Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
44#include <linux/mm_inline.h>
45#include <linux/sched/mm.h>
46#include <linux/sched/numa_balancing.h>
47#include <linux/sched/task.h>
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
53#include <linux/memremap.h>
54#include <linux/kmsan.h>
55#include <linux/ksm.h>
56#include <linux/rmap.h>
57#include <linux/export.h>
58#include <linux/delayacct.h>
59#include <linux/init.h>
60#include <linux/pfn_t.h>
61#include <linux/writeback.h>
62#include <linux/memcontrol.h>
63#include <linux/mmu_notifier.h>
64#include <linux/swapops.h>
65#include <linux/elf.h>
66#include <linux/gfp.h>
67#include <linux/migrate.h>
68#include <linux/string.h>
69#include <linux/memory-tiers.h>
70#include <linux/debugfs.h>
71#include <linux/userfaultfd_k.h>
72#include <linux/dax.h>
73#include <linux/oom.h>
74#include <linux/numa.h>
75#include <linux/perf_event.h>
76#include <linux/ptrace.h>
77#include <linux/vmalloc.h>
78#include <linux/sched/sysctl.h>
79#include <linux/fsnotify.h>
80
81#include <trace/events/kmem.h>
82
83#include <asm/io.h>
84#include <asm/mmu_context.h>
85#include <asm/pgalloc.h>
86#include <linux/uaccess.h>
87#include <asm/tlb.h>
88#include <asm/tlbflush.h>
89
90#include "pgalloc-track.h"
91#include "internal.h"
92#include "swap.h"
93
94#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96#endif
97
98#ifndef CONFIG_NUMA
99unsigned long max_mapnr;
100EXPORT_SYMBOL(max_mapnr);
101
102struct page *mem_map;
103EXPORT_SYMBOL(mem_map);
104#endif
105
106static vm_fault_t do_fault(struct vm_fault *vmf);
107static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108static bool vmf_pte_changed(struct vm_fault *vmf);
109
110/*
111 * Return true if the original pte was a uffd-wp pte marker (so the pte was
112 * wr-protected).
113 */
114static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115{
116 if (!userfaultfd_wp(vmf->vma))
117 return false;
118 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
119 return false;
120
121 return pte_marker_uffd_wp(vmf->orig_pte);
122}
123
124/*
125 * A number of key systems in x86 including ioremap() rely on the assumption
126 * that high_memory defines the upper bound on direct map memory, then end
127 * of ZONE_NORMAL.
128 */
129void *high_memory;
130EXPORT_SYMBOL(high_memory);
131
132/*
133 * Randomize the address space (stacks, mmaps, brk, etc.).
134 *
135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136 * as ancient (libc5 based) binaries can segfault. )
137 */
138int randomize_va_space __read_mostly =
139#ifdef CONFIG_COMPAT_BRK
140 1;
141#else
142 2;
143#endif
144
145#ifndef arch_wants_old_prefaulted_pte
146static inline bool arch_wants_old_prefaulted_pte(void)
147{
148 /*
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
152 */
153 return false;
154}
155#endif
156
157static int __init disable_randmaps(char *s)
158{
159 randomize_va_space = 0;
160 return 1;
161}
162__setup("norandmaps", disable_randmaps);
163
164unsigned long zero_pfn __read_mostly;
165EXPORT_SYMBOL(zero_pfn);
166
167unsigned long highest_memmap_pfn __read_mostly;
168
169/*
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171 */
172static int __init init_zero_pfn(void)
173{
174 zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 return 0;
176}
177early_initcall(init_zero_pfn);
178
179void mm_trace_rss_stat(struct mm_struct *mm, int member)
180{
181 trace_rss_stat(mm, member);
182}
183
184/*
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
187 */
188static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 unsigned long addr)
190{
191 pgtable_t token = pmd_pgtable(*pmd);
192 pmd_clear(pmd);
193 pte_free_tlb(tlb, token, addr);
194 mm_dec_nr_ptes(tlb->mm);
195}
196
197static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 unsigned long addr, unsigned long end,
199 unsigned long floor, unsigned long ceiling)
200{
201 pmd_t *pmd;
202 unsigned long next;
203 unsigned long start;
204
205 start = addr;
206 pmd = pmd_offset(pud, addr);
207 do {
208 next = pmd_addr_end(addr, end);
209 if (pmd_none_or_clear_bad(pmd))
210 continue;
211 free_pte_range(tlb, pmd, addr);
212 } while (pmd++, addr = next, addr != end);
213
214 start &= PUD_MASK;
215 if (start < floor)
216 return;
217 if (ceiling) {
218 ceiling &= PUD_MASK;
219 if (!ceiling)
220 return;
221 }
222 if (end - 1 > ceiling - 1)
223 return;
224
225 pmd = pmd_offset(pud, start);
226 pud_clear(pud);
227 pmd_free_tlb(tlb, pmd, start);
228 mm_dec_nr_pmds(tlb->mm);
229}
230
231static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
234{
235 pud_t *pud;
236 unsigned long next;
237 unsigned long start;
238
239 start = addr;
240 pud = pud_offset(p4d, addr);
241 do {
242 next = pud_addr_end(addr, end);
243 if (pud_none_or_clear_bad(pud))
244 continue;
245 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 } while (pud++, addr = next, addr != end);
247
248 start &= P4D_MASK;
249 if (start < floor)
250 return;
251 if (ceiling) {
252 ceiling &= P4D_MASK;
253 if (!ceiling)
254 return;
255 }
256 if (end - 1 > ceiling - 1)
257 return;
258
259 pud = pud_offset(p4d, start);
260 p4d_clear(p4d);
261 pud_free_tlb(tlb, pud, start);
262 mm_dec_nr_puds(tlb->mm);
263}
264
265static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
268{
269 p4d_t *p4d;
270 unsigned long next;
271 unsigned long start;
272
273 start = addr;
274 p4d = p4d_offset(pgd, addr);
275 do {
276 next = p4d_addr_end(addr, end);
277 if (p4d_none_or_clear_bad(p4d))
278 continue;
279 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 } while (p4d++, addr = next, addr != end);
281
282 start &= PGDIR_MASK;
283 if (start < floor)
284 return;
285 if (ceiling) {
286 ceiling &= PGDIR_MASK;
287 if (!ceiling)
288 return;
289 }
290 if (end - 1 > ceiling - 1)
291 return;
292
293 p4d = p4d_offset(pgd, start);
294 pgd_clear(pgd);
295 p4d_free_tlb(tlb, p4d, start);
296}
297
298/*
299 * This function frees user-level page tables of a process.
300 */
301void free_pgd_range(struct mmu_gather *tlb,
302 unsigned long addr, unsigned long end,
303 unsigned long floor, unsigned long ceiling)
304{
305 pgd_t *pgd;
306 unsigned long next;
307
308 /*
309 * The next few lines have given us lots of grief...
310 *
311 * Why are we testing PMD* at this top level? Because often
312 * there will be no work to do at all, and we'd prefer not to
313 * go all the way down to the bottom just to discover that.
314 *
315 * Why all these "- 1"s? Because 0 represents both the bottom
316 * of the address space and the top of it (using -1 for the
317 * top wouldn't help much: the masks would do the wrong thing).
318 * The rule is that addr 0 and floor 0 refer to the bottom of
319 * the address space, but end 0 and ceiling 0 refer to the top
320 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 * that end 0 case should be mythical).
322 *
323 * Wherever addr is brought up or ceiling brought down, we must
324 * be careful to reject "the opposite 0" before it confuses the
325 * subsequent tests. But what about where end is brought down
326 * by PMD_SIZE below? no, end can't go down to 0 there.
327 *
328 * Whereas we round start (addr) and ceiling down, by different
329 * masks at different levels, in order to test whether a table
330 * now has no other vmas using it, so can be freed, we don't
331 * bother to round floor or end up - the tests don't need that.
332 */
333
334 addr &= PMD_MASK;
335 if (addr < floor) {
336 addr += PMD_SIZE;
337 if (!addr)
338 return;
339 }
340 if (ceiling) {
341 ceiling &= PMD_MASK;
342 if (!ceiling)
343 return;
344 }
345 if (end - 1 > ceiling - 1)
346 end -= PMD_SIZE;
347 if (addr > end - 1)
348 return;
349 /*
350 * We add page table cache pages with PAGE_SIZE,
351 * (see pte_free_tlb()), flush the tlb if we need
352 */
353 tlb_change_page_size(tlb, PAGE_SIZE);
354 pgd = pgd_offset(tlb->mm, addr);
355 do {
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
358 continue;
359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 } while (pgd++, addr = next, addr != end);
361}
362
363void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364 struct vm_area_struct *vma, unsigned long floor,
365 unsigned long ceiling, bool mm_wr_locked)
366{
367 struct unlink_vma_file_batch vb;
368
369 do {
370 unsigned long addr = vma->vm_start;
371 struct vm_area_struct *next;
372
373 /*
374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 * be 0. This will underflow and is okay.
376 */
377 next = mas_find(mas, ceiling - 1);
378 if (unlikely(xa_is_zero(next)))
379 next = NULL;
380
381 /*
382 * Hide vma from rmap and truncate_pagecache before freeing
383 * pgtables
384 */
385 if (mm_wr_locked)
386 vma_start_write(vma);
387 unlink_anon_vmas(vma);
388
389 if (is_vm_hugetlb_page(vma)) {
390 unlink_file_vma(vma);
391 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
392 floor, next ? next->vm_start : ceiling);
393 } else {
394 unlink_file_vma_batch_init(&vb);
395 unlink_file_vma_batch_add(&vb, vma);
396
397 /*
398 * Optimization: gather nearby vmas into one call down
399 */
400 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
401 && !is_vm_hugetlb_page(next)) {
402 vma = next;
403 next = mas_find(mas, ceiling - 1);
404 if (unlikely(xa_is_zero(next)))
405 next = NULL;
406 if (mm_wr_locked)
407 vma_start_write(vma);
408 unlink_anon_vmas(vma);
409 unlink_file_vma_batch_add(&vb, vma);
410 }
411 unlink_file_vma_batch_final(&vb);
412 free_pgd_range(tlb, addr, vma->vm_end,
413 floor, next ? next->vm_start : ceiling);
414 }
415 vma = next;
416 } while (vma);
417}
418
419void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
420{
421 spinlock_t *ptl = pmd_lock(mm, pmd);
422
423 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
424 mm_inc_nr_ptes(mm);
425 /*
426 * Ensure all pte setup (eg. pte page lock and page clearing) are
427 * visible before the pte is made visible to other CPUs by being
428 * put into page tables.
429 *
430 * The other side of the story is the pointer chasing in the page
431 * table walking code (when walking the page table without locking;
432 * ie. most of the time). Fortunately, these data accesses consist
433 * of a chain of data-dependent loads, meaning most CPUs (alpha
434 * being the notable exception) will already guarantee loads are
435 * seen in-order. See the alpha page table accessors for the
436 * smp_rmb() barriers in page table walking code.
437 */
438 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
439 pmd_populate(mm, pmd, *pte);
440 *pte = NULL;
441 }
442 spin_unlock(ptl);
443}
444
445int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
446{
447 pgtable_t new = pte_alloc_one(mm);
448 if (!new)
449 return -ENOMEM;
450
451 pmd_install(mm, pmd, &new);
452 if (new)
453 pte_free(mm, new);
454 return 0;
455}
456
457int __pte_alloc_kernel(pmd_t *pmd)
458{
459 pte_t *new = pte_alloc_one_kernel(&init_mm);
460 if (!new)
461 return -ENOMEM;
462
463 spin_lock(&init_mm.page_table_lock);
464 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
465 smp_wmb(); /* See comment in pmd_install() */
466 pmd_populate_kernel(&init_mm, pmd, new);
467 new = NULL;
468 }
469 spin_unlock(&init_mm.page_table_lock);
470 if (new)
471 pte_free_kernel(&init_mm, new);
472 return 0;
473}
474
475static inline void init_rss_vec(int *rss)
476{
477 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
478}
479
480static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
481{
482 int i;
483
484 for (i = 0; i < NR_MM_COUNTERS; i++)
485 if (rss[i])
486 add_mm_counter(mm, i, rss[i]);
487}
488
489/*
490 * This function is called to print an error when a bad pte
491 * is found. For example, we might have a PFN-mapped pte in
492 * a region that doesn't allow it.
493 *
494 * The calling function must still handle the error.
495 */
496static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
497 pte_t pte, struct page *page)
498{
499 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
500 p4d_t *p4d = p4d_offset(pgd, addr);
501 pud_t *pud = pud_offset(p4d, addr);
502 pmd_t *pmd = pmd_offset(pud, addr);
503 struct address_space *mapping;
504 pgoff_t index;
505 static unsigned long resume;
506 static unsigned long nr_shown;
507 static unsigned long nr_unshown;
508
509 /*
510 * Allow a burst of 60 reports, then keep quiet for that minute;
511 * or allow a steady drip of one report per second.
512 */
513 if (nr_shown == 60) {
514 if (time_before(jiffies, resume)) {
515 nr_unshown++;
516 return;
517 }
518 if (nr_unshown) {
519 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
520 nr_unshown);
521 nr_unshown = 0;
522 }
523 nr_shown = 0;
524 }
525 if (nr_shown++ == 0)
526 resume = jiffies + 60 * HZ;
527
528 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
529 index = linear_page_index(vma, addr);
530
531 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
532 current->comm,
533 (long long)pte_val(pte), (long long)pmd_val(*pmd));
534 if (page)
535 dump_page(page, "bad pte");
536 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
537 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
538 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
539 vma->vm_file,
540 vma->vm_ops ? vma->vm_ops->fault : NULL,
541 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
542 mapping ? mapping->a_ops->read_folio : NULL);
543 dump_stack();
544 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
545}
546
547/*
548 * vm_normal_page -- This function gets the "struct page" associated with a pte.
549 *
550 * "Special" mappings do not wish to be associated with a "struct page" (either
551 * it doesn't exist, or it exists but they don't want to touch it). In this
552 * case, NULL is returned here. "Normal" mappings do have a struct page.
553 *
554 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
555 * pte bit, in which case this function is trivial. Secondly, an architecture
556 * may not have a spare pte bit, which requires a more complicated scheme,
557 * described below.
558 *
559 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
560 * special mapping (even if there are underlying and valid "struct pages").
561 * COWed pages of a VM_PFNMAP are always normal.
562 *
563 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
564 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
565 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
566 * mapping will always honor the rule
567 *
568 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
569 *
570 * And for normal mappings this is false.
571 *
572 * This restricts such mappings to be a linear translation from virtual address
573 * to pfn. To get around this restriction, we allow arbitrary mappings so long
574 * as the vma is not a COW mapping; in that case, we know that all ptes are
575 * special (because none can have been COWed).
576 *
577 *
578 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
579 *
580 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
581 * page" backing, however the difference is that _all_ pages with a struct
582 * page (that is, those where pfn_valid is true) are refcounted and considered
583 * normal pages by the VM. The only exception are zeropages, which are
584 * *never* refcounted.
585 *
586 * The disadvantage is that pages are refcounted (which can be slower and
587 * simply not an option for some PFNMAP users). The advantage is that we
588 * don't have to follow the strict linearity rule of PFNMAP mappings in
589 * order to support COWable mappings.
590 *
591 */
592struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 pte_t pte)
594{
595 unsigned long pfn = pte_pfn(pte);
596
597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 if (likely(!pte_special(pte)))
599 goto check_pfn;
600 if (vma->vm_ops && vma->vm_ops->find_special_page)
601 return vma->vm_ops->find_special_page(vma, addr);
602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 return NULL;
604 if (is_zero_pfn(pfn))
605 return NULL;
606 if (pte_devmap(pte))
607 /*
608 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
609 * and will have refcounts incremented on their struct pages
610 * when they are inserted into PTEs, thus they are safe to
611 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
612 * do not have refcounts. Example of legacy ZONE_DEVICE is
613 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
614 */
615 return NULL;
616
617 print_bad_pte(vma, addr, pte, NULL);
618 return NULL;
619 }
620
621 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
622
623 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
624 if (vma->vm_flags & VM_MIXEDMAP) {
625 if (!pfn_valid(pfn))
626 return NULL;
627 if (is_zero_pfn(pfn))
628 return NULL;
629 goto out;
630 } else {
631 unsigned long off;
632 off = (addr - vma->vm_start) >> PAGE_SHIFT;
633 if (pfn == vma->vm_pgoff + off)
634 return NULL;
635 if (!is_cow_mapping(vma->vm_flags))
636 return NULL;
637 }
638 }
639
640 if (is_zero_pfn(pfn))
641 return NULL;
642
643check_pfn:
644 if (unlikely(pfn > highest_memmap_pfn)) {
645 print_bad_pte(vma, addr, pte, NULL);
646 return NULL;
647 }
648
649 /*
650 * NOTE! We still have PageReserved() pages in the page tables.
651 * eg. VDSO mappings can cause them to exist.
652 */
653out:
654 VM_WARN_ON_ONCE(is_zero_pfn(pfn));
655 return pfn_to_page(pfn);
656}
657
658struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
659 pte_t pte)
660{
661 struct page *page = vm_normal_page(vma, addr, pte);
662
663 if (page)
664 return page_folio(page);
665 return NULL;
666}
667
668#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
669struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
670 pmd_t pmd)
671{
672 unsigned long pfn = pmd_pfn(pmd);
673
674 /* Currently it's only used for huge pfnmaps */
675 if (unlikely(pmd_special(pmd)))
676 return NULL;
677
678 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
679 if (vma->vm_flags & VM_MIXEDMAP) {
680 if (!pfn_valid(pfn))
681 return NULL;
682 goto out;
683 } else {
684 unsigned long off;
685 off = (addr - vma->vm_start) >> PAGE_SHIFT;
686 if (pfn == vma->vm_pgoff + off)
687 return NULL;
688 if (!is_cow_mapping(vma->vm_flags))
689 return NULL;
690 }
691 }
692
693 if (pmd_devmap(pmd))
694 return NULL;
695 if (is_huge_zero_pmd(pmd))
696 return NULL;
697 if (unlikely(pfn > highest_memmap_pfn))
698 return NULL;
699
700 /*
701 * NOTE! We still have PageReserved() pages in the page tables.
702 * eg. VDSO mappings can cause them to exist.
703 */
704out:
705 return pfn_to_page(pfn);
706}
707
708struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
709 unsigned long addr, pmd_t pmd)
710{
711 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
712
713 if (page)
714 return page_folio(page);
715 return NULL;
716}
717#endif
718
719static void restore_exclusive_pte(struct vm_area_struct *vma,
720 struct page *page, unsigned long address,
721 pte_t *ptep)
722{
723 struct folio *folio = page_folio(page);
724 pte_t orig_pte;
725 pte_t pte;
726 swp_entry_t entry;
727
728 orig_pte = ptep_get(ptep);
729 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
730 if (pte_swp_soft_dirty(orig_pte))
731 pte = pte_mksoft_dirty(pte);
732
733 entry = pte_to_swp_entry(orig_pte);
734 if (pte_swp_uffd_wp(orig_pte))
735 pte = pte_mkuffd_wp(pte);
736 else if (is_writable_device_exclusive_entry(entry))
737 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
738
739 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
740 PageAnonExclusive(page)), folio);
741
742 /*
743 * No need to take a page reference as one was already
744 * created when the swap entry was made.
745 */
746 if (folio_test_anon(folio))
747 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
748 else
749 /*
750 * Currently device exclusive access only supports anonymous
751 * memory so the entry shouldn't point to a filebacked page.
752 */
753 WARN_ON_ONCE(1);
754
755 set_pte_at(vma->vm_mm, address, ptep, pte);
756
757 /*
758 * No need to invalidate - it was non-present before. However
759 * secondary CPUs may have mappings that need invalidating.
760 */
761 update_mmu_cache(vma, address, ptep);
762}
763
764/*
765 * Tries to restore an exclusive pte if the page lock can be acquired without
766 * sleeping.
767 */
768static int
769try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
770 unsigned long addr)
771{
772 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
773 struct page *page = pfn_swap_entry_to_page(entry);
774
775 if (trylock_page(page)) {
776 restore_exclusive_pte(vma, page, addr, src_pte);
777 unlock_page(page);
778 return 0;
779 }
780
781 return -EBUSY;
782}
783
784/*
785 * copy one vm_area from one task to the other. Assumes the page tables
786 * already present in the new task to be cleared in the whole range
787 * covered by this vma.
788 */
789
790static unsigned long
791copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
792 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
793 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
794{
795 unsigned long vm_flags = dst_vma->vm_flags;
796 pte_t orig_pte = ptep_get(src_pte);
797 pte_t pte = orig_pte;
798 struct folio *folio;
799 struct page *page;
800 swp_entry_t entry = pte_to_swp_entry(orig_pte);
801
802 if (likely(!non_swap_entry(entry))) {
803 if (swap_duplicate(entry) < 0)
804 return -EIO;
805
806 /* make sure dst_mm is on swapoff's mmlist. */
807 if (unlikely(list_empty(&dst_mm->mmlist))) {
808 spin_lock(&mmlist_lock);
809 if (list_empty(&dst_mm->mmlist))
810 list_add(&dst_mm->mmlist,
811 &src_mm->mmlist);
812 spin_unlock(&mmlist_lock);
813 }
814 /* Mark the swap entry as shared. */
815 if (pte_swp_exclusive(orig_pte)) {
816 pte = pte_swp_clear_exclusive(orig_pte);
817 set_pte_at(src_mm, addr, src_pte, pte);
818 }
819 rss[MM_SWAPENTS]++;
820 } else if (is_migration_entry(entry)) {
821 folio = pfn_swap_entry_folio(entry);
822
823 rss[mm_counter(folio)]++;
824
825 if (!is_readable_migration_entry(entry) &&
826 is_cow_mapping(vm_flags)) {
827 /*
828 * COW mappings require pages in both parent and child
829 * to be set to read. A previously exclusive entry is
830 * now shared.
831 */
832 entry = make_readable_migration_entry(
833 swp_offset(entry));
834 pte = swp_entry_to_pte(entry);
835 if (pte_swp_soft_dirty(orig_pte))
836 pte = pte_swp_mksoft_dirty(pte);
837 if (pte_swp_uffd_wp(orig_pte))
838 pte = pte_swp_mkuffd_wp(pte);
839 set_pte_at(src_mm, addr, src_pte, pte);
840 }
841 } else if (is_device_private_entry(entry)) {
842 page = pfn_swap_entry_to_page(entry);
843 folio = page_folio(page);
844
845 /*
846 * Update rss count even for unaddressable pages, as
847 * they should treated just like normal pages in this
848 * respect.
849 *
850 * We will likely want to have some new rss counters
851 * for unaddressable pages, at some point. But for now
852 * keep things as they are.
853 */
854 folio_get(folio);
855 rss[mm_counter(folio)]++;
856 /* Cannot fail as these pages cannot get pinned. */
857 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
858
859 /*
860 * We do not preserve soft-dirty information, because so
861 * far, checkpoint/restore is the only feature that
862 * requires that. And checkpoint/restore does not work
863 * when a device driver is involved (you cannot easily
864 * save and restore device driver state).
865 */
866 if (is_writable_device_private_entry(entry) &&
867 is_cow_mapping(vm_flags)) {
868 entry = make_readable_device_private_entry(
869 swp_offset(entry));
870 pte = swp_entry_to_pte(entry);
871 if (pte_swp_uffd_wp(orig_pte))
872 pte = pte_swp_mkuffd_wp(pte);
873 set_pte_at(src_mm, addr, src_pte, pte);
874 }
875 } else if (is_device_exclusive_entry(entry)) {
876 /*
877 * Make device exclusive entries present by restoring the
878 * original entry then copying as for a present pte. Device
879 * exclusive entries currently only support private writable
880 * (ie. COW) mappings.
881 */
882 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
883 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
884 return -EBUSY;
885 return -ENOENT;
886 } else if (is_pte_marker_entry(entry)) {
887 pte_marker marker = copy_pte_marker(entry, dst_vma);
888
889 if (marker)
890 set_pte_at(dst_mm, addr, dst_pte,
891 make_pte_marker(marker));
892 return 0;
893 }
894 if (!userfaultfd_wp(dst_vma))
895 pte = pte_swp_clear_uffd_wp(pte);
896 set_pte_at(dst_mm, addr, dst_pte, pte);
897 return 0;
898}
899
900/*
901 * Copy a present and normal page.
902 *
903 * NOTE! The usual case is that this isn't required;
904 * instead, the caller can just increase the page refcount
905 * and re-use the pte the traditional way.
906 *
907 * And if we need a pre-allocated page but don't yet have
908 * one, return a negative error to let the preallocation
909 * code know so that it can do so outside the page table
910 * lock.
911 */
912static inline int
913copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
914 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
915 struct folio **prealloc, struct page *page)
916{
917 struct folio *new_folio;
918 pte_t pte;
919
920 new_folio = *prealloc;
921 if (!new_folio)
922 return -EAGAIN;
923
924 /*
925 * We have a prealloc page, all good! Take it
926 * over and copy the page & arm it.
927 */
928
929 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
930 return -EHWPOISON;
931
932 *prealloc = NULL;
933 __folio_mark_uptodate(new_folio);
934 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
935 folio_add_lru_vma(new_folio, dst_vma);
936 rss[MM_ANONPAGES]++;
937
938 /* All done, just insert the new page copy in the child */
939 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
940 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
941 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
942 /* Uffd-wp needs to be delivered to dest pte as well */
943 pte = pte_mkuffd_wp(pte);
944 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
945 return 0;
946}
947
948static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
949 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
950 pte_t pte, unsigned long addr, int nr)
951{
952 struct mm_struct *src_mm = src_vma->vm_mm;
953
954 /* If it's a COW mapping, write protect it both processes. */
955 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
956 wrprotect_ptes(src_mm, addr, src_pte, nr);
957 pte = pte_wrprotect(pte);
958 }
959
960 /* If it's a shared mapping, mark it clean in the child. */
961 if (src_vma->vm_flags & VM_SHARED)
962 pte = pte_mkclean(pte);
963 pte = pte_mkold(pte);
964
965 if (!userfaultfd_wp(dst_vma))
966 pte = pte_clear_uffd_wp(pte);
967
968 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
969}
970
971/*
972 * Copy one present PTE, trying to batch-process subsequent PTEs that map
973 * consecutive pages of the same folio by copying them as well.
974 *
975 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
976 * Otherwise, returns the number of copied PTEs (at least 1).
977 */
978static inline int
979copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
980 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
981 int max_nr, int *rss, struct folio **prealloc)
982{
983 struct page *page;
984 struct folio *folio;
985 bool any_writable;
986 fpb_t flags = 0;
987 int err, nr;
988
989 page = vm_normal_page(src_vma, addr, pte);
990 if (unlikely(!page))
991 goto copy_pte;
992
993 folio = page_folio(page);
994
995 /*
996 * If we likely have to copy, just don't bother with batching. Make
997 * sure that the common "small folio" case is as fast as possible
998 * by keeping the batching logic separate.
999 */
1000 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1001 if (src_vma->vm_flags & VM_SHARED)
1002 flags |= FPB_IGNORE_DIRTY;
1003 if (!vma_soft_dirty_enabled(src_vma))
1004 flags |= FPB_IGNORE_SOFT_DIRTY;
1005
1006 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1007 &any_writable, NULL, NULL);
1008 folio_ref_add(folio, nr);
1009 if (folio_test_anon(folio)) {
1010 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1011 nr, src_vma))) {
1012 folio_ref_sub(folio, nr);
1013 return -EAGAIN;
1014 }
1015 rss[MM_ANONPAGES] += nr;
1016 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1017 } else {
1018 folio_dup_file_rmap_ptes(folio, page, nr);
1019 rss[mm_counter_file(folio)] += nr;
1020 }
1021 if (any_writable)
1022 pte = pte_mkwrite(pte, src_vma);
1023 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1024 addr, nr);
1025 return nr;
1026 }
1027
1028 folio_get(folio);
1029 if (folio_test_anon(folio)) {
1030 /*
1031 * If this page may have been pinned by the parent process,
1032 * copy the page immediately for the child so that we'll always
1033 * guarantee the pinned page won't be randomly replaced in the
1034 * future.
1035 */
1036 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1037 /* Page may be pinned, we have to copy. */
1038 folio_put(folio);
1039 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1040 addr, rss, prealloc, page);
1041 return err ? err : 1;
1042 }
1043 rss[MM_ANONPAGES]++;
1044 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1045 } else {
1046 folio_dup_file_rmap_pte(folio, page);
1047 rss[mm_counter_file(folio)]++;
1048 }
1049
1050copy_pte:
1051 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1052 return 1;
1053}
1054
1055static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1056 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1057{
1058 struct folio *new_folio;
1059
1060 if (need_zero)
1061 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1062 else
1063 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1064
1065 if (!new_folio)
1066 return NULL;
1067
1068 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1069 folio_put(new_folio);
1070 return NULL;
1071 }
1072 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1073
1074 return new_folio;
1075}
1076
1077static int
1078copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1080 unsigned long end)
1081{
1082 struct mm_struct *dst_mm = dst_vma->vm_mm;
1083 struct mm_struct *src_mm = src_vma->vm_mm;
1084 pte_t *orig_src_pte, *orig_dst_pte;
1085 pte_t *src_pte, *dst_pte;
1086 pmd_t dummy_pmdval;
1087 pte_t ptent;
1088 spinlock_t *src_ptl, *dst_ptl;
1089 int progress, max_nr, ret = 0;
1090 int rss[NR_MM_COUNTERS];
1091 swp_entry_t entry = (swp_entry_t){0};
1092 struct folio *prealloc = NULL;
1093 int nr;
1094
1095again:
1096 progress = 0;
1097 init_rss_vec(rss);
1098
1099 /*
1100 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1101 * error handling here, assume that exclusive mmap_lock on dst and src
1102 * protects anon from unexpected THP transitions; with shmem and file
1103 * protected by mmap_lock-less collapse skipping areas with anon_vma
1104 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1105 * can remove such assumptions later, but this is good enough for now.
1106 */
1107 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1108 if (!dst_pte) {
1109 ret = -ENOMEM;
1110 goto out;
1111 }
1112
1113 /*
1114 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1115 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1116 * the PTE page is stable, and there is no need to get pmdval and do
1117 * pmd_same() check.
1118 */
1119 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1120 &src_ptl);
1121 if (!src_pte) {
1122 pte_unmap_unlock(dst_pte, dst_ptl);
1123 /* ret == 0 */
1124 goto out;
1125 }
1126 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1127 orig_src_pte = src_pte;
1128 orig_dst_pte = dst_pte;
1129 arch_enter_lazy_mmu_mode();
1130
1131 do {
1132 nr = 1;
1133
1134 /*
1135 * We are holding two locks at this point - either of them
1136 * could generate latencies in another task on another CPU.
1137 */
1138 if (progress >= 32) {
1139 progress = 0;
1140 if (need_resched() ||
1141 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1142 break;
1143 }
1144 ptent = ptep_get(src_pte);
1145 if (pte_none(ptent)) {
1146 progress++;
1147 continue;
1148 }
1149 if (unlikely(!pte_present(ptent))) {
1150 ret = copy_nonpresent_pte(dst_mm, src_mm,
1151 dst_pte, src_pte,
1152 dst_vma, src_vma,
1153 addr, rss);
1154 if (ret == -EIO) {
1155 entry = pte_to_swp_entry(ptep_get(src_pte));
1156 break;
1157 } else if (ret == -EBUSY) {
1158 break;
1159 } else if (!ret) {
1160 progress += 8;
1161 continue;
1162 }
1163 ptent = ptep_get(src_pte);
1164 VM_WARN_ON_ONCE(!pte_present(ptent));
1165
1166 /*
1167 * Device exclusive entry restored, continue by copying
1168 * the now present pte.
1169 */
1170 WARN_ON_ONCE(ret != -ENOENT);
1171 }
1172 /* copy_present_ptes() will clear `*prealloc' if consumed */
1173 max_nr = (end - addr) / PAGE_SIZE;
1174 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1175 ptent, addr, max_nr, rss, &prealloc);
1176 /*
1177 * If we need a pre-allocated page for this pte, drop the
1178 * locks, allocate, and try again.
1179 * If copy failed due to hwpoison in source page, break out.
1180 */
1181 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1182 break;
1183 if (unlikely(prealloc)) {
1184 /*
1185 * pre-alloc page cannot be reused by next time so as
1186 * to strictly follow mempolicy (e.g., alloc_page_vma()
1187 * will allocate page according to address). This
1188 * could only happen if one pinned pte changed.
1189 */
1190 folio_put(prealloc);
1191 prealloc = NULL;
1192 }
1193 nr = ret;
1194 progress += 8 * nr;
1195 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1196 addr != end);
1197
1198 arch_leave_lazy_mmu_mode();
1199 pte_unmap_unlock(orig_src_pte, src_ptl);
1200 add_mm_rss_vec(dst_mm, rss);
1201 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1202 cond_resched();
1203
1204 if (ret == -EIO) {
1205 VM_WARN_ON_ONCE(!entry.val);
1206 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1207 ret = -ENOMEM;
1208 goto out;
1209 }
1210 entry.val = 0;
1211 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1212 goto out;
1213 } else if (ret == -EAGAIN) {
1214 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1215 if (!prealloc)
1216 return -ENOMEM;
1217 } else if (ret < 0) {
1218 VM_WARN_ON_ONCE(1);
1219 }
1220
1221 /* We've captured and resolved the error. Reset, try again. */
1222 ret = 0;
1223
1224 if (addr != end)
1225 goto again;
1226out:
1227 if (unlikely(prealloc))
1228 folio_put(prealloc);
1229 return ret;
1230}
1231
1232static inline int
1233copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1234 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1235 unsigned long end)
1236{
1237 struct mm_struct *dst_mm = dst_vma->vm_mm;
1238 struct mm_struct *src_mm = src_vma->vm_mm;
1239 pmd_t *src_pmd, *dst_pmd;
1240 unsigned long next;
1241
1242 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1243 if (!dst_pmd)
1244 return -ENOMEM;
1245 src_pmd = pmd_offset(src_pud, addr);
1246 do {
1247 next = pmd_addr_end(addr, end);
1248 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1249 || pmd_devmap(*src_pmd)) {
1250 int err;
1251 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1252 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1253 addr, dst_vma, src_vma);
1254 if (err == -ENOMEM)
1255 return -ENOMEM;
1256 if (!err)
1257 continue;
1258 /* fall through */
1259 }
1260 if (pmd_none_or_clear_bad(src_pmd))
1261 continue;
1262 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1263 addr, next))
1264 return -ENOMEM;
1265 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1266 return 0;
1267}
1268
1269static inline int
1270copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1271 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1272 unsigned long end)
1273{
1274 struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 struct mm_struct *src_mm = src_vma->vm_mm;
1276 pud_t *src_pud, *dst_pud;
1277 unsigned long next;
1278
1279 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1280 if (!dst_pud)
1281 return -ENOMEM;
1282 src_pud = pud_offset(src_p4d, addr);
1283 do {
1284 next = pud_addr_end(addr, end);
1285 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1286 int err;
1287
1288 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1289 err = copy_huge_pud(dst_mm, src_mm,
1290 dst_pud, src_pud, addr, src_vma);
1291 if (err == -ENOMEM)
1292 return -ENOMEM;
1293 if (!err)
1294 continue;
1295 /* fall through */
1296 }
1297 if (pud_none_or_clear_bad(src_pud))
1298 continue;
1299 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1300 addr, next))
1301 return -ENOMEM;
1302 } while (dst_pud++, src_pud++, addr = next, addr != end);
1303 return 0;
1304}
1305
1306static inline int
1307copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1308 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1309 unsigned long end)
1310{
1311 struct mm_struct *dst_mm = dst_vma->vm_mm;
1312 p4d_t *src_p4d, *dst_p4d;
1313 unsigned long next;
1314
1315 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1316 if (!dst_p4d)
1317 return -ENOMEM;
1318 src_p4d = p4d_offset(src_pgd, addr);
1319 do {
1320 next = p4d_addr_end(addr, end);
1321 if (p4d_none_or_clear_bad(src_p4d))
1322 continue;
1323 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1324 addr, next))
1325 return -ENOMEM;
1326 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1327 return 0;
1328}
1329
1330/*
1331 * Return true if the vma needs to copy the pgtable during this fork(). Return
1332 * false when we can speed up fork() by allowing lazy page faults later until
1333 * when the child accesses the memory range.
1334 */
1335static bool
1336vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1337{
1338 /*
1339 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1340 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1341 * contains uffd-wp protection information, that's something we can't
1342 * retrieve from page cache, and skip copying will lose those info.
1343 */
1344 if (userfaultfd_wp(dst_vma))
1345 return true;
1346
1347 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1348 return true;
1349
1350 if (src_vma->anon_vma)
1351 return true;
1352
1353 /*
1354 * Don't copy ptes where a page fault will fill them correctly. Fork
1355 * becomes much lighter when there are big shared or private readonly
1356 * mappings. The tradeoff is that copy_page_range is more efficient
1357 * than faulting.
1358 */
1359 return false;
1360}
1361
1362int
1363copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1364{
1365 pgd_t *src_pgd, *dst_pgd;
1366 unsigned long next;
1367 unsigned long addr = src_vma->vm_start;
1368 unsigned long end = src_vma->vm_end;
1369 struct mm_struct *dst_mm = dst_vma->vm_mm;
1370 struct mm_struct *src_mm = src_vma->vm_mm;
1371 struct mmu_notifier_range range;
1372 bool is_cow;
1373 int ret;
1374
1375 if (!vma_needs_copy(dst_vma, src_vma))
1376 return 0;
1377
1378 if (is_vm_hugetlb_page(src_vma))
1379 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1380
1381 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1382 /*
1383 * We do not free on error cases below as remove_vma
1384 * gets called on error from higher level routine
1385 */
1386 ret = track_pfn_copy(src_vma);
1387 if (ret)
1388 return ret;
1389 }
1390
1391 /*
1392 * We need to invalidate the secondary MMU mappings only when
1393 * there could be a permission downgrade on the ptes of the
1394 * parent mm. And a permission downgrade will only happen if
1395 * is_cow_mapping() returns true.
1396 */
1397 is_cow = is_cow_mapping(src_vma->vm_flags);
1398
1399 if (is_cow) {
1400 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1401 0, src_mm, addr, end);
1402 mmu_notifier_invalidate_range_start(&range);
1403 /*
1404 * Disabling preemption is not needed for the write side, as
1405 * the read side doesn't spin, but goes to the mmap_lock.
1406 *
1407 * Use the raw variant of the seqcount_t write API to avoid
1408 * lockdep complaining about preemptibility.
1409 */
1410 vma_assert_write_locked(src_vma);
1411 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1412 }
1413
1414 ret = 0;
1415 dst_pgd = pgd_offset(dst_mm, addr);
1416 src_pgd = pgd_offset(src_mm, addr);
1417 do {
1418 next = pgd_addr_end(addr, end);
1419 if (pgd_none_or_clear_bad(src_pgd))
1420 continue;
1421 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1422 addr, next))) {
1423 untrack_pfn_clear(dst_vma);
1424 ret = -ENOMEM;
1425 break;
1426 }
1427 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1428
1429 if (is_cow) {
1430 raw_write_seqcount_end(&src_mm->write_protect_seq);
1431 mmu_notifier_invalidate_range_end(&range);
1432 }
1433 return ret;
1434}
1435
1436/* Whether we should zap all COWed (private) pages too */
1437static inline bool should_zap_cows(struct zap_details *details)
1438{
1439 /* By default, zap all pages */
1440 if (!details || details->reclaim_pt)
1441 return true;
1442
1443 /* Or, we zap COWed pages only if the caller wants to */
1444 return details->even_cows;
1445}
1446
1447/* Decides whether we should zap this folio with the folio pointer specified */
1448static inline bool should_zap_folio(struct zap_details *details,
1449 struct folio *folio)
1450{
1451 /* If we can make a decision without *folio.. */
1452 if (should_zap_cows(details))
1453 return true;
1454
1455 /* Otherwise we should only zap non-anon folios */
1456 return !folio_test_anon(folio);
1457}
1458
1459static inline bool zap_drop_markers(struct zap_details *details)
1460{
1461 if (!details)
1462 return false;
1463
1464 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1465}
1466
1467/*
1468 * This function makes sure that we'll replace the none pte with an uffd-wp
1469 * swap special pte marker when necessary. Must be with the pgtable lock held.
1470 *
1471 * Returns true if uffd-wp ptes was installed, false otherwise.
1472 */
1473static inline bool
1474zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1475 unsigned long addr, pte_t *pte, int nr,
1476 struct zap_details *details, pte_t pteval)
1477{
1478 bool was_installed = false;
1479
1480#ifdef CONFIG_PTE_MARKER_UFFD_WP
1481 /* Zap on anonymous always means dropping everything */
1482 if (vma_is_anonymous(vma))
1483 return false;
1484
1485 if (zap_drop_markers(details))
1486 return false;
1487
1488 for (;;) {
1489 /* the PFN in the PTE is irrelevant. */
1490 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1491 was_installed = true;
1492 if (--nr == 0)
1493 break;
1494 pte++;
1495 addr += PAGE_SIZE;
1496 }
1497#endif
1498 return was_installed;
1499}
1500
1501static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1502 struct vm_area_struct *vma, struct folio *folio,
1503 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1504 unsigned long addr, struct zap_details *details, int *rss,
1505 bool *force_flush, bool *force_break, bool *any_skipped)
1506{
1507 struct mm_struct *mm = tlb->mm;
1508 bool delay_rmap = false;
1509
1510 if (!folio_test_anon(folio)) {
1511 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1512 if (pte_dirty(ptent)) {
1513 folio_mark_dirty(folio);
1514 if (tlb_delay_rmap(tlb)) {
1515 delay_rmap = true;
1516 *force_flush = true;
1517 }
1518 }
1519 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1520 folio_mark_accessed(folio);
1521 rss[mm_counter(folio)] -= nr;
1522 } else {
1523 /* We don't need up-to-date accessed/dirty bits. */
1524 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1525 rss[MM_ANONPAGES] -= nr;
1526 }
1527 /* Checking a single PTE in a batch is sufficient. */
1528 arch_check_zapped_pte(vma, ptent);
1529 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1530 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1531 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1532 nr, details, ptent);
1533
1534 if (!delay_rmap) {
1535 folio_remove_rmap_ptes(folio, page, nr, vma);
1536
1537 if (unlikely(folio_mapcount(folio) < 0))
1538 print_bad_pte(vma, addr, ptent, page);
1539 }
1540 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1541 *force_flush = true;
1542 *force_break = true;
1543 }
1544}
1545
1546/*
1547 * Zap or skip at least one present PTE, trying to batch-process subsequent
1548 * PTEs that map consecutive pages of the same folio.
1549 *
1550 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1551 */
1552static inline int zap_present_ptes(struct mmu_gather *tlb,
1553 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1554 unsigned int max_nr, unsigned long addr,
1555 struct zap_details *details, int *rss, bool *force_flush,
1556 bool *force_break, bool *any_skipped)
1557{
1558 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1559 struct mm_struct *mm = tlb->mm;
1560 struct folio *folio;
1561 struct page *page;
1562 int nr;
1563
1564 page = vm_normal_page(vma, addr, ptent);
1565 if (!page) {
1566 /* We don't need up-to-date accessed/dirty bits. */
1567 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1568 arch_check_zapped_pte(vma, ptent);
1569 tlb_remove_tlb_entry(tlb, pte, addr);
1570 if (userfaultfd_pte_wp(vma, ptent))
1571 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1572 pte, 1, details, ptent);
1573 ksm_might_unmap_zero_page(mm, ptent);
1574 return 1;
1575 }
1576
1577 folio = page_folio(page);
1578 if (unlikely(!should_zap_folio(details, folio))) {
1579 *any_skipped = true;
1580 return 1;
1581 }
1582
1583 /*
1584 * Make sure that the common "small folio" case is as fast as possible
1585 * by keeping the batching logic separate.
1586 */
1587 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1588 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1589 NULL, NULL, NULL);
1590
1591 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1592 addr, details, rss, force_flush,
1593 force_break, any_skipped);
1594 return nr;
1595 }
1596 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1597 details, rss, force_flush, force_break, any_skipped);
1598 return 1;
1599}
1600
1601static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1602 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1603 unsigned int max_nr, unsigned long addr,
1604 struct zap_details *details, int *rss, bool *any_skipped)
1605{
1606 swp_entry_t entry;
1607 int nr = 1;
1608
1609 *any_skipped = true;
1610 entry = pte_to_swp_entry(ptent);
1611 if (is_device_private_entry(entry) ||
1612 is_device_exclusive_entry(entry)) {
1613 struct page *page = pfn_swap_entry_to_page(entry);
1614 struct folio *folio = page_folio(page);
1615
1616 if (unlikely(!should_zap_folio(details, folio)))
1617 return 1;
1618 /*
1619 * Both device private/exclusive mappings should only
1620 * work with anonymous page so far, so we don't need to
1621 * consider uffd-wp bit when zap. For more information,
1622 * see zap_install_uffd_wp_if_needed().
1623 */
1624 WARN_ON_ONCE(!vma_is_anonymous(vma));
1625 rss[mm_counter(folio)]--;
1626 if (is_device_private_entry(entry))
1627 folio_remove_rmap_pte(folio, page, vma);
1628 folio_put(folio);
1629 } else if (!non_swap_entry(entry)) {
1630 /* Genuine swap entries, hence a private anon pages */
1631 if (!should_zap_cows(details))
1632 return 1;
1633
1634 nr = swap_pte_batch(pte, max_nr, ptent);
1635 rss[MM_SWAPENTS] -= nr;
1636 free_swap_and_cache_nr(entry, nr);
1637 } else if (is_migration_entry(entry)) {
1638 struct folio *folio = pfn_swap_entry_folio(entry);
1639
1640 if (!should_zap_folio(details, folio))
1641 return 1;
1642 rss[mm_counter(folio)]--;
1643 } else if (pte_marker_entry_uffd_wp(entry)) {
1644 /*
1645 * For anon: always drop the marker; for file: only
1646 * drop the marker if explicitly requested.
1647 */
1648 if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1649 return 1;
1650 } else if (is_guard_swp_entry(entry)) {
1651 /*
1652 * Ordinary zapping should not remove guard PTE
1653 * markers. Only do so if we should remove PTE markers
1654 * in general.
1655 */
1656 if (!zap_drop_markers(details))
1657 return 1;
1658 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) {
1659 if (!should_zap_cows(details))
1660 return 1;
1661 } else {
1662 /* We should have covered all the swap entry types */
1663 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1664 WARN_ON_ONCE(1);
1665 }
1666 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1667 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1668
1669 return nr;
1670}
1671
1672static inline int do_zap_pte_range(struct mmu_gather *tlb,
1673 struct vm_area_struct *vma, pte_t *pte,
1674 unsigned long addr, unsigned long end,
1675 struct zap_details *details, int *rss,
1676 bool *force_flush, bool *force_break,
1677 bool *any_skipped)
1678{
1679 pte_t ptent = ptep_get(pte);
1680 int max_nr = (end - addr) / PAGE_SIZE;
1681 int nr = 0;
1682
1683 /* Skip all consecutive none ptes */
1684 if (pte_none(ptent)) {
1685 for (nr = 1; nr < max_nr; nr++) {
1686 ptent = ptep_get(pte + nr);
1687 if (!pte_none(ptent))
1688 break;
1689 }
1690 max_nr -= nr;
1691 if (!max_nr)
1692 return nr;
1693 pte += nr;
1694 addr += nr * PAGE_SIZE;
1695 }
1696
1697 if (pte_present(ptent))
1698 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1699 details, rss, force_flush, force_break,
1700 any_skipped);
1701 else
1702 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1703 details, rss, any_skipped);
1704
1705 return nr;
1706}
1707
1708static unsigned long zap_pte_range(struct mmu_gather *tlb,
1709 struct vm_area_struct *vma, pmd_t *pmd,
1710 unsigned long addr, unsigned long end,
1711 struct zap_details *details)
1712{
1713 bool force_flush = false, force_break = false;
1714 struct mm_struct *mm = tlb->mm;
1715 int rss[NR_MM_COUNTERS];
1716 spinlock_t *ptl;
1717 pte_t *start_pte;
1718 pte_t *pte;
1719 pmd_t pmdval;
1720 unsigned long start = addr;
1721 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
1722 bool direct_reclaim = true;
1723 int nr;
1724
1725retry:
1726 tlb_change_page_size(tlb, PAGE_SIZE);
1727 init_rss_vec(rss);
1728 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1729 if (!pte)
1730 return addr;
1731
1732 flush_tlb_batched_pending(mm);
1733 arch_enter_lazy_mmu_mode();
1734 do {
1735 bool any_skipped = false;
1736
1737 if (need_resched()) {
1738 direct_reclaim = false;
1739 break;
1740 }
1741
1742 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1743 &force_flush, &force_break, &any_skipped);
1744 if (any_skipped)
1745 can_reclaim_pt = false;
1746 if (unlikely(force_break)) {
1747 addr += nr * PAGE_SIZE;
1748 direct_reclaim = false;
1749 break;
1750 }
1751 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1752
1753 /*
1754 * Fast path: try to hold the pmd lock and unmap the PTE page.
1755 *
1756 * If the pte lock was released midway (retry case), or if the attempt
1757 * to hold the pmd lock failed, then we need to recheck all pte entries
1758 * to ensure they are still none, thereby preventing the pte entries
1759 * from being repopulated by another thread.
1760 */
1761 if (can_reclaim_pt && direct_reclaim && addr == end)
1762 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
1763
1764 add_mm_rss_vec(mm, rss);
1765 arch_leave_lazy_mmu_mode();
1766
1767 /* Do the actual TLB flush before dropping ptl */
1768 if (force_flush) {
1769 tlb_flush_mmu_tlbonly(tlb);
1770 tlb_flush_rmaps(tlb, vma);
1771 }
1772 pte_unmap_unlock(start_pte, ptl);
1773
1774 /*
1775 * If we forced a TLB flush (either due to running out of
1776 * batch buffers or because we needed to flush dirty TLB
1777 * entries before releasing the ptl), free the batched
1778 * memory too. Come back again if we didn't do everything.
1779 */
1780 if (force_flush)
1781 tlb_flush_mmu(tlb);
1782
1783 if (addr != end) {
1784 cond_resched();
1785 force_flush = false;
1786 force_break = false;
1787 goto retry;
1788 }
1789
1790 if (can_reclaim_pt) {
1791 if (direct_reclaim)
1792 free_pte(mm, start, tlb, pmdval);
1793 else
1794 try_to_free_pte(mm, pmd, start, tlb);
1795 }
1796
1797 return addr;
1798}
1799
1800static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1801 struct vm_area_struct *vma, pud_t *pud,
1802 unsigned long addr, unsigned long end,
1803 struct zap_details *details)
1804{
1805 pmd_t *pmd;
1806 unsigned long next;
1807
1808 pmd = pmd_offset(pud, addr);
1809 do {
1810 next = pmd_addr_end(addr, end);
1811 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1812 if (next - addr != HPAGE_PMD_SIZE)
1813 __split_huge_pmd(vma, pmd, addr, false, NULL);
1814 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1815 addr = next;
1816 continue;
1817 }
1818 /* fall through */
1819 } else if (details && details->single_folio &&
1820 folio_test_pmd_mappable(details->single_folio) &&
1821 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1822 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1823 /*
1824 * Take and drop THP pmd lock so that we cannot return
1825 * prematurely, while zap_huge_pmd() has cleared *pmd,
1826 * but not yet decremented compound_mapcount().
1827 */
1828 spin_unlock(ptl);
1829 }
1830 if (pmd_none(*pmd)) {
1831 addr = next;
1832 continue;
1833 }
1834 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1835 if (addr != next)
1836 pmd--;
1837 } while (pmd++, cond_resched(), addr != end);
1838
1839 return addr;
1840}
1841
1842static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1843 struct vm_area_struct *vma, p4d_t *p4d,
1844 unsigned long addr, unsigned long end,
1845 struct zap_details *details)
1846{
1847 pud_t *pud;
1848 unsigned long next;
1849
1850 pud = pud_offset(p4d, addr);
1851 do {
1852 next = pud_addr_end(addr, end);
1853 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1854 if (next - addr != HPAGE_PUD_SIZE) {
1855 mmap_assert_locked(tlb->mm);
1856 split_huge_pud(vma, pud, addr);
1857 } else if (zap_huge_pud(tlb, vma, pud, addr))
1858 goto next;
1859 /* fall through */
1860 }
1861 if (pud_none_or_clear_bad(pud))
1862 continue;
1863 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1864next:
1865 cond_resched();
1866 } while (pud++, addr = next, addr != end);
1867
1868 return addr;
1869}
1870
1871static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1872 struct vm_area_struct *vma, pgd_t *pgd,
1873 unsigned long addr, unsigned long end,
1874 struct zap_details *details)
1875{
1876 p4d_t *p4d;
1877 unsigned long next;
1878
1879 p4d = p4d_offset(pgd, addr);
1880 do {
1881 next = p4d_addr_end(addr, end);
1882 if (p4d_none_or_clear_bad(p4d))
1883 continue;
1884 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1885 } while (p4d++, addr = next, addr != end);
1886
1887 return addr;
1888}
1889
1890void unmap_page_range(struct mmu_gather *tlb,
1891 struct vm_area_struct *vma,
1892 unsigned long addr, unsigned long end,
1893 struct zap_details *details)
1894{
1895 pgd_t *pgd;
1896 unsigned long next;
1897
1898 BUG_ON(addr >= end);
1899 tlb_start_vma(tlb, vma);
1900 pgd = pgd_offset(vma->vm_mm, addr);
1901 do {
1902 next = pgd_addr_end(addr, end);
1903 if (pgd_none_or_clear_bad(pgd))
1904 continue;
1905 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1906 } while (pgd++, addr = next, addr != end);
1907 tlb_end_vma(tlb, vma);
1908}
1909
1910
1911static void unmap_single_vma(struct mmu_gather *tlb,
1912 struct vm_area_struct *vma, unsigned long start_addr,
1913 unsigned long end_addr,
1914 struct zap_details *details, bool mm_wr_locked)
1915{
1916 unsigned long start = max(vma->vm_start, start_addr);
1917 unsigned long end;
1918
1919 if (start >= vma->vm_end)
1920 return;
1921 end = min(vma->vm_end, end_addr);
1922 if (end <= vma->vm_start)
1923 return;
1924
1925 if (vma->vm_file)
1926 uprobe_munmap(vma, start, end);
1927
1928 if (unlikely(vma->vm_flags & VM_PFNMAP))
1929 untrack_pfn(vma, 0, 0, mm_wr_locked);
1930
1931 if (start != end) {
1932 if (unlikely(is_vm_hugetlb_page(vma))) {
1933 /*
1934 * It is undesirable to test vma->vm_file as it
1935 * should be non-null for valid hugetlb area.
1936 * However, vm_file will be NULL in the error
1937 * cleanup path of mmap_region. When
1938 * hugetlbfs ->mmap method fails,
1939 * mmap_region() nullifies vma->vm_file
1940 * before calling this function to clean up.
1941 * Since no pte has actually been setup, it is
1942 * safe to do nothing in this case.
1943 */
1944 if (vma->vm_file) {
1945 zap_flags_t zap_flags = details ?
1946 details->zap_flags : 0;
1947 __unmap_hugepage_range(tlb, vma, start, end,
1948 NULL, zap_flags);
1949 }
1950 } else
1951 unmap_page_range(tlb, vma, start, end, details);
1952 }
1953}
1954
1955/**
1956 * unmap_vmas - unmap a range of memory covered by a list of vma's
1957 * @tlb: address of the caller's struct mmu_gather
1958 * @mas: the maple state
1959 * @vma: the starting vma
1960 * @start_addr: virtual address at which to start unmapping
1961 * @end_addr: virtual address at which to end unmapping
1962 * @tree_end: The maximum index to check
1963 * @mm_wr_locked: lock flag
1964 *
1965 * Unmap all pages in the vma list.
1966 *
1967 * Only addresses between `start' and `end' will be unmapped.
1968 *
1969 * The VMA list must be sorted in ascending virtual address order.
1970 *
1971 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1972 * range after unmap_vmas() returns. So the only responsibility here is to
1973 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1974 * drops the lock and schedules.
1975 */
1976void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1977 struct vm_area_struct *vma, unsigned long start_addr,
1978 unsigned long end_addr, unsigned long tree_end,
1979 bool mm_wr_locked)
1980{
1981 struct mmu_notifier_range range;
1982 struct zap_details details = {
1983 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1984 /* Careful - we need to zap private pages too! */
1985 .even_cows = true,
1986 };
1987
1988 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1989 start_addr, end_addr);
1990 mmu_notifier_invalidate_range_start(&range);
1991 do {
1992 unsigned long start = start_addr;
1993 unsigned long end = end_addr;
1994 hugetlb_zap_begin(vma, &start, &end);
1995 unmap_single_vma(tlb, vma, start, end, &details,
1996 mm_wr_locked);
1997 hugetlb_zap_end(vma, &details);
1998 vma = mas_find(mas, tree_end - 1);
1999 } while (vma && likely(!xa_is_zero(vma)));
2000 mmu_notifier_invalidate_range_end(&range);
2001}
2002
2003/**
2004 * zap_page_range_single - remove user pages in a given range
2005 * @vma: vm_area_struct holding the applicable pages
2006 * @address: starting address of pages to zap
2007 * @size: number of bytes to zap
2008 * @details: details of shared cache invalidation
2009 *
2010 * The range must fit into one VMA.
2011 */
2012void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2013 unsigned long size, struct zap_details *details)
2014{
2015 const unsigned long end = address + size;
2016 struct mmu_notifier_range range;
2017 struct mmu_gather tlb;
2018
2019 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2020 address, end);
2021 hugetlb_zap_begin(vma, &range.start, &range.end);
2022 tlb_gather_mmu(&tlb, vma->vm_mm);
2023 update_hiwater_rss(vma->vm_mm);
2024 mmu_notifier_invalidate_range_start(&range);
2025 /*
2026 * unmap 'address-end' not 'range.start-range.end' as range
2027 * could have been expanded for hugetlb pmd sharing.
2028 */
2029 unmap_single_vma(&tlb, vma, address, end, details, false);
2030 mmu_notifier_invalidate_range_end(&range);
2031 tlb_finish_mmu(&tlb);
2032 hugetlb_zap_end(vma, details);
2033}
2034
2035/**
2036 * zap_vma_ptes - remove ptes mapping the vma
2037 * @vma: vm_area_struct holding ptes to be zapped
2038 * @address: starting address of pages to zap
2039 * @size: number of bytes to zap
2040 *
2041 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2042 *
2043 * The entire address range must be fully contained within the vma.
2044 *
2045 */
2046void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2047 unsigned long size)
2048{
2049 if (!range_in_vma(vma, address, address + size) ||
2050 !(vma->vm_flags & VM_PFNMAP))
2051 return;
2052
2053 zap_page_range_single(vma, address, size, NULL);
2054}
2055EXPORT_SYMBOL_GPL(zap_vma_ptes);
2056
2057static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2058{
2059 pgd_t *pgd;
2060 p4d_t *p4d;
2061 pud_t *pud;
2062 pmd_t *pmd;
2063
2064 pgd = pgd_offset(mm, addr);
2065 p4d = p4d_alloc(mm, pgd, addr);
2066 if (!p4d)
2067 return NULL;
2068 pud = pud_alloc(mm, p4d, addr);
2069 if (!pud)
2070 return NULL;
2071 pmd = pmd_alloc(mm, pud, addr);
2072 if (!pmd)
2073 return NULL;
2074
2075 VM_BUG_ON(pmd_trans_huge(*pmd));
2076 return pmd;
2077}
2078
2079pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2080 spinlock_t **ptl)
2081{
2082 pmd_t *pmd = walk_to_pmd(mm, addr);
2083
2084 if (!pmd)
2085 return NULL;
2086 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2087}
2088
2089static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2090{
2091 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2092 /*
2093 * Whoever wants to forbid the zeropage after some zeropages
2094 * might already have been mapped has to scan the page tables and
2095 * bail out on any zeropages. Zeropages in COW mappings can
2096 * be unshared using FAULT_FLAG_UNSHARE faults.
2097 */
2098 if (mm_forbids_zeropage(vma->vm_mm))
2099 return false;
2100 /* zeropages in COW mappings are common and unproblematic. */
2101 if (is_cow_mapping(vma->vm_flags))
2102 return true;
2103 /* Mappings that do not allow for writable PTEs are unproblematic. */
2104 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2105 return true;
2106 /*
2107 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2108 * find the shared zeropage and longterm-pin it, which would
2109 * be problematic as soon as the zeropage gets replaced by a different
2110 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2111 * now differ to what GUP looked up. FSDAX is incompatible to
2112 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2113 * check_vma_flags).
2114 */
2115 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2116 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2117}
2118
2119static int validate_page_before_insert(struct vm_area_struct *vma,
2120 struct page *page)
2121{
2122 struct folio *folio = page_folio(page);
2123
2124 if (!folio_ref_count(folio))
2125 return -EINVAL;
2126 if (unlikely(is_zero_folio(folio))) {
2127 if (!vm_mixed_zeropage_allowed(vma))
2128 return -EINVAL;
2129 return 0;
2130 }
2131 if (folio_test_anon(folio) || folio_test_slab(folio) ||
2132 page_has_type(page))
2133 return -EINVAL;
2134 flush_dcache_folio(folio);
2135 return 0;
2136}
2137
2138static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2139 unsigned long addr, struct page *page, pgprot_t prot)
2140{
2141 struct folio *folio = page_folio(page);
2142 pte_t pteval;
2143
2144 if (!pte_none(ptep_get(pte)))
2145 return -EBUSY;
2146 /* Ok, finally just insert the thing.. */
2147 pteval = mk_pte(page, prot);
2148 if (unlikely(is_zero_folio(folio))) {
2149 pteval = pte_mkspecial(pteval);
2150 } else {
2151 folio_get(folio);
2152 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2153 folio_add_file_rmap_pte(folio, page, vma);
2154 }
2155 set_pte_at(vma->vm_mm, addr, pte, pteval);
2156 return 0;
2157}
2158
2159static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2160 struct page *page, pgprot_t prot)
2161{
2162 int retval;
2163 pte_t *pte;
2164 spinlock_t *ptl;
2165
2166 retval = validate_page_before_insert(vma, page);
2167 if (retval)
2168 goto out;
2169 retval = -ENOMEM;
2170 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2171 if (!pte)
2172 goto out;
2173 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2174 pte_unmap_unlock(pte, ptl);
2175out:
2176 return retval;
2177}
2178
2179static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2180 unsigned long addr, struct page *page, pgprot_t prot)
2181{
2182 int err;
2183
2184 err = validate_page_before_insert(vma, page);
2185 if (err)
2186 return err;
2187 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2188}
2189
2190/* insert_pages() amortizes the cost of spinlock operations
2191 * when inserting pages in a loop.
2192 */
2193static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2194 struct page **pages, unsigned long *num, pgprot_t prot)
2195{
2196 pmd_t *pmd = NULL;
2197 pte_t *start_pte, *pte;
2198 spinlock_t *pte_lock;
2199 struct mm_struct *const mm = vma->vm_mm;
2200 unsigned long curr_page_idx = 0;
2201 unsigned long remaining_pages_total = *num;
2202 unsigned long pages_to_write_in_pmd;
2203 int ret;
2204more:
2205 ret = -EFAULT;
2206 pmd = walk_to_pmd(mm, addr);
2207 if (!pmd)
2208 goto out;
2209
2210 pages_to_write_in_pmd = min_t(unsigned long,
2211 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2212
2213 /* Allocate the PTE if necessary; takes PMD lock once only. */
2214 ret = -ENOMEM;
2215 if (pte_alloc(mm, pmd))
2216 goto out;
2217
2218 while (pages_to_write_in_pmd) {
2219 int pte_idx = 0;
2220 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2221
2222 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2223 if (!start_pte) {
2224 ret = -EFAULT;
2225 goto out;
2226 }
2227 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2228 int err = insert_page_in_batch_locked(vma, pte,
2229 addr, pages[curr_page_idx], prot);
2230 if (unlikely(err)) {
2231 pte_unmap_unlock(start_pte, pte_lock);
2232 ret = err;
2233 remaining_pages_total -= pte_idx;
2234 goto out;
2235 }
2236 addr += PAGE_SIZE;
2237 ++curr_page_idx;
2238 }
2239 pte_unmap_unlock(start_pte, pte_lock);
2240 pages_to_write_in_pmd -= batch_size;
2241 remaining_pages_total -= batch_size;
2242 }
2243 if (remaining_pages_total)
2244 goto more;
2245 ret = 0;
2246out:
2247 *num = remaining_pages_total;
2248 return ret;
2249}
2250
2251/**
2252 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2253 * @vma: user vma to map to
2254 * @addr: target start user address of these pages
2255 * @pages: source kernel pages
2256 * @num: in: number of pages to map. out: number of pages that were *not*
2257 * mapped. (0 means all pages were successfully mapped).
2258 *
2259 * Preferred over vm_insert_page() when inserting multiple pages.
2260 *
2261 * In case of error, we may have mapped a subset of the provided
2262 * pages. It is the caller's responsibility to account for this case.
2263 *
2264 * The same restrictions apply as in vm_insert_page().
2265 */
2266int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2267 struct page **pages, unsigned long *num)
2268{
2269 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2270
2271 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2272 return -EFAULT;
2273 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2274 BUG_ON(mmap_read_trylock(vma->vm_mm));
2275 BUG_ON(vma->vm_flags & VM_PFNMAP);
2276 vm_flags_set(vma, VM_MIXEDMAP);
2277 }
2278 /* Defer page refcount checking till we're about to map that page. */
2279 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2280}
2281EXPORT_SYMBOL(vm_insert_pages);
2282
2283/**
2284 * vm_insert_page - insert single page into user vma
2285 * @vma: user vma to map to
2286 * @addr: target user address of this page
2287 * @page: source kernel page
2288 *
2289 * This allows drivers to insert individual pages they've allocated
2290 * into a user vma. The zeropage is supported in some VMAs,
2291 * see vm_mixed_zeropage_allowed().
2292 *
2293 * The page has to be a nice clean _individual_ kernel allocation.
2294 * If you allocate a compound page, you need to have marked it as
2295 * such (__GFP_COMP), or manually just split the page up yourself
2296 * (see split_page()).
2297 *
2298 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2299 * took an arbitrary page protection parameter. This doesn't allow
2300 * that. Your vma protection will have to be set up correctly, which
2301 * means that if you want a shared writable mapping, you'd better
2302 * ask for a shared writable mapping!
2303 *
2304 * The page does not need to be reserved.
2305 *
2306 * Usually this function is called from f_op->mmap() handler
2307 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2308 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2309 * function from other places, for example from page-fault handler.
2310 *
2311 * Return: %0 on success, negative error code otherwise.
2312 */
2313int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2314 struct page *page)
2315{
2316 if (addr < vma->vm_start || addr >= vma->vm_end)
2317 return -EFAULT;
2318 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2319 BUG_ON(mmap_read_trylock(vma->vm_mm));
2320 BUG_ON(vma->vm_flags & VM_PFNMAP);
2321 vm_flags_set(vma, VM_MIXEDMAP);
2322 }
2323 return insert_page(vma, addr, page, vma->vm_page_prot);
2324}
2325EXPORT_SYMBOL(vm_insert_page);
2326
2327/*
2328 * __vm_map_pages - maps range of kernel pages into user vma
2329 * @vma: user vma to map to
2330 * @pages: pointer to array of source kernel pages
2331 * @num: number of pages in page array
2332 * @offset: user's requested vm_pgoff
2333 *
2334 * This allows drivers to map range of kernel pages into a user vma.
2335 * The zeropage is supported in some VMAs, see
2336 * vm_mixed_zeropage_allowed().
2337 *
2338 * Return: 0 on success and error code otherwise.
2339 */
2340static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2341 unsigned long num, unsigned long offset)
2342{
2343 unsigned long count = vma_pages(vma);
2344 unsigned long uaddr = vma->vm_start;
2345 int ret, i;
2346
2347 /* Fail if the user requested offset is beyond the end of the object */
2348 if (offset >= num)
2349 return -ENXIO;
2350
2351 /* Fail if the user requested size exceeds available object size */
2352 if (count > num - offset)
2353 return -ENXIO;
2354
2355 for (i = 0; i < count; i++) {
2356 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2357 if (ret < 0)
2358 return ret;
2359 uaddr += PAGE_SIZE;
2360 }
2361
2362 return 0;
2363}
2364
2365/**
2366 * vm_map_pages - maps range of kernel pages starts with non zero offset
2367 * @vma: user vma to map to
2368 * @pages: pointer to array of source kernel pages
2369 * @num: number of pages in page array
2370 *
2371 * Maps an object consisting of @num pages, catering for the user's
2372 * requested vm_pgoff
2373 *
2374 * If we fail to insert any page into the vma, the function will return
2375 * immediately leaving any previously inserted pages present. Callers
2376 * from the mmap handler may immediately return the error as their caller
2377 * will destroy the vma, removing any successfully inserted pages. Other
2378 * callers should make their own arrangements for calling unmap_region().
2379 *
2380 * Context: Process context. Called by mmap handlers.
2381 * Return: 0 on success and error code otherwise.
2382 */
2383int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2384 unsigned long num)
2385{
2386 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2387}
2388EXPORT_SYMBOL(vm_map_pages);
2389
2390/**
2391 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2392 * @vma: user vma to map to
2393 * @pages: pointer to array of source kernel pages
2394 * @num: number of pages in page array
2395 *
2396 * Similar to vm_map_pages(), except that it explicitly sets the offset
2397 * to 0. This function is intended for the drivers that did not consider
2398 * vm_pgoff.
2399 *
2400 * Context: Process context. Called by mmap handlers.
2401 * Return: 0 on success and error code otherwise.
2402 */
2403int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2404 unsigned long num)
2405{
2406 return __vm_map_pages(vma, pages, num, 0);
2407}
2408EXPORT_SYMBOL(vm_map_pages_zero);
2409
2410static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2411 pfn_t pfn, pgprot_t prot, bool mkwrite)
2412{
2413 struct mm_struct *mm = vma->vm_mm;
2414 pte_t *pte, entry;
2415 spinlock_t *ptl;
2416
2417 pte = get_locked_pte(mm, addr, &ptl);
2418 if (!pte)
2419 return VM_FAULT_OOM;
2420 entry = ptep_get(pte);
2421 if (!pte_none(entry)) {
2422 if (mkwrite) {
2423 /*
2424 * For read faults on private mappings the PFN passed
2425 * in may not match the PFN we have mapped if the
2426 * mapped PFN is a writeable COW page. In the mkwrite
2427 * case we are creating a writable PTE for a shared
2428 * mapping and we expect the PFNs to match. If they
2429 * don't match, we are likely racing with block
2430 * allocation and mapping invalidation so just skip the
2431 * update.
2432 */
2433 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2434 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2435 goto out_unlock;
2436 }
2437 entry = pte_mkyoung(entry);
2438 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2439 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2440 update_mmu_cache(vma, addr, pte);
2441 }
2442 goto out_unlock;
2443 }
2444
2445 /* Ok, finally just insert the thing.. */
2446 if (pfn_t_devmap(pfn))
2447 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2448 else
2449 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2450
2451 if (mkwrite) {
2452 entry = pte_mkyoung(entry);
2453 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2454 }
2455
2456 set_pte_at(mm, addr, pte, entry);
2457 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2458
2459out_unlock:
2460 pte_unmap_unlock(pte, ptl);
2461 return VM_FAULT_NOPAGE;
2462}
2463
2464/**
2465 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2466 * @vma: user vma to map to
2467 * @addr: target user address of this page
2468 * @pfn: source kernel pfn
2469 * @pgprot: pgprot flags for the inserted page
2470 *
2471 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2472 * to override pgprot on a per-page basis.
2473 *
2474 * This only makes sense for IO mappings, and it makes no sense for
2475 * COW mappings. In general, using multiple vmas is preferable;
2476 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2477 * impractical.
2478 *
2479 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2480 * caching- and encryption bits different than those of @vma->vm_page_prot,
2481 * because the caching- or encryption mode may not be known at mmap() time.
2482 *
2483 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2484 * to set caching and encryption bits for those vmas (except for COW pages).
2485 * This is ensured by core vm only modifying these page table entries using
2486 * functions that don't touch caching- or encryption bits, using pte_modify()
2487 * if needed. (See for example mprotect()).
2488 *
2489 * Also when new page-table entries are created, this is only done using the
2490 * fault() callback, and never using the value of vma->vm_page_prot,
2491 * except for page-table entries that point to anonymous pages as the result
2492 * of COW.
2493 *
2494 * Context: Process context. May allocate using %GFP_KERNEL.
2495 * Return: vm_fault_t value.
2496 */
2497vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2498 unsigned long pfn, pgprot_t pgprot)
2499{
2500 /*
2501 * Technically, architectures with pte_special can avoid all these
2502 * restrictions (same for remap_pfn_range). However we would like
2503 * consistency in testing and feature parity among all, so we should
2504 * try to keep these invariants in place for everybody.
2505 */
2506 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2507 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2508 (VM_PFNMAP|VM_MIXEDMAP));
2509 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2510 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2511
2512 if (addr < vma->vm_start || addr >= vma->vm_end)
2513 return VM_FAULT_SIGBUS;
2514
2515 if (!pfn_modify_allowed(pfn, pgprot))
2516 return VM_FAULT_SIGBUS;
2517
2518 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2519
2520 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2521 false);
2522}
2523EXPORT_SYMBOL(vmf_insert_pfn_prot);
2524
2525/**
2526 * vmf_insert_pfn - insert single pfn into user vma
2527 * @vma: user vma to map to
2528 * @addr: target user address of this page
2529 * @pfn: source kernel pfn
2530 *
2531 * Similar to vm_insert_page, this allows drivers to insert individual pages
2532 * they've allocated into a user vma. Same comments apply.
2533 *
2534 * This function should only be called from a vm_ops->fault handler, and
2535 * in that case the handler should return the result of this function.
2536 *
2537 * vma cannot be a COW mapping.
2538 *
2539 * As this is called only for pages that do not currently exist, we
2540 * do not need to flush old virtual caches or the TLB.
2541 *
2542 * Context: Process context. May allocate using %GFP_KERNEL.
2543 * Return: vm_fault_t value.
2544 */
2545vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2546 unsigned long pfn)
2547{
2548 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2549}
2550EXPORT_SYMBOL(vmf_insert_pfn);
2551
2552static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2553{
2554 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2555 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2556 return false;
2557 /* these checks mirror the abort conditions in vm_normal_page */
2558 if (vma->vm_flags & VM_MIXEDMAP)
2559 return true;
2560 if (pfn_t_devmap(pfn))
2561 return true;
2562 if (pfn_t_special(pfn))
2563 return true;
2564 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2565 return true;
2566 return false;
2567}
2568
2569static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2570 unsigned long addr, pfn_t pfn, bool mkwrite)
2571{
2572 pgprot_t pgprot = vma->vm_page_prot;
2573 int err;
2574
2575 if (!vm_mixed_ok(vma, pfn, mkwrite))
2576 return VM_FAULT_SIGBUS;
2577
2578 if (addr < vma->vm_start || addr >= vma->vm_end)
2579 return VM_FAULT_SIGBUS;
2580
2581 track_pfn_insert(vma, &pgprot, pfn);
2582
2583 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2584 return VM_FAULT_SIGBUS;
2585
2586 /*
2587 * If we don't have pte special, then we have to use the pfn_valid()
2588 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2589 * refcount the page if pfn_valid is true (hence insert_page rather
2590 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2591 * without pte special, it would there be refcounted as a normal page.
2592 */
2593 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2594 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2595 struct page *page;
2596
2597 /*
2598 * At this point we are committed to insert_page()
2599 * regardless of whether the caller specified flags that
2600 * result in pfn_t_has_page() == false.
2601 */
2602 page = pfn_to_page(pfn_t_to_pfn(pfn));
2603 err = insert_page(vma, addr, page, pgprot);
2604 } else {
2605 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2606 }
2607
2608 if (err == -ENOMEM)
2609 return VM_FAULT_OOM;
2610 if (err < 0 && err != -EBUSY)
2611 return VM_FAULT_SIGBUS;
2612
2613 return VM_FAULT_NOPAGE;
2614}
2615
2616vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2617 pfn_t pfn)
2618{
2619 return __vm_insert_mixed(vma, addr, pfn, false);
2620}
2621EXPORT_SYMBOL(vmf_insert_mixed);
2622
2623/*
2624 * If the insertion of PTE failed because someone else already added a
2625 * different entry in the mean time, we treat that as success as we assume
2626 * the same entry was actually inserted.
2627 */
2628vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2629 unsigned long addr, pfn_t pfn)
2630{
2631 return __vm_insert_mixed(vma, addr, pfn, true);
2632}
2633
2634/*
2635 * maps a range of physical memory into the requested pages. the old
2636 * mappings are removed. any references to nonexistent pages results
2637 * in null mappings (currently treated as "copy-on-access")
2638 */
2639static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2640 unsigned long addr, unsigned long end,
2641 unsigned long pfn, pgprot_t prot)
2642{
2643 pte_t *pte, *mapped_pte;
2644 spinlock_t *ptl;
2645 int err = 0;
2646
2647 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2648 if (!pte)
2649 return -ENOMEM;
2650 arch_enter_lazy_mmu_mode();
2651 do {
2652 BUG_ON(!pte_none(ptep_get(pte)));
2653 if (!pfn_modify_allowed(pfn, prot)) {
2654 err = -EACCES;
2655 break;
2656 }
2657 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2658 pfn++;
2659 } while (pte++, addr += PAGE_SIZE, addr != end);
2660 arch_leave_lazy_mmu_mode();
2661 pte_unmap_unlock(mapped_pte, ptl);
2662 return err;
2663}
2664
2665static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2666 unsigned long addr, unsigned long end,
2667 unsigned long pfn, pgprot_t prot)
2668{
2669 pmd_t *pmd;
2670 unsigned long next;
2671 int err;
2672
2673 pfn -= addr >> PAGE_SHIFT;
2674 pmd = pmd_alloc(mm, pud, addr);
2675 if (!pmd)
2676 return -ENOMEM;
2677 VM_BUG_ON(pmd_trans_huge(*pmd));
2678 do {
2679 next = pmd_addr_end(addr, end);
2680 err = remap_pte_range(mm, pmd, addr, next,
2681 pfn + (addr >> PAGE_SHIFT), prot);
2682 if (err)
2683 return err;
2684 } while (pmd++, addr = next, addr != end);
2685 return 0;
2686}
2687
2688static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2689 unsigned long addr, unsigned long end,
2690 unsigned long pfn, pgprot_t prot)
2691{
2692 pud_t *pud;
2693 unsigned long next;
2694 int err;
2695
2696 pfn -= addr >> PAGE_SHIFT;
2697 pud = pud_alloc(mm, p4d, addr);
2698 if (!pud)
2699 return -ENOMEM;
2700 do {
2701 next = pud_addr_end(addr, end);
2702 err = remap_pmd_range(mm, pud, addr, next,
2703 pfn + (addr >> PAGE_SHIFT), prot);
2704 if (err)
2705 return err;
2706 } while (pud++, addr = next, addr != end);
2707 return 0;
2708}
2709
2710static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2711 unsigned long addr, unsigned long end,
2712 unsigned long pfn, pgprot_t prot)
2713{
2714 p4d_t *p4d;
2715 unsigned long next;
2716 int err;
2717
2718 pfn -= addr >> PAGE_SHIFT;
2719 p4d = p4d_alloc(mm, pgd, addr);
2720 if (!p4d)
2721 return -ENOMEM;
2722 do {
2723 next = p4d_addr_end(addr, end);
2724 err = remap_pud_range(mm, p4d, addr, next,
2725 pfn + (addr >> PAGE_SHIFT), prot);
2726 if (err)
2727 return err;
2728 } while (p4d++, addr = next, addr != end);
2729 return 0;
2730}
2731
2732static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2733 unsigned long pfn, unsigned long size, pgprot_t prot)
2734{
2735 pgd_t *pgd;
2736 unsigned long next;
2737 unsigned long end = addr + PAGE_ALIGN(size);
2738 struct mm_struct *mm = vma->vm_mm;
2739 int err;
2740
2741 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2742 return -EINVAL;
2743
2744 /*
2745 * Physically remapped pages are special. Tell the
2746 * rest of the world about it:
2747 * VM_IO tells people not to look at these pages
2748 * (accesses can have side effects).
2749 * VM_PFNMAP tells the core MM that the base pages are just
2750 * raw PFN mappings, and do not have a "struct page" associated
2751 * with them.
2752 * VM_DONTEXPAND
2753 * Disable vma merging and expanding with mremap().
2754 * VM_DONTDUMP
2755 * Omit vma from core dump, even when VM_IO turned off.
2756 *
2757 * There's a horrible special case to handle copy-on-write
2758 * behaviour that some programs depend on. We mark the "original"
2759 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2760 * See vm_normal_page() for details.
2761 */
2762 if (is_cow_mapping(vma->vm_flags)) {
2763 if (addr != vma->vm_start || end != vma->vm_end)
2764 return -EINVAL;
2765 vma->vm_pgoff = pfn;
2766 }
2767
2768 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2769
2770 BUG_ON(addr >= end);
2771 pfn -= addr >> PAGE_SHIFT;
2772 pgd = pgd_offset(mm, addr);
2773 flush_cache_range(vma, addr, end);
2774 do {
2775 next = pgd_addr_end(addr, end);
2776 err = remap_p4d_range(mm, pgd, addr, next,
2777 pfn + (addr >> PAGE_SHIFT), prot);
2778 if (err)
2779 return err;
2780 } while (pgd++, addr = next, addr != end);
2781
2782 return 0;
2783}
2784
2785/*
2786 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2787 * must have pre-validated the caching bits of the pgprot_t.
2788 */
2789int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2790 unsigned long pfn, unsigned long size, pgprot_t prot)
2791{
2792 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2793
2794 if (!error)
2795 return 0;
2796
2797 /*
2798 * A partial pfn range mapping is dangerous: it does not
2799 * maintain page reference counts, and callers may free
2800 * pages due to the error. So zap it early.
2801 */
2802 zap_page_range_single(vma, addr, size, NULL);
2803 return error;
2804}
2805
2806/**
2807 * remap_pfn_range - remap kernel memory to userspace
2808 * @vma: user vma to map to
2809 * @addr: target page aligned user address to start at
2810 * @pfn: page frame number of kernel physical memory address
2811 * @size: size of mapping area
2812 * @prot: page protection flags for this mapping
2813 *
2814 * Note: this is only safe if the mm semaphore is held when called.
2815 *
2816 * Return: %0 on success, negative error code otherwise.
2817 */
2818int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2819 unsigned long pfn, unsigned long size, pgprot_t prot)
2820{
2821 int err;
2822
2823 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2824 if (err)
2825 return -EINVAL;
2826
2827 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2828 if (err)
2829 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2830 return err;
2831}
2832EXPORT_SYMBOL(remap_pfn_range);
2833
2834/**
2835 * vm_iomap_memory - remap memory to userspace
2836 * @vma: user vma to map to
2837 * @start: start of the physical memory to be mapped
2838 * @len: size of area
2839 *
2840 * This is a simplified io_remap_pfn_range() for common driver use. The
2841 * driver just needs to give us the physical memory range to be mapped,
2842 * we'll figure out the rest from the vma information.
2843 *
2844 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2845 * whatever write-combining details or similar.
2846 *
2847 * Return: %0 on success, negative error code otherwise.
2848 */
2849int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2850{
2851 unsigned long vm_len, pfn, pages;
2852
2853 /* Check that the physical memory area passed in looks valid */
2854 if (start + len < start)
2855 return -EINVAL;
2856 /*
2857 * You *really* shouldn't map things that aren't page-aligned,
2858 * but we've historically allowed it because IO memory might
2859 * just have smaller alignment.
2860 */
2861 len += start & ~PAGE_MASK;
2862 pfn = start >> PAGE_SHIFT;
2863 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2864 if (pfn + pages < pfn)
2865 return -EINVAL;
2866
2867 /* We start the mapping 'vm_pgoff' pages into the area */
2868 if (vma->vm_pgoff > pages)
2869 return -EINVAL;
2870 pfn += vma->vm_pgoff;
2871 pages -= vma->vm_pgoff;
2872
2873 /* Can we fit all of the mapping? */
2874 vm_len = vma->vm_end - vma->vm_start;
2875 if (vm_len >> PAGE_SHIFT > pages)
2876 return -EINVAL;
2877
2878 /* Ok, let it rip */
2879 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2880}
2881EXPORT_SYMBOL(vm_iomap_memory);
2882
2883static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2884 unsigned long addr, unsigned long end,
2885 pte_fn_t fn, void *data, bool create,
2886 pgtbl_mod_mask *mask)
2887{
2888 pte_t *pte, *mapped_pte;
2889 int err = 0;
2890 spinlock_t *ptl;
2891
2892 if (create) {
2893 mapped_pte = pte = (mm == &init_mm) ?
2894 pte_alloc_kernel_track(pmd, addr, mask) :
2895 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2896 if (!pte)
2897 return -ENOMEM;
2898 } else {
2899 mapped_pte = pte = (mm == &init_mm) ?
2900 pte_offset_kernel(pmd, addr) :
2901 pte_offset_map_lock(mm, pmd, addr, &ptl);
2902 if (!pte)
2903 return -EINVAL;
2904 }
2905
2906 arch_enter_lazy_mmu_mode();
2907
2908 if (fn) {
2909 do {
2910 if (create || !pte_none(ptep_get(pte))) {
2911 err = fn(pte++, addr, data);
2912 if (err)
2913 break;
2914 }
2915 } while (addr += PAGE_SIZE, addr != end);
2916 }
2917 *mask |= PGTBL_PTE_MODIFIED;
2918
2919 arch_leave_lazy_mmu_mode();
2920
2921 if (mm != &init_mm)
2922 pte_unmap_unlock(mapped_pte, ptl);
2923 return err;
2924}
2925
2926static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2927 unsigned long addr, unsigned long end,
2928 pte_fn_t fn, void *data, bool create,
2929 pgtbl_mod_mask *mask)
2930{
2931 pmd_t *pmd;
2932 unsigned long next;
2933 int err = 0;
2934
2935 BUG_ON(pud_leaf(*pud));
2936
2937 if (create) {
2938 pmd = pmd_alloc_track(mm, pud, addr, mask);
2939 if (!pmd)
2940 return -ENOMEM;
2941 } else {
2942 pmd = pmd_offset(pud, addr);
2943 }
2944 do {
2945 next = pmd_addr_end(addr, end);
2946 if (pmd_none(*pmd) && !create)
2947 continue;
2948 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2949 return -EINVAL;
2950 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2951 if (!create)
2952 continue;
2953 pmd_clear_bad(pmd);
2954 }
2955 err = apply_to_pte_range(mm, pmd, addr, next,
2956 fn, data, create, mask);
2957 if (err)
2958 break;
2959 } while (pmd++, addr = next, addr != end);
2960
2961 return err;
2962}
2963
2964static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2965 unsigned long addr, unsigned long end,
2966 pte_fn_t fn, void *data, bool create,
2967 pgtbl_mod_mask *mask)
2968{
2969 pud_t *pud;
2970 unsigned long next;
2971 int err = 0;
2972
2973 if (create) {
2974 pud = pud_alloc_track(mm, p4d, addr, mask);
2975 if (!pud)
2976 return -ENOMEM;
2977 } else {
2978 pud = pud_offset(p4d, addr);
2979 }
2980 do {
2981 next = pud_addr_end(addr, end);
2982 if (pud_none(*pud) && !create)
2983 continue;
2984 if (WARN_ON_ONCE(pud_leaf(*pud)))
2985 return -EINVAL;
2986 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2987 if (!create)
2988 continue;
2989 pud_clear_bad(pud);
2990 }
2991 err = apply_to_pmd_range(mm, pud, addr, next,
2992 fn, data, create, mask);
2993 if (err)
2994 break;
2995 } while (pud++, addr = next, addr != end);
2996
2997 return err;
2998}
2999
3000static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
3001 unsigned long addr, unsigned long end,
3002 pte_fn_t fn, void *data, bool create,
3003 pgtbl_mod_mask *mask)
3004{
3005 p4d_t *p4d;
3006 unsigned long next;
3007 int err = 0;
3008
3009 if (create) {
3010 p4d = p4d_alloc_track(mm, pgd, addr, mask);
3011 if (!p4d)
3012 return -ENOMEM;
3013 } else {
3014 p4d = p4d_offset(pgd, addr);
3015 }
3016 do {
3017 next = p4d_addr_end(addr, end);
3018 if (p4d_none(*p4d) && !create)
3019 continue;
3020 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3021 return -EINVAL;
3022 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3023 if (!create)
3024 continue;
3025 p4d_clear_bad(p4d);
3026 }
3027 err = apply_to_pud_range(mm, p4d, addr, next,
3028 fn, data, create, mask);
3029 if (err)
3030 break;
3031 } while (p4d++, addr = next, addr != end);
3032
3033 return err;
3034}
3035
3036static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3037 unsigned long size, pte_fn_t fn,
3038 void *data, bool create)
3039{
3040 pgd_t *pgd;
3041 unsigned long start = addr, next;
3042 unsigned long end = addr + size;
3043 pgtbl_mod_mask mask = 0;
3044 int err = 0;
3045
3046 if (WARN_ON(addr >= end))
3047 return -EINVAL;
3048
3049 pgd = pgd_offset(mm, addr);
3050 do {
3051 next = pgd_addr_end(addr, end);
3052 if (pgd_none(*pgd) && !create)
3053 continue;
3054 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
3055 return -EINVAL;
3056 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3057 if (!create)
3058 continue;
3059 pgd_clear_bad(pgd);
3060 }
3061 err = apply_to_p4d_range(mm, pgd, addr, next,
3062 fn, data, create, &mask);
3063 if (err)
3064 break;
3065 } while (pgd++, addr = next, addr != end);
3066
3067 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3068 arch_sync_kernel_mappings(start, start + size);
3069
3070 return err;
3071}
3072
3073/*
3074 * Scan a region of virtual memory, filling in page tables as necessary
3075 * and calling a provided function on each leaf page table.
3076 */
3077int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3078 unsigned long size, pte_fn_t fn, void *data)
3079{
3080 return __apply_to_page_range(mm, addr, size, fn, data, true);
3081}
3082EXPORT_SYMBOL_GPL(apply_to_page_range);
3083
3084/*
3085 * Scan a region of virtual memory, calling a provided function on
3086 * each leaf page table where it exists.
3087 *
3088 * Unlike apply_to_page_range, this does _not_ fill in page tables
3089 * where they are absent.
3090 */
3091int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3092 unsigned long size, pte_fn_t fn, void *data)
3093{
3094 return __apply_to_page_range(mm, addr, size, fn, data, false);
3095}
3096
3097/*
3098 * handle_pte_fault chooses page fault handler according to an entry which was
3099 * read non-atomically. Before making any commitment, on those architectures
3100 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3101 * parts, do_swap_page must check under lock before unmapping the pte and
3102 * proceeding (but do_wp_page is only called after already making such a check;
3103 * and do_anonymous_page can safely check later on).
3104 */
3105static inline int pte_unmap_same(struct vm_fault *vmf)
3106{
3107 int same = 1;
3108#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3109 if (sizeof(pte_t) > sizeof(unsigned long)) {
3110 spin_lock(vmf->ptl);
3111 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3112 spin_unlock(vmf->ptl);
3113 }
3114#endif
3115 pte_unmap(vmf->pte);
3116 vmf->pte = NULL;
3117 return same;
3118}
3119
3120/*
3121 * Return:
3122 * 0: copied succeeded
3123 * -EHWPOISON: copy failed due to hwpoison in source page
3124 * -EAGAIN: copied failed (some other reason)
3125 */
3126static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3127 struct vm_fault *vmf)
3128{
3129 int ret;
3130 void *kaddr;
3131 void __user *uaddr;
3132 struct vm_area_struct *vma = vmf->vma;
3133 struct mm_struct *mm = vma->vm_mm;
3134 unsigned long addr = vmf->address;
3135
3136 if (likely(src)) {
3137 if (copy_mc_user_highpage(dst, src, addr, vma))
3138 return -EHWPOISON;
3139 return 0;
3140 }
3141
3142 /*
3143 * If the source page was a PFN mapping, we don't have
3144 * a "struct page" for it. We do a best-effort copy by
3145 * just copying from the original user address. If that
3146 * fails, we just zero-fill it. Live with it.
3147 */
3148 kaddr = kmap_local_page(dst);
3149 pagefault_disable();
3150 uaddr = (void __user *)(addr & PAGE_MASK);
3151
3152 /*
3153 * On architectures with software "accessed" bits, we would
3154 * take a double page fault, so mark it accessed here.
3155 */
3156 vmf->pte = NULL;
3157 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3158 pte_t entry;
3159
3160 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3161 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3162 /*
3163 * Other thread has already handled the fault
3164 * and update local tlb only
3165 */
3166 if (vmf->pte)
3167 update_mmu_tlb(vma, addr, vmf->pte);
3168 ret = -EAGAIN;
3169 goto pte_unlock;
3170 }
3171
3172 entry = pte_mkyoung(vmf->orig_pte);
3173 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3174 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3175 }
3176
3177 /*
3178 * This really shouldn't fail, because the page is there
3179 * in the page tables. But it might just be unreadable,
3180 * in which case we just give up and fill the result with
3181 * zeroes.
3182 */
3183 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3184 if (vmf->pte)
3185 goto warn;
3186
3187 /* Re-validate under PTL if the page is still mapped */
3188 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3189 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3190 /* The PTE changed under us, update local tlb */
3191 if (vmf->pte)
3192 update_mmu_tlb(vma, addr, vmf->pte);
3193 ret = -EAGAIN;
3194 goto pte_unlock;
3195 }
3196
3197 /*
3198 * The same page can be mapped back since last copy attempt.
3199 * Try to copy again under PTL.
3200 */
3201 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3202 /*
3203 * Give a warn in case there can be some obscure
3204 * use-case
3205 */
3206warn:
3207 WARN_ON_ONCE(1);
3208 clear_page(kaddr);
3209 }
3210 }
3211
3212 ret = 0;
3213
3214pte_unlock:
3215 if (vmf->pte)
3216 pte_unmap_unlock(vmf->pte, vmf->ptl);
3217 pagefault_enable();
3218 kunmap_local(kaddr);
3219 flush_dcache_page(dst);
3220
3221 return ret;
3222}
3223
3224static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3225{
3226 struct file *vm_file = vma->vm_file;
3227
3228 if (vm_file)
3229 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3230
3231 /*
3232 * Special mappings (e.g. VDSO) do not have any file so fake
3233 * a default GFP_KERNEL for them.
3234 */
3235 return GFP_KERNEL;
3236}
3237
3238/*
3239 * Notify the address space that the page is about to become writable so that
3240 * it can prohibit this or wait for the page to get into an appropriate state.
3241 *
3242 * We do this without the lock held, so that it can sleep if it needs to.
3243 */
3244static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3245{
3246 vm_fault_t ret;
3247 unsigned int old_flags = vmf->flags;
3248
3249 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3250
3251 if (vmf->vma->vm_file &&
3252 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3253 return VM_FAULT_SIGBUS;
3254
3255 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3256 /* Restore original flags so that caller is not surprised */
3257 vmf->flags = old_flags;
3258 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3259 return ret;
3260 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3261 folio_lock(folio);
3262 if (!folio->mapping) {
3263 folio_unlock(folio);
3264 return 0; /* retry */
3265 }
3266 ret |= VM_FAULT_LOCKED;
3267 } else
3268 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3269 return ret;
3270}
3271
3272/*
3273 * Handle dirtying of a page in shared file mapping on a write fault.
3274 *
3275 * The function expects the page to be locked and unlocks it.
3276 */
3277static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3278{
3279 struct vm_area_struct *vma = vmf->vma;
3280 struct address_space *mapping;
3281 struct folio *folio = page_folio(vmf->page);
3282 bool dirtied;
3283 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3284
3285 dirtied = folio_mark_dirty(folio);
3286 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3287 /*
3288 * Take a local copy of the address_space - folio.mapping may be zeroed
3289 * by truncate after folio_unlock(). The address_space itself remains
3290 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3291 * release semantics to prevent the compiler from undoing this copying.
3292 */
3293 mapping = folio_raw_mapping(folio);
3294 folio_unlock(folio);
3295
3296 if (!page_mkwrite)
3297 file_update_time(vma->vm_file);
3298
3299 /*
3300 * Throttle page dirtying rate down to writeback speed.
3301 *
3302 * mapping may be NULL here because some device drivers do not
3303 * set page.mapping but still dirty their pages
3304 *
3305 * Drop the mmap_lock before waiting on IO, if we can. The file
3306 * is pinning the mapping, as per above.
3307 */
3308 if ((dirtied || page_mkwrite) && mapping) {
3309 struct file *fpin;
3310
3311 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3312 balance_dirty_pages_ratelimited(mapping);
3313 if (fpin) {
3314 fput(fpin);
3315 return VM_FAULT_COMPLETED;
3316 }
3317 }
3318
3319 return 0;
3320}
3321
3322/*
3323 * Handle write page faults for pages that can be reused in the current vma
3324 *
3325 * This can happen either due to the mapping being with the VM_SHARED flag,
3326 * or due to us being the last reference standing to the page. In either
3327 * case, all we need to do here is to mark the page as writable and update
3328 * any related book-keeping.
3329 */
3330static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3331 __releases(vmf->ptl)
3332{
3333 struct vm_area_struct *vma = vmf->vma;
3334 pte_t entry;
3335
3336 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3337 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3338
3339 if (folio) {
3340 VM_BUG_ON(folio_test_anon(folio) &&
3341 !PageAnonExclusive(vmf->page));
3342 /*
3343 * Clear the folio's cpupid information as the existing
3344 * information potentially belongs to a now completely
3345 * unrelated process.
3346 */
3347 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3348 }
3349
3350 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3351 entry = pte_mkyoung(vmf->orig_pte);
3352 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3353 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3354 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3355 pte_unmap_unlock(vmf->pte, vmf->ptl);
3356 count_vm_event(PGREUSE);
3357}
3358
3359/*
3360 * We could add a bitflag somewhere, but for now, we know that all
3361 * vm_ops that have a ->map_pages have been audited and don't need
3362 * the mmap_lock to be held.
3363 */
3364static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3365{
3366 struct vm_area_struct *vma = vmf->vma;
3367
3368 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3369 return 0;
3370 vma_end_read(vma);
3371 return VM_FAULT_RETRY;
3372}
3373
3374/**
3375 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3376 * @vmf: The vm_fault descriptor passed from the fault handler.
3377 *
3378 * When preparing to insert an anonymous page into a VMA from a
3379 * fault handler, call this function rather than anon_vma_prepare().
3380 * If this vma does not already have an associated anon_vma and we are
3381 * only protected by the per-VMA lock, the caller must retry with the
3382 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3383 * determine if this VMA can share its anon_vma, and that's not safe to
3384 * do with only the per-VMA lock held for this VMA.
3385 *
3386 * Return: 0 if fault handling can proceed. Any other value should be
3387 * returned to the caller.
3388 */
3389vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3390{
3391 struct vm_area_struct *vma = vmf->vma;
3392 vm_fault_t ret = 0;
3393
3394 if (likely(vma->anon_vma))
3395 return 0;
3396 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3397 if (!mmap_read_trylock(vma->vm_mm))
3398 return VM_FAULT_RETRY;
3399 }
3400 if (__anon_vma_prepare(vma))
3401 ret = VM_FAULT_OOM;
3402 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3403 mmap_read_unlock(vma->vm_mm);
3404 return ret;
3405}
3406
3407/*
3408 * Handle the case of a page which we actually need to copy to a new page,
3409 * either due to COW or unsharing.
3410 *
3411 * Called with mmap_lock locked and the old page referenced, but
3412 * without the ptl held.
3413 *
3414 * High level logic flow:
3415 *
3416 * - Allocate a page, copy the content of the old page to the new one.
3417 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3418 * - Take the PTL. If the pte changed, bail out and release the allocated page
3419 * - If the pte is still the way we remember it, update the page table and all
3420 * relevant references. This includes dropping the reference the page-table
3421 * held to the old page, as well as updating the rmap.
3422 * - In any case, unlock the PTL and drop the reference we took to the old page.
3423 */
3424static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3425{
3426 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3427 struct vm_area_struct *vma = vmf->vma;
3428 struct mm_struct *mm = vma->vm_mm;
3429 struct folio *old_folio = NULL;
3430 struct folio *new_folio = NULL;
3431 pte_t entry;
3432 int page_copied = 0;
3433 struct mmu_notifier_range range;
3434 vm_fault_t ret;
3435 bool pfn_is_zero;
3436
3437 delayacct_wpcopy_start();
3438
3439 if (vmf->page)
3440 old_folio = page_folio(vmf->page);
3441 ret = vmf_anon_prepare(vmf);
3442 if (unlikely(ret))
3443 goto out;
3444
3445 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3446 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3447 if (!new_folio)
3448 goto oom;
3449
3450 if (!pfn_is_zero) {
3451 int err;
3452
3453 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3454 if (err) {
3455 /*
3456 * COW failed, if the fault was solved by other,
3457 * it's fine. If not, userspace would re-fault on
3458 * the same address and we will handle the fault
3459 * from the second attempt.
3460 * The -EHWPOISON case will not be retried.
3461 */
3462 folio_put(new_folio);
3463 if (old_folio)
3464 folio_put(old_folio);
3465
3466 delayacct_wpcopy_end();
3467 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3468 }
3469 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3470 }
3471
3472 __folio_mark_uptodate(new_folio);
3473
3474 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3475 vmf->address & PAGE_MASK,
3476 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3477 mmu_notifier_invalidate_range_start(&range);
3478
3479 /*
3480 * Re-check the pte - we dropped the lock
3481 */
3482 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3483 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3484 if (old_folio) {
3485 if (!folio_test_anon(old_folio)) {
3486 dec_mm_counter(mm, mm_counter_file(old_folio));
3487 inc_mm_counter(mm, MM_ANONPAGES);
3488 }
3489 } else {
3490 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3491 inc_mm_counter(mm, MM_ANONPAGES);
3492 }
3493 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3494 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3495 entry = pte_sw_mkyoung(entry);
3496 if (unlikely(unshare)) {
3497 if (pte_soft_dirty(vmf->orig_pte))
3498 entry = pte_mksoft_dirty(entry);
3499 if (pte_uffd_wp(vmf->orig_pte))
3500 entry = pte_mkuffd_wp(entry);
3501 } else {
3502 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3503 }
3504
3505 /*
3506 * Clear the pte entry and flush it first, before updating the
3507 * pte with the new entry, to keep TLBs on different CPUs in
3508 * sync. This code used to set the new PTE then flush TLBs, but
3509 * that left a window where the new PTE could be loaded into
3510 * some TLBs while the old PTE remains in others.
3511 */
3512 ptep_clear_flush(vma, vmf->address, vmf->pte);
3513 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3514 folio_add_lru_vma(new_folio, vma);
3515 BUG_ON(unshare && pte_write(entry));
3516 set_pte_at(mm, vmf->address, vmf->pte, entry);
3517 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3518 if (old_folio) {
3519 /*
3520 * Only after switching the pte to the new page may
3521 * we remove the mapcount here. Otherwise another
3522 * process may come and find the rmap count decremented
3523 * before the pte is switched to the new page, and
3524 * "reuse" the old page writing into it while our pte
3525 * here still points into it and can be read by other
3526 * threads.
3527 *
3528 * The critical issue is to order this
3529 * folio_remove_rmap_pte() with the ptp_clear_flush
3530 * above. Those stores are ordered by (if nothing else,)
3531 * the barrier present in the atomic_add_negative
3532 * in folio_remove_rmap_pte();
3533 *
3534 * Then the TLB flush in ptep_clear_flush ensures that
3535 * no process can access the old page before the
3536 * decremented mapcount is visible. And the old page
3537 * cannot be reused until after the decremented
3538 * mapcount is visible. So transitively, TLBs to
3539 * old page will be flushed before it can be reused.
3540 */
3541 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3542 }
3543
3544 /* Free the old page.. */
3545 new_folio = old_folio;
3546 page_copied = 1;
3547 pte_unmap_unlock(vmf->pte, vmf->ptl);
3548 } else if (vmf->pte) {
3549 update_mmu_tlb(vma, vmf->address, vmf->pte);
3550 pte_unmap_unlock(vmf->pte, vmf->ptl);
3551 }
3552
3553 mmu_notifier_invalidate_range_end(&range);
3554
3555 if (new_folio)
3556 folio_put(new_folio);
3557 if (old_folio) {
3558 if (page_copied)
3559 free_swap_cache(old_folio);
3560 folio_put(old_folio);
3561 }
3562
3563 delayacct_wpcopy_end();
3564 return 0;
3565oom:
3566 ret = VM_FAULT_OOM;
3567out:
3568 if (old_folio)
3569 folio_put(old_folio);
3570
3571 delayacct_wpcopy_end();
3572 return ret;
3573}
3574
3575/**
3576 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3577 * writeable once the page is prepared
3578 *
3579 * @vmf: structure describing the fault
3580 * @folio: the folio of vmf->page
3581 *
3582 * This function handles all that is needed to finish a write page fault in a
3583 * shared mapping due to PTE being read-only once the mapped page is prepared.
3584 * It handles locking of PTE and modifying it.
3585 *
3586 * The function expects the page to be locked or other protection against
3587 * concurrent faults / writeback (such as DAX radix tree locks).
3588 *
3589 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3590 * we acquired PTE lock.
3591 */
3592static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3593{
3594 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3595 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3596 &vmf->ptl);
3597 if (!vmf->pte)
3598 return VM_FAULT_NOPAGE;
3599 /*
3600 * We might have raced with another page fault while we released the
3601 * pte_offset_map_lock.
3602 */
3603 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3604 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3605 pte_unmap_unlock(vmf->pte, vmf->ptl);
3606 return VM_FAULT_NOPAGE;
3607 }
3608 wp_page_reuse(vmf, folio);
3609 return 0;
3610}
3611
3612/*
3613 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3614 * mapping
3615 */
3616static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3617{
3618 struct vm_area_struct *vma = vmf->vma;
3619
3620 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3621 vm_fault_t ret;
3622
3623 pte_unmap_unlock(vmf->pte, vmf->ptl);
3624 ret = vmf_can_call_fault(vmf);
3625 if (ret)
3626 return ret;
3627
3628 vmf->flags |= FAULT_FLAG_MKWRITE;
3629 ret = vma->vm_ops->pfn_mkwrite(vmf);
3630 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3631 return ret;
3632 return finish_mkwrite_fault(vmf, NULL);
3633 }
3634 wp_page_reuse(vmf, NULL);
3635 return 0;
3636}
3637
3638static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3639 __releases(vmf->ptl)
3640{
3641 struct vm_area_struct *vma = vmf->vma;
3642 vm_fault_t ret = 0;
3643
3644 folio_get(folio);
3645
3646 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3647 vm_fault_t tmp;
3648
3649 pte_unmap_unlock(vmf->pte, vmf->ptl);
3650 tmp = vmf_can_call_fault(vmf);
3651 if (tmp) {
3652 folio_put(folio);
3653 return tmp;
3654 }
3655
3656 tmp = do_page_mkwrite(vmf, folio);
3657 if (unlikely(!tmp || (tmp &
3658 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3659 folio_put(folio);
3660 return tmp;
3661 }
3662 tmp = finish_mkwrite_fault(vmf, folio);
3663 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3664 folio_unlock(folio);
3665 folio_put(folio);
3666 return tmp;
3667 }
3668 } else {
3669 wp_page_reuse(vmf, folio);
3670 folio_lock(folio);
3671 }
3672 ret |= fault_dirty_shared_page(vmf);
3673 folio_put(folio);
3674
3675 return ret;
3676}
3677
3678static bool wp_can_reuse_anon_folio(struct folio *folio,
3679 struct vm_area_struct *vma)
3680{
3681 /*
3682 * We could currently only reuse a subpage of a large folio if no
3683 * other subpages of the large folios are still mapped. However,
3684 * let's just consistently not reuse subpages even if we could
3685 * reuse in that scenario, and give back a large folio a bit
3686 * sooner.
3687 */
3688 if (folio_test_large(folio))
3689 return false;
3690
3691 /*
3692 * We have to verify under folio lock: these early checks are
3693 * just an optimization to avoid locking the folio and freeing
3694 * the swapcache if there is little hope that we can reuse.
3695 *
3696 * KSM doesn't necessarily raise the folio refcount.
3697 */
3698 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3699 return false;
3700 if (!folio_test_lru(folio))
3701 /*
3702 * We cannot easily detect+handle references from
3703 * remote LRU caches or references to LRU folios.
3704 */
3705 lru_add_drain();
3706 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3707 return false;
3708 if (!folio_trylock(folio))
3709 return false;
3710 if (folio_test_swapcache(folio))
3711 folio_free_swap(folio);
3712 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3713 folio_unlock(folio);
3714 return false;
3715 }
3716 /*
3717 * Ok, we've got the only folio reference from our mapping
3718 * and the folio is locked, it's dark out, and we're wearing
3719 * sunglasses. Hit it.
3720 */
3721 folio_move_anon_rmap(folio, vma);
3722 folio_unlock(folio);
3723 return true;
3724}
3725
3726/*
3727 * This routine handles present pages, when
3728 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3729 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3730 * (FAULT_FLAG_UNSHARE)
3731 *
3732 * It is done by copying the page to a new address and decrementing the
3733 * shared-page counter for the old page.
3734 *
3735 * Note that this routine assumes that the protection checks have been
3736 * done by the caller (the low-level page fault routine in most cases).
3737 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3738 * done any necessary COW.
3739 *
3740 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3741 * though the page will change only once the write actually happens. This
3742 * avoids a few races, and potentially makes it more efficient.
3743 *
3744 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3745 * but allow concurrent faults), with pte both mapped and locked.
3746 * We return with mmap_lock still held, but pte unmapped and unlocked.
3747 */
3748static vm_fault_t do_wp_page(struct vm_fault *vmf)
3749 __releases(vmf->ptl)
3750{
3751 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3752 struct vm_area_struct *vma = vmf->vma;
3753 struct folio *folio = NULL;
3754 pte_t pte;
3755
3756 if (likely(!unshare)) {
3757 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3758 if (!userfaultfd_wp_async(vma)) {
3759 pte_unmap_unlock(vmf->pte, vmf->ptl);
3760 return handle_userfault(vmf, VM_UFFD_WP);
3761 }
3762
3763 /*
3764 * Nothing needed (cache flush, TLB invalidations,
3765 * etc.) because we're only removing the uffd-wp bit,
3766 * which is completely invisible to the user.
3767 */
3768 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3769
3770 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3771 /*
3772 * Update this to be prepared for following up CoW
3773 * handling
3774 */
3775 vmf->orig_pte = pte;
3776 }
3777
3778 /*
3779 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3780 * is flushed in this case before copying.
3781 */
3782 if (unlikely(userfaultfd_wp(vmf->vma) &&
3783 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3784 flush_tlb_page(vmf->vma, vmf->address);
3785 }
3786
3787 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3788
3789 if (vmf->page)
3790 folio = page_folio(vmf->page);
3791
3792 /*
3793 * Shared mapping: we are guaranteed to have VM_WRITE and
3794 * FAULT_FLAG_WRITE set at this point.
3795 */
3796 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3797 /*
3798 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3799 * VM_PFNMAP VMA.
3800 *
3801 * We should not cow pages in a shared writeable mapping.
3802 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3803 */
3804 if (!vmf->page)
3805 return wp_pfn_shared(vmf);
3806 return wp_page_shared(vmf, folio);
3807 }
3808
3809 /*
3810 * Private mapping: create an exclusive anonymous page copy if reuse
3811 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3812 *
3813 * If we encounter a page that is marked exclusive, we must reuse
3814 * the page without further checks.
3815 */
3816 if (folio && folio_test_anon(folio) &&
3817 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3818 if (!PageAnonExclusive(vmf->page))
3819 SetPageAnonExclusive(vmf->page);
3820 if (unlikely(unshare)) {
3821 pte_unmap_unlock(vmf->pte, vmf->ptl);
3822 return 0;
3823 }
3824 wp_page_reuse(vmf, folio);
3825 return 0;
3826 }
3827 /*
3828 * Ok, we need to copy. Oh, well..
3829 */
3830 if (folio)
3831 folio_get(folio);
3832
3833 pte_unmap_unlock(vmf->pte, vmf->ptl);
3834#ifdef CONFIG_KSM
3835 if (folio && folio_test_ksm(folio))
3836 count_vm_event(COW_KSM);
3837#endif
3838 return wp_page_copy(vmf);
3839}
3840
3841static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3842 unsigned long start_addr, unsigned long end_addr,
3843 struct zap_details *details)
3844{
3845 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3846}
3847
3848static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3849 pgoff_t first_index,
3850 pgoff_t last_index,
3851 struct zap_details *details)
3852{
3853 struct vm_area_struct *vma;
3854 pgoff_t vba, vea, zba, zea;
3855
3856 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3857 vba = vma->vm_pgoff;
3858 vea = vba + vma_pages(vma) - 1;
3859 zba = max(first_index, vba);
3860 zea = min(last_index, vea);
3861
3862 unmap_mapping_range_vma(vma,
3863 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3864 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3865 details);
3866 }
3867}
3868
3869/**
3870 * unmap_mapping_folio() - Unmap single folio from processes.
3871 * @folio: The locked folio to be unmapped.
3872 *
3873 * Unmap this folio from any userspace process which still has it mmaped.
3874 * Typically, for efficiency, the range of nearby pages has already been
3875 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3876 * truncation or invalidation holds the lock on a folio, it may find that
3877 * the page has been remapped again: and then uses unmap_mapping_folio()
3878 * to unmap it finally.
3879 */
3880void unmap_mapping_folio(struct folio *folio)
3881{
3882 struct address_space *mapping = folio->mapping;
3883 struct zap_details details = { };
3884 pgoff_t first_index;
3885 pgoff_t last_index;
3886
3887 VM_BUG_ON(!folio_test_locked(folio));
3888
3889 first_index = folio->index;
3890 last_index = folio_next_index(folio) - 1;
3891
3892 details.even_cows = false;
3893 details.single_folio = folio;
3894 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3895
3896 i_mmap_lock_read(mapping);
3897 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3898 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3899 last_index, &details);
3900 i_mmap_unlock_read(mapping);
3901}
3902
3903/**
3904 * unmap_mapping_pages() - Unmap pages from processes.
3905 * @mapping: The address space containing pages to be unmapped.
3906 * @start: Index of first page to be unmapped.
3907 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3908 * @even_cows: Whether to unmap even private COWed pages.
3909 *
3910 * Unmap the pages in this address space from any userspace process which
3911 * has them mmaped. Generally, you want to remove COWed pages as well when
3912 * a file is being truncated, but not when invalidating pages from the page
3913 * cache.
3914 */
3915void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3916 pgoff_t nr, bool even_cows)
3917{
3918 struct zap_details details = { };
3919 pgoff_t first_index = start;
3920 pgoff_t last_index = start + nr - 1;
3921
3922 details.even_cows = even_cows;
3923 if (last_index < first_index)
3924 last_index = ULONG_MAX;
3925
3926 i_mmap_lock_read(mapping);
3927 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3928 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3929 last_index, &details);
3930 i_mmap_unlock_read(mapping);
3931}
3932EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3933
3934/**
3935 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3936 * address_space corresponding to the specified byte range in the underlying
3937 * file.
3938 *
3939 * @mapping: the address space containing mmaps to be unmapped.
3940 * @holebegin: byte in first page to unmap, relative to the start of
3941 * the underlying file. This will be rounded down to a PAGE_SIZE
3942 * boundary. Note that this is different from truncate_pagecache(), which
3943 * must keep the partial page. In contrast, we must get rid of
3944 * partial pages.
3945 * @holelen: size of prospective hole in bytes. This will be rounded
3946 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3947 * end of the file.
3948 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3949 * but 0 when invalidating pagecache, don't throw away private data.
3950 */
3951void unmap_mapping_range(struct address_space *mapping,
3952 loff_t const holebegin, loff_t const holelen, int even_cows)
3953{
3954 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3955 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3956
3957 /* Check for overflow. */
3958 if (sizeof(holelen) > sizeof(hlen)) {
3959 long long holeend =
3960 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3961 if (holeend & ~(long long)ULONG_MAX)
3962 hlen = ULONG_MAX - hba + 1;
3963 }
3964
3965 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3966}
3967EXPORT_SYMBOL(unmap_mapping_range);
3968
3969/*
3970 * Restore a potential device exclusive pte to a working pte entry
3971 */
3972static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3973{
3974 struct folio *folio = page_folio(vmf->page);
3975 struct vm_area_struct *vma = vmf->vma;
3976 struct mmu_notifier_range range;
3977 vm_fault_t ret;
3978
3979 /*
3980 * We need a reference to lock the folio because we don't hold
3981 * the PTL so a racing thread can remove the device-exclusive
3982 * entry and unmap it. If the folio is free the entry must
3983 * have been removed already. If it happens to have already
3984 * been re-allocated after being freed all we do is lock and
3985 * unlock it.
3986 */
3987 if (!folio_try_get(folio))
3988 return 0;
3989
3990 ret = folio_lock_or_retry(folio, vmf);
3991 if (ret) {
3992 folio_put(folio);
3993 return ret;
3994 }
3995 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3996 vma->vm_mm, vmf->address & PAGE_MASK,
3997 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3998 mmu_notifier_invalidate_range_start(&range);
3999
4000 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4001 &vmf->ptl);
4002 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4003 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
4004
4005 if (vmf->pte)
4006 pte_unmap_unlock(vmf->pte, vmf->ptl);
4007 folio_unlock(folio);
4008 folio_put(folio);
4009
4010 mmu_notifier_invalidate_range_end(&range);
4011 return 0;
4012}
4013
4014static inline bool should_try_to_free_swap(struct folio *folio,
4015 struct vm_area_struct *vma,
4016 unsigned int fault_flags)
4017{
4018 if (!folio_test_swapcache(folio))
4019 return false;
4020 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4021 folio_test_mlocked(folio))
4022 return true;
4023 /*
4024 * If we want to map a page that's in the swapcache writable, we
4025 * have to detect via the refcount if we're really the exclusive
4026 * user. Try freeing the swapcache to get rid of the swapcache
4027 * reference only in case it's likely that we'll be the exlusive user.
4028 */
4029 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4030 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
4031}
4032
4033static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4034{
4035 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4036 vmf->address, &vmf->ptl);
4037 if (!vmf->pte)
4038 return 0;
4039 /*
4040 * Be careful so that we will only recover a special uffd-wp pte into a
4041 * none pte. Otherwise it means the pte could have changed, so retry.
4042 *
4043 * This should also cover the case where e.g. the pte changed
4044 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4045 * So is_pte_marker() check is not enough to safely drop the pte.
4046 */
4047 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4048 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4049 pte_unmap_unlock(vmf->pte, vmf->ptl);
4050 return 0;
4051}
4052
4053static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4054{
4055 if (vma_is_anonymous(vmf->vma))
4056 return do_anonymous_page(vmf);
4057 else
4058 return do_fault(vmf);
4059}
4060
4061/*
4062 * This is actually a page-missing access, but with uffd-wp special pte
4063 * installed. It means this pte was wr-protected before being unmapped.
4064 */
4065static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4066{
4067 /*
4068 * Just in case there're leftover special ptes even after the region
4069 * got unregistered - we can simply clear them.
4070 */
4071 if (unlikely(!userfaultfd_wp(vmf->vma)))
4072 return pte_marker_clear(vmf);
4073
4074 return do_pte_missing(vmf);
4075}
4076
4077static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4078{
4079 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4080 unsigned long marker = pte_marker_get(entry);
4081
4082 /*
4083 * PTE markers should never be empty. If anything weird happened,
4084 * the best thing to do is to kill the process along with its mm.
4085 */
4086 if (WARN_ON_ONCE(!marker))
4087 return VM_FAULT_SIGBUS;
4088
4089 /* Higher priority than uffd-wp when data corrupted */
4090 if (marker & PTE_MARKER_POISONED)
4091 return VM_FAULT_HWPOISON;
4092
4093 /* Hitting a guard page is always a fatal condition. */
4094 if (marker & PTE_MARKER_GUARD)
4095 return VM_FAULT_SIGSEGV;
4096
4097 if (pte_marker_entry_uffd_wp(entry))
4098 return pte_marker_handle_uffd_wp(vmf);
4099
4100 /* This is an unknown pte marker */
4101 return VM_FAULT_SIGBUS;
4102}
4103
4104static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4105{
4106 struct vm_area_struct *vma = vmf->vma;
4107 struct folio *folio;
4108 swp_entry_t entry;
4109
4110 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4111 if (!folio)
4112 return NULL;
4113
4114 entry = pte_to_swp_entry(vmf->orig_pte);
4115 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4116 GFP_KERNEL, entry)) {
4117 folio_put(folio);
4118 return NULL;
4119 }
4120
4121 return folio;
4122}
4123
4124#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4125static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4126{
4127 struct swap_info_struct *si = swp_swap_info(entry);
4128 pgoff_t offset = swp_offset(entry);
4129 int i;
4130
4131 /*
4132 * While allocating a large folio and doing swap_read_folio, which is
4133 * the case the being faulted pte doesn't have swapcache. We need to
4134 * ensure all PTEs have no cache as well, otherwise, we might go to
4135 * swap devices while the content is in swapcache.
4136 */
4137 for (i = 0; i < max_nr; i++) {
4138 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4139 return i;
4140 }
4141
4142 return i;
4143}
4144
4145/*
4146 * Check if the PTEs within a range are contiguous swap entries
4147 * and have consistent swapcache, zeromap.
4148 */
4149static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4150{
4151 unsigned long addr;
4152 swp_entry_t entry;
4153 int idx;
4154 pte_t pte;
4155
4156 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4157 idx = (vmf->address - addr) / PAGE_SIZE;
4158 pte = ptep_get(ptep);
4159
4160 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4161 return false;
4162 entry = pte_to_swp_entry(pte);
4163 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4164 return false;
4165
4166 /*
4167 * swap_read_folio() can't handle the case a large folio is hybridly
4168 * from different backends. And they are likely corner cases. Similar
4169 * things might be added once zswap support large folios.
4170 */
4171 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4172 return false;
4173 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4174 return false;
4175
4176 return true;
4177}
4178
4179static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4180 unsigned long addr,
4181 unsigned long orders)
4182{
4183 int order, nr;
4184
4185 order = highest_order(orders);
4186
4187 /*
4188 * To swap in a THP with nr pages, we require that its first swap_offset
4189 * is aligned with that number, as it was when the THP was swapped out.
4190 * This helps filter out most invalid entries.
4191 */
4192 while (orders) {
4193 nr = 1 << order;
4194 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4195 break;
4196 order = next_order(&orders, order);
4197 }
4198
4199 return orders;
4200}
4201
4202static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4203{
4204 struct vm_area_struct *vma = vmf->vma;
4205 unsigned long orders;
4206 struct folio *folio;
4207 unsigned long addr;
4208 swp_entry_t entry;
4209 spinlock_t *ptl;
4210 pte_t *pte;
4211 gfp_t gfp;
4212 int order;
4213
4214 /*
4215 * If uffd is active for the vma we need per-page fault fidelity to
4216 * maintain the uffd semantics.
4217 */
4218 if (unlikely(userfaultfd_armed(vma)))
4219 goto fallback;
4220
4221 /*
4222 * A large swapped out folio could be partially or fully in zswap. We
4223 * lack handling for such cases, so fallback to swapping in order-0
4224 * folio.
4225 */
4226 if (!zswap_never_enabled())
4227 goto fallback;
4228
4229 entry = pte_to_swp_entry(vmf->orig_pte);
4230 /*
4231 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4232 * and suitable for swapping THP.
4233 */
4234 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4235 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4236 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4237 orders = thp_swap_suitable_orders(swp_offset(entry),
4238 vmf->address, orders);
4239
4240 if (!orders)
4241 goto fallback;
4242
4243 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4244 vmf->address & PMD_MASK, &ptl);
4245 if (unlikely(!pte))
4246 goto fallback;
4247
4248 /*
4249 * For do_swap_page, find the highest order where the aligned range is
4250 * completely swap entries with contiguous swap offsets.
4251 */
4252 order = highest_order(orders);
4253 while (orders) {
4254 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4255 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4256 break;
4257 order = next_order(&orders, order);
4258 }
4259
4260 pte_unmap_unlock(pte, ptl);
4261
4262 /* Try allocating the highest of the remaining orders. */
4263 gfp = vma_thp_gfp_mask(vma);
4264 while (orders) {
4265 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4266 folio = vma_alloc_folio(gfp, order, vma, addr);
4267 if (folio) {
4268 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4269 gfp, entry))
4270 return folio;
4271 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4272 folio_put(folio);
4273 }
4274 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4275 order = next_order(&orders, order);
4276 }
4277
4278fallback:
4279 return __alloc_swap_folio(vmf);
4280}
4281#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4282static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4283{
4284 return __alloc_swap_folio(vmf);
4285}
4286#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4287
4288static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4289
4290/*
4291 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4292 * but allow concurrent faults), and pte mapped but not yet locked.
4293 * We return with pte unmapped and unlocked.
4294 *
4295 * We return with the mmap_lock locked or unlocked in the same cases
4296 * as does filemap_fault().
4297 */
4298vm_fault_t do_swap_page(struct vm_fault *vmf)
4299{
4300 struct vm_area_struct *vma = vmf->vma;
4301 struct folio *swapcache, *folio = NULL;
4302 DECLARE_WAITQUEUE(wait, current);
4303 struct page *page;
4304 struct swap_info_struct *si = NULL;
4305 rmap_t rmap_flags = RMAP_NONE;
4306 bool need_clear_cache = false;
4307 bool exclusive = false;
4308 swp_entry_t entry;
4309 pte_t pte;
4310 vm_fault_t ret = 0;
4311 void *shadow = NULL;
4312 int nr_pages;
4313 unsigned long page_idx;
4314 unsigned long address;
4315 pte_t *ptep;
4316
4317 if (!pte_unmap_same(vmf))
4318 goto out;
4319
4320 entry = pte_to_swp_entry(vmf->orig_pte);
4321 if (unlikely(non_swap_entry(entry))) {
4322 if (is_migration_entry(entry)) {
4323 migration_entry_wait(vma->vm_mm, vmf->pmd,
4324 vmf->address);
4325 } else if (is_device_exclusive_entry(entry)) {
4326 vmf->page = pfn_swap_entry_to_page(entry);
4327 ret = remove_device_exclusive_entry(vmf);
4328 } else if (is_device_private_entry(entry)) {
4329 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4330 /*
4331 * migrate_to_ram is not yet ready to operate
4332 * under VMA lock.
4333 */
4334 vma_end_read(vma);
4335 ret = VM_FAULT_RETRY;
4336 goto out;
4337 }
4338
4339 vmf->page = pfn_swap_entry_to_page(entry);
4340 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4341 vmf->address, &vmf->ptl);
4342 if (unlikely(!vmf->pte ||
4343 !pte_same(ptep_get(vmf->pte),
4344 vmf->orig_pte)))
4345 goto unlock;
4346
4347 /*
4348 * Get a page reference while we know the page can't be
4349 * freed.
4350 */
4351 get_page(vmf->page);
4352 pte_unmap_unlock(vmf->pte, vmf->ptl);
4353 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4354 put_page(vmf->page);
4355 } else if (is_hwpoison_entry(entry)) {
4356 ret = VM_FAULT_HWPOISON;
4357 } else if (is_pte_marker_entry(entry)) {
4358 ret = handle_pte_marker(vmf);
4359 } else {
4360 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4361 ret = VM_FAULT_SIGBUS;
4362 }
4363 goto out;
4364 }
4365
4366 /* Prevent swapoff from happening to us. */
4367 si = get_swap_device(entry);
4368 if (unlikely(!si))
4369 goto out;
4370
4371 folio = swap_cache_get_folio(entry, vma, vmf->address);
4372 if (folio)
4373 page = folio_file_page(folio, swp_offset(entry));
4374 swapcache = folio;
4375
4376 if (!folio) {
4377 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4378 __swap_count(entry) == 1) {
4379 /* skip swapcache */
4380 folio = alloc_swap_folio(vmf);
4381 if (folio) {
4382 __folio_set_locked(folio);
4383 __folio_set_swapbacked(folio);
4384
4385 nr_pages = folio_nr_pages(folio);
4386 if (folio_test_large(folio))
4387 entry.val = ALIGN_DOWN(entry.val, nr_pages);
4388 /*
4389 * Prevent parallel swapin from proceeding with
4390 * the cache flag. Otherwise, another thread
4391 * may finish swapin first, free the entry, and
4392 * swapout reusing the same entry. It's
4393 * undetectable as pte_same() returns true due
4394 * to entry reuse.
4395 */
4396 if (swapcache_prepare(entry, nr_pages)) {
4397 /*
4398 * Relax a bit to prevent rapid
4399 * repeated page faults.
4400 */
4401 add_wait_queue(&swapcache_wq, &wait);
4402 schedule_timeout_uninterruptible(1);
4403 remove_wait_queue(&swapcache_wq, &wait);
4404 goto out_page;
4405 }
4406 need_clear_cache = true;
4407
4408 mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4409
4410 shadow = get_shadow_from_swap_cache(entry);
4411 if (shadow)
4412 workingset_refault(folio, shadow);
4413
4414 folio_add_lru(folio);
4415
4416 /* To provide entry to swap_read_folio() */
4417 folio->swap = entry;
4418 swap_read_folio(folio, NULL);
4419 folio->private = NULL;
4420 }
4421 } else {
4422 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4423 vmf);
4424 swapcache = folio;
4425 }
4426
4427 if (!folio) {
4428 /*
4429 * Back out if somebody else faulted in this pte
4430 * while we released the pte lock.
4431 */
4432 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4433 vmf->address, &vmf->ptl);
4434 if (likely(vmf->pte &&
4435 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4436 ret = VM_FAULT_OOM;
4437 goto unlock;
4438 }
4439
4440 /* Had to read the page from swap area: Major fault */
4441 ret = VM_FAULT_MAJOR;
4442 count_vm_event(PGMAJFAULT);
4443 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4444 page = folio_file_page(folio, swp_offset(entry));
4445 } else if (PageHWPoison(page)) {
4446 /*
4447 * hwpoisoned dirty swapcache pages are kept for killing
4448 * owner processes (which may be unknown at hwpoison time)
4449 */
4450 ret = VM_FAULT_HWPOISON;
4451 goto out_release;
4452 }
4453
4454 ret |= folio_lock_or_retry(folio, vmf);
4455 if (ret & VM_FAULT_RETRY)
4456 goto out_release;
4457
4458 if (swapcache) {
4459 /*
4460 * Make sure folio_free_swap() or swapoff did not release the
4461 * swapcache from under us. The page pin, and pte_same test
4462 * below, are not enough to exclude that. Even if it is still
4463 * swapcache, we need to check that the page's swap has not
4464 * changed.
4465 */
4466 if (unlikely(!folio_test_swapcache(folio) ||
4467 page_swap_entry(page).val != entry.val))
4468 goto out_page;
4469
4470 /*
4471 * KSM sometimes has to copy on read faults, for example, if
4472 * page->index of !PageKSM() pages would be nonlinear inside the
4473 * anon VMA -- PageKSM() is lost on actual swapout.
4474 */
4475 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4476 if (unlikely(!folio)) {
4477 ret = VM_FAULT_OOM;
4478 folio = swapcache;
4479 goto out_page;
4480 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4481 ret = VM_FAULT_HWPOISON;
4482 folio = swapcache;
4483 goto out_page;
4484 }
4485 if (folio != swapcache)
4486 page = folio_page(folio, 0);
4487
4488 /*
4489 * If we want to map a page that's in the swapcache writable, we
4490 * have to detect via the refcount if we're really the exclusive
4491 * owner. Try removing the extra reference from the local LRU
4492 * caches if required.
4493 */
4494 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4495 !folio_test_ksm(folio) && !folio_test_lru(folio))
4496 lru_add_drain();
4497 }
4498
4499 folio_throttle_swaprate(folio, GFP_KERNEL);
4500
4501 /*
4502 * Back out if somebody else already faulted in this pte.
4503 */
4504 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4505 &vmf->ptl);
4506 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4507 goto out_nomap;
4508
4509 if (unlikely(!folio_test_uptodate(folio))) {
4510 ret = VM_FAULT_SIGBUS;
4511 goto out_nomap;
4512 }
4513
4514 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4515 if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4516 unsigned long nr = folio_nr_pages(folio);
4517 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4518 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4519 pte_t *folio_ptep = vmf->pte - idx;
4520 pte_t folio_pte = ptep_get(folio_ptep);
4521
4522 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4523 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4524 goto out_nomap;
4525
4526 page_idx = idx;
4527 address = folio_start;
4528 ptep = folio_ptep;
4529 goto check_folio;
4530 }
4531
4532 nr_pages = 1;
4533 page_idx = 0;
4534 address = vmf->address;
4535 ptep = vmf->pte;
4536 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4537 int nr = folio_nr_pages(folio);
4538 unsigned long idx = folio_page_idx(folio, page);
4539 unsigned long folio_start = address - idx * PAGE_SIZE;
4540 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4541 pte_t *folio_ptep;
4542 pte_t folio_pte;
4543
4544 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4545 goto check_folio;
4546 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4547 goto check_folio;
4548
4549 folio_ptep = vmf->pte - idx;
4550 folio_pte = ptep_get(folio_ptep);
4551 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4552 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4553 goto check_folio;
4554
4555 page_idx = idx;
4556 address = folio_start;
4557 ptep = folio_ptep;
4558 nr_pages = nr;
4559 entry = folio->swap;
4560 page = &folio->page;
4561 }
4562
4563check_folio:
4564 /*
4565 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4566 * must never point at an anonymous page in the swapcache that is
4567 * PG_anon_exclusive. Sanity check that this holds and especially, that
4568 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4569 * check after taking the PT lock and making sure that nobody
4570 * concurrently faulted in this page and set PG_anon_exclusive.
4571 */
4572 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4573 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4574
4575 /*
4576 * Check under PT lock (to protect against concurrent fork() sharing
4577 * the swap entry concurrently) for certainly exclusive pages.
4578 */
4579 if (!folio_test_ksm(folio)) {
4580 exclusive = pte_swp_exclusive(vmf->orig_pte);
4581 if (folio != swapcache) {
4582 /*
4583 * We have a fresh page that is not exposed to the
4584 * swapcache -> certainly exclusive.
4585 */
4586 exclusive = true;
4587 } else if (exclusive && folio_test_writeback(folio) &&
4588 data_race(si->flags & SWP_STABLE_WRITES)) {
4589 /*
4590 * This is tricky: not all swap backends support
4591 * concurrent page modifications while under writeback.
4592 *
4593 * So if we stumble over such a page in the swapcache
4594 * we must not set the page exclusive, otherwise we can
4595 * map it writable without further checks and modify it
4596 * while still under writeback.
4597 *
4598 * For these problematic swap backends, simply drop the
4599 * exclusive marker: this is perfectly fine as we start
4600 * writeback only if we fully unmapped the page and
4601 * there are no unexpected references on the page after
4602 * unmapping succeeded. After fully unmapped, no
4603 * further GUP references (FOLL_GET and FOLL_PIN) can
4604 * appear, so dropping the exclusive marker and mapping
4605 * it only R/O is fine.
4606 */
4607 exclusive = false;
4608 }
4609 }
4610
4611 /*
4612 * Some architectures may have to restore extra metadata to the page
4613 * when reading from swap. This metadata may be indexed by swap entry
4614 * so this must be called before swap_free().
4615 */
4616 arch_swap_restore(folio_swap(entry, folio), folio);
4617
4618 /*
4619 * Remove the swap entry and conditionally try to free up the swapcache.
4620 * We're already holding a reference on the page but haven't mapped it
4621 * yet.
4622 */
4623 swap_free_nr(entry, nr_pages);
4624 if (should_try_to_free_swap(folio, vma, vmf->flags))
4625 folio_free_swap(folio);
4626
4627 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4628 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4629 pte = mk_pte(page, vma->vm_page_prot);
4630 if (pte_swp_soft_dirty(vmf->orig_pte))
4631 pte = pte_mksoft_dirty(pte);
4632 if (pte_swp_uffd_wp(vmf->orig_pte))
4633 pte = pte_mkuffd_wp(pte);
4634
4635 /*
4636 * Same logic as in do_wp_page(); however, optimize for pages that are
4637 * certainly not shared either because we just allocated them without
4638 * exposing them to the swapcache or because the swap entry indicates
4639 * exclusivity.
4640 */
4641 if (!folio_test_ksm(folio) &&
4642 (exclusive || folio_ref_count(folio) == 1)) {
4643 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4644 !pte_needs_soft_dirty_wp(vma, pte)) {
4645 pte = pte_mkwrite(pte, vma);
4646 if (vmf->flags & FAULT_FLAG_WRITE) {
4647 pte = pte_mkdirty(pte);
4648 vmf->flags &= ~FAULT_FLAG_WRITE;
4649 }
4650 }
4651 rmap_flags |= RMAP_EXCLUSIVE;
4652 }
4653 folio_ref_add(folio, nr_pages - 1);
4654 flush_icache_pages(vma, page, nr_pages);
4655 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4656
4657 /* ksm created a completely new copy */
4658 if (unlikely(folio != swapcache && swapcache)) {
4659 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4660 folio_add_lru_vma(folio, vma);
4661 } else if (!folio_test_anon(folio)) {
4662 /*
4663 * We currently only expect small !anon folios which are either
4664 * fully exclusive or fully shared, or new allocated large
4665 * folios which are fully exclusive. If we ever get large
4666 * folios within swapcache here, we have to be careful.
4667 */
4668 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4669 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4670 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4671 } else {
4672 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4673 rmap_flags);
4674 }
4675
4676 VM_BUG_ON(!folio_test_anon(folio) ||
4677 (pte_write(pte) && !PageAnonExclusive(page)));
4678 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4679 arch_do_swap_page_nr(vma->vm_mm, vma, address,
4680 pte, pte, nr_pages);
4681
4682 folio_unlock(folio);
4683 if (folio != swapcache && swapcache) {
4684 /*
4685 * Hold the lock to avoid the swap entry to be reused
4686 * until we take the PT lock for the pte_same() check
4687 * (to avoid false positives from pte_same). For
4688 * further safety release the lock after the swap_free
4689 * so that the swap count won't change under a
4690 * parallel locked swapcache.
4691 */
4692 folio_unlock(swapcache);
4693 folio_put(swapcache);
4694 }
4695
4696 if (vmf->flags & FAULT_FLAG_WRITE) {
4697 ret |= do_wp_page(vmf);
4698 if (ret & VM_FAULT_ERROR)
4699 ret &= VM_FAULT_ERROR;
4700 goto out;
4701 }
4702
4703 /* No need to invalidate - it was non-present before */
4704 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4705unlock:
4706 if (vmf->pte)
4707 pte_unmap_unlock(vmf->pte, vmf->ptl);
4708out:
4709 /* Clear the swap cache pin for direct swapin after PTL unlock */
4710 if (need_clear_cache) {
4711 swapcache_clear(si, entry, nr_pages);
4712 if (waitqueue_active(&swapcache_wq))
4713 wake_up(&swapcache_wq);
4714 }
4715 if (si)
4716 put_swap_device(si);
4717 return ret;
4718out_nomap:
4719 if (vmf->pte)
4720 pte_unmap_unlock(vmf->pte, vmf->ptl);
4721out_page:
4722 folio_unlock(folio);
4723out_release:
4724 folio_put(folio);
4725 if (folio != swapcache && swapcache) {
4726 folio_unlock(swapcache);
4727 folio_put(swapcache);
4728 }
4729 if (need_clear_cache) {
4730 swapcache_clear(si, entry, nr_pages);
4731 if (waitqueue_active(&swapcache_wq))
4732 wake_up(&swapcache_wq);
4733 }
4734 if (si)
4735 put_swap_device(si);
4736 return ret;
4737}
4738
4739static bool pte_range_none(pte_t *pte, int nr_pages)
4740{
4741 int i;
4742
4743 for (i = 0; i < nr_pages; i++) {
4744 if (!pte_none(ptep_get_lockless(pte + i)))
4745 return false;
4746 }
4747
4748 return true;
4749}
4750
4751static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4752{
4753 struct vm_area_struct *vma = vmf->vma;
4754#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4755 unsigned long orders;
4756 struct folio *folio;
4757 unsigned long addr;
4758 pte_t *pte;
4759 gfp_t gfp;
4760 int order;
4761
4762 /*
4763 * If uffd is active for the vma we need per-page fault fidelity to
4764 * maintain the uffd semantics.
4765 */
4766 if (unlikely(userfaultfd_armed(vma)))
4767 goto fallback;
4768
4769 /*
4770 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4771 * for this vma. Then filter out the orders that can't be allocated over
4772 * the faulting address and still be fully contained in the vma.
4773 */
4774 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4775 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4776 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4777
4778 if (!orders)
4779 goto fallback;
4780
4781 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4782 if (!pte)
4783 return ERR_PTR(-EAGAIN);
4784
4785 /*
4786 * Find the highest order where the aligned range is completely
4787 * pte_none(). Note that all remaining orders will be completely
4788 * pte_none().
4789 */
4790 order = highest_order(orders);
4791 while (orders) {
4792 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4793 if (pte_range_none(pte + pte_index(addr), 1 << order))
4794 break;
4795 order = next_order(&orders, order);
4796 }
4797
4798 pte_unmap(pte);
4799
4800 if (!orders)
4801 goto fallback;
4802
4803 /* Try allocating the highest of the remaining orders. */
4804 gfp = vma_thp_gfp_mask(vma);
4805 while (orders) {
4806 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4807 folio = vma_alloc_folio(gfp, order, vma, addr);
4808 if (folio) {
4809 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4810 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4811 folio_put(folio);
4812 goto next;
4813 }
4814 folio_throttle_swaprate(folio, gfp);
4815 /*
4816 * When a folio is not zeroed during allocation
4817 * (__GFP_ZERO not used) or user folios require special
4818 * handling, folio_zero_user() is used to make sure
4819 * that the page corresponding to the faulting address
4820 * will be hot in the cache after zeroing.
4821 */
4822 if (user_alloc_needs_zeroing())
4823 folio_zero_user(folio, vmf->address);
4824 return folio;
4825 }
4826next:
4827 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4828 order = next_order(&orders, order);
4829 }
4830
4831fallback:
4832#endif
4833 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4834}
4835
4836/*
4837 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4838 * but allow concurrent faults), and pte mapped but not yet locked.
4839 * We return with mmap_lock still held, but pte unmapped and unlocked.
4840 */
4841static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4842{
4843 struct vm_area_struct *vma = vmf->vma;
4844 unsigned long addr = vmf->address;
4845 struct folio *folio;
4846 vm_fault_t ret = 0;
4847 int nr_pages = 1;
4848 pte_t entry;
4849
4850 /* File mapping without ->vm_ops ? */
4851 if (vma->vm_flags & VM_SHARED)
4852 return VM_FAULT_SIGBUS;
4853
4854 /*
4855 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4856 * be distinguished from a transient failure of pte_offset_map().
4857 */
4858 if (pte_alloc(vma->vm_mm, vmf->pmd))
4859 return VM_FAULT_OOM;
4860
4861 /* Use the zero-page for reads */
4862 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4863 !mm_forbids_zeropage(vma->vm_mm)) {
4864 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4865 vma->vm_page_prot));
4866 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4867 vmf->address, &vmf->ptl);
4868 if (!vmf->pte)
4869 goto unlock;
4870 if (vmf_pte_changed(vmf)) {
4871 update_mmu_tlb(vma, vmf->address, vmf->pte);
4872 goto unlock;
4873 }
4874 ret = check_stable_address_space(vma->vm_mm);
4875 if (ret)
4876 goto unlock;
4877 /* Deliver the page fault to userland, check inside PT lock */
4878 if (userfaultfd_missing(vma)) {
4879 pte_unmap_unlock(vmf->pte, vmf->ptl);
4880 return handle_userfault(vmf, VM_UFFD_MISSING);
4881 }
4882 goto setpte;
4883 }
4884
4885 /* Allocate our own private page. */
4886 ret = vmf_anon_prepare(vmf);
4887 if (ret)
4888 return ret;
4889 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4890 folio = alloc_anon_folio(vmf);
4891 if (IS_ERR(folio))
4892 return 0;
4893 if (!folio)
4894 goto oom;
4895
4896 nr_pages = folio_nr_pages(folio);
4897 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4898
4899 /*
4900 * The memory barrier inside __folio_mark_uptodate makes sure that
4901 * preceding stores to the page contents become visible before
4902 * the set_pte_at() write.
4903 */
4904 __folio_mark_uptodate(folio);
4905
4906 entry = mk_pte(&folio->page, vma->vm_page_prot);
4907 entry = pte_sw_mkyoung(entry);
4908 if (vma->vm_flags & VM_WRITE)
4909 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4910
4911 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4912 if (!vmf->pte)
4913 goto release;
4914 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4915 update_mmu_tlb(vma, addr, vmf->pte);
4916 goto release;
4917 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4918 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4919 goto release;
4920 }
4921
4922 ret = check_stable_address_space(vma->vm_mm);
4923 if (ret)
4924 goto release;
4925
4926 /* Deliver the page fault to userland, check inside PT lock */
4927 if (userfaultfd_missing(vma)) {
4928 pte_unmap_unlock(vmf->pte, vmf->ptl);
4929 folio_put(folio);
4930 return handle_userfault(vmf, VM_UFFD_MISSING);
4931 }
4932
4933 folio_ref_add(folio, nr_pages - 1);
4934 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4935 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4936 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4937 folio_add_lru_vma(folio, vma);
4938setpte:
4939 if (vmf_orig_pte_uffd_wp(vmf))
4940 entry = pte_mkuffd_wp(entry);
4941 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4942
4943 /* No need to invalidate - it was non-present before */
4944 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4945unlock:
4946 if (vmf->pte)
4947 pte_unmap_unlock(vmf->pte, vmf->ptl);
4948 return ret;
4949release:
4950 folio_put(folio);
4951 goto unlock;
4952oom:
4953 return VM_FAULT_OOM;
4954}
4955
4956/*
4957 * The mmap_lock must have been held on entry, and may have been
4958 * released depending on flags and vma->vm_ops->fault() return value.
4959 * See filemap_fault() and __lock_page_retry().
4960 */
4961static vm_fault_t __do_fault(struct vm_fault *vmf)
4962{
4963 struct vm_area_struct *vma = vmf->vma;
4964 struct folio *folio;
4965 vm_fault_t ret;
4966
4967 /*
4968 * Preallocate pte before we take page_lock because this might lead to
4969 * deadlocks for memcg reclaim which waits for pages under writeback:
4970 * lock_page(A)
4971 * SetPageWriteback(A)
4972 * unlock_page(A)
4973 * lock_page(B)
4974 * lock_page(B)
4975 * pte_alloc_one
4976 * shrink_folio_list
4977 * wait_on_page_writeback(A)
4978 * SetPageWriteback(B)
4979 * unlock_page(B)
4980 * # flush A, B to clear the writeback
4981 */
4982 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4983 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4984 if (!vmf->prealloc_pte)
4985 return VM_FAULT_OOM;
4986 }
4987
4988 ret = vma->vm_ops->fault(vmf);
4989 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4990 VM_FAULT_DONE_COW)))
4991 return ret;
4992
4993 folio = page_folio(vmf->page);
4994 if (unlikely(PageHWPoison(vmf->page))) {
4995 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4996 if (ret & VM_FAULT_LOCKED) {
4997 if (page_mapped(vmf->page))
4998 unmap_mapping_folio(folio);
4999 /* Retry if a clean folio was removed from the cache. */
5000 if (mapping_evict_folio(folio->mapping, folio))
5001 poisonret = VM_FAULT_NOPAGE;
5002 folio_unlock(folio);
5003 }
5004 folio_put(folio);
5005 vmf->page = NULL;
5006 return poisonret;
5007 }
5008
5009 if (unlikely(!(ret & VM_FAULT_LOCKED)))
5010 folio_lock(folio);
5011 else
5012 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5013
5014 return ret;
5015}
5016
5017#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5018static void deposit_prealloc_pte(struct vm_fault *vmf)
5019{
5020 struct vm_area_struct *vma = vmf->vma;
5021
5022 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5023 /*
5024 * We are going to consume the prealloc table,
5025 * count that as nr_ptes.
5026 */
5027 mm_inc_nr_ptes(vma->vm_mm);
5028 vmf->prealloc_pte = NULL;
5029}
5030
5031vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5032{
5033 struct folio *folio = page_folio(page);
5034 struct vm_area_struct *vma = vmf->vma;
5035 bool write = vmf->flags & FAULT_FLAG_WRITE;
5036 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5037 pmd_t entry;
5038 vm_fault_t ret = VM_FAULT_FALLBACK;
5039
5040 /*
5041 * It is too late to allocate a small folio, we already have a large
5042 * folio in the pagecache: especially s390 KVM cannot tolerate any
5043 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5044 * PMD mappings if THPs are disabled.
5045 */
5046 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
5047 return ret;
5048
5049 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5050 return ret;
5051
5052 if (folio_order(folio) != HPAGE_PMD_ORDER)
5053 return ret;
5054 page = &folio->page;
5055
5056 /*
5057 * Just backoff if any subpage of a THP is corrupted otherwise
5058 * the corrupted page may mapped by PMD silently to escape the
5059 * check. This kind of THP just can be PTE mapped. Access to
5060 * the corrupted subpage should trigger SIGBUS as expected.
5061 */
5062 if (unlikely(folio_test_has_hwpoisoned(folio)))
5063 return ret;
5064
5065 /*
5066 * Archs like ppc64 need additional space to store information
5067 * related to pte entry. Use the preallocated table for that.
5068 */
5069 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5070 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5071 if (!vmf->prealloc_pte)
5072 return VM_FAULT_OOM;
5073 }
5074
5075 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5076 if (unlikely(!pmd_none(*vmf->pmd)))
5077 goto out;
5078
5079 flush_icache_pages(vma, page, HPAGE_PMD_NR);
5080
5081 entry = mk_huge_pmd(page, vma->vm_page_prot);
5082 if (write)
5083 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5084
5085 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5086 folio_add_file_rmap_pmd(folio, page, vma);
5087
5088 /*
5089 * deposit and withdraw with pmd lock held
5090 */
5091 if (arch_needs_pgtable_deposit())
5092 deposit_prealloc_pte(vmf);
5093
5094 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5095
5096 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5097
5098 /* fault is handled */
5099 ret = 0;
5100 count_vm_event(THP_FILE_MAPPED);
5101out:
5102 spin_unlock(vmf->ptl);
5103 return ret;
5104}
5105#else
5106vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5107{
5108 return VM_FAULT_FALLBACK;
5109}
5110#endif
5111
5112/**
5113 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5114 * @vmf: Fault decription.
5115 * @folio: The folio that contains @page.
5116 * @page: The first page to create a PTE for.
5117 * @nr: The number of PTEs to create.
5118 * @addr: The first address to create a PTE for.
5119 */
5120void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5121 struct page *page, unsigned int nr, unsigned long addr)
5122{
5123 struct vm_area_struct *vma = vmf->vma;
5124 bool write = vmf->flags & FAULT_FLAG_WRITE;
5125 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5126 pte_t entry;
5127
5128 flush_icache_pages(vma, page, nr);
5129 entry = mk_pte(page, vma->vm_page_prot);
5130
5131 if (prefault && arch_wants_old_prefaulted_pte())
5132 entry = pte_mkold(entry);
5133 else
5134 entry = pte_sw_mkyoung(entry);
5135
5136 if (write)
5137 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5138 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5139 entry = pte_mkuffd_wp(entry);
5140 /* copy-on-write page */
5141 if (write && !(vma->vm_flags & VM_SHARED)) {
5142 VM_BUG_ON_FOLIO(nr != 1, folio);
5143 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5144 folio_add_lru_vma(folio, vma);
5145 } else {
5146 folio_add_file_rmap_ptes(folio, page, nr, vma);
5147 }
5148 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5149
5150 /* no need to invalidate: a not-present page won't be cached */
5151 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5152}
5153
5154static bool vmf_pte_changed(struct vm_fault *vmf)
5155{
5156 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5157 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5158
5159 return !pte_none(ptep_get(vmf->pte));
5160}
5161
5162/**
5163 * finish_fault - finish page fault once we have prepared the page to fault
5164 *
5165 * @vmf: structure describing the fault
5166 *
5167 * This function handles all that is needed to finish a page fault once the
5168 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5169 * given page, adds reverse page mapping, handles memcg charges and LRU
5170 * addition.
5171 *
5172 * The function expects the page to be locked and on success it consumes a
5173 * reference of a page being mapped (for the PTE which maps it).
5174 *
5175 * Return: %0 on success, %VM_FAULT_ code in case of error.
5176 */
5177vm_fault_t finish_fault(struct vm_fault *vmf)
5178{
5179 struct vm_area_struct *vma = vmf->vma;
5180 struct page *page;
5181 struct folio *folio;
5182 vm_fault_t ret;
5183 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5184 !(vma->vm_flags & VM_SHARED);
5185 int type, nr_pages;
5186 unsigned long addr = vmf->address;
5187
5188 /* Did we COW the page? */
5189 if (is_cow)
5190 page = vmf->cow_page;
5191 else
5192 page = vmf->page;
5193
5194 /*
5195 * check even for read faults because we might have lost our CoWed
5196 * page
5197 */
5198 if (!(vma->vm_flags & VM_SHARED)) {
5199 ret = check_stable_address_space(vma->vm_mm);
5200 if (ret)
5201 return ret;
5202 }
5203
5204 if (pmd_none(*vmf->pmd)) {
5205 if (PageTransCompound(page)) {
5206 ret = do_set_pmd(vmf, page);
5207 if (ret != VM_FAULT_FALLBACK)
5208 return ret;
5209 }
5210
5211 if (vmf->prealloc_pte)
5212 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5213 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5214 return VM_FAULT_OOM;
5215 }
5216
5217 folio = page_folio(page);
5218 nr_pages = folio_nr_pages(folio);
5219
5220 /*
5221 * Using per-page fault to maintain the uffd semantics, and same
5222 * approach also applies to non-anonymous-shmem faults to avoid
5223 * inflating the RSS of the process.
5224 */
5225 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
5226 nr_pages = 1;
5227 } else if (nr_pages > 1) {
5228 pgoff_t idx = folio_page_idx(folio, page);
5229 /* The page offset of vmf->address within the VMA. */
5230 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5231 /* The index of the entry in the pagetable for fault page. */
5232 pgoff_t pte_off = pte_index(vmf->address);
5233
5234 /*
5235 * Fallback to per-page fault in case the folio size in page
5236 * cache beyond the VMA limits and PMD pagetable limits.
5237 */
5238 if (unlikely(vma_off < idx ||
5239 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5240 pte_off < idx ||
5241 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5242 nr_pages = 1;
5243 } else {
5244 /* Now we can set mappings for the whole large folio. */
5245 addr = vmf->address - idx * PAGE_SIZE;
5246 page = &folio->page;
5247 }
5248 }
5249
5250 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5251 addr, &vmf->ptl);
5252 if (!vmf->pte)
5253 return VM_FAULT_NOPAGE;
5254
5255 /* Re-check under ptl */
5256 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5257 update_mmu_tlb(vma, addr, vmf->pte);
5258 ret = VM_FAULT_NOPAGE;
5259 goto unlock;
5260 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5261 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5262 ret = VM_FAULT_NOPAGE;
5263 goto unlock;
5264 }
5265
5266 folio_ref_add(folio, nr_pages - 1);
5267 set_pte_range(vmf, folio, page, nr_pages, addr);
5268 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5269 add_mm_counter(vma->vm_mm, type, nr_pages);
5270 ret = 0;
5271
5272unlock:
5273 pte_unmap_unlock(vmf->pte, vmf->ptl);
5274 return ret;
5275}
5276
5277static unsigned long fault_around_pages __read_mostly =
5278 65536 >> PAGE_SHIFT;
5279
5280#ifdef CONFIG_DEBUG_FS
5281static int fault_around_bytes_get(void *data, u64 *val)
5282{
5283 *val = fault_around_pages << PAGE_SHIFT;
5284 return 0;
5285}
5286
5287/*
5288 * fault_around_bytes must be rounded down to the nearest page order as it's
5289 * what do_fault_around() expects to see.
5290 */
5291static int fault_around_bytes_set(void *data, u64 val)
5292{
5293 if (val / PAGE_SIZE > PTRS_PER_PTE)
5294 return -EINVAL;
5295
5296 /*
5297 * The minimum value is 1 page, however this results in no fault-around
5298 * at all. See should_fault_around().
5299 */
5300 val = max(val, PAGE_SIZE);
5301 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5302
5303 return 0;
5304}
5305DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5306 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5307
5308static int __init fault_around_debugfs(void)
5309{
5310 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5311 &fault_around_bytes_fops);
5312 return 0;
5313}
5314late_initcall(fault_around_debugfs);
5315#endif
5316
5317/*
5318 * do_fault_around() tries to map few pages around the fault address. The hope
5319 * is that the pages will be needed soon and this will lower the number of
5320 * faults to handle.
5321 *
5322 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5323 * not ready to be mapped: not up-to-date, locked, etc.
5324 *
5325 * This function doesn't cross VMA or page table boundaries, in order to call
5326 * map_pages() and acquire a PTE lock only once.
5327 *
5328 * fault_around_pages defines how many pages we'll try to map.
5329 * do_fault_around() expects it to be set to a power of two less than or equal
5330 * to PTRS_PER_PTE.
5331 *
5332 * The virtual address of the area that we map is naturally aligned to
5333 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5334 * (and therefore to page order). This way it's easier to guarantee
5335 * that we don't cross page table boundaries.
5336 */
5337static vm_fault_t do_fault_around(struct vm_fault *vmf)
5338{
5339 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5340 pgoff_t pte_off = pte_index(vmf->address);
5341 /* The page offset of vmf->address within the VMA. */
5342 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5343 pgoff_t from_pte, to_pte;
5344 vm_fault_t ret;
5345
5346 /* The PTE offset of the start address, clamped to the VMA. */
5347 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5348 pte_off - min(pte_off, vma_off));
5349
5350 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5351 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5352 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5353
5354 if (pmd_none(*vmf->pmd)) {
5355 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5356 if (!vmf->prealloc_pte)
5357 return VM_FAULT_OOM;
5358 }
5359
5360 rcu_read_lock();
5361 ret = vmf->vma->vm_ops->map_pages(vmf,
5362 vmf->pgoff + from_pte - pte_off,
5363 vmf->pgoff + to_pte - pte_off);
5364 rcu_read_unlock();
5365
5366 return ret;
5367}
5368
5369/* Return true if we should do read fault-around, false otherwise */
5370static inline bool should_fault_around(struct vm_fault *vmf)
5371{
5372 /* No ->map_pages? No way to fault around... */
5373 if (!vmf->vma->vm_ops->map_pages)
5374 return false;
5375
5376 if (uffd_disable_fault_around(vmf->vma))
5377 return false;
5378
5379 /* A single page implies no faulting 'around' at all. */
5380 return fault_around_pages > 1;
5381}
5382
5383static vm_fault_t do_read_fault(struct vm_fault *vmf)
5384{
5385 vm_fault_t ret = 0;
5386 struct folio *folio;
5387
5388 /*
5389 * Let's call ->map_pages() first and use ->fault() as fallback
5390 * if page by the offset is not ready to be mapped (cold cache or
5391 * something).
5392 */
5393 if (should_fault_around(vmf)) {
5394 ret = do_fault_around(vmf);
5395 if (ret)
5396 return ret;
5397 }
5398
5399 ret = vmf_can_call_fault(vmf);
5400 if (ret)
5401 return ret;
5402
5403 ret = __do_fault(vmf);
5404 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5405 return ret;
5406
5407 ret |= finish_fault(vmf);
5408 folio = page_folio(vmf->page);
5409 folio_unlock(folio);
5410 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5411 folio_put(folio);
5412 return ret;
5413}
5414
5415static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5416{
5417 struct vm_area_struct *vma = vmf->vma;
5418 struct folio *folio;
5419 vm_fault_t ret;
5420
5421 ret = vmf_can_call_fault(vmf);
5422 if (!ret)
5423 ret = vmf_anon_prepare(vmf);
5424 if (ret)
5425 return ret;
5426
5427 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5428 if (!folio)
5429 return VM_FAULT_OOM;
5430
5431 vmf->cow_page = &folio->page;
5432
5433 ret = __do_fault(vmf);
5434 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5435 goto uncharge_out;
5436 if (ret & VM_FAULT_DONE_COW)
5437 return ret;
5438
5439 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5440 ret = VM_FAULT_HWPOISON;
5441 goto unlock;
5442 }
5443 __folio_mark_uptodate(folio);
5444
5445 ret |= finish_fault(vmf);
5446unlock:
5447 unlock_page(vmf->page);
5448 put_page(vmf->page);
5449 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5450 goto uncharge_out;
5451 return ret;
5452uncharge_out:
5453 folio_put(folio);
5454 return ret;
5455}
5456
5457static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5458{
5459 struct vm_area_struct *vma = vmf->vma;
5460 vm_fault_t ret, tmp;
5461 struct folio *folio;
5462
5463 ret = vmf_can_call_fault(vmf);
5464 if (ret)
5465 return ret;
5466
5467 ret = __do_fault(vmf);
5468 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5469 return ret;
5470
5471 folio = page_folio(vmf->page);
5472
5473 /*
5474 * Check if the backing address space wants to know that the page is
5475 * about to become writable
5476 */
5477 if (vma->vm_ops->page_mkwrite) {
5478 folio_unlock(folio);
5479 tmp = do_page_mkwrite(vmf, folio);
5480 if (unlikely(!tmp ||
5481 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5482 folio_put(folio);
5483 return tmp;
5484 }
5485 }
5486
5487 ret |= finish_fault(vmf);
5488 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5489 VM_FAULT_RETRY))) {
5490 folio_unlock(folio);
5491 folio_put(folio);
5492 return ret;
5493 }
5494
5495 ret |= fault_dirty_shared_page(vmf);
5496 return ret;
5497}
5498
5499/*
5500 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5501 * but allow concurrent faults).
5502 * The mmap_lock may have been released depending on flags and our
5503 * return value. See filemap_fault() and __folio_lock_or_retry().
5504 * If mmap_lock is released, vma may become invalid (for example
5505 * by other thread calling munmap()).
5506 */
5507static vm_fault_t do_fault(struct vm_fault *vmf)
5508{
5509 struct vm_area_struct *vma = vmf->vma;
5510 struct mm_struct *vm_mm = vma->vm_mm;
5511 vm_fault_t ret;
5512
5513 /*
5514 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5515 */
5516 if (!vma->vm_ops->fault) {
5517 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5518 vmf->address, &vmf->ptl);
5519 if (unlikely(!vmf->pte))
5520 ret = VM_FAULT_SIGBUS;
5521 else {
5522 /*
5523 * Make sure this is not a temporary clearing of pte
5524 * by holding ptl and checking again. A R/M/W update
5525 * of pte involves: take ptl, clearing the pte so that
5526 * we don't have concurrent modification by hardware
5527 * followed by an update.
5528 */
5529 if (unlikely(pte_none(ptep_get(vmf->pte))))
5530 ret = VM_FAULT_SIGBUS;
5531 else
5532 ret = VM_FAULT_NOPAGE;
5533
5534 pte_unmap_unlock(vmf->pte, vmf->ptl);
5535 }
5536 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5537 ret = do_read_fault(vmf);
5538 else if (!(vma->vm_flags & VM_SHARED))
5539 ret = do_cow_fault(vmf);
5540 else
5541 ret = do_shared_fault(vmf);
5542
5543 /* preallocated pagetable is unused: free it */
5544 if (vmf->prealloc_pte) {
5545 pte_free(vm_mm, vmf->prealloc_pte);
5546 vmf->prealloc_pte = NULL;
5547 }
5548 return ret;
5549}
5550
5551int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5552 unsigned long addr, int *flags,
5553 bool writable, int *last_cpupid)
5554{
5555 struct vm_area_struct *vma = vmf->vma;
5556
5557 /*
5558 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5559 * much anyway since they can be in shared cache state. This misses
5560 * the case where a mapping is writable but the process never writes
5561 * to it but pte_write gets cleared during protection updates and
5562 * pte_dirty has unpredictable behaviour between PTE scan updates,
5563 * background writeback, dirty balancing and application behaviour.
5564 */
5565 if (!writable)
5566 *flags |= TNF_NO_GROUP;
5567
5568 /*
5569 * Flag if the folio is shared between multiple address spaces. This
5570 * is later used when determining whether to group tasks together
5571 */
5572 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5573 *flags |= TNF_SHARED;
5574 /*
5575 * For memory tiering mode, cpupid of slow memory page is used
5576 * to record page access time. So use default value.
5577 */
5578 if (folio_use_access_time(folio))
5579 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5580 else
5581 *last_cpupid = folio_last_cpupid(folio);
5582
5583 /* Record the current PID acceesing VMA */
5584 vma_set_access_pid_bit(vma);
5585
5586 count_vm_numa_event(NUMA_HINT_FAULTS);
5587#ifdef CONFIG_NUMA_BALANCING
5588 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5589#endif
5590 if (folio_nid(folio) == numa_node_id()) {
5591 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5592 *flags |= TNF_FAULT_LOCAL;
5593 }
5594
5595 return mpol_misplaced(folio, vmf, addr);
5596}
5597
5598static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5599 unsigned long fault_addr, pte_t *fault_pte,
5600 bool writable)
5601{
5602 pte_t pte, old_pte;
5603
5604 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5605 pte = pte_modify(old_pte, vma->vm_page_prot);
5606 pte = pte_mkyoung(pte);
5607 if (writable)
5608 pte = pte_mkwrite(pte, vma);
5609 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5610 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5611}
5612
5613static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5614 struct folio *folio, pte_t fault_pte,
5615 bool ignore_writable, bool pte_write_upgrade)
5616{
5617 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5618 unsigned long start, end, addr = vmf->address;
5619 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5620 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5621 pte_t *start_ptep;
5622
5623 /* Stay within the VMA and within the page table. */
5624 start = max3(addr_start, pt_start, vma->vm_start);
5625 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5626 vma->vm_end);
5627 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5628
5629 /* Restore all PTEs' mapping of the large folio */
5630 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5631 pte_t ptent = ptep_get(start_ptep);
5632 bool writable = false;
5633
5634 if (!pte_present(ptent) || !pte_protnone(ptent))
5635 continue;
5636
5637 if (pfn_folio(pte_pfn(ptent)) != folio)
5638 continue;
5639
5640 if (!ignore_writable) {
5641 ptent = pte_modify(ptent, vma->vm_page_prot);
5642 writable = pte_write(ptent);
5643 if (!writable && pte_write_upgrade &&
5644 can_change_pte_writable(vma, addr, ptent))
5645 writable = true;
5646 }
5647
5648 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5649 }
5650}
5651
5652static vm_fault_t do_numa_page(struct vm_fault *vmf)
5653{
5654 struct vm_area_struct *vma = vmf->vma;
5655 struct folio *folio = NULL;
5656 int nid = NUMA_NO_NODE;
5657 bool writable = false, ignore_writable = false;
5658 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5659 int last_cpupid;
5660 int target_nid;
5661 pte_t pte, old_pte;
5662 int flags = 0, nr_pages;
5663
5664 /*
5665 * The pte cannot be used safely until we verify, while holding the page
5666 * table lock, that its contents have not changed during fault handling.
5667 */
5668 spin_lock(vmf->ptl);
5669 /* Read the live PTE from the page tables: */
5670 old_pte = ptep_get(vmf->pte);
5671
5672 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5673 pte_unmap_unlock(vmf->pte, vmf->ptl);
5674 return 0;
5675 }
5676
5677 pte = pte_modify(old_pte, vma->vm_page_prot);
5678
5679 /*
5680 * Detect now whether the PTE could be writable; this information
5681 * is only valid while holding the PT lock.
5682 */
5683 writable = pte_write(pte);
5684 if (!writable && pte_write_upgrade &&
5685 can_change_pte_writable(vma, vmf->address, pte))
5686 writable = true;
5687
5688 folio = vm_normal_folio(vma, vmf->address, pte);
5689 if (!folio || folio_is_zone_device(folio))
5690 goto out_map;
5691
5692 nid = folio_nid(folio);
5693 nr_pages = folio_nr_pages(folio);
5694
5695 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5696 writable, &last_cpupid);
5697 if (target_nid == NUMA_NO_NODE)
5698 goto out_map;
5699 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5700 flags |= TNF_MIGRATE_FAIL;
5701 goto out_map;
5702 }
5703 /* The folio is isolated and isolation code holds a folio reference. */
5704 pte_unmap_unlock(vmf->pte, vmf->ptl);
5705 writable = false;
5706 ignore_writable = true;
5707
5708 /* Migrate to the requested node */
5709 if (!migrate_misplaced_folio(folio, target_nid)) {
5710 nid = target_nid;
5711 flags |= TNF_MIGRATED;
5712 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5713 return 0;
5714 }
5715
5716 flags |= TNF_MIGRATE_FAIL;
5717 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5718 vmf->address, &vmf->ptl);
5719 if (unlikely(!vmf->pte))
5720 return 0;
5721 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5722 pte_unmap_unlock(vmf->pte, vmf->ptl);
5723 return 0;
5724 }
5725out_map:
5726 /*
5727 * Make it present again, depending on how arch implements
5728 * non-accessible ptes, some can allow access by kernel mode.
5729 */
5730 if (folio && folio_test_large(folio))
5731 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5732 pte_write_upgrade);
5733 else
5734 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5735 writable);
5736 pte_unmap_unlock(vmf->pte, vmf->ptl);
5737
5738 if (nid != NUMA_NO_NODE)
5739 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5740 return 0;
5741}
5742
5743static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5744{
5745 struct vm_area_struct *vma = vmf->vma;
5746
5747 if (vma_is_anonymous(vma))
5748 return do_huge_pmd_anonymous_page(vmf);
5749 /*
5750 * Currently we just emit PAGE_SIZE for our fault events, so don't allow
5751 * a huge fault if we have a pre content watch on this file. This would
5752 * be trivial to support, but there would need to be tests to ensure
5753 * this works properly and those don't exist currently.
5754 */
5755 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5756 return VM_FAULT_FALLBACK;
5757 if (vma->vm_ops->huge_fault)
5758 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5759 return VM_FAULT_FALLBACK;
5760}
5761
5762/* `inline' is required to avoid gcc 4.1.2 build error */
5763static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5764{
5765 struct vm_area_struct *vma = vmf->vma;
5766 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5767 vm_fault_t ret;
5768
5769 if (vma_is_anonymous(vma)) {
5770 if (likely(!unshare) &&
5771 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5772 if (userfaultfd_wp_async(vmf->vma))
5773 goto split;
5774 return handle_userfault(vmf, VM_UFFD_WP);
5775 }
5776 return do_huge_pmd_wp_page(vmf);
5777 }
5778
5779 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5780 /* See comment in create_huge_pmd. */
5781 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5782 goto split;
5783 if (vma->vm_ops->huge_fault) {
5784 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5785 if (!(ret & VM_FAULT_FALLBACK))
5786 return ret;
5787 }
5788 }
5789
5790split:
5791 /* COW or write-notify handled on pte level: split pmd. */
5792 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5793
5794 return VM_FAULT_FALLBACK;
5795}
5796
5797static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5798{
5799#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5800 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5801 struct vm_area_struct *vma = vmf->vma;
5802 /* No support for anonymous transparent PUD pages yet */
5803 if (vma_is_anonymous(vma))
5804 return VM_FAULT_FALLBACK;
5805 /* See comment in create_huge_pmd. */
5806 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5807 return VM_FAULT_FALLBACK;
5808 if (vma->vm_ops->huge_fault)
5809 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5810#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5811 return VM_FAULT_FALLBACK;
5812}
5813
5814static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5815{
5816#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5817 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5818 struct vm_area_struct *vma = vmf->vma;
5819 vm_fault_t ret;
5820
5821 /* No support for anonymous transparent PUD pages yet */
5822 if (vma_is_anonymous(vma))
5823 goto split;
5824 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5825 /* See comment in create_huge_pmd. */
5826 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5827 goto split;
5828 if (vma->vm_ops->huge_fault) {
5829 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5830 if (!(ret & VM_FAULT_FALLBACK))
5831 return ret;
5832 }
5833 }
5834split:
5835 /* COW or write-notify not handled on PUD level: split pud.*/
5836 __split_huge_pud(vma, vmf->pud, vmf->address);
5837#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5838 return VM_FAULT_FALLBACK;
5839}
5840
5841/*
5842 * These routines also need to handle stuff like marking pages dirty
5843 * and/or accessed for architectures that don't do it in hardware (most
5844 * RISC architectures). The early dirtying is also good on the i386.
5845 *
5846 * There is also a hook called "update_mmu_cache()" that architectures
5847 * with external mmu caches can use to update those (ie the Sparc or
5848 * PowerPC hashed page tables that act as extended TLBs).
5849 *
5850 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5851 * concurrent faults).
5852 *
5853 * The mmap_lock may have been released depending on flags and our return value.
5854 * See filemap_fault() and __folio_lock_or_retry().
5855 */
5856static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5857{
5858 pte_t entry;
5859
5860 if (unlikely(pmd_none(*vmf->pmd))) {
5861 /*
5862 * Leave __pte_alloc() until later: because vm_ops->fault may
5863 * want to allocate huge page, and if we expose page table
5864 * for an instant, it will be difficult to retract from
5865 * concurrent faults and from rmap lookups.
5866 */
5867 vmf->pte = NULL;
5868 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5869 } else {
5870 pmd_t dummy_pmdval;
5871
5872 /*
5873 * A regular pmd is established and it can't morph into a huge
5874 * pmd by anon khugepaged, since that takes mmap_lock in write
5875 * mode; but shmem or file collapse to THP could still morph
5876 * it into a huge pmd: just retry later if so.
5877 *
5878 * Use the maywrite version to indicate that vmf->pte may be
5879 * modified, but since we will use pte_same() to detect the
5880 * change of the !pte_none() entry, there is no need to recheck
5881 * the pmdval. Here we chooes to pass a dummy variable instead
5882 * of NULL, which helps new user think about why this place is
5883 * special.
5884 */
5885 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
5886 vmf->address, &dummy_pmdval,
5887 &vmf->ptl);
5888 if (unlikely(!vmf->pte))
5889 return 0;
5890 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5891 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5892
5893 if (pte_none(vmf->orig_pte)) {
5894 pte_unmap(vmf->pte);
5895 vmf->pte = NULL;
5896 }
5897 }
5898
5899 if (!vmf->pte)
5900 return do_pte_missing(vmf);
5901
5902 if (!pte_present(vmf->orig_pte))
5903 return do_swap_page(vmf);
5904
5905 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5906 return do_numa_page(vmf);
5907
5908 spin_lock(vmf->ptl);
5909 entry = vmf->orig_pte;
5910 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5911 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5912 goto unlock;
5913 }
5914 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5915 if (!pte_write(entry))
5916 return do_wp_page(vmf);
5917 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5918 entry = pte_mkdirty(entry);
5919 }
5920 entry = pte_mkyoung(entry);
5921 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5922 vmf->flags & FAULT_FLAG_WRITE)) {
5923 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5924 vmf->pte, 1);
5925 } else {
5926 /* Skip spurious TLB flush for retried page fault */
5927 if (vmf->flags & FAULT_FLAG_TRIED)
5928 goto unlock;
5929 /*
5930 * This is needed only for protection faults but the arch code
5931 * is not yet telling us if this is a protection fault or not.
5932 * This still avoids useless tlb flushes for .text page faults
5933 * with threads.
5934 */
5935 if (vmf->flags & FAULT_FLAG_WRITE)
5936 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5937 vmf->pte);
5938 }
5939unlock:
5940 pte_unmap_unlock(vmf->pte, vmf->ptl);
5941 return 0;
5942}
5943
5944/*
5945 * On entry, we hold either the VMA lock or the mmap_lock
5946 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5947 * the result, the mmap_lock is not held on exit. See filemap_fault()
5948 * and __folio_lock_or_retry().
5949 */
5950static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5951 unsigned long address, unsigned int flags)
5952{
5953 struct vm_fault vmf = {
5954 .vma = vma,
5955 .address = address & PAGE_MASK,
5956 .real_address = address,
5957 .flags = flags,
5958 .pgoff = linear_page_index(vma, address),
5959 .gfp_mask = __get_fault_gfp_mask(vma),
5960 };
5961 struct mm_struct *mm = vma->vm_mm;
5962 unsigned long vm_flags = vma->vm_flags;
5963 pgd_t *pgd;
5964 p4d_t *p4d;
5965 vm_fault_t ret;
5966
5967 pgd = pgd_offset(mm, address);
5968 p4d = p4d_alloc(mm, pgd, address);
5969 if (!p4d)
5970 return VM_FAULT_OOM;
5971
5972 vmf.pud = pud_alloc(mm, p4d, address);
5973 if (!vmf.pud)
5974 return VM_FAULT_OOM;
5975retry_pud:
5976 if (pud_none(*vmf.pud) &&
5977 thp_vma_allowable_order(vma, vm_flags,
5978 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5979 ret = create_huge_pud(&vmf);
5980 if (!(ret & VM_FAULT_FALLBACK))
5981 return ret;
5982 } else {
5983 pud_t orig_pud = *vmf.pud;
5984
5985 barrier();
5986 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5987
5988 /*
5989 * TODO once we support anonymous PUDs: NUMA case and
5990 * FAULT_FLAG_UNSHARE handling.
5991 */
5992 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5993 ret = wp_huge_pud(&vmf, orig_pud);
5994 if (!(ret & VM_FAULT_FALLBACK))
5995 return ret;
5996 } else {
5997 huge_pud_set_accessed(&vmf, orig_pud);
5998 return 0;
5999 }
6000 }
6001 }
6002
6003 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
6004 if (!vmf.pmd)
6005 return VM_FAULT_OOM;
6006
6007 /* Huge pud page fault raced with pmd_alloc? */
6008 if (pud_trans_unstable(vmf.pud))
6009 goto retry_pud;
6010
6011 if (pmd_none(*vmf.pmd) &&
6012 thp_vma_allowable_order(vma, vm_flags,
6013 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
6014 ret = create_huge_pmd(&vmf);
6015 if (!(ret & VM_FAULT_FALLBACK))
6016 return ret;
6017 } else {
6018 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
6019
6020 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
6021 VM_BUG_ON(thp_migration_supported() &&
6022 !is_pmd_migration_entry(vmf.orig_pmd));
6023 if (is_pmd_migration_entry(vmf.orig_pmd))
6024 pmd_migration_entry_wait(mm, vmf.pmd);
6025 return 0;
6026 }
6027 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
6028 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
6029 return do_huge_pmd_numa_page(&vmf);
6030
6031 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6032 !pmd_write(vmf.orig_pmd)) {
6033 ret = wp_huge_pmd(&vmf);
6034 if (!(ret & VM_FAULT_FALLBACK))
6035 return ret;
6036 } else {
6037 huge_pmd_set_accessed(&vmf);
6038 return 0;
6039 }
6040 }
6041 }
6042
6043 return handle_pte_fault(&vmf);
6044}
6045
6046/**
6047 * mm_account_fault - Do page fault accounting
6048 * @mm: mm from which memcg should be extracted. It can be NULL.
6049 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
6050 * of perf event counters, but we'll still do the per-task accounting to
6051 * the task who triggered this page fault.
6052 * @address: the faulted address.
6053 * @flags: the fault flags.
6054 * @ret: the fault retcode.
6055 *
6056 * This will take care of most of the page fault accounting. Meanwhile, it
6057 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6058 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6059 * still be in per-arch page fault handlers at the entry of page fault.
6060 */
6061static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6062 unsigned long address, unsigned int flags,
6063 vm_fault_t ret)
6064{
6065 bool major;
6066
6067 /* Incomplete faults will be accounted upon completion. */
6068 if (ret & VM_FAULT_RETRY)
6069 return;
6070
6071 /*
6072 * To preserve the behavior of older kernels, PGFAULT counters record
6073 * both successful and failed faults, as opposed to perf counters,
6074 * which ignore failed cases.
6075 */
6076 count_vm_event(PGFAULT);
6077 count_memcg_event_mm(mm, PGFAULT);
6078
6079 /*
6080 * Do not account for unsuccessful faults (e.g. when the address wasn't
6081 * valid). That includes arch_vma_access_permitted() failing before
6082 * reaching here. So this is not a "this many hardware page faults"
6083 * counter. We should use the hw profiling for that.
6084 */
6085 if (ret & VM_FAULT_ERROR)
6086 return;
6087
6088 /*
6089 * We define the fault as a major fault when the final successful fault
6090 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6091 * handle it immediately previously).
6092 */
6093 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6094
6095 if (major)
6096 current->maj_flt++;
6097 else
6098 current->min_flt++;
6099
6100 /*
6101 * If the fault is done for GUP, regs will be NULL. We only do the
6102 * accounting for the per thread fault counters who triggered the
6103 * fault, and we skip the perf event updates.
6104 */
6105 if (!regs)
6106 return;
6107
6108 if (major)
6109 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6110 else
6111 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6112}
6113
6114#ifdef CONFIG_LRU_GEN
6115static void lru_gen_enter_fault(struct vm_area_struct *vma)
6116{
6117 /* the LRU algorithm only applies to accesses with recency */
6118 current->in_lru_fault = vma_has_recency(vma);
6119}
6120
6121static void lru_gen_exit_fault(void)
6122{
6123 current->in_lru_fault = false;
6124}
6125#else
6126static void lru_gen_enter_fault(struct vm_area_struct *vma)
6127{
6128}
6129
6130static void lru_gen_exit_fault(void)
6131{
6132}
6133#endif /* CONFIG_LRU_GEN */
6134
6135static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6136 unsigned int *flags)
6137{
6138 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6139 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6140 return VM_FAULT_SIGSEGV;
6141 /*
6142 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6143 * just treat it like an ordinary read-fault otherwise.
6144 */
6145 if (!is_cow_mapping(vma->vm_flags))
6146 *flags &= ~FAULT_FLAG_UNSHARE;
6147 } else if (*flags & FAULT_FLAG_WRITE) {
6148 /* Write faults on read-only mappings are impossible ... */
6149 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6150 return VM_FAULT_SIGSEGV;
6151 /* ... and FOLL_FORCE only applies to COW mappings. */
6152 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6153 !is_cow_mapping(vma->vm_flags)))
6154 return VM_FAULT_SIGSEGV;
6155 }
6156#ifdef CONFIG_PER_VMA_LOCK
6157 /*
6158 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6159 * the assumption that lock is dropped on VM_FAULT_RETRY.
6160 */
6161 if (WARN_ON_ONCE((*flags &
6162 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6163 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6164 return VM_FAULT_SIGSEGV;
6165#endif
6166
6167 return 0;
6168}
6169
6170/*
6171 * By the time we get here, we already hold either the VMA lock or the
6172 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6173 *
6174 * The mmap_lock may have been released depending on flags and our
6175 * return value. See filemap_fault() and __folio_lock_or_retry().
6176 */
6177vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6178 unsigned int flags, struct pt_regs *regs)
6179{
6180 /* If the fault handler drops the mmap_lock, vma may be freed */
6181 struct mm_struct *mm = vma->vm_mm;
6182 vm_fault_t ret;
6183 bool is_droppable;
6184
6185 __set_current_state(TASK_RUNNING);
6186
6187 ret = sanitize_fault_flags(vma, &flags);
6188 if (ret)
6189 goto out;
6190
6191 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6192 flags & FAULT_FLAG_INSTRUCTION,
6193 flags & FAULT_FLAG_REMOTE)) {
6194 ret = VM_FAULT_SIGSEGV;
6195 goto out;
6196 }
6197
6198 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6199
6200 /*
6201 * Enable the memcg OOM handling for faults triggered in user
6202 * space. Kernel faults are handled more gracefully.
6203 */
6204 if (flags & FAULT_FLAG_USER)
6205 mem_cgroup_enter_user_fault();
6206
6207 lru_gen_enter_fault(vma);
6208
6209 if (unlikely(is_vm_hugetlb_page(vma)))
6210 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6211 else
6212 ret = __handle_mm_fault(vma, address, flags);
6213
6214 /*
6215 * Warning: It is no longer safe to dereference vma-> after this point,
6216 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6217 * vma might be destroyed from underneath us.
6218 */
6219
6220 lru_gen_exit_fault();
6221
6222 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6223 if (is_droppable)
6224 ret &= ~VM_FAULT_OOM;
6225
6226 if (flags & FAULT_FLAG_USER) {
6227 mem_cgroup_exit_user_fault();
6228 /*
6229 * The task may have entered a memcg OOM situation but
6230 * if the allocation error was handled gracefully (no
6231 * VM_FAULT_OOM), there is no need to kill anything.
6232 * Just clean up the OOM state peacefully.
6233 */
6234 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6235 mem_cgroup_oom_synchronize(false);
6236 }
6237out:
6238 mm_account_fault(mm, regs, address, flags, ret);
6239
6240 return ret;
6241}
6242EXPORT_SYMBOL_GPL(handle_mm_fault);
6243
6244#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6245#include <linux/extable.h>
6246
6247static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6248{
6249 if (likely(mmap_read_trylock(mm)))
6250 return true;
6251
6252 if (regs && !user_mode(regs)) {
6253 unsigned long ip = exception_ip(regs);
6254 if (!search_exception_tables(ip))
6255 return false;
6256 }
6257
6258 return !mmap_read_lock_killable(mm);
6259}
6260
6261static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6262{
6263 /*
6264 * We don't have this operation yet.
6265 *
6266 * It should be easy enough to do: it's basically a
6267 * atomic_long_try_cmpxchg_acquire()
6268 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6269 * it also needs the proper lockdep magic etc.
6270 */
6271 return false;
6272}
6273
6274static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6275{
6276 mmap_read_unlock(mm);
6277 if (regs && !user_mode(regs)) {
6278 unsigned long ip = exception_ip(regs);
6279 if (!search_exception_tables(ip))
6280 return false;
6281 }
6282 return !mmap_write_lock_killable(mm);
6283}
6284
6285/*
6286 * Helper for page fault handling.
6287 *
6288 * This is kind of equivalent to "mmap_read_lock()" followed
6289 * by "find_extend_vma()", except it's a lot more careful about
6290 * the locking (and will drop the lock on failure).
6291 *
6292 * For example, if we have a kernel bug that causes a page
6293 * fault, we don't want to just use mmap_read_lock() to get
6294 * the mm lock, because that would deadlock if the bug were
6295 * to happen while we're holding the mm lock for writing.
6296 *
6297 * So this checks the exception tables on kernel faults in
6298 * order to only do this all for instructions that are actually
6299 * expected to fault.
6300 *
6301 * We can also actually take the mm lock for writing if we
6302 * need to extend the vma, which helps the VM layer a lot.
6303 */
6304struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6305 unsigned long addr, struct pt_regs *regs)
6306{
6307 struct vm_area_struct *vma;
6308
6309 if (!get_mmap_lock_carefully(mm, regs))
6310 return NULL;
6311
6312 vma = find_vma(mm, addr);
6313 if (likely(vma && (vma->vm_start <= addr)))
6314 return vma;
6315
6316 /*
6317 * Well, dang. We might still be successful, but only
6318 * if we can extend a vma to do so.
6319 */
6320 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6321 mmap_read_unlock(mm);
6322 return NULL;
6323 }
6324
6325 /*
6326 * We can try to upgrade the mmap lock atomically,
6327 * in which case we can continue to use the vma
6328 * we already looked up.
6329 *
6330 * Otherwise we'll have to drop the mmap lock and
6331 * re-take it, and also look up the vma again,
6332 * re-checking it.
6333 */
6334 if (!mmap_upgrade_trylock(mm)) {
6335 if (!upgrade_mmap_lock_carefully(mm, regs))
6336 return NULL;
6337
6338 vma = find_vma(mm, addr);
6339 if (!vma)
6340 goto fail;
6341 if (vma->vm_start <= addr)
6342 goto success;
6343 if (!(vma->vm_flags & VM_GROWSDOWN))
6344 goto fail;
6345 }
6346
6347 if (expand_stack_locked(vma, addr))
6348 goto fail;
6349
6350success:
6351 mmap_write_downgrade(mm);
6352 return vma;
6353
6354fail:
6355 mmap_write_unlock(mm);
6356 return NULL;
6357}
6358#endif
6359
6360#ifdef CONFIG_PER_VMA_LOCK
6361/*
6362 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6363 * stable and not isolated. If the VMA is not found or is being modified the
6364 * function returns NULL.
6365 */
6366struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6367 unsigned long address)
6368{
6369 MA_STATE(mas, &mm->mm_mt, address, address);
6370 struct vm_area_struct *vma;
6371
6372 rcu_read_lock();
6373retry:
6374 vma = mas_walk(&mas);
6375 if (!vma)
6376 goto inval;
6377
6378 if (!vma_start_read(vma))
6379 goto inval;
6380
6381 /* Check if the VMA got isolated after we found it */
6382 if (vma->detached) {
6383 vma_end_read(vma);
6384 count_vm_vma_lock_event(VMA_LOCK_MISS);
6385 /* The area was replaced with another one */
6386 goto retry;
6387 }
6388 /*
6389 * At this point, we have a stable reference to a VMA: The VMA is
6390 * locked and we know it hasn't already been isolated.
6391 * From here on, we can access the VMA without worrying about which
6392 * fields are accessible for RCU readers.
6393 */
6394
6395 /* Check since vm_start/vm_end might change before we lock the VMA */
6396 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6397 goto inval_end_read;
6398
6399 rcu_read_unlock();
6400 return vma;
6401
6402inval_end_read:
6403 vma_end_read(vma);
6404inval:
6405 rcu_read_unlock();
6406 count_vm_vma_lock_event(VMA_LOCK_ABORT);
6407 return NULL;
6408}
6409#endif /* CONFIG_PER_VMA_LOCK */
6410
6411#ifndef __PAGETABLE_P4D_FOLDED
6412/*
6413 * Allocate p4d page table.
6414 * We've already handled the fast-path in-line.
6415 */
6416int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6417{
6418 p4d_t *new = p4d_alloc_one(mm, address);
6419 if (!new)
6420 return -ENOMEM;
6421
6422 spin_lock(&mm->page_table_lock);
6423 if (pgd_present(*pgd)) { /* Another has populated it */
6424 p4d_free(mm, new);
6425 } else {
6426 smp_wmb(); /* See comment in pmd_install() */
6427 pgd_populate(mm, pgd, new);
6428 }
6429 spin_unlock(&mm->page_table_lock);
6430 return 0;
6431}
6432#endif /* __PAGETABLE_P4D_FOLDED */
6433
6434#ifndef __PAGETABLE_PUD_FOLDED
6435/*
6436 * Allocate page upper directory.
6437 * We've already handled the fast-path in-line.
6438 */
6439int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6440{
6441 pud_t *new = pud_alloc_one(mm, address);
6442 if (!new)
6443 return -ENOMEM;
6444
6445 spin_lock(&mm->page_table_lock);
6446 if (!p4d_present(*p4d)) {
6447 mm_inc_nr_puds(mm);
6448 smp_wmb(); /* See comment in pmd_install() */
6449 p4d_populate(mm, p4d, new);
6450 } else /* Another has populated it */
6451 pud_free(mm, new);
6452 spin_unlock(&mm->page_table_lock);
6453 return 0;
6454}
6455#endif /* __PAGETABLE_PUD_FOLDED */
6456
6457#ifndef __PAGETABLE_PMD_FOLDED
6458/*
6459 * Allocate page middle directory.
6460 * We've already handled the fast-path in-line.
6461 */
6462int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6463{
6464 spinlock_t *ptl;
6465 pmd_t *new = pmd_alloc_one(mm, address);
6466 if (!new)
6467 return -ENOMEM;
6468
6469 ptl = pud_lock(mm, pud);
6470 if (!pud_present(*pud)) {
6471 mm_inc_nr_pmds(mm);
6472 smp_wmb(); /* See comment in pmd_install() */
6473 pud_populate(mm, pud, new);
6474 } else { /* Another has populated it */
6475 pmd_free(mm, new);
6476 }
6477 spin_unlock(ptl);
6478 return 0;
6479}
6480#endif /* __PAGETABLE_PMD_FOLDED */
6481
6482static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6483 spinlock_t *lock, pte_t *ptep,
6484 pgprot_t pgprot, unsigned long pfn_base,
6485 unsigned long addr_mask, bool writable,
6486 bool special)
6487{
6488 args->lock = lock;
6489 args->ptep = ptep;
6490 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6491 args->pgprot = pgprot;
6492 args->writable = writable;
6493 args->special = special;
6494}
6495
6496static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6497{
6498#ifdef CONFIG_LOCKDEP
6499 struct file *file = vma->vm_file;
6500 struct address_space *mapping = file ? file->f_mapping : NULL;
6501
6502 if (mapping)
6503 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6504 lockdep_is_held(&vma->vm_mm->mmap_lock));
6505 else
6506 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6507#endif
6508}
6509
6510/**
6511 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6512 * @args: Pointer to struct @follow_pfnmap_args
6513 *
6514 * The caller needs to setup args->vma and args->address to point to the
6515 * virtual address as the target of such lookup. On a successful return,
6516 * the results will be put into other output fields.
6517 *
6518 * After the caller finished using the fields, the caller must invoke
6519 * another follow_pfnmap_end() to proper releases the locks and resources
6520 * of such look up request.
6521 *
6522 * During the start() and end() calls, the results in @args will be valid
6523 * as proper locks will be held. After the end() is called, all the fields
6524 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6525 * use of such information after end() may require proper synchronizations
6526 * by the caller with page table updates, otherwise it can create a
6527 * security bug.
6528 *
6529 * If the PTE maps a refcounted page, callers are responsible to protect
6530 * against invalidation with MMU notifiers; otherwise access to the PFN at
6531 * a later point in time can trigger use-after-free.
6532 *
6533 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6534 * should be taken for read, and the mmap semaphore cannot be released
6535 * before the end() is invoked.
6536 *
6537 * This function must not be used to modify PTE content.
6538 *
6539 * Return: zero on success, negative otherwise.
6540 */
6541int follow_pfnmap_start(struct follow_pfnmap_args *args)
6542{
6543 struct vm_area_struct *vma = args->vma;
6544 unsigned long address = args->address;
6545 struct mm_struct *mm = vma->vm_mm;
6546 spinlock_t *lock;
6547 pgd_t *pgdp;
6548 p4d_t *p4dp, p4d;
6549 pud_t *pudp, pud;
6550 pmd_t *pmdp, pmd;
6551 pte_t *ptep, pte;
6552
6553 pfnmap_lockdep_assert(vma);
6554
6555 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6556 goto out;
6557
6558 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6559 goto out;
6560retry:
6561 pgdp = pgd_offset(mm, address);
6562 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6563 goto out;
6564
6565 p4dp = p4d_offset(pgdp, address);
6566 p4d = READ_ONCE(*p4dp);
6567 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6568 goto out;
6569
6570 pudp = pud_offset(p4dp, address);
6571 pud = READ_ONCE(*pudp);
6572 if (pud_none(pud))
6573 goto out;
6574 if (pud_leaf(pud)) {
6575 lock = pud_lock(mm, pudp);
6576 if (!unlikely(pud_leaf(pud))) {
6577 spin_unlock(lock);
6578 goto retry;
6579 }
6580 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6581 pud_pfn(pud), PUD_MASK, pud_write(pud),
6582 pud_special(pud));
6583 return 0;
6584 }
6585
6586 pmdp = pmd_offset(pudp, address);
6587 pmd = pmdp_get_lockless(pmdp);
6588 if (pmd_leaf(pmd)) {
6589 lock = pmd_lock(mm, pmdp);
6590 if (!unlikely(pmd_leaf(pmd))) {
6591 spin_unlock(lock);
6592 goto retry;
6593 }
6594 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6595 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6596 pmd_special(pmd));
6597 return 0;
6598 }
6599
6600 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6601 if (!ptep)
6602 goto out;
6603 pte = ptep_get(ptep);
6604 if (!pte_present(pte))
6605 goto unlock;
6606 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6607 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6608 pte_special(pte));
6609 return 0;
6610unlock:
6611 pte_unmap_unlock(ptep, lock);
6612out:
6613 return -EINVAL;
6614}
6615EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6616
6617/**
6618 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6619 * @args: Pointer to struct @follow_pfnmap_args
6620 *
6621 * Must be used in pair of follow_pfnmap_start(). See the start() function
6622 * above for more information.
6623 */
6624void follow_pfnmap_end(struct follow_pfnmap_args *args)
6625{
6626 if (args->lock)
6627 spin_unlock(args->lock);
6628 if (args->ptep)
6629 pte_unmap(args->ptep);
6630}
6631EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6632
6633#ifdef CONFIG_HAVE_IOREMAP_PROT
6634/**
6635 * generic_access_phys - generic implementation for iomem mmap access
6636 * @vma: the vma to access
6637 * @addr: userspace address, not relative offset within @vma
6638 * @buf: buffer to read/write
6639 * @len: length of transfer
6640 * @write: set to FOLL_WRITE when writing, otherwise reading
6641 *
6642 * This is a generic implementation for &vm_operations_struct.access for an
6643 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6644 * not page based.
6645 */
6646int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6647 void *buf, int len, int write)
6648{
6649 resource_size_t phys_addr;
6650 unsigned long prot = 0;
6651 void __iomem *maddr;
6652 int offset = offset_in_page(addr);
6653 int ret = -EINVAL;
6654 bool writable;
6655 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6656
6657retry:
6658 if (follow_pfnmap_start(&args))
6659 return -EINVAL;
6660 prot = pgprot_val(args.pgprot);
6661 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6662 writable = args.writable;
6663 follow_pfnmap_end(&args);
6664
6665 if ((write & FOLL_WRITE) && !writable)
6666 return -EINVAL;
6667
6668 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6669 if (!maddr)
6670 return -ENOMEM;
6671
6672 if (follow_pfnmap_start(&args))
6673 goto out_unmap;
6674
6675 if ((prot != pgprot_val(args.pgprot)) ||
6676 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6677 (writable != args.writable)) {
6678 follow_pfnmap_end(&args);
6679 iounmap(maddr);
6680 goto retry;
6681 }
6682
6683 if (write)
6684 memcpy_toio(maddr + offset, buf, len);
6685 else
6686 memcpy_fromio(buf, maddr + offset, len);
6687 ret = len;
6688 follow_pfnmap_end(&args);
6689out_unmap:
6690 iounmap(maddr);
6691
6692 return ret;
6693}
6694EXPORT_SYMBOL_GPL(generic_access_phys);
6695#endif
6696
6697/*
6698 * Access another process' address space as given in mm.
6699 */
6700static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6701 void *buf, int len, unsigned int gup_flags)
6702{
6703 void *old_buf = buf;
6704 int write = gup_flags & FOLL_WRITE;
6705
6706 if (mmap_read_lock_killable(mm))
6707 return 0;
6708
6709 /* Untag the address before looking up the VMA */
6710 addr = untagged_addr_remote(mm, addr);
6711
6712 /* Avoid triggering the temporary warning in __get_user_pages */
6713 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6714 return 0;
6715
6716 /* ignore errors, just check how much was successfully transferred */
6717 while (len) {
6718 int bytes, offset;
6719 void *maddr;
6720 struct vm_area_struct *vma = NULL;
6721 struct page *page = get_user_page_vma_remote(mm, addr,
6722 gup_flags, &vma);
6723
6724 if (IS_ERR(page)) {
6725 /* We might need to expand the stack to access it */
6726 vma = vma_lookup(mm, addr);
6727 if (!vma) {
6728 vma = expand_stack(mm, addr);
6729
6730 /* mmap_lock was dropped on failure */
6731 if (!vma)
6732 return buf - old_buf;
6733
6734 /* Try again if stack expansion worked */
6735 continue;
6736 }
6737
6738 /*
6739 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6740 * we can access using slightly different code.
6741 */
6742 bytes = 0;
6743#ifdef CONFIG_HAVE_IOREMAP_PROT
6744 if (vma->vm_ops && vma->vm_ops->access)
6745 bytes = vma->vm_ops->access(vma, addr, buf,
6746 len, write);
6747#endif
6748 if (bytes <= 0)
6749 break;
6750 } else {
6751 bytes = len;
6752 offset = addr & (PAGE_SIZE-1);
6753 if (bytes > PAGE_SIZE-offset)
6754 bytes = PAGE_SIZE-offset;
6755
6756 maddr = kmap_local_page(page);
6757 if (write) {
6758 copy_to_user_page(vma, page, addr,
6759 maddr + offset, buf, bytes);
6760 set_page_dirty_lock(page);
6761 } else {
6762 copy_from_user_page(vma, page, addr,
6763 buf, maddr + offset, bytes);
6764 }
6765 unmap_and_put_page(page, maddr);
6766 }
6767 len -= bytes;
6768 buf += bytes;
6769 addr += bytes;
6770 }
6771 mmap_read_unlock(mm);
6772
6773 return buf - old_buf;
6774}
6775
6776/**
6777 * access_remote_vm - access another process' address space
6778 * @mm: the mm_struct of the target address space
6779 * @addr: start address to access
6780 * @buf: source or destination buffer
6781 * @len: number of bytes to transfer
6782 * @gup_flags: flags modifying lookup behaviour
6783 *
6784 * The caller must hold a reference on @mm.
6785 *
6786 * Return: number of bytes copied from source to destination.
6787 */
6788int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6789 void *buf, int len, unsigned int gup_flags)
6790{
6791 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6792}
6793
6794/*
6795 * Access another process' address space.
6796 * Source/target buffer must be kernel space,
6797 * Do not walk the page table directly, use get_user_pages
6798 */
6799int access_process_vm(struct task_struct *tsk, unsigned long addr,
6800 void *buf, int len, unsigned int gup_flags)
6801{
6802 struct mm_struct *mm;
6803 int ret;
6804
6805 mm = get_task_mm(tsk);
6806 if (!mm)
6807 return 0;
6808
6809 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6810
6811 mmput(mm);
6812
6813 return ret;
6814}
6815EXPORT_SYMBOL_GPL(access_process_vm);
6816
6817/*
6818 * Print the name of a VMA.
6819 */
6820void print_vma_addr(char *prefix, unsigned long ip)
6821{
6822 struct mm_struct *mm = current->mm;
6823 struct vm_area_struct *vma;
6824
6825 /*
6826 * we might be running from an atomic context so we cannot sleep
6827 */
6828 if (!mmap_read_trylock(mm))
6829 return;
6830
6831 vma = vma_lookup(mm, ip);
6832 if (vma && vma->vm_file) {
6833 struct file *f = vma->vm_file;
6834 ip -= vma->vm_start;
6835 ip += vma->vm_pgoff << PAGE_SHIFT;
6836 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6837 vma->vm_start,
6838 vma->vm_end - vma->vm_start);
6839 }
6840 mmap_read_unlock(mm);
6841}
6842
6843#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6844void __might_fault(const char *file, int line)
6845{
6846 if (pagefault_disabled())
6847 return;
6848 __might_sleep(file, line);
6849#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6850 if (current->mm)
6851 might_lock_read(¤t->mm->mmap_lock);
6852#endif
6853}
6854EXPORT_SYMBOL(__might_fault);
6855#endif
6856
6857#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6858/*
6859 * Process all subpages of the specified huge page with the specified
6860 * operation. The target subpage will be processed last to keep its
6861 * cache lines hot.
6862 */
6863static inline int process_huge_page(
6864 unsigned long addr_hint, unsigned int nr_pages,
6865 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6866 void *arg)
6867{
6868 int i, n, base, l, ret;
6869 unsigned long addr = addr_hint &
6870 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6871
6872 /* Process target subpage last to keep its cache lines hot */
6873 might_sleep();
6874 n = (addr_hint - addr) / PAGE_SIZE;
6875 if (2 * n <= nr_pages) {
6876 /* If target subpage in first half of huge page */
6877 base = 0;
6878 l = n;
6879 /* Process subpages at the end of huge page */
6880 for (i = nr_pages - 1; i >= 2 * n; i--) {
6881 cond_resched();
6882 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6883 if (ret)
6884 return ret;
6885 }
6886 } else {
6887 /* If target subpage in second half of huge page */
6888 base = nr_pages - 2 * (nr_pages - n);
6889 l = nr_pages - n;
6890 /* Process subpages at the begin of huge page */
6891 for (i = 0; i < base; i++) {
6892 cond_resched();
6893 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6894 if (ret)
6895 return ret;
6896 }
6897 }
6898 /*
6899 * Process remaining subpages in left-right-left-right pattern
6900 * towards the target subpage
6901 */
6902 for (i = 0; i < l; i++) {
6903 int left_idx = base + i;
6904 int right_idx = base + 2 * l - 1 - i;
6905
6906 cond_resched();
6907 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6908 if (ret)
6909 return ret;
6910 cond_resched();
6911 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6912 if (ret)
6913 return ret;
6914 }
6915 return 0;
6916}
6917
6918static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
6919 unsigned int nr_pages)
6920{
6921 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
6922 int i;
6923
6924 might_sleep();
6925 for (i = 0; i < nr_pages; i++) {
6926 cond_resched();
6927 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6928 }
6929}
6930
6931static int clear_subpage(unsigned long addr, int idx, void *arg)
6932{
6933 struct folio *folio = arg;
6934
6935 clear_user_highpage(folio_page(folio, idx), addr);
6936 return 0;
6937}
6938
6939/**
6940 * folio_zero_user - Zero a folio which will be mapped to userspace.
6941 * @folio: The folio to zero.
6942 * @addr_hint: The address will be accessed or the base address if uncelar.
6943 */
6944void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6945{
6946 unsigned int nr_pages = folio_nr_pages(folio);
6947
6948 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6949 clear_gigantic_page(folio, addr_hint, nr_pages);
6950 else
6951 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6952}
6953
6954static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6955 unsigned long addr_hint,
6956 struct vm_area_struct *vma,
6957 unsigned int nr_pages)
6958{
6959 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
6960 struct page *dst_page;
6961 struct page *src_page;
6962 int i;
6963
6964 for (i = 0; i < nr_pages; i++) {
6965 dst_page = folio_page(dst, i);
6966 src_page = folio_page(src, i);
6967
6968 cond_resched();
6969 if (copy_mc_user_highpage(dst_page, src_page,
6970 addr + i*PAGE_SIZE, vma))
6971 return -EHWPOISON;
6972 }
6973 return 0;
6974}
6975
6976struct copy_subpage_arg {
6977 struct folio *dst;
6978 struct folio *src;
6979 struct vm_area_struct *vma;
6980};
6981
6982static int copy_subpage(unsigned long addr, int idx, void *arg)
6983{
6984 struct copy_subpage_arg *copy_arg = arg;
6985 struct page *dst = folio_page(copy_arg->dst, idx);
6986 struct page *src = folio_page(copy_arg->src, idx);
6987
6988 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6989 return -EHWPOISON;
6990 return 0;
6991}
6992
6993int copy_user_large_folio(struct folio *dst, struct folio *src,
6994 unsigned long addr_hint, struct vm_area_struct *vma)
6995{
6996 unsigned int nr_pages = folio_nr_pages(dst);
6997 struct copy_subpage_arg arg = {
6998 .dst = dst,
6999 .src = src,
7000 .vma = vma,
7001 };
7002
7003 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7004 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
7005
7006 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
7007}
7008
7009long copy_folio_from_user(struct folio *dst_folio,
7010 const void __user *usr_src,
7011 bool allow_pagefault)
7012{
7013 void *kaddr;
7014 unsigned long i, rc = 0;
7015 unsigned int nr_pages = folio_nr_pages(dst_folio);
7016 unsigned long ret_val = nr_pages * PAGE_SIZE;
7017 struct page *subpage;
7018
7019 for (i = 0; i < nr_pages; i++) {
7020 subpage = folio_page(dst_folio, i);
7021 kaddr = kmap_local_page(subpage);
7022 if (!allow_pagefault)
7023 pagefault_disable();
7024 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7025 if (!allow_pagefault)
7026 pagefault_enable();
7027 kunmap_local(kaddr);
7028
7029 ret_val -= (PAGE_SIZE - rc);
7030 if (rc)
7031 break;
7032
7033 flush_dcache_page(subpage);
7034
7035 cond_resched();
7036 }
7037 return ret_val;
7038}
7039#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7040
7041#if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7042
7043static struct kmem_cache *page_ptl_cachep;
7044
7045void __init ptlock_cache_init(void)
7046{
7047 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7048 SLAB_PANIC, NULL);
7049}
7050
7051bool ptlock_alloc(struct ptdesc *ptdesc)
7052{
7053 spinlock_t *ptl;
7054
7055 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7056 if (!ptl)
7057 return false;
7058 ptdesc->ptl = ptl;
7059 return true;
7060}
7061
7062void ptlock_free(struct ptdesc *ptdesc)
7063{
7064 if (ptdesc->ptl)
7065 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7066}
7067#endif
7068
7069void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7070{
7071 if (is_vm_hugetlb_page(vma))
7072 hugetlb_vma_lock_read(vma);
7073}
7074
7075void vma_pgtable_walk_end(struct vm_area_struct *vma)
7076{
7077 if (is_vm_hugetlb_page(vma))
7078 hugetlb_vma_unlock_read(vma);
7079}