Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * sparse memory mappings.
4 */
5#include <linux/mm.h>
6#include <linux/slab.h>
7#include <linux/mmzone.h>
8#include <linux/memblock.h>
9#include <linux/compiler.h>
10#include <linux/highmem.h>
11#include <linux/export.h>
12#include <linux/spinlock.h>
13#include <linux/vmalloc.h>
14#include <linux/swap.h>
15#include <linux/swapops.h>
16#include <linux/bootmem_info.h>
17#include <linux/vmstat.h>
18#include "internal.h"
19#include <asm/dma.h>
20
21/*
22 * Permanent SPARSEMEM data:
23 *
24 * 1) mem_section - memory sections, mem_map's for valid memory
25 */
26#ifdef CONFIG_SPARSEMEM_EXTREME
27struct mem_section **mem_section;
28#else
29struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30 ____cacheline_internodealigned_in_smp;
31#endif
32EXPORT_SYMBOL(mem_section);
33
34#ifdef NODE_NOT_IN_PAGE_FLAGS
35/*
36 * If we did not store the node number in the page then we have to
37 * do a lookup in the section_to_node_table in order to find which
38 * node the page belongs to.
39 */
40#if MAX_NUMNODES <= 256
41static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42#else
43static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44#endif
45
46int page_to_nid(const struct page *page)
47{
48 return section_to_node_table[page_to_section(page)];
49}
50EXPORT_SYMBOL(page_to_nid);
51
52static void set_section_nid(unsigned long section_nr, int nid)
53{
54 section_to_node_table[section_nr] = nid;
55}
56#else /* !NODE_NOT_IN_PAGE_FLAGS */
57static inline void set_section_nid(unsigned long section_nr, int nid)
58{
59}
60#endif
61
62#ifdef CONFIG_SPARSEMEM_EXTREME
63static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64{
65 struct mem_section *section = NULL;
66 unsigned long array_size = SECTIONS_PER_ROOT *
67 sizeof(struct mem_section);
68
69 if (slab_is_available()) {
70 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 } else {
72 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73 nid);
74 if (!section)
75 panic("%s: Failed to allocate %lu bytes nid=%d\n",
76 __func__, array_size, nid);
77 }
78
79 return section;
80}
81
82static int __meminit sparse_index_init(unsigned long section_nr, int nid)
83{
84 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85 struct mem_section *section;
86
87 /*
88 * An existing section is possible in the sub-section hotplug
89 * case. First hot-add instantiates, follow-on hot-add reuses
90 * the existing section.
91 *
92 * The mem_hotplug_lock resolves the apparent race below.
93 */
94 if (mem_section[root])
95 return 0;
96
97 section = sparse_index_alloc(nid);
98 if (!section)
99 return -ENOMEM;
100
101 mem_section[root] = section;
102
103 return 0;
104}
105#else /* !SPARSEMEM_EXTREME */
106static inline int sparse_index_init(unsigned long section_nr, int nid)
107{
108 return 0;
109}
110#endif
111
112/*
113 * During early boot, before section_mem_map is used for an actual
114 * mem_map, we use section_mem_map to store the section's NUMA
115 * node. This keeps us from having to use another data structure. The
116 * node information is cleared just before we store the real mem_map.
117 */
118static inline unsigned long sparse_encode_early_nid(int nid)
119{
120 return ((unsigned long)nid << SECTION_NID_SHIFT);
121}
122
123static inline int sparse_early_nid(struct mem_section *section)
124{
125 return (section->section_mem_map >> SECTION_NID_SHIFT);
126}
127
128/* Validate the physical addressing limitations of the model */
129static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130 unsigned long *end_pfn)
131{
132 unsigned long max_sparsemem_pfn = (DIRECT_MAP_PHYSMEM_END + 1) >> PAGE_SHIFT;
133
134 /*
135 * Sanity checks - do not allow an architecture to pass
136 * in larger pfns than the maximum scope of sparsemem:
137 */
138 if (*start_pfn > max_sparsemem_pfn) {
139 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141 *start_pfn, *end_pfn, max_sparsemem_pfn);
142 WARN_ON_ONCE(1);
143 *start_pfn = max_sparsemem_pfn;
144 *end_pfn = max_sparsemem_pfn;
145 } else if (*end_pfn > max_sparsemem_pfn) {
146 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148 *start_pfn, *end_pfn, max_sparsemem_pfn);
149 WARN_ON_ONCE(1);
150 *end_pfn = max_sparsemem_pfn;
151 }
152}
153
154/*
155 * There are a number of times that we loop over NR_MEM_SECTIONS,
156 * looking for section_present() on each. But, when we have very
157 * large physical address spaces, NR_MEM_SECTIONS can also be
158 * very large which makes the loops quite long.
159 *
160 * Keeping track of this gives us an easy way to break out of
161 * those loops early.
162 */
163unsigned long __highest_present_section_nr;
164static void __section_mark_present(struct mem_section *ms,
165 unsigned long section_nr)
166{
167 if (section_nr > __highest_present_section_nr)
168 __highest_present_section_nr = section_nr;
169
170 ms->section_mem_map |= SECTION_MARKED_PRESENT;
171}
172
173#define for_each_present_section_nr(start, section_nr) \
174 for (section_nr = next_present_section_nr(start-1); \
175 section_nr != -1; \
176 section_nr = next_present_section_nr(section_nr))
177
178static inline unsigned long first_present_section_nr(void)
179{
180 return next_present_section_nr(-1);
181}
182
183#ifdef CONFIG_SPARSEMEM_VMEMMAP
184static void subsection_mask_set(unsigned long *map, unsigned long pfn,
185 unsigned long nr_pages)
186{
187 int idx = subsection_map_index(pfn);
188 int end = subsection_map_index(pfn + nr_pages - 1);
189
190 bitmap_set(map, idx, end - idx + 1);
191}
192
193void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
194{
195 int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1);
196 unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn);
197
198 for (nr = start_sec_nr; nr <= end_sec_nr; nr++) {
199 struct mem_section *ms;
200 unsigned long pfns;
201
202 pfns = min(nr_pages, PAGES_PER_SECTION
203 - (pfn & ~PAGE_SECTION_MASK));
204 ms = __nr_to_section(nr);
205 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
206
207 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
208 pfns, subsection_map_index(pfn),
209 subsection_map_index(pfn + pfns - 1));
210
211 pfn += pfns;
212 nr_pages -= pfns;
213 }
214}
215#else
216void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
217{
218}
219#endif
220
221/* Record a memory area against a node. */
222static void __init memory_present(int nid, unsigned long start, unsigned long end)
223{
224 unsigned long pfn;
225
226 start &= PAGE_SECTION_MASK;
227 mminit_validate_memmodel_limits(&start, &end);
228 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
229 unsigned long section_nr = pfn_to_section_nr(pfn);
230 struct mem_section *ms;
231
232 sparse_index_init(section_nr, nid);
233 set_section_nid(section_nr, nid);
234
235 ms = __nr_to_section(section_nr);
236 if (!ms->section_mem_map) {
237 ms->section_mem_map = sparse_encode_early_nid(nid) |
238 SECTION_IS_ONLINE;
239 __section_mark_present(ms, section_nr);
240 }
241 }
242}
243
244/*
245 * Mark all memblocks as present using memory_present().
246 * This is a convenience function that is useful to mark all of the systems
247 * memory as present during initialization.
248 */
249static void __init memblocks_present(void)
250{
251 unsigned long start, end;
252 int i, nid;
253
254#ifdef CONFIG_SPARSEMEM_EXTREME
255 if (unlikely(!mem_section)) {
256 unsigned long size, align;
257
258 size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
259 align = 1 << (INTERNODE_CACHE_SHIFT);
260 mem_section = memblock_alloc_or_panic(size, align);
261 }
262#endif
263
264 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
265 memory_present(nid, start, end);
266}
267
268/*
269 * Subtle, we encode the real pfn into the mem_map such that
270 * the identity pfn - section_mem_map will return the actual
271 * physical page frame number.
272 */
273static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
274{
275 unsigned long coded_mem_map =
276 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
277 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
278 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
279 return coded_mem_map;
280}
281
282#ifdef CONFIG_MEMORY_HOTPLUG
283/*
284 * Decode mem_map from the coded memmap
285 */
286struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
287{
288 /* mask off the extra low bits of information */
289 coded_mem_map &= SECTION_MAP_MASK;
290 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
291}
292#endif /* CONFIG_MEMORY_HOTPLUG */
293
294static void __meminit sparse_init_one_section(struct mem_section *ms,
295 unsigned long pnum, struct page *mem_map,
296 struct mem_section_usage *usage, unsigned long flags)
297{
298 ms->section_mem_map &= ~SECTION_MAP_MASK;
299 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
300 | SECTION_HAS_MEM_MAP | flags;
301 ms->usage = usage;
302}
303
304static unsigned long usemap_size(void)
305{
306 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
307}
308
309size_t mem_section_usage_size(void)
310{
311 return sizeof(struct mem_section_usage) + usemap_size();
312}
313
314#ifdef CONFIG_MEMORY_HOTREMOVE
315static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
316{
317#ifndef CONFIG_NUMA
318 VM_BUG_ON(pgdat != &contig_page_data);
319 return __pa_symbol(&contig_page_data);
320#else
321 return __pa(pgdat);
322#endif
323}
324
325static struct mem_section_usage * __init
326sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
327 unsigned long size)
328{
329 struct mem_section_usage *usage;
330 unsigned long goal, limit;
331 int nid;
332 /*
333 * A page may contain usemaps for other sections preventing the
334 * page being freed and making a section unremovable while
335 * other sections referencing the usemap remain active. Similarly,
336 * a pgdat can prevent a section being removed. If section A
337 * contains a pgdat and section B contains the usemap, both
338 * sections become inter-dependent. This allocates usemaps
339 * from the same section as the pgdat where possible to avoid
340 * this problem.
341 */
342 goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
343 limit = goal + (1UL << PA_SECTION_SHIFT);
344 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
345again:
346 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
347 if (!usage && limit) {
348 limit = MEMBLOCK_ALLOC_ACCESSIBLE;
349 goto again;
350 }
351 return usage;
352}
353
354static void __init check_usemap_section_nr(int nid,
355 struct mem_section_usage *usage)
356{
357 unsigned long usemap_snr, pgdat_snr;
358 static unsigned long old_usemap_snr;
359 static unsigned long old_pgdat_snr;
360 struct pglist_data *pgdat = NODE_DATA(nid);
361 int usemap_nid;
362
363 /* First call */
364 if (!old_usemap_snr) {
365 old_usemap_snr = NR_MEM_SECTIONS;
366 old_pgdat_snr = NR_MEM_SECTIONS;
367 }
368
369 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
370 pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
371 if (usemap_snr == pgdat_snr)
372 return;
373
374 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
375 /* skip redundant message */
376 return;
377
378 old_usemap_snr = usemap_snr;
379 old_pgdat_snr = pgdat_snr;
380
381 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
382 if (usemap_nid != nid) {
383 pr_info("node %d must be removed before remove section %ld\n",
384 nid, usemap_snr);
385 return;
386 }
387 /*
388 * There is a circular dependency.
389 * Some platforms allow un-removable section because they will just
390 * gather other removable sections for dynamic partitioning.
391 * Just notify un-removable section's number here.
392 */
393 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
394 usemap_snr, pgdat_snr, nid);
395}
396#else
397static struct mem_section_usage * __init
398sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
399 unsigned long size)
400{
401 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
402}
403
404static void __init check_usemap_section_nr(int nid,
405 struct mem_section_usage *usage)
406{
407}
408#endif /* CONFIG_MEMORY_HOTREMOVE */
409
410#ifdef CONFIG_SPARSEMEM_VMEMMAP
411static unsigned long __init section_map_size(void)
412{
413 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
414}
415
416#else
417static unsigned long __init section_map_size(void)
418{
419 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
420}
421
422struct page __init *__populate_section_memmap(unsigned long pfn,
423 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
424 struct dev_pagemap *pgmap)
425{
426 unsigned long size = section_map_size();
427 struct page *map = sparse_buffer_alloc(size);
428 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
429
430 if (map)
431 return map;
432
433 map = memmap_alloc(size, size, addr, nid, false);
434 if (!map)
435 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
436 __func__, size, PAGE_SIZE, nid, &addr);
437
438 return map;
439}
440#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
441
442static void *sparsemap_buf __meminitdata;
443static void *sparsemap_buf_end __meminitdata;
444
445static inline void __meminit sparse_buffer_free(unsigned long size)
446{
447 WARN_ON(!sparsemap_buf || size == 0);
448 memblock_free(sparsemap_buf, size);
449}
450
451static void __init sparse_buffer_init(unsigned long size, int nid)
452{
453 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
454 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
455 /*
456 * Pre-allocated buffer is mainly used by __populate_section_memmap
457 * and we want it to be properly aligned to the section size - this is
458 * especially the case for VMEMMAP which maps memmap to PMDs
459 */
460 sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
461 sparsemap_buf_end = sparsemap_buf + size;
462#ifndef CONFIG_SPARSEMEM_VMEMMAP
463 memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
464#endif
465}
466
467static void __init sparse_buffer_fini(void)
468{
469 unsigned long size = sparsemap_buf_end - sparsemap_buf;
470
471 if (sparsemap_buf && size > 0)
472 sparse_buffer_free(size);
473 sparsemap_buf = NULL;
474}
475
476void * __meminit sparse_buffer_alloc(unsigned long size)
477{
478 void *ptr = NULL;
479
480 if (sparsemap_buf) {
481 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
482 if (ptr + size > sparsemap_buf_end)
483 ptr = NULL;
484 else {
485 /* Free redundant aligned space */
486 if ((unsigned long)(ptr - sparsemap_buf) > 0)
487 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
488 sparsemap_buf = ptr + size;
489 }
490 }
491 return ptr;
492}
493
494void __weak __meminit vmemmap_populate_print_last(void)
495{
496}
497
498/*
499 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
500 * And number of present sections in this node is map_count.
501 */
502static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
503 unsigned long pnum_end,
504 unsigned long map_count)
505{
506 struct mem_section_usage *usage;
507 unsigned long pnum;
508 struct page *map;
509
510 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
511 mem_section_usage_size() * map_count);
512 if (!usage) {
513 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
514 goto failed;
515 }
516 sparse_buffer_init(map_count * section_map_size(), nid);
517 for_each_present_section_nr(pnum_begin, pnum) {
518 unsigned long pfn = section_nr_to_pfn(pnum);
519
520 if (pnum >= pnum_end)
521 break;
522
523 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
524 nid, NULL, NULL);
525 if (!map) {
526 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
527 __func__, nid);
528 pnum_begin = pnum;
529 sparse_buffer_fini();
530 goto failed;
531 }
532 check_usemap_section_nr(nid, usage);
533 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
534 SECTION_IS_EARLY);
535 usage = (void *) usage + mem_section_usage_size();
536 }
537 sparse_buffer_fini();
538 return;
539failed:
540 /* We failed to allocate, mark all the following pnums as not present */
541 for_each_present_section_nr(pnum_begin, pnum) {
542 struct mem_section *ms;
543
544 if (pnum >= pnum_end)
545 break;
546 ms = __nr_to_section(pnum);
547 ms->section_mem_map = 0;
548 }
549}
550
551/*
552 * Allocate the accumulated non-linear sections, allocate a mem_map
553 * for each and record the physical to section mapping.
554 */
555void __init sparse_init(void)
556{
557 unsigned long pnum_end, pnum_begin, map_count = 1;
558 int nid_begin;
559
560 /* see include/linux/mmzone.h 'struct mem_section' definition */
561 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
562 memblocks_present();
563
564 pnum_begin = first_present_section_nr();
565 nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
566
567 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
568 set_pageblock_order();
569
570 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
571 int nid = sparse_early_nid(__nr_to_section(pnum_end));
572
573 if (nid == nid_begin) {
574 map_count++;
575 continue;
576 }
577 /* Init node with sections in range [pnum_begin, pnum_end) */
578 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
579 nid_begin = nid;
580 pnum_begin = pnum_end;
581 map_count = 1;
582 }
583 /* cover the last node */
584 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
585 vmemmap_populate_print_last();
586}
587
588#ifdef CONFIG_MEMORY_HOTPLUG
589
590/* Mark all memory sections within the pfn range as online */
591void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
592{
593 unsigned long pfn;
594
595 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
596 unsigned long section_nr = pfn_to_section_nr(pfn);
597 struct mem_section *ms;
598
599 /* onlining code should never touch invalid ranges */
600 if (WARN_ON(!valid_section_nr(section_nr)))
601 continue;
602
603 ms = __nr_to_section(section_nr);
604 ms->section_mem_map |= SECTION_IS_ONLINE;
605 }
606}
607
608/* Mark all memory sections within the pfn range as offline */
609void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
610{
611 unsigned long pfn;
612
613 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
614 unsigned long section_nr = pfn_to_section_nr(pfn);
615 struct mem_section *ms;
616
617 /*
618 * TODO this needs some double checking. Offlining code makes
619 * sure to check pfn_valid but those checks might be just bogus
620 */
621 if (WARN_ON(!valid_section_nr(section_nr)))
622 continue;
623
624 ms = __nr_to_section(section_nr);
625 ms->section_mem_map &= ~SECTION_IS_ONLINE;
626 }
627}
628
629#ifdef CONFIG_SPARSEMEM_VMEMMAP
630static struct page * __meminit populate_section_memmap(unsigned long pfn,
631 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
632 struct dev_pagemap *pgmap)
633{
634 return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
635}
636
637static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
638 struct vmem_altmap *altmap)
639{
640 unsigned long start = (unsigned long) pfn_to_page(pfn);
641 unsigned long end = start + nr_pages * sizeof(struct page);
642
643 memmap_pages_add(-1L * (DIV_ROUND_UP(end - start, PAGE_SIZE)));
644 vmemmap_free(start, end, altmap);
645}
646static void free_map_bootmem(struct page *memmap)
647{
648 unsigned long start = (unsigned long)memmap;
649 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
650
651 vmemmap_free(start, end, NULL);
652}
653
654static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
655{
656 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
657 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
658 struct mem_section *ms = __pfn_to_section(pfn);
659 unsigned long *subsection_map = ms->usage
660 ? &ms->usage->subsection_map[0] : NULL;
661
662 subsection_mask_set(map, pfn, nr_pages);
663 if (subsection_map)
664 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
665
666 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
667 "section already deactivated (%#lx + %ld)\n",
668 pfn, nr_pages))
669 return -EINVAL;
670
671 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
672 return 0;
673}
674
675static bool is_subsection_map_empty(struct mem_section *ms)
676{
677 return bitmap_empty(&ms->usage->subsection_map[0],
678 SUBSECTIONS_PER_SECTION);
679}
680
681static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
682{
683 struct mem_section *ms = __pfn_to_section(pfn);
684 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
685 unsigned long *subsection_map;
686 int rc = 0;
687
688 subsection_mask_set(map, pfn, nr_pages);
689
690 subsection_map = &ms->usage->subsection_map[0];
691
692 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
693 rc = -EINVAL;
694 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
695 rc = -EEXIST;
696 else
697 bitmap_or(subsection_map, map, subsection_map,
698 SUBSECTIONS_PER_SECTION);
699
700 return rc;
701}
702#else
703static struct page * __meminit populate_section_memmap(unsigned long pfn,
704 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
705 struct dev_pagemap *pgmap)
706{
707 return kvmalloc_node(array_size(sizeof(struct page),
708 PAGES_PER_SECTION), GFP_KERNEL, nid);
709}
710
711static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
712 struct vmem_altmap *altmap)
713{
714 kvfree(pfn_to_page(pfn));
715}
716
717static void free_map_bootmem(struct page *memmap)
718{
719 unsigned long maps_section_nr, removing_section_nr, i;
720 unsigned long type, nr_pages;
721 struct page *page = virt_to_page(memmap);
722
723 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
724 >> PAGE_SHIFT;
725
726 for (i = 0; i < nr_pages; i++, page++) {
727 type = bootmem_type(page);
728
729 BUG_ON(type == NODE_INFO);
730
731 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
732 removing_section_nr = bootmem_info(page);
733
734 /*
735 * When this function is called, the removing section is
736 * logical offlined state. This means all pages are isolated
737 * from page allocator. If removing section's memmap is placed
738 * on the same section, it must not be freed.
739 * If it is freed, page allocator may allocate it which will
740 * be removed physically soon.
741 */
742 if (maps_section_nr != removing_section_nr)
743 put_page_bootmem(page);
744 }
745}
746
747static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
748{
749 return 0;
750}
751
752static bool is_subsection_map_empty(struct mem_section *ms)
753{
754 return true;
755}
756
757static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
758{
759 return 0;
760}
761#endif /* CONFIG_SPARSEMEM_VMEMMAP */
762
763/*
764 * To deactivate a memory region, there are 3 cases to handle across
765 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
766 *
767 * 1. deactivation of a partial hot-added section (only possible in
768 * the SPARSEMEM_VMEMMAP=y case).
769 * a) section was present at memory init.
770 * b) section was hot-added post memory init.
771 * 2. deactivation of a complete hot-added section.
772 * 3. deactivation of a complete section from memory init.
773 *
774 * For 1, when subsection_map does not empty we will not be freeing the
775 * usage map, but still need to free the vmemmap range.
776 *
777 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
778 */
779static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
780 struct vmem_altmap *altmap)
781{
782 struct mem_section *ms = __pfn_to_section(pfn);
783 bool section_is_early = early_section(ms);
784 struct page *memmap = NULL;
785 bool empty;
786
787 if (clear_subsection_map(pfn, nr_pages))
788 return;
789
790 empty = is_subsection_map_empty(ms);
791 if (empty) {
792 unsigned long section_nr = pfn_to_section_nr(pfn);
793
794 /*
795 * Mark the section invalid so that valid_section()
796 * return false. This prevents code from dereferencing
797 * ms->usage array.
798 */
799 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
800
801 /*
802 * When removing an early section, the usage map is kept (as the
803 * usage maps of other sections fall into the same page). It
804 * will be re-used when re-adding the section - which is then no
805 * longer an early section. If the usage map is PageReserved, it
806 * was allocated during boot.
807 */
808 if (!PageReserved(virt_to_page(ms->usage))) {
809 kfree_rcu(ms->usage, rcu);
810 WRITE_ONCE(ms->usage, NULL);
811 }
812 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
813 }
814
815 /*
816 * The memmap of early sections is always fully populated. See
817 * section_activate() and pfn_valid() .
818 */
819 if (!section_is_early)
820 depopulate_section_memmap(pfn, nr_pages, altmap);
821 else if (memmap)
822 free_map_bootmem(memmap);
823
824 if (empty)
825 ms->section_mem_map = (unsigned long)NULL;
826}
827
828static struct page * __meminit section_activate(int nid, unsigned long pfn,
829 unsigned long nr_pages, struct vmem_altmap *altmap,
830 struct dev_pagemap *pgmap)
831{
832 struct mem_section *ms = __pfn_to_section(pfn);
833 struct mem_section_usage *usage = NULL;
834 struct page *memmap;
835 int rc;
836
837 if (!ms->usage) {
838 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
839 if (!usage)
840 return ERR_PTR(-ENOMEM);
841 ms->usage = usage;
842 }
843
844 rc = fill_subsection_map(pfn, nr_pages);
845 if (rc) {
846 if (usage)
847 ms->usage = NULL;
848 kfree(usage);
849 return ERR_PTR(rc);
850 }
851
852 /*
853 * The early init code does not consider partially populated
854 * initial sections, it simply assumes that memory will never be
855 * referenced. If we hot-add memory into such a section then we
856 * do not need to populate the memmap and can simply reuse what
857 * is already there.
858 */
859 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
860 return pfn_to_page(pfn);
861
862 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
863 if (!memmap) {
864 section_deactivate(pfn, nr_pages, altmap);
865 return ERR_PTR(-ENOMEM);
866 }
867
868 return memmap;
869}
870
871/**
872 * sparse_add_section - add a memory section, or populate an existing one
873 * @nid: The node to add section on
874 * @start_pfn: start pfn of the memory range
875 * @nr_pages: number of pfns to add in the section
876 * @altmap: alternate pfns to allocate the memmap backing store
877 * @pgmap: alternate compound page geometry for devmap mappings
878 *
879 * This is only intended for hotplug.
880 *
881 * Note that only VMEMMAP supports sub-section aligned hotplug,
882 * the proper alignment and size are gated by check_pfn_span().
883 *
884 *
885 * Return:
886 * * 0 - On success.
887 * * -EEXIST - Section has been present.
888 * * -ENOMEM - Out of memory.
889 */
890int __meminit sparse_add_section(int nid, unsigned long start_pfn,
891 unsigned long nr_pages, struct vmem_altmap *altmap,
892 struct dev_pagemap *pgmap)
893{
894 unsigned long section_nr = pfn_to_section_nr(start_pfn);
895 struct mem_section *ms;
896 struct page *memmap;
897 int ret;
898
899 ret = sparse_index_init(section_nr, nid);
900 if (ret < 0)
901 return ret;
902
903 memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
904 if (IS_ERR(memmap))
905 return PTR_ERR(memmap);
906
907 /*
908 * Poison uninitialized struct pages in order to catch invalid flags
909 * combinations.
910 */
911 if (!altmap || !altmap->inaccessible)
912 page_init_poison(memmap, sizeof(struct page) * nr_pages);
913
914 ms = __nr_to_section(section_nr);
915 set_section_nid(section_nr, nid);
916 __section_mark_present(ms, section_nr);
917
918 /* Align memmap to section boundary in the subsection case */
919 if (section_nr_to_pfn(section_nr) != start_pfn)
920 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
921 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
922
923 return 0;
924}
925
926void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
927 struct vmem_altmap *altmap)
928{
929 struct mem_section *ms = __pfn_to_section(pfn);
930
931 if (WARN_ON_ONCE(!valid_section(ms)))
932 return;
933
934 section_deactivate(pfn, nr_pages, altmap);
935}
936#endif /* CONFIG_MEMORY_HOTPLUG */