl_net_unlock(net);
2137 net_passive_dec(net);
2138}
2139
2140int register_netdevice_notifier_dev_net(struct net_device *dev,
2141 struct notifier_block *nb,
2142 struct netdev_net_notifier *nn)
2143{
2144 int err;
2145
2146 rtnl_net_dev_lock(dev);
2147 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2148 if (!err) {
2149 nn->nb = nb;
2150 list_add(&nn->list, &dev->net_notifier_list);
2151 }
2152 rtnl_net_dev_unlock(dev);
2153
2154 return err;
2155}
2156EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2157
2158int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2159 struct notifier_block *nb,
2160 struct netdev_net_notifier *nn)
2161{
2162 int err;
2163
2164 rtnl_net_dev_lock(dev);
2165 list_del(&nn->list);
2166 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2167 rtnl_net_dev_unlock(dev);
2168
2169 return err;
2170}
2171EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2172
2173static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2174 struct net *net)
2175{
2176 struct netdev_net_notifier *nn;
2177
2178 list_for_each_entry(nn, &dev->net_notifier_list, list)
2179 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2180}
2181
2182/**
2183 * call_netdevice_notifiers_info - call all network notifier blocks
2184 * @val: value passed unmodified to notifier function
2185 * @info: notifier information data
2186 *
2187 * Call all network notifier blocks. Parameters and return value
2188 * are as for raw_notifier_call_chain().
2189 */
2190
2191int call_netdevice_notifiers_info(unsigned long val,
2192 struct netdev_notifier_info *info)
2193{
2194 struct net *net = dev_net(info->dev);
2195 int ret;
2196
2197 ASSERT_RTNL();
2198
2199 /* Run per-netns notifier block chain first, then run the global one.
2200 * Hopefully, one day, the global one is going to be removed after
2201 * all notifier block registrators get converted to be per-netns.
2202 */
2203 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2204 if (ret & NOTIFY_STOP_MASK)
2205 return ret;
2206 return raw_notifier_call_chain(&netdev_chain, val, info);
2207}
2208
2209/**
2210 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2211 * for and rollback on error
2212 * @val_up: value passed unmodified to notifier function
2213 * @val_down: value passed unmodified to the notifier function when
2214 * recovering from an error on @val_up
2215 * @info: notifier information data
2216 *
2217 * Call all per-netns network notifier blocks, but not notifier blocks on
2218 * the global notifier chain. Parameters and return value are as for
2219 * raw_notifier_call_chain_robust().
2220 */
2221
2222static int
2223call_netdevice_notifiers_info_robust(unsigned long val_up,
2224 unsigned long val_down,
2225 struct netdev_notifier_info *info)
2226{
2227 struct net *net = dev_net(info->dev);
2228
2229 ASSERT_RTNL();
2230
2231 return raw_notifier_call_chain_robust(&net->netdev_chain,
2232 val_up, val_down, info);
2233}
2234
2235static int call_netdevice_notifiers_extack(unsigned long val,
2236 struct net_device *dev,
2237 struct netlink_ext_ack *extack)
2238{
2239 struct netdev_notifier_info info = {
2240 .dev = dev,
2241 .extack = extack,
2242 };
2243
2244 return call_netdevice_notifiers_info(val, &info);
2245}
2246
2247/**
2248 * call_netdevice_notifiers - call all network notifier blocks
2249 * @val: value passed unmodified to notifier function
2250 * @dev: net_device pointer passed unmodified to notifier function
2251 *
2252 * Call all network notifier blocks. Parameters and return value
2253 * are as for raw_notifier_call_chain().
2254 */
2255
2256int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2257{
2258 return call_netdevice_notifiers_extack(val, dev, NULL);
2259}
2260EXPORT_SYMBOL(call_netdevice_notifiers);
2261
2262/**
2263 * call_netdevice_notifiers_mtu - call all network notifier blocks
2264 * @val: value passed unmodified to notifier function
2265 * @dev: net_device pointer passed unmodified to notifier function
2266 * @arg: additional u32 argument passed to the notifier function
2267 *
2268 * Call all network notifier blocks. Parameters and return value
2269 * are as for raw_notifier_call_chain().
2270 */
2271static int call_netdevice_notifiers_mtu(unsigned long val,
2272 struct net_device *dev, u32 arg)
2273{
2274 struct netdev_notifier_info_ext info = {
2275 .info.dev = dev,
2276 .ext.mtu = arg,
2277 };
2278
2279 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2280
2281 return call_netdevice_notifiers_info(val, &info.info);
2282}
2283
2284#ifdef CONFIG_NET_INGRESS
2285static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2286
2287void net_inc_ingress_queue(void)
2288{
2289 static_branch_inc(&ingress_needed_key);
2290}
2291EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2292
2293void net_dec_ingress_queue(void)
2294{
2295 static_branch_dec(&ingress_needed_key);
2296}
2297EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2298#endif
2299
2300#ifdef CONFIG_NET_EGRESS
2301static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2302
2303void net_inc_egress_queue(void)
2304{
2305 static_branch_inc(&egress_needed_key);
2306}
2307EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2308
2309void net_dec_egress_queue(void)
2310{
2311 static_branch_dec(&egress_needed_key);
2312}
2313EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2314#endif
2315
2316#ifdef CONFIG_NET_CLS_ACT
2317DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2318EXPORT_SYMBOL(tcf_sw_enabled_key);
2319#endif
2320
2321DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2322EXPORT_SYMBOL(netstamp_needed_key);
2323#ifdef CONFIG_JUMP_LABEL
2324static atomic_t netstamp_needed_deferred;
2325static atomic_t netstamp_wanted;
2326static void netstamp_clear(struct work_struct *work)
2327{
2328 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2329 int wanted;
2330
2331 wanted = atomic_add_return(deferred, &netstamp_wanted);
2332 if (wanted > 0)
2333 static_branch_enable(&netstamp_needed_key);
2334 else
2335 static_branch_disable(&netstamp_needed_key);
2336}
2337static DECLARE_WORK(netstamp_work, netstamp_clear);
2338#endif
2339
2340void net_enable_timestamp(void)
2341{
2342#ifdef CONFIG_JUMP_LABEL
2343 int wanted = atomic_read(&netstamp_wanted);
2344
2345 while (wanted > 0) {
2346 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2347 return;
2348 }
2349 atomic_inc(&netstamp_needed_deferred);
2350 schedule_work(&netstamp_work);
2351#else
2352 static_branch_inc(&netstamp_needed_key);
2353#endif
2354}
2355EXPORT_SYMBOL(net_enable_timestamp);
2356
2357void net_disable_timestamp(void)
2358{
2359#ifdef CONFIG_JUMP_LABEL
2360 int wanted = atomic_read(&netstamp_wanted);
2361
2362 while (wanted > 1) {
2363 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2364 return;
2365 }
2366 atomic_dec(&netstamp_needed_deferred);
2367 schedule_work(&netstamp_work);
2368#else
2369 static_branch_dec(&netstamp_needed_key);
2370#endif
2371}
2372EXPORT_SYMBOL(net_disable_timestamp);
2373
2374static inline void net_timestamp_set(struct sk_buff *skb)
2375{
2376 skb->tstamp = 0;
2377 skb->tstamp_type = SKB_CLOCK_REALTIME;
2378 if (static_branch_unlikely(&netstamp_needed_key))
2379 skb->tstamp = ktime_get_real();
2380}
2381
2382#define net_timestamp_check(COND, SKB) \
2383 if (static_branch_unlikely(&netstamp_needed_key)) { \
2384 if ((COND) && !(SKB)->tstamp) \
2385 (SKB)->tstamp = ktime_get_real(); \
2386 } \
2387
2388bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2389{
2390 return __is_skb_forwardable(dev, skb, true);
2391}
2392EXPORT_SYMBOL_GPL(is_skb_forwardable);
2393
2394static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2395 bool check_mtu)
2396{
2397 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2398
2399 if (likely(!ret)) {
2400 skb->protocol = eth_type_trans(skb, dev);
2401 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2402 }
2403
2404 return ret;
2405}
2406
2407int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2408{
2409 return __dev_forward_skb2(dev, skb, true);
2410}
2411EXPORT_SYMBOL_GPL(__dev_forward_skb);
2412
2413/**
2414 * dev_forward_skb - loopback an skb to another netif
2415 *
2416 * @dev: destination network device
2417 * @skb: buffer to forward
2418 *
2419 * return values:
2420 * NET_RX_SUCCESS (no congestion)
2421 * NET_RX_DROP (packet was dropped, but freed)
2422 *
2423 * dev_forward_skb can be used for injecting an skb from the
2424 * start_xmit function of one device into the receive queue
2425 * of another device.
2426 *
2427 * The receiving device may be in another namespace, so
2428 * we have to clear all information in the skb that could
2429 * impact namespace isolation.
2430 */
2431int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2432{
2433 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2434}
2435EXPORT_SYMBOL_GPL(dev_forward_skb);
2436
2437int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2438{
2439 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2440}
2441
2442static inline int deliver_skb(struct sk_buff *skb,
2443 struct packet_type *pt_prev,
2444 struct net_device *orig_dev)
2445{
2446 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2447 return -ENOMEM;
2448 refcount_inc(&skb->users);
2449 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2450}
2451
2452static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2453 struct packet_type **pt,
2454 struct net_device *orig_dev,
2455 __be16 type,
2456 struct list_head *ptype_list)
2457{
2458 struct packet_type *ptype, *pt_prev = *pt;
2459
2460 list_for_each_entry_rcu(ptype, ptype_list, list) {
2461 if (ptype->type != type)
2462 continue;
2463 if (pt_prev)
2464 deliver_skb(skb, pt_prev, orig_dev);
2465 pt_prev = ptype;
2466 }
2467 *pt = pt_prev;
2468}
2469
2470static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2471{
2472 if (!ptype->af_packet_priv || !skb->sk)
2473 return false;
2474
2475 if (ptype->id_match)
2476 return ptype->id_match(ptype, skb->sk);
2477 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2478 return true;
2479
2480 return false;
2481}
2482
2483/**
2484 * dev_nit_active - return true if any network interface taps are in use
2485 *
2486 * @dev: network device to check for the presence of taps
2487 */
2488bool dev_nit_active(struct net_device *dev)
2489{
2490 return !list_empty(&net_hotdata.ptype_all) ||
2491 !list_empty(&dev->ptype_all);
2492}
2493EXPORT_SYMBOL_GPL(dev_nit_active);
2494
2495/*
2496 * Support routine. Sends outgoing frames to any network
2497 * taps currently in use.
2498 */
2499
2500void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2501{
2502 struct list_head *ptype_list = &net_hotdata.ptype_all;
2503 struct packet_type *ptype, *pt_prev = NULL;
2504 struct sk_buff *skb2 = NULL;
2505
2506 rcu_read_lock();
2507again:
2508 list_for_each_entry_rcu(ptype, ptype_list, list) {
2509 if (READ_ONCE(ptype->ignore_outgoing))
2510 continue;
2511
2512 /* Never send packets back to the socket
2513 * they originated from - MvS (miquels@drinkel.ow.org)
2514 */
2515 if (skb_loop_sk(ptype, skb))
2516 continue;
2517
2518 if (pt_prev) {
2519 deliver_skb(skb2, pt_prev, skb->dev);
2520 pt_prev = ptype;
2521 continue;
2522 }
2523
2524 /* need to clone skb, done only once */
2525 skb2 = skb_clone(skb, GFP_ATOMIC);
2526 if (!skb2)
2527 goto out_unlock;
2528
2529 net_timestamp_set(skb2);
2530
2531 /* skb->nh should be correctly
2532 * set by sender, so that the second statement is
2533 * just protection against buggy protocols.
2534 */
2535 skb_reset_mac_header(skb2);
2536
2537 if (skb_network_header(skb2) < skb2->data ||
2538 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2539 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2540 ntohs(skb2->protocol),
2541 dev->name);
2542 skb_reset_network_header(skb2);
2543 }
2544
2545 skb2->transport_header = skb2->network_header;
2546 skb2->pkt_type = PACKET_OUTGOING;
2547 pt_prev = ptype;
2548 }
2549
2550 if (ptype_list == &net_hotdata.ptype_all) {
2551 ptype_list = &dev->ptype_all;
2552 goto again;
2553 }
2554out_unlock:
2555 if (pt_prev) {
2556 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2557 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2558 else
2559 kfree_skb(skb2);
2560 }
2561 rcu_read_unlock();
2562}
2563EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2564
2565/**
2566 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2567 * @dev: Network device
2568 * @txq: number of queues available
2569 *
2570 * If real_num_tx_queues is changed the tc mappings may no longer be
2571 * valid. To resolve this verify the tc mapping remains valid and if
2572 * not NULL the mapping. With no priorities mapping to this
2573 * offset/count pair it will no longer be used. In the worst case TC0
2574 * is invalid nothing can be done so disable priority mappings. If is
2575 * expected that drivers will fix this mapping if they can before
2576 * calling netif_set_real_num_tx_queues.
2577 */
2578static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2579{
2580 int i;
2581 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2582
2583 /* If TC0 is invalidated disable TC mapping */
2584 if (tc->offset + tc->count > txq) {
2585 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2586 dev->num_tc = 0;
2587 return;
2588 }
2589
2590 /* Invalidated prio to tc mappings set to TC0 */
2591 for (i = 1; i < TC_BITMASK + 1; i++) {
2592 int q = netdev_get_prio_tc_map(dev, i);
2593
2594 tc = &dev->tc_to_txq[q];
2595 if (tc->offset + tc->count > txq) {
2596 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2597 i, q);
2598 netdev_set_prio_tc_map(dev, i, 0);
2599 }
2600 }
2601}
2602
2603int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2604{
2605 if (dev->num_tc) {
2606 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2607 int i;
2608
2609 /* walk through the TCs and see if it falls into any of them */
2610 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2611 if ((txq - tc->offset) < tc->count)
2612 return i;
2613 }
2614
2615 /* didn't find it, just return -1 to indicate no match */
2616 return -1;
2617 }
2618
2619 return 0;
2620}
2621EXPORT_SYMBOL(netdev_txq_to_tc);
2622
2623#ifdef CONFIG_XPS
2624static struct static_key xps_needed __read_mostly;
2625static struct static_key xps_rxqs_needed __read_mostly;
2626static DEFINE_MUTEX(xps_map_mutex);
2627#define xmap_dereference(P) \
2628 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2629
2630static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2631 struct xps_dev_maps *old_maps, int tci, u16 index)
2632{
2633 struct xps_map *map = NULL;
2634 int pos;
2635
2636 map = xmap_dereference(dev_maps->attr_map[tci]);
2637 if (!map)
2638 return false;
2639
2640 for (pos = map->len; pos--;) {
2641 if (map->queues[pos] != index)
2642 continue;
2643
2644 if (map->len > 1) {
2645 map->queues[pos] = map->queues[--map->len];
2646 break;
2647 }
2648
2649 if (old_maps)
2650 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2651 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2652 kfree_rcu(map, rcu);
2653 return false;
2654 }
2655
2656 return true;
2657}
2658
2659static bool remove_xps_queue_cpu(struct net_device *dev,
2660 struct xps_dev_maps *dev_maps,
2661 int cpu, u16 offset, u16 count)
2662{
2663 int num_tc = dev_maps->num_tc;
2664 bool active = false;
2665 int tci;
2666
2667 for (tci = cpu * num_tc; num_tc--; tci++) {
2668 int i, j;
2669
2670 for (i = count, j = offset; i--; j++) {
2671 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2672 break;
2673 }
2674
2675 active |= i < 0;
2676 }
2677
2678 return active;
2679}
2680
2681static void reset_xps_maps(struct net_device *dev,
2682 struct xps_dev_maps *dev_maps,
2683 enum xps_map_type type)
2684{
2685 static_key_slow_dec_cpuslocked(&xps_needed);
2686 if (type == XPS_RXQS)
2687 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2688
2689 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2690
2691 kfree_rcu(dev_maps, rcu);
2692}
2693
2694static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2695 u16 offset, u16 count)
2696{
2697 struct xps_dev_maps *dev_maps;
2698 bool active = false;
2699 int i, j;
2700
2701 dev_maps = xmap_dereference(dev->xps_maps[type]);
2702 if (!dev_maps)
2703 return;
2704
2705 for (j = 0; j < dev_maps->nr_ids; j++)
2706 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2707 if (!active)
2708 reset_xps_maps(dev, dev_maps, type);
2709
2710 if (type == XPS_CPUS) {
2711 for (i = offset + (count - 1); count--; i--)
2712 netdev_queue_numa_node_write(
2713 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2714 }
2715}
2716
2717static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2718 u16 count)
2719{
2720 if (!static_key_false(&xps_needed))
2721 return;
2722
2723 cpus_read_lock();
2724 mutex_lock(&xps_map_mutex);
2725
2726 if (static_key_false(&xps_rxqs_needed))
2727 clean_xps_maps(dev, XPS_RXQS, offset, count);
2728
2729 clean_xps_maps(dev, XPS_CPUS, offset, count);
2730
2731 mutex_unlock(&xps_map_mutex);
2732 cpus_read_unlock();
2733}
2734
2735static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2736{
2737 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2738}
2739
2740static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2741 u16 index, bool is_rxqs_map)
2742{
2743 struct xps_map *new_map;
2744 int alloc_len = XPS_MIN_MAP_ALLOC;
2745 int i, pos;
2746
2747 for (pos = 0; map && pos < map->len; pos++) {
2748 if (map->queues[pos] != index)
2749 continue;
2750 return map;
2751 }
2752
2753 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2754 if (map) {
2755 if (pos < map->alloc_len)
2756 return map;
2757
2758 alloc_len = map->alloc_len * 2;
2759 }
2760
2761 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2762 * map
2763 */
2764 if (is_rxqs_map)
2765 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2766 else
2767 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2768 cpu_to_node(attr_index));
2769 if (!new_map)
2770 return NULL;
2771
2772 for (i = 0; i < pos; i++)
2773 new_map->queues[i] = map->queues[i];
2774 new_map->alloc_len = alloc_len;
2775 new_map->len = pos;
2776
2777 return new_map;
2778}
2779
2780/* Copy xps maps at a given index */
2781static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2782 struct xps_dev_maps *new_dev_maps, int index,
2783 int tc, bool skip_tc)
2784{
2785 int i, tci = index * dev_maps->num_tc;
2786 struct xps_map *map;
2787
2788 /* copy maps belonging to foreign traffic classes */
2789 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2790 if (i == tc && skip_tc)
2791 continue;
2792
2793 /* fill in the new device map from the old device map */
2794 map = xmap_dereference(dev_maps->attr_map[tci]);
2795 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2796 }
2797}
2798
2799/* Must be called under cpus_read_lock */
2800int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2801 u16 index, enum xps_map_type type)
2802{
2803 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2804 const unsigned long *online_mask = NULL;
2805 bool active = false, copy = false;
2806 int i, j, tci, numa_node_id = -2;
2807 int maps_sz, num_tc = 1, tc = 0;
2808 struct xps_map *map, *new_map;
2809 unsigned int nr_ids;
2810
2811 WARN_ON_ONCE(index >= dev->num_tx_queues);
2812
2813 if (dev->num_tc) {
2814 /* Do not allow XPS on subordinate device directly */
2815 num_tc = dev->num_tc;
2816 if (num_tc < 0)
2817 return -EINVAL;
2818
2819 /* If queue belongs to subordinate dev use its map */
2820 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2821
2822 tc = netdev_txq_to_tc(dev, index);
2823 if (tc < 0)
2824 return -EINVAL;
2825 }
2826
2827 mutex_lock(&xps_map_mutex);
2828
2829 dev_maps = xmap_dereference(dev->xps_maps[type]);
2830 if (type == XPS_RXQS) {
2831 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2832 nr_ids = dev->num_rx_queues;
2833 } else {
2834 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2835 if (num_possible_cpus() > 1)
2836 online_mask = cpumask_bits(cpu_online_mask);
2837 nr_ids = nr_cpu_ids;
2838 }
2839
2840 if (maps_sz < L1_CACHE_BYTES)
2841 maps_sz = L1_CACHE_BYTES;
2842
2843 /* The old dev_maps could be larger or smaller than the one we're
2844 * setting up now, as dev->num_tc or nr_ids could have been updated in
2845 * between. We could try to be smart, but let's be safe instead and only
2846 * copy foreign traffic classes if the two map sizes match.
2847 */
2848 if (dev_maps &&
2849 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2850 copy = true;
2851
2852 /* allocate memory for queue storage */
2853 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2854 j < nr_ids;) {
2855 if (!new_dev_maps) {
2856 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2857 if (!new_dev_maps) {
2858 mutex_unlock(&xps_map_mutex);
2859 return -ENOMEM;
2860 }
2861
2862 new_dev_maps->nr_ids = nr_ids;
2863 new_dev_maps->num_tc = num_tc;
2864 }
2865
2866 tci = j * num_tc + tc;
2867 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2868
2869 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2870 if (!map)
2871 goto error;
2872
2873 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2874 }
2875
2876 if (!new_dev_maps)
2877 goto out_no_new_maps;
2878
2879 if (!dev_maps) {
2880 /* Increment static keys at most once per type */
2881 static_key_slow_inc_cpuslocked(&xps_needed);
2882 if (type == XPS_RXQS)
2883 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2884 }
2885
2886 for (j = 0; j < nr_ids; j++) {
2887 bool skip_tc = false;
2888
2889 tci = j * num_tc + tc;
2890 if (netif_attr_test_mask(j, mask, nr_ids) &&
2891 netif_attr_test_online(j, online_mask, nr_ids)) {
2892 /* add tx-queue to CPU/rx-queue maps */
2893 int pos = 0;
2894
2895 skip_tc = true;
2896
2897 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2898 while ((pos < map->len) && (map->queues[pos] != index))
2899 pos++;
2900
2901 if (pos == map->len)
2902 map->queues[map->len++] = index;
2903#ifdef CONFIG_NUMA
2904 if (type == XPS_CPUS) {
2905 if (numa_node_id == -2)
2906 numa_node_id = cpu_to_node(j);
2907 else if (numa_node_id != cpu_to_node(j))
2908 numa_node_id = -1;
2909 }
2910#endif
2911 }
2912
2913 if (copy)
2914 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2915 skip_tc);
2916 }
2917
2918 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2919
2920 /* Cleanup old maps */
2921 if (!dev_maps)
2922 goto out_no_old_maps;
2923
2924 for (j = 0; j < dev_maps->nr_ids; j++) {
2925 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2926 map = xmap_dereference(dev_maps->attr_map[tci]);
2927 if (!map)
2928 continue;
2929
2930 if (copy) {
2931 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2932 if (map == new_map)
2933 continue;
2934 }
2935
2936 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2937 kfree_rcu(map, rcu);
2938 }
2939 }
2940
2941 old_dev_maps = dev_maps;
2942
2943out_no_old_maps:
2944 dev_maps = new_dev_maps;
2945 active = true;
2946
2947out_no_new_maps:
2948 if (type == XPS_CPUS)
2949 /* update Tx queue numa node */
2950 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2951 (numa_node_id >= 0) ?
2952 numa_node_id : NUMA_NO_NODE);
2953
2954 if (!dev_maps)
2955 goto out_no_maps;
2956
2957 /* removes tx-queue from unused CPUs/rx-queues */
2958 for (j = 0; j < dev_maps->nr_ids; j++) {
2959 tci = j * dev_maps->num_tc;
2960
2961 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2962 if (i == tc &&
2963 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2964 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2965 continue;
2966
2967 active |= remove_xps_queue(dev_maps,
2968 copy ? old_dev_maps : NULL,
2969 tci, index);
2970 }
2971 }
2972
2973 if (old_dev_maps)
2974 kfree_rcu(old_dev_maps, rcu);
2975
2976 /* free map if not active */
2977 if (!active)
2978 reset_xps_maps(dev, dev_maps, type);
2979
2980out_no_maps:
2981 mutex_unlock(&xps_map_mutex);
2982
2983 return 0;
2984error:
2985 /* remove any maps that we added */
2986 for (j = 0; j < nr_ids; j++) {
2987 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2988 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2989 map = copy ?
2990 xmap_dereference(dev_maps->attr_map[tci]) :
2991 NULL;
2992 if (new_map && new_map != map)
2993 kfree(new_map);
2994 }
2995 }
2996
2997 mutex_unlock(&xps_map_mutex);
2998
2999 kfree(new_dev_maps);
3000 return -ENOMEM;
3001}
3002EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3003
3004int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3005 u16 index)
3006{
3007 int ret;
3008
3009 cpus_read_lock();
3010 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3011 cpus_read_unlock();
3012
3013 return ret;
3014}
3015EXPORT_SYMBOL(netif_set_xps_queue);
3016
3017#endif
3018static void netdev_unbind_all_sb_channels(struct net_device *dev)
3019{
3020 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3021
3022 /* Unbind any subordinate channels */
3023 while (txq-- != &dev->_tx[0]) {
3024 if (txq->sb_dev)
3025 netdev_unbind_sb_channel(dev, txq->sb_dev);
3026 }
3027}
3028
3029void netdev_reset_tc(struct net_device *dev)
3030{
3031#ifdef CONFIG_XPS
3032 netif_reset_xps_queues_gt(dev, 0);
3033#endif
3034 netdev_unbind_all_sb_channels(dev);
3035
3036 /* Reset TC configuration of device */
3037 dev->num_tc = 0;
3038 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3039 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3040}
3041EXPORT_SYMBOL(netdev_reset_tc);
3042
3043int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3044{
3045 if (tc >= dev->num_tc)
3046 return -EINVAL;
3047
3048#ifdef CONFIG_XPS
3049 netif_reset_xps_queues(dev, offset, count);
3050#endif
3051 dev->tc_to_txq[tc].count = count;
3052 dev->tc_to_txq[tc].offset = offset;
3053 return 0;
3054}
3055EXPORT_SYMBOL(netdev_set_tc_queue);
3056
3057int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3058{
3059 if (num_tc > TC_MAX_QUEUE)
3060 return -EINVAL;
3061
3062#ifdef CONFIG_XPS
3063 netif_reset_xps_queues_gt(dev, 0);
3064#endif
3065 netdev_unbind_all_sb_channels(dev);
3066
3067 dev->num_tc = num_tc;
3068 return 0;
3069}
3070EXPORT_SYMBOL(netdev_set_num_tc);
3071
3072void netdev_unbind_sb_channel(struct net_device *dev,
3073 struct net_device *sb_dev)
3074{
3075 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3076
3077#ifdef CONFIG_XPS
3078 netif_reset_xps_queues_gt(sb_dev, 0);
3079#endif
3080 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3081 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3082
3083 while (txq-- != &dev->_tx[0]) {
3084 if (txq->sb_dev == sb_dev)
3085 txq->sb_dev = NULL;
3086 }
3087}
3088EXPORT_SYMBOL(netdev_unbind_sb_channel);
3089
3090int netdev_bind_sb_channel_queue(struct net_device *dev,
3091 struct net_device *sb_dev,
3092 u8 tc, u16 count, u16 offset)
3093{
3094 /* Make certain the sb_dev and dev are already configured */
3095 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3096 return -EINVAL;
3097
3098 /* We cannot hand out queues we don't have */
3099 if ((offset + count) > dev->real_num_tx_queues)
3100 return -EINVAL;
3101
3102 /* Record the mapping */
3103 sb_dev->tc_to_txq[tc].count = count;
3104 sb_dev->tc_to_txq[tc].offset = offset;
3105
3106 /* Provide a way for Tx queue to find the tc_to_txq map or
3107 * XPS map for itself.
3108 */
3109 while (count--)
3110 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3111
3112 return 0;
3113}
3114EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3115
3116int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3117{
3118 /* Do not use a multiqueue device to represent a subordinate channel */
3119 if (netif_is_multiqueue(dev))
3120 return -ENODEV;
3121
3122 /* We allow channels 1 - 32767 to be used for subordinate channels.
3123 * Channel 0 is meant to be "native" mode and used only to represent
3124 * the main root device. We allow writing 0 to reset the device back
3125 * to normal mode after being used as a subordinate channel.
3126 */
3127 if (channel > S16_MAX)
3128 return -EINVAL;
3129
3130 dev->num_tc = -channel;
3131
3132 return 0;
3133}
3134EXPORT_SYMBOL(netdev_set_sb_channel);
3135
3136/*
3137 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3138 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3139 */
3140int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3141{
3142 bool disabling;
3143 int rc;
3144
3145 disabling = txq < dev->real_num_tx_queues;
3146
3147 if (txq < 1 || txq > dev->num_tx_queues)
3148 return -EINVAL;
3149
3150 if (dev->reg_state == NETREG_REGISTERED ||
3151 dev->reg_state == NETREG_UNREGISTERING) {
3152 ASSERT_RTNL();
3153
3154 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3155 txq);
3156 if (rc)
3157 return rc;
3158
3159 if (dev->num_tc)
3160 netif_setup_tc(dev, txq);
3161
3162 net_shaper_set_real_num_tx_queues(dev, txq);
3163
3164 dev_qdisc_change_real_num_tx(dev, txq);
3165
3166 dev->real_num_tx_queues = txq;
3167
3168 if (disabling) {
3169 synchronize_net();
3170 qdisc_reset_all_tx_gt(dev, txq);
3171#ifdef CONFIG_XPS
3172 netif_reset_xps_queues_gt(dev, txq);
3173#endif
3174 }
3175 } else {
3176 dev->real_num_tx_queues = txq;
3177 }
3178
3179 return 0;
3180}
3181EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3182
3183#ifdef CONFIG_SYSFS
3184/**
3185 * netif_set_real_num_rx_queues - set actual number of RX queues used
3186 * @dev: Network device
3187 * @rxq: Actual number of RX queues
3188 *
3189 * This must be called either with the rtnl_lock held or before
3190 * registration of the net device. Returns 0 on success, or a
3191 * negative error code. If called before registration, it always
3192 * succeeds.
3193 */
3194int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3195{
3196 int rc;
3197
3198 if (rxq < 1 || rxq > dev->num_rx_queues)
3199 return -EINVAL;
3200
3201 if (dev->reg_state == NETREG_REGISTERED) {
3202 ASSERT_RTNL();
3203
3204 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3205 rxq);
3206 if (rc)
3207 return rc;
3208 }
3209
3210 dev->real_num_rx_queues = rxq;
3211 return 0;
3212}
3213EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3214#endif
3215
3216/**
3217 * netif_set_real_num_queues - set actual number of RX and TX queues used
3218 * @dev: Network device
3219 * @txq: Actual number of TX queues
3220 * @rxq: Actual number of RX queues
3221 *
3222 * Set the real number of both TX and RX queues.
3223 * Does nothing if the number of queues is already correct.
3224 */
3225int netif_set_real_num_queues(struct net_device *dev,
3226 unsigned int txq, unsigned int rxq)
3227{
3228 unsigned int old_rxq = dev->real_num_rx_queues;
3229 int err;
3230
3231 if (txq < 1 || txq > dev->num_tx_queues ||
3232 rxq < 1 || rxq > dev->num_rx_queues)
3233 return -EINVAL;
3234
3235 /* Start from increases, so the error path only does decreases -
3236 * decreases can't fail.
3237 */
3238 if (rxq > dev->real_num_rx_queues) {
3239 err = netif_set_real_num_rx_queues(dev, rxq);
3240 if (err)
3241 return err;
3242 }
3243 if (txq > dev->real_num_tx_queues) {
3244 err = netif_set_real_num_tx_queues(dev, txq);
3245 if (err)
3246 goto undo_rx;
3247 }
3248 if (rxq < dev->real_num_rx_queues)
3249 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3250 if (txq < dev->real_num_tx_queues)
3251 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3252
3253 return 0;
3254undo_rx:
3255 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3256 return err;
3257}
3258EXPORT_SYMBOL(netif_set_real_num_queues);
3259
3260/**
3261 * netif_set_tso_max_size() - set the max size of TSO frames supported
3262 * @dev: netdev to update
3263 * @size: max skb->len of a TSO frame
3264 *
3265 * Set the limit on the size of TSO super-frames the device can handle.
3266 * Unless explicitly set the stack will assume the value of
3267 * %GSO_LEGACY_MAX_SIZE.
3268 */
3269void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3270{
3271 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3272 if (size < READ_ONCE(dev->gso_max_size))
3273 netif_set_gso_max_size(dev, size);
3274 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3275 netif_set_gso_ipv4_max_size(dev, size);
3276}
3277EXPORT_SYMBOL(netif_set_tso_max_size);
3278
3279/**
3280 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3281 * @dev: netdev to update
3282 * @segs: max number of TCP segments
3283 *
3284 * Set the limit on the number of TCP segments the device can generate from
3285 * a single TSO super-frame.
3286 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3287 */
3288void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3289{
3290 dev->tso_max_segs = segs;
3291 if (segs < READ_ONCE(dev->gso_max_segs))
3292 netif_set_gso_max_segs(dev, segs);
3293}
3294EXPORT_SYMBOL(netif_set_tso_max_segs);
3295
3296/**
3297 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3298 * @to: netdev to update
3299 * @from: netdev from which to copy the limits
3300 */
3301void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3302{
3303 netif_set_tso_max_size(to, from->tso_max_size);
3304 netif_set_tso_max_segs(to, from->tso_max_segs);
3305}
3306EXPORT_SYMBOL(netif_inherit_tso_max);
3307
3308/**
3309 * netif_get_num_default_rss_queues - default number of RSS queues
3310 *
3311 * Default value is the number of physical cores if there are only 1 or 2, or
3312 * divided by 2 if there are more.
3313 */
3314int netif_get_num_default_rss_queues(void)
3315{
3316 cpumask_var_t cpus;
3317 int cpu, count = 0;
3318
3319 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3320 return 1;
3321
3322 cpumask_copy(cpus, cpu_online_mask);
3323 for_each_cpu(cpu, cpus) {
3324 ++count;
3325 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3326 }
3327 free_cpumask_var(cpus);
3328
3329 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3330}
3331EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3332
3333static void __netif_reschedule(struct Qdisc *q)
3334{
3335 struct softnet_data *sd;
3336 unsigned long flags;
3337
3338 local_irq_save(flags);
3339 sd = this_cpu_ptr(&softnet_data);
3340 q->next_sched = NULL;
3341 *sd->output_queue_tailp = q;
3342 sd->output_queue_tailp = &q->next_sched;
3343 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3344 local_irq_restore(flags);
3345}
3346
3347void __netif_schedule(struct Qdisc *q)
3348{
3349 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3350 __netif_reschedule(q);
3351}
3352EXPORT_SYMBOL(__netif_schedule);
3353
3354struct dev_kfree_skb_cb {
3355 enum skb_drop_reason reason;
3356};
3357
3358static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3359{
3360 return (struct dev_kfree_skb_cb *)skb->cb;
3361}
3362
3363void netif_schedule_queue(struct netdev_queue *txq)
3364{
3365 rcu_read_lock();
3366 if (!netif_xmit_stopped(txq)) {
3367 struct Qdisc *q = rcu_dereference(txq->qdisc);
3368
3369 __netif_schedule(q);
3370 }
3371 rcu_read_unlock();
3372}
3373EXPORT_SYMBOL(netif_schedule_queue);
3374
3375void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3376{
3377 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3378 struct Qdisc *q;
3379
3380 rcu_read_lock();
3381 q = rcu_dereference(dev_queue->qdisc);
3382 __netif_schedule(q);
3383 rcu_read_unlock();
3384 }
3385}
3386EXPORT_SYMBOL(netif_tx_wake_queue);
3387
3388void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3389{
3390 unsigned long flags;
3391
3392 if (unlikely(!skb))
3393 return;
3394
3395 if (likely(refcount_read(&skb->users) == 1)) {
3396 smp_rmb();
3397 refcount_set(&skb->users, 0);
3398 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3399 return;
3400 }
3401 get_kfree_skb_cb(skb)->reason = reason;
3402 local_irq_save(flags);
3403 skb->next = __this_cpu_read(softnet_data.completion_queue);
3404 __this_cpu_write(softnet_data.completion_queue, skb);
3405 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3406 local_irq_restore(flags);
3407}
3408EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3409
3410void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3411{
3412 if (in_hardirq() || irqs_disabled())
3413 dev_kfree_skb_irq_reason(skb, reason);
3414 else
3415 kfree_skb_reason(skb, reason);
3416}
3417EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3418
3419
3420/**
3421 * netif_device_detach - mark device as removed
3422 * @dev: network device
3423 *
3424 * Mark device as removed from system and therefore no longer available.
3425 */
3426void netif_device_detach(struct net_device *dev)
3427{
3428 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3429 netif_running(dev)) {
3430 netif_tx_stop_all_queues(dev);
3431 }
3432}
3433EXPORT_SYMBOL(netif_device_detach);
3434
3435/**
3436 * netif_device_attach - mark device as attached
3437 * @dev: network device
3438 *
3439 * Mark device as attached from system and restart if needed.
3440 */
3441void netif_device_attach(struct net_device *dev)
3442{
3443 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3444 netif_running(dev)) {
3445 netif_tx_wake_all_queues(dev);
3446 netdev_watchdog_up(dev);
3447 }
3448}
3449EXPORT_SYMBOL(netif_device_attach);
3450
3451/*
3452 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3453 * to be used as a distribution range.
3454 */
3455static u16 skb_tx_hash(const struct net_device *dev,
3456 const struct net_device *sb_dev,
3457 struct sk_buff *skb)
3458{
3459 u32 hash;
3460 u16 qoffset = 0;
3461 u16 qcount = dev->real_num_tx_queues;
3462
3463 if (dev->num_tc) {
3464 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3465
3466 qoffset = sb_dev->tc_to_txq[tc].offset;
3467 qcount = sb_dev->tc_to_txq[tc].count;
3468 if (unlikely(!qcount)) {
3469 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3470 sb_dev->name, qoffset, tc);
3471 qoffset = 0;
3472 qcount = dev->real_num_tx_queues;
3473 }
3474 }
3475
3476 if (skb_rx_queue_recorded(skb)) {
3477 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3478 hash = skb_get_rx_queue(skb);
3479 if (hash >= qoffset)
3480 hash -= qoffset;
3481 while (unlikely(hash >= qcount))
3482 hash -= qcount;
3483 return hash + qoffset;
3484 }
3485
3486 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3487}
3488
3489void skb_warn_bad_offload(const struct sk_buff *skb)
3490{
3491 static const netdev_features_t null_features;
3492 struct net_device *dev = skb->dev;
3493 const char *name = "";
3494
3495 if (!net_ratelimit())
3496 return;
3497
3498 if (dev) {
3499 if (dev->dev.parent)
3500 name = dev_driver_string(dev->dev.parent);
3501 else
3502 name = netdev_name(dev);
3503 }
3504 skb_dump(KERN_WARNING, skb, false);
3505 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3506 name, dev ? &dev->features : &null_features,
3507 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3508}
3509
3510/*
3511 * Invalidate hardware checksum when packet is to be mangled, and
3512 * complete checksum manually on outgoing path.
3513 */
3514int skb_checksum_help(struct sk_buff *skb)
3515{
3516 __wsum csum;
3517 int ret = 0, offset;
3518
3519 if (skb->ip_summed == CHECKSUM_COMPLETE)
3520 goto out_set_summed;
3521
3522 if (unlikely(skb_is_gso(skb))) {
3523 skb_warn_bad_offload(skb);
3524 return -EINVAL;
3525 }
3526
3527 if (!skb_frags_readable(skb)) {
3528 return -EFAULT;
3529 }
3530
3531 /* Before computing a checksum, we should make sure no frag could
3532 * be modified by an external entity : checksum could be wrong.
3533 */
3534 if (skb_has_shared_frag(skb)) {
3535 ret = __skb_linearize(skb);
3536 if (ret)
3537 goto out;
3538 }
3539
3540 offset = skb_checksum_start_offset(skb);
3541 ret = -EINVAL;
3542 if (unlikely(offset >= skb_headlen(skb))) {
3543 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3544 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3545 offset, skb_headlen(skb));
3546 goto out;
3547 }
3548 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3549
3550 offset += skb->csum_offset;
3551 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3552 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3553 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3554 offset + sizeof(__sum16), skb_headlen(skb));
3555 goto out;
3556 }
3557 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3558 if (ret)
3559 goto out;
3560
3561 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3562out_set_summed:
3563 skb->ip_summed = CHECKSUM_NONE;
3564out:
3565 return ret;
3566}
3567EXPORT_SYMBOL(skb_checksum_help);
3568
3569int skb_crc32c_csum_help(struct sk_buff *skb)
3570{
3571 __le32 crc32c_csum;
3572 int ret = 0, offset, start;
3573
3574 if (skb->ip_summed != CHECKSUM_PARTIAL)
3575 goto out;
3576
3577 if (unlikely(skb_is_gso(skb)))
3578 goto out;
3579
3580 /* Before computing a checksum, we should make sure no frag could
3581 * be modified by an external entity : checksum could be wrong.
3582 */
3583 if (unlikely(skb_has_shared_frag(skb))) {
3584 ret = __skb_linearize(skb);
3585 if (ret)
3586 goto out;
3587 }
3588 start = skb_checksum_start_offset(skb);
3589 offset = start + offsetof(struct sctphdr, checksum);
3590 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3591 ret = -EINVAL;
3592 goto out;
3593 }
3594
3595 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3596 if (ret)
3597 goto out;
3598
3599 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3600 skb->len - start, ~(__u32)0,
3601 crc32c_csum_stub));
3602 *(__le32 *)(skb->data + offset) = crc32c_csum;
3603 skb_reset_csum_not_inet(skb);
3604out:
3605 return ret;
3606}
3607EXPORT_SYMBOL(skb_crc32c_csum_help);
3608
3609__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3610{
3611 __be16 type = skb->protocol;
3612
3613 /* Tunnel gso handlers can set protocol to ethernet. */
3614 if (type == htons(ETH_P_TEB)) {
3615 struct ethhdr *eth;
3616
3617 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3618 return 0;
3619
3620 eth = (struct ethhdr *)skb->data;
3621 type = eth->h_proto;
3622 }
3623
3624 return vlan_get_protocol_and_depth(skb, type, depth);
3625}
3626
3627
3628/* Take action when hardware reception checksum errors are detected. */
3629#ifdef CONFIG_BUG
3630static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3631{
3632 netdev_err(dev, "hw csum failure\n");
3633 skb_dump(KERN_ERR, skb, true);
3634 dump_stack();
3635}
3636
3637void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3638{
3639 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3640}
3641EXPORT_SYMBOL(netdev_rx_csum_fault);
3642#endif
3643
3644/* XXX: check that highmem exists at all on the given machine. */
3645static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3646{
3647#ifdef CONFIG_HIGHMEM
3648 int i;
3649
3650 if (!(dev->features & NETIF_F_HIGHDMA)) {
3651 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3652 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3653 struct page *page = skb_frag_page(frag);
3654
3655 if (page && PageHighMem(page))
3656 return 1;
3657 }
3658 }
3659#endif
3660 return 0;
3661}
3662
3663/* If MPLS offload request, verify we are testing hardware MPLS features
3664 * instead of standard features for the netdev.
3665 */
3666#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3667static netdev_features_t net_mpls_features(struct sk_buff *skb,
3668 netdev_features_t features,
3669 __be16 type)
3670{
3671 if (eth_p_mpls(type))
3672 features &= skb->dev->mpls_features;
3673
3674 return features;
3675}
3676#else
3677static netdev_features_t net_mpls_features(struct sk_buff *skb,
3678 netdev_features_t features,
3679 __be16 type)
3680{
3681 return features;
3682}
3683#endif
3684
3685static netdev_features_t harmonize_features(struct sk_buff *skb,
3686 netdev_features_t features)
3687{
3688 __be16 type;
3689
3690 type = skb_network_protocol(skb, NULL);
3691 features = net_mpls_features(skb, features, type);
3692
3693 if (skb->ip_summed != CHECKSUM_NONE &&
3694 !can_checksum_protocol(features, type)) {
3695 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3696 }
3697 if (illegal_highdma(skb->dev, skb))
3698 features &= ~NETIF_F_SG;
3699
3700 return features;
3701}
3702
3703netdev_features_t passthru_features_check(struct sk_buff *skb,
3704 struct net_device *dev,
3705 netdev_features_t features)
3706{
3707 return features;
3708}
3709EXPORT_SYMBOL(passthru_features_check);
3710
3711static netdev_features_t dflt_features_check(struct sk_buff *skb,
3712 struct net_device *dev,
3713 netdev_features_t features)
3714{
3715 return vlan_features_check(skb, features);
3716}
3717
3718static netdev_features_t gso_features_check(const struct sk_buff *skb,
3719 struct net_device *dev,
3720 netdev_features_t features)
3721{
3722 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3723
3724 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3725 return features & ~NETIF_F_GSO_MASK;
3726
3727 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3728 return features & ~NETIF_F_GSO_MASK;
3729
3730 if (!skb_shinfo(skb)->gso_type) {
3731 skb_warn_bad_offload(skb);
3732 return features & ~NETIF_F_GSO_MASK;
3733 }
3734
3735 /* Support for GSO partial features requires software
3736 * intervention before we can actually process the packets
3737 * so we need to strip support for any partial features now
3738 * and we can pull them back in after we have partially
3739 * segmented the frame.
3740 */
3741 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3742 features &= ~dev->gso_partial_features;
3743
3744 /* Make sure to clear the IPv4 ID mangling feature if the
3745 * IPv4 header has the potential to be fragmented.
3746 */
3747 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3748 struct iphdr *iph = skb->encapsulation ?
3749 inner_ip_hdr(skb) : ip_hdr(skb);
3750
3751 if (!(iph->frag_off & htons(IP_DF)))
3752 features &= ~NETIF_F_TSO_MANGLEID;
3753 }
3754
3755 return features;
3756}
3757
3758netdev_features_t netif_skb_features(struct sk_buff *skb)
3759{
3760 struct net_device *dev = skb->dev;
3761 netdev_features_t features = dev->features;
3762
3763 if (skb_is_gso(skb))
3764 features = gso_features_check(skb, dev, features);
3765
3766 /* If encapsulation offload request, verify we are testing
3767 * hardware encapsulation features instead of standard
3768 * features for the netdev
3769 */
3770 if (skb->encapsulation)
3771 features &= dev->hw_enc_features;
3772
3773 if (skb_vlan_tagged(skb))
3774 features = netdev_intersect_features(features,
3775 dev->vlan_features |
3776 NETIF_F_HW_VLAN_CTAG_TX |
3777 NETIF_F_HW_VLAN_STAG_TX);
3778
3779 if (dev->netdev_ops->ndo_features_check)
3780 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3781 features);
3782 else
3783 features &= dflt_features_check(skb, dev, features);
3784
3785 return harmonize_features(skb, features);
3786}
3787EXPORT_SYMBOL(netif_skb_features);
3788
3789static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3790 struct netdev_queue *txq, bool more)
3791{
3792 unsigned int len;
3793 int rc;
3794
3795 if (dev_nit_active(dev))
3796 dev_queue_xmit_nit(skb, dev);
3797
3798 len = skb->len;
3799 trace_net_dev_start_xmit(skb, dev);
3800 rc = netdev_start_xmit(skb, dev, txq, more);
3801 trace_net_dev_xmit(skb, rc, dev, len);
3802
3803 return rc;
3804}
3805
3806struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3807 struct netdev_queue *txq, int *ret)
3808{
3809 struct sk_buff *skb = first;
3810 int rc = NETDEV_TX_OK;
3811
3812 while (skb) {
3813 struct sk_buff *next = skb->next;
3814
3815 skb_mark_not_on_list(skb);
3816 rc = xmit_one(skb, dev, txq, next != NULL);
3817 if (unlikely(!dev_xmit_complete(rc))) {
3818 skb->next = next;
3819 goto out;
3820 }
3821
3822 skb = next;
3823 if (netif_tx_queue_stopped(txq) && skb) {
3824 rc = NETDEV_TX_BUSY;
3825 break;
3826 }
3827 }
3828
3829out:
3830 *ret = rc;
3831 return skb;
3832}
3833
3834static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3835 netdev_features_t features)
3836{
3837 if (skb_vlan_tag_present(skb) &&
3838 !vlan_hw_offload_capable(features, skb->vlan_proto))
3839 skb = __vlan_hwaccel_push_inside(skb);
3840 return skb;
3841}
3842
3843int skb_csum_hwoffload_help(struct sk_buff *skb,
3844 const netdev_features_t features)
3845{
3846 if (unlikely(skb_csum_is_sctp(skb)))
3847 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3848 skb_crc32c_csum_help(skb);
3849
3850 if (features & NETIF_F_HW_CSUM)
3851 return 0;
3852
3853 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3854 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3855 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3856 !ipv6_has_hopopt_jumbo(skb))
3857 goto sw_checksum;
3858
3859 switch (skb->csum_offset) {
3860 case offsetof(struct tcphdr, check):
3861 case offsetof(struct udphdr, check):
3862 return 0;
3863 }
3864 }
3865
3866sw_checksum:
3867 return skb_checksum_help(skb);
3868}
3869EXPORT_SYMBOL(skb_csum_hwoffload_help);
3870
3871static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3872{
3873 netdev_features_t features;
3874
3875 features = netif_skb_features(skb);
3876 skb = validate_xmit_vlan(skb, features);
3877 if (unlikely(!skb))
3878 goto out_null;
3879
3880 skb = sk_validate_xmit_skb(skb, dev);
3881 if (unlikely(!skb))
3882 goto out_null;
3883
3884 if (netif_needs_gso(skb, features)) {
3885 struct sk_buff *segs;
3886
3887 segs = skb_gso_segment(skb, features);
3888 if (IS_ERR(segs)) {
3889 goto out_kfree_skb;
3890 } else if (segs) {
3891 consume_skb(skb);
3892 skb = segs;
3893 }
3894 } else {
3895 if (skb_needs_linearize(skb, features) &&
3896 __skb_linearize(skb))
3897 goto out_kfree_skb;
3898
3899 /* If packet is not checksummed and device does not
3900 * support checksumming for this protocol, complete
3901 * checksumming here.
3902 */
3903 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3904 if (skb->encapsulation)
3905 skb_set_inner_transport_header(skb,
3906 skb_checksum_start_offset(skb));
3907 else
3908 skb_set_transport_header(skb,
3909 skb_checksum_start_offset(skb));
3910 if (skb_csum_hwoffload_help(skb, features))
3911 goto out_kfree_skb;
3912 }
3913 }
3914
3915 skb = validate_xmit_xfrm(skb, features, again);
3916
3917 return skb;
3918
3919out_kfree_skb:
3920 kfree_skb(skb);
3921out_null:
3922 dev_core_stats_tx_dropped_inc(dev);
3923 return NULL;
3924}
3925
3926struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3927{
3928 struct sk_buff *next, *head = NULL, *tail;
3929
3930 for (; skb != NULL; skb = next) {
3931 next = skb->next;
3932 skb_mark_not_on_list(skb);
3933
3934 /* in case skb won't be segmented, point to itself */
3935 skb->prev = skb;
3936
3937 skb = validate_xmit_skb(skb, dev, again);
3938 if (!skb)
3939 continue;
3940
3941 if (!head)
3942 head = skb;
3943 else
3944 tail->next = skb;
3945 /* If skb was segmented, skb->prev points to
3946 * the last segment. If not, it still contains skb.
3947 */
3948 tail = skb->prev;
3949 }
3950 return head;
3951}
3952EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3953
3954static void qdisc_pkt_len_init(struct sk_buff *skb)
3955{
3956 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3957
3958 qdisc_skb_cb(skb)->pkt_len = skb->len;
3959
3960 /* To get more precise estimation of bytes sent on wire,
3961 * we add to pkt_len the headers size of all segments
3962 */
3963 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3964 u16 gso_segs = shinfo->gso_segs;
3965 unsigned int hdr_len;
3966
3967 /* mac layer + network layer */
3968 hdr_len = skb_transport_offset(skb);
3969
3970 /* + transport layer */
3971 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3972 const struct tcphdr *th;
3973 struct tcphdr _tcphdr;
3974
3975 th = skb_header_pointer(skb, hdr_len,
3976 sizeof(_tcphdr), &_tcphdr);
3977 if (likely(th))
3978 hdr_len += __tcp_hdrlen(th);
3979 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3980 struct udphdr _udphdr;
3981
3982 if (skb_header_pointer(skb, hdr_len,
3983 sizeof(_udphdr), &_udphdr))
3984 hdr_len += sizeof(struct udphdr);
3985 }
3986
3987 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3988 int payload = skb->len - hdr_len;
3989
3990 /* Malicious packet. */
3991 if (payload <= 0)
3992 return;
3993 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3994 }
3995 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3996 }
3997}
3998
3999static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4000 struct sk_buff **to_free,
4001 struct netdev_queue *txq)
4002{
4003 int rc;
4004
4005 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4006 if (rc == NET_XMIT_SUCCESS)
4007 trace_qdisc_enqueue(q, txq, skb);
4008 return rc;
4009}
4010
4011static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4012 struct net_device *dev,
4013 struct netdev_queue *txq)
4014{
4015 spinlock_t *root_lock = qdisc_lock(q);
4016 struct sk_buff *to_free = NULL;
4017 bool contended;
4018 int rc;
4019
4020 qdisc_calculate_pkt_len(skb, q);
4021
4022 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4023
4024 if (q->flags & TCQ_F_NOLOCK) {
4025 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4026 qdisc_run_begin(q)) {
4027 /* Retest nolock_qdisc_is_empty() within the protection
4028 * of q->seqlock to protect from racing with requeuing.
4029 */
4030 if (unlikely(!nolock_qdisc_is_empty(q))) {
4031 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4032 __qdisc_run(q);
4033 qdisc_run_end(q);
4034
4035 goto no_lock_out;
4036 }
4037
4038 qdisc_bstats_cpu_update(q, skb);
4039 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4040 !nolock_qdisc_is_empty(q))
4041 __qdisc_run(q);
4042
4043 qdisc_run_end(q);
4044 return NET_XMIT_SUCCESS;
4045 }
4046
4047 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4048 qdisc_run(q);
4049
4050no_lock_out:
4051 if (unlikely(to_free))
4052 kfree_skb_list_reason(to_free,
4053 tcf_get_drop_reason(to_free));
4054 return rc;
4055 }
4056
4057 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4058 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4059 return NET_XMIT_DROP;
4060 }
4061 /*
4062 * Heuristic to force contended enqueues to serialize on a
4063 * separate lock before trying to get qdisc main lock.
4064 * This permits qdisc->running owner to get the lock more
4065 * often and dequeue packets faster.
4066 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4067 * and then other tasks will only enqueue packets. The packets will be
4068 * sent after the qdisc owner is scheduled again. To prevent this
4069 * scenario the task always serialize on the lock.
4070 */
4071 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4072 if (unlikely(contended))
4073 spin_lock(&q->busylock);
4074
4075 spin_lock(root_lock);
4076 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4077 __qdisc_drop(skb, &to_free);
4078 rc = NET_XMIT_DROP;
4079 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4080 qdisc_run_begin(q)) {
4081 /*
4082 * This is a work-conserving queue; there are no old skbs
4083 * waiting to be sent out; and the qdisc is not running -
4084 * xmit the skb directly.
4085 */
4086
4087 qdisc_bstats_update(q, skb);
4088
4089 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4090 if (unlikely(contended)) {
4091 spin_unlock(&q->busylock);
4092 contended = false;
4093 }
4094 __qdisc_run(q);
4095 }
4096
4097 qdisc_run_end(q);
4098 rc = NET_XMIT_SUCCESS;
4099 } else {
4100 WRITE_ONCE(q->owner, smp_processor_id());
4101 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4102 WRITE_ONCE(q->owner, -1);
4103 if (qdisc_run_begin(q)) {
4104 if (unlikely(contended)) {
4105 spin_unlock(&q->busylock);
4106 contended = false;
4107 }
4108 __qdisc_run(q);
4109 qdisc_run_end(q);
4110 }
4111 }
4112 spin_unlock(root_lock);
4113 if (unlikely(to_free))
4114 kfree_skb_list_reason(to_free,
4115 tcf_get_drop_reason(to_free));
4116 if (unlikely(contended))
4117 spin_unlock(&q->busylock);
4118 return rc;
4119}
4120
4121#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4122static void skb_update_prio(struct sk_buff *skb)
4123{
4124 const struct netprio_map *map;
4125 const struct sock *sk;
4126 unsigned int prioidx;
4127
4128 if (skb->priority)
4129 return;
4130 map = rcu_dereference_bh(skb->dev->priomap);
4131 if (!map)
4132 return;
4133 sk = skb_to_full_sk(skb);
4134 if (!sk)
4135 return;
4136
4137 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4138
4139 if (prioidx < map->priomap_len)
4140 skb->priority = map->priomap[prioidx];
4141}
4142#else
4143#define skb_update_prio(skb)
4144#endif
4145
4146/**
4147 * dev_loopback_xmit - loop back @skb
4148 * @net: network namespace this loopback is happening in
4149 * @sk: sk needed to be a netfilter okfn
4150 * @skb: buffer to transmit
4151 */
4152int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4153{
4154 skb_reset_mac_header(skb);
4155 __skb_pull(skb, skb_network_offset(skb));
4156 skb->pkt_type = PACKET_LOOPBACK;
4157 if (skb->ip_summed == CHECKSUM_NONE)
4158 skb->ip_summed = CHECKSUM_UNNECESSARY;
4159 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4160 skb_dst_force(skb);
4161 netif_rx(skb);
4162 return 0;
4163}
4164EXPORT_SYMBOL(dev_loopback_xmit);
4165
4166#ifdef CONFIG_NET_EGRESS
4167static struct netdev_queue *
4168netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4169{
4170 int qm = skb_get_queue_mapping(skb);
4171
4172 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4173}
4174
4175#ifndef CONFIG_PREEMPT_RT
4176static bool netdev_xmit_txqueue_skipped(void)
4177{
4178 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4179}
4180
4181void netdev_xmit_skip_txqueue(bool skip)
4182{
4183 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4184}
4185EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4186
4187#else
4188static bool netdev_xmit_txqueue_skipped(void)
4189{
4190 return current->net_xmit.skip_txqueue;
4191}
4192
4193void netdev_xmit_skip_txqueue(bool skip)
4194{
4195 current->net_xmit.skip_txqueue = skip;
4196}
4197EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4198#endif
4199#endif /* CONFIG_NET_EGRESS */
4200
4201#ifdef CONFIG_NET_XGRESS
4202static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4203 enum skb_drop_reason *drop_reason)
4204{
4205 int ret = TC_ACT_UNSPEC;
4206#ifdef CONFIG_NET_CLS_ACT
4207 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4208 struct tcf_result res;
4209
4210 if (!miniq)
4211 return ret;
4212
4213 /* Global bypass */
4214 if (!static_branch_likely(&tcf_sw_enabled_key))
4215 return ret;
4216
4217 /* Block-wise bypass */
4218 if (tcf_block_bypass_sw(miniq->block))
4219 return ret;
4220
4221 tc_skb_cb(skb)->mru = 0;
4222 tc_skb_cb(skb)->post_ct = false;
4223 tcf_set_drop_reason(skb, *drop_reason);
4224
4225 mini_qdisc_bstats_cpu_update(miniq, skb);
4226 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4227 /* Only tcf related quirks below. */
4228 switch (ret) {
4229 case TC_ACT_SHOT:
4230 *drop_reason = tcf_get_drop_reason(skb);
4231 mini_qdisc_qstats_cpu_drop(miniq);
4232 break;
4233 case TC_ACT_OK:
4234 case TC_ACT_RECLASSIFY:
4235 skb->tc_index = TC_H_MIN(res.classid);
4236 break;
4237 }
4238#endif /* CONFIG_NET_CLS_ACT */
4239 return ret;
4240}
4241
4242static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4243
4244void tcx_inc(void)
4245{
4246 static_branch_inc(&tcx_needed_key);
4247}
4248
4249void tcx_dec(void)
4250{
4251 static_branch_dec(&tcx_needed_key);
4252}
4253
4254static __always_inline enum tcx_action_base
4255tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4256 const bool needs_mac)
4257{
4258 const struct bpf_mprog_fp *fp;
4259 const struct bpf_prog *prog;
4260 int ret = TCX_NEXT;
4261
4262 if (needs_mac)
4263 __skb_push(skb, skb->mac_len);
4264 bpf_mprog_foreach_prog(entry, fp, prog) {
4265 bpf_compute_data_pointers(skb);
4266 ret = bpf_prog_run(prog, skb);
4267 if (ret != TCX_NEXT)
4268 break;
4269 }
4270 if (needs_mac)
4271 __skb_pull(skb, skb->mac_len);
4272 return tcx_action_code(skb, ret);
4273}
4274
4275static __always_inline struct sk_buff *
4276sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4277 struct net_device *orig_dev, bool *another)
4278{
4279 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4280 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4281 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4282 int sch_ret;
4283
4284 if (!entry)
4285 return skb;
4286
4287 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4288 if (*pt_prev) {
4289 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4290 *pt_prev = NULL;
4291 }
4292
4293 qdisc_skb_cb(skb)->pkt_len = skb->len;
4294 tcx_set_ingress(skb, true);
4295
4296 if (static_branch_unlikely(&tcx_needed_key)) {
4297 sch_ret = tcx_run(entry, skb, true);
4298 if (sch_ret != TC_ACT_UNSPEC)
4299 goto ingress_verdict;
4300 }
4301 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4302ingress_verdict:
4303 switch (sch_ret) {
4304 case TC_ACT_REDIRECT:
4305 /* skb_mac_header check was done by BPF, so we can safely
4306 * push the L2 header back before redirecting to another
4307 * netdev.
4308 */
4309 __skb_push(skb, skb->mac_len);
4310 if (skb_do_redirect(skb) == -EAGAIN) {
4311 __skb_pull(skb, skb->mac_len);
4312 *another = true;
4313 break;
4314 }
4315 *ret = NET_RX_SUCCESS;
4316 bpf_net_ctx_clear(bpf_net_ctx);
4317 return NULL;
4318 case TC_ACT_SHOT:
4319 kfree_skb_reason(skb, drop_reason);
4320 *ret = NET_RX_DROP;
4321 bpf_net_ctx_clear(bpf_net_ctx);
4322 return NULL;
4323 /* used by tc_run */
4324 case TC_ACT_STOLEN:
4325 case TC_ACT_QUEUED:
4326 case TC_ACT_TRAP:
4327 consume_skb(skb);
4328 fallthrough;
4329 case TC_ACT_CONSUMED:
4330 *ret = NET_RX_SUCCESS;
4331 bpf_net_ctx_clear(bpf_net_ctx);
4332 return NULL;
4333 }
4334 bpf_net_ctx_clear(bpf_net_ctx);
4335
4336 return skb;
4337}
4338
4339static __always_inline struct sk_buff *
4340sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4341{
4342 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4343 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4344 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4345 int sch_ret;
4346
4347 if (!entry)
4348 return skb;
4349
4350 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4351
4352 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4353 * already set by the caller.
4354 */
4355 if (static_branch_unlikely(&tcx_needed_key)) {
4356 sch_ret = tcx_run(entry, skb, false);
4357 if (sch_ret != TC_ACT_UNSPEC)
4358 goto egress_verdict;
4359 }
4360 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4361egress_verdict:
4362 switch (sch_ret) {
4363 case TC_ACT_REDIRECT:
4364 /* No need to push/pop skb's mac_header here on egress! */
4365 skb_do_redirect(skb);
4366 *ret = NET_XMIT_SUCCESS;
4367 bpf_net_ctx_clear(bpf_net_ctx);
4368 return NULL;
4369 case TC_ACT_SHOT:
4370 kfree_skb_reason(skb, drop_reason);
4371 *ret = NET_XMIT_DROP;
4372 bpf_net_ctx_clear(bpf_net_ctx);
4373 return NULL;
4374 /* used by tc_run */
4375 case TC_ACT_STOLEN:
4376 case TC_ACT_QUEUED:
4377 case TC_ACT_TRAP:
4378 consume_skb(skb);
4379 fallthrough;
4380 case TC_ACT_CONSUMED:
4381 *ret = NET_XMIT_SUCCESS;
4382 bpf_net_ctx_clear(bpf_net_ctx);
4383 return NULL;
4384 }
4385 bpf_net_ctx_clear(bpf_net_ctx);
4386
4387 return skb;
4388}
4389#else
4390static __always_inline struct sk_buff *
4391sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4392 struct net_device *orig_dev, bool *another)
4393{
4394 return skb;
4395}
4396
4397static __always_inline struct sk_buff *
4398sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4399{
4400 return skb;
4401}
4402#endif /* CONFIG_NET_XGRESS */
4403
4404#ifdef CONFIG_XPS
4405static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4406 struct xps_dev_maps *dev_maps, unsigned int tci)
4407{
4408 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4409 struct xps_map *map;
4410 int queue_index = -1;
4411
4412 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4413 return queue_index;
4414
4415 tci *= dev_maps->num_tc;
4416 tci += tc;
4417
4418 map = rcu_dereference(dev_maps->attr_map[tci]);
4419 if (map) {
4420 if (map->len == 1)
4421 queue_index = map->queues[0];
4422 else
4423 queue_index = map->queues[reciprocal_scale(
4424 skb_get_hash(skb), map->len)];
4425 if (unlikely(queue_index >= dev->real_num_tx_queues))
4426 queue_index = -1;
4427 }
4428 return queue_index;
4429}
4430#endif
4431
4432static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4433 struct sk_buff *skb)
4434{
4435#ifdef CONFIG_XPS
4436 struct xps_dev_maps *dev_maps;
4437 struct sock *sk = skb->sk;
4438 int queue_index = -1;
4439
4440 if (!static_key_false(&xps_needed))
4441 return -1;
4442
4443 rcu_read_lock();
4444 if (!static_key_false(&xps_rxqs_needed))
4445 goto get_cpus_map;
4446
4447 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4448 if (dev_maps) {
4449 int tci = sk_rx_queue_get(sk);
4450
4451 if (tci >= 0)
4452 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4453 tci);
4454 }
4455
4456get_cpus_map:
4457 if (queue_index < 0) {
4458 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4459 if (dev_maps) {
4460 unsigned int tci = skb->sender_cpu - 1;
4461
4462 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4463 tci);
4464 }
4465 }
4466 rcu_read_unlock();
4467
4468 return queue_index;
4469#else
4470 return -1;
4471#endif
4472}
4473
4474u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4475 struct net_device *sb_dev)
4476{
4477 return 0;
4478}
4479EXPORT_SYMBOL(dev_pick_tx_zero);
4480
4481u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4482 struct net_device *sb_dev)
4483{
4484 struct sock *sk = skb->sk;
4485 int queue_index = sk_tx_queue_get(sk);
4486
4487 sb_dev = sb_dev ? : dev;
4488
4489 if (queue_index < 0 || skb->ooo_okay ||
4490 queue_index >= dev->real_num_tx_queues) {
4491 int new_index = get_xps_queue(dev, sb_dev, skb);
4492
4493 if (new_index < 0)
4494 new_index = skb_tx_hash(dev, sb_dev, skb);
4495
4496 if (queue_index != new_index && sk &&
4497 sk_fullsock(sk) &&
4498 rcu_access_pointer(sk->sk_dst_cache))
4499 sk_tx_queue_set(sk, new_index);
4500
4501 queue_index = new_index;
4502 }
4503
4504 return queue_index;
4505}
4506EXPORT_SYMBOL(netdev_pick_tx);
4507
4508struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4509 struct sk_buff *skb,
4510 struct net_device *sb_dev)
4511{
4512 int queue_index = 0;
4513
4514#ifdef CONFIG_XPS
4515 u32 sender_cpu = skb->sender_cpu - 1;
4516
4517 if (sender_cpu >= (u32)NR_CPUS)
4518 skb->sender_cpu = raw_smp_processor_id() + 1;
4519#endif
4520
4521 if (dev->real_num_tx_queues != 1) {
4522 const struct net_device_ops *ops = dev->netdev_ops;
4523
4524 if (ops->ndo_select_queue)
4525 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4526 else
4527 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4528
4529 queue_index = netdev_cap_txqueue(dev, queue_index);
4530 }
4531
4532 skb_set_queue_mapping(skb, queue_index);
4533 return netdev_get_tx_queue(dev, queue_index);
4534}
4535
4536/**
4537 * __dev_queue_xmit() - transmit a buffer
4538 * @skb: buffer to transmit
4539 * @sb_dev: suboordinate device used for L2 forwarding offload
4540 *
4541 * Queue a buffer for transmission to a network device. The caller must
4542 * have set the device and priority and built the buffer before calling
4543 * this function. The function can be called from an interrupt.
4544 *
4545 * When calling this method, interrupts MUST be enabled. This is because
4546 * the BH enable code must have IRQs enabled so that it will not deadlock.
4547 *
4548 * Regardless of the return value, the skb is consumed, so it is currently
4549 * difficult to retry a send to this method. (You can bump the ref count
4550 * before sending to hold a reference for retry if you are careful.)
4551 *
4552 * Return:
4553 * * 0 - buffer successfully transmitted
4554 * * positive qdisc return code - NET_XMIT_DROP etc.
4555 * * negative errno - other errors
4556 */
4557int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4558{
4559 struct net_device *dev = skb->dev;
4560 struct netdev_queue *txq = NULL;
4561 struct Qdisc *q;
4562 int rc = -ENOMEM;
4563 bool again = false;
4564
4565 skb_reset_mac_header(skb);
4566 skb_assert_len(skb);
4567
4568 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4569 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4570
4571 /* Disable soft irqs for various locks below. Also
4572 * stops preemption for RCU.
4573 */
4574 rcu_read_lock_bh();
4575
4576 skb_update_prio(skb);
4577
4578 qdisc_pkt_len_init(skb);
4579 tcx_set_ingress(skb, false);
4580#ifdef CONFIG_NET_EGRESS
4581 if (static_branch_unlikely(&egress_needed_key)) {
4582 if (nf_hook_egress_active()) {
4583 skb = nf_hook_egress(skb, &rc, dev);
4584 if (!skb)
4585 goto out;
4586 }
4587
4588 netdev_xmit_skip_txqueue(false);
4589
4590 nf_skip_egress(skb, true);
4591 skb = sch_handle_egress(skb, &rc, dev);
4592 if (!skb)
4593 goto out;
4594 nf_skip_egress(skb, false);
4595
4596 if (netdev_xmit_txqueue_skipped())
4597 txq = netdev_tx_queue_mapping(dev, skb);
4598 }
4599#endif
4600 /* If device/qdisc don't need skb->dst, release it right now while
4601 * its hot in this cpu cache.
4602 */
4603 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4604 skb_dst_drop(skb);
4605 else
4606 skb_dst_force(skb);
4607
4608 if (!txq)
4609 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4610
4611 q = rcu_dereference_bh(txq->qdisc);
4612
4613 trace_net_dev_queue(skb);
4614 if (q->enqueue) {
4615 rc = __dev_xmit_skb(skb, q, dev, txq);
4616 goto out;
4617 }
4618
4619 /* The device has no queue. Common case for software devices:
4620 * loopback, all the sorts of tunnels...
4621
4622 * Really, it is unlikely that netif_tx_lock protection is necessary
4623 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4624 * counters.)
4625 * However, it is possible, that they rely on protection
4626 * made by us here.
4627
4628 * Check this and shot the lock. It is not prone from deadlocks.
4629 *Either shot noqueue qdisc, it is even simpler 8)
4630 */
4631 if (dev->flags & IFF_UP) {
4632 int cpu = smp_processor_id(); /* ok because BHs are off */
4633
4634 /* Other cpus might concurrently change txq->xmit_lock_owner
4635 * to -1 or to their cpu id, but not to our id.
4636 */
4637 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4638 if (dev_xmit_recursion())
4639 goto recursion_alert;
4640
4641 skb = validate_xmit_skb(skb, dev, &again);
4642 if (!skb)
4643 goto out;
4644
4645 HARD_TX_LOCK(dev, txq, cpu);
4646
4647 if (!netif_xmit_stopped(txq)) {
4648 dev_xmit_recursion_inc();
4649 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4650 dev_xmit_recursion_dec();
4651 if (dev_xmit_complete(rc)) {
4652 HARD_TX_UNLOCK(dev, txq);
4653 goto out;
4654 }
4655 }
4656 HARD_TX_UNLOCK(dev, txq);
4657 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4658 dev->name);
4659 } else {
4660 /* Recursion is detected! It is possible,
4661 * unfortunately
4662 */
4663recursion_alert:
4664 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4665 dev->name);
4666 }
4667 }
4668
4669 rc = -ENETDOWN;
4670 rcu_read_unlock_bh();
4671
4672 dev_core_stats_tx_dropped_inc(dev);
4673 kfree_skb_list(skb);
4674 return rc;
4675out:
4676 rcu_read_unlock_bh();
4677 return rc;
4678}
4679EXPORT_SYMBOL(__dev_queue_xmit);
4680
4681int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4682{
4683 struct net_device *dev = skb->dev;
4684 struct sk_buff *orig_skb = skb;
4685 struct netdev_queue *txq;
4686 int ret = NETDEV_TX_BUSY;
4687 bool again = false;
4688
4689 if (unlikely(!netif_running(dev) ||
4690 !netif_carrier_ok(dev)))
4691 goto drop;
4692
4693 skb = validate_xmit_skb_list(skb, dev, &again);
4694 if (skb != orig_skb)
4695 goto drop;
4696
4697 skb_set_queue_mapping(skb, queue_id);
4698 txq = skb_get_tx_queue(dev, skb);
4699
4700 local_bh_disable();
4701
4702 dev_xmit_recursion_inc();
4703 HARD_TX_LOCK(dev, txq, smp_processor_id());
4704 if (!netif_xmit_frozen_or_drv_stopped(txq))
4705 ret = netdev_start_xmit(skb, dev, txq, false);
4706 HARD_TX_UNLOCK(dev, txq);
4707 dev_xmit_recursion_dec();
4708
4709 local_bh_enable();
4710 return ret;
4711drop:
4712 dev_core_stats_tx_dropped_inc(dev);
4713 kfree_skb_list(skb);
4714 return NET_XMIT_DROP;
4715}
4716EXPORT_SYMBOL(__dev_direct_xmit);
4717
4718/*************************************************************************
4719 * Receiver routines
4720 *************************************************************************/
4721static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4722
4723int weight_p __read_mostly = 64; /* old backlog weight */
4724int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4725int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4726
4727/* Called with irq disabled */
4728static inline void ____napi_schedule(struct softnet_data *sd,
4729 struct napi_struct *napi)
4730{
4731 struct task_struct *thread;
4732
4733 lockdep_assert_irqs_disabled();
4734
4735 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4736 /* Paired with smp_mb__before_atomic() in
4737 * napi_enable()/dev_set_threaded().
4738 * Use READ_ONCE() to guarantee a complete
4739 * read on napi->thread. Only call
4740 * wake_up_process() when it's not NULL.
4741 */
4742 thread = READ_ONCE(napi->thread);
4743 if (thread) {
4744 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4745 goto use_local_napi;
4746
4747 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4748 wake_up_process(thread);
4749 return;
4750 }
4751 }
4752
4753use_local_napi:
4754 list_add_tail(&napi->poll_list, &sd->poll_list);
4755 WRITE_ONCE(napi->list_owner, smp_processor_id());
4756 /* If not called from net_rx_action()
4757 * we have to raise NET_RX_SOFTIRQ.
4758 */
4759 if (!sd->in_net_rx_action)
4760 raise_softirq_irqoff(NET_RX_SOFTIRQ);
4761}
4762
4763#ifdef CONFIG_RPS
4764
4765struct static_key_false rps_needed __read_mostly;
4766EXPORT_SYMBOL(rps_needed);
4767struct static_key_false rfs_needed __read_mostly;
4768EXPORT_SYMBOL(rfs_needed);
4769
4770static struct rps_dev_flow *
4771set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4772 struct rps_dev_flow *rflow, u16 next_cpu)
4773{
4774 if (next_cpu < nr_cpu_ids) {
4775 u32 head;
4776#ifdef CONFIG_RFS_ACCEL
4777 struct netdev_rx_queue *rxqueue;
4778 struct rps_dev_flow_table *flow_table;
4779 struct rps_dev_flow *old_rflow;
4780 u16 rxq_index;
4781 u32 flow_id;
4782 int rc;
4783
4784 /* Should we steer this flow to a different hardware queue? */
4785 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4786 !(dev->features & NETIF_F_NTUPLE))
4787 goto out;
4788 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4789 if (rxq_index == skb_get_rx_queue(skb))
4790 goto out;
4791
4792 rxqueue = dev->_rx + rxq_index;
4793 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4794 if (!flow_table)
4795 goto out;
4796 flow_id = skb_get_hash(skb) & flow_table->mask;
4797 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4798 rxq_index, flow_id);
4799 if (rc < 0)
4800 goto out;
4801 old_rflow = rflow;
4802 rflow = &flow_table->flows[flow_id];
4803 WRITE_ONCE(rflow->filter, rc);
4804 if (old_rflow->filter == rc)
4805 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4806 out:
4807#endif
4808 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4809 rps_input_queue_tail_save(&rflow->last_qtail, head);
4810 }
4811
4812 WRITE_ONCE(rflow->cpu, next_cpu);
4813 return rflow;
4814}
4815
4816/*
4817 * get_rps_cpu is called from netif_receive_skb and returns the target
4818 * CPU from the RPS map of the receiving queue for a given skb.
4819 * rcu_read_lock must be held on entry.
4820 */
4821static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4822 struct rps_dev_flow **rflowp)
4823{
4824 const struct rps_sock_flow_table *sock_flow_table;
4825 struct netdev_rx_queue *rxqueue = dev->_rx;
4826 struct rps_dev_flow_table *flow_table;
4827 struct rps_map *map;
4828 int cpu = -1;
4829 u32 tcpu;
4830 u32 hash;
4831
4832 if (skb_rx_queue_recorded(skb)) {
4833 u16 index = skb_get_rx_queue(skb);
4834
4835 if (unlikely(index >= dev->real_num_rx_queues)) {
4836 WARN_ONCE(dev->real_num_rx_queues > 1,
4837 "%s received packet on queue %u, but number "
4838 "of RX queues is %u\n",
4839 dev->name, index, dev->real_num_rx_queues);
4840 goto done;
4841 }
4842 rxqueue += index;
4843 }
4844
4845 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4846
4847 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4848 map = rcu_dereference(rxqueue->rps_map);
4849 if (!flow_table && !map)
4850 goto done;
4851
4852 skb_reset_network_header(skb);
4853 hash = skb_get_hash(skb);
4854 if (!hash)
4855 goto done;
4856
4857 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4858 if (flow_table && sock_flow_table) {
4859 struct rps_dev_flow *rflow;
4860 u32 next_cpu;
4861 u32 ident;
4862
4863 /* First check into global flow table if there is a match.
4864 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4865 */
4866 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4867 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4868 goto try_rps;
4869
4870 next_cpu = ident & net_hotdata.rps_cpu_mask;
4871
4872 /* OK, now we know there is a match,
4873 * we can look at the local (per receive queue) flow table
4874 */
4875 rflow = &flow_table->flows[hash & flow_table->mask];
4876 tcpu = rflow->cpu;
4877
4878 /*
4879 * If the desired CPU (where last recvmsg was done) is
4880 * different from current CPU (one in the rx-queue flow
4881 * table entry), switch if one of the following holds:
4882 * - Current CPU is unset (>= nr_cpu_ids).
4883 * - Current CPU is offline.
4884 * - The current CPU's queue tail has advanced beyond the
4885 * last packet that was enqueued using this table entry.
4886 * This guarantees that all previous packets for the flow
4887 * have been dequeued, thus preserving in order delivery.
4888 */
4889 if (unlikely(tcpu != next_cpu) &&
4890 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4891 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4892 rflow->last_qtail)) >= 0)) {
4893 tcpu = next_cpu;
4894 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4895 }
4896
4897 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4898 *rflowp = rflow;
4899 cpu = tcpu;
4900 goto done;
4901 }
4902 }
4903
4904try_rps:
4905
4906 if (map) {
4907 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4908 if (cpu_online(tcpu)) {
4909 cpu = tcpu;
4910 goto done;
4911 }
4912 }
4913
4914done:
4915 return cpu;
4916}
4917
4918#ifdef CONFIG_RFS_ACCEL
4919
4920/**
4921 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4922 * @dev: Device on which the filter was set
4923 * @rxq_index: RX queue index
4924 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4925 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4926 *
4927 * Drivers that implement ndo_rx_flow_steer() should periodically call
4928 * this function for each installed filter and remove the filters for
4929 * which it returns %true.
4930 */
4931bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4932 u32 flow_id, u16 filter_id)
4933{
4934 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4935 struct rps_dev_flow_table *flow_table;
4936 struct rps_dev_flow *rflow;
4937 bool expire = true;
4938 unsigned int cpu;
4939
4940 rcu_read_lock();
4941 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4942 if (flow_table && flow_id <= flow_table->mask) {
4943 rflow = &flow_table->flows[flow_id];
4944 cpu = READ_ONCE(rflow->cpu);
4945 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4946 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4947 READ_ONCE(rflow->last_qtail)) <
4948 (int)(10 * flow_table->mask)))
4949 expire = false;
4950 }
4951 rcu_read_unlock();
4952 return expire;
4953}
4954EXPORT_SYMBOL(rps_may_expire_flow);
4955
4956#endif /* CONFIG_RFS_ACCEL */
4957
4958/* Called from hardirq (IPI) context */
4959static void rps_trigger_softirq(void *data)
4960{
4961 struct softnet_data *sd = data;
4962
4963 ____napi_schedule(sd, &sd->backlog);
4964 sd->received_rps++;
4965}
4966
4967#endif /* CONFIG_RPS */
4968
4969/* Called from hardirq (IPI) context */
4970static void trigger_rx_softirq(void *data)
4971{
4972 struct softnet_data *sd = data;
4973
4974 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4975 smp_store_release(&sd->defer_ipi_scheduled, 0);
4976}
4977
4978/*
4979 * After we queued a packet into sd->input_pkt_queue,
4980 * we need to make sure this queue is serviced soon.
4981 *
4982 * - If this is another cpu queue, link it to our rps_ipi_list,
4983 * and make sure we will process rps_ipi_list from net_rx_action().
4984 *
4985 * - If this is our own queue, NAPI schedule our backlog.
4986 * Note that this also raises NET_RX_SOFTIRQ.
4987 */
4988static void napi_schedule_rps(struct softnet_data *sd)
4989{
4990 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4991
4992#ifdef CONFIG_RPS
4993 if (sd != mysd) {
4994 if (use_backlog_threads()) {
4995 __napi_schedule_irqoff(&sd->backlog);
4996 return;
4997 }
4998
4999 sd->rps_ipi_next = mysd->rps_ipi_list;
5000 mysd->rps_ipi_list = sd;
5001
5002 /* If not called from net_rx_action() or napi_threaded_poll()
5003 * we have to raise NET_RX_SOFTIRQ.
5004 */
5005 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5006 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5007 return;
5008 }
5009#endif /* CONFIG_RPS */
5010 __napi_schedule_irqoff(&mysd->backlog);
5011}
5012
5013void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5014{
5015 unsigned long flags;
5016
5017 if (use_backlog_threads()) {
5018 backlog_lock_irq_save(sd, &flags);
5019
5020 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5021 __napi_schedule_irqoff(&sd->backlog);
5022
5023 backlog_unlock_irq_restore(sd, &flags);
5024
5025 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5026 smp_call_function_single_async(cpu, &sd->defer_csd);
5027 }
5028}
5029
5030#ifdef CONFIG_NET_FLOW_LIMIT
5031int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5032#endif
5033
5034static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5035{
5036#ifdef CONFIG_NET_FLOW_LIMIT
5037 struct sd_flow_limit *fl;
5038 struct softnet_data *sd;
5039 unsigned int old_flow, new_flow;
5040
5041 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5042 return false;
5043
5044 sd = this_cpu_ptr(&softnet_data);
5045
5046 rcu_read_lock();
5047 fl = rcu_dereference(sd->flow_limit);
5048 if (fl) {
5049 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5050 old_flow = fl->history[fl->history_head];
5051 fl->history[fl->history_head] = new_flow;
5052
5053 fl->history_head++;
5054 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5055
5056 if (likely(fl->buckets[old_flow]))
5057 fl->buckets[old_flow]--;
5058
5059 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5060 fl->count++;
5061 rcu_read_unlock();
5062 return true;
5063 }
5064 }
5065 rcu_read_unlock();
5066#endif
5067 return false;
5068}
5069
5070/*
5071 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5072 * queue (may be a remote CPU queue).
5073 */
5074static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5075 unsigned int *qtail)
5076{
5077 enum skb_drop_reason reason;
5078 struct softnet_data *sd;
5079 unsigned long flags;
5080 unsigned int qlen;
5081 int max_backlog;
5082 u32 tail;
5083
5084 reason = SKB_DROP_REASON_DEV_READY;
5085 if (!netif_running(skb->dev))
5086 goto bad_dev;
5087
5088 reason = SKB_DROP_REASON_CPU_BACKLOG;
5089 sd = &per_cpu(softnet_data, cpu);
5090
5091 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5092 max_backlog = READ_ONCE(net_hotdata.max_backlog);
5093 if (unlikely(qlen > max_backlog))
5094 goto cpu_backlog_drop;
5095 backlog_lock_irq_save(sd, &flags);
5096 qlen = skb_queue_len(&sd->input_pkt_queue);
5097 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5098 if (!qlen) {
5099 /* Schedule NAPI for backlog device. We can use
5100 * non atomic operation as we own the queue lock.
5101 */
5102 if (!__test_and_set_bit(NAPI_STATE_SCHED,
5103 &sd->backlog.state))
5104 napi_schedule_rps(sd);
5105 }
5106 __skb_queue_tail(&sd->input_pkt_queue, skb);
5107 tail = rps_input_queue_tail_incr(sd);
5108 backlog_unlock_irq_restore(sd, &flags);
5109
5110 /* save the tail outside of the critical section */
5111 rps_input_queue_tail_save(qtail, tail);
5112 return NET_RX_SUCCESS;
5113 }
5114
5115 backlog_unlock_irq_restore(sd, &flags);
5116
5117cpu_backlog_drop:
5118 atomic_inc(&sd->dropped);
5119bad_dev:
5120 dev_core_stats_rx_dropped_inc(skb->dev);
5121 kfree_skb_reason(skb, reason);
5122 return NET_RX_DROP;
5123}
5124
5125static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5126{
5127 struct net_device *dev = skb->dev;
5128 struct netdev_rx_queue *rxqueue;
5129
5130 rxqueue = dev->_rx;
5131
5132 if (skb_rx_queue_recorded(skb)) {
5133 u16 index = skb_get_rx_queue(skb);
5134
5135 if (unlikely(index >= dev->real_num_rx_queues)) {
5136 WARN_ONCE(dev->real_num_rx_queues > 1,
5137 "%s received packet on queue %u, but number "
5138 "of RX queues is %u\n",
5139 dev->name, index, dev->real_num_rx_queues);
5140
5141 return rxqueue; /* Return first rxqueue */
5142 }
5143 rxqueue += index;
5144 }
5145 return rxqueue;
5146}
5147
5148u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5149 const struct bpf_prog *xdp_prog)
5150{
5151 void *orig_data, *orig_data_end, *hard_start;
5152 struct netdev_rx_queue *rxqueue;
5153 bool orig_bcast, orig_host;
5154 u32 mac_len, frame_sz;
5155 __be16 orig_eth_type;
5156 struct ethhdr *eth;
5157 u32 metalen, act;
5158 int off;
5159
5160 /* The XDP program wants to see the packet starting at the MAC
5161 * header.
5162 */
5163 mac_len = skb->data - skb_mac_header(skb);
5164 hard_start = skb->data - skb_headroom(skb);
5165
5166 /* SKB "head" area always have tailroom for skb_shared_info */
5167 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5168 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5169
5170 rxqueue = netif_get_rxqueue(skb);
5171 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5172 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5173 skb_headlen(skb) + mac_len, true);
5174 if (skb_is_nonlinear(skb)) {
5175 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5176 xdp_buff_set_frags_flag(xdp);
5177 } else {
5178 xdp_buff_clear_frags_flag(xdp);
5179 }
5180
5181 orig_data_end = xdp->data_end;
5182 orig_data = xdp->data;
5183 eth = (struct ethhdr *)xdp->data;
5184 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5185 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5186 orig_eth_type = eth->h_proto;
5187
5188 act = bpf_prog_run_xdp(xdp_prog, xdp);
5189
5190 /* check if bpf_xdp_adjust_head was used */
5191 off = xdp->data - orig_data;
5192 if (off) {
5193 if (off > 0)
5194 __skb_pull(skb, off);
5195 else if (off < 0)
5196 __skb_push(skb, -off);
5197
5198 skb->mac_header += off;
5199 skb_reset_network_header(skb);
5200 }
5201
5202 /* check if bpf_xdp_adjust_tail was used */
5203 off = xdp->data_end - orig_data_end;
5204 if (off != 0) {
5205 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5206 skb->len += off; /* positive on grow, negative on shrink */
5207 }
5208
5209 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5210 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5211 */
5212 if (xdp_buff_has_frags(xdp))
5213 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5214 else
5215 skb->data_len = 0;
5216
5217 /* check if XDP changed eth hdr such SKB needs update */
5218 eth = (struct ethhdr *)xdp->data;
5219 if ((orig_eth_type != eth->h_proto) ||
5220 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5221 skb->dev->dev_addr)) ||
5222 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5223 __skb_push(skb, ETH_HLEN);
5224 skb->pkt_type = PACKET_HOST;
5225 skb->protocol = eth_type_trans(skb, skb->dev);
5226 }
5227
5228 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5229 * before calling us again on redirect path. We do not call do_redirect
5230 * as we leave that up to the caller.
5231 *
5232 * Caller is responsible for managing lifetime of skb (i.e. calling
5233 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5234 */
5235 switch (act) {
5236 case XDP_REDIRECT:
5237 case XDP_TX:
5238 __skb_push(skb, mac_len);
5239 break;
5240 case XDP_PASS:
5241 metalen = xdp->data - xdp->data_meta;
5242 if (metalen)
5243 skb_metadata_set(skb, metalen);
5244 break;
5245 }
5246
5247 return act;
5248}
5249
5250static int
5251netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5252{
5253 struct sk_buff *skb = *pskb;
5254 int err, hroom, troom;
5255
5256 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5257 return 0;
5258
5259 /* In case we have to go down the path and also linearize,
5260 * then lets do the pskb_expand_head() work just once here.
5261 */
5262 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5263 troom = skb->tail + skb->data_len - skb->end;
5264 err = pskb_expand_head(skb,
5265 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5266 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5267 if (err)
5268 return err;
5269
5270 return skb_linearize(skb);
5271}
5272
5273static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5274 struct xdp_buff *xdp,
5275 const struct bpf_prog *xdp_prog)
5276{
5277 struct sk_buff *skb = *pskb;
5278 u32 mac_len, act = XDP_DROP;
5279
5280 /* Reinjected packets coming from act_mirred or similar should
5281 * not get XDP generic processing.
5282 */
5283 if (skb_is_redirected(skb))
5284 return XDP_PASS;
5285
5286 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5287 * bytes. This is the guarantee that also native XDP provides,
5288 * thus we need to do it here as well.
5289 */
5290 mac_len = skb->data - skb_mac_header(skb);
5291 __skb_push(skb, mac_len);
5292
5293 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5294 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5295 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5296 goto do_drop;
5297 }
5298
5299 __skb_pull(*pskb, mac_len);
5300
5301 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5302 switch (act) {
5303 case XDP_REDIRECT:
5304 case XDP_TX:
5305 case XDP_PASS:
5306 break;
5307 default:
5308 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5309 fallthrough;
5310 case XDP_ABORTED:
5311 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5312 fallthrough;
5313 case XDP_DROP:
5314 do_drop:
5315 kfree_skb(*pskb);
5316 break;
5317 }
5318
5319 return act;
5320}
5321
5322/* When doing generic XDP we have to bypass the qdisc layer and the
5323 * network taps in order to match in-driver-XDP behavior. This also means
5324 * that XDP packets are able to starve other packets going through a qdisc,
5325 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5326 * queues, so they do not have this starvation issue.
5327 */
5328void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5329{
5330 struct net_device *dev = skb->dev;
5331 struct netdev_queue *txq;
5332 bool free_skb = true;
5333 int cpu, rc;
5334
5335 txq = netdev_core_pick_tx(dev, skb, NULL);
5336 cpu = smp_processor_id();
5337 HARD_TX_LOCK(dev, txq, cpu);
5338 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5339 rc = netdev_start_xmit(skb, dev, txq, 0);
5340 if (dev_xmit_complete(rc))
5341 free_skb = false;
5342 }
5343 HARD_TX_UNLOCK(dev, txq);
5344 if (free_skb) {
5345 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5346 dev_core_stats_tx_dropped_inc(dev);
5347 kfree_skb(skb);
5348 }
5349}
5350
5351static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5352
5353int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5354{
5355 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5356
5357 if (xdp_prog) {
5358 struct xdp_buff xdp;
5359 u32 act;
5360 int err;
5361
5362 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5363 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5364 if (act != XDP_PASS) {
5365 switch (act) {
5366 case XDP_REDIRECT:
5367 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5368 &xdp, xdp_prog);
5369 if (err)
5370 goto out_redir;
5371 break;
5372 case XDP_TX:
5373 generic_xdp_tx(*pskb, xdp_prog);
5374 break;
5375 }
5376 bpf_net_ctx_clear(bpf_net_ctx);
5377 return XDP_DROP;
5378 }
5379 bpf_net_ctx_clear(bpf_net_ctx);
5380 }
5381 return XDP_PASS;
5382out_redir:
5383 bpf_net_ctx_clear(bpf_net_ctx);
5384 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5385 return XDP_DROP;
5386}
5387EXPORT_SYMBOL_GPL(do_xdp_generic);
5388
5389static int netif_rx_internal(struct sk_buff *skb)
5390{
5391 int ret;
5392
5393 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5394
5395 trace_netif_rx(skb);
5396
5397#ifdef CONFIG_RPS
5398 if (static_branch_unlikely(&rps_needed)) {
5399 struct rps_dev_flow voidflow, *rflow = &voidflow;
5400 int cpu;
5401
5402 rcu_read_lock();
5403
5404 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5405 if (cpu < 0)
5406 cpu = smp_processor_id();
5407
5408 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5409
5410 rcu_read_unlock();
5411 } else
5412#endif
5413 {
5414 unsigned int qtail;
5415
5416 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5417 }
5418 return ret;
5419}
5420
5421/**
5422 * __netif_rx - Slightly optimized version of netif_rx
5423 * @skb: buffer to post
5424 *
5425 * This behaves as netif_rx except that it does not disable bottom halves.
5426 * As a result this function may only be invoked from the interrupt context
5427 * (either hard or soft interrupt).
5428 */
5429int __netif_rx(struct sk_buff *skb)
5430{
5431 int ret;
5432
5433 lockdep_assert_once(hardirq_count() | softirq_count());
5434
5435 trace_netif_rx_entry(skb);
5436 ret = netif_rx_internal(skb);
5437 trace_netif_rx_exit(ret);
5438 return ret;
5439}
5440EXPORT_SYMBOL(__netif_rx);
5441
5442/**
5443 * netif_rx - post buffer to the network code
5444 * @skb: buffer to post
5445 *
5446 * This function receives a packet from a device driver and queues it for
5447 * the upper (protocol) levels to process via the backlog NAPI device. It
5448 * always succeeds. The buffer may be dropped during processing for
5449 * congestion control or by the protocol layers.
5450 * The network buffer is passed via the backlog NAPI device. Modern NIC
5451 * driver should use NAPI and GRO.
5452 * This function can used from interrupt and from process context. The
5453 * caller from process context must not disable interrupts before invoking
5454 * this function.
5455 *
5456 * return values:
5457 * NET_RX_SUCCESS (no congestion)
5458 * NET_RX_DROP (packet was dropped)
5459 *
5460 */
5461int netif_rx(struct sk_buff *skb)
5462{
5463 bool need_bh_off = !(hardirq_count() | softirq_count());
5464 int ret;
5465
5466 if (need_bh_off)
5467 local_bh_disable();
5468 trace_netif_rx_entry(skb);
5469 ret = netif_rx_internal(skb);
5470 trace_netif_rx_exit(ret);
5471 if (need_bh_off)
5472 local_bh_enable();
5473 return ret;
5474}
5475EXPORT_SYMBOL(netif_rx);
5476
5477static __latent_entropy void net_tx_action(void)
5478{
5479 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5480
5481 if (sd->completion_queue) {
5482 struct sk_buff *clist;
5483
5484 local_irq_disable();
5485 clist = sd->completion_queue;
5486 sd->completion_queue = NULL;
5487 local_irq_enable();
5488
5489 while (clist) {
5490 struct sk_buff *skb = clist;
5491
5492 clist = clist->next;
5493
5494 WARN_ON(refcount_read(&skb->users));
5495 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5496 trace_consume_skb(skb, net_tx_action);
5497 else
5498 trace_kfree_skb(skb, net_tx_action,
5499 get_kfree_skb_cb(skb)->reason, NULL);
5500
5501 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5502 __kfree_skb(skb);
5503 else
5504 __napi_kfree_skb(skb,
5505 get_kfree_skb_cb(skb)->reason);
5506 }
5507 }
5508
5509 if (sd->output_queue) {
5510 struct Qdisc *head;
5511
5512 local_irq_disable();
5513 head = sd->output_queue;
5514 sd->output_queue = NULL;
5515 sd->output_queue_tailp = &sd->output_queue;
5516 local_irq_enable();
5517
5518 rcu_read_lock();
5519
5520 while (head) {
5521 struct Qdisc *q = head;
5522 spinlock_t *root_lock = NULL;
5523
5524 head = head->next_sched;
5525
5526 /* We need to make sure head->next_sched is read
5527 * before clearing __QDISC_STATE_SCHED
5528 */
5529 smp_mb__before_atomic();
5530
5531 if (!(q->flags & TCQ_F_NOLOCK)) {
5532 root_lock = qdisc_lock(q);
5533 spin_lock(root_lock);
5534 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5535 &q->state))) {
5536 /* There is a synchronize_net() between
5537 * STATE_DEACTIVATED flag being set and
5538 * qdisc_reset()/some_qdisc_is_busy() in
5539 * dev_deactivate(), so we can safely bail out
5540 * early here to avoid data race between
5541 * qdisc_deactivate() and some_qdisc_is_busy()
5542 * for lockless qdisc.
5543 */
5544 clear_bit(__QDISC_STATE_SCHED, &q->state);
5545 continue;
5546 }
5547
5548 clear_bit(__QDISC_STATE_SCHED, &q->state);
5549 qdisc_run(q);
5550 if (root_lock)
5551 spin_unlock(root_lock);
5552 }
5553
5554 rcu_read_unlock();
5555 }
5556
5557 xfrm_dev_backlog(sd);
5558}
5559
5560#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5561/* This hook is defined here for ATM LANE */
5562int (*br_fdb_test_addr_hook)(struct net_device *dev,
5563 unsigned char *addr) __read_mostly;
5564EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5565#endif
5566
5567/**
5568 * netdev_is_rx_handler_busy - check if receive handler is registered
5569 * @dev: device to check
5570 *
5571 * Check if a receive handler is already registered for a given device.
5572 * Return true if there one.
5573 *
5574 * The caller must hold the rtnl_mutex.
5575 */
5576bool netdev_is_rx_handler_busy(struct net_device *dev)
5577{
5578 ASSERT_RTNL();
5579 return dev && rtnl_dereference(dev->rx_handler);
5580}
5581EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5582
5583/**
5584 * netdev_rx_handler_register - register receive handler
5585 * @dev: device to register a handler for
5586 * @rx_handler: receive handler to register
5587 * @rx_handler_data: data pointer that is used by rx handler
5588 *
5589 * Register a receive handler for a device. This handler will then be
5590 * called from __netif_receive_skb. A negative errno code is returned
5591 * on a failure.
5592 *
5593 * The caller must hold the rtnl_mutex.
5594 *
5595 * For a general description of rx_handler, see enum rx_handler_result.
5596 */
5597int netdev_rx_handler_register(struct net_device *dev,
5598 rx_handler_func_t *rx_handler,
5599 void *rx_handler_data)
5600{
5601 if (netdev_is_rx_handler_busy(dev))
5602 return -EBUSY;
5603
5604 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5605 return -EINVAL;
5606
5607 /* Note: rx_handler_data must be set before rx_handler */
5608 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5609 rcu_assign_pointer(dev->rx_handler, rx_handler);
5610
5611 return 0;
5612}
5613EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5614
5615/**
5616 * netdev_rx_handler_unregister - unregister receive handler
5617 * @dev: device to unregister a handler from
5618 *
5619 * Unregister a receive handler from a device.
5620 *
5621 * The caller must hold the rtnl_mutex.
5622 */
5623void netdev_rx_handler_unregister(struct net_device *dev)
5624{
5625
5626 ASSERT_RTNL();
5627 RCU_INIT_POINTER(dev->rx_handler, NULL);
5628 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5629 * section has a guarantee to see a non NULL rx_handler_data
5630 * as well.
5631 */
5632 synchronize_net();
5633 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5634}
5635EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5636
5637/*
5638 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5639 * the special handling of PFMEMALLOC skbs.
5640 */
5641static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5642{
5643 switch (skb->protocol) {
5644 case htons(ETH_P_ARP):
5645 case htons(ETH_P_IP):
5646 case htons(ETH_P_IPV6):
5647 case htons(ETH_P_8021Q):
5648 case htons(ETH_P_8021AD):
5649 return true;
5650 default:
5651 return false;
5652 }
5653}
5654
5655static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5656 int *ret, struct net_device *orig_dev)
5657{
5658 if (nf_hook_ingress_active(skb)) {
5659 int ingress_retval;
5660
5661 if (*pt_prev) {
5662 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5663 *pt_prev = NULL;
5664 }
5665
5666 rcu_read_lock();
5667 ingress_retval = nf_hook_ingress(skb);
5668 rcu_read_unlock();
5669 return ingress_retval;
5670 }
5671 return 0;
5672}
5673
5674static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5675 struct packet_type **ppt_prev)
5676{
5677 struct packet_type *ptype, *pt_prev;
5678 rx_handler_func_t *rx_handler;
5679 struct sk_buff *skb = *pskb;
5680 struct net_device *orig_dev;
5681 bool deliver_exact = false;
5682 int ret = NET_RX_DROP;
5683 __be16 type;
5684
5685 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5686
5687 trace_netif_receive_skb(skb);
5688
5689 orig_dev = skb->dev;
5690
5691 skb_reset_network_header(skb);
5692#if !defined(CONFIG_DEBUG_NET)
5693 /* We plan to no longer reset the transport header here.
5694 * Give some time to fuzzers and dev build to catch bugs
5695 * in network stacks.
5696 */
5697 if (!skb_transport_header_was_set(skb))
5698 skb_reset_transport_header(skb);
5699#endif
5700 skb_reset_mac_len(skb);
5701
5702 pt_prev = NULL;
5703
5704another_round:
5705 skb->skb_iif = skb->dev->ifindex;
5706
5707 __this_cpu_inc(softnet_data.processed);
5708
5709 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5710 int ret2;
5711
5712 migrate_disable();
5713 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5714 &skb);
5715 migrate_enable();
5716
5717 if (ret2 != XDP_PASS) {
5718 ret = NET_RX_DROP;
5719 goto out;
5720 }
5721 }
5722
5723 if (eth_type_vlan(skb->protocol)) {
5724 skb = skb_vlan_untag(skb);
5725 if (unlikely(!skb))
5726 goto out;
5727 }
5728
5729 if (skb_skip_tc_classify(skb))
5730 goto skip_classify;
5731
5732 if (pfmemalloc)
5733 goto skip_taps;
5734
5735 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5736 if (pt_prev)
5737 ret = deliver_skb(skb, pt_prev, orig_dev);
5738 pt_prev = ptype;
5739 }
5740
5741 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5742 if (pt_prev)
5743 ret = deliver_skb(skb, pt_prev, orig_dev);
5744 pt_prev = ptype;
5745 }
5746
5747skip_taps:
5748#ifdef CONFIG_NET_INGRESS
5749 if (static_branch_unlikely(&ingress_needed_key)) {
5750 bool another = false;
5751
5752 nf_skip_egress(skb, true);
5753 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5754 &another);
5755 if (another)
5756 goto another_round;
5757 if (!skb)
5758 goto out;
5759
5760 nf_skip_egress(skb, false);
5761 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5762 goto out;
5763 }
5764#endif
5765 skb_reset_redirect(skb);
5766skip_classify:
5767 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5768 goto drop;
5769
5770 if (skb_vlan_tag_present(skb)) {
5771 if (pt_prev) {
5772 ret = deliver_skb(skb, pt_prev, orig_dev);
5773 pt_prev = NULL;
5774 }
5775 if (vlan_do_receive(&skb))
5776 goto another_round;
5777 else if (unlikely(!skb))
5778 goto out;
5779 }
5780
5781 rx_handler = rcu_dereference(skb->dev->rx_handler);
5782 if (rx_handler) {
5783 if (pt_prev) {
5784 ret = deliver_skb(skb, pt_prev, orig_dev);
5785 pt_prev = NULL;
5786 }
5787 switch (rx_handler(&skb)) {
5788 case RX_HANDLER_CONSUMED:
5789 ret = NET_RX_SUCCESS;
5790 goto out;
5791 case RX_HANDLER_ANOTHER:
5792 goto another_round;
5793 case RX_HANDLER_EXACT:
5794 deliver_exact = true;
5795 break;
5796 case RX_HANDLER_PASS:
5797 break;
5798 default:
5799 BUG();
5800 }
5801 }
5802
5803 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5804check_vlan_id:
5805 if (skb_vlan_tag_get_id(skb)) {
5806 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5807 * find vlan device.
5808 */
5809 skb->pkt_type = PACKET_OTHERHOST;
5810 } else if (eth_type_vlan(skb->protocol)) {
5811 /* Outer header is 802.1P with vlan 0, inner header is
5812 * 802.1Q or 802.1AD and vlan_do_receive() above could
5813 * not find vlan dev for vlan id 0.
5814 */
5815 __vlan_hwaccel_clear_tag(skb);
5816 skb = skb_vlan_untag(skb);
5817 if (unlikely(!skb))
5818 goto out;
5819 if (vlan_do_receive(&skb))
5820 /* After stripping off 802.1P header with vlan 0
5821 * vlan dev is found for inner header.
5822 */
5823 goto another_round;
5824 else if (unlikely(!skb))
5825 goto out;
5826 else
5827 /* We have stripped outer 802.1P vlan 0 header.
5828 * But could not find vlan dev.
5829 * check again for vlan id to set OTHERHOST.
5830 */
5831 goto check_vlan_id;
5832 }
5833 /* Note: we might in the future use prio bits
5834 * and set skb->priority like in vlan_do_receive()
5835 * For the time being, just ignore Priority Code Point
5836 */
5837 __vlan_hwaccel_clear_tag(skb);
5838 }
5839
5840 type = skb->protocol;
5841
5842 /* deliver only exact match when indicated */
5843 if (likely(!deliver_exact)) {
5844 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5845 &ptype_base[ntohs(type) &
5846 PTYPE_HASH_MASK]);
5847 }
5848
5849 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5850 &orig_dev->ptype_specific);
5851
5852 if (unlikely(skb->dev != orig_dev)) {
5853 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5854 &skb->dev->ptype_specific);
5855 }
5856
5857 if (pt_prev) {
5858 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5859 goto drop;
5860 *ppt_prev = pt_prev;
5861 } else {
5862drop:
5863 if (!deliver_exact)
5864 dev_core_stats_rx_dropped_inc(skb->dev);
5865 else
5866 dev_core_stats_rx_nohandler_inc(skb->dev);
5867 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5868 /* Jamal, now you will not able to escape explaining
5869 * me how you were going to use this. :-)
5870 */
5871 ret = NET_RX_DROP;
5872 }
5873
5874out:
5875 /* The invariant here is that if *ppt_prev is not NULL
5876 * then skb should also be non-NULL.
5877 *
5878 * Apparently *ppt_prev assignment above holds this invariant due to
5879 * skb dereferencing near it.
5880 */
5881 *pskb = skb;
5882 return ret;
5883}
5884
5885static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5886{
5887 struct net_device *orig_dev = skb->dev;
5888 struct packet_type *pt_prev = NULL;
5889 int ret;
5890
5891 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5892 if (pt_prev)
5893 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5894 skb->dev, pt_prev, orig_dev);
5895 return ret;
5896}
5897
5898/**
5899 * netif_receive_skb_core - special purpose version of netif_receive_skb
5900 * @skb: buffer to process
5901 *
5902 * More direct receive version of netif_receive_skb(). It should
5903 * only be used by callers that have a need to skip RPS and Generic XDP.
5904 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5905 *
5906 * This function may only be called from softirq context and interrupts
5907 * should be enabled.
5908 *
5909 * Return values (usually ignored):
5910 * NET_RX_SUCCESS: no congestion
5911 * NET_RX_DROP: packet was dropped
5912 */
5913int netif_receive_skb_core(struct sk_buff *skb)
5914{
5915 int ret;
5916
5917 rcu_read_lock();
5918 ret = __netif_receive_skb_one_core(skb, false);
5919 rcu_read_unlock();
5920
5921 return ret;
5922}
5923EXPORT_SYMBOL(netif_receive_skb_core);
5924
5925static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5926 struct packet_type *pt_prev,
5927 struct net_device *orig_dev)
5928{
5929 struct sk_buff *skb, *next;
5930
5931 if (!pt_prev)
5932 return;
5933 if (list_empty(head))
5934 return;
5935 if (pt_prev->list_func != NULL)
5936 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5937 ip_list_rcv, head, pt_prev, orig_dev);
5938 else
5939 list_for_each_entry_safe(skb, next, head, list) {
5940 skb_list_del_init(skb);
5941 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5942 }
5943}
5944
5945static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5946{
5947 /* Fast-path assumptions:
5948 * - There is no RX handler.
5949 * - Only one packet_type matches.
5950 * If either of these fails, we will end up doing some per-packet
5951 * processing in-line, then handling the 'last ptype' for the whole
5952 * sublist. This can't cause out-of-order delivery to any single ptype,
5953 * because the 'last ptype' must be constant across the sublist, and all
5954 * other ptypes are handled per-packet.
5955 */
5956 /* Current (common) ptype of sublist */
5957 struct packet_type *pt_curr = NULL;
5958 /* Current (common) orig_dev of sublist */
5959 struct net_device *od_curr = NULL;
5960 struct sk_buff *skb, *next;
5961 LIST_HEAD(sublist);
5962
5963 list_for_each_entry_safe(skb, next, head, list) {
5964 struct net_device *orig_dev = skb->dev;
5965 struct packet_type *pt_prev = NULL;
5966
5967 skb_list_del_init(skb);
5968 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5969 if (!pt_prev)
5970 continue;
5971 if (pt_curr != pt_prev || od_curr != orig_dev) {
5972 /* dispatch old sublist */
5973 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5974 /* start new sublist */
5975 INIT_LIST_HEAD(&sublist);
5976 pt_curr = pt_prev;
5977 od_curr = orig_dev;
5978 }
5979 list_add_tail(&skb->list, &sublist);
5980 }
5981
5982 /* dispatch final sublist */
5983 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5984}
5985
5986static int __netif_receive_skb(struct sk_buff *skb)
5987{
5988 int ret;
5989
5990 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5991 unsigned int noreclaim_flag;
5992
5993 /*
5994 * PFMEMALLOC skbs are special, they should
5995 * - be delivered to SOCK_MEMALLOC sockets only
5996 * - stay away from userspace
5997 * - have bounded memory usage
5998 *
5999 * Use PF_MEMALLOC as this saves us from propagating the allocation
6000 * context down to all allocation sites.
6001 */
6002 noreclaim_flag = memalloc_noreclaim_save();
6003 ret = __netif_receive_skb_one_core(skb, true);
6004 memalloc_noreclaim_restore(noreclaim_flag);
6005 } else
6006 ret = __netif_receive_skb_one_core(skb, false);
6007
6008 return ret;
6009}
6010
6011static void __netif_receive_skb_list(struct list_head *head)
6012{
6013 unsigned long noreclaim_flag = 0;
6014 struct sk_buff *skb, *next;
6015 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6016
6017 list_for_each_entry_safe(skb, next, head, list) {
6018 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6019 struct list_head sublist;
6020
6021 /* Handle the previous sublist */
6022 list_cut_before(&sublist, head, &skb->list);
6023 if (!list_empty(&sublist))
6024 __netif_receive_skb_list_core(&sublist, pfmemalloc);
6025 pfmemalloc = !pfmemalloc;
6026 /* See comments in __netif_receive_skb */
6027 if (pfmemalloc)
6028 noreclaim_flag = memalloc_noreclaim_save();
6029 else
6030 memalloc_noreclaim_restore(noreclaim_flag);
6031 }
6032 }
6033 /* Handle the remaining sublist */
6034 if (!list_empty(head))
6035 __netif_receive_skb_list_core(head, pfmemalloc);
6036 /* Restore pflags */
6037 if (pfmemalloc)
6038 memalloc_noreclaim_restore(noreclaim_flag);
6039}
6040
6041static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6042{
6043 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6044 struct bpf_prog *new = xdp->prog;
6045 int ret = 0;
6046
6047 switch (xdp->command) {
6048 case XDP_SETUP_PROG:
6049 rcu_assign_pointer(dev->xdp_prog, new);
6050 if (old)
6051 bpf_prog_put(old);
6052
6053 if (old && !new) {
6054 static_branch_dec(&generic_xdp_needed_key);
6055 } else if (new && !old) {
6056 static_branch_inc(&generic_xdp_needed_key);
6057 dev_disable_lro(dev);
6058 dev_disable_gro_hw(dev);
6059 }
6060 break;
6061
6062 default:
6063 ret = -EINVAL;
6064 break;
6065 }
6066
6067 return ret;
6068}
6069
6070static int netif_receive_skb_internal(struct sk_buff *skb)
6071{
6072 int ret;
6073
6074 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6075
6076 if (skb_defer_rx_timestamp(skb))
6077 return NET_RX_SUCCESS;
6078
6079 rcu_read_lock();
6080#ifdef CONFIG_RPS
6081 if (static_branch_unlikely(&rps_needed)) {
6082 struct rps_dev_flow voidflow, *rflow = &voidflow;
6083 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6084
6085 if (cpu >= 0) {
6086 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6087 rcu_read_unlock();
6088 return ret;
6089 }
6090 }
6091#endif
6092 ret = __netif_receive_skb(skb);
6093 rcu_read_unlock();
6094 return ret;
6095}
6096
6097void netif_receive_skb_list_internal(struct list_head *head)
6098{
6099 struct sk_buff *skb, *next;
6100 LIST_HEAD(sublist);
6101
6102 list_for_each_entry_safe(skb, next, head, list) {
6103 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6104 skb);
6105 skb_list_del_init(skb);
6106 if (!skb_defer_rx_timestamp(skb))
6107 list_add_tail(&skb->list, &sublist);
6108 }
6109 list_splice_init(&sublist, head);
6110
6111 rcu_read_lock();
6112#ifdef CONFIG_RPS
6113 if (static_branch_unlikely(&rps_needed)) {
6114 list_for_each_entry_safe(skb, next, head, list) {
6115 struct rps_dev_flow voidflow, *rflow = &voidflow;
6116 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6117
6118 if (cpu >= 0) {
6119 /* Will be handled, remove from list */
6120 skb_list_del_init(skb);
6121 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6122 }
6123 }
6124 }
6125#endif
6126 __netif_receive_skb_list(head);
6127 rcu_read_unlock();
6128}
6129
6130/**
6131 * netif_receive_skb - process receive buffer from network
6132 * @skb: buffer to process
6133 *
6134 * netif_receive_skb() is the main receive data processing function.
6135 * It always succeeds. The buffer may be dropped during processing
6136 * for congestion control or by the protocol layers.
6137 *
6138 * This function may only be called from softirq context and interrupts
6139 * should be enabled.
6140 *
6141 * Return values (usually ignored):
6142 * NET_RX_SUCCESS: no congestion
6143 * NET_RX_DROP: packet was dropped
6144 */
6145int netif_receive_skb(struct sk_buff *skb)
6146{
6147 int ret;
6148
6149 trace_netif_receive_skb_entry(skb);
6150
6151 ret = netif_receive_skb_internal(skb);
6152 trace_netif_receive_skb_exit(ret);
6153
6154 return ret;
6155}
6156EXPORT_SYMBOL(netif_receive_skb);
6157
6158/**
6159 * netif_receive_skb_list - process many receive buffers from network
6160 * @head: list of skbs to process.
6161 *
6162 * Since return value of netif_receive_skb() is normally ignored, and
6163 * wouldn't be meaningful for a list, this function returns void.
6164 *
6165 * This function may only be called from softirq context and interrupts
6166 * should be enabled.
6167 */
6168void netif_receive_skb_list(struct list_head *head)
6169{
6170 struct sk_buff *skb;
6171
6172 if (list_empty(head))
6173 return;
6174 if (trace_netif_receive_skb_list_entry_enabled()) {
6175 list_for_each_entry(skb, head, list)
6176 trace_netif_receive_skb_list_entry(skb);
6177 }
6178 netif_receive_skb_list_internal(head);
6179 trace_netif_receive_skb_list_exit(0);
6180}
6181EXPORT_SYMBOL(netif_receive_skb_list);
6182
6183/* Network device is going away, flush any packets still pending */
6184static void flush_backlog(struct work_struct *work)
6185{
6186 struct sk_buff *skb, *tmp;
6187 struct softnet_data *sd;
6188
6189 local_bh_disable();
6190 sd = this_cpu_ptr(&softnet_data);
6191
6192 backlog_lock_irq_disable(sd);
6193 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6194 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6195 __skb_unlink(skb, &sd->input_pkt_queue);
6196 dev_kfree_skb_irq(skb);
6197 rps_input_queue_head_incr(sd);
6198 }
6199 }
6200 backlog_unlock_irq_enable(sd);
6201
6202 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6203 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6204 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6205 __skb_unlink(skb, &sd->process_queue);
6206 kfree_skb(skb);
6207 rps_input_queue_head_incr(sd);
6208 }
6209 }
6210 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6211 local_bh_enable();
6212}
6213
6214static bool flush_required(int cpu)
6215{
6216#if IS_ENABLED(CONFIG_RPS)
6217 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6218 bool do_flush;
6219
6220 backlog_lock_irq_disable(sd);
6221
6222 /* as insertion into process_queue happens with the rps lock held,
6223 * process_queue access may race only with dequeue
6224 */
6225 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6226 !skb_queue_empty_lockless(&sd->process_queue);
6227 backlog_unlock_irq_enable(sd);
6228
6229 return do_flush;
6230#endif
6231 /* without RPS we can't safely check input_pkt_queue: during a
6232 * concurrent remote skb_queue_splice() we can detect as empty both
6233 * input_pkt_queue and process_queue even if the latter could end-up
6234 * containing a lot of packets.
6235 */
6236 return true;
6237}
6238
6239struct flush_backlogs {
6240 cpumask_t flush_cpus;
6241 struct work_struct w[];
6242};
6243
6244static struct flush_backlogs *flush_backlogs_alloc(void)
6245{
6246 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6247 GFP_KERNEL);
6248}
6249
6250static struct flush_backlogs *flush_backlogs_fallback;
6251static DEFINE_MUTEX(flush_backlogs_mutex);
6252
6253static void flush_all_backlogs(void)
6254{
6255 struct flush_backlogs *ptr = flush_backlogs_alloc();
6256 unsigned int cpu;
6257
6258 if (!ptr) {
6259 mutex_lock(&flush_backlogs_mutex);
6260 ptr = flush_backlogs_fallback;
6261 }
6262 cpumask_clear(&ptr->flush_cpus);
6263
6264 cpus_read_lock();
6265
6266 for_each_online_cpu(cpu) {
6267 if (flush_required(cpu)) {
6268 INIT_WORK(&ptr->w[cpu], flush_backlog);
6269 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6270 __cpumask_set_cpu(cpu, &ptr->flush_cpus);
6271 }
6272 }
6273
6274 /* we can have in flight packet[s] on the cpus we are not flushing,
6275 * synchronize_net() in unregister_netdevice_many() will take care of
6276 * them.
6277 */
6278 for_each_cpu(cpu, &ptr->flush_cpus)
6279 flush_work(&ptr->w[cpu]);
6280
6281 cpus_read_unlock();
6282
6283 if (ptr != flush_backlogs_fallback)
6284 kfree(ptr);
6285 else
6286 mutex_unlock(&flush_backlogs_mutex);
6287}
6288
6289static void net_rps_send_ipi(struct softnet_data *remsd)
6290{
6291#ifdef CONFIG_RPS
6292 while (remsd) {
6293 struct softnet_data *next = remsd->rps_ipi_next;
6294
6295 if (cpu_online(remsd->cpu))
6296 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6297 remsd = next;
6298 }
6299#endif
6300}
6301
6302/*
6303 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6304 * Note: called with local irq disabled, but exits with local irq enabled.
6305 */
6306static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6307{
6308#ifdef CONFIG_RPS
6309 struct softnet_data *remsd = sd->rps_ipi_list;
6310
6311 if (!use_backlog_threads() && remsd) {
6312 sd->rps_ipi_list = NULL;
6313
6314 local_irq_enable();
6315
6316 /* Send pending IPI's to kick RPS processing on remote cpus. */
6317 net_rps_send_ipi(remsd);
6318 } else
6319#endif
6320 local_irq_enable();
6321}
6322
6323static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6324{
6325#ifdef CONFIG_RPS
6326 return !use_backlog_threads() && sd->rps_ipi_list;
6327#else
6328 return false;
6329#endif
6330}
6331
6332static int process_backlog(struct napi_struct *napi, int quota)
6333{
6334 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6335 bool again = true;
6336 int work = 0;
6337
6338 /* Check if we have pending ipi, its better to send them now,
6339 * not waiting net_rx_action() end.
6340 */
6341 if (sd_has_rps_ipi_waiting(sd)) {
6342 local_irq_disable();
6343 net_rps_action_and_irq_enable(sd);
6344 }
6345
6346 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6347 while (again) {
6348 struct sk_buff *skb;
6349
6350 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6351 while ((skb = __skb_dequeue(&sd->process_queue))) {
6352 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6353 rcu_read_lock();
6354 __netif_receive_skb(skb);
6355 rcu_read_unlock();
6356 if (++work >= quota) {
6357 rps_input_queue_head_add(sd, work);
6358 return work;
6359 }
6360
6361 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6362 }
6363 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6364
6365 backlog_lock_irq_disable(sd);
6366 if (skb_queue_empty(&sd->input_pkt_queue)) {
6367 /*
6368 * Inline a custom version of __napi_complete().
6369 * only current cpu owns and manipulates this napi,
6370 * and NAPI_STATE_SCHED is the only possible flag set
6371 * on backlog.
6372 * We can use a plain write instead of clear_bit(),
6373 * and we dont need an smp_mb() memory barrier.
6374 */
6375 napi->state &= NAPIF_STATE_THREADED;
6376 again = false;
6377 } else {
6378 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6379 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6380 &sd->process_queue);
6381 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6382 }
6383 backlog_unlock_irq_enable(sd);
6384 }
6385
6386 if (work)
6387 rps_input_queue_head_add(sd, work);
6388 return work;
6389}
6390
6391/**
6392 * __napi_schedule - schedule for receive
6393 * @n: entry to schedule
6394 *
6395 * The entry's receive function will be scheduled to run.
6396 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6397 */
6398void __napi_schedule(struct napi_struct *n)
6399{
6400 unsigned long flags;
6401
6402 local_irq_save(flags);
6403 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6404 local_irq_restore(flags);
6405}
6406EXPORT_SYMBOL(__napi_schedule);
6407
6408/**
6409 * napi_schedule_prep - check if napi can be scheduled
6410 * @n: napi context
6411 *
6412 * Test if NAPI routine is already running, and if not mark
6413 * it as running. This is used as a condition variable to
6414 * insure only one NAPI poll instance runs. We also make
6415 * sure there is no pending NAPI disable.
6416 */
6417bool napi_schedule_prep(struct napi_struct *n)
6418{
6419 unsigned long new, val = READ_ONCE(n->state);
6420
6421 do {
6422 if (unlikely(val & NAPIF_STATE_DISABLE))
6423 return false;
6424 new = val | NAPIF_STATE_SCHED;
6425
6426 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6427 * This was suggested by Alexander Duyck, as compiler
6428 * emits better code than :
6429 * if (val & NAPIF_STATE_SCHED)
6430 * new |= NAPIF_STATE_MISSED;
6431 */
6432 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6433 NAPIF_STATE_MISSED;
6434 } while (!try_cmpxchg(&n->state, &val, new));
6435
6436 return !(val & NAPIF_STATE_SCHED);
6437}
6438EXPORT_SYMBOL(napi_schedule_prep);
6439
6440/**
6441 * __napi_schedule_irqoff - schedule for receive
6442 * @n: entry to schedule
6443 *
6444 * Variant of __napi_schedule() assuming hard irqs are masked.
6445 *
6446 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6447 * because the interrupt disabled assumption might not be true
6448 * due to force-threaded interrupts and spinlock substitution.
6449 */
6450void __napi_schedule_irqoff(struct napi_struct *n)
6451{
6452 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6453 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6454 else
6455 __napi_schedule(n);
6456}
6457EXPORT_SYMBOL(__napi_schedule_irqoff);
6458
6459bool napi_complete_done(struct napi_struct *n, int work_done)
6460{
6461 unsigned long flags, val, new, timeout = 0;
6462 bool ret = true;
6463
6464 /*
6465 * 1) Don't let napi dequeue from the cpu poll list
6466 * just in case its running on a different cpu.
6467 * 2) If we are busy polling, do nothing here, we have
6468 * the guarantee we will be called later.
6469 */
6470 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6471 NAPIF_STATE_IN_BUSY_POLL)))
6472 return false;
6473
6474 if (work_done) {
6475 if (n->gro_bitmask)
6476 timeout = napi_get_gro_flush_timeout(n);
6477 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6478 }
6479 if (n->defer_hard_irqs_count > 0) {
6480 n->defer_hard_irqs_count--;
6481 timeout = napi_get_gro_flush_timeout(n);
6482 if (timeout)
6483 ret = false;
6484 }
6485 if (n->gro_bitmask) {
6486 /* When the NAPI instance uses a timeout and keeps postponing
6487 * it, we need to bound somehow the time packets are kept in
6488 * the GRO layer
6489 */
6490 napi_gro_flush(n, !!timeout);
6491 }
6492
6493 gro_normal_list(n);
6494
6495 if (unlikely(!list_empty(&n->poll_list))) {
6496 /* If n->poll_list is not empty, we need to mask irqs */
6497 local_irq_save(flags);
6498 list_del_init(&n->poll_list);
6499 local_irq_restore(flags);
6500 }
6501 WRITE_ONCE(n->list_owner, -1);
6502
6503 val = READ_ONCE(n->state);
6504 do {
6505 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6506
6507 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6508 NAPIF_STATE_SCHED_THREADED |
6509 NAPIF_STATE_PREFER_BUSY_POLL);
6510
6511 /* If STATE_MISSED was set, leave STATE_SCHED set,
6512 * because we will call napi->poll() one more time.
6513 * This C code was suggested by Alexander Duyck to help gcc.
6514 */
6515 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6516 NAPIF_STATE_SCHED;
6517 } while (!try_cmpxchg(&n->state, &val, new));
6518
6519 if (unlikely(val & NAPIF_STATE_MISSED)) {
6520 __napi_schedule(n);
6521 return false;
6522 }
6523
6524 if (timeout)
6525 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6526 HRTIMER_MODE_REL_PINNED);
6527 return ret;
6528}
6529EXPORT_SYMBOL(napi_complete_done);
6530
6531static void skb_defer_free_flush(struct softnet_data *sd)
6532{
6533 struct sk_buff *skb, *next;
6534
6535 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6536 if (!READ_ONCE(sd->defer_list))
6537 return;
6538
6539 spin_lock(&sd->defer_lock);
6540 skb = sd->defer_list;
6541 sd->defer_list = NULL;
6542 sd->defer_count = 0;
6543 spin_unlock(&sd->defer_lock);
6544
6545 while (skb != NULL) {
6546 next = skb->next;
6547 napi_consume_skb(skb, 1);
6548 skb = next;
6549 }
6550}
6551
6552#if defined(CONFIG_NET_RX_BUSY_POLL)
6553
6554static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6555{
6556 if (!skip_schedule) {
6557 gro_normal_list(napi);
6558 __napi_schedule(napi);
6559 return;
6560 }
6561
6562 if (napi->gro_bitmask) {
6563 /* flush too old packets
6564 * If HZ < 1000, flush all packets.
6565 */
6566 napi_gro_flush(napi, HZ >= 1000);
6567 }
6568
6569 gro_normal_list(napi);
6570 clear_bit(NAPI_STATE_SCHED, &napi->state);
6571}
6572
6573enum {
6574 NAPI_F_PREFER_BUSY_POLL = 1,
6575 NAPI_F_END_ON_RESCHED = 2,
6576};
6577
6578static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6579 unsigned flags, u16 budget)
6580{
6581 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6582 bool skip_schedule = false;
6583 unsigned long timeout;
6584 int rc;
6585
6586 /* Busy polling means there is a high chance device driver hard irq
6587 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6588 * set in napi_schedule_prep().
6589 * Since we are about to call napi->poll() once more, we can safely
6590 * clear NAPI_STATE_MISSED.
6591 *
6592 * Note: x86 could use a single "lock and ..." instruction
6593 * to perform these two clear_bit()
6594 */
6595 clear_bit(NAPI_STATE_MISSED, &napi->state);
6596 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6597
6598 local_bh_disable();
6599 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6600
6601 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6602 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6603 timeout = napi_get_gro_flush_timeout(napi);
6604 if (napi->defer_hard_irqs_count && timeout) {
6605 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6606 skip_schedule = true;
6607 }
6608 }
6609
6610 /* All we really want here is to re-enable device interrupts.
6611 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6612 */
6613 rc = napi->poll(napi, budget);
6614 /* We can't gro_normal_list() here, because napi->poll() might have
6615 * rearmed the napi (napi_complete_done()) in which case it could
6616 * already be running on another CPU.
6617 */
6618 trace_napi_poll(napi, rc, budget);
6619 netpoll_poll_unlock(have_poll_lock);
6620 if (rc == budget)
6621 __busy_poll_stop(napi, skip_schedule);
6622 bpf_net_ctx_clear(bpf_net_ctx);
6623 local_bh_enable();
6624}
6625
6626static void __napi_busy_loop(unsigned int napi_id,
6627 bool (*loop_end)(void *, unsigned long),
6628 void *loop_end_arg, unsigned flags, u16 budget)
6629{
6630 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6631 int (*napi_poll)(struct napi_struct *napi, int budget);
6632 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6633 void *have_poll_lock = NULL;
6634 struct napi_struct *napi;
6635
6636 WARN_ON_ONCE(!rcu_read_lock_held());
6637
6638restart:
6639 napi_poll = NULL;
6640
6641 napi = napi_by_id(napi_id);
6642 if (!napi)
6643 return;
6644
6645 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6646 preempt_disable();
6647 for (;;) {
6648 int work = 0;
6649
6650 local_bh_disable();
6651 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6652 if (!napi_poll) {
6653 unsigned long val = READ_ONCE(napi->state);
6654
6655 /* If multiple threads are competing for this napi,
6656 * we avoid dirtying napi->state as much as we can.
6657 */
6658 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6659 NAPIF_STATE_IN_BUSY_POLL)) {
6660 if (flags & NAPI_F_PREFER_BUSY_POLL)
6661 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6662 goto count;
6663 }
6664 if (cmpxchg(&napi->state, val,
6665 val | NAPIF_STATE_IN_BUSY_POLL |
6666 NAPIF_STATE_SCHED) != val) {
6667 if (flags & NAPI_F_PREFER_BUSY_POLL)
6668 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6669 goto count;
6670 }
6671 have_poll_lock = netpoll_poll_lock(napi);
6672 napi_poll = napi->poll;
6673 }
6674 work = napi_poll(napi, budget);
6675 trace_napi_poll(napi, work, budget);
6676 gro_normal_list(napi);
6677count:
6678 if (work > 0)
6679 __NET_ADD_STATS(dev_net(napi->dev),
6680 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6681 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6682 bpf_net_ctx_clear(bpf_net_ctx);
6683 local_bh_enable();
6684
6685 if (!loop_end || loop_end(loop_end_arg, start_time))
6686 break;
6687
6688 if (unlikely(need_resched())) {
6689 if (flags & NAPI_F_END_ON_RESCHED)
6690 break;
6691 if (napi_poll)
6692 busy_poll_stop(napi, have_poll_lock, flags, budget);
6693 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6694 preempt_enable();
6695 rcu_read_unlock();
6696 cond_resched();
6697 rcu_read_lock();
6698 if (loop_end(loop_end_arg, start_time))
6699 return;
6700 goto restart;
6701 }
6702 cpu_relax();
6703 }
6704 if (napi_poll)
6705 busy_poll_stop(napi, have_poll_lock, flags, budget);
6706 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6707 preempt_enable();
6708}
6709
6710void napi_busy_loop_rcu(unsigned int napi_id,
6711 bool (*loop_end)(void *, unsigned long),
6712 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6713{
6714 unsigned flags = NAPI_F_END_ON_RESCHED;
6715
6716 if (prefer_busy_poll)
6717 flags |= NAPI_F_PREFER_BUSY_POLL;
6718
6719 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6720}
6721
6722void napi_busy_loop(unsigned int napi_id,
6723 bool (*loop_end)(void *, unsigned long),
6724 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6725{
6726 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6727
6728 rcu_read_lock();
6729 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6730 rcu_read_unlock();
6731}
6732EXPORT_SYMBOL(napi_busy_loop);
6733
6734void napi_suspend_irqs(unsigned int napi_id)
6735{
6736 struct napi_struct *napi;
6737
6738 rcu_read_lock();
6739 napi = napi_by_id(napi_id);
6740 if (napi) {
6741 unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6742
6743 if (timeout)
6744 hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6745 HRTIMER_MODE_REL_PINNED);
6746 }
6747 rcu_read_unlock();
6748}
6749
6750void napi_resume_irqs(unsigned int napi_id)
6751{
6752 struct napi_struct *napi;
6753
6754 rcu_read_lock();
6755 napi = napi_by_id(napi_id);
6756 if (napi) {
6757 /* If irq_suspend_timeout is set to 0 between the call to
6758 * napi_suspend_irqs and now, the original value still
6759 * determines the safety timeout as intended and napi_watchdog
6760 * will resume irq processing.
6761 */
6762 if (napi_get_irq_suspend_timeout(napi)) {
6763 local_bh_disable();
6764 napi_schedule(napi);
6765 local_bh_enable();
6766 }
6767 }
6768 rcu_read_unlock();
6769}
6770
6771#endif /* CONFIG_NET_RX_BUSY_POLL */
6772
6773static void __napi_hash_add_with_id(struct napi_struct *napi,
6774 unsigned int napi_id)
6775{
6776 WRITE_ONCE(napi->napi_id, napi_id);
6777 hlist_add_head_rcu(&napi->napi_hash_node,
6778 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6779}
6780
6781static void napi_hash_add_with_id(struct napi_struct *napi,
6782 unsigned int napi_id)
6783{
6784 unsigned long flags;
6785
6786 spin_lock_irqsave(&napi_hash_lock, flags);
6787 WARN_ON_ONCE(napi_by_id(napi_id));
6788 __napi_hash_add_with_id(napi, napi_id);
6789 spin_unlock_irqrestore(&napi_hash_lock, flags);
6790}
6791
6792static void napi_hash_add(struct napi_struct *napi)
6793{
6794 unsigned long flags;
6795
6796 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6797 return;
6798
6799 spin_lock_irqsave(&napi_hash_lock, flags);
6800
6801 /* 0..NR_CPUS range is reserved for sender_cpu use */
6802 do {
6803 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6804 napi_gen_id = MIN_NAPI_ID;
6805 } while (napi_by_id(napi_gen_id));
6806
6807 __napi_hash_add_with_id(napi, napi_gen_id);
6808
6809 spin_unlock_irqrestore(&napi_hash_lock, flags);
6810}
6811
6812/* Warning : caller is responsible to make sure rcu grace period
6813 * is respected before freeing memory containing @napi
6814 */
6815static void napi_hash_del(struct napi_struct *napi)
6816{
6817 unsigned long flags;
6818
6819 spin_lock_irqsave(&napi_hash_lock, flags);
6820
6821 hlist_del_init_rcu(&napi->napi_hash_node);
6822
6823 spin_unlock_irqrestore(&napi_hash_lock, flags);
6824}
6825
6826static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6827{
6828 struct napi_struct *napi;
6829
6830 napi = container_of(timer, struct napi_struct, timer);
6831
6832 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6833 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6834 */
6835 if (!napi_disable_pending(napi) &&
6836 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6837 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6838 __napi_schedule_irqoff(napi);
6839 }
6840
6841 return HRTIMER_NORESTART;
6842}
6843
6844static void init_gro_hash(struct napi_struct *napi)
6845{
6846 int i;
6847
6848 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6849 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6850 napi->gro_hash[i].count = 0;
6851 }
6852 napi->gro_bitmask = 0;
6853}
6854
6855int dev_set_threaded(struct net_device *dev, bool threaded)
6856{
6857 struct napi_struct *napi;
6858 int err = 0;
6859
6860 netdev_assert_locked_or_invisible(dev);
6861
6862 if (dev->threaded == threaded)
6863 return 0;
6864
6865 if (threaded) {
6866 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6867 if (!napi->thread) {
6868 err = napi_kthread_create(napi);
6869 if (err) {
6870 threaded = false;
6871 break;
6872 }
6873 }
6874 }
6875 }
6876
6877 WRITE_ONCE(dev->threaded, threaded);
6878
6879 /* Make sure kthread is created before THREADED bit
6880 * is set.
6881 */
6882 smp_mb__before_atomic();
6883
6884 /* Setting/unsetting threaded mode on a napi might not immediately
6885 * take effect, if the current napi instance is actively being
6886 * polled. In this case, the switch between threaded mode and
6887 * softirq mode will happen in the next round of napi_schedule().
6888 * This should not cause hiccups/stalls to the live traffic.
6889 */
6890 list_for_each_entry(napi, &dev->napi_list, dev_list)
6891 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6892
6893 return err;
6894}
6895EXPORT_SYMBOL(dev_set_threaded);
6896
6897/**
6898 * netif_queue_set_napi - Associate queue with the napi
6899 * @dev: device to which NAPI and queue belong
6900 * @queue_index: Index of queue
6901 * @type: queue type as RX or TX
6902 * @napi: NAPI context, pass NULL to clear previously set NAPI
6903 *
6904 * Set queue with its corresponding napi context. This should be done after
6905 * registering the NAPI handler for the queue-vector and the queues have been
6906 * mapped to the corresponding interrupt vector.
6907 */
6908void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6909 enum netdev_queue_type type, struct napi_struct *napi)
6910{
6911 struct netdev_rx_queue *rxq;
6912 struct netdev_queue *txq;
6913
6914 if (WARN_ON_ONCE(napi && !napi->dev))
6915 return;
6916 if (dev->reg_state >= NETREG_REGISTERED)
6917 ASSERT_RTNL();
6918
6919 switch (type) {
6920 case NETDEV_QUEUE_TYPE_RX:
6921 rxq = __netif_get_rx_queue(dev, queue_index);
6922 rxq->napi = napi;
6923 return;
6924 case NETDEV_QUEUE_TYPE_TX:
6925 txq = netdev_get_tx_queue(dev, queue_index);
6926 txq->napi = napi;
6927 return;
6928 default:
6929 return;
6930 }
6931}
6932EXPORT_SYMBOL(netif_queue_set_napi);
6933
6934static void napi_restore_config(struct napi_struct *n)
6935{
6936 n->defer_hard_irqs = n->config->defer_hard_irqs;
6937 n->gro_flush_timeout = n->config->gro_flush_timeout;
6938 n->irq_suspend_timeout = n->config->irq_suspend_timeout;
6939 /* a NAPI ID might be stored in the config, if so use it. if not, use
6940 * napi_hash_add to generate one for us.
6941 */
6942 if (n->config->napi_id) {
6943 napi_hash_add_with_id(n, n->config->napi_id);
6944 } else {
6945 napi_hash_add(n);
6946 n->config->napi_id = n->napi_id;
6947 }
6948}
6949
6950static void napi_save_config(struct napi_struct *n)
6951{
6952 n->config->defer_hard_irqs = n->defer_hard_irqs;
6953 n->config->gro_flush_timeout = n->gro_flush_timeout;
6954 n->config->irq_suspend_timeout = n->irq_suspend_timeout;
6955 napi_hash_del(n);
6956}
6957
6958/* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
6959 * inherit an existing ID try to insert it at the right position.
6960 */
6961static void
6962netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
6963{
6964 unsigned int new_id, pos_id;
6965 struct list_head *higher;
6966 struct napi_struct *pos;
6967
6968 new_id = UINT_MAX;
6969 if (napi->config && napi->config->napi_id)
6970 new_id = napi->config->napi_id;
6971
6972 higher = &dev->napi_list;
6973 list_for_each_entry(pos, &dev->napi_list, dev_list) {
6974 if (pos->napi_id >= MIN_NAPI_ID)
6975 pos_id = pos->napi_id;
6976 else if (pos->config)
6977 pos_id = pos->config->napi_id;
6978 else
6979 pos_id = UINT_MAX;
6980
6981 if (pos_id <= new_id)
6982 break;
6983 higher = &pos->dev_list;
6984 }
6985 list_add_rcu(&napi->dev_list, higher); /* adds after higher */
6986}
6987
6988/* Double check that napi_get_frags() allocates skbs with
6989 * skb->head being backed by slab, not a page fragment.
6990 * This is to make sure bug fixed in 3226b158e67c
6991 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
6992 * does not accidentally come back.
6993 */
6994static void napi_get_frags_check(struct napi_struct *napi)
6995{
6996 struct sk_buff *skb;
6997
6998 local_bh_disable();
6999 skb = napi_get_frags(napi);
7000 WARN_ON_ONCE(skb && skb->head_frag);
7001 napi_free_frags(napi);
7002 local_bh_enable();
7003}
7004
7005void netif_napi_add_weight_locked(struct net_device *dev,
7006 struct napi_struct *napi,
7007 int (*poll)(struct napi_struct *, int),
7008 int weight)
7009{
7010 netdev_assert_locked(dev);
7011 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7012 return;
7013
7014 INIT_LIST_HEAD(&napi->poll_list);
7015 INIT_HLIST_NODE(&napi->napi_hash_node);
7016 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7017 napi->timer.function = napi_watchdog;
7018 init_gro_hash(napi);
7019 napi->skb = NULL;
7020 INIT_LIST_HEAD(&napi->rx_list);
7021 napi->rx_count = 0;
7022 napi->poll = poll;
7023 if (weight > NAPI_POLL_WEIGHT)
7024 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7025 weight);
7026 napi->weight = weight;
7027 napi->dev = dev;
7028#ifdef CONFIG_NETPOLL
7029 napi->poll_owner = -1;
7030#endif
7031 napi->list_owner = -1;
7032 set_bit(NAPI_STATE_SCHED, &napi->state);
7033 set_bit(NAPI_STATE_NPSVC, &napi->state);
7034 netif_napi_dev_list_add(dev, napi);
7035
7036 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
7037 * configuration will be loaded in napi_enable
7038 */
7039 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7040 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7041
7042 napi_get_frags_check(napi);
7043 /* Create kthread for this napi if dev->threaded is set.
7044 * Clear dev->threaded if kthread creation failed so that
7045 * threaded mode will not be enabled in napi_enable().
7046 */
7047 if (dev->threaded && napi_kthread_create(napi))
7048 dev->threaded = false;
7049 netif_napi_set_irq_locked(napi, -1);
7050}
7051EXPORT_SYMBOL(netif_napi_add_weight_locked);
7052
7053void napi_disable_locked(struct napi_struct *n)
7054{
7055 unsigned long val, new;
7056
7057 might_sleep();
7058 netdev_assert_locked(n->dev);
7059
7060 set_bit(NAPI_STATE_DISABLE, &n->state);
7061
7062 val = READ_ONCE(n->state);
7063 do {
7064 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7065 usleep_range(20, 200);
7066 val = READ_ONCE(n->state);
7067 }
7068
7069 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7070 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7071 } while (!try_cmpxchg(&n->state, &val, new));
7072
7073 hrtimer_cancel(&n->timer);
7074
7075 if (n->config)
7076 napi_save_config(n);
7077 else
7078 napi_hash_del(n);
7079
7080 clear_bit(NAPI_STATE_DISABLE, &n->state);
7081}
7082EXPORT_SYMBOL(napi_disable_locked);
7083
7084/**
7085 * napi_disable() - prevent NAPI from scheduling
7086 * @n: NAPI context
7087 *
7088 * Stop NAPI from being scheduled on this context.
7089 * Waits till any outstanding processing completes.
7090 * Takes netdev_lock() for associated net_device.
7091 */
7092void napi_disable(struct napi_struct *n)
7093{
7094 netdev_lock(n->dev);
7095 napi_disable_locked(n);
7096 netdev_unlock(n->dev);
7097}
7098EXPORT_SYMBOL(napi_disable);
7099
7100void napi_enable_locked(struct napi_struct *n)
7101{
7102 unsigned long new, val = READ_ONCE(n->state);
7103
7104 if (n->config)
7105 napi_restore_config(n);
7106 else
7107 napi_hash_add(n);
7108
7109 do {
7110 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7111
7112 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7113 if (n->dev->threaded && n->thread)
7114 new |= NAPIF_STATE_THREADED;
7115 } while (!try_cmpxchg(&n->state, &val, new));
7116}
7117EXPORT_SYMBOL(napi_enable_locked);
7118
7119/**
7120 * napi_enable() - enable NAPI scheduling
7121 * @n: NAPI context
7122 *
7123 * Enable scheduling of a NAPI instance.
7124 * Must be paired with napi_disable().
7125 * Takes netdev_lock() for associated net_device.
7126 */
7127void napi_enable(struct napi_struct *n)
7128{
7129 netdev_lock(n->dev);
7130 napi_enable_locked(n);
7131 netdev_unlock(n->dev);
7132}
7133EXPORT_SYMBOL(napi_enable);
7134
7135static void flush_gro_hash(struct napi_struct *napi)
7136{
7137 int i;
7138
7139 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
7140 struct sk_buff *skb, *n;
7141
7142 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
7143 kfree_skb(skb);
7144 napi->gro_hash[i].count = 0;
7145 }
7146}
7147
7148/* Must be called in process context */
7149void __netif_napi_del_locked(struct napi_struct *napi)
7150{
7151 netdev_assert_locked(napi->dev);
7152
7153 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7154 return;
7155
7156 if (napi->config) {
7157 napi->index = -1;
7158 napi->config = NULL;
7159 }
7160
7161 list_del_rcu(&napi->dev_list);
7162 napi_free_frags(napi);
7163
7164 flush_gro_hash(napi);
7165 napi->gro_bitmask = 0;
7166
7167 if (napi->thread) {
7168 kthread_stop(napi->thread);
7169 napi->thread = NULL;
7170 }
7171}
7172EXPORT_SYMBOL(__netif_napi_del_locked);
7173
7174static int __napi_poll(struct napi_struct *n, bool *repoll)
7175{
7176 int work, weight;
7177
7178 weight = n->weight;
7179
7180 /* This NAPI_STATE_SCHED test is for avoiding a race
7181 * with netpoll's poll_napi(). Only the entity which
7182 * obtains the lock and sees NAPI_STATE_SCHED set will
7183 * actually make the ->poll() call. Therefore we avoid
7184 * accidentally calling ->poll() when NAPI is not scheduled.
7185 */
7186 work = 0;
7187 if (napi_is_scheduled(n)) {
7188 work = n->poll(n, weight);
7189 trace_napi_poll(n, work, weight);
7190
7191 xdp_do_check_flushed(n);
7192 }
7193
7194 if (unlikely(work > weight))
7195 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7196 n->poll, work, weight);
7197
7198 if (likely(work < weight))
7199 return work;
7200
7201 /* Drivers must not modify the NAPI state if they
7202 * consume the entire weight. In such cases this code
7203 * still "owns" the NAPI instance and therefore can
7204 * move the instance around on the list at-will.
7205 */
7206 if (unlikely(napi_disable_pending(n))) {
7207 napi_complete(n);
7208 return work;
7209 }
7210
7211 /* The NAPI context has more processing work, but busy-polling
7212 * is preferred. Exit early.
7213 */
7214 if (napi_prefer_busy_poll(n)) {
7215 if (napi_complete_done(n, work)) {
7216 /* If timeout is not set, we need to make sure
7217 * that the NAPI is re-scheduled.
7218 */
7219 napi_schedule(n);
7220 }
7221 return work;
7222 }
7223
7224 if (n->gro_bitmask) {
7225 /* flush too old packets
7226 * If HZ < 1000, flush all packets.
7227 */
7228 napi_gro_flush(n, HZ >= 1000);
7229 }
7230
7231 gro_normal_list(n);
7232
7233 /* Some drivers may have called napi_schedule
7234 * prior to exhausting their budget.
7235 */
7236 if (unlikely(!list_empty(&n->poll_list))) {
7237 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7238 n->dev ? n->dev->name : "backlog");
7239 return work;
7240 }
7241
7242 *repoll = true;
7243
7244 return work;
7245}
7246
7247static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7248{
7249 bool do_repoll = false;
7250 void *have;
7251 int work;
7252
7253 list_del_init(&n->poll_list);
7254
7255 have = netpoll_poll_lock(n);
7256
7257 work = __napi_poll(n, &do_repoll);
7258
7259 if (do_repoll)
7260 list_add_tail(&n->poll_list, repoll);
7261
7262 netpoll_poll_unlock(have);
7263
7264 return work;
7265}
7266
7267static int napi_thread_wait(struct napi_struct *napi)
7268{
7269 set_current_state(TASK_INTERRUPTIBLE);
7270
7271 while (!kthread_should_stop()) {
7272 /* Testing SCHED_THREADED bit here to make sure the current
7273 * kthread owns this napi and could poll on this napi.
7274 * Testing SCHED bit is not enough because SCHED bit might be
7275 * set by some other busy poll thread or by napi_disable().
7276 */
7277 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7278 WARN_ON(!list_empty(&napi->poll_list));
7279 __set_current_state(TASK_RUNNING);
7280 return 0;
7281 }
7282
7283 schedule();
7284 set_current_state(TASK_INTERRUPTIBLE);
7285 }
7286 __set_current_state(TASK_RUNNING);
7287
7288 return -1;
7289}
7290
7291static void napi_threaded_poll_loop(struct napi_struct *napi)
7292{
7293 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7294 struct softnet_data *sd;
7295 unsigned long last_qs = jiffies;
7296
7297 for (;;) {
7298 bool repoll = false;
7299 void *have;
7300
7301 local_bh_disable();
7302 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7303
7304 sd = this_cpu_ptr(&softnet_data);
7305 sd->in_napi_threaded_poll = true;
7306
7307 have = netpoll_poll_lock(napi);
7308 __napi_poll(napi, &repoll);
7309 netpoll_poll_unlock(have);
7310
7311 sd->in_napi_threaded_poll = false;
7312 barrier();
7313
7314 if (sd_has_rps_ipi_waiting(sd)) {
7315 local_irq_disable();
7316 net_rps_action_and_irq_enable(sd);
7317 }
7318 skb_defer_free_flush(sd);
7319 bpf_net_ctx_clear(bpf_net_ctx);
7320 local_bh_enable();
7321
7322 if (!repoll)
7323 break;
7324
7325 rcu_softirq_qs_periodic(last_qs);
7326 cond_resched();
7327 }
7328}
7329
7330static int napi_threaded_poll(void *data)
7331{
7332 struct napi_struct *napi = data;
7333
7334 while (!napi_thread_wait(napi))
7335 napi_threaded_poll_loop(napi);
7336
7337 return 0;
7338}
7339
7340static __latent_entropy void net_rx_action(void)
7341{
7342 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7343 unsigned long time_limit = jiffies +
7344 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7345 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7346 int budget = READ_ONCE(net_hotdata.netdev_budget);
7347 LIST_HEAD(list);
7348 LIST_HEAD(repoll);
7349
7350 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7351start:
7352 sd->in_net_rx_action = true;
7353 local_irq_disable();
7354 list_splice_init(&sd->poll_list, &list);
7355 local_irq_enable();
7356
7357 for (;;) {
7358 struct napi_struct *n;
7359
7360 skb_defer_free_flush(sd);
7361
7362 if (list_empty(&list)) {
7363 if (list_empty(&repoll)) {
7364 sd->in_net_rx_action = false;
7365 barrier();
7366 /* We need to check if ____napi_schedule()
7367 * had refilled poll_list while
7368 * sd->in_net_rx_action was true.
7369 */
7370 if (!list_empty(&sd->poll_list))
7371 goto start;
7372 if (!sd_has_rps_ipi_waiting(sd))
7373 goto end;
7374 }
7375 break;
7376 }
7377
7378 n = list_first_entry(&list, struct napi_struct, poll_list);
7379 budget -= napi_poll(n, &repoll);
7380
7381 /* If softirq window is exhausted then punt.
7382 * Allow this to run for 2 jiffies since which will allow
7383 * an average latency of 1.5/HZ.
7384 */
7385 if (unlikely(budget <= 0 ||
7386 time_after_eq(jiffies, time_limit))) {
7387 sd->time_squeeze++;
7388 break;
7389 }
7390 }
7391
7392 local_irq_disable();
7393
7394 list_splice_tail_init(&sd->poll_list, &list);
7395 list_splice_tail(&repoll, &list);
7396 list_splice(&list, &sd->poll_list);
7397 if (!list_empty(&sd->poll_list))
7398 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7399 else
7400 sd->in_net_rx_action = false;
7401
7402 net_rps_action_and_irq_enable(sd);
7403end:
7404 bpf_net_ctx_clear(bpf_net_ctx);
7405}
7406
7407struct netdev_adjacent {
7408 struct net_device *dev;
7409 netdevice_tracker dev_tracker;
7410
7411 /* upper master flag, there can only be one master device per list */
7412 bool master;
7413
7414 /* lookup ignore flag */
7415 bool ignore;
7416
7417 /* counter for the number of times this device was added to us */
7418 u16 ref_nr;
7419
7420 /* private field for the users */
7421 void *private;
7422
7423 struct list_head list;
7424 struct rcu_head rcu;
7425};
7426
7427static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7428 struct list_head *adj_list)
7429{
7430 struct netdev_adjacent *adj;
7431
7432 list_for_each_entry(adj, adj_list, list) {
7433 if (adj->dev == adj_dev)
7434 return adj;
7435 }
7436 return NULL;
7437}
7438
7439static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7440 struct netdev_nested_priv *priv)
7441{
7442 struct net_device *dev = (struct net_device *)priv->data;
7443
7444 return upper_dev == dev;
7445}
7446
7447/**
7448 * netdev_has_upper_dev - Check if device is linked to an upper device
7449 * @dev: device
7450 * @upper_dev: upper device to check
7451 *
7452 * Find out if a device is linked to specified upper device and return true
7453 * in case it is. Note that this checks only immediate upper device,
7454 * not through a complete stack of devices. The caller must hold the RTNL lock.
7455 */
7456bool netdev_has_upper_dev(struct net_device *dev,
7457 struct net_device *upper_dev)
7458{
7459 struct netdev_nested_priv priv = {
7460 .data = (void *)upper_dev,
7461 };
7462
7463 ASSERT_RTNL();
7464
7465 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7466 &priv);
7467}
7468EXPORT_SYMBOL(netdev_has_upper_dev);
7469
7470/**
7471 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7472 * @dev: device
7473 * @upper_dev: upper device to check
7474 *
7475 * Find out if a device is linked to specified upper device and return true
7476 * in case it is. Note that this checks the entire upper device chain.
7477 * The caller must hold rcu lock.
7478 */
7479
7480bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7481 struct net_device *upper_dev)
7482{
7483 struct netdev_nested_priv priv = {
7484 .data = (void *)upper_dev,
7485 };
7486
7487 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7488 &priv);
7489}
7490EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7491
7492/**
7493 * netdev_has_any_upper_dev - Check if device is linked to some device
7494 * @dev: device
7495 *
7496 * Find out if a device is linked to an upper device and return true in case
7497 * it is. The caller must hold the RTNL lock.
7498 */
7499bool netdev_has_any_upper_dev(struct net_device *dev)
7500{
7501 ASSERT_RTNL();
7502
7503 return !list_empty(&dev->adj_list.upper);
7504}
7505EXPORT_SYMBOL(netdev_has_any_upper_dev);
7506
7507/**
7508 * netdev_master_upper_dev_get - Get master upper device
7509 * @dev: device
7510 *
7511 * Find a master upper device and return pointer to it or NULL in case
7512 * it's not there. The caller must hold the RTNL lock.
7513 */
7514struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7515{
7516 struct netdev_adjacent *upper;
7517
7518 ASSERT_RTNL();
7519
7520 if (list_empty(&dev->adj_list.upper))
7521 return NULL;
7522
7523 upper = list_first_entry(&dev->adj_list.upper,
7524 struct netdev_adjacent, list);
7525 if (likely(upper->master))
7526 return upper->dev;
7527 return NULL;
7528}
7529EXPORT_SYMBOL(netdev_master_upper_dev_get);
7530
7531static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7532{
7533 struct netdev_adjacent *upper;
7534
7535 ASSERT_RTNL();
7536
7537 if (list_empty(&dev->adj_list.upper))
7538 return NULL;
7539
7540 upper = list_first_entry(&dev->adj_list.upper,
7541 struct netdev_adjacent, list);
7542 if (likely(upper->master) && !upper->ignore)
7543 return upper->dev;
7544 return NULL;
7545}
7546
7547/**
7548 * netdev_has_any_lower_dev - Check if device is linked to some device
7549 * @dev: device
7550 *
7551 * Find out if a device is linked to a lower device and return true in case
7552 * it is. The caller must hold the RTNL lock.
7553 */
7554static bool netdev_has_any_lower_dev(struct net_device *dev)
7555{
7556 ASSERT_RTNL();
7557
7558 return !list_empty(&dev->adj_list.lower);
7559}
7560
7561void *netdev_adjacent_get_private(struct list_head *adj_list)
7562{
7563 struct netdev_adjacent *adj;
7564
7565 adj = list_entry(adj_list, struct netdev_adjacent, list);
7566
7567 return adj->private;
7568}
7569EXPORT_SYMBOL(netdev_adjacent_get_private);
7570
7571/**
7572 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7573 * @dev: device
7574 * @iter: list_head ** of the current position
7575 *
7576 * Gets the next device from the dev's upper list, starting from iter
7577 * position. The caller must hold RCU read lock.
7578 */
7579struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7580 struct list_head **iter)
7581{
7582 struct netdev_adjacent *upper;
7583
7584 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7585
7586 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7587
7588 if (&upper->list == &dev->adj_list.upper)
7589 return NULL;
7590
7591 *iter = &upper->list;
7592
7593 return upper->dev;
7594}
7595EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7596
7597static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7598 struct list_head **iter,
7599 bool *ignore)
7600{
7601 struct netdev_adjacent *upper;
7602
7603 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7604
7605 if (&upper->list == &dev->adj_list.upper)
7606 return NULL;
7607
7608 *iter = &upper->list;
7609 *ignore = upper->ignore;
7610
7611 return upper->dev;
7612}
7613
7614static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7615 struct list_head **iter)
7616{
7617 struct netdev_adjacent *upper;
7618
7619 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7620
7621 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7622
7623 if (&upper->list == &dev->adj_list.upper)
7624 return NULL;
7625
7626 *iter = &upper->list;
7627
7628 return upper->dev;
7629}
7630
7631static int __netdev_walk_all_upper_dev(struct net_device *dev,
7632 int (*fn)(struct net_device *dev,
7633 struct netdev_nested_priv *priv),
7634 struct netdev_nested_priv *priv)
7635{
7636 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7637 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7638 int ret, cur = 0;
7639 bool ignore;
7640
7641 now = dev;
7642 iter = &dev->adj_list.upper;
7643
7644 while (1) {
7645 if (now != dev) {
7646 ret = fn(now, priv);
7647 if (ret)
7648 return ret;
7649 }
7650
7651 next = NULL;
7652 while (1) {
7653 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7654 if (!udev)
7655 break;
7656 if (ignore)
7657 continue;
7658
7659 next = udev;
7660 niter = &udev->adj_list.upper;
7661 dev_stack[cur] = now;
7662 iter_stack[cur++] = iter;
7663 break;
7664 }
7665
7666 if (!next) {
7667 if (!cur)
7668 return 0;
7669 next = dev_stack[--cur];
7670 niter = iter_stack[cur];
7671 }
7672
7673 now = next;
7674 iter = niter;
7675 }
7676
7677 return 0;
7678}
7679
7680int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7681 int (*fn)(struct net_device *dev,
7682 struct netdev_nested_priv *priv),
7683 struct netdev_nested_priv *priv)
7684{
7685 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7686 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7687 int ret, cur = 0;
7688
7689 now = dev;
7690 iter = &dev->adj_list.upper;
7691
7692 while (1) {
7693 if (now != dev) {
7694 ret = fn(now, priv);
7695 if (ret)
7696 return ret;
7697 }
7698
7699 next = NULL;
7700 while (1) {
7701 udev = netdev_next_upper_dev_rcu(now, &iter);
7702 if (!udev)
7703 break;
7704
7705 next = udev;
7706 niter = &udev->adj_list.upper;
7707 dev_stack[cur] = now;
7708 iter_stack[cur++] = iter;
7709 break;
7710 }
7711
7712 if (!next) {
7713 if (!cur)
7714 return 0;
7715 next = dev_stack[--cur];
7716 niter = iter_stack[cur];
7717 }
7718
7719 now = next;
7720 iter = niter;
7721 }
7722
7723 return 0;
7724}
7725EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7726
7727static bool __netdev_has_upper_dev(struct net_device *dev,
7728 struct net_device *upper_dev)
7729{
7730 struct netdev_nested_priv priv = {
7731 .flags = 0,
7732 .data = (void *)upper_dev,
7733 };
7734
7735 ASSERT_RTNL();
7736
7737 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7738 &priv);
7739}
7740
7741/**
7742 * netdev_lower_get_next_private - Get the next ->private from the
7743 * lower neighbour list
7744 * @dev: device
7745 * @iter: list_head ** of the current position
7746 *
7747 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7748 * list, starting from iter position. The caller must hold either hold the
7749 * RTNL lock or its own locking that guarantees that the neighbour lower
7750 * list will remain unchanged.
7751 */
7752void *netdev_lower_get_next_private(struct net_device *dev,
7753 struct list_head **iter)
7754{
7755 struct netdev_adjacent *lower;
7756
7757 lower = list_entry(*iter, struct netdev_adjacent, list);
7758
7759 if (&lower->list == &dev->adj_list.lower)
7760 return NULL;
7761
7762 *iter = lower->list.next;
7763
7764 return lower->private;
7765}
7766EXPORT_SYMBOL(netdev_lower_get_next_private);
7767
7768/**
7769 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7770 * lower neighbour list, RCU
7771 * variant
7772 * @dev: device
7773 * @iter: list_head ** of the current position
7774 *
7775 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7776 * list, starting from iter position. The caller must hold RCU read lock.
7777 */
7778void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7779 struct list_head **iter)
7780{
7781 struct netdev_adjacent *lower;
7782
7783 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7784
7785 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7786
7787 if (&lower->list == &dev->adj_list.lower)
7788 return NULL;
7789
7790 *iter = &lower->list;
7791
7792 return lower->private;
7793}
7794EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7795
7796/**
7797 * netdev_lower_get_next - Get the next device from the lower neighbour
7798 * list
7799 * @dev: device
7800 * @iter: list_head ** of the current position
7801 *
7802 * Gets the next netdev_adjacent from the dev's lower neighbour
7803 * list, starting from iter position. The caller must hold RTNL lock or
7804 * its own locking that guarantees that the neighbour lower
7805 * list will remain unchanged.
7806 */
7807void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7808{
7809 struct netdev_adjacent *lower;
7810
7811 lower = list_entry(*iter, struct netdev_adjacent, list);
7812
7813 if (&lower->list == &dev->adj_list.lower)
7814 return NULL;
7815
7816 *iter = lower->list.next;
7817
7818 return lower->dev;
7819}
7820EXPORT_SYMBOL(netdev_lower_get_next);
7821
7822static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7823 struct list_head **iter)
7824{
7825 struct netdev_adjacent *lower;
7826
7827 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7828
7829 if (&lower->list == &dev->adj_list.lower)
7830 return NULL;
7831
7832 *iter = &lower->list;
7833
7834 return lower->dev;
7835}
7836
7837static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7838 struct list_head **iter,
7839 bool *ignore)
7840{
7841 struct netdev_adjacent *lower;
7842
7843 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7844
7845 if (&lower->list == &dev->adj_list.lower)
7846 return NULL;
7847
7848 *iter = &lower->list;
7849 *ignore = lower->ignore;
7850
7851 return lower->dev;
7852}
7853
7854int netdev_walk_all_lower_dev(struct net_device *dev,
7855 int (*fn)(struct net_device *dev,
7856 struct netdev_nested_priv *priv),
7857 struct netdev_nested_priv *priv)
7858{
7859 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7860 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7861 int ret, cur = 0;
7862
7863 now = dev;
7864 iter = &dev->adj_list.lower;
7865
7866 while (1) {
7867 if (now != dev) {
7868 ret = fn(now, priv);
7869 if (ret)
7870 return ret;
7871 }
7872
7873 next = NULL;
7874 while (1) {
7875 ldev = netdev_next_lower_dev(now, &iter);
7876 if (!ldev)
7877 break;
7878
7879 next = ldev;
7880 niter = &ldev->adj_list.lower;
7881 dev_stack[cur] = now;
7882 iter_stack[cur++] = iter;
7883 break;
7884 }
7885
7886 if (!next) {
7887 if (!cur)
7888 return 0;
7889 next = dev_stack[--cur];
7890 niter = iter_stack[cur];
7891 }
7892
7893 now = next;
7894 iter = niter;
7895 }
7896
7897 return 0;
7898}
7899EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7900
7901static int __netdev_walk_all_lower_dev(struct net_device *dev,
7902 int (*fn)(struct net_device *dev,
7903 struct netdev_nested_priv *priv),
7904 struct netdev_nested_priv *priv)
7905{
7906 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7907 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7908 int ret, cur = 0;
7909 bool ignore;
7910
7911 now = dev;
7912 iter = &dev->adj_list.lower;
7913
7914 while (1) {
7915 if (now != dev) {
7916 ret = fn(now, priv);
7917 if (ret)
7918 return ret;
7919 }
7920
7921 next = NULL;
7922 while (1) {
7923 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7924 if (!ldev)
7925 break;
7926 if (ignore)
7927 continue;
7928
7929 next = ldev;
7930 niter = &ldev->adj_list.lower;
7931 dev_stack[cur] = now;
7932 iter_stack[cur++] = iter;
7933 break;
7934 }
7935
7936 if (!next) {
7937 if (!cur)
7938 return 0;
7939 next = dev_stack[--cur];
7940 niter = iter_stack[cur];
7941 }
7942
7943 now = next;
7944 iter = niter;
7945 }
7946
7947 return 0;
7948}
7949
7950struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7951 struct list_head **iter)
7952{
7953 struct netdev_adjacent *lower;
7954
7955 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7956 if (&lower->list == &dev->adj_list.lower)
7957 return NULL;
7958
7959 *iter = &lower->list;
7960
7961 return lower->dev;
7962}
7963EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7964
7965static u8 __netdev_upper_depth(struct net_device *dev)
7966{
7967 struct net_device *udev;
7968 struct list_head *iter;
7969 u8 max_depth = 0;
7970 bool ignore;
7971
7972 for (iter = &dev->adj_list.upper,
7973 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7974 udev;
7975 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7976 if (ignore)
7977 continue;
7978 if (max_depth < udev->upper_level)
7979 max_depth = udev->upper_level;
7980 }
7981
7982 return max_depth;
7983}
7984
7985static u8 __netdev_lower_depth(struct net_device *dev)
7986{
7987 struct net_device *ldev;
7988 struct list_head *iter;
7989 u8 max_depth = 0;
7990 bool ignore;
7991
7992 for (iter = &dev->adj_list.lower,
7993 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7994 ldev;
7995 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7996 if (ignore)
7997 continue;
7998 if (max_depth < ldev->lower_level)
7999 max_depth = ldev->lower_level;
8000 }
8001
8002 return max_depth;
8003}
8004
8005static int __netdev_update_upper_level(struct net_device *dev,
8006 struct netdev_nested_priv *__unused)
8007{
8008 dev->upper_level = __netdev_upper_depth(dev) + 1;
8009 return 0;
8010}
8011
8012#ifdef CONFIG_LOCKDEP
8013static LIST_HEAD(net_unlink_list);
8014
8015static void net_unlink_todo(struct net_device *dev)
8016{
8017 if (list_empty(&dev->unlink_list))
8018 list_add_tail(&dev->unlink_list, &net_unlink_list);
8019}
8020#endif
8021
8022static int __netdev_update_lower_level(struct net_device *dev,
8023 struct netdev_nested_priv *priv)
8024{
8025 dev->lower_level = __netdev_lower_depth(dev) + 1;
8026
8027#ifdef CONFIG_LOCKDEP
8028 if (!priv)
8029 return 0;
8030
8031 if (priv->flags & NESTED_SYNC_IMM)
8032 dev->nested_level = dev->lower_level - 1;
8033 if (priv->flags & NESTED_SYNC_TODO)
8034 net_unlink_todo(dev);
8035#endif
8036 return 0;
8037}
8038
8039int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8040 int (*fn)(struct net_device *dev,
8041 struct netdev_nested_priv *priv),
8042 struct netdev_nested_priv *priv)
8043{
8044 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8045 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8046 int ret, cur = 0;
8047
8048 now = dev;
8049 iter = &dev->adj_list.lower;
8050
8051 while (1) {
8052 if (now != dev) {
8053 ret = fn(now, priv);
8054 if (ret)
8055 return ret;
8056 }
8057
8058 next = NULL;
8059 while (1) {
8060 ldev = netdev_next_lower_dev_rcu(now, &iter);
8061 if (!ldev)
8062 break;
8063
8064 next = ldev;
8065 niter = &ldev->adj_list.lower;
8066 dev_stack[cur] = now;
8067 iter_stack[cur++] = iter;
8068 break;
8069 }
8070
8071 if (!next) {
8072 if (!cur)
8073 return 0;
8074 next = dev_stack[--cur];
8075 niter = iter_stack[cur];
8076 }
8077
8078 now = next;
8079 iter = niter;
8080 }
8081
8082 return 0;
8083}
8084EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8085
8086/**
8087 * netdev_lower_get_first_private_rcu - Get the first ->private from the
8088 * lower neighbour list, RCU
8089 * variant
8090 * @dev: device
8091 *
8092 * Gets the first netdev_adjacent->private from the dev's lower neighbour
8093 * list. The caller must hold RCU read lock.
8094 */
8095void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8096{
8097 struct netdev_adjacent *lower;
8098
8099 lower = list_first_or_null_rcu(&dev->adj_list.lower,
8100 struct netdev_adjacent, list);
8101 if (lower)
8102 return lower->private;
8103 return NULL;
8104}
8105EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8106
8107/**
8108 * netdev_master_upper_dev_get_rcu - Get master upper device
8109 * @dev: device
8110 *
8111 * Find a master upper device and return pointer to it or NULL in case
8112 * it's not there. The caller must hold the RCU read lock.
8113 */
8114struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8115{
8116 struct netdev_adjacent *upper;
8117
8118 upper = list_first_or_null_rcu(&dev->adj_list.upper,
8119 struct netdev_adjacent, list);
8120 if (upper && likely(upper->master))
8121 return upper->dev;
8122 return NULL;
8123}
8124EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8125
8126static int netdev_adjacent_sysfs_add(struct net_device *dev,
8127 struct net_device *adj_dev,
8128 struct list_head *dev_list)
8129{
8130 char linkname[IFNAMSIZ+7];
8131
8132 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8133 "upper_%s" : "lower_%s", adj_dev->name);
8134 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8135 linkname);
8136}
8137static void netdev_adjacent_sysfs_del(struct net_device *dev,
8138 char *name,
8139 struct list_head *dev_list)
8140{
8141 char linkname[IFNAMSIZ+7];
8142
8143 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8144 "upper_%s" : "lower_%s", name);
8145 sysfs_remove_link(&(dev->dev.kobj), linkname);
8146}
8147
8148static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8149 struct net_device *adj_dev,
8150 struct list_head *dev_list)
8151{
8152 return (dev_list == &dev->adj_list.upper ||
8153 dev_list == &dev->adj_list.lower) &&
8154 net_eq(dev_net(dev), dev_net(adj_dev));
8155}
8156
8157static int __netdev_adjacent_dev_insert(struct net_device *dev,
8158 struct net_device *adj_dev,
8159 struct list_head *dev_list,
8160 void *private, bool master)
8161{
8162 struct netdev_adjacent *adj;
8163 int ret;
8164
8165 adj = __netdev_find_adj(adj_dev, dev_list);
8166
8167 if (adj) {
8168 adj->ref_nr += 1;
8169 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8170 dev->name, adj_dev->name, adj->ref_nr);
8171
8172 return 0;
8173 }
8174
8175 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8176 if (!adj)
8177 return -ENOMEM;
8178
8179 adj->dev = adj_dev;
8180 adj->master = master;
8181 adj->ref_nr = 1;
8182 adj->private = private;
8183 adj->ignore = false;
8184 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8185
8186 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8187 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8188
8189 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8190 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8191 if (ret)
8192 goto free_adj;
8193 }
8194
8195 /* Ensure that master link is always the first item in list. */
8196 if (master) {
8197 ret = sysfs_create_link(&(dev->dev.kobj),
8198 &(adj_dev->dev.kobj), "master");
8199 if (ret)
8200 goto remove_symlinks;
8201
8202 list_add_rcu(&adj->list, dev_list);
8203 } else {
8204 list_add_tail_rcu(&adj->list, dev_list);
8205 }
8206
8207 return 0;
8208
8209remove_symlinks:
8210 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8211 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8212free_adj:
8213 netdev_put(adj_dev, &adj->dev_tracker);
8214 kfree(adj);
8215
8216 return ret;
8217}
8218
8219static void __netdev_adjacent_dev_remove(struct net_device *dev,
8220 struct net_device *adj_dev,
8221 u16 ref_nr,
8222 struct list_head *dev_list)
8223{
8224 struct netdev_adjacent *adj;
8225
8226 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8227 dev->name, adj_dev->name, ref_nr);
8228
8229 adj = __netdev_find_adj(adj_dev, dev_list);
8230
8231 if (!adj) {
8232 pr_err("Adjacency does not exist for device %s from %s\n",
8233 dev->name, adj_dev->name);
8234 WARN_ON(1);
8235 return;
8236 }
8237
8238 if (adj->ref_nr > ref_nr) {
8239 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8240 dev->name, adj_dev->name, ref_nr,
8241 adj->ref_nr - ref_nr);
8242 adj->ref_nr -= ref_nr;
8243 return;
8244 }
8245
8246 if (adj->master)
8247 sysfs_remove_link(&(dev->dev.kobj), "master");
8248
8249 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8250 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8251
8252 list_del_rcu(&adj->list);
8253 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8254 adj_dev->name, dev->name, adj_dev->name);
8255 netdev_put(adj_dev, &adj->dev_tracker);
8256 kfree_rcu(adj, rcu);
8257}
8258
8259static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8260 struct net_device *upper_dev,
8261 struct list_head *up_list,
8262 struct list_head *down_list,
8263 void *private, bool master)
8264{
8265 int ret;
8266
8267 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8268 private, master);
8269 if (ret)
8270 return ret;
8271
8272 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8273 private, false);
8274 if (ret) {
8275 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8276 return ret;
8277 }
8278
8279 return 0;
8280}
8281
8282static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8283 struct net_device *upper_dev,
8284 u16 ref_nr,
8285 struct list_head *up_list,
8286 struct list_head *down_list)
8287{
8288 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8289 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8290}
8291
8292static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8293 struct net_device *upper_dev,
8294 void *private, bool master)
8295{
8296 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8297 &dev->adj_list.upper,
8298 &upper_dev->adj_list.lower,
8299 private, master);
8300}
8301
8302static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8303 struct net_device *upper_dev)
8304{
8305 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8306 &dev->adj_list.upper,
8307 &upper_dev->adj_list.lower);
8308}
8309
8310static int __netdev_upper_dev_link(struct net_device *dev,
8311 struct net_device *upper_dev, bool master,
8312 void *upper_priv, void *upper_info,
8313 struct netdev_nested_priv *priv,
8314 struct netlink_ext_ack *extack)
8315{
8316 struct netdev_notifier_changeupper_info changeupper_info = {
8317 .info = {
8318 .dev = dev,
8319 .extack = extack,
8320 },
8321 .upper_dev = upper_dev,
8322 .master = master,
8323 .linking = true,
8324 .upper_info = upper_info,
8325 };
8326 struct net_device *master_dev;
8327 int ret = 0;
8328
8329 ASSERT_RTNL();
8330
8331 if (dev == upper_dev)
8332 return -EBUSY;
8333
8334 /* To prevent loops, check if dev is not upper device to upper_dev. */
8335 if (__netdev_has_upper_dev(upper_dev, dev))
8336 return -EBUSY;
8337
8338 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8339 return -EMLINK;
8340
8341 if (!master) {
8342 if (__netdev_has_upper_dev(dev, upper_dev))
8343 return -EEXIST;
8344 } else {
8345 master_dev = __netdev_master_upper_dev_get(dev);
8346 if (master_dev)
8347 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8348 }
8349
8350 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8351 &changeupper_info.info);
8352 ret = notifier_to_errno(ret);
8353 if (ret)
8354 return ret;
8355
8356 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8357 master);
8358 if (ret)
8359 return ret;
8360
8361 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8362 &changeupper_info.info);
8363 ret = notifier_to_errno(ret);
8364 if (ret)
8365 goto rollback;
8366
8367 __netdev_update_upper_level(dev, NULL);
8368 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8369
8370 __netdev_update_lower_level(upper_dev, priv);
8371 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8372 priv);
8373
8374 return 0;
8375
8376rollback:
8377 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8378
8379 return ret;
8380}
8381
8382/**
8383 * netdev_upper_dev_link - Add a link to the upper device
8384 * @dev: device
8385 * @upper_dev: new upper device
8386 * @extack: netlink extended ack
8387 *
8388 * Adds a link to device which is upper to this one. The caller must hold
8389 * the RTNL lock. On a failure a negative errno code is returned.
8390 * On success the reference counts are adjusted and the function
8391 * returns zero.
8392 */
8393int netdev_upper_dev_link(struct net_device *dev,
8394 struct net_device *upper_dev,
8395 struct netlink_ext_ack *extack)
8396{
8397 struct netdev_nested_priv priv = {
8398 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8399 .data = NULL,
8400 };
8401
8402 return __netdev_upper_dev_link(dev, upper_dev, false,
8403 NULL, NULL, &priv, extack);
8404}
8405EXPORT_SYMBOL(netdev_upper_dev_link);
8406
8407/**
8408 * netdev_master_upper_dev_link - Add a master link to the upper device
8409 * @dev: device
8410 * @upper_dev: new upper device
8411 * @upper_priv: upper device private
8412 * @upper_info: upper info to be passed down via notifier
8413 * @extack: netlink extended ack
8414 *
8415 * Adds a link to device which is upper to this one. In this case, only
8416 * one master upper device can be linked, although other non-master devices
8417 * might be linked as well. The caller must hold the RTNL lock.
8418 * On a failure a negative errno code is returned. On success the reference
8419 * counts are adjusted and the function returns zero.
8420 */
8421int netdev_master_upper_dev_link(struct net_device *dev,
8422 struct net_device *upper_dev,
8423 void *upper_priv, void *upper_info,
8424 struct netlink_ext_ack *extack)
8425{
8426 struct netdev_nested_priv priv = {
8427 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8428 .data = NULL,
8429 };
8430
8431 return __netdev_upper_dev_link(dev, upper_dev, true,
8432 upper_priv, upper_info, &priv, extack);
8433}
8434EXPORT_SYMBOL(netdev_master_upper_dev_link);
8435
8436static void __netdev_upper_dev_unlink(struct net_device *dev,
8437 struct net_device *upper_dev,
8438 struct netdev_nested_priv *priv)
8439{
8440 struct netdev_notifier_changeupper_info changeupper_info = {
8441 .info = {
8442 .dev = dev,
8443 },
8444 .upper_dev = upper_dev,
8445 .linking = false,
8446 };
8447
8448 ASSERT_RTNL();
8449
8450 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8451
8452 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8453 &changeupper_info.info);
8454
8455 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8456
8457 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8458 &changeupper_info.info);
8459
8460 __netdev_update_upper_level(dev, NULL);
8461 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8462
8463 __netdev_update_lower_level(upper_dev, priv);
8464 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8465 priv);
8466}
8467
8468/**
8469 * netdev_upper_dev_unlink - Removes a link to upper device
8470 * @dev: device
8471 * @upper_dev: new upper device
8472 *
8473 * Removes a link to device which is upper to this one. The caller must hold
8474 * the RTNL lock.
8475 */
8476void netdev_upper_dev_unlink(struct net_device *dev,
8477 struct net_device *upper_dev)
8478{
8479 struct netdev_nested_priv priv = {
8480 .flags = NESTED_SYNC_TODO,
8481 .data = NULL,
8482 };
8483
8484 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8485}
8486EXPORT_SYMBOL(netdev_upper_dev_unlink);
8487
8488static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8489 struct net_device *lower_dev,
8490 bool val)
8491{
8492 struct netdev_adjacent *adj;
8493
8494 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8495 if (adj)
8496 adj->ignore = val;
8497
8498 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8499 if (adj)
8500 adj->ignore = val;
8501}
8502
8503static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8504 struct net_device *lower_dev)
8505{
8506 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8507}
8508
8509static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8510 struct net_device *lower_dev)
8511{
8512 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8513}
8514
8515int netdev_adjacent_change_prepare(struct net_device *old_dev,
8516 struct net_device *new_dev,
8517 struct net_device *dev,
8518 struct netlink_ext_ack *extack)
8519{
8520 struct netdev_nested_priv priv = {
8521 .flags = 0,
8522 .data = NULL,
8523 };
8524 int err;
8525
8526 if (!new_dev)
8527 return 0;
8528
8529 if (old_dev && new_dev != old_dev)
8530 netdev_adjacent_dev_disable(dev, old_dev);
8531 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8532 extack);
8533 if (err) {
8534 if (old_dev && new_dev != old_dev)
8535 netdev_adjacent_dev_enable(dev, old_dev);
8536 return err;
8537 }
8538
8539 return 0;
8540}
8541EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8542
8543void netdev_adjacent_change_commit(struct net_device *old_dev,
8544 struct net_device *new_dev,
8545 struct net_device *dev)
8546{
8547 struct netdev_nested_priv priv = {
8548 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8549 .data = NULL,
8550 };
8551
8552 if (!new_dev || !old_dev)
8553 return;
8554
8555 if (new_dev == old_dev)
8556 return;
8557
8558 netdev_adjacent_dev_enable(dev, old_dev);
8559 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8560}
8561EXPORT_SYMBOL(netdev_adjacent_change_commit);
8562
8563void netdev_adjacent_change_abort(struct net_device *old_dev,
8564 struct net_device *new_dev,
8565 struct net_device *dev)
8566{
8567 struct netdev_nested_priv priv = {
8568 .flags = 0,
8569 .data = NULL,
8570 };
8571
8572 if (!new_dev)
8573 return;
8574
8575 if (old_dev && new_dev != old_dev)
8576 netdev_adjacent_dev_enable(dev, old_dev);
8577
8578 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8579}
8580EXPORT_SYMBOL(netdev_adjacent_change_abort);
8581
8582/**
8583 * netdev_bonding_info_change - Dispatch event about slave change
8584 * @dev: device
8585 * @bonding_info: info to dispatch
8586 *
8587 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8588 * The caller must hold the RTNL lock.
8589 */
8590void netdev_bonding_info_change(struct net_device *dev,
8591 struct netdev_bonding_info *bonding_info)
8592{
8593 struct netdev_notifier_bonding_info info = {
8594 .info.dev = dev,
8595 };
8596
8597 memcpy(&info.bonding_info, bonding_info,
8598 sizeof(struct netdev_bonding_info));
8599 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8600 &info.info);
8601}
8602EXPORT_SYMBOL(netdev_bonding_info_change);
8603
8604static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8605 struct netlink_ext_ack *extack)
8606{
8607 struct netdev_notifier_offload_xstats_info info = {
8608 .info.dev = dev,
8609 .info.extack = extack,
8610 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8611 };
8612 int err;
8613 int rc;
8614
8615 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8616 GFP_KERNEL);
8617 if (!dev->offload_xstats_l3)
8618 return -ENOMEM;
8619
8620 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8621 NETDEV_OFFLOAD_XSTATS_DISABLE,
8622 &info.info);
8623 err = notifier_to_errno(rc);
8624 if (err)
8625 goto free_stats;
8626
8627 return 0;
8628
8629free_stats:
8630 kfree(dev->offload_xstats_l3);
8631 dev->offload_xstats_l3 = NULL;
8632 return err;
8633}
8634
8635int netdev_offload_xstats_enable(struct net_device *dev,
8636 enum netdev_offload_xstats_type type,
8637 struct netlink_ext_ack *extack)
8638{
8639 ASSERT_RTNL();
8640
8641 if (netdev_offload_xstats_enabled(dev, type))
8642 return -EALREADY;
8643
8644 switch (type) {
8645 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8646 return netdev_offload_xstats_enable_l3(dev, extack);
8647 }
8648
8649 WARN_ON(1);
8650 return -EINVAL;
8651}
8652EXPORT_SYMBOL(netdev_offload_xstats_enable);
8653
8654static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8655{
8656 struct netdev_notifier_offload_xstats_info info = {
8657 .info.dev = dev,
8658 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8659 };
8660
8661 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8662 &info.info);
8663 kfree(dev->offload_xstats_l3);
8664 dev->offload_xstats_l3 = NULL;
8665}
8666
8667int netdev_offload_xstats_disable(struct net_device *dev,
8668 enum netdev_offload_xstats_type type)
8669{
8670 ASSERT_RTNL();
8671
8672 if (!netdev_offload_xstats_enabled(dev, type))
8673 return -EALREADY;
8674
8675 switch (type) {
8676 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8677 netdev_offload_xstats_disable_l3(dev);
8678 return 0;
8679 }
8680
8681 WARN_ON(1);
8682 return -EINVAL;
8683}
8684EXPORT_SYMBOL(netdev_offload_xstats_disable);
8685
8686static void netdev_offload_xstats_disable_all(struct net_device *dev)
8687{
8688 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8689}
8690
8691static struct rtnl_hw_stats64 *
8692netdev_offload_xstats_get_ptr(const struct net_device *dev,
8693 enum netdev_offload_xstats_type type)
8694{
8695 switch (type) {
8696 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8697 return dev->offload_xstats_l3;
8698 }
8699
8700 WARN_ON(1);
8701 return NULL;
8702}
8703
8704bool netdev_offload_xstats_enabled(const struct net_device *dev,
8705 enum netdev_offload_xstats_type type)
8706{
8707 ASSERT_RTNL();
8708
8709 return netdev_offload_xstats_get_ptr(dev, type);
8710}
8711EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8712
8713struct netdev_notifier_offload_xstats_ru {
8714 bool used;
8715};
8716
8717struct netdev_notifier_offload_xstats_rd {
8718 struct rtnl_hw_stats64 stats;
8719 bool used;
8720};
8721
8722static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8723 const struct rtnl_hw_stats64 *src)
8724{
8725 dest->rx_packets += src->rx_packets;
8726 dest->tx_packets += src->tx_packets;
8727 dest->rx_bytes += src->rx_bytes;
8728 dest->tx_bytes += src->tx_bytes;
8729 dest->rx_errors += src->rx_errors;
8730 dest->tx_errors += src->tx_errors;
8731 dest->rx_dropped += src->rx_dropped;
8732 dest->tx_dropped += src->tx_dropped;
8733 dest->multicast += src->multicast;
8734}
8735
8736static int netdev_offload_xstats_get_used(struct net_device *dev,
8737 enum netdev_offload_xstats_type type,
8738 bool *p_used,
8739 struct netlink_ext_ack *extack)
8740{
8741 struct netdev_notifier_offload_xstats_ru report_used = {};
8742 struct netdev_notifier_offload_xstats_info info = {
8743 .info.dev = dev,
8744 .info.extack = extack,
8745 .type = type,
8746 .report_used = &report_used,
8747 };
8748 int rc;
8749
8750 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8751 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8752 &info.info);
8753 *p_used = report_used.used;
8754 return notifier_to_errno(rc);
8755}
8756
8757static int netdev_offload_xstats_get_stats(struct net_device *dev,
8758 enum netdev_offload_xstats_type type,
8759 struct rtnl_hw_stats64 *p_stats,
8760 bool *p_used,
8761 struct netlink_ext_ack *extack)
8762{
8763 struct netdev_notifier_offload_xstats_rd report_delta = {};
8764 struct netdev_notifier_offload_xstats_info info = {
8765 .info.dev = dev,
8766 .info.extack = extack,
8767 .type = type,
8768 .report_delta = &report_delta,
8769 };
8770 struct rtnl_hw_stats64 *stats;
8771 int rc;
8772
8773 stats = netdev_offload_xstats_get_ptr(dev, type);
8774 if (WARN_ON(!stats))
8775 return -EINVAL;
8776
8777 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8778 &info.info);
8779
8780 /* Cache whatever we got, even if there was an error, otherwise the
8781 * successful stats retrievals would get lost.
8782 */
8783 netdev_hw_stats64_add(stats, &report_delta.stats);
8784
8785 if (p_stats)
8786 *p_stats = *stats;
8787 *p_used = report_delta.used;
8788
8789 return notifier_to_errno(rc);
8790}
8791
8792int netdev_offload_xstats_get(struct net_device *dev,
8793 enum netdev_offload_xstats_type type,
8794 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8795 struct netlink_ext_ack *extack)
8796{
8797 ASSERT_RTNL();
8798
8799 if (p_stats)
8800 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8801 p_used, extack);
8802 else
8803 return netdev_offload_xstats_get_used(dev, type, p_used,
8804 extack);
8805}
8806EXPORT_SYMBOL(netdev_offload_xstats_get);
8807
8808void
8809netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8810 const struct rtnl_hw_stats64 *stats)
8811{
8812 report_delta->used = true;
8813 netdev_hw_stats64_add(&report_delta->stats, stats);
8814}
8815EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8816
8817void
8818netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8819{
8820 report_used->used = true;
8821}
8822EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8823
8824void netdev_offload_xstats_push_delta(struct net_device *dev,
8825 enum netdev_offload_xstats_type type,
8826 const struct rtnl_hw_stats64 *p_stats)
8827{
8828 struct rtnl_hw_stats64 *stats;
8829
8830 ASSERT_RTNL();
8831
8832 stats = netdev_offload_xstats_get_ptr(dev, type);
8833 if (WARN_ON(!stats))
8834 return;
8835
8836 netdev_hw_stats64_add(stats, p_stats);
8837}
8838EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8839
8840/**
8841 * netdev_get_xmit_slave - Get the xmit slave of master device
8842 * @dev: device
8843 * @skb: The packet
8844 * @all_slaves: assume all the slaves are active
8845 *
8846 * The reference counters are not incremented so the caller must be
8847 * careful with locks. The caller must hold RCU lock.
8848 * %NULL is returned if no slave is found.
8849 */
8850
8851struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8852 struct sk_buff *skb,
8853 bool all_slaves)
8854{
8855 const struct net_device_ops *ops = dev->netdev_ops;
8856
8857 if (!ops->ndo_get_xmit_slave)
8858 return NULL;
8859 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8860}
8861EXPORT_SYMBOL(netdev_get_xmit_slave);
8862
8863static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8864 struct sock *sk)
8865{
8866 const struct net_device_ops *ops = dev->netdev_ops;
8867
8868 if (!ops->ndo_sk_get_lower_dev)
8869 return NULL;
8870 return ops->ndo_sk_get_lower_dev(dev, sk);
8871}
8872
8873/**
8874 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8875 * @dev: device
8876 * @sk: the socket
8877 *
8878 * %NULL is returned if no lower device is found.
8879 */
8880
8881struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8882 struct sock *sk)
8883{
8884 struct net_device *lower;
8885
8886 lower = netdev_sk_get_lower_dev(dev, sk);
8887 while (lower) {
8888 dev = lower;
8889 lower = netdev_sk_get_lower_dev(dev, sk);
8890 }
8891
8892 return dev;
8893}
8894EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8895
8896static void netdev_adjacent_add_links(struct net_device *dev)
8897{
8898 struct netdev_adjacent *iter;
8899
8900 struct net *net = dev_net(dev);
8901
8902 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8903 if (!net_eq(net, dev_net(iter->dev)))
8904 continue;
8905 netdev_adjacent_sysfs_add(iter->dev, dev,
8906 &iter->dev->adj_list.lower);
8907 netdev_adjacent_sysfs_add(dev, iter->dev,
8908 &dev->adj_list.upper);
8909 }
8910
8911 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8912 if (!net_eq(net, dev_net(iter->dev)))
8913 continue;
8914 netdev_adjacent_sysfs_add(iter->dev, dev,
8915 &iter->dev->adj_list.upper);
8916 netdev_adjacent_sysfs_add(dev, iter->dev,
8917 &dev->adj_list.lower);
8918 }
8919}
8920
8921static void netdev_adjacent_del_links(struct net_device *dev)
8922{
8923 struct netdev_adjacent *iter;
8924
8925 struct net *net = dev_net(dev);
8926
8927 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8928 if (!net_eq(net, dev_net(iter->dev)))
8929 continue;
8930 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8931 &iter->dev->adj_list.lower);
8932 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8933 &dev->adj_list.upper);
8934 }
8935
8936 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8937 if (!net_eq(net, dev_net(iter->dev)))
8938 continue;
8939 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8940 &iter->dev->adj_list.upper);
8941 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8942 &dev->adj_list.lower);
8943 }
8944}
8945
8946void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8947{
8948 struct netdev_adjacent *iter;
8949
8950 struct net *net = dev_net(dev);
8951
8952 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8953 if (!net_eq(net, dev_net(iter->dev)))
8954 continue;
8955 netdev_adjacent_sysfs_del(iter->dev, oldname,
8956 &iter->dev->adj_list.lower);
8957 netdev_adjacent_sysfs_add(iter->dev, dev,
8958 &iter->dev->adj_list.lower);
8959 }
8960
8961 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8962 if (!net_eq(net, dev_net(iter->dev)))
8963 continue;
8964 netdev_adjacent_sysfs_del(iter->dev, oldname,
8965 &iter->dev->adj_list.upper);
8966 netdev_adjacent_sysfs_add(iter->dev, dev,
8967 &iter->dev->adj_list.upper);
8968 }
8969}
8970
8971void *netdev_lower_dev_get_private(struct net_device *dev,
8972 struct net_device *lower_dev)
8973{
8974 struct netdev_adjacent *lower;
8975
8976 if (!lower_dev)
8977 return NULL;
8978 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8979 if (!lower)
8980 return NULL;
8981
8982 return lower->private;
8983}
8984EXPORT_SYMBOL(netdev_lower_dev_get_private);
8985
8986
8987/**
8988 * netdev_lower_state_changed - Dispatch event about lower device state change
8989 * @lower_dev: device
8990 * @lower_state_info: state to dispatch
8991 *
8992 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8993 * The caller must hold the RTNL lock.
8994 */
8995void netdev_lower_state_changed(struct net_device *lower_dev,
8996 void *lower_state_info)
8997{
8998 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8999 .info.dev = lower_dev,
9000 };
9001
9002 ASSERT_RTNL();
9003 changelowerstate_info.lower_state_info = lower_state_info;
9004 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9005 &changelowerstate_info.info);
9006}
9007EXPORT_SYMBOL(netdev_lower_state_changed);
9008
9009static void dev_change_rx_flags(struct net_device *dev, int flags)
9010{
9011 const struct net_device_ops *ops = dev->netdev_ops;
9012
9013 if (ops->ndo_change_rx_flags)
9014 ops->ndo_change_rx_flags(dev, flags);
9015}
9016
9017static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9018{
9019 unsigned int old_flags = dev->flags;
9020 unsigned int promiscuity, flags;
9021 kuid_t uid;
9022 kgid_t gid;
9023
9024 ASSERT_RTNL();
9025
9026 promiscuity = dev->promiscuity + inc;
9027 if (promiscuity == 0) {
9028 /*
9029 * Avoid overflow.
9030 * If inc causes overflow, untouch promisc and return error.
9031 */
9032 if (unlikely(inc > 0)) {
9033 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9034 return -EOVERFLOW;
9035 }
9036 flags = old_flags & ~IFF_PROMISC;
9037 } else {
9038 flags = old_flags | IFF_PROMISC;
9039 }
9040 WRITE_ONCE(dev->promiscuity, promiscuity);
9041 if (flags != old_flags) {
9042 WRITE_ONCE(dev->flags, flags);
9043 netdev_info(dev, "%s promiscuous mode\n",
9044 dev->flags & IFF_PROMISC ? "entered" : "left");
9045 if (audit_enabled) {
9046 current_uid_gid(&uid, &gid);
9047 audit_log(audit_context(), GFP_ATOMIC,
9048 AUDIT_ANOM_PROMISCUOUS,
9049 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9050 dev->name, (dev->flags & IFF_PROMISC),
9051 (old_flags & IFF_PROMISC),
9052 from_kuid(&init_user_ns, audit_get_loginuid(current)),
9053 from_kuid(&init_user_ns, uid),
9054 from_kgid(&init_user_ns, gid),
9055 audit_get_sessionid(current));
9056 }
9057
9058 dev_change_rx_flags(dev, IFF_PROMISC);
9059 }
9060 if (notify)
9061 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9062 return 0;
9063}
9064
9065/**
9066 * dev_set_promiscuity - update promiscuity count on a device
9067 * @dev: device
9068 * @inc: modifier
9069 *
9070 * Add or remove promiscuity from a device. While the count in the device
9071 * remains above zero the interface remains promiscuous. Once it hits zero
9072 * the device reverts back to normal filtering operation. A negative inc
9073 * value is used to drop promiscuity on the device.
9074 * Return 0 if successful or a negative errno code on error.
9075 */
9076int dev_set_promiscuity(struct net_device *dev, int inc)
9077{
9078 unsigned int old_flags = dev->flags;
9079 int err;
9080
9081 err = __dev_set_promiscuity(dev, inc, true);
9082 if (err < 0)
9083 return err;
9084 if (dev->flags != old_flags)
9085 dev_set_rx_mode(dev);
9086 return err;
9087}
9088EXPORT_SYMBOL(dev_set_promiscuity);
9089
9090static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
9091{
9092 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9093 unsigned int allmulti, flags;
9094
9095 ASSERT_RTNL();
9096
9097 allmulti = dev->allmulti + inc;
9098 if (allmulti == 0) {
9099 /*
9100 * Avoid overflow.
9101 * If inc causes overflow, untouch allmulti and return error.
9102 */
9103 if (unlikely(inc > 0)) {
9104 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9105 return -EOVERFLOW;
9106 }
9107 flags = old_flags & ~IFF_ALLMULTI;
9108 } else {
9109 flags = old_flags | IFF_ALLMULTI;
9110 }
9111 WRITE_ONCE(dev->allmulti, allmulti);
9112 if (flags != old_flags) {
9113 WRITE_ONCE(dev->flags, flags);
9114 netdev_info(dev, "%s allmulticast mode\n",
9115 dev->flags & IFF_ALLMULTI ? "entered" : "left");
9116 dev_change_rx_flags(dev, IFF_ALLMULTI);
9117 dev_set_rx_mode(dev);
9118 if (notify)
9119 __dev_notify_flags(dev, old_flags,
9120 dev->gflags ^ old_gflags, 0, NULL);
9121 }
9122 return 0;
9123}
9124
9125/**
9126 * dev_set_allmulti - update allmulti count on a device
9127 * @dev: device
9128 * @inc: modifier
9129 *
9130 * Add or remove reception of all multicast frames to a device. While the
9131 * count in the device remains above zero the interface remains listening
9132 * to all interfaces. Once it hits zero the device reverts back to normal
9133 * filtering operation. A negative @inc value is used to drop the counter
9134 * when releasing a resource needing all multicasts.
9135 * Return 0 if successful or a negative errno code on error.
9136 */
9137
9138int dev_set_allmulti(struct net_device *dev, int inc)
9139{
9140 return __dev_set_allmulti(dev, inc, true);
9141}
9142EXPORT_SYMBOL(dev_set_allmulti);
9143
9144/*
9145 * Upload unicast and multicast address lists to device and
9146 * configure RX filtering. When the device doesn't support unicast
9147 * filtering it is put in promiscuous mode while unicast addresses
9148 * are present.
9149 */
9150void __dev_set_rx_mode(struct net_device *dev)
9151{
9152 const struct net_device_ops *ops = dev->netdev_ops;
9153
9154 /* dev_open will call this function so the list will stay sane. */
9155 if (!(dev->flags&IFF_UP))
9156 return;
9157
9158 if (!netif_device_present(dev))
9159 return;
9160
9161 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9162 /* Unicast addresses changes may only happen under the rtnl,
9163 * therefore calling __dev_set_promiscuity here is safe.
9164 */
9165 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9166 __dev_set_promiscuity(dev, 1, false);
9167 dev->uc_promisc = true;
9168 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9169 __dev_set_promiscuity(dev, -1, false);
9170 dev->uc_promisc = false;
9171 }
9172 }
9173
9174 if (ops->ndo_set_rx_mode)
9175 ops->ndo_set_rx_mode(dev);
9176}
9177
9178void dev_set_rx_mode(struct net_device *dev)
9179{
9180 netif_addr_lock_bh(dev);
9181 __dev_set_rx_mode(dev);
9182 netif_addr_unlock_bh(dev);
9183}
9184
9185/**
9186 * dev_get_flags - get flags reported to userspace
9187 * @dev: device
9188 *
9189 * Get the combination of flag bits exported through APIs to userspace.
9190 */
9191unsigned int dev_get_flags(const struct net_device *dev)
9192{
9193 unsigned int flags;
9194
9195 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9196 IFF_ALLMULTI |
9197 IFF_RUNNING |
9198 IFF_LOWER_UP |
9199 IFF_DORMANT)) |
9200 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
9201 IFF_ALLMULTI));
9202
9203 if (netif_running(dev)) {
9204 if (netif_oper_up(dev))
9205 flags |= IFF_RUNNING;
9206 if (netif_carrier_ok(dev))
9207 flags |= IFF_LOWER_UP;
9208 if (netif_dormant(dev))
9209 flags |= IFF_DORMANT;
9210 }
9211
9212 return flags;
9213}
9214EXPORT_SYMBOL(dev_get_flags);
9215
9216int __dev_change_flags(struct net_device *dev, unsigned int flags,
9217 struct netlink_ext_ack *extack)
9218{
9219 unsigned int old_flags = dev->flags;
9220 int ret;
9221
9222 ASSERT_RTNL();
9223
9224 /*
9225 * Set the flags on our device.
9226 */
9227
9228 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9229 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9230 IFF_AUTOMEDIA)) |
9231 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9232 IFF_ALLMULTI));
9233
9234 /*
9235 * Load in the correct multicast list now the flags have changed.
9236 */
9237
9238 if ((old_flags ^ flags) & IFF_MULTICAST)
9239 dev_change_rx_flags(dev, IFF_MULTICAST);
9240
9241 dev_set_rx_mode(dev);
9242
9243 /*
9244 * Have we downed the interface. We handle IFF_UP ourselves
9245 * according to user attempts to set it, rather than blindly
9246 * setting it.
9247 */
9248
9249 ret = 0;
9250 if ((old_flags ^ flags) & IFF_UP) {
9251 if (old_flags & IFF_UP)
9252 __dev_close(dev);
9253 else
9254 ret = __dev_open(dev, extack);
9255 }
9256
9257 if ((flags ^ dev->gflags) & IFF_PROMISC) {
9258 int inc = (flags & IFF_PROMISC) ? 1 : -1;
9259 unsigned int old_flags = dev->flags;
9260
9261 dev->gflags ^= IFF_PROMISC;
9262
9263 if (__dev_set_promiscuity(dev, inc, false) >= 0)
9264 if (dev->flags != old_flags)
9265 dev_set_rx_mode(dev);
9266 }
9267
9268 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9269 * is important. Some (broken) drivers set IFF_PROMISC, when
9270 * IFF_ALLMULTI is requested not asking us and not reporting.
9271 */
9272 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9273 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9274
9275 dev->gflags ^= IFF_ALLMULTI;
9276 __dev_set_allmulti(dev, inc, false);
9277 }
9278
9279 return ret;
9280}
9281
9282void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9283 unsigned int gchanges, u32 portid,
9284 const struct nlmsghdr *nlh)
9285{
9286 unsigned int changes = dev->flags ^ old_flags;
9287
9288 if (gchanges)
9289 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9290
9291 if (changes & IFF_UP) {
9292 if (dev->flags & IFF_UP)
9293 call_netdevice_notifiers(NETDEV_UP, dev);
9294 else
9295 call_netdevice_notifiers(NETDEV_DOWN, dev);
9296 }
9297
9298 if (dev->flags & IFF_UP &&
9299 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9300 struct netdev_notifier_change_info change_info = {
9301 .info = {
9302 .dev = dev,
9303 },
9304 .flags_changed = changes,
9305 };
9306
9307 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9308 }
9309}
9310
9311/**
9312 * dev_change_flags - change device settings
9313 * @dev: device
9314 * @flags: device state flags
9315 * @extack: netlink extended ack
9316 *
9317 * Change settings on device based state flags. The flags are
9318 * in the userspace exported format.
9319 */
9320int dev_change_flags(struct net_device *dev, unsigned int flags,
9321 struct netlink_ext_ack *extack)
9322{
9323 int ret;
9324 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9325
9326 ret = __dev_change_flags(dev, flags, extack);
9327 if (ret < 0)
9328 return ret;
9329
9330 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9331 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
9332 return ret;
9333}
9334EXPORT_SYMBOL(dev_change_flags);
9335
9336int __dev_set_mtu(struct net_device *dev, int new_mtu)
9337{
9338 const struct net_device_ops *ops = dev->netdev_ops;
9339
9340 if (ops->ndo_change_mtu)
9341 return ops->ndo_change_mtu(dev, new_mtu);
9342
9343 /* Pairs with all the lockless reads of dev->mtu in the stack */
9344 WRITE_ONCE(dev->mtu, new_mtu);
9345 return 0;
9346}
9347EXPORT_SYMBOL(__dev_set_mtu);
9348
9349int dev_validate_mtu(struct net_device *dev, int new_mtu,
9350 struct netlink_ext_ack *extack)
9351{
9352 /* MTU must be positive, and in range */
9353 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9354 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9355 return -EINVAL;
9356 }
9357
9358 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9359 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9360 return -EINVAL;
9361 }
9362 return 0;
9363}
9364
9365/**
9366 * dev_set_mtu_ext - Change maximum transfer unit
9367 * @dev: device
9368 * @new_mtu: new transfer unit
9369 * @extack: netlink extended ack
9370 *
9371 * Change the maximum transfer size of the network device.
9372 */
9373int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
9374 struct netlink_ext_ack *extack)
9375{
9376 int err, orig_mtu;
9377
9378 if (new_mtu == dev->mtu)
9379 return 0;
9380
9381 err = dev_validate_mtu(dev, new_mtu, extack);
9382 if (err)
9383 return err;
9384
9385 if (!netif_device_present(dev))
9386 return -ENODEV;
9387
9388 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9389 err = notifier_to_errno(err);
9390 if (err)
9391 return err;
9392
9393 orig_mtu = dev->mtu;
9394 err = __dev_set_mtu(dev, new_mtu);
9395
9396 if (!err) {
9397 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9398 orig_mtu);
9399 err = notifier_to_errno(err);
9400 if (err) {
9401 /* setting mtu back and notifying everyone again,
9402 * so that they have a chance to revert changes.
9403 */
9404 __dev_set_mtu(dev, orig_mtu);
9405 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9406 new_mtu);
9407 }
9408 }
9409 return err;
9410}
9411
9412int dev_set_mtu(struct net_device *dev, int new_mtu)
9413{
9414 struct netlink_ext_ack extack;
9415 int err;
9416
9417 memset(&extack, 0, sizeof(extack));
9418 err = dev_set_mtu_ext(dev, new_mtu, &extack);
9419 if (err && extack._msg)
9420 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9421 return err;
9422}
9423EXPORT_SYMBOL(dev_set_mtu);
9424
9425/**
9426 * dev_change_tx_queue_len - Change TX queue length of a netdevice
9427 * @dev: device
9428 * @new_len: new tx queue length
9429 */
9430int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9431{
9432 unsigned int orig_len = dev->tx_queue_len;
9433 int res;
9434
9435 if (new_len != (unsigned int)new_len)
9436 return -ERANGE;
9437
9438 if (new_len != orig_len) {
9439 WRITE_ONCE(dev->tx_queue_len, new_len);
9440 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9441 res = notifier_to_errno(res);
9442 if (res)
9443 goto err_rollback;
9444 res = dev_qdisc_change_tx_queue_len(dev);
9445 if (res)
9446 goto err_rollback;
9447 }
9448
9449 return 0;
9450
9451err_rollback:
9452 netdev_err(dev, "refused to change device tx_queue_len\n");
9453 WRITE_ONCE(dev->tx_queue_len, orig_len);
9454 return res;
9455}
9456
9457/**
9458 * dev_set_group - Change group this device belongs to
9459 * @dev: device
9460 * @new_group: group this device should belong to
9461 */
9462void dev_set_group(struct net_device *dev, int new_group)
9463{
9464 dev->group = new_group;
9465}
9466
9467/**
9468 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9469 * @dev: device
9470 * @addr: new address
9471 * @extack: netlink extended ack
9472 */
9473int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9474 struct netlink_ext_ack *extack)
9475{
9476 struct netdev_notifier_pre_changeaddr_info info = {
9477 .info.dev = dev,
9478 .info.extack = extack,
9479 .dev_addr = addr,
9480 };
9481 int rc;
9482
9483 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9484 return notifier_to_errno(rc);
9485}
9486EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9487
9488/**
9489 * dev_set_mac_address - Change Media Access Control Address
9490 * @dev: device
9491 * @sa: new address
9492 * @extack: netlink extended ack
9493 *
9494 * Change the hardware (MAC) address of the device
9495 */
9496int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9497 struct netlink_ext_ack *extack)
9498{
9499 const struct net_device_ops *ops = dev->netdev_ops;
9500 int err;
9501
9502 if (!ops->ndo_set_mac_address)
9503 return -EOPNOTSUPP;
9504 if (sa->sa_family != dev->type)
9505 return -EINVAL;
9506 if (!netif_device_present(dev))
9507 return -ENODEV;
9508 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9509 if (err)
9510 return err;
9511 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9512 err = ops->ndo_set_mac_address(dev, sa);
9513 if (err)
9514 return err;
9515 }
9516 dev->addr_assign_type = NET_ADDR_SET;
9517 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9518 add_device_randomness(dev->dev_addr, dev->addr_len);
9519 return 0;
9520}
9521EXPORT_SYMBOL(dev_set_mac_address);
9522
9523DECLARE_RWSEM(dev_addr_sem);
9524
9525int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9526 struct netlink_ext_ack *extack)
9527{
9528 int ret;
9529
9530 down_write(&dev_addr_sem);
9531 ret = dev_set_mac_address(dev, sa, extack);
9532 up_write(&dev_addr_sem);
9533 return ret;
9534}
9535EXPORT_SYMBOL(dev_set_mac_address_user);
9536
9537int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9538{
9539 size_t size = sizeof(sa->sa_data_min);
9540 struct net_device *dev;
9541 int ret = 0;
9542
9543 down_read(&dev_addr_sem);
9544 rcu_read_lock();
9545
9546 dev = dev_get_by_name_rcu(net, dev_name);
9547 if (!dev) {
9548 ret = -ENODEV;
9549 goto unlock;
9550 }
9551 if (!dev->addr_len)
9552 memset(sa->sa_data, 0, size);
9553 else
9554 memcpy(sa->sa_data, dev->dev_addr,
9555 min_t(size_t, size, dev->addr_len));
9556 sa->sa_family = dev->type;
9557
9558unlock:
9559 rcu_read_unlock();
9560 up_read(&dev_addr_sem);
9561 return ret;
9562}
9563EXPORT_SYMBOL(dev_get_mac_address);
9564
9565/**
9566 * dev_change_carrier - Change device carrier
9567 * @dev: device
9568 * @new_carrier: new value
9569 *
9570 * Change device carrier
9571 */
9572int dev_change_carrier(struct net_device *dev, bool new_carrier)
9573{
9574 const struct net_device_ops *ops = dev->netdev_ops;
9575
9576 if (!ops->ndo_change_carrier)
9577 return -EOPNOTSUPP;
9578 if (!netif_device_present(dev))
9579 return -ENODEV;
9580 return ops->ndo_change_carrier(dev, new_carrier);
9581}
9582
9583/**
9584 * dev_get_phys_port_id - Get device physical port ID
9585 * @dev: device
9586 * @ppid: port ID
9587 *
9588 * Get device physical port ID
9589 */
9590int dev_get_phys_port_id(struct net_device *dev,
9591 struct netdev_phys_item_id *ppid)
9592{
9593 const struct net_device_ops *ops = dev->netdev_ops;
9594
9595 if (!ops->ndo_get_phys_port_id)
9596 return -EOPNOTSUPP;
9597 return ops->ndo_get_phys_port_id(dev, ppid);
9598}
9599
9600/**
9601 * dev_get_phys_port_name - Get device physical port name
9602 * @dev: device
9603 * @name: port name
9604 * @len: limit of bytes to copy to name
9605 *
9606 * Get device physical port name
9607 */
9608int dev_get_phys_port_name(struct net_device *dev,
9609 char *name, size_t len)
9610{
9611 const struct net_device_ops *ops = dev->netdev_ops;
9612 int err;
9613
9614 if (ops->ndo_get_phys_port_name) {
9615 err = ops->ndo_get_phys_port_name(dev, name, len);
9616 if (err != -EOPNOTSUPP)
9617 return err;
9618 }
9619 return devlink_compat_phys_port_name_get(dev, name, len);
9620}
9621
9622/**
9623 * dev_get_port_parent_id - Get the device's port parent identifier
9624 * @dev: network device
9625 * @ppid: pointer to a storage for the port's parent identifier
9626 * @recurse: allow/disallow recursion to lower devices
9627 *
9628 * Get the devices's port parent identifier
9629 */
9630int dev_get_port_parent_id(struct net_device *dev,
9631 struct netdev_phys_item_id *ppid,
9632 bool recurse)
9633{
9634 const struct net_device_ops *ops = dev->netdev_ops;
9635 struct netdev_phys_item_id first = { };
9636 struct net_device *lower_dev;
9637 struct list_head *iter;
9638 int err;
9639
9640 if (ops->ndo_get_port_parent_id) {
9641 err = ops->ndo_get_port_parent_id(dev, ppid);
9642 if (err != -EOPNOTSUPP)
9643 return err;
9644 }
9645
9646 err = devlink_compat_switch_id_get(dev, ppid);
9647 if (!recurse || err != -EOPNOTSUPP)
9648 return err;
9649
9650 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9651 err = dev_get_port_parent_id(lower_dev, ppid, true);
9652 if (err)
9653 break;
9654 if (!first.id_len)
9655 first = *ppid;
9656 else if (memcmp(&first, ppid, sizeof(*ppid)))
9657 return -EOPNOTSUPP;
9658 }
9659
9660 return err;
9661}
9662EXPORT_SYMBOL(dev_get_port_parent_id);
9663
9664/**
9665 * netdev_port_same_parent_id - Indicate if two network devices have
9666 * the same port parent identifier
9667 * @a: first network device
9668 * @b: second network device
9669 */
9670bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9671{
9672 struct netdev_phys_item_id a_id = { };
9673 struct netdev_phys_item_id b_id = { };
9674
9675 if (dev_get_port_parent_id(a, &a_id, true) ||
9676 dev_get_port_parent_id(b, &b_id, true))
9677 return false;
9678
9679 return netdev_phys_item_id_same(&a_id, &b_id);
9680}
9681EXPORT_SYMBOL(netdev_port_same_parent_id);
9682
9683/**
9684 * dev_change_proto_down - set carrier according to proto_down.
9685 *
9686 * @dev: device
9687 * @proto_down: new value
9688 */
9689int dev_change_proto_down(struct net_device *dev, bool proto_down)
9690{
9691 if (!dev->change_proto_down)
9692 return -EOPNOTSUPP;
9693 if (!netif_device_present(dev))
9694 return -ENODEV;
9695 if (proto_down)
9696 netif_carrier_off(dev);
9697 else
9698 netif_carrier_on(dev);
9699 WRITE_ONCE(dev->proto_down, proto_down);
9700 return 0;
9701}
9702
9703/**
9704 * dev_change_proto_down_reason - proto down reason
9705 *
9706 * @dev: device
9707 * @mask: proto down mask
9708 * @value: proto down value
9709 */
9710void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9711 u32 value)
9712{
9713 u32 proto_down_reason;
9714 int b;
9715
9716 if (!mask) {
9717 proto_down_reason = value;
9718 } else {
9719 proto_down_reason = dev->proto_down_reason;
9720 for_each_set_bit(b, &mask, 32) {
9721 if (value & (1 << b))
9722 proto_down_reason |= BIT(b);
9723 else
9724 proto_down_reason &= ~BIT(b);
9725 }
9726 }
9727 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9728}
9729
9730struct bpf_xdp_link {
9731 struct bpf_link link;
9732 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9733 int flags;
9734};
9735
9736static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9737{
9738 if (flags & XDP_FLAGS_HW_MODE)
9739 return XDP_MODE_HW;
9740 if (flags & XDP_FLAGS_DRV_MODE)
9741 return XDP_MODE_DRV;
9742 if (flags & XDP_FLAGS_SKB_MODE)
9743 return XDP_MODE_SKB;
9744 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9745}
9746
9747static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9748{
9749 switch (mode) {
9750 case XDP_MODE_SKB:
9751 return generic_xdp_install;
9752 case XDP_MODE_DRV:
9753 case XDP_MODE_HW:
9754 return dev->netdev_ops->ndo_bpf;
9755 default:
9756 return NULL;
9757 }
9758}
9759
9760static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9761 enum bpf_xdp_mode mode)
9762{
9763 return dev->xdp_state[mode].link;
9764}
9765
9766static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9767 enum bpf_xdp_mode mode)
9768{
9769 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9770
9771 if (link)
9772 return link->link.prog;
9773 return dev->xdp_state[mode].prog;
9774}
9775
9776u8 dev_xdp_prog_count(struct net_device *dev)
9777{
9778 u8 count = 0;
9779 int i;
9780
9781 for (i = 0; i < __MAX_XDP_MODE; i++)
9782 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9783 count++;
9784 return count;
9785}
9786EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9787
9788u8 dev_xdp_sb_prog_count(struct net_device *dev)
9789{
9790 u8 count = 0;
9791 int i;
9792
9793 for (i = 0; i < __MAX_XDP_MODE; i++)
9794 if (dev->xdp_state[i].prog &&
9795 !dev->xdp_state[i].prog->aux->xdp_has_frags)
9796 count++;
9797 return count;
9798}
9799
9800int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9801{
9802 if (!dev->netdev_ops->ndo_bpf)
9803 return -EOPNOTSUPP;
9804
9805 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9806 bpf->command == XDP_SETUP_PROG &&
9807 bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9808 NL_SET_ERR_MSG(bpf->extack,
9809 "unable to propagate XDP to device using tcp-data-split");
9810 return -EBUSY;
9811 }
9812
9813 if (dev_get_min_mp_channel_count(dev)) {
9814 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9815 return -EBUSY;
9816 }
9817
9818 return dev->netdev_ops->ndo_bpf(dev, bpf);
9819}
9820EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9821
9822u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9823{
9824 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9825
9826 return prog ? prog->aux->id : 0;
9827}
9828
9829static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9830 struct bpf_xdp_link *link)
9831{
9832 dev->xdp_state[mode].link = link;
9833 dev->xdp_state[mode].prog = NULL;
9834}
9835
9836static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9837 struct bpf_prog *prog)
9838{
9839 dev->xdp_state[mode].link = NULL;
9840 dev->xdp_state[mode].prog = prog;
9841}
9842
9843static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9844 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9845 u32 flags, struct bpf_prog *prog)
9846{
9847 struct netdev_bpf xdp;
9848 int err;
9849
9850 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9851 prog && !prog->aux->xdp_has_frags) {
9852 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9853 return -EBUSY;
9854 }
9855
9856 if (dev_get_min_mp_channel_count(dev)) {
9857 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9858 return -EBUSY;
9859 }
9860
9861 memset(&xdp, 0, sizeof(xdp));
9862 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9863 xdp.extack = extack;
9864 xdp.flags = flags;
9865 xdp.prog = prog;
9866
9867 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9868 * "moved" into driver), so they don't increment it on their own, but
9869 * they do decrement refcnt when program is detached or replaced.
9870 * Given net_device also owns link/prog, we need to bump refcnt here
9871 * to prevent drivers from underflowing it.
9872 */
9873 if (prog)
9874 bpf_prog_inc(prog);
9875 err = bpf_op(dev, &xdp);
9876 if (err) {
9877 if (prog)
9878 bpf_prog_put(prog);
9879 return err;
9880 }
9881
9882 if (mode != XDP_MODE_HW)
9883 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9884
9885 return 0;
9886}
9887
9888static void dev_xdp_uninstall(struct net_device *dev)
9889{
9890 struct bpf_xdp_link *link;
9891 struct bpf_prog *prog;
9892 enum bpf_xdp_mode mode;
9893 bpf_op_t bpf_op;
9894
9895 ASSERT_RTNL();
9896
9897 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9898 prog = dev_xdp_prog(dev, mode);
9899 if (!prog)
9900 continue;
9901
9902 bpf_op = dev_xdp_bpf_op(dev, mode);
9903 if (!bpf_op)
9904 continue;
9905
9906 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9907
9908 /* auto-detach link from net device */
9909 link = dev_xdp_link(dev, mode);
9910 if (link)
9911 link->dev = NULL;
9912 else
9913 bpf_prog_put(prog);
9914
9915 dev_xdp_set_link(dev, mode, NULL);
9916 }
9917}
9918
9919static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9920 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9921 struct bpf_prog *old_prog, u32 flags)
9922{
9923 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9924 struct bpf_prog *cur_prog;
9925 struct net_device *upper;
9926 struct list_head *iter;
9927 enum bpf_xdp_mode mode;
9928 bpf_op_t bpf_op;
9929 int err;
9930
9931 ASSERT_RTNL();
9932
9933 /* either link or prog attachment, never both */
9934 if (link && (new_prog || old_prog))
9935 return -EINVAL;
9936 /* link supports only XDP mode flags */
9937 if (link && (flags & ~XDP_FLAGS_MODES)) {
9938 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9939 return -EINVAL;
9940 }
9941 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9942 if (num_modes > 1) {
9943 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9944 return -EINVAL;
9945 }
9946 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9947 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9948 NL_SET_ERR_MSG(extack,
9949 "More than one program loaded, unset mode is ambiguous");
9950 return -EINVAL;
9951 }
9952 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9953 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9954 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9955 return -EINVAL;
9956 }
9957
9958 mode = dev_xdp_mode(dev, flags);
9959 /* can't replace attached link */
9960 if (dev_xdp_link(dev, mode)) {
9961 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9962 return -EBUSY;
9963 }
9964
9965 /* don't allow if an upper device already has a program */
9966 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9967 if (dev_xdp_prog_count(upper) > 0) {
9968 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9969 return -EEXIST;
9970 }
9971 }
9972
9973 cur_prog = dev_xdp_prog(dev, mode);
9974 /* can't replace attached prog with link */
9975 if (link && cur_prog) {
9976 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9977 return -EBUSY;
9978 }
9979 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9980 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9981 return -EEXIST;
9982 }
9983
9984 /* put effective new program into new_prog */
9985 if (link)
9986 new_prog = link->link.prog;
9987
9988 if (new_prog) {
9989 bool offload = mode == XDP_MODE_HW;
9990 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9991 ? XDP_MODE_DRV : XDP_MODE_SKB;
9992
9993 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9994 NL_SET_ERR_MSG(extack, "XDP program already attached");
9995 return -EBUSY;
9996 }
9997 if (!offload && dev_xdp_prog(dev, other_mode)) {
9998 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9999 return -EEXIST;
10000 }
10001 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10002 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10003 return -EINVAL;
10004 }
10005 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10006 NL_SET_ERR_MSG(extack, "Program bound to different device");
10007 return -EINVAL;
10008 }
10009 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10010 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10011 return -EINVAL;
10012 }
10013 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10014 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10015 return -EINVAL;
10016 }
10017 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10018 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10019 return -EINVAL;
10020 }
10021 }
10022
10023 /* don't call drivers if the effective program didn't change */
10024 if (new_prog != cur_prog) {
10025 bpf_op = dev_xdp_bpf_op(dev, mode);
10026 if (!bpf_op) {
10027 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10028 return -EOPNOTSUPP;
10029 }
10030
10031 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10032 if (err)
10033 return err;
10034 }
10035
10036 if (link)
10037 dev_xdp_set_link(dev, mode, link);
10038 else
10039 dev_xdp_set_prog(dev, mode, new_prog);
10040 if (cur_prog)
10041 bpf_prog_put(cur_prog);
10042
10043 return 0;
10044}
10045
10046static int dev_xdp_attach_link(struct net_device *dev,
10047 struct netlink_ext_ack *extack,
10048 struct bpf_xdp_link *link)
10049{
10050 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10051}
10052
10053static int dev_xdp_detach_link(struct net_device *dev,
10054 struct netlink_ext_ack *extack,
10055 struct bpf_xdp_link *link)
10056{
10057 enum bpf_xdp_mode mode;
10058 bpf_op_t bpf_op;
10059
10060 ASSERT_RTNL();
10061
10062 mode = dev_xdp_mode(dev, link->flags);
10063 if (dev_xdp_link(dev, mode) != link)
10064 return -EINVAL;
10065
10066 bpf_op = dev_xdp_bpf_op(dev, mode);
10067 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10068 dev_xdp_set_link(dev, mode, NULL);
10069 return 0;
10070}
10071
10072static void bpf_xdp_link_release(struct bpf_link *link)
10073{
10074 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10075
10076 rtnl_lock();
10077
10078 /* if racing with net_device's tear down, xdp_link->dev might be
10079 * already NULL, in which case link was already auto-detached
10080 */
10081 if (xdp_link->dev) {
10082 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10083 xdp_link->dev = NULL;
10084 }
10085
10086 rtnl_unlock();
10087}
10088
10089static int bpf_xdp_link_detach(struct bpf_link *link)
10090{
10091 bpf_xdp_link_release(link);
10092 return 0;
10093}
10094
10095static void bpf_xdp_link_dealloc(struct bpf_link *link)
10096{
10097 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10098
10099 kfree(xdp_link);
10100}
10101
10102static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10103 struct seq_file *seq)
10104{
10105 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10106 u32 ifindex = 0;
10107
10108 rtnl_lock();
10109 if (xdp_link->dev)
10110 ifindex = xdp_link->dev->ifindex;
10111 rtnl_unlock();
10112
10113 seq_printf(seq, "ifindex:\t%u\n", ifindex);
10114}
10115
10116static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10117 struct bpf_link_info *info)
10118{
10119 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10120 u32 ifindex = 0;
10121
10122 rtnl_lock();
10123 if (xdp_link->dev)
10124 ifindex = xdp_link->dev->ifindex;
10125 rtnl_unlock();
10126
10127 info->xdp.ifindex = ifindex;
10128 return 0;
10129}
10130
10131static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10132 struct bpf_prog *old_prog)
10133{
10134 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10135 enum bpf_xdp_mode mode;
10136 bpf_op_t bpf_op;
10137 int err = 0;
10138
10139 rtnl_lock();
10140
10141 /* link might have been auto-released already, so fail */
10142 if (!xdp_link->dev) {
10143 err = -ENOLINK;
10144 goto out_unlock;
10145 }
10146
10147 if (old_prog && link->prog != old_prog) {
10148 err = -EPERM;
10149 goto out_unlock;
10150 }
10151 old_prog = link->prog;
10152 if (old_prog->type != new_prog->type ||
10153 old_prog->expected_attach_type != new_prog->expected_attach_type) {
10154 err = -EINVAL;
10155 goto out_unlock;
10156 }
10157
10158 if (old_prog == new_prog) {
10159 /* no-op, don't disturb drivers */
10160 bpf_prog_put(new_prog);
10161 goto out_unlock;
10162 }
10163
10164 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10165 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10166 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10167 xdp_link->flags, new_prog);
10168 if (err)
10169 goto out_unlock;
10170
10171 old_prog = xchg(&link->prog, new_prog);
10172 bpf_prog_put(old_prog);
10173
10174out_unlock:
10175 rtnl_unlock();
10176 return err;
10177}
10178
10179static const struct bpf_link_ops bpf_xdp_link_lops = {
10180 .release = bpf_xdp_link_release,
10181 .dealloc = bpf_xdp_link_dealloc,
10182 .detach = bpf_xdp_link_detach,
10183 .show_fdinfo = bpf_xdp_link_show_fdinfo,
10184 .fill_link_info = bpf_xdp_link_fill_link_info,
10185 .update_prog = bpf_xdp_link_update,
10186};
10187
10188int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10189{
10190 struct net *net = current->nsproxy->net_ns;
10191 struct bpf_link_primer link_primer;
10192 struct netlink_ext_ack extack = {};
10193 struct bpf_xdp_link *link;
10194 struct net_device *dev;
10195 int err, fd;
10196
10197 rtnl_lock();
10198 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10199 if (!dev) {
10200 rtnl_unlock();
10201 return -EINVAL;
10202 }
10203
10204 link = kzalloc(sizeof(*link), GFP_USER);
10205 if (!link) {
10206 err = -ENOMEM;
10207 goto unlock;
10208 }
10209
10210 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10211 link->dev = dev;
10212 link->flags = attr->link_create.flags;
10213
10214 err = bpf_link_prime(&link->link, &link_primer);
10215 if (err) {
10216 kfree(link);
10217 goto unlock;
10218 }
10219
10220 err = dev_xdp_attach_link(dev, &extack, link);
10221 rtnl_unlock();
10222
10223 if (err) {
10224 link->dev = NULL;
10225 bpf_link_cleanup(&link_primer);
10226 trace_bpf_xdp_link_attach_failed(extack._msg);
10227 goto out_put_dev;
10228 }
10229
10230 fd = bpf_link_settle(&link_primer);
10231 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
10232 dev_put(dev);
10233 return fd;
10234
10235unlock:
10236 rtnl_unlock();
10237
10238out_put_dev:
10239 dev_put(dev);
10240 return err;
10241}
10242
10243/**
10244 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
10245 * @dev: device
10246 * @extack: netlink extended ack
10247 * @fd: new program fd or negative value to clear
10248 * @expected_fd: old program fd that userspace expects to replace or clear
10249 * @flags: xdp-related flags
10250 *
10251 * Set or clear a bpf program for a device
10252 */
10253int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10254 int fd, int expected_fd, u32 flags)
10255{
10256 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10257 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10258 int err;
10259
10260 ASSERT_RTNL();
10261
10262 if (fd >= 0) {
10263 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10264 mode != XDP_MODE_SKB);
10265 if (IS_ERR(new_prog))
10266 return PTR_ERR(new_prog);
10267 }
10268
10269 if (expected_fd >= 0) {
10270 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10271 mode != XDP_MODE_SKB);
10272 if (IS_ERR(old_prog)) {
10273 err = PTR_ERR(old_prog);
10274 old_prog = NULL;
10275 goto err_out;
10276 }
10277 }
10278
10279 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10280
10281err_out:
10282 if (err && new_prog)
10283 bpf_prog_put(new_prog);
10284 if (old_prog)
10285 bpf_prog_put(old_prog);
10286 return err;
10287}
10288
10289u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10290{
10291 int i;
10292
10293 ASSERT_RTNL();
10294
10295 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10296 if (dev->_rx[i].mp_params.mp_priv)
10297 /* The channel count is the idx plus 1. */
10298 return i + 1;
10299
10300 return 0;
10301}
10302
10303/**
10304 * dev_index_reserve() - allocate an ifindex in a namespace
10305 * @net: the applicable net namespace
10306 * @ifindex: requested ifindex, pass %0 to get one allocated
10307 *
10308 * Allocate a ifindex for a new device. Caller must either use the ifindex
10309 * to store the device (via list_netdevice()) or call dev_index_release()
10310 * to give the index up.
10311 *
10312 * Return: a suitable unique value for a new device interface number or -errno.
10313 */
10314static int dev_index_reserve(struct net *net, u32 ifindex)
10315{
10316 int err;
10317
10318 if (ifindex > INT_MAX) {
10319 DEBUG_NET_WARN_ON_ONCE(1);
10320 return -EINVAL;
10321 }
10322
10323 if (!ifindex)
10324 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10325 xa_limit_31b, &net->ifindex, GFP_KERNEL);
10326 else
10327 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10328 if (err < 0)
10329 return err;
10330
10331 return ifindex;
10332}
10333
10334static void dev_index_release(struct net *net, int ifindex)
10335{
10336 /* Expect only unused indexes, unlist_netdevice() removes the used */
10337 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10338}
10339
10340static bool from_cleanup_net(void)
10341{
10342#ifdef CONFIG_NET_NS
10343 return current == cleanup_net_task;
10344#else
10345 return false;
10346#endif
10347}
10348
10349/* Delayed registration/unregisteration */
10350LIST_HEAD(net_todo_list);
10351DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10352atomic_t dev_unreg_count = ATOMIC_INIT(0);
10353
10354static void net_set_todo(struct net_device *dev)
10355{
10356 list_add_tail(&dev->todo_list, &net_todo_list);
10357}
10358
10359static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10360 struct net_device *upper, netdev_features_t features)
10361{
10362 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10363 netdev_features_t feature;
10364 int feature_bit;
10365
10366 for_each_netdev_feature(upper_disables, feature_bit) {
10367 feature = __NETIF_F_BIT(feature_bit);
10368 if (!(upper->wanted_features & feature)
10369 && (features & feature)) {
10370 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10371 &feature, upper->name);
10372 features &= ~feature;
10373 }
10374 }
10375
10376 return features;
10377}
10378
10379static void netdev_sync_lower_features(struct net_device *upper,
10380 struct net_device *lower, netdev_features_t features)
10381{
10382 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10383 netdev_features_t feature;
10384 int feature_bit;
10385
10386 for_each_netdev_feature(upper_disables, feature_bit) {
10387 feature = __NETIF_F_BIT(feature_bit);
10388 if (!(features & feature) && (lower->features & feature)) {
10389 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10390 &feature, lower->name);
10391 lower->wanted_features &= ~feature;
10392 __netdev_update_features(lower);
10393
10394 if (unlikely(lower->features & feature))
10395 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10396 &feature, lower->name);
10397 else
10398 netdev_features_change(lower);
10399 }
10400 }
10401}
10402
10403static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10404{
10405 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10406 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10407 bool hw_csum = features & NETIF_F_HW_CSUM;
10408
10409 return ip_csum || hw_csum;
10410}
10411
10412static netdev_features_t netdev_fix_features(struct net_device *dev,
10413 netdev_features_t features)
10414{
10415 /* Fix illegal checksum combinations */
10416 if ((features & NETIF_F_HW_CSUM) &&
10417 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10418 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10419 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10420 }
10421
10422 /* TSO requires that SG is present as well. */
10423 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10424 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10425 features &= ~NETIF_F_ALL_TSO;
10426 }
10427
10428 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10429 !(features & NETIF_F_IP_CSUM)) {
10430 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10431 features &= ~NETIF_F_TSO;
10432 features &= ~NETIF_F_TSO_ECN;
10433 }
10434
10435 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10436 !(features & NETIF_F_IPV6_CSUM)) {
10437 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10438 features &= ~NETIF_F_TSO6;
10439 }
10440
10441 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10442 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10443 features &= ~NETIF_F_TSO_MANGLEID;
10444
10445 /* TSO ECN requires that TSO is present as well. */
10446 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10447 features &= ~NETIF_F_TSO_ECN;
10448
10449 /* Software GSO depends on SG. */
10450 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10451 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10452 features &= ~NETIF_F_GSO;
10453 }
10454
10455 /* GSO partial features require GSO partial be set */
10456 if ((features & dev->gso_partial_features) &&
10457 !(features & NETIF_F_GSO_PARTIAL)) {
10458 netdev_dbg(dev,
10459 "Dropping partially supported GSO features since no GSO partial.\n");
10460 features &= ~dev->gso_partial_features;
10461 }
10462
10463 if (!(features & NETIF_F_RXCSUM)) {
10464 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10465 * successfully merged by hardware must also have the
10466 * checksum verified by hardware. If the user does not
10467 * want to enable RXCSUM, logically, we should disable GRO_HW.
10468 */
10469 if (features & NETIF_F_GRO_HW) {
10470 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10471 features &= ~NETIF_F_GRO_HW;
10472 }
10473 }
10474
10475 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10476 if (features & NETIF_F_RXFCS) {
10477 if (features & NETIF_F_LRO) {
10478 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10479 features &= ~NETIF_F_LRO;
10480 }
10481
10482 if (features & NETIF_F_GRO_HW) {
10483 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10484 features &= ~NETIF_F_GRO_HW;
10485 }
10486 }
10487
10488 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10489 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10490 features &= ~NETIF_F_LRO;
10491 }
10492
10493 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10494 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10495 features &= ~NETIF_F_HW_TLS_TX;
10496 }
10497
10498 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10499 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10500 features &= ~NETIF_F_HW_TLS_RX;
10501 }
10502
10503 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10504 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10505 features &= ~NETIF_F_GSO_UDP_L4;
10506 }
10507
10508 return features;
10509}
10510
10511int __netdev_update_features(struct net_device *dev)
10512{
10513 struct net_device *upper, *lower;
10514 netdev_features_t features;
10515 struct list_head *iter;
10516 int err = -1;
10517
10518 ASSERT_RTNL();
10519
10520 features = netdev_get_wanted_features(dev);
10521
10522 if (dev->netdev_ops->ndo_fix_features)
10523 features = dev->netdev_ops->ndo_fix_features(dev, features);
10524
10525 /* driver might be less strict about feature dependencies */
10526 features = netdev_fix_features(dev, features);
10527
10528 /* some features can't be enabled if they're off on an upper device */
10529 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10530 features = netdev_sync_upper_features(dev, upper, features);
10531
10532 if (dev->features == features)
10533 goto sync_lower;
10534
10535 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10536 &dev->features, &features);
10537
10538 if (dev->netdev_ops->ndo_set_features)
10539 err = dev->netdev_ops->ndo_set_features(dev, features);
10540 else
10541 err = 0;
10542
10543 if (unlikely(err < 0)) {
10544 netdev_err(dev,
10545 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10546 err, &features, &dev->features);
10547 /* return non-0 since some features might have changed and
10548 * it's better to fire a spurious notification than miss it
10549 */
10550 return -1;
10551 }
10552
10553sync_lower:
10554 /* some features must be disabled on lower devices when disabled
10555 * on an upper device (think: bonding master or bridge)
10556 */
10557 netdev_for_each_lower_dev(dev, lower, iter)
10558 netdev_sync_lower_features(dev, lower, features);
10559
10560 if (!err) {
10561 netdev_features_t diff = features ^ dev->features;
10562
10563 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10564 /* udp_tunnel_{get,drop}_rx_info both need
10565 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10566 * device, or they won't do anything.
10567 * Thus we need to update dev->features
10568 * *before* calling udp_tunnel_get_rx_info,
10569 * but *after* calling udp_tunnel_drop_rx_info.
10570 */
10571 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10572 dev->features = features;
10573 udp_tunnel_get_rx_info(dev);
10574 } else {
10575 udp_tunnel_drop_rx_info(dev);
10576 }
10577 }
10578
10579 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10580 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10581 dev->features = features;
10582 err |= vlan_get_rx_ctag_filter_info(dev);
10583 } else {
10584 vlan_drop_rx_ctag_filter_info(dev);
10585 }
10586 }
10587
10588 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10589 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10590 dev->features = features;
10591 err |= vlan_get_rx_stag_filter_info(dev);
10592 } else {
10593 vlan_drop_rx_stag_filter_info(dev);
10594 }
10595 }
10596
10597 dev->features = features;
10598 }
10599
10600 return err < 0 ? 0 : 1;
10601}
10602
10603/**
10604 * netdev_update_features - recalculate device features
10605 * @dev: the device to check
10606 *
10607 * Recalculate dev->features set and send notifications if it
10608 * has changed. Should be called after driver or hardware dependent
10609 * conditions might have changed that influence the features.
10610 */
10611void netdev_update_features(struct net_device *dev)
10612{
10613 if (__netdev_update_features(dev))
10614 netdev_features_change(dev);
10615}
10616EXPORT_SYMBOL(netdev_update_features);
10617
10618/**
10619 * netdev_change_features - recalculate device features
10620 * @dev: the device to check
10621 *
10622 * Recalculate dev->features set and send notifications even
10623 * if they have not changed. Should be called instead of
10624 * netdev_update_features() if also dev->vlan_features might
10625 * have changed to allow the changes to be propagated to stacked
10626 * VLAN devices.
10627 */
10628void netdev_change_features(struct net_device *dev)
10629{
10630 __netdev_update_features(dev);
10631 netdev_features_change(dev);
10632}
10633EXPORT_SYMBOL(netdev_change_features);
10634
10635/**
10636 * netif_stacked_transfer_operstate - transfer operstate
10637 * @rootdev: the root or lower level device to transfer state from
10638 * @dev: the device to transfer operstate to
10639 *
10640 * Transfer operational state from root to device. This is normally
10641 * called when a stacking relationship exists between the root
10642 * device and the device(a leaf device).
10643 */
10644void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10645 struct net_device *dev)
10646{
10647 if (rootdev->operstate == IF_OPER_DORMANT)
10648 netif_dormant_on(dev);
10649 else
10650 netif_dormant_off(dev);
10651
10652 if (rootdev->operstate == IF_OPER_TESTING)
10653 netif_testing_on(dev);
10654 else
10655 netif_testing_off(dev);
10656
10657 if (netif_carrier_ok(rootdev))
10658 netif_carrier_on(dev);
10659 else
10660 netif_carrier_off(dev);
10661}
10662EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10663
10664static int netif_alloc_rx_queues(struct net_device *dev)
10665{
10666 unsigned int i, count = dev->num_rx_queues;
10667 struct netdev_rx_queue *rx;
10668 size_t sz = count * sizeof(*rx);
10669 int err = 0;
10670
10671 BUG_ON(count < 1);
10672
10673 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10674 if (!rx)
10675 return -ENOMEM;
10676
10677 dev->_rx = rx;
10678
10679 for (i = 0; i < count; i++) {
10680 rx[i].dev = dev;
10681
10682 /* XDP RX-queue setup */
10683 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10684 if (err < 0)
10685 goto err_rxq_info;
10686 }
10687 return 0;
10688
10689err_rxq_info:
10690 /* Rollback successful reg's and free other resources */
10691 while (i--)
10692 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10693 kvfree(dev->_rx);
10694 dev->_rx = NULL;
10695 return err;
10696}
10697
10698static void netif_free_rx_queues(struct net_device *dev)
10699{
10700 unsigned int i, count = dev->num_rx_queues;
10701
10702 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10703 if (!dev->_rx)
10704 return;
10705
10706 for (i = 0; i < count; i++)
10707 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10708
10709 kvfree(dev->_rx);
10710}
10711
10712static void netdev_init_one_queue(struct net_device *dev,
10713 struct netdev_queue *queue, void *_unused)
10714{
10715 /* Initialize queue lock */
10716 spin_lock_init(&queue->_xmit_lock);
10717 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10718 queue->xmit_lock_owner = -1;
10719 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10720 queue->dev = dev;
10721#ifdef CONFIG_BQL
10722 dql_init(&queue->dql, HZ);
10723#endif
10724}
10725
10726static void netif_free_tx_queues(struct net_device *dev)
10727{
10728 kvfree(dev->_tx);
10729}
10730
10731static int netif_alloc_netdev_queues(struct net_device *dev)
10732{
10733 unsigned int count = dev->num_tx_queues;
10734 struct netdev_queue *tx;
10735 size_t sz = count * sizeof(*tx);
10736
10737 if (count < 1 || count > 0xffff)
10738 return -EINVAL;
10739
10740 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10741 if (!tx)
10742 return -ENOMEM;
10743
10744 dev->_tx = tx;
10745
10746 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10747 spin_lock_init(&dev->tx_global_lock);
10748
10749 return 0;
10750}
10751
10752void netif_tx_stop_all_queues(struct net_device *dev)
10753{
10754 unsigned int i;
10755
10756 for (i = 0; i < dev->num_tx_queues; i++) {
10757 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10758
10759 netif_tx_stop_queue(txq);
10760 }
10761}
10762EXPORT_SYMBOL(netif_tx_stop_all_queues);
10763
10764static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10765{
10766 void __percpu *v;
10767
10768 /* Drivers implementing ndo_get_peer_dev must support tstat
10769 * accounting, so that skb_do_redirect() can bump the dev's
10770 * RX stats upon network namespace switch.
10771 */
10772 if (dev->netdev_ops->ndo_get_peer_dev &&
10773 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10774 return -EOPNOTSUPP;
10775
10776 switch (dev->pcpu_stat_type) {
10777 case NETDEV_PCPU_STAT_NONE:
10778 return 0;
10779 case NETDEV_PCPU_STAT_LSTATS:
10780 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10781 break;
10782 case NETDEV_PCPU_STAT_TSTATS:
10783 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10784 break;
10785 case NETDEV_PCPU_STAT_DSTATS:
10786 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10787 break;
10788 default:
10789 return -EINVAL;
10790 }
10791
10792 return v ? 0 : -ENOMEM;
10793}
10794
10795static void netdev_do_free_pcpu_stats(struct net_device *dev)
10796{
10797 switch (dev->pcpu_stat_type) {
10798 case NETDEV_PCPU_STAT_NONE:
10799 return;
10800 case NETDEV_PCPU_STAT_LSTATS:
10801 free_percpu(dev->lstats);
10802 break;
10803 case NETDEV_PCPU_STAT_TSTATS:
10804 free_percpu(dev->tstats);
10805 break;
10806 case NETDEV_PCPU_STAT_DSTATS:
10807 free_percpu(dev->dstats);
10808 break;
10809 }
10810}
10811
10812static void netdev_free_phy_link_topology(struct net_device *dev)
10813{
10814 struct phy_link_topology *topo = dev->link_topo;
10815
10816 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10817 xa_destroy(&topo->phys);
10818 kfree(topo);
10819 dev->link_topo = NULL;
10820 }
10821}
10822
10823/**
10824 * register_netdevice() - register a network device
10825 * @dev: device to register
10826 *
10827 * Take a prepared network device structure and make it externally accessible.
10828 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10829 * Callers must hold the rtnl lock - you may want register_netdev()
10830 * instead of this.
10831 */
10832int register_netdevice(struct net_device *dev)
10833{
10834 int ret;
10835 struct net *net = dev_net(dev);
10836
10837 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10838 NETDEV_FEATURE_COUNT);
10839 BUG_ON(dev_boot_phase);
10840 ASSERT_RTNL();
10841
10842 might_sleep();
10843
10844 /* When net_device's are persistent, this will be fatal. */
10845 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10846 BUG_ON(!net);
10847
10848 ret = ethtool_check_ops(dev->ethtool_ops);
10849 if (ret)
10850 return ret;
10851
10852 /* rss ctx ID 0 is reserved for the default context, start from 1 */
10853 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10854 mutex_init(&dev->ethtool->rss_lock);
10855
10856 spin_lock_init(&dev->addr_list_lock);
10857 netdev_set_addr_lockdep_class(dev);
10858
10859 ret = dev_get_valid_name(net, dev, dev->name);
10860 if (ret < 0)
10861 goto out;
10862
10863 ret = -ENOMEM;
10864 dev->name_node = netdev_name_node_head_alloc(dev);
10865 if (!dev->name_node)
10866 goto out;
10867
10868 /* Init, if this function is available */
10869 if (dev->netdev_ops->ndo_init) {
10870 ret = dev->netdev_ops->ndo_init(dev);
10871 if (ret) {
10872 if (ret > 0)
10873 ret = -EIO;
10874 goto err_free_name;
10875 }
10876 }
10877
10878 if (((dev->hw_features | dev->features) &
10879 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10880 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10881 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10882 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10883 ret = -EINVAL;
10884 goto err_uninit;
10885 }
10886
10887 ret = netdev_do_alloc_pcpu_stats(dev);
10888 if (ret)
10889 goto err_uninit;
10890
10891 ret = dev_index_reserve(net, dev->ifindex);
10892 if (ret < 0)
10893 goto err_free_pcpu;
10894 dev->ifindex = ret;
10895
10896 /* Transfer changeable features to wanted_features and enable
10897 * software offloads (GSO and GRO).
10898 */
10899 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10900 dev->features |= NETIF_F_SOFT_FEATURES;
10901
10902 if (dev->udp_tunnel_nic_info) {
10903 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10904 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10905 }
10906
10907 dev->wanted_features = dev->features & dev->hw_features;
10908
10909 if (!(dev->flags & IFF_LOOPBACK))
10910 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10911
10912 /* If IPv4 TCP segmentation offload is supported we should also
10913 * allow the device to enable segmenting the frame with the option
10914 * of ignoring a static IP ID value. This doesn't enable the
10915 * feature itself but allows the user to enable it later.
10916 */
10917 if (dev->hw_features & NETIF_F_TSO)
10918 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10919 if (dev->vlan_features & NETIF_F_TSO)
10920 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10921 if (dev->mpls_features & NETIF_F_TSO)
10922 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10923 if (dev->hw_enc_features & NETIF_F_TSO)
10924 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10925
10926 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10927 */
10928 dev->vlan_features |= NETIF_F_HIGHDMA;
10929
10930 /* Make NETIF_F_SG inheritable to tunnel devices.
10931 */
10932 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10933
10934 /* Make NETIF_F_SG inheritable to MPLS.
10935 */
10936 dev->mpls_features |= NETIF_F_SG;
10937
10938 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10939 ret = notifier_to_errno(ret);
10940 if (ret)
10941 goto err_ifindex_release;
10942
10943 ret = netdev_register_kobject(dev);
10944
10945 netdev_lock(dev);
10946 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10947 netdev_unlock(dev);
10948
10949 if (ret)
10950 goto err_uninit_notify;
10951
10952 __netdev_update_features(dev);
10953
10954 /*
10955 * Default initial state at registry is that the
10956 * device is present.
10957 */
10958
10959 set_bit(__LINK_STATE_PRESENT, &dev->state);
10960
10961 linkwatch_init_dev(dev);
10962
10963 dev_init_scheduler(dev);
10964
10965 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10966 list_netdevice(dev);
10967
10968 add_device_randomness(dev->dev_addr, dev->addr_len);
10969
10970 /* If the device has permanent device address, driver should
10971 * set dev_addr and also addr_assign_type should be set to
10972 * NET_ADDR_PERM (default value).
10973 */
10974 if (dev->addr_assign_type == NET_ADDR_PERM)
10975 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10976
10977 /* Notify protocols, that a new device appeared. */
10978 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10979 ret = notifier_to_errno(ret);
10980 if (ret) {
10981 /* Expect explicit free_netdev() on failure */
10982 dev->needs_free_netdev = false;
10983 unregister_netdevice_queue(dev, NULL);
10984 goto out;
10985 }
10986 /*
10987 * Prevent userspace races by waiting until the network
10988 * device is fully setup before sending notifications.
10989 */
10990 if (!dev->rtnl_link_ops ||
10991 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10992 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10993
10994out:
10995 return ret;
10996
10997err_uninit_notify:
10998 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10999err_ifindex_release:
11000 dev_index_release(net, dev->ifindex);
11001err_free_pcpu:
11002 netdev_do_free_pcpu_stats(dev);
11003err_uninit:
11004 if (dev->netdev_ops->ndo_uninit)
11005 dev->netdev_ops->ndo_uninit(dev);
11006 if (dev->priv_destructor)
11007 dev->priv_destructor(dev);
11008err_free_name:
11009 netdev_name_node_free(dev->name_node);
11010 goto out;
11011}
11012EXPORT_SYMBOL(register_netdevice);
11013
11014/* Initialize the core of a dummy net device.
11015 * The setup steps dummy netdevs need which normal netdevs get by going
11016 * through register_netdevice().
11017 */
11018static void init_dummy_netdev(struct net_device *dev)
11019{
11020 /* make sure we BUG if trying to hit standard
11021 * register/unregister code path
11022 */
11023 dev->reg_state = NETREG_DUMMY;
11024
11025 /* a dummy interface is started by default */
11026 set_bit(__LINK_STATE_PRESENT, &dev->state);
11027 set_bit(__LINK_STATE_START, &dev->state);
11028
11029 /* Note : We dont allocate pcpu_refcnt for dummy devices,
11030 * because users of this 'device' dont need to change
11031 * its refcount.
11032 */
11033}
11034
11035/**
11036 * register_netdev - register a network device
11037 * @dev: device to register
11038 *
11039 * Take a completed network device structure and add it to the kernel
11040 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11041 * chain. 0 is returned on success. A negative errno code is returned
11042 * on a failure to set up the device, or if the name is a duplicate.
11043 *
11044 * This is a wrapper around register_netdevice that takes the rtnl semaphore
11045 * and expands the device name if you passed a format string to
11046 * alloc_netdev.
11047 */
11048int register_netdev(struct net_device *dev)
11049{
11050 struct net *net = dev_net(dev);
11051 int err;
11052
11053 if (rtnl_net_lock_killable(net))
11054 return -EINTR;
11055
11056 err = register_netdevice(dev);
11057
11058 rtnl_net_unlock(net);
11059
11060 return err;
11061}
11062EXPORT_SYMBOL(register_netdev);
11063
11064int netdev_refcnt_read(const struct net_device *dev)
11065{
11066#ifdef CONFIG_PCPU_DEV_REFCNT
11067 int i, refcnt = 0;
11068
11069 for_each_possible_cpu(i)
11070 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11071 return refcnt;
11072#else
11073 return refcount_read(&dev->dev_refcnt);
11074#endif
11075}
11076EXPORT_SYMBOL(netdev_refcnt_read);
11077
11078int netdev_unregister_timeout_secs __read_mostly = 10;
11079
11080#define WAIT_REFS_MIN_MSECS 1
11081#define WAIT_REFS_MAX_MSECS 250
11082/**
11083 * netdev_wait_allrefs_any - wait until all references are gone.
11084 * @list: list of net_devices to wait on
11085 *
11086 * This is called when unregistering network devices.
11087 *
11088 * Any protocol or device that holds a reference should register
11089 * for netdevice notification, and cleanup and put back the
11090 * reference if they receive an UNREGISTER event.
11091 * We can get stuck here if buggy protocols don't correctly
11092 * call dev_put.
11093 */
11094static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11095{
11096 unsigned long rebroadcast_time, warning_time;
11097 struct net_device *dev;
11098 int wait = 0;
11099
11100 rebroadcast_time = warning_time = jiffies;
11101
11102 list_for_each_entry(dev, list, todo_list)
11103 if (netdev_refcnt_read(dev) == 1)
11104 return dev;
11105
11106 while (true) {
11107 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11108 rtnl_lock();
11109
11110 /* Rebroadcast unregister notification */
11111 list_for_each_entry(dev, list, todo_list)
11112 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11113
11114 __rtnl_unlock();
11115 rcu_barrier();
11116 rtnl_lock();
11117
11118 list_for_each_entry(dev, list, todo_list)
11119 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11120 &dev->state)) {
11121 /* We must not have linkwatch events
11122 * pending on unregister. If this
11123 * happens, we simply run the queue
11124 * unscheduled, resulting in a noop
11125 * for this device.
11126 */
11127 linkwatch_run_queue();
11128 break;
11129 }
11130
11131 __rtnl_unlock();
11132
11133 rebroadcast_time = jiffies;
11134 }
11135
11136 rcu_barrier();
11137
11138 if (!wait) {
11139 wait = WAIT_REFS_MIN_MSECS;
11140 } else {
11141 msleep(wait);
11142 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11143 }
11144
11145 list_for_each_entry(dev, list, todo_list)
11146 if (netdev_refcnt_read(dev) == 1)
11147 return dev;
11148
11149 if (time_after(jiffies, warning_time +
11150 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11151 list_for_each_entry(dev, list, todo_list) {
11152 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11153 dev->name, netdev_refcnt_read(dev));
11154 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11155 }
11156
11157 warning_time = jiffies;
11158 }
11159 }
11160}
11161
11162/* The sequence is:
11163 *
11164 * rtnl_lock();
11165 * ...
11166 * register_netdevice(x1);
11167 * register_netdevice(x2);
11168 * ...
11169 * unregister_netdevice(y1);
11170 * unregister_netdevice(y2);
11171 * ...
11172 * rtnl_unlock();
11173 * free_netdev(y1);
11174 * free_netdev(y2);
11175 *
11176 * We are invoked by rtnl_unlock().
11177 * This allows us to deal with problems:
11178 * 1) We can delete sysfs objects which invoke hotplug
11179 * without deadlocking with linkwatch via keventd.
11180 * 2) Since we run with the RTNL semaphore not held, we can sleep
11181 * safely in order to wait for the netdev refcnt to drop to zero.
11182 *
11183 * We must not return until all unregister events added during
11184 * the interval the lock was held have been completed.
11185 */
11186void netdev_run_todo(void)
11187{
11188 struct net_device *dev, *tmp;
11189 struct list_head list;
11190 int cnt;
11191#ifdef CONFIG_LOCKDEP
11192 struct list_head unlink_list;
11193
11194 list_replace_init(&net_unlink_list, &unlink_list);
11195
11196 while (!list_empty(&unlink_list)) {
11197 struct net_device *dev = list_first_entry(&unlink_list,
11198 struct net_device,
11199 unlink_list);
11200 list_del_init(&dev->unlink_list);
11201 dev->nested_level = dev->lower_level - 1;
11202 }
11203#endif
11204
11205 /* Snapshot list, allow later requests */
11206 list_replace_init(&net_todo_list, &list);
11207
11208 __rtnl_unlock();
11209
11210 /* Wait for rcu callbacks to finish before next phase */
11211 if (!list_empty(&list))
11212 rcu_barrier();
11213
11214 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11215 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11216 netdev_WARN(dev, "run_todo but not unregistering\n");
11217 list_del(&dev->todo_list);
11218 continue;
11219 }
11220
11221 netdev_lock(dev);
11222 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11223 netdev_unlock(dev);
11224 linkwatch_sync_dev(dev);
11225 }
11226
11227 cnt = 0;
11228 while (!list_empty(&list)) {
11229 dev = netdev_wait_allrefs_any(&list);
11230 list_del(&dev->todo_list);
11231
11232 /* paranoia */
11233 BUG_ON(netdev_refcnt_read(dev) != 1);
11234 BUG_ON(!list_empty(&dev->ptype_all));
11235 BUG_ON(!list_empty(&dev->ptype_specific));
11236 WARN_ON(rcu_access_pointer(dev->ip_ptr));
11237 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11238
11239 netdev_do_free_pcpu_stats(dev);
11240 if (dev->priv_destructor)
11241 dev->priv_destructor(dev);
11242 if (dev->needs_free_netdev)
11243 free_netdev(dev);
11244
11245 cnt++;
11246
11247 /* Free network device */
11248 kobject_put(&dev->dev.kobj);
11249 }
11250 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11251 wake_up(&netdev_unregistering_wq);
11252}
11253
11254/* Collate per-cpu network dstats statistics
11255 *
11256 * Read per-cpu network statistics from dev->dstats and populate the related
11257 * fields in @s.
11258 */
11259static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11260 const struct pcpu_dstats __percpu *dstats)
11261{
11262 int cpu;
11263
11264 for_each_possible_cpu(cpu) {
11265 u64 rx_packets, rx_bytes, rx_drops;
11266 u64 tx_packets, tx_bytes, tx_drops;
11267 const struct pcpu_dstats *stats;
11268 unsigned int start;
11269
11270 stats = per_cpu_ptr(dstats, cpu);
11271 do {
11272 start = u64_stats_fetch_begin(&stats->syncp);
11273 rx_packets = u64_stats_read(&stats->rx_packets);
11274 rx_bytes = u64_stats_read(&stats->rx_bytes);
11275 rx_drops = u64_stats_read(&stats->rx_drops);
11276 tx_packets = u64_stats_read(&stats->tx_packets);
11277 tx_bytes = u64_stats_read(&stats->tx_bytes);
11278 tx_drops = u64_stats_read(&stats->tx_drops);
11279 } while (u64_stats_fetch_retry(&stats->syncp, start));
11280
11281 s->rx_packets += rx_packets;
11282 s->rx_bytes += rx_bytes;
11283 s->rx_dropped += rx_drops;
11284 s->tx_packets += tx_packets;
11285 s->tx_bytes += tx_bytes;
11286 s->tx_dropped += tx_drops;
11287 }
11288}
11289
11290/* ndo_get_stats64 implementation for dtstats-based accounting.
11291 *
11292 * Populate @s from dev->stats and dev->dstats. This is used internally by the
11293 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11294 */
11295static void dev_get_dstats64(const struct net_device *dev,
11296 struct rtnl_link_stats64 *s)
11297{
11298 netdev_stats_to_stats64(s, &dev->stats);
11299 dev_fetch_dstats(s, dev->dstats);
11300}
11301
11302/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11303 * all the same fields in the same order as net_device_stats, with only
11304 * the type differing, but rtnl_link_stats64 may have additional fields
11305 * at the end for newer counters.
11306 */
11307void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11308 const struct net_device_stats *netdev_stats)
11309{
11310 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11311 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11312 u64 *dst = (u64 *)stats64;
11313
11314 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11315 for (i = 0; i < n; i++)
11316 dst[i] = (unsigned long)atomic_long_read(&src[i]);
11317 /* zero out counters that only exist in rtnl_link_stats64 */
11318 memset((char *)stats64 + n * sizeof(u64), 0,
11319 sizeof(*stats64) - n * sizeof(u64));
11320}
11321EXPORT_SYMBOL(netdev_stats_to_stats64);
11322
11323static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11324 struct net_device *dev)
11325{
11326 struct net_device_core_stats __percpu *p;
11327
11328 p = alloc_percpu_gfp(struct net_device_core_stats,
11329 GFP_ATOMIC | __GFP_NOWARN);
11330
11331 if (p && cmpxchg(&dev->core_stats, NULL, p))
11332 free_percpu(p);
11333
11334 /* This READ_ONCE() pairs with the cmpxchg() above */
11335 return READ_ONCE(dev->core_stats);
11336}
11337
11338noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11339{
11340 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11341 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11342 unsigned long __percpu *field;
11343
11344 if (unlikely(!p)) {
11345 p = netdev_core_stats_alloc(dev);
11346 if (!p)
11347 return;
11348 }
11349
11350 field = (unsigned long __percpu *)((void __percpu *)p + offset);
11351 this_cpu_inc(*field);
11352}
11353EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11354
11355/**
11356 * dev_get_stats - get network device statistics
11357 * @dev: device to get statistics from
11358 * @storage: place to store stats
11359 *
11360 * Get network statistics from device. Return @storage.
11361 * The device driver may provide its own method by setting
11362 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11363 * otherwise the internal statistics structure is used.
11364 */
11365struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11366 struct rtnl_link_stats64 *storage)
11367{
11368 const struct net_device_ops *ops = dev->netdev_ops;
11369 const struct net_device_core_stats __percpu *p;
11370
11371 /*
11372 * IPv{4,6} and udp tunnels share common stat helpers and use
11373 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11374 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11375 */
11376 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11377 offsetof(struct pcpu_dstats, rx_bytes));
11378 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11379 offsetof(struct pcpu_dstats, rx_packets));
11380 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11381 offsetof(struct pcpu_dstats, tx_bytes));
11382 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11383 offsetof(struct pcpu_dstats, tx_packets));
11384
11385 if (ops->ndo_get_stats64) {
11386 memset(storage, 0, sizeof(*storage));
11387 ops->ndo_get_stats64(dev, storage);
11388 } else if (ops->ndo_get_stats) {
11389 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11390 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11391 dev_get_tstats64(dev, storage);
11392 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11393 dev_get_dstats64(dev, storage);
11394 } else {
11395 netdev_stats_to_stats64(storage, &dev->stats);
11396 }
11397
11398 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11399 p = READ_ONCE(dev->core_stats);
11400 if (p) {
11401 const struct net_device_core_stats *core_stats;
11402 int i;
11403
11404 for_each_possible_cpu(i) {
11405 core_stats = per_cpu_ptr(p, i);
11406 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11407 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11408 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11409 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11410 }
11411 }
11412 return storage;
11413}
11414EXPORT_SYMBOL(dev_get_stats);
11415
11416/**
11417 * dev_fetch_sw_netstats - get per-cpu network device statistics
11418 * @s: place to store stats
11419 * @netstats: per-cpu network stats to read from
11420 *
11421 * Read per-cpu network statistics and populate the related fields in @s.
11422 */
11423void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11424 const struct pcpu_sw_netstats __percpu *netstats)
11425{
11426 int cpu;
11427
11428 for_each_possible_cpu(cpu) {
11429 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11430 const struct pcpu_sw_netstats *stats;
11431 unsigned int start;
11432
11433 stats = per_cpu_ptr(netstats, cpu);
11434 do {
11435 start = u64_stats_fetch_begin(&stats->syncp);
11436 rx_packets = u64_stats_read(&stats->rx_packets);
11437 rx_bytes = u64_stats_read(&stats->rx_bytes);
11438 tx_packets = u64_stats_read(&stats->tx_packets);
11439 tx_bytes = u64_stats_read(&stats->tx_bytes);
11440 } while (u64_stats_fetch_retry(&stats->syncp, start));
11441
11442 s->rx_packets += rx_packets;
11443 s->rx_bytes += rx_bytes;
11444 s->tx_packets += tx_packets;
11445 s->tx_bytes += tx_bytes;
11446 }
11447}
11448EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11449
11450/**
11451 * dev_get_tstats64 - ndo_get_stats64 implementation
11452 * @dev: device to get statistics from
11453 * @s: place to store stats
11454 *
11455 * Populate @s from dev->stats and dev->tstats. Can be used as
11456 * ndo_get_stats64() callback.
11457 */
11458void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11459{
11460 netdev_stats_to_stats64(s, &dev->stats);
11461 dev_fetch_sw_netstats(s, dev->tstats);
11462}
11463EXPORT_SYMBOL_GPL(dev_get_tstats64);
11464
11465struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11466{
11467 struct netdev_queue *queue = dev_ingress_queue(dev);
11468
11469#ifdef CONFIG_NET_CLS_ACT
11470 if (queue)
11471 return queue;
11472 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11473 if (!queue)
11474 return NULL;
11475 netdev_init_one_queue(dev, queue, NULL);
11476 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11477 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11478 rcu_assign_pointer(dev->ingress_queue, queue);
11479#endif
11480 return queue;
11481}
11482
11483static const struct ethtool_ops default_ethtool_ops;
11484
11485void netdev_set_default_ethtool_ops(struct net_device *dev,
11486 const struct ethtool_ops *ops)
11487{
11488 if (dev->ethtool_ops == &default_ethtool_ops)
11489 dev->ethtool_ops = ops;
11490}
11491EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11492
11493/**
11494 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11495 * @dev: netdev to enable the IRQ coalescing on
11496 *
11497 * Sets a conservative default for SW IRQ coalescing. Users can use
11498 * sysfs attributes to override the default values.
11499 */
11500void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11501{
11502 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11503
11504 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11505 netdev_set_gro_flush_timeout(dev, 20000);
11506 netdev_set_defer_hard_irqs(dev, 1);
11507 }
11508}
11509EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11510
11511/**
11512 * alloc_netdev_mqs - allocate network device
11513 * @sizeof_priv: size of private data to allocate space for
11514 * @name: device name format string
11515 * @name_assign_type: origin of device name
11516 * @setup: callback to initialize device
11517 * @txqs: the number of TX subqueues to allocate
11518 * @rxqs: the number of RX subqueues to allocate
11519 *
11520 * Allocates a struct net_device with private data area for driver use
11521 * and performs basic initialization. Also allocates subqueue structs
11522 * for each queue on the device.
11523 */
11524struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11525 unsigned char name_assign_type,
11526 void (*setup)(struct net_device *),
11527 unsigned int txqs, unsigned int rxqs)
11528{
11529 struct net_device *dev;
11530 size_t napi_config_sz;
11531 unsigned int maxqs;
11532
11533 BUG_ON(strlen(name) >= sizeof(dev->name));
11534
11535 if (txqs < 1) {
11536 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11537 return NULL;
11538 }
11539
11540 if (rxqs < 1) {
11541 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11542 return NULL;
11543 }
11544
11545 maxqs = max(txqs, rxqs);
11546
11547 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11548 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11549 if (!dev)
11550 return NULL;
11551
11552 dev->priv_len = sizeof_priv;
11553
11554 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11555#ifdef CONFIG_PCPU_DEV_REFCNT
11556 dev->pcpu_refcnt = alloc_percpu(int);
11557 if (!dev->pcpu_refcnt)
11558 goto free_dev;
11559 __dev_hold(dev);
11560#else
11561 refcount_set(&dev->dev_refcnt, 1);
11562#endif
11563
11564 if (dev_addr_init(dev))
11565 goto free_pcpu;
11566
11567 dev_mc_init(dev);
11568 dev_uc_init(dev);
11569
11570 dev_net_set(dev, &init_net);
11571
11572 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11573 dev->xdp_zc_max_segs = 1;
11574 dev->gso_max_segs = GSO_MAX_SEGS;
11575 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11576 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11577 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11578 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11579 dev->tso_max_segs = TSO_MAX_SEGS;
11580 dev->upper_level = 1;
11581 dev->lower_level = 1;
11582#ifdef CONFIG_LOCKDEP
11583 dev->nested_level = 0;
11584 INIT_LIST_HEAD(&dev->unlink_list);
11585#endif
11586
11587 INIT_LIST_HEAD(&dev->napi_list);
11588 INIT_LIST_HEAD(&dev->unreg_list);
11589 INIT_LIST_HEAD(&dev->close_list);
11590 INIT_LIST_HEAD(&dev->link_watch_list);
11591 INIT_LIST_HEAD(&dev->adj_list.upper);
11592 INIT_LIST_HEAD(&dev->adj_list.lower);
11593 INIT_LIST_HEAD(&dev->ptype_all);
11594 INIT_LIST_HEAD(&dev->ptype_specific);
11595 INIT_LIST_HEAD(&dev->net_notifier_list);
11596#ifdef CONFIG_NET_SCHED
11597 hash_init(dev->qdisc_hash);
11598#endif
11599
11600 mutex_init(&dev->lock);
11601
11602 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11603 setup(dev);
11604
11605 if (!dev->tx_queue_len) {
11606 dev->priv_flags |= IFF_NO_QUEUE;
11607 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11608 }
11609
11610 dev->num_tx_queues = txqs;
11611 dev->real_num_tx_queues = txqs;
11612 if (netif_alloc_netdev_queues(dev))
11613 goto free_all;
11614
11615 dev->num_rx_queues = rxqs;
11616 dev->real_num_rx_queues = rxqs;
11617 if (netif_alloc_rx_queues(dev))
11618 goto free_all;
11619 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11620 if (!dev->ethtool)
11621 goto free_all;
11622
11623 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11624 if (!dev->cfg)
11625 goto free_all;
11626 dev->cfg_pending = dev->cfg;
11627
11628 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11629 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11630 if (!dev->napi_config)
11631 goto free_all;
11632
11633 strscpy(dev->name, name);
11634 dev->name_assign_type = name_assign_type;
11635 dev->group = INIT_NETDEV_GROUP;
11636 if (!dev->ethtool_ops)
11637 dev->ethtool_ops = &default_ethtool_ops;
11638
11639 nf_hook_netdev_init(dev);
11640
11641 return dev;
11642
11643free_all:
11644 free_netdev(dev);
11645 return NULL;
11646
11647free_pcpu:
11648#ifdef CONFIG_PCPU_DEV_REFCNT
11649 free_percpu(dev->pcpu_refcnt);
11650free_dev:
11651#endif
11652 kvfree(dev);
11653 return NULL;
11654}
11655EXPORT_SYMBOL(alloc_netdev_mqs);
11656
11657static void netdev_napi_exit(struct net_device *dev)
11658{
11659 if (!list_empty(&dev->napi_list)) {
11660 struct napi_struct *p, *n;
11661
11662 netdev_lock(dev);
11663 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11664 __netif_napi_del_locked(p);
11665 netdev_unlock(dev);
11666
11667 synchronize_net();
11668 }
11669
11670 kvfree(dev->napi_config);
11671}
11672
11673/**
11674 * free_netdev - free network device
11675 * @dev: device
11676 *
11677 * This function does the last stage of destroying an allocated device
11678 * interface. The reference to the device object is released. If this
11679 * is the last reference then it will be freed.Must be called in process
11680 * context.
11681 */
11682void free_netdev(struct net_device *dev)
11683{
11684 might_sleep();
11685
11686 /* When called immediately after register_netdevice() failed the unwind
11687 * handling may still be dismantling the device. Handle that case by
11688 * deferring the free.
11689 */
11690 if (dev->reg_state == NETREG_UNREGISTERING) {
11691 ASSERT_RTNL();
11692 dev->needs_free_netdev = true;
11693 return;
11694 }
11695
11696 WARN_ON(dev->cfg != dev->cfg_pending);
11697 kfree(dev->cfg);
11698 kfree(dev->ethtool);
11699 netif_free_tx_queues(dev);
11700 netif_free_rx_queues(dev);
11701
11702 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11703
11704 /* Flush device addresses */
11705 dev_addr_flush(dev);
11706
11707 netdev_napi_exit(dev);
11708
11709 ref_tracker_dir_exit(&dev->refcnt_tracker);
11710#ifdef CONFIG_PCPU_DEV_REFCNT
11711 free_percpu(dev->pcpu_refcnt);
11712 dev->pcpu_refcnt = NULL;
11713#endif
11714 free_percpu(dev->core_stats);
11715 dev->core_stats = NULL;
11716 free_percpu(dev->xdp_bulkq);
11717 dev->xdp_bulkq = NULL;
11718
11719 netdev_free_phy_link_topology(dev);
11720
11721 mutex_destroy(&dev->lock);
11722
11723 /* Compatibility with error handling in drivers */
11724 if (dev->reg_state == NETREG_UNINITIALIZED ||
11725 dev->reg_state == NETREG_DUMMY) {
11726 kvfree(dev);
11727 return;
11728 }
11729
11730 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11731 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11732
11733 /* will free via device release */
11734 put_device(&dev->dev);
11735}
11736EXPORT_SYMBOL(free_netdev);
11737
11738/**
11739 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11740 * @sizeof_priv: size of private data to allocate space for
11741 *
11742 * Return: the allocated net_device on success, NULL otherwise
11743 */
11744struct net_device *alloc_netdev_dummy(int sizeof_priv)
11745{
11746 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11747 init_dummy_netdev);
11748}
11749EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11750
11751/**
11752 * synchronize_net - Synchronize with packet receive processing
11753 *
11754 * Wait for packets currently being received to be done.
11755 * Does not block later packets from starting.
11756 */
11757void synchronize_net(void)
11758{
11759 might_sleep();
11760 if (from_cleanup_net() || rtnl_is_locked())
11761 synchronize_rcu_expedited();
11762 else
11763 synchronize_rcu();
11764}
11765EXPORT_SYMBOL(synchronize_net);
11766
11767static void netdev_rss_contexts_free(struct net_device *dev)
11768{
11769 struct ethtool_rxfh_context *ctx;
11770 unsigned long context;
11771
11772 mutex_lock(&dev->ethtool->rss_lock);
11773 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11774 struct ethtool_rxfh_param rxfh;
11775
11776 rxfh.indir = ethtool_rxfh_context_indir(ctx);
11777 rxfh.key = ethtool_rxfh_context_key(ctx);
11778 rxfh.hfunc = ctx->hfunc;
11779 rxfh.input_xfrm = ctx->input_xfrm;
11780 rxfh.rss_context = context;
11781 rxfh.rss_delete = true;
11782
11783 xa_erase(&dev->ethtool->rss_ctx, context);
11784 if (dev->ethtool_ops->create_rxfh_context)
11785 dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11786 context, NULL);
11787 else
11788 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11789 kfree(ctx);
11790 }
11791 xa_destroy(&dev->ethtool->rss_ctx);
11792 mutex_unlock(&dev->ethtool->rss_lock);
11793}
11794
11795/**
11796 * unregister_netdevice_queue - remove device from the kernel
11797 * @dev: device
11798 * @head: list
11799 *
11800 * This function shuts down a device interface and removes it
11801 * from the kernel tables.
11802 * If head not NULL, device is queued to be unregistered later.
11803 *
11804 * Callers must hold the rtnl semaphore. You may want
11805 * unregister_netdev() instead of this.
11806 */
11807
11808void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11809{
11810 ASSERT_RTNL();
11811
11812 if (head) {
11813 list_move_tail(&dev->unreg_list, head);
11814 } else {
11815 LIST_HEAD(single);
11816
11817 list_add(&dev->unreg_list, &single);
11818 unregister_netdevice_many(&single);
11819 }
11820}
11821EXPORT_SYMBOL(unregister_netdevice_queue);
11822
11823void unregister_netdevice_many_notify(struct list_head *head,
11824 u32 portid, const struct nlmsghdr *nlh)
11825{
11826 struct net_device *dev, *tmp;
11827 LIST_HEAD(close_head);
11828 int cnt = 0;
11829
11830 BUG_ON(dev_boot_phase);
11831 ASSERT_RTNL();
11832
11833 if (list_empty(head))
11834 return;
11835
11836 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11837 /* Some devices call without registering
11838 * for initialization unwind. Remove those
11839 * devices and proceed with the remaining.
11840 */
11841 if (dev->reg_state == NETREG_UNINITIALIZED) {
11842 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11843 dev->name, dev);
11844
11845 WARN_ON(1);
11846 list_del(&dev->unreg_list);
11847 continue;
11848 }
11849 dev->dismantle = true;
11850 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11851 }
11852
11853 /* If device is running, close it first. */
11854 list_for_each_entry(dev, head, unreg_list)
11855 list_add_tail(&dev->close_list, &close_head);
11856 dev_close_many(&close_head, true);
11857
11858 list_for_each_entry(dev, head, unreg_list) {
11859 /* And unlink it from device chain. */
11860 unlist_netdevice(dev);
11861 netdev_lock(dev);
11862 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11863 netdev_unlock(dev);
11864 }
11865 flush_all_backlogs();
11866
11867 synchronize_net();
11868
11869 list_for_each_entry(dev, head, unreg_list) {
11870 struct sk_buff *skb = NULL;
11871
11872 /* Shutdown queueing discipline. */
11873 dev_shutdown(dev);
11874 dev_tcx_uninstall(dev);
11875 dev_xdp_uninstall(dev);
11876 bpf_dev_bound_netdev_unregister(dev);
11877 dev_dmabuf_uninstall(dev);
11878
11879 netdev_offload_xstats_disable_all(dev);
11880
11881 /* Notify protocols, that we are about to destroy
11882 * this device. They should clean all the things.
11883 */
11884 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11885
11886 if (!dev->rtnl_link_ops ||
11887 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11888 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11889 GFP_KERNEL, NULL, 0,
11890 portid, nlh);
11891
11892 /*
11893 * Flush the unicast and multicast chains
11894 */
11895 dev_uc_flush(dev);
11896 dev_mc_flush(dev);
11897
11898 netdev_name_node_alt_flush(dev);
11899 netdev_name_node_free(dev->name_node);
11900
11901 netdev_rss_contexts_free(dev);
11902
11903 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11904
11905 if (dev->netdev_ops->ndo_uninit)
11906 dev->netdev_ops->ndo_uninit(dev);
11907
11908 mutex_destroy(&dev->ethtool->rss_lock);
11909
11910 net_shaper_flush_netdev(dev);
11911
11912 if (skb)
11913 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11914
11915 /* Notifier chain MUST detach us all upper devices. */
11916 WARN_ON(netdev_has_any_upper_dev(dev));
11917 WARN_ON(netdev_has_any_lower_dev(dev));
11918
11919 /* Remove entries from kobject tree */
11920 netdev_unregister_kobject(dev);
11921#ifdef CONFIG_XPS
11922 /* Remove XPS queueing entries */
11923 netif_reset_xps_queues_gt(dev, 0);
11924#endif
11925 }
11926
11927 synchronize_net();
11928
11929 list_for_each_entry(dev, head, unreg_list) {
11930 netdev_put(dev, &dev->dev_registered_tracker);
11931 net_set_todo(dev);
11932 cnt++;
11933 }
11934 atomic_add(cnt, &dev_unreg_count);
11935
11936 list_del(head);
11937}
11938
11939/**
11940 * unregister_netdevice_many - unregister many devices
11941 * @head: list of devices
11942 *
11943 * Note: As most callers use a stack allocated list_head,
11944 * we force a list_del() to make sure stack won't be corrupted later.
11945 */
11946void unregister_netdevice_many(struct list_head *head)
11947{
11948 unregister_netdevice_many_notify(head, 0, NULL);
11949}
11950EXPORT_SYMBOL(unregister_netdevice_many);
11951
11952/**
11953 * unregister_netdev - remove device from the kernel
11954 * @dev: device
11955 *
11956 * This function shuts down a device interface and removes it
11957 * from the kernel tables.
11958 *
11959 * This is just a wrapper for unregister_netdevice that takes
11960 * the rtnl semaphore. In general you want to use this and not
11961 * unregister_netdevice.
11962 */
11963void unregister_netdev(struct net_device *dev)
11964{
11965 rtnl_net_dev_lock(dev);
11966 unregister_netdevice(dev);
11967 rtnl_net_dev_unlock(dev);
11968}
11969EXPORT_SYMBOL(unregister_netdev);
11970
11971/**
11972 * __dev_change_net_namespace - move device to different nethost namespace
11973 * @dev: device
11974 * @net: network namespace
11975 * @pat: If not NULL name pattern to try if the current device name
11976 * is already taken in the destination network namespace.
11977 * @new_ifindex: If not zero, specifies device index in the target
11978 * namespace.
11979 *
11980 * This function shuts down a device interface and moves it
11981 * to a new network namespace. On success 0 is returned, on
11982 * a failure a netagive errno code is returned.
11983 *
11984 * Callers must hold the rtnl semaphore.
11985 */
11986
11987int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11988 const char *pat, int new_ifindex)
11989{
11990 struct netdev_name_node *name_node;
11991 struct net *net_old = dev_net(dev);
11992 char new_name[IFNAMSIZ] = {};
11993 int err, new_nsid;
11994
11995 ASSERT_RTNL();
11996
11997 /* Don't allow namespace local devices to be moved. */
11998 err = -EINVAL;
11999 if (dev->netns_local)
12000 goto out;
12001
12002 /* Ensure the device has been registered */
12003 if (dev->reg_state != NETREG_REGISTERED)
12004 goto out;
12005
12006 /* Get out if there is nothing todo */
12007 err = 0;
12008 if (net_eq(net_old, net))
12009 goto out;
12010
12011 /* Pick the destination device name, and ensure
12012 * we can use it in the destination network namespace.
12013 */
12014 err = -EEXIST;
12015 if (netdev_name_in_use(net, dev->name)) {
12016 /* We get here if we can't use the current device name */
12017 if (!pat)
12018 goto out;
12019 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12020 if (err < 0)
12021 goto out;
12022 }
12023 /* Check that none of the altnames conflicts. */
12024 err = -EEXIST;
12025 netdev_for_each_altname(dev, name_node)
12026 if (netdev_name_in_use(net, name_node->name))
12027 goto out;
12028
12029 /* Check that new_ifindex isn't used yet. */
12030 if (new_ifindex) {
12031 err = dev_index_reserve(net, new_ifindex);
12032 if (err < 0)
12033 goto out;
12034 } else {
12035 /* If there is an ifindex conflict assign a new one */
12036 err = dev_index_reserve(net, dev->ifindex);
12037 if (err == -EBUSY)
12038 err = dev_index_reserve(net, 0);
12039 if (err < 0)
12040 goto out;
12041 new_ifindex = err;
12042 }
12043
12044 /*
12045 * And now a mini version of register_netdevice unregister_netdevice.
12046 */
12047
12048 /* If device is running close it first. */
12049 dev_close(dev);
12050
12051 /* And unlink it from device chain */
12052 unlist_netdevice(dev);
12053
12054 synchronize_net();
12055
12056 /* Shutdown queueing discipline. */
12057 dev_shutdown(dev);
12058
12059 /* Notify protocols, that we are about to destroy
12060 * this device. They should clean all the things.
12061 *
12062 * Note that dev->reg_state stays at NETREG_REGISTERED.
12063 * This is wanted because this way 8021q and macvlan know
12064 * the device is just moving and can keep their slaves up.
12065 */
12066 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12067 rcu_barrier();
12068
12069 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12070
12071 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12072 new_ifindex);
12073
12074 /*
12075 * Flush the unicast and multicast chains
12076 */
12077 dev_uc_flush(dev);
12078 dev_mc_flush(dev);
12079
12080 /* Send a netdev-removed uevent to the old namespace */
12081 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12082 netdev_adjacent_del_links(dev);
12083
12084 /* Move per-net netdevice notifiers that are following the netdevice */
12085 move_netdevice_notifiers_dev_net(dev, net);
12086
12087 /* Actually switch the network namespace */
12088 dev_net_set(dev, net);
12089 dev->ifindex = new_ifindex;
12090
12091 if (new_name[0]) {
12092 /* Rename the netdev to prepared name */
12093 write_seqlock_bh(&netdev_rename_lock);
12094 strscpy(dev->name, new_name, IFNAMSIZ);
12095 write_sequnlock_bh(&netdev_rename_lock);
12096 }
12097
12098 /* Fixup kobjects */
12099 dev_set_uevent_suppress(&dev->dev, 1);
12100 err = device_rename(&dev->dev, dev->name);
12101 dev_set_uevent_suppress(&dev->dev, 0);
12102 WARN_ON(err);
12103
12104 /* Send a netdev-add uevent to the new namespace */
12105 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12106 netdev_adjacent_add_links(dev);
12107
12108 /* Adapt owner in case owning user namespace of target network
12109 * namespace is different from the original one.
12110 */
12111 err = netdev_change_owner(dev, net_old, net);
12112 WARN_ON(err);
12113
12114 /* Add the device back in the hashes */
12115 list_netdevice(dev);
12116
12117 /* Notify protocols, that a new device appeared. */
12118 call_netdevice_notifiers(NETDEV_REGISTER, dev);
12119
12120 /*
12121 * Prevent userspace races by waiting until the network
12122 * device is fully setup before sending notifications.
12123 */
12124 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12125
12126 synchronize_net();
12127 err = 0;
12128out:
12129 return err;
12130}
12131EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
12132
12133static int dev_cpu_dead(unsigned int oldcpu)
12134{
12135 struct sk_buff **list_skb;
12136 struct sk_buff *skb;
12137 unsigned int cpu;
12138 struct softnet_data *sd, *oldsd, *remsd = NULL;
12139
12140 local_irq_disable();
12141 cpu = smp_processor_id();
12142 sd = &per_cpu(softnet_data, cpu);
12143 oldsd = &per_cpu(softnet_data, oldcpu);
12144
12145 /* Find end of our completion_queue. */
12146 list_skb = &sd->completion_queue;
12147 while (*list_skb)
12148 list_skb = &(*list_skb)->next;
12149 /* Append completion queue from offline CPU. */
12150 *list_skb = oldsd->completion_queue;
12151 oldsd->completion_queue = NULL;
12152
12153 /* Append output queue from offline CPU. */
12154 if (oldsd->output_queue) {
12155 *sd->output_queue_tailp = oldsd->output_queue;
12156 sd->output_queue_tailp = oldsd->output_queue_tailp;
12157 oldsd->output_queue = NULL;
12158 oldsd->output_queue_tailp = &oldsd->output_queue;
12159 }
12160 /* Append NAPI poll list from offline CPU, with one exception :
12161 * process_backlog() must be called by cpu owning percpu backlog.
12162 * We properly handle process_queue & input_pkt_queue later.
12163 */
12164 while (!list_empty(&oldsd->poll_list)) {
12165 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12166 struct napi_struct,
12167 poll_list);
12168
12169 list_del_init(&napi->poll_list);
12170 if (napi->poll == process_backlog)
12171 napi->state &= NAPIF_STATE_THREADED;
12172 else
12173 ____napi_schedule(sd, napi);
12174 }
12175
12176 raise_softirq_irqoff(NET_TX_SOFTIRQ);
12177 local_irq_enable();
12178
12179 if (!use_backlog_threads()) {
12180#ifdef CONFIG_RPS
12181 remsd = oldsd->rps_ipi_list;
12182 oldsd->rps_ipi_list = NULL;
12183#endif
12184 /* send out pending IPI's on offline CPU */
12185 net_rps_send_ipi(remsd);
12186 }
12187
12188 /* Process offline CPU's input_pkt_queue */
12189 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12190 netif_rx(skb);
12191 rps_input_queue_head_incr(oldsd);
12192 }
12193 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12194 netif_rx(skb);
12195 rps_input_queue_head_incr(oldsd);
12196 }
12197
12198 return 0;
12199}
12200
12201/**
12202 * netdev_increment_features - increment feature set by one
12203 * @all: current feature set
12204 * @one: new feature set
12205 * @mask: mask feature set
12206 *
12207 * Computes a new feature set after adding a device with feature set
12208 * @one to the master device with current feature set @all. Will not
12209 * enable anything that is off in @mask. Returns the new feature set.
12210 */
12211netdev_features_t netdev_increment_features(netdev_features_t all,
12212 netdev_features_t one, netdev_features_t mask)
12213{
12214 if (mask & NETIF_F_HW_CSUM)
12215 mask |= NETIF_F_CSUM_MASK;
12216 mask |= NETIF_F_VLAN_CHALLENGED;
12217
12218 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12219 all &= one | ~NETIF_F_ALL_FOR_ALL;
12220
12221 /* If one device supports hw checksumming, set for all. */
12222 if (all & NETIF_F_HW_CSUM)
12223 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12224
12225 return all;
12226}
12227EXPORT_SYMBOL(netdev_increment_features);
12228
12229static struct hlist_head * __net_init netdev_create_hash(void)
12230{
12231 int i;
12232 struct hlist_head *hash;
12233
12234 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12235 if (hash != NULL)
12236 for (i = 0; i < NETDEV_HASHENTRIES; i++)
12237 INIT_HLIST_HEAD(&hash[i]);
12238
12239 return hash;
12240}
12241
12242/* Initialize per network namespace state */
12243static int __net_init netdev_init(struct net *net)
12244{
12245 BUILD_BUG_ON(GRO_HASH_BUCKETS >
12246 8 * sizeof_field(struct napi_struct, gro_bitmask));
12247
12248 INIT_LIST_HEAD(&net->dev_base_head);
12249
12250 net->dev_name_head = netdev_create_hash();
12251 if (net->dev_name_head == NULL)
12252 goto err_name;
12253
12254 net->dev_index_head = netdev_create_hash();
12255 if (net->dev_index_head == NULL)
12256 goto err_idx;
12257
12258 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12259
12260 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12261
12262 return 0;
12263
12264err_idx:
12265 kfree(net->dev_name_head);
12266err_name:
12267 return -ENOMEM;
12268}
12269
12270/**
12271 * netdev_drivername - network driver for the device
12272 * @dev: network device
12273 *
12274 * Determine network driver for device.
12275 */
12276const char *netdev_drivername(const struct net_device *dev)
12277{
12278 const struct device_driver *driver;
12279 const struct device *parent;
12280 const char *empty = "";
12281
12282 parent = dev->dev.parent;
12283 if (!parent)
12284 return empty;
12285
12286 driver = parent->driver;
12287 if (driver && driver->name)
12288 return driver->name;
12289 return empty;
12290}
12291
12292static void __netdev_printk(const char *level, const struct net_device *dev,
12293 struct va_format *vaf)
12294{
12295 if (dev && dev->dev.parent) {
12296 dev_printk_emit(level[1] - '0',
12297 dev->dev.parent,
12298 "%s %s %s%s: %pV",
12299 dev_driver_string(dev->dev.parent),
12300 dev_name(dev->dev.parent),
12301 netdev_name(dev), netdev_reg_state(dev),
12302 vaf);
12303 } else if (dev) {
12304 printk("%s%s%s: %pV",
12305 level, netdev_name(dev), netdev_reg_state(dev), vaf);
12306 } else {
12307 printk("%s(NULL net_device): %pV", level, vaf);
12308 }
12309}
12310
12311void netdev_printk(const char *level, const struct net_device *dev,
12312 const char *format, ...)
12313{
12314 struct va_format vaf;
12315 va_list args;
12316
12317 va_start(args, format);
12318
12319 vaf.fmt = format;
12320 vaf.va = &args;
12321
12322 __netdev_printk(level, dev, &vaf);
12323
12324 va_end(args);
12325}
12326EXPORT_SYMBOL(netdev_printk);
12327
12328#define define_netdev_printk_level(func, level) \
12329void func(const struct net_device *dev, const char *fmt, ...) \
12330{ \
12331 struct va_format vaf; \
12332 va_list args; \
12333 \
12334 va_start(args, fmt); \
12335 \
12336 vaf.fmt = fmt; \
12337 vaf.va = &args; \
12338 \
12339 __netdev_printk(level, dev, &vaf); \
12340 \
12341 va_end(args); \
12342} \
12343EXPORT_SYMBOL(func);
12344
12345define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12346define_netdev_printk_level(netdev_alert, KERN_ALERT);
12347define_netdev_printk_level(netdev_crit, KERN_CRIT);
12348define_netdev_printk_level(netdev_err, KERN_ERR);
12349define_netdev_printk_level(netdev_warn, KERN_WARNING);
12350define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12351define_netdev_printk_level(netdev_info, KERN_INFO);
12352
12353static void __net_exit netdev_exit(struct net *net)
12354{
12355 kfree(net->dev_name_head);
12356 kfree(net->dev_index_head);
12357 xa_destroy(&net->dev_by_index);
12358 if (net != &init_net)
12359 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12360}
12361
12362static struct pernet_operations __net_initdata netdev_net_ops = {
12363 .init = netdev_init,
12364 .exit = netdev_exit,
12365};
12366
12367static void __net_exit default_device_exit_net(struct net *net)
12368{
12369 struct netdev_name_node *name_node, *tmp;
12370 struct net_device *dev, *aux;
12371 /*
12372 * Push all migratable network devices back to the
12373 * initial network namespace
12374 */
12375 ASSERT_RTNL();
12376 for_each_netdev_safe(net, dev, aux) {
12377 int err;
12378 char fb_name[IFNAMSIZ];
12379
12380 /* Ignore unmoveable devices (i.e. loopback) */
12381 if (dev->netns_local)
12382 continue;
12383
12384 /* Leave virtual devices for the generic cleanup */
12385 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12386 continue;
12387
12388 /* Push remaining network devices to init_net */
12389 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12390 if (netdev_name_in_use(&init_net, fb_name))
12391 snprintf(fb_name, IFNAMSIZ, "dev%%d");
12392
12393 netdev_for_each_altname_safe(dev, name_node, tmp)
12394 if (netdev_name_in_use(&init_net, name_node->name))
12395 __netdev_name_node_alt_destroy(name_node);
12396
12397 err = dev_change_net_namespace(dev, &init_net, fb_name);
12398 if (err) {
12399 pr_emerg("%s: failed to move %s to init_net: %d\n",
12400 __func__, dev->name, err);
12401 BUG();
12402 }
12403 }
12404}
12405
12406static void __net_exit default_device_exit_batch(struct list_head *net_list)
12407{
12408 /* At exit all network devices most be removed from a network
12409 * namespace. Do this in the reverse order of registration.
12410 * Do this across as many network namespaces as possible to
12411 * improve batching efficiency.
12412 */
12413 struct net_device *dev;
12414 struct net *net;
12415 LIST_HEAD(dev_kill_list);
12416
12417 rtnl_lock();
12418 list_for_each_entry(net, net_list, exit_list) {
12419 default_device_exit_net(net);
12420 cond_resched();
12421 }
12422
12423 list_for_each_entry(net, net_list, exit_list) {
12424 for_each_netdev_reverse(net, dev) {
12425 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12426 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12427 else
12428 unregister_netdevice_queue(dev, &dev_kill_list);
12429 }
12430 }
12431 unregister_netdevice_many(&dev_kill_list);
12432 rtnl_unlock();
12433}
12434
12435static struct pernet_operations __net_initdata default_device_ops = {
12436 .exit_batch = default_device_exit_batch,
12437};
12438
12439static void __init net_dev_struct_check(void)
12440{
12441 /* TX read-mostly hotpath */
12442 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12443 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12444 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12445 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12446 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12447 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12448 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12449 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12450 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12451 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12452 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12453 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12454 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12455#ifdef CONFIG_XPS
12456 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12457#endif
12458#ifdef CONFIG_NETFILTER_EGRESS
12459 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12460#endif
12461#ifdef CONFIG_NET_XGRESS
12462 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12463#endif
12464 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12465
12466 /* TXRX read-mostly hotpath */
12467 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12468 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12469 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12470 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12471 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12472 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12473 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12474
12475 /* RX read-mostly hotpath */
12476 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12477 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12478 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12479 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12480 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12481 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12482 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12483 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12484 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12485#ifdef CONFIG_NETPOLL
12486 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12487#endif
12488#ifdef CONFIG_NET_XGRESS
12489 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12490#endif
12491 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12492}
12493
12494/*
12495 * Initialize the DEV module. At boot time this walks the device list and
12496 * unhooks any devices that fail to initialise (normally hardware not
12497 * present) and leaves us with a valid list of present and active devices.
12498 *
12499 */
12500
12501/* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12502#define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12503
12504static int net_page_pool_create(int cpuid)
12505{
12506#if IS_ENABLED(CONFIG_PAGE_POOL)
12507 struct page_pool_params page_pool_params = {
12508 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12509 .flags = PP_FLAG_SYSTEM_POOL,
12510 .nid = cpu_to_mem(cpuid),
12511 };
12512 struct page_pool *pp_ptr;
12513 int err;
12514
12515 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12516 if (IS_ERR(pp_ptr))
12517 return -ENOMEM;
12518
12519 err = xdp_reg_page_pool(pp_ptr);
12520 if (err) {
12521 page_pool_destroy(pp_ptr);
12522 return err;
12523 }
12524
12525 per_cpu(system_page_pool, cpuid) = pp_ptr;
12526#endif
12527 return 0;
12528}
12529
12530static int backlog_napi_should_run(unsigned int cpu)
12531{
12532 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12533 struct napi_struct *napi = &sd->backlog;
12534
12535 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12536}
12537
12538static void run_backlog_napi(unsigned int cpu)
12539{
12540 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12541
12542 napi_threaded_poll_loop(&sd->backlog);
12543}
12544
12545static void backlog_napi_setup(unsigned int cpu)
12546{
12547 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12548 struct napi_struct *napi = &sd->backlog;
12549
12550 napi->thread = this_cpu_read(backlog_napi);
12551 set_bit(NAPI_STATE_THREADED, &napi->state);
12552}
12553
12554static struct smp_hotplug_thread backlog_threads = {
12555 .store = &backlog_napi,
12556 .thread_should_run = backlog_napi_should_run,
12557 .thread_fn = run_backlog_napi,
12558 .thread_comm = "backlog_napi/%u",
12559 .setup = backlog_napi_setup,
12560};
12561
12562/*
12563 * This is called single threaded during boot, so no need
12564 * to take the rtnl semaphore.
12565 */
12566static int __init net_dev_init(void)
12567{
12568 int i, rc = -ENOMEM;
12569
12570 BUG_ON(!dev_boot_phase);
12571
12572 net_dev_struct_check();
12573
12574 if (dev_proc_init())
12575 goto out;
12576
12577 if (netdev_kobject_init())
12578 goto out;
12579
12580 for (i = 0; i < PTYPE_HASH_SIZE; i++)
12581 INIT_LIST_HEAD(&ptype_base[i]);
12582
12583 if (register_pernet_subsys(&netdev_net_ops))
12584 goto out;
12585
12586 /*
12587 * Initialise the packet receive queues.
12588 */
12589
12590 flush_backlogs_fallback = flush_backlogs_alloc();
12591 if (!flush_backlogs_fallback)
12592 goto out;
12593
12594 for_each_possible_cpu(i) {
12595 struct softnet_data *sd = &per_cpu(softnet_data, i);
12596
12597 skb_queue_head_init(&sd->input_pkt_queue);
12598 skb_queue_head_init(&sd->process_queue);
12599#ifdef CONFIG_XFRM_OFFLOAD
12600 skb_queue_head_init(&sd->xfrm_backlog);
12601#endif
12602 INIT_LIST_HEAD(&sd->poll_list);
12603 sd->output_queue_tailp = &sd->output_queue;
12604#ifdef CONFIG_RPS
12605 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12606 sd->cpu = i;
12607#endif
12608 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12609 spin_lock_init(&sd->defer_lock);
12610
12611 init_gro_hash(&sd->backlog);
12612 sd->backlog.poll = process_backlog;
12613 sd->backlog.weight = weight_p;
12614 INIT_LIST_HEAD(&sd->backlog.poll_list);
12615
12616 if (net_page_pool_create(i))
12617 goto out;
12618 }
12619 if (use_backlog_threads())
12620 smpboot_register_percpu_thread(&backlog_threads);
12621
12622 dev_boot_phase = 0;
12623
12624 /* The loopback device is special if any other network devices
12625 * is present in a network namespace the loopback device must
12626 * be present. Since we now dynamically allocate and free the
12627 * loopback device ensure this invariant is maintained by
12628 * keeping the loopback device as the first device on the
12629 * list of network devices. Ensuring the loopback devices
12630 * is the first device that appears and the last network device
12631 * that disappears.
12632 */
12633 if (register_pernet_device(&loopback_net_ops))
12634 goto out;
12635
12636 if (register_pernet_device(&default_device_ops))
12637 goto out;
12638
12639 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12640 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12641
12642 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12643 NULL, dev_cpu_dead);
12644 WARN_ON(rc < 0);
12645 rc = 0;
12646
12647 /* avoid static key IPIs to isolated CPUs */
12648 if (housekeeping_enabled(HK_TYPE_MISC))
12649 net_enable_timestamp();
12650out:
12651 if (rc < 0) {
12652 for_each_possible_cpu(i) {
12653 struct page_pool *pp_ptr;
12654
12655 pp_ptr = per_cpu(system_page_pool, i);
12656 if (!pp_ptr)
12657 continue;
12658
12659 xdp_unreg_page_pool(pp_ptr);
12660 page_pool_destroy(pp_ptr);
12661 per_cpu(system_page_pool, i) = NULL;
12662 }
12663 }
12664
12665 return rc;
12666}
12667
12668subsys_initcall(net_dev_init);