Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitmap.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/isolation.h>
81#include <linux/sched/mm.h>
82#include <linux/smpboot.h>
83#include <linux/mutex.h>
84#include <linux/rwsem.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/ethtool_netlink.h>
96#include <linux/skbuff.h>
97#include <linux/kthread.h>
98#include <linux/bpf.h>
99#include <linux/bpf_trace.h>
100#include <net/net_namespace.h>
101#include <net/sock.h>
102#include <net/busy_poll.h>
103#include <linux/rtnetlink.h>
104#include <linux/stat.h>
105#include <net/dsa.h>
106#include <net/dst.h>
107#include <net/dst_metadata.h>
108#include <net/gro.h>
109#include <net/netdev_queues.h>
110#include <net/pkt_sched.h>
111#include <net/pkt_cls.h>
112#include <net/checksum.h>
113#include <net/xfrm.h>
114#include <net/tcx.h>
115#include <linux/highmem.h>
116#include <linux/init.h>
117#include <linux/module.h>
118#include <linux/netpoll.h>
119#include <linux/rcupdate.h>
120#include <linux/delay.h>
121#include <net/iw_handler.h>
122#include <asm/current.h>
123#include <linux/audit.h>
124#include <linux/dmaengine.h>
125#include <linux/err.h>
126#include <linux/ctype.h>
127#include <linux/if_arp.h>
128#include <linux/if_vlan.h>
129#include <linux/ip.h>
130#include <net/ip.h>
131#include <net/mpls.h>
132#include <linux/ipv6.h>
133#include <linux/in.h>
134#include <linux/jhash.h>
135#include <linux/random.h>
136#include <trace/events/napi.h>
137#include <trace/events/net.h>
138#include <trace/events/skb.h>
139#include <trace/events/qdisc.h>
140#include <trace/events/xdp.h>
141#include <linux/inetdevice.h>
142#include <linux/cpu_rmap.h>
143#include <linux/static_key.h>
144#include <linux/hashtable.h>
145#include <linux/vmalloc.h>
146#include <linux/if_macvlan.h>
147#include <linux/errqueue.h>
148#include <linux/hrtimer.h>
149#include <linux/netfilter_netdev.h>
150#include <linux/crash_dump.h>
151#include <linux/sctp.h>
152#include <net/udp_tunnel.h>
153#include <linux/net_namespace.h>
154#include <linux/indirect_call_wrapper.h>
155#include <net/devlink.h>
156#include <linux/pm_runtime.h>
157#include <linux/prandom.h>
158#include <linux/once_lite.h>
159#include <net/netdev_rx_queue.h>
160#include <net/page_pool/types.h>
161#include <net/page_pool/helpers.h>
162#include <net/rps.h>
163#include <linux/phy_link_topology.h>
164
165#include "dev.h"
166#include "devmem.h"
167#include "net-sysfs.h"
168
169static DEFINE_SPINLOCK(ptype_lock);
170struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171
172static int netif_rx_internal(struct sk_buff *skb);
173static int call_netdevice_notifiers_extack(unsigned long val,
174 struct net_device *dev,
175 struct netlink_ext_ack *extack);
176
177static DEFINE_MUTEX(ifalias_mutex);
178
179/* protects napi_hash addition/deletion and napi_gen_id */
180static DEFINE_SPINLOCK(napi_hash_lock);
181
182static unsigned int napi_gen_id = NR_CPUS;
183static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
184
185static inline void dev_base_seq_inc(struct net *net)
186{
187 unsigned int val = net->dev_base_seq + 1;
188
189 WRITE_ONCE(net->dev_base_seq, val ?: 1);
190}
191
192static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193{
194 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195
196 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197}
198
199static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200{
201 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202}
203
204#ifndef CONFIG_PREEMPT_RT
205
206static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207
208static int __init setup_backlog_napi_threads(char *arg)
209{
210 static_branch_enable(&use_backlog_threads_key);
211 return 0;
212}
213early_param("thread_backlog_napi", setup_backlog_napi_threads);
214
215static bool use_backlog_threads(void)
216{
217 return static_branch_unlikely(&use_backlog_threads_key);
218}
219
220#else
221
222static bool use_backlog_threads(void)
223{
224 return true;
225}
226
227#endif
228
229static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 unsigned long *flags)
231{
232 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 else
235 local_irq_save(*flags);
236}
237
238static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239{
240 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 spin_lock_irq(&sd->input_pkt_queue.lock);
242 else
243 local_irq_disable();
244}
245
246static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 unsigned long *flags)
248{
249 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 else
252 local_irq_restore(*flags);
253}
254
255static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256{
257 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 spin_unlock_irq(&sd->input_pkt_queue.lock);
259 else
260 local_irq_enable();
261}
262
263static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 const char *name)
265{
266 struct netdev_name_node *name_node;
267
268 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 if (!name_node)
270 return NULL;
271 INIT_HLIST_NODE(&name_node->hlist);
272 name_node->dev = dev;
273 name_node->name = name;
274 return name_node;
275}
276
277static struct netdev_name_node *
278netdev_name_node_head_alloc(struct net_device *dev)
279{
280 struct netdev_name_node *name_node;
281
282 name_node = netdev_name_node_alloc(dev, dev->name);
283 if (!name_node)
284 return NULL;
285 INIT_LIST_HEAD(&name_node->list);
286 return name_node;
287}
288
289static void netdev_name_node_free(struct netdev_name_node *name_node)
290{
291 kfree(name_node);
292}
293
294static void netdev_name_node_add(struct net *net,
295 struct netdev_name_node *name_node)
296{
297 hlist_add_head_rcu(&name_node->hlist,
298 dev_name_hash(net, name_node->name));
299}
300
301static void netdev_name_node_del(struct netdev_name_node *name_node)
302{
303 hlist_del_rcu(&name_node->hlist);
304}
305
306static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 const char *name)
308{
309 struct hlist_head *head = dev_name_hash(net, name);
310 struct netdev_name_node *name_node;
311
312 hlist_for_each_entry(name_node, head, hlist)
313 if (!strcmp(name_node->name, name))
314 return name_node;
315 return NULL;
316}
317
318static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 const char *name)
320{
321 struct hlist_head *head = dev_name_hash(net, name);
322 struct netdev_name_node *name_node;
323
324 hlist_for_each_entry_rcu(name_node, head, hlist)
325 if (!strcmp(name_node->name, name))
326 return name_node;
327 return NULL;
328}
329
330bool netdev_name_in_use(struct net *net, const char *name)
331{
332 return netdev_name_node_lookup(net, name);
333}
334EXPORT_SYMBOL(netdev_name_in_use);
335
336int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337{
338 struct netdev_name_node *name_node;
339 struct net *net = dev_net(dev);
340
341 name_node = netdev_name_node_lookup(net, name);
342 if (name_node)
343 return -EEXIST;
344 name_node = netdev_name_node_alloc(dev, name);
345 if (!name_node)
346 return -ENOMEM;
347 netdev_name_node_add(net, name_node);
348 /* The node that holds dev->name acts as a head of per-device list. */
349 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350
351 return 0;
352}
353
354static void netdev_name_node_alt_free(struct rcu_head *head)
355{
356 struct netdev_name_node *name_node =
357 container_of(head, struct netdev_name_node, rcu);
358
359 kfree(name_node->name);
360 netdev_name_node_free(name_node);
361}
362
363static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364{
365 netdev_name_node_del(name_node);
366 list_del(&name_node->list);
367 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368}
369
370int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371{
372 struct netdev_name_node *name_node;
373 struct net *net = dev_net(dev);
374
375 name_node = netdev_name_node_lookup(net, name);
376 if (!name_node)
377 return -ENOENT;
378 /* lookup might have found our primary name or a name belonging
379 * to another device.
380 */
381 if (name_node == dev->name_node || name_node->dev != dev)
382 return -EINVAL;
383
384 __netdev_name_node_alt_destroy(name_node);
385 return 0;
386}
387
388static void netdev_name_node_alt_flush(struct net_device *dev)
389{
390 struct netdev_name_node *name_node, *tmp;
391
392 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 list_del(&name_node->list);
394 netdev_name_node_alt_free(&name_node->rcu);
395 }
396}
397
398/* Device list insertion */
399static void list_netdevice(struct net_device *dev)
400{
401 struct netdev_name_node *name_node;
402 struct net *net = dev_net(dev);
403
404 ASSERT_RTNL();
405
406 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 netdev_name_node_add(net, dev->name_node);
408 hlist_add_head_rcu(&dev->index_hlist,
409 dev_index_hash(net, dev->ifindex));
410
411 netdev_for_each_altname(dev, name_node)
412 netdev_name_node_add(net, name_node);
413
414 /* We reserved the ifindex, this can't fail */
415 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416
417 dev_base_seq_inc(net);
418}
419
420/* Device list removal
421 * caller must respect a RCU grace period before freeing/reusing dev
422 */
423static void unlist_netdevice(struct net_device *dev)
424{
425 struct netdev_name_node *name_node;
426 struct net *net = dev_net(dev);
427
428 ASSERT_RTNL();
429
430 xa_erase(&net->dev_by_index, dev->ifindex);
431
432 netdev_for_each_altname(dev, name_node)
433 netdev_name_node_del(name_node);
434
435 /* Unlink dev from the device chain */
436 list_del_rcu(&dev->dev_list);
437 netdev_name_node_del(dev->name_node);
438 hlist_del_rcu(&dev->index_hlist);
439
440 dev_base_seq_inc(dev_net(dev));
441}
442
443/*
444 * Our notifier list
445 */
446
447static RAW_NOTIFIER_HEAD(netdev_chain);
448
449/*
450 * Device drivers call our routines to queue packets here. We empty the
451 * queue in the local softnet handler.
452 */
453
454DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456};
457EXPORT_PER_CPU_SYMBOL(softnet_data);
458
459/* Page_pool has a lockless array/stack to alloc/recycle pages.
460 * PP consumers must pay attention to run APIs in the appropriate context
461 * (e.g. NAPI context).
462 */
463DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464
465#ifdef CONFIG_LOCKDEP
466/*
467 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468 * according to dev->type
469 */
470static const unsigned short netdev_lock_type[] = {
471 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486
487static const char *const netdev_lock_name[] = {
488 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503
504static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506
507static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508{
509 int i;
510
511 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 if (netdev_lock_type[i] == dev_type)
513 return i;
514 /* the last key is used by default */
515 return ARRAY_SIZE(netdev_lock_type) - 1;
516}
517
518static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 unsigned short dev_type)
520{
521 int i;
522
523 i = netdev_lock_pos(dev_type);
524 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 netdev_lock_name[i]);
526}
527
528static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529{
530 int i;
531
532 i = netdev_lock_pos(dev->type);
533 lockdep_set_class_and_name(&dev->addr_list_lock,
534 &netdev_addr_lock_key[i],
535 netdev_lock_name[i]);
536}
537#else
538static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 unsigned short dev_type)
540{
541}
542
543static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544{
545}
546#endif
547
548/*******************************************************************************
549 *
550 * Protocol management and registration routines
551 *
552 *******************************************************************************/
553
554
555/*
556 * Add a protocol ID to the list. Now that the input handler is
557 * smarter we can dispense with all the messy stuff that used to be
558 * here.
559 *
560 * BEWARE!!! Protocol handlers, mangling input packets,
561 * MUST BE last in hash buckets and checking protocol handlers
562 * MUST start from promiscuous ptype_all chain in net_bh.
563 * It is true now, do not change it.
564 * Explanation follows: if protocol handler, mangling packet, will
565 * be the first on list, it is not able to sense, that packet
566 * is cloned and should be copied-on-write, so that it will
567 * change it and subsequent readers will get broken packet.
568 * --ANK (980803)
569 */
570
571static inline struct list_head *ptype_head(const struct packet_type *pt)
572{
573 if (pt->type == htons(ETH_P_ALL))
574 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 else
576 return pt->dev ? &pt->dev->ptype_specific :
577 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578}
579
580/**
581 * dev_add_pack - add packet handler
582 * @pt: packet type declaration
583 *
584 * Add a protocol handler to the networking stack. The passed &packet_type
585 * is linked into kernel lists and may not be freed until it has been
586 * removed from the kernel lists.
587 *
588 * This call does not sleep therefore it can not
589 * guarantee all CPU's that are in middle of receiving packets
590 * will see the new packet type (until the next received packet).
591 */
592
593void dev_add_pack(struct packet_type *pt)
594{
595 struct list_head *head = ptype_head(pt);
596
597 spin_lock(&ptype_lock);
598 list_add_rcu(&pt->list, head);
599 spin_unlock(&ptype_lock);
600}
601EXPORT_SYMBOL(dev_add_pack);
602
603/**
604 * __dev_remove_pack - remove packet handler
605 * @pt: packet type declaration
606 *
607 * Remove a protocol handler that was previously added to the kernel
608 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
609 * from the kernel lists and can be freed or reused once this function
610 * returns.
611 *
612 * The packet type might still be in use by receivers
613 * and must not be freed until after all the CPU's have gone
614 * through a quiescent state.
615 */
616void __dev_remove_pack(struct packet_type *pt)
617{
618 struct list_head *head = ptype_head(pt);
619 struct packet_type *pt1;
620
621 spin_lock(&ptype_lock);
622
623 list_for_each_entry(pt1, head, list) {
624 if (pt == pt1) {
625 list_del_rcu(&pt->list);
626 goto out;
627 }
628 }
629
630 pr_warn("dev_remove_pack: %p not found\n", pt);
631out:
632 spin_unlock(&ptype_lock);
633}
634EXPORT_SYMBOL(__dev_remove_pack);
635
636/**
637 * dev_remove_pack - remove packet handler
638 * @pt: packet type declaration
639 *
640 * Remove a protocol handler that was previously added to the kernel
641 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
642 * from the kernel lists and can be freed or reused once this function
643 * returns.
644 *
645 * This call sleeps to guarantee that no CPU is looking at the packet
646 * type after return.
647 */
648void dev_remove_pack(struct packet_type *pt)
649{
650 __dev_remove_pack(pt);
651
652 synchronize_net();
653}
654EXPORT_SYMBOL(dev_remove_pack);
655
656
657/*******************************************************************************
658 *
659 * Device Interface Subroutines
660 *
661 *******************************************************************************/
662
663/**
664 * dev_get_iflink - get 'iflink' value of a interface
665 * @dev: targeted interface
666 *
667 * Indicates the ifindex the interface is linked to.
668 * Physical interfaces have the same 'ifindex' and 'iflink' values.
669 */
670
671int dev_get_iflink(const struct net_device *dev)
672{
673 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 return dev->netdev_ops->ndo_get_iflink(dev);
675
676 return READ_ONCE(dev->ifindex);
677}
678EXPORT_SYMBOL(dev_get_iflink);
679
680/**
681 * dev_fill_metadata_dst - Retrieve tunnel egress information.
682 * @dev: targeted interface
683 * @skb: The packet.
684 *
685 * For better visibility of tunnel traffic OVS needs to retrieve
686 * egress tunnel information for a packet. Following API allows
687 * user to get this info.
688 */
689int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690{
691 struct ip_tunnel_info *info;
692
693 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
694 return -EINVAL;
695
696 info = skb_tunnel_info_unclone(skb);
697 if (!info)
698 return -ENOMEM;
699 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 return -EINVAL;
701
702 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703}
704EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705
706static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707{
708 int k = stack->num_paths++;
709
710 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 return NULL;
712
713 return &stack->path[k];
714}
715
716int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 struct net_device_path_stack *stack)
718{
719 const struct net_device *last_dev;
720 struct net_device_path_ctx ctx = {
721 .dev = dev,
722 };
723 struct net_device_path *path;
724 int ret = 0;
725
726 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 stack->num_paths = 0;
728 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 last_dev = ctx.dev;
730 path = dev_fwd_path(stack);
731 if (!path)
732 return -1;
733
734 memset(path, 0, sizeof(struct net_device_path));
735 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 if (ret < 0)
737 return -1;
738
739 if (WARN_ON_ONCE(last_dev == ctx.dev))
740 return -1;
741 }
742
743 if (!ctx.dev)
744 return ret;
745
746 path = dev_fwd_path(stack);
747 if (!path)
748 return -1;
749 path->type = DEV_PATH_ETHERNET;
750 path->dev = ctx.dev;
751
752 return ret;
753}
754EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755
756/* must be called under rcu_read_lock(), as we dont take a reference */
757static struct napi_struct *napi_by_id(unsigned int napi_id)
758{
759 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
760 struct napi_struct *napi;
761
762 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
763 if (napi->napi_id == napi_id)
764 return napi;
765
766 return NULL;
767}
768
769/* must be called under rcu_read_lock(), as we dont take a reference */
770static struct napi_struct *
771netdev_napi_by_id(struct net *net, unsigned int napi_id)
772{
773 struct napi_struct *napi;
774
775 napi = napi_by_id(napi_id);
776 if (!napi)
777 return NULL;
778
779 if (WARN_ON_ONCE(!napi->dev))
780 return NULL;
781 if (!net_eq(net, dev_net(napi->dev)))
782 return NULL;
783
784 return napi;
785}
786
787/**
788 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
789 * @net: the applicable net namespace
790 * @napi_id: ID of a NAPI of a target device
791 *
792 * Find a NAPI instance with @napi_id. Lock its device.
793 * The device must be in %NETREG_REGISTERED state for lookup to succeed.
794 * netdev_unlock() must be called to release it.
795 *
796 * Return: pointer to NAPI, its device with lock held, NULL if not found.
797 */
798struct napi_struct *
799netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
800{
801 struct napi_struct *napi;
802 struct net_device *dev;
803
804 rcu_read_lock();
805 napi = netdev_napi_by_id(net, napi_id);
806 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
807 rcu_read_unlock();
808 return NULL;
809 }
810
811 dev = napi->dev;
812 dev_hold(dev);
813 rcu_read_unlock();
814
815 dev = __netdev_put_lock(dev);
816 if (!dev)
817 return NULL;
818
819 rcu_read_lock();
820 napi = netdev_napi_by_id(net, napi_id);
821 if (napi && napi->dev != dev)
822 napi = NULL;
823 rcu_read_unlock();
824
825 if (!napi)
826 netdev_unlock(dev);
827 return napi;
828}
829
830/**
831 * __dev_get_by_name - find a device by its name
832 * @net: the applicable net namespace
833 * @name: name to find
834 *
835 * Find an interface by name. Must be called under RTNL semaphore.
836 * If the name is found a pointer to the device is returned.
837 * If the name is not found then %NULL is returned. The
838 * reference counters are not incremented so the caller must be
839 * careful with locks.
840 */
841
842struct net_device *__dev_get_by_name(struct net *net, const char *name)
843{
844 struct netdev_name_node *node_name;
845
846 node_name = netdev_name_node_lookup(net, name);
847 return node_name ? node_name->dev : NULL;
848}
849EXPORT_SYMBOL(__dev_get_by_name);
850
851/**
852 * dev_get_by_name_rcu - find a device by its name
853 * @net: the applicable net namespace
854 * @name: name to find
855 *
856 * Find an interface by name.
857 * If the name is found a pointer to the device is returned.
858 * If the name is not found then %NULL is returned.
859 * The reference counters are not incremented so the caller must be
860 * careful with locks. The caller must hold RCU lock.
861 */
862
863struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
864{
865 struct netdev_name_node *node_name;
866
867 node_name = netdev_name_node_lookup_rcu(net, name);
868 return node_name ? node_name->dev : NULL;
869}
870EXPORT_SYMBOL(dev_get_by_name_rcu);
871
872/* Deprecated for new users, call netdev_get_by_name() instead */
873struct net_device *dev_get_by_name(struct net *net, const char *name)
874{
875 struct net_device *dev;
876
877 rcu_read_lock();
878 dev = dev_get_by_name_rcu(net, name);
879 dev_hold(dev);
880 rcu_read_unlock();
881 return dev;
882}
883EXPORT_SYMBOL(dev_get_by_name);
884
885/**
886 * netdev_get_by_name() - find a device by its name
887 * @net: the applicable net namespace
888 * @name: name to find
889 * @tracker: tracking object for the acquired reference
890 * @gfp: allocation flags for the tracker
891 *
892 * Find an interface by name. This can be called from any
893 * context and does its own locking. The returned handle has
894 * the usage count incremented and the caller must use netdev_put() to
895 * release it when it is no longer needed. %NULL is returned if no
896 * matching device is found.
897 */
898struct net_device *netdev_get_by_name(struct net *net, const char *name,
899 netdevice_tracker *tracker, gfp_t gfp)
900{
901 struct net_device *dev;
902
903 dev = dev_get_by_name(net, name);
904 if (dev)
905 netdev_tracker_alloc(dev, tracker, gfp);
906 return dev;
907}
908EXPORT_SYMBOL(netdev_get_by_name);
909
910/**
911 * __dev_get_by_index - find a device by its ifindex
912 * @net: the applicable net namespace
913 * @ifindex: index of device
914 *
915 * Search for an interface by index. Returns %NULL if the device
916 * is not found or a pointer to the device. The device has not
917 * had its reference counter increased so the caller must be careful
918 * about locking. The caller must hold the RTNL semaphore.
919 */
920
921struct net_device *__dev_get_by_index(struct net *net, int ifindex)
922{
923 struct net_device *dev;
924 struct hlist_head *head = dev_index_hash(net, ifindex);
925
926 hlist_for_each_entry(dev, head, index_hlist)
927 if (dev->ifindex == ifindex)
928 return dev;
929
930 return NULL;
931}
932EXPORT_SYMBOL(__dev_get_by_index);
933
934/**
935 * dev_get_by_index_rcu - find a device by its ifindex
936 * @net: the applicable net namespace
937 * @ifindex: index of device
938 *
939 * Search for an interface by index. Returns %NULL if the device
940 * is not found or a pointer to the device. The device has not
941 * had its reference counter increased so the caller must be careful
942 * about locking. The caller must hold RCU lock.
943 */
944
945struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
946{
947 struct net_device *dev;
948 struct hlist_head *head = dev_index_hash(net, ifindex);
949
950 hlist_for_each_entry_rcu(dev, head, index_hlist)
951 if (dev->ifindex == ifindex)
952 return dev;
953
954 return NULL;
955}
956EXPORT_SYMBOL(dev_get_by_index_rcu);
957
958/* Deprecated for new users, call netdev_get_by_index() instead */
959struct net_device *dev_get_by_index(struct net *net, int ifindex)
960{
961 struct net_device *dev;
962
963 rcu_read_lock();
964 dev = dev_get_by_index_rcu(net, ifindex);
965 dev_hold(dev);
966 rcu_read_unlock();
967 return dev;
968}
969EXPORT_SYMBOL(dev_get_by_index);
970
971/**
972 * netdev_get_by_index() - find a device by its ifindex
973 * @net: the applicable net namespace
974 * @ifindex: index of device
975 * @tracker: tracking object for the acquired reference
976 * @gfp: allocation flags for the tracker
977 *
978 * Search for an interface by index. Returns NULL if the device
979 * is not found or a pointer to the device. The device returned has
980 * had a reference added and the pointer is safe until the user calls
981 * netdev_put() to indicate they have finished with it.
982 */
983struct net_device *netdev_get_by_index(struct net *net, int ifindex,
984 netdevice_tracker *tracker, gfp_t gfp)
985{
986 struct net_device *dev;
987
988 dev = dev_get_by_index(net, ifindex);
989 if (dev)
990 netdev_tracker_alloc(dev, tracker, gfp);
991 return dev;
992}
993EXPORT_SYMBOL(netdev_get_by_index);
994
995/**
996 * dev_get_by_napi_id - find a device by napi_id
997 * @napi_id: ID of the NAPI struct
998 *
999 * Search for an interface by NAPI ID. Returns %NULL if the device
1000 * is not found or a pointer to the device. The device has not had
1001 * its reference counter increased so the caller must be careful
1002 * about locking. The caller must hold RCU lock.
1003 */
1004struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1005{
1006 struct napi_struct *napi;
1007
1008 WARN_ON_ONCE(!rcu_read_lock_held());
1009
1010 if (napi_id < MIN_NAPI_ID)
1011 return NULL;
1012
1013 napi = napi_by_id(napi_id);
1014
1015 return napi ? napi->dev : NULL;
1016}
1017
1018/* Release the held reference on the net_device, and if the net_device
1019 * is still registered try to lock the instance lock. If device is being
1020 * unregistered NULL will be returned (but the reference has been released,
1021 * either way!)
1022 *
1023 * This helper is intended for locking net_device after it has been looked up
1024 * using a lockless lookup helper. Lock prevents the instance from going away.
1025 */
1026struct net_device *__netdev_put_lock(struct net_device *dev)
1027{
1028 netdev_lock(dev);
1029 if (dev->reg_state > NETREG_REGISTERED) {
1030 netdev_unlock(dev);
1031 dev_put(dev);
1032 return NULL;
1033 }
1034 dev_put(dev);
1035 return dev;
1036}
1037
1038/**
1039 * netdev_get_by_index_lock() - find a device by its ifindex
1040 * @net: the applicable net namespace
1041 * @ifindex: index of device
1042 *
1043 * Search for an interface by index. If a valid device
1044 * with @ifindex is found it will be returned with netdev->lock held.
1045 * netdev_unlock() must be called to release it.
1046 *
1047 * Return: pointer to a device with lock held, NULL if not found.
1048 */
1049struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1050{
1051 struct net_device *dev;
1052
1053 dev = dev_get_by_index(net, ifindex);
1054 if (!dev)
1055 return NULL;
1056
1057 return __netdev_put_lock(dev);
1058}
1059
1060struct net_device *
1061netdev_xa_find_lock(struct net *net, struct net_device *dev,
1062 unsigned long *index)
1063{
1064 if (dev)
1065 netdev_unlock(dev);
1066
1067 do {
1068 rcu_read_lock();
1069 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1070 if (!dev) {
1071 rcu_read_unlock();
1072 return NULL;
1073 }
1074 dev_hold(dev);
1075 rcu_read_unlock();
1076
1077 dev = __netdev_put_lock(dev);
1078 if (dev)
1079 return dev;
1080
1081 (*index)++;
1082 } while (true);
1083}
1084
1085static DEFINE_SEQLOCK(netdev_rename_lock);
1086
1087void netdev_copy_name(struct net_device *dev, char *name)
1088{
1089 unsigned int seq;
1090
1091 do {
1092 seq = read_seqbegin(&netdev_rename_lock);
1093 strscpy(name, dev->name, IFNAMSIZ);
1094 } while (read_seqretry(&netdev_rename_lock, seq));
1095}
1096
1097/**
1098 * netdev_get_name - get a netdevice name, knowing its ifindex.
1099 * @net: network namespace
1100 * @name: a pointer to the buffer where the name will be stored.
1101 * @ifindex: the ifindex of the interface to get the name from.
1102 */
1103int netdev_get_name(struct net *net, char *name, int ifindex)
1104{
1105 struct net_device *dev;
1106 int ret;
1107
1108 rcu_read_lock();
1109
1110 dev = dev_get_by_index_rcu(net, ifindex);
1111 if (!dev) {
1112 ret = -ENODEV;
1113 goto out;
1114 }
1115
1116 netdev_copy_name(dev, name);
1117
1118 ret = 0;
1119out:
1120 rcu_read_unlock();
1121 return ret;
1122}
1123
1124/**
1125 * dev_getbyhwaddr_rcu - find a device by its hardware address
1126 * @net: the applicable net namespace
1127 * @type: media type of device
1128 * @ha: hardware address
1129 *
1130 * Search for an interface by MAC address. Returns NULL if the device
1131 * is not found or a pointer to the device.
1132 * The caller must hold RCU or RTNL.
1133 * The returned device has not had its ref count increased
1134 * and the caller must therefore be careful about locking
1135 *
1136 */
1137
1138struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1139 const char *ha)
1140{
1141 struct net_device *dev;
1142
1143 for_each_netdev_rcu(net, dev)
1144 if (dev->type == type &&
1145 !memcmp(dev->dev_addr, ha, dev->addr_len))
1146 return dev;
1147
1148 return NULL;
1149}
1150EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1151
1152struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1153{
1154 struct net_device *dev, *ret = NULL;
1155
1156 rcu_read_lock();
1157 for_each_netdev_rcu(net, dev)
1158 if (dev->type == type) {
1159 dev_hold(dev);
1160 ret = dev;
1161 break;
1162 }
1163 rcu_read_unlock();
1164 return ret;
1165}
1166EXPORT_SYMBOL(dev_getfirstbyhwtype);
1167
1168/**
1169 * __dev_get_by_flags - find any device with given flags
1170 * @net: the applicable net namespace
1171 * @if_flags: IFF_* values
1172 * @mask: bitmask of bits in if_flags to check
1173 *
1174 * Search for any interface with the given flags. Returns NULL if a device
1175 * is not found or a pointer to the device. Must be called inside
1176 * rtnl_lock(), and result refcount is unchanged.
1177 */
1178
1179struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1180 unsigned short mask)
1181{
1182 struct net_device *dev, *ret;
1183
1184 ASSERT_RTNL();
1185
1186 ret = NULL;
1187 for_each_netdev(net, dev) {
1188 if (((dev->flags ^ if_flags) & mask) == 0) {
1189 ret = dev;
1190 break;
1191 }
1192 }
1193 return ret;
1194}
1195EXPORT_SYMBOL(__dev_get_by_flags);
1196
1197/**
1198 * dev_valid_name - check if name is okay for network device
1199 * @name: name string
1200 *
1201 * Network device names need to be valid file names to
1202 * allow sysfs to work. We also disallow any kind of
1203 * whitespace.
1204 */
1205bool dev_valid_name(const char *name)
1206{
1207 if (*name == '\0')
1208 return false;
1209 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1210 return false;
1211 if (!strcmp(name, ".") || !strcmp(name, ".."))
1212 return false;
1213
1214 while (*name) {
1215 if (*name == '/' || *name == ':' || isspace(*name))
1216 return false;
1217 name++;
1218 }
1219 return true;
1220}
1221EXPORT_SYMBOL(dev_valid_name);
1222
1223/**
1224 * __dev_alloc_name - allocate a name for a device
1225 * @net: network namespace to allocate the device name in
1226 * @name: name format string
1227 * @res: result name string
1228 *
1229 * Passed a format string - eg "lt%d" it will try and find a suitable
1230 * id. It scans list of devices to build up a free map, then chooses
1231 * the first empty slot. The caller must hold the dev_base or rtnl lock
1232 * while allocating the name and adding the device in order to avoid
1233 * duplicates.
1234 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1235 * Returns the number of the unit assigned or a negative errno code.
1236 */
1237
1238static int __dev_alloc_name(struct net *net, const char *name, char *res)
1239{
1240 int i = 0;
1241 const char *p;
1242 const int max_netdevices = 8*PAGE_SIZE;
1243 unsigned long *inuse;
1244 struct net_device *d;
1245 char buf[IFNAMSIZ];
1246
1247 /* Verify the string as this thing may have come from the user.
1248 * There must be one "%d" and no other "%" characters.
1249 */
1250 p = strchr(name, '%');
1251 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1252 return -EINVAL;
1253
1254 /* Use one page as a bit array of possible slots */
1255 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1256 if (!inuse)
1257 return -ENOMEM;
1258
1259 for_each_netdev(net, d) {
1260 struct netdev_name_node *name_node;
1261
1262 netdev_for_each_altname(d, name_node) {
1263 if (!sscanf(name_node->name, name, &i))
1264 continue;
1265 if (i < 0 || i >= max_netdevices)
1266 continue;
1267
1268 /* avoid cases where sscanf is not exact inverse of printf */
1269 snprintf(buf, IFNAMSIZ, name, i);
1270 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1271 __set_bit(i, inuse);
1272 }
1273 if (!sscanf(d->name, name, &i))
1274 continue;
1275 if (i < 0 || i >= max_netdevices)
1276 continue;
1277
1278 /* avoid cases where sscanf is not exact inverse of printf */
1279 snprintf(buf, IFNAMSIZ, name, i);
1280 if (!strncmp(buf, d->name, IFNAMSIZ))
1281 __set_bit(i, inuse);
1282 }
1283
1284 i = find_first_zero_bit(inuse, max_netdevices);
1285 bitmap_free(inuse);
1286 if (i == max_netdevices)
1287 return -ENFILE;
1288
1289 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1290 strscpy(buf, name, IFNAMSIZ);
1291 snprintf(res, IFNAMSIZ, buf, i);
1292 return i;
1293}
1294
1295/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1296static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1297 const char *want_name, char *out_name,
1298 int dup_errno)
1299{
1300 if (!dev_valid_name(want_name))
1301 return -EINVAL;
1302
1303 if (strchr(want_name, '%'))
1304 return __dev_alloc_name(net, want_name, out_name);
1305
1306 if (netdev_name_in_use(net, want_name))
1307 return -dup_errno;
1308 if (out_name != want_name)
1309 strscpy(out_name, want_name, IFNAMSIZ);
1310 return 0;
1311}
1312
1313/**
1314 * dev_alloc_name - allocate a name for a device
1315 * @dev: device
1316 * @name: name format string
1317 *
1318 * Passed a format string - eg "lt%d" it will try and find a suitable
1319 * id. It scans list of devices to build up a free map, then chooses
1320 * the first empty slot. The caller must hold the dev_base or rtnl lock
1321 * while allocating the name and adding the device in order to avoid
1322 * duplicates.
1323 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1324 * Returns the number of the unit assigned or a negative errno code.
1325 */
1326
1327int dev_alloc_name(struct net_device *dev, const char *name)
1328{
1329 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1330}
1331EXPORT_SYMBOL(dev_alloc_name);
1332
1333static int dev_get_valid_name(struct net *net, struct net_device *dev,
1334 const char *name)
1335{
1336 int ret;
1337
1338 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1339 return ret < 0 ? ret : 0;
1340}
1341
1342/**
1343 * dev_change_name - change name of a device
1344 * @dev: device
1345 * @newname: name (or format string) must be at least IFNAMSIZ
1346 *
1347 * Change name of a device, can pass format strings "eth%d".
1348 * for wildcarding.
1349 */
1350int dev_change_name(struct net_device *dev, const char *newname)
1351{
1352 struct net *net = dev_net(dev);
1353 unsigned char old_assign_type;
1354 char oldname[IFNAMSIZ];
1355 int err = 0;
1356 int ret;
1357
1358 ASSERT_RTNL_NET(net);
1359
1360 if (!strncmp(newname, dev->name, IFNAMSIZ))
1361 return 0;
1362
1363 memcpy(oldname, dev->name, IFNAMSIZ);
1364
1365 write_seqlock_bh(&netdev_rename_lock);
1366 err = dev_get_valid_name(net, dev, newname);
1367 write_sequnlock_bh(&netdev_rename_lock);
1368
1369 if (err < 0)
1370 return err;
1371
1372 if (oldname[0] && !strchr(oldname, '%'))
1373 netdev_info(dev, "renamed from %s%s\n", oldname,
1374 dev->flags & IFF_UP ? " (while UP)" : "");
1375
1376 old_assign_type = dev->name_assign_type;
1377 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1378
1379rollback:
1380 ret = device_rename(&dev->dev, dev->name);
1381 if (ret) {
1382 write_seqlock_bh(&netdev_rename_lock);
1383 memcpy(dev->name, oldname, IFNAMSIZ);
1384 write_sequnlock_bh(&netdev_rename_lock);
1385 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1386 return ret;
1387 }
1388
1389 netdev_adjacent_rename_links(dev, oldname);
1390
1391 netdev_name_node_del(dev->name_node);
1392
1393 synchronize_net();
1394
1395 netdev_name_node_add(net, dev->name_node);
1396
1397 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1398 ret = notifier_to_errno(ret);
1399
1400 if (ret) {
1401 /* err >= 0 after dev_alloc_name() or stores the first errno */
1402 if (err >= 0) {
1403 err = ret;
1404 write_seqlock_bh(&netdev_rename_lock);
1405 memcpy(dev->name, oldname, IFNAMSIZ);
1406 write_sequnlock_bh(&netdev_rename_lock);
1407 memcpy(oldname, newname, IFNAMSIZ);
1408 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1409 old_assign_type = NET_NAME_RENAMED;
1410 goto rollback;
1411 } else {
1412 netdev_err(dev, "name change rollback failed: %d\n",
1413 ret);
1414 }
1415 }
1416
1417 return err;
1418}
1419
1420/**
1421 * dev_set_alias - change ifalias of a device
1422 * @dev: device
1423 * @alias: name up to IFALIASZ
1424 * @len: limit of bytes to copy from info
1425 *
1426 * Set ifalias for a device,
1427 */
1428int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1429{
1430 struct dev_ifalias *new_alias = NULL;
1431
1432 if (len >= IFALIASZ)
1433 return -EINVAL;
1434
1435 if (len) {
1436 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1437 if (!new_alias)
1438 return -ENOMEM;
1439
1440 memcpy(new_alias->ifalias, alias, len);
1441 new_alias->ifalias[len] = 0;
1442 }
1443
1444 mutex_lock(&ifalias_mutex);
1445 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1446 mutex_is_locked(&ifalias_mutex));
1447 mutex_unlock(&ifalias_mutex);
1448
1449 if (new_alias)
1450 kfree_rcu(new_alias, rcuhead);
1451
1452 return len;
1453}
1454EXPORT_SYMBOL(dev_set_alias);
1455
1456/**
1457 * dev_get_alias - get ifalias of a device
1458 * @dev: device
1459 * @name: buffer to store name of ifalias
1460 * @len: size of buffer
1461 *
1462 * get ifalias for a device. Caller must make sure dev cannot go
1463 * away, e.g. rcu read lock or own a reference count to device.
1464 */
1465int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1466{
1467 const struct dev_ifalias *alias;
1468 int ret = 0;
1469
1470 rcu_read_lock();
1471 alias = rcu_dereference(dev->ifalias);
1472 if (alias)
1473 ret = snprintf(name, len, "%s", alias->ifalias);
1474 rcu_read_unlock();
1475
1476 return ret;
1477}
1478
1479/**
1480 * netdev_features_change - device changes features
1481 * @dev: device to cause notification
1482 *
1483 * Called to indicate a device has changed features.
1484 */
1485void netdev_features_change(struct net_device *dev)
1486{
1487 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1488}
1489EXPORT_SYMBOL(netdev_features_change);
1490
1491/**
1492 * netdev_state_change - device changes state
1493 * @dev: device to cause notification
1494 *
1495 * Called to indicate a device has changed state. This function calls
1496 * the notifier chains for netdev_chain and sends a NEWLINK message
1497 * to the routing socket.
1498 */
1499void netdev_state_change(struct net_device *dev)
1500{
1501 if (dev->flags & IFF_UP) {
1502 struct netdev_notifier_change_info change_info = {
1503 .info.dev = dev,
1504 };
1505
1506 call_netdevice_notifiers_info(NETDEV_CHANGE,
1507 &change_info.info);
1508 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1509 }
1510}
1511EXPORT_SYMBOL(netdev_state_change);
1512
1513/**
1514 * __netdev_notify_peers - notify network peers about existence of @dev,
1515 * to be called when rtnl lock is already held.
1516 * @dev: network device
1517 *
1518 * Generate traffic such that interested network peers are aware of
1519 * @dev, such as by generating a gratuitous ARP. This may be used when
1520 * a device wants to inform the rest of the network about some sort of
1521 * reconfiguration such as a failover event or virtual machine
1522 * migration.
1523 */
1524void __netdev_notify_peers(struct net_device *dev)
1525{
1526 ASSERT_RTNL();
1527 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1528 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1529}
1530EXPORT_SYMBOL(__netdev_notify_peers);
1531
1532/**
1533 * netdev_notify_peers - notify network peers about existence of @dev
1534 * @dev: network device
1535 *
1536 * Generate traffic such that interested network peers are aware of
1537 * @dev, such as by generating a gratuitous ARP. This may be used when
1538 * a device wants to inform the rest of the network about some sort of
1539 * reconfiguration such as a failover event or virtual machine
1540 * migration.
1541 */
1542void netdev_notify_peers(struct net_device *dev)
1543{
1544 rtnl_lock();
1545 __netdev_notify_peers(dev);
1546 rtnl_unlock();
1547}
1548EXPORT_SYMBOL(netdev_notify_peers);
1549
1550static int napi_threaded_poll(void *data);
1551
1552static int napi_kthread_create(struct napi_struct *n)
1553{
1554 int err = 0;
1555
1556 /* Create and wake up the kthread once to put it in
1557 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1558 * warning and work with loadavg.
1559 */
1560 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1561 n->dev->name, n->napi_id);
1562 if (IS_ERR(n->thread)) {
1563 err = PTR_ERR(n->thread);
1564 pr_err("kthread_run failed with err %d\n", err);
1565 n->thread = NULL;
1566 }
1567
1568 return err;
1569}
1570
1571static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1572{
1573 const struct net_device_ops *ops = dev->netdev_ops;
1574 int ret;
1575
1576 ASSERT_RTNL();
1577 dev_addr_check(dev);
1578
1579 if (!netif_device_present(dev)) {
1580 /* may be detached because parent is runtime-suspended */
1581 if (dev->dev.parent)
1582 pm_runtime_resume(dev->dev.parent);
1583 if (!netif_device_present(dev))
1584 return -ENODEV;
1585 }
1586
1587 /* Block netpoll from trying to do any rx path servicing.
1588 * If we don't do this there is a chance ndo_poll_controller
1589 * or ndo_poll may be running while we open the device
1590 */
1591 netpoll_poll_disable(dev);
1592
1593 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1594 ret = notifier_to_errno(ret);
1595 if (ret)
1596 return ret;
1597
1598 set_bit(__LINK_STATE_START, &dev->state);
1599
1600 if (ops->ndo_validate_addr)
1601 ret = ops->ndo_validate_addr(dev);
1602
1603 if (!ret && ops->ndo_open)
1604 ret = ops->ndo_open(dev);
1605
1606 netpoll_poll_enable(dev);
1607
1608 if (ret)
1609 clear_bit(__LINK_STATE_START, &dev->state);
1610 else {
1611 netif_set_up(dev, true);
1612 dev_set_rx_mode(dev);
1613 dev_activate(dev);
1614 add_device_randomness(dev->dev_addr, dev->addr_len);
1615 }
1616
1617 return ret;
1618}
1619
1620/**
1621 * dev_open - prepare an interface for use.
1622 * @dev: device to open
1623 * @extack: netlink extended ack
1624 *
1625 * Takes a device from down to up state. The device's private open
1626 * function is invoked and then the multicast lists are loaded. Finally
1627 * the device is moved into the up state and a %NETDEV_UP message is
1628 * sent to the netdev notifier chain.
1629 *
1630 * Calling this function on an active interface is a nop. On a failure
1631 * a negative errno code is returned.
1632 */
1633int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1634{
1635 int ret;
1636
1637 if (dev->flags & IFF_UP)
1638 return 0;
1639
1640 ret = __dev_open(dev, extack);
1641 if (ret < 0)
1642 return ret;
1643
1644 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1645 call_netdevice_notifiers(NETDEV_UP, dev);
1646
1647 return ret;
1648}
1649EXPORT_SYMBOL(dev_open);
1650
1651static void __dev_close_many(struct list_head *head)
1652{
1653 struct net_device *dev;
1654
1655 ASSERT_RTNL();
1656 might_sleep();
1657
1658 list_for_each_entry(dev, head, close_list) {
1659 /* Temporarily disable netpoll until the interface is down */
1660 netpoll_poll_disable(dev);
1661
1662 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1663
1664 clear_bit(__LINK_STATE_START, &dev->state);
1665
1666 /* Synchronize to scheduled poll. We cannot touch poll list, it
1667 * can be even on different cpu. So just clear netif_running().
1668 *
1669 * dev->stop() will invoke napi_disable() on all of it's
1670 * napi_struct instances on this device.
1671 */
1672 smp_mb__after_atomic(); /* Commit netif_running(). */
1673 }
1674
1675 dev_deactivate_many(head);
1676
1677 list_for_each_entry(dev, head, close_list) {
1678 const struct net_device_ops *ops = dev->netdev_ops;
1679
1680 /*
1681 * Call the device specific close. This cannot fail.
1682 * Only if device is UP
1683 *
1684 * We allow it to be called even after a DETACH hot-plug
1685 * event.
1686 */
1687 if (ops->ndo_stop)
1688 ops->ndo_stop(dev);
1689
1690 netif_set_up(dev, false);
1691 netpoll_poll_enable(dev);
1692 }
1693}
1694
1695static void __dev_close(struct net_device *dev)
1696{
1697 LIST_HEAD(single);
1698
1699 list_add(&dev->close_list, &single);
1700 __dev_close_many(&single);
1701 list_del(&single);
1702}
1703
1704void dev_close_many(struct list_head *head, bool unlink)
1705{
1706 struct net_device *dev, *tmp;
1707
1708 /* Remove the devices that don't need to be closed */
1709 list_for_each_entry_safe(dev, tmp, head, close_list)
1710 if (!(dev->flags & IFF_UP))
1711 list_del_init(&dev->close_list);
1712
1713 __dev_close_many(head);
1714
1715 list_for_each_entry_safe(dev, tmp, head, close_list) {
1716 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1717 call_netdevice_notifiers(NETDEV_DOWN, dev);
1718 if (unlink)
1719 list_del_init(&dev->close_list);
1720 }
1721}
1722EXPORT_SYMBOL(dev_close_many);
1723
1724/**
1725 * dev_close - shutdown an interface.
1726 * @dev: device to shutdown
1727 *
1728 * This function moves an active device into down state. A
1729 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1730 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1731 * chain.
1732 */
1733void dev_close(struct net_device *dev)
1734{
1735 if (dev->flags & IFF_UP) {
1736 LIST_HEAD(single);
1737
1738 list_add(&dev->close_list, &single);
1739 dev_close_many(&single, true);
1740 list_del(&single);
1741 }
1742}
1743EXPORT_SYMBOL(dev_close);
1744
1745
1746/**
1747 * dev_disable_lro - disable Large Receive Offload on a device
1748 * @dev: device
1749 *
1750 * Disable Large Receive Offload (LRO) on a net device. Must be
1751 * called under RTNL. This is needed if received packets may be
1752 * forwarded to another interface.
1753 */
1754void dev_disable_lro(struct net_device *dev)
1755{
1756 struct net_device *lower_dev;
1757 struct list_head *iter;
1758
1759 dev->wanted_features &= ~NETIF_F_LRO;
1760 netdev_update_features(dev);
1761
1762 if (unlikely(dev->features & NETIF_F_LRO))
1763 netdev_WARN(dev, "failed to disable LRO!\n");
1764
1765 netdev_for_each_lower_dev(dev, lower_dev, iter)
1766 dev_disable_lro(lower_dev);
1767}
1768EXPORT_SYMBOL(dev_disable_lro);
1769
1770/**
1771 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1772 * @dev: device
1773 *
1774 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1775 * called under RTNL. This is needed if Generic XDP is installed on
1776 * the device.
1777 */
1778static void dev_disable_gro_hw(struct net_device *dev)
1779{
1780 dev->wanted_features &= ~NETIF_F_GRO_HW;
1781 netdev_update_features(dev);
1782
1783 if (unlikely(dev->features & NETIF_F_GRO_HW))
1784 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1785}
1786
1787const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1788{
1789#define N(val) \
1790 case NETDEV_##val: \
1791 return "NETDEV_" __stringify(val);
1792 switch (cmd) {
1793 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1794 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1795 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1796 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1797 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1798 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1799 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1800 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1801 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1802 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1803 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1804 N(XDP_FEAT_CHANGE)
1805 }
1806#undef N
1807 return "UNKNOWN_NETDEV_EVENT";
1808}
1809EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1810
1811static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1812 struct net_device *dev)
1813{
1814 struct netdev_notifier_info info = {
1815 .dev = dev,
1816 };
1817
1818 return nb->notifier_call(nb, val, &info);
1819}
1820
1821static int call_netdevice_register_notifiers(struct notifier_block *nb,
1822 struct net_device *dev)
1823{
1824 int err;
1825
1826 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1827 err = notifier_to_errno(err);
1828 if (err)
1829 return err;
1830
1831 if (!(dev->flags & IFF_UP))
1832 return 0;
1833
1834 call_netdevice_notifier(nb, NETDEV_UP, dev);
1835 return 0;
1836}
1837
1838static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1839 struct net_device *dev)
1840{
1841 if (dev->flags & IFF_UP) {
1842 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1843 dev);
1844 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1845 }
1846 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1847}
1848
1849static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1850 struct net *net)
1851{
1852 struct net_device *dev;
1853 int err;
1854
1855 for_each_netdev(net, dev) {
1856 err = call_netdevice_register_notifiers(nb, dev);
1857 if (err)
1858 goto rollback;
1859 }
1860 return 0;
1861
1862rollback:
1863 for_each_netdev_continue_reverse(net, dev)
1864 call_netdevice_unregister_notifiers(nb, dev);
1865 return err;
1866}
1867
1868static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1869 struct net *net)
1870{
1871 struct net_device *dev;
1872
1873 for_each_netdev(net, dev)
1874 call_netdevice_unregister_notifiers(nb, dev);
1875}
1876
1877static int dev_boot_phase = 1;
1878
1879/**
1880 * register_netdevice_notifier - register a network notifier block
1881 * @nb: notifier
1882 *
1883 * Register a notifier to be called when network device events occur.
1884 * The notifier passed is linked into the kernel structures and must
1885 * not be reused until it has been unregistered. A negative errno code
1886 * is returned on a failure.
1887 *
1888 * When registered all registration and up events are replayed
1889 * to the new notifier to allow device to have a race free
1890 * view of the network device list.
1891 */
1892
1893int register_netdevice_notifier(struct notifier_block *nb)
1894{
1895 struct net *net;
1896 int err;
1897
1898 /* Close race with setup_net() and cleanup_net() */
1899 down_write(&pernet_ops_rwsem);
1900
1901 /* When RTNL is removed, we need protection for netdev_chain. */
1902 rtnl_lock();
1903
1904 err = raw_notifier_chain_register(&netdev_chain, nb);
1905 if (err)
1906 goto unlock;
1907 if (dev_boot_phase)
1908 goto unlock;
1909 for_each_net(net) {
1910 __rtnl_net_lock(net);
1911 err = call_netdevice_register_net_notifiers(nb, net);
1912 __rtnl_net_unlock(net);
1913 if (err)
1914 goto rollback;
1915 }
1916
1917unlock:
1918 rtnl_unlock();
1919 up_write(&pernet_ops_rwsem);
1920 return err;
1921
1922rollback:
1923 for_each_net_continue_reverse(net) {
1924 __rtnl_net_lock(net);
1925 call_netdevice_unregister_net_notifiers(nb, net);
1926 __rtnl_net_unlock(net);
1927 }
1928
1929 raw_notifier_chain_unregister(&netdev_chain, nb);
1930 goto unlock;
1931}
1932EXPORT_SYMBOL(register_netdevice_notifier);
1933
1934/**
1935 * unregister_netdevice_notifier - unregister a network notifier block
1936 * @nb: notifier
1937 *
1938 * Unregister a notifier previously registered by
1939 * register_netdevice_notifier(). The notifier is unlinked into the
1940 * kernel structures and may then be reused. A negative errno code
1941 * is returned on a failure.
1942 *
1943 * After unregistering unregister and down device events are synthesized
1944 * for all devices on the device list to the removed notifier to remove
1945 * the need for special case cleanup code.
1946 */
1947
1948int unregister_netdevice_notifier(struct notifier_block *nb)
1949{
1950 struct net *net;
1951 int err;
1952
1953 /* Close race with setup_net() and cleanup_net() */
1954 down_write(&pernet_ops_rwsem);
1955 rtnl_lock();
1956 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1957 if (err)
1958 goto unlock;
1959
1960 for_each_net(net) {
1961 __rtnl_net_lock(net);
1962 call_netdevice_unregister_net_notifiers(nb, net);
1963 __rtnl_net_unlock(net);
1964 }
1965
1966unlock:
1967 rtnl_unlock();
1968 up_write(&pernet_ops_rwsem);
1969 return err;
1970}
1971EXPORT_SYMBOL(unregister_netdevice_notifier);
1972
1973static int __register_netdevice_notifier_net(struct net *net,
1974 struct notifier_block *nb,
1975 bool ignore_call_fail)
1976{
1977 int err;
1978
1979 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1980 if (err)
1981 return err;
1982 if (dev_boot_phase)
1983 return 0;
1984
1985 err = call_netdevice_register_net_notifiers(nb, net);
1986 if (err && !ignore_call_fail)
1987 goto chain_unregister;
1988
1989 return 0;
1990
1991chain_unregister:
1992 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1993 return err;
1994}
1995
1996static int __unregister_netdevice_notifier_net(struct net *net,
1997 struct notifier_block *nb)
1998{
1999 int err;
2000
2001 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2002 if (err)
2003 return err;
2004
2005 call_netdevice_unregister_net_notifiers(nb, net);
2006 return 0;
2007}
2008
2009/**
2010 * register_netdevice_notifier_net - register a per-netns network notifier block
2011 * @net: network namespace
2012 * @nb: notifier
2013 *
2014 * Register a notifier to be called when network device events occur.
2015 * The notifier passed is linked into the kernel structures and must
2016 * not be reused until it has been unregistered. A negative errno code
2017 * is returned on a failure.
2018 *
2019 * When registered all registration and up events are replayed
2020 * to the new notifier to allow device to have a race free
2021 * view of the network device list.
2022 */
2023
2024int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2025{
2026 int err;
2027
2028 rtnl_net_lock(net);
2029 err = __register_netdevice_notifier_net(net, nb, false);
2030 rtnl_net_unlock(net);
2031
2032 return err;
2033}
2034EXPORT_SYMBOL(register_netdevice_notifier_net);
2035
2036/**
2037 * unregister_netdevice_notifier_net - unregister a per-netns
2038 * network notifier block
2039 * @net: network namespace
2040 * @nb: notifier
2041 *
2042 * Unregister a notifier previously registered by
2043 * register_netdevice_notifier_net(). The notifier is unlinked from the
2044 * kernel structures and may then be reused. A negative errno code
2045 * is returned on a failure.
2046 *
2047 * After unregistering unregister and down device events are synthesized
2048 * for all devices on the device list to the removed notifier to remove
2049 * the need for special case cleanup code.
2050 */
2051
2052int unregister_netdevice_notifier_net(struct net *net,
2053 struct notifier_block *nb)
2054{
2055 int err;
2056
2057 rtnl_net_lock(net);
2058 err = __unregister_netdevice_notifier_net(net, nb);
2059 rtnl_net_unlock(net);
2060
2061 return err;
2062}
2063EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2064
2065static void __move_netdevice_notifier_net(struct net *src_net,
2066 struct net *dst_net,
2067 struct notifier_block *nb)
2068{
2069 __unregister_netdevice_notifier_net(src_net, nb);
2070 __register_netdevice_notifier_net(dst_net, nb, true);
2071}
2072
2073int register_netdevice_notifier_dev_net(struct net_device *dev,
2074 struct notifier_block *nb,
2075 struct netdev_net_notifier *nn)
2076{
2077 struct net *net = dev_net(dev);
2078 int err;
2079
2080 rtnl_net_lock(net);
2081 err = __register_netdevice_notifier_net(net, nb, false);
2082 if (!err) {
2083 nn->nb = nb;
2084 list_add(&nn->list, &dev->net_notifier_list);
2085 }
2086 rtnl_net_unlock(net);
2087
2088 return err;
2089}
2090EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2091
2092int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2093 struct notifier_block *nb,
2094 struct netdev_net_notifier *nn)
2095{
2096 struct net *net = dev_net(dev);
2097 int err;
2098
2099 rtnl_net_lock(net);
2100 list_del(&nn->list);
2101 err = __unregister_netdevice_notifier_net(net, nb);
2102 rtnl_net_unlock(net);
2103
2104 return err;
2105}
2106EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2107
2108static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2109 struct net *net)
2110{
2111 struct netdev_net_notifier *nn;
2112
2113 list_for_each_entry(nn, &dev->net_notifier_list, list)
2114 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2115}
2116
2117/**
2118 * call_netdevice_notifiers_info - call all network notifier blocks
2119 * @val: value passed unmodified to notifier function
2120 * @info: notifier information data
2121 *
2122 * Call all network notifier blocks. Parameters and return value
2123 * are as for raw_notifier_call_chain().
2124 */
2125
2126int call_netdevice_notifiers_info(unsigned long val,
2127 struct netdev_notifier_info *info)
2128{
2129 struct net *net = dev_net(info->dev);
2130 int ret;
2131
2132 ASSERT_RTNL();
2133
2134 /* Run per-netns notifier block chain first, then run the global one.
2135 * Hopefully, one day, the global one is going to be removed after
2136 * all notifier block registrators get converted to be per-netns.
2137 */
2138 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2139 if (ret & NOTIFY_STOP_MASK)
2140 return ret;
2141 return raw_notifier_call_chain(&netdev_chain, val, info);
2142}
2143
2144/**
2145 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2146 * for and rollback on error
2147 * @val_up: value passed unmodified to notifier function
2148 * @val_down: value passed unmodified to the notifier function when
2149 * recovering from an error on @val_up
2150 * @info: notifier information data
2151 *
2152 * Call all per-netns network notifier blocks, but not notifier blocks on
2153 * the global notifier chain. Parameters and return value are as for
2154 * raw_notifier_call_chain_robust().
2155 */
2156
2157static int
2158call_netdevice_notifiers_info_robust(unsigned long val_up,
2159 unsigned long val_down,
2160 struct netdev_notifier_info *info)
2161{
2162 struct net *net = dev_net(info->dev);
2163
2164 ASSERT_RTNL();
2165
2166 return raw_notifier_call_chain_robust(&net->netdev_chain,
2167 val_up, val_down, info);
2168}
2169
2170static int call_netdevice_notifiers_extack(unsigned long val,
2171 struct net_device *dev,
2172 struct netlink_ext_ack *extack)
2173{
2174 struct netdev_notifier_info info = {
2175 .dev = dev,
2176 .extack = extack,
2177 };
2178
2179 return call_netdevice_notifiers_info(val, &info);
2180}
2181
2182/**
2183 * call_netdevice_notifiers - call all network notifier blocks
2184 * @val: value passed unmodified to notifier function
2185 * @dev: net_device pointer passed unmodified to notifier function
2186 *
2187 * Call all network notifier blocks. Parameters and return value
2188 * are as for raw_notifier_call_chain().
2189 */
2190
2191int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2192{
2193 return call_netdevice_notifiers_extack(val, dev, NULL);
2194}
2195EXPORT_SYMBOL(call_netdevice_notifiers);
2196
2197/**
2198 * call_netdevice_notifiers_mtu - call all network notifier blocks
2199 * @val: value passed unmodified to notifier function
2200 * @dev: net_device pointer passed unmodified to notifier function
2201 * @arg: additional u32 argument passed to the notifier function
2202 *
2203 * Call all network notifier blocks. Parameters and return value
2204 * are as for raw_notifier_call_chain().
2205 */
2206static int call_netdevice_notifiers_mtu(unsigned long val,
2207 struct net_device *dev, u32 arg)
2208{
2209 struct netdev_notifier_info_ext info = {
2210 .info.dev = dev,
2211 .ext.mtu = arg,
2212 };
2213
2214 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2215
2216 return call_netdevice_notifiers_info(val, &info.info);
2217}
2218
2219#ifdef CONFIG_NET_INGRESS
2220static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2221
2222void net_inc_ingress_queue(void)
2223{
2224 static_branch_inc(&ingress_needed_key);
2225}
2226EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2227
2228void net_dec_ingress_queue(void)
2229{
2230 static_branch_dec(&ingress_needed_key);
2231}
2232EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2233#endif
2234
2235#ifdef CONFIG_NET_EGRESS
2236static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2237
2238void net_inc_egress_queue(void)
2239{
2240 static_branch_inc(&egress_needed_key);
2241}
2242EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2243
2244void net_dec_egress_queue(void)
2245{
2246 static_branch_dec(&egress_needed_key);
2247}
2248EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2249#endif
2250
2251#ifdef CONFIG_NET_CLS_ACT
2252DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2253EXPORT_SYMBOL(tcf_sw_enabled_key);
2254#endif
2255
2256DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2257EXPORT_SYMBOL(netstamp_needed_key);
2258#ifdef CONFIG_JUMP_LABEL
2259static atomic_t netstamp_needed_deferred;
2260static atomic_t netstamp_wanted;
2261static void netstamp_clear(struct work_struct *work)
2262{
2263 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2264 int wanted;
2265
2266 wanted = atomic_add_return(deferred, &netstamp_wanted);
2267 if (wanted > 0)
2268 static_branch_enable(&netstamp_needed_key);
2269 else
2270 static_branch_disable(&netstamp_needed_key);
2271}
2272static DECLARE_WORK(netstamp_work, netstamp_clear);
2273#endif
2274
2275void net_enable_timestamp(void)
2276{
2277#ifdef CONFIG_JUMP_LABEL
2278 int wanted = atomic_read(&netstamp_wanted);
2279
2280 while (wanted > 0) {
2281 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2282 return;
2283 }
2284 atomic_inc(&netstamp_needed_deferred);
2285 schedule_work(&netstamp_work);
2286#else
2287 static_branch_inc(&netstamp_needed_key);
2288#endif
2289}
2290EXPORT_SYMBOL(net_enable_timestamp);
2291
2292void net_disable_timestamp(void)
2293{
2294#ifdef CONFIG_JUMP_LABEL
2295 int wanted = atomic_read(&netstamp_wanted);
2296
2297 while (wanted > 1) {
2298 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2299 return;
2300 }
2301 atomic_dec(&netstamp_needed_deferred);
2302 schedule_work(&netstamp_work);
2303#else
2304 static_branch_dec(&netstamp_needed_key);
2305#endif
2306}
2307EXPORT_SYMBOL(net_disable_timestamp);
2308
2309static inline void net_timestamp_set(struct sk_buff *skb)
2310{
2311 skb->tstamp = 0;
2312 skb->tstamp_type = SKB_CLOCK_REALTIME;
2313 if (static_branch_unlikely(&netstamp_needed_key))
2314 skb->tstamp = ktime_get_real();
2315}
2316
2317#define net_timestamp_check(COND, SKB) \
2318 if (static_branch_unlikely(&netstamp_needed_key)) { \
2319 if ((COND) && !(SKB)->tstamp) \
2320 (SKB)->tstamp = ktime_get_real(); \
2321 } \
2322
2323bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2324{
2325 return __is_skb_forwardable(dev, skb, true);
2326}
2327EXPORT_SYMBOL_GPL(is_skb_forwardable);
2328
2329static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2330 bool check_mtu)
2331{
2332 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2333
2334 if (likely(!ret)) {
2335 skb->protocol = eth_type_trans(skb, dev);
2336 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2337 }
2338
2339 return ret;
2340}
2341
2342int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2343{
2344 return __dev_forward_skb2(dev, skb, true);
2345}
2346EXPORT_SYMBOL_GPL(__dev_forward_skb);
2347
2348/**
2349 * dev_forward_skb - loopback an skb to another netif
2350 *
2351 * @dev: destination network device
2352 * @skb: buffer to forward
2353 *
2354 * return values:
2355 * NET_RX_SUCCESS (no congestion)
2356 * NET_RX_DROP (packet was dropped, but freed)
2357 *
2358 * dev_forward_skb can be used for injecting an skb from the
2359 * start_xmit function of one device into the receive queue
2360 * of another device.
2361 *
2362 * The receiving device may be in another namespace, so
2363 * we have to clear all information in the skb that could
2364 * impact namespace isolation.
2365 */
2366int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2367{
2368 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2369}
2370EXPORT_SYMBOL_GPL(dev_forward_skb);
2371
2372int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2373{
2374 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2375}
2376
2377static inline int deliver_skb(struct sk_buff *skb,
2378 struct packet_type *pt_prev,
2379 struct net_device *orig_dev)
2380{
2381 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2382 return -ENOMEM;
2383 refcount_inc(&skb->users);
2384 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2385}
2386
2387static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2388 struct packet_type **pt,
2389 struct net_device *orig_dev,
2390 __be16 type,
2391 struct list_head *ptype_list)
2392{
2393 struct packet_type *ptype, *pt_prev = *pt;
2394
2395 list_for_each_entry_rcu(ptype, ptype_list, list) {
2396 if (ptype->type != type)
2397 continue;
2398 if (pt_prev)
2399 deliver_skb(skb, pt_prev, orig_dev);
2400 pt_prev = ptype;
2401 }
2402 *pt = pt_prev;
2403}
2404
2405static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2406{
2407 if (!ptype->af_packet_priv || !skb->sk)
2408 return false;
2409
2410 if (ptype->id_match)
2411 return ptype->id_match(ptype, skb->sk);
2412 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2413 return true;
2414
2415 return false;
2416}
2417
2418/**
2419 * dev_nit_active - return true if any network interface taps are in use
2420 *
2421 * @dev: network device to check for the presence of taps
2422 */
2423bool dev_nit_active(struct net_device *dev)
2424{
2425 return !list_empty(&net_hotdata.ptype_all) ||
2426 !list_empty(&dev->ptype_all);
2427}
2428EXPORT_SYMBOL_GPL(dev_nit_active);
2429
2430/*
2431 * Support routine. Sends outgoing frames to any network
2432 * taps currently in use.
2433 */
2434
2435void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2436{
2437 struct list_head *ptype_list = &net_hotdata.ptype_all;
2438 struct packet_type *ptype, *pt_prev = NULL;
2439 struct sk_buff *skb2 = NULL;
2440
2441 rcu_read_lock();
2442again:
2443 list_for_each_entry_rcu(ptype, ptype_list, list) {
2444 if (READ_ONCE(ptype->ignore_outgoing))
2445 continue;
2446
2447 /* Never send packets back to the socket
2448 * they originated from - MvS (miquels@drinkel.ow.org)
2449 */
2450 if (skb_loop_sk(ptype, skb))
2451 continue;
2452
2453 if (pt_prev) {
2454 deliver_skb(skb2, pt_prev, skb->dev);
2455 pt_prev = ptype;
2456 continue;
2457 }
2458
2459 /* need to clone skb, done only once */
2460 skb2 = skb_clone(skb, GFP_ATOMIC);
2461 if (!skb2)
2462 goto out_unlock;
2463
2464 net_timestamp_set(skb2);
2465
2466 /* skb->nh should be correctly
2467 * set by sender, so that the second statement is
2468 * just protection against buggy protocols.
2469 */
2470 skb_reset_mac_header(skb2);
2471
2472 if (skb_network_header(skb2) < skb2->data ||
2473 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2474 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2475 ntohs(skb2->protocol),
2476 dev->name);
2477 skb_reset_network_header(skb2);
2478 }
2479
2480 skb2->transport_header = skb2->network_header;
2481 skb2->pkt_type = PACKET_OUTGOING;
2482 pt_prev = ptype;
2483 }
2484
2485 if (ptype_list == &net_hotdata.ptype_all) {
2486 ptype_list = &dev->ptype_all;
2487 goto again;
2488 }
2489out_unlock:
2490 if (pt_prev) {
2491 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2492 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2493 else
2494 kfree_skb(skb2);
2495 }
2496 rcu_read_unlock();
2497}
2498EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2499
2500/**
2501 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2502 * @dev: Network device
2503 * @txq: number of queues available
2504 *
2505 * If real_num_tx_queues is changed the tc mappings may no longer be
2506 * valid. To resolve this verify the tc mapping remains valid and if
2507 * not NULL the mapping. With no priorities mapping to this
2508 * offset/count pair it will no longer be used. In the worst case TC0
2509 * is invalid nothing can be done so disable priority mappings. If is
2510 * expected that drivers will fix this mapping if they can before
2511 * calling netif_set_real_num_tx_queues.
2512 */
2513static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2514{
2515 int i;
2516 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2517
2518 /* If TC0 is invalidated disable TC mapping */
2519 if (tc->offset + tc->count > txq) {
2520 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2521 dev->num_tc = 0;
2522 return;
2523 }
2524
2525 /* Invalidated prio to tc mappings set to TC0 */
2526 for (i = 1; i < TC_BITMASK + 1; i++) {
2527 int q = netdev_get_prio_tc_map(dev, i);
2528
2529 tc = &dev->tc_to_txq[q];
2530 if (tc->offset + tc->count > txq) {
2531 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2532 i, q);
2533 netdev_set_prio_tc_map(dev, i, 0);
2534 }
2535 }
2536}
2537
2538int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2539{
2540 if (dev->num_tc) {
2541 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2542 int i;
2543
2544 /* walk through the TCs and see if it falls into any of them */
2545 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2546 if ((txq - tc->offset) < tc->count)
2547 return i;
2548 }
2549
2550 /* didn't find it, just return -1 to indicate no match */
2551 return -1;
2552 }
2553
2554 return 0;
2555}
2556EXPORT_SYMBOL(netdev_txq_to_tc);
2557
2558#ifdef CONFIG_XPS
2559static struct static_key xps_needed __read_mostly;
2560static struct static_key xps_rxqs_needed __read_mostly;
2561static DEFINE_MUTEX(xps_map_mutex);
2562#define xmap_dereference(P) \
2563 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2564
2565static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2566 struct xps_dev_maps *old_maps, int tci, u16 index)
2567{
2568 struct xps_map *map = NULL;
2569 int pos;
2570
2571 map = xmap_dereference(dev_maps->attr_map[tci]);
2572 if (!map)
2573 return false;
2574
2575 for (pos = map->len; pos--;) {
2576 if (map->queues[pos] != index)
2577 continue;
2578
2579 if (map->len > 1) {
2580 map->queues[pos] = map->queues[--map->len];
2581 break;
2582 }
2583
2584 if (old_maps)
2585 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2586 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2587 kfree_rcu(map, rcu);
2588 return false;
2589 }
2590
2591 return true;
2592}
2593
2594static bool remove_xps_queue_cpu(struct net_device *dev,
2595 struct xps_dev_maps *dev_maps,
2596 int cpu, u16 offset, u16 count)
2597{
2598 int num_tc = dev_maps->num_tc;
2599 bool active = false;
2600 int tci;
2601
2602 for (tci = cpu * num_tc; num_tc--; tci++) {
2603 int i, j;
2604
2605 for (i = count, j = offset; i--; j++) {
2606 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2607 break;
2608 }
2609
2610 active |= i < 0;
2611 }
2612
2613 return active;
2614}
2615
2616static void reset_xps_maps(struct net_device *dev,
2617 struct xps_dev_maps *dev_maps,
2618 enum xps_map_type type)
2619{
2620 static_key_slow_dec_cpuslocked(&xps_needed);
2621 if (type == XPS_RXQS)
2622 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2623
2624 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2625
2626 kfree_rcu(dev_maps, rcu);
2627}
2628
2629static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2630 u16 offset, u16 count)
2631{
2632 struct xps_dev_maps *dev_maps;
2633 bool active = false;
2634 int i, j;
2635
2636 dev_maps = xmap_dereference(dev->xps_maps[type]);
2637 if (!dev_maps)
2638 return;
2639
2640 for (j = 0; j < dev_maps->nr_ids; j++)
2641 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2642 if (!active)
2643 reset_xps_maps(dev, dev_maps, type);
2644
2645 if (type == XPS_CPUS) {
2646 for (i = offset + (count - 1); count--; i--)
2647 netdev_queue_numa_node_write(
2648 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2649 }
2650}
2651
2652static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2653 u16 count)
2654{
2655 if (!static_key_false(&xps_needed))
2656 return;
2657
2658 cpus_read_lock();
2659 mutex_lock(&xps_map_mutex);
2660
2661 if (static_key_false(&xps_rxqs_needed))
2662 clean_xps_maps(dev, XPS_RXQS, offset, count);
2663
2664 clean_xps_maps(dev, XPS_CPUS, offset, count);
2665
2666 mutex_unlock(&xps_map_mutex);
2667 cpus_read_unlock();
2668}
2669
2670static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2671{
2672 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2673}
2674
2675static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2676 u16 index, bool is_rxqs_map)
2677{
2678 struct xps_map *new_map;
2679 int alloc_len = XPS_MIN_MAP_ALLOC;
2680 int i, pos;
2681
2682 for (pos = 0; map && pos < map->len; pos++) {
2683 if (map->queues[pos] != index)
2684 continue;
2685 return map;
2686 }
2687
2688 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2689 if (map) {
2690 if (pos < map->alloc_len)
2691 return map;
2692
2693 alloc_len = map->alloc_len * 2;
2694 }
2695
2696 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2697 * map
2698 */
2699 if (is_rxqs_map)
2700 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2701 else
2702 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2703 cpu_to_node(attr_index));
2704 if (!new_map)
2705 return NULL;
2706
2707 for (i = 0; i < pos; i++)
2708 new_map->queues[i] = map->queues[i];
2709 new_map->alloc_len = alloc_len;
2710 new_map->len = pos;
2711
2712 return new_map;
2713}
2714
2715/* Copy xps maps at a given index */
2716static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2717 struct xps_dev_maps *new_dev_maps, int index,
2718 int tc, bool skip_tc)
2719{
2720 int i, tci = index * dev_maps->num_tc;
2721 struct xps_map *map;
2722
2723 /* copy maps belonging to foreign traffic classes */
2724 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2725 if (i == tc && skip_tc)
2726 continue;
2727
2728 /* fill in the new device map from the old device map */
2729 map = xmap_dereference(dev_maps->attr_map[tci]);
2730 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2731 }
2732}
2733
2734/* Must be called under cpus_read_lock */
2735int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2736 u16 index, enum xps_map_type type)
2737{
2738 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2739 const unsigned long *online_mask = NULL;
2740 bool active = false, copy = false;
2741 int i, j, tci, numa_node_id = -2;
2742 int maps_sz, num_tc = 1, tc = 0;
2743 struct xps_map *map, *new_map;
2744 unsigned int nr_ids;
2745
2746 WARN_ON_ONCE(index >= dev->num_tx_queues);
2747
2748 if (dev->num_tc) {
2749 /* Do not allow XPS on subordinate device directly */
2750 num_tc = dev->num_tc;
2751 if (num_tc < 0)
2752 return -EINVAL;
2753
2754 /* If queue belongs to subordinate dev use its map */
2755 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2756
2757 tc = netdev_txq_to_tc(dev, index);
2758 if (tc < 0)
2759 return -EINVAL;
2760 }
2761
2762 mutex_lock(&xps_map_mutex);
2763
2764 dev_maps = xmap_dereference(dev->xps_maps[type]);
2765 if (type == XPS_RXQS) {
2766 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2767 nr_ids = dev->num_rx_queues;
2768 } else {
2769 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2770 if (num_possible_cpus() > 1)
2771 online_mask = cpumask_bits(cpu_online_mask);
2772 nr_ids = nr_cpu_ids;
2773 }
2774
2775 if (maps_sz < L1_CACHE_BYTES)
2776 maps_sz = L1_CACHE_BYTES;
2777
2778 /* The old dev_maps could be larger or smaller than the one we're
2779 * setting up now, as dev->num_tc or nr_ids could have been updated in
2780 * between. We could try to be smart, but let's be safe instead and only
2781 * copy foreign traffic classes if the two map sizes match.
2782 */
2783 if (dev_maps &&
2784 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2785 copy = true;
2786
2787 /* allocate memory for queue storage */
2788 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2789 j < nr_ids;) {
2790 if (!new_dev_maps) {
2791 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2792 if (!new_dev_maps) {
2793 mutex_unlock(&xps_map_mutex);
2794 return -ENOMEM;
2795 }
2796
2797 new_dev_maps->nr_ids = nr_ids;
2798 new_dev_maps->num_tc = num_tc;
2799 }
2800
2801 tci = j * num_tc + tc;
2802 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2803
2804 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2805 if (!map)
2806 goto error;
2807
2808 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2809 }
2810
2811 if (!new_dev_maps)
2812 goto out_no_new_maps;
2813
2814 if (!dev_maps) {
2815 /* Increment static keys at most once per type */
2816 static_key_slow_inc_cpuslocked(&xps_needed);
2817 if (type == XPS_RXQS)
2818 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2819 }
2820
2821 for (j = 0; j < nr_ids; j++) {
2822 bool skip_tc = false;
2823
2824 tci = j * num_tc + tc;
2825 if (netif_attr_test_mask(j, mask, nr_ids) &&
2826 netif_attr_test_online(j, online_mask, nr_ids)) {
2827 /* add tx-queue to CPU/rx-queue maps */
2828 int pos = 0;
2829
2830 skip_tc = true;
2831
2832 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2833 while ((pos < map->len) && (map->queues[pos] != index))
2834 pos++;
2835
2836 if (pos == map->len)
2837 map->queues[map->len++] = index;
2838#ifdef CONFIG_NUMA
2839 if (type == XPS_CPUS) {
2840 if (numa_node_id == -2)
2841 numa_node_id = cpu_to_node(j);
2842 else if (numa_node_id != cpu_to_node(j))
2843 numa_node_id = -1;
2844 }
2845#endif
2846 }
2847
2848 if (copy)
2849 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2850 skip_tc);
2851 }
2852
2853 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2854
2855 /* Cleanup old maps */
2856 if (!dev_maps)
2857 goto out_no_old_maps;
2858
2859 for (j = 0; j < dev_maps->nr_ids; j++) {
2860 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2861 map = xmap_dereference(dev_maps->attr_map[tci]);
2862 if (!map)
2863 continue;
2864
2865 if (copy) {
2866 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2867 if (map == new_map)
2868 continue;
2869 }
2870
2871 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2872 kfree_rcu(map, rcu);
2873 }
2874 }
2875
2876 old_dev_maps = dev_maps;
2877
2878out_no_old_maps:
2879 dev_maps = new_dev_maps;
2880 active = true;
2881
2882out_no_new_maps:
2883 if (type == XPS_CPUS)
2884 /* update Tx queue numa node */
2885 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2886 (numa_node_id >= 0) ?
2887 numa_node_id : NUMA_NO_NODE);
2888
2889 if (!dev_maps)
2890 goto out_no_maps;
2891
2892 /* removes tx-queue from unused CPUs/rx-queues */
2893 for (j = 0; j < dev_maps->nr_ids; j++) {
2894 tci = j * dev_maps->num_tc;
2895
2896 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2897 if (i == tc &&
2898 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2899 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2900 continue;
2901
2902 active |= remove_xps_queue(dev_maps,
2903 copy ? old_dev_maps : NULL,
2904 tci, index);
2905 }
2906 }
2907
2908 if (old_dev_maps)
2909 kfree_rcu(old_dev_maps, rcu);
2910
2911 /* free map if not active */
2912 if (!active)
2913 reset_xps_maps(dev, dev_maps, type);
2914
2915out_no_maps:
2916 mutex_unlock(&xps_map_mutex);
2917
2918 return 0;
2919error:
2920 /* remove any maps that we added */
2921 for (j = 0; j < nr_ids; j++) {
2922 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2923 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2924 map = copy ?
2925 xmap_dereference(dev_maps->attr_map[tci]) :
2926 NULL;
2927 if (new_map && new_map != map)
2928 kfree(new_map);
2929 }
2930 }
2931
2932 mutex_unlock(&xps_map_mutex);
2933
2934 kfree(new_dev_maps);
2935 return -ENOMEM;
2936}
2937EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2938
2939int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2940 u16 index)
2941{
2942 int ret;
2943
2944 cpus_read_lock();
2945 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2946 cpus_read_unlock();
2947
2948 return ret;
2949}
2950EXPORT_SYMBOL(netif_set_xps_queue);
2951
2952#endif
2953static void netdev_unbind_all_sb_channels(struct net_device *dev)
2954{
2955 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2956
2957 /* Unbind any subordinate channels */
2958 while (txq-- != &dev->_tx[0]) {
2959 if (txq->sb_dev)
2960 netdev_unbind_sb_channel(dev, txq->sb_dev);
2961 }
2962}
2963
2964void netdev_reset_tc(struct net_device *dev)
2965{
2966#ifdef CONFIG_XPS
2967 netif_reset_xps_queues_gt(dev, 0);
2968#endif
2969 netdev_unbind_all_sb_channels(dev);
2970
2971 /* Reset TC configuration of device */
2972 dev->num_tc = 0;
2973 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2974 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2975}
2976EXPORT_SYMBOL(netdev_reset_tc);
2977
2978int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2979{
2980 if (tc >= dev->num_tc)
2981 return -EINVAL;
2982
2983#ifdef CONFIG_XPS
2984 netif_reset_xps_queues(dev, offset, count);
2985#endif
2986 dev->tc_to_txq[tc].count = count;
2987 dev->tc_to_txq[tc].offset = offset;
2988 return 0;
2989}
2990EXPORT_SYMBOL(netdev_set_tc_queue);
2991
2992int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2993{
2994 if (num_tc > TC_MAX_QUEUE)
2995 return -EINVAL;
2996
2997#ifdef CONFIG_XPS
2998 netif_reset_xps_queues_gt(dev, 0);
2999#endif
3000 netdev_unbind_all_sb_channels(dev);
3001
3002 dev->num_tc = num_tc;
3003 return 0;
3004}
3005EXPORT_SYMBOL(netdev_set_num_tc);
3006
3007void netdev_unbind_sb_channel(struct net_device *dev,
3008 struct net_device *sb_dev)
3009{
3010 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3011
3012#ifdef CONFIG_XPS
3013 netif_reset_xps_queues_gt(sb_dev, 0);
3014#endif
3015 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3016 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3017
3018 while (txq-- != &dev->_tx[0]) {
3019 if (txq->sb_dev == sb_dev)
3020 txq->sb_dev = NULL;
3021 }
3022}
3023EXPORT_SYMBOL(netdev_unbind_sb_channel);
3024
3025int netdev_bind_sb_channel_queue(struct net_device *dev,
3026 struct net_device *sb_dev,
3027 u8 tc, u16 count, u16 offset)
3028{
3029 /* Make certain the sb_dev and dev are already configured */
3030 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3031 return -EINVAL;
3032
3033 /* We cannot hand out queues we don't have */
3034 if ((offset + count) > dev->real_num_tx_queues)
3035 return -EINVAL;
3036
3037 /* Record the mapping */
3038 sb_dev->tc_to_txq[tc].count = count;
3039 sb_dev->tc_to_txq[tc].offset = offset;
3040
3041 /* Provide a way for Tx queue to find the tc_to_txq map or
3042 * XPS map for itself.
3043 */
3044 while (count--)
3045 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3046
3047 return 0;
3048}
3049EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3050
3051int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3052{
3053 /* Do not use a multiqueue device to represent a subordinate channel */
3054 if (netif_is_multiqueue(dev))
3055 return -ENODEV;
3056
3057 /* We allow channels 1 - 32767 to be used for subordinate channels.
3058 * Channel 0 is meant to be "native" mode and used only to represent
3059 * the main root device. We allow writing 0 to reset the device back
3060 * to normal mode after being used as a subordinate channel.
3061 */
3062 if (channel > S16_MAX)
3063 return -EINVAL;
3064
3065 dev->num_tc = -channel;
3066
3067 return 0;
3068}
3069EXPORT_SYMBOL(netdev_set_sb_channel);
3070
3071/*
3072 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3073 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3074 */
3075int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3076{
3077 bool disabling;
3078 int rc;
3079
3080 disabling = txq < dev->real_num_tx_queues;
3081
3082 if (txq < 1 || txq > dev->num_tx_queues)
3083 return -EINVAL;
3084
3085 if (dev->reg_state == NETREG_REGISTERED ||
3086 dev->reg_state == NETREG_UNREGISTERING) {
3087 ASSERT_RTNL();
3088
3089 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3090 txq);
3091 if (rc)
3092 return rc;
3093
3094 if (dev->num_tc)
3095 netif_setup_tc(dev, txq);
3096
3097 net_shaper_set_real_num_tx_queues(dev, txq);
3098
3099 dev_qdisc_change_real_num_tx(dev, txq);
3100
3101 dev->real_num_tx_queues = txq;
3102
3103 if (disabling) {
3104 synchronize_net();
3105 qdisc_reset_all_tx_gt(dev, txq);
3106#ifdef CONFIG_XPS
3107 netif_reset_xps_queues_gt(dev, txq);
3108#endif
3109 }
3110 } else {
3111 dev->real_num_tx_queues = txq;
3112 }
3113
3114 return 0;
3115}
3116EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3117
3118#ifdef CONFIG_SYSFS
3119/**
3120 * netif_set_real_num_rx_queues - set actual number of RX queues used
3121 * @dev: Network device
3122 * @rxq: Actual number of RX queues
3123 *
3124 * This must be called either with the rtnl_lock held or before
3125 * registration of the net device. Returns 0 on success, or a
3126 * negative error code. If called before registration, it always
3127 * succeeds.
3128 */
3129int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3130{
3131 int rc;
3132
3133 if (rxq < 1 || rxq > dev->num_rx_queues)
3134 return -EINVAL;
3135
3136 if (dev->reg_state == NETREG_REGISTERED) {
3137 ASSERT_RTNL();
3138
3139 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3140 rxq);
3141 if (rc)
3142 return rc;
3143 }
3144
3145 dev->real_num_rx_queues = rxq;
3146 return 0;
3147}
3148EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3149#endif
3150
3151/**
3152 * netif_set_real_num_queues - set actual number of RX and TX queues used
3153 * @dev: Network device
3154 * @txq: Actual number of TX queues
3155 * @rxq: Actual number of RX queues
3156 *
3157 * Set the real number of both TX and RX queues.
3158 * Does nothing if the number of queues is already correct.
3159 */
3160int netif_set_real_num_queues(struct net_device *dev,
3161 unsigned int txq, unsigned int rxq)
3162{
3163 unsigned int old_rxq = dev->real_num_rx_queues;
3164 int err;
3165
3166 if (txq < 1 || txq > dev->num_tx_queues ||
3167 rxq < 1 || rxq > dev->num_rx_queues)
3168 return -EINVAL;
3169
3170 /* Start from increases, so the error path only does decreases -
3171 * decreases can't fail.
3172 */
3173 if (rxq > dev->real_num_rx_queues) {
3174 err = netif_set_real_num_rx_queues(dev, rxq);
3175 if (err)
3176 return err;
3177 }
3178 if (txq > dev->real_num_tx_queues) {
3179 err = netif_set_real_num_tx_queues(dev, txq);
3180 if (err)
3181 goto undo_rx;
3182 }
3183 if (rxq < dev->real_num_rx_queues)
3184 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3185 if (txq < dev->real_num_tx_queues)
3186 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3187
3188 return 0;
3189undo_rx:
3190 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3191 return err;
3192}
3193EXPORT_SYMBOL(netif_set_real_num_queues);
3194
3195/**
3196 * netif_set_tso_max_size() - set the max size of TSO frames supported
3197 * @dev: netdev to update
3198 * @size: max skb->len of a TSO frame
3199 *
3200 * Set the limit on the size of TSO super-frames the device can handle.
3201 * Unless explicitly set the stack will assume the value of
3202 * %GSO_LEGACY_MAX_SIZE.
3203 */
3204void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3205{
3206 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3207 if (size < READ_ONCE(dev->gso_max_size))
3208 netif_set_gso_max_size(dev, size);
3209 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3210 netif_set_gso_ipv4_max_size(dev, size);
3211}
3212EXPORT_SYMBOL(netif_set_tso_max_size);
3213
3214/**
3215 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3216 * @dev: netdev to update
3217 * @segs: max number of TCP segments
3218 *
3219 * Set the limit on the number of TCP segments the device can generate from
3220 * a single TSO super-frame.
3221 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3222 */
3223void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3224{
3225 dev->tso_max_segs = segs;
3226 if (segs < READ_ONCE(dev->gso_max_segs))
3227 netif_set_gso_max_segs(dev, segs);
3228}
3229EXPORT_SYMBOL(netif_set_tso_max_segs);
3230
3231/**
3232 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3233 * @to: netdev to update
3234 * @from: netdev from which to copy the limits
3235 */
3236void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3237{
3238 netif_set_tso_max_size(to, from->tso_max_size);
3239 netif_set_tso_max_segs(to, from->tso_max_segs);
3240}
3241EXPORT_SYMBOL(netif_inherit_tso_max);
3242
3243/**
3244 * netif_get_num_default_rss_queues - default number of RSS queues
3245 *
3246 * Default value is the number of physical cores if there are only 1 or 2, or
3247 * divided by 2 if there are more.
3248 */
3249int netif_get_num_default_rss_queues(void)
3250{
3251 cpumask_var_t cpus;
3252 int cpu, count = 0;
3253
3254 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3255 return 1;
3256
3257 cpumask_copy(cpus, cpu_online_mask);
3258 for_each_cpu(cpu, cpus) {
3259 ++count;
3260 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3261 }
3262 free_cpumask_var(cpus);
3263
3264 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3265}
3266EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3267
3268static void __netif_reschedule(struct Qdisc *q)
3269{
3270 struct softnet_data *sd;
3271 unsigned long flags;
3272
3273 local_irq_save(flags);
3274 sd = this_cpu_ptr(&softnet_data);
3275 q->next_sched = NULL;
3276 *sd->output_queue_tailp = q;
3277 sd->output_queue_tailp = &q->next_sched;
3278 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3279 local_irq_restore(flags);
3280}
3281
3282void __netif_schedule(struct Qdisc *q)
3283{
3284 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3285 __netif_reschedule(q);
3286}
3287EXPORT_SYMBOL(__netif_schedule);
3288
3289struct dev_kfree_skb_cb {
3290 enum skb_drop_reason reason;
3291};
3292
3293static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3294{
3295 return (struct dev_kfree_skb_cb *)skb->cb;
3296}
3297
3298void netif_schedule_queue(struct netdev_queue *txq)
3299{
3300 rcu_read_lock();
3301 if (!netif_xmit_stopped(txq)) {
3302 struct Qdisc *q = rcu_dereference(txq->qdisc);
3303
3304 __netif_schedule(q);
3305 }
3306 rcu_read_unlock();
3307}
3308EXPORT_SYMBOL(netif_schedule_queue);
3309
3310void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3311{
3312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3313 struct Qdisc *q;
3314
3315 rcu_read_lock();
3316 q = rcu_dereference(dev_queue->qdisc);
3317 __netif_schedule(q);
3318 rcu_read_unlock();
3319 }
3320}
3321EXPORT_SYMBOL(netif_tx_wake_queue);
3322
3323void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3324{
3325 unsigned long flags;
3326
3327 if (unlikely(!skb))
3328 return;
3329
3330 if (likely(refcount_read(&skb->users) == 1)) {
3331 smp_rmb();
3332 refcount_set(&skb->users, 0);
3333 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3334 return;
3335 }
3336 get_kfree_skb_cb(skb)->reason = reason;
3337 local_irq_save(flags);
3338 skb->next = __this_cpu_read(softnet_data.completion_queue);
3339 __this_cpu_write(softnet_data.completion_queue, skb);
3340 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3341 local_irq_restore(flags);
3342}
3343EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3344
3345void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3346{
3347 if (in_hardirq() || irqs_disabled())
3348 dev_kfree_skb_irq_reason(skb, reason);
3349 else
3350 kfree_skb_reason(skb, reason);
3351}
3352EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3353
3354
3355/**
3356 * netif_device_detach - mark device as removed
3357 * @dev: network device
3358 *
3359 * Mark device as removed from system and therefore no longer available.
3360 */
3361void netif_device_detach(struct net_device *dev)
3362{
3363 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3364 netif_running(dev)) {
3365 netif_tx_stop_all_queues(dev);
3366 }
3367}
3368EXPORT_SYMBOL(netif_device_detach);
3369
3370/**
3371 * netif_device_attach - mark device as attached
3372 * @dev: network device
3373 *
3374 * Mark device as attached from system and restart if needed.
3375 */
3376void netif_device_attach(struct net_device *dev)
3377{
3378 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3379 netif_running(dev)) {
3380 netif_tx_wake_all_queues(dev);
3381 netdev_watchdog_up(dev);
3382 }
3383}
3384EXPORT_SYMBOL(netif_device_attach);
3385
3386/*
3387 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3388 * to be used as a distribution range.
3389 */
3390static u16 skb_tx_hash(const struct net_device *dev,
3391 const struct net_device *sb_dev,
3392 struct sk_buff *skb)
3393{
3394 u32 hash;
3395 u16 qoffset = 0;
3396 u16 qcount = dev->real_num_tx_queues;
3397
3398 if (dev->num_tc) {
3399 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3400
3401 qoffset = sb_dev->tc_to_txq[tc].offset;
3402 qcount = sb_dev->tc_to_txq[tc].count;
3403 if (unlikely(!qcount)) {
3404 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3405 sb_dev->name, qoffset, tc);
3406 qoffset = 0;
3407 qcount = dev->real_num_tx_queues;
3408 }
3409 }
3410
3411 if (skb_rx_queue_recorded(skb)) {
3412 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3413 hash = skb_get_rx_queue(skb);
3414 if (hash >= qoffset)
3415 hash -= qoffset;
3416 while (unlikely(hash >= qcount))
3417 hash -= qcount;
3418 return hash + qoffset;
3419 }
3420
3421 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3422}
3423
3424void skb_warn_bad_offload(const struct sk_buff *skb)
3425{
3426 static const netdev_features_t null_features;
3427 struct net_device *dev = skb->dev;
3428 const char *name = "";
3429
3430 if (!net_ratelimit())
3431 return;
3432
3433 if (dev) {
3434 if (dev->dev.parent)
3435 name = dev_driver_string(dev->dev.parent);
3436 else
3437 name = netdev_name(dev);
3438 }
3439 skb_dump(KERN_WARNING, skb, false);
3440 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3441 name, dev ? &dev->features : &null_features,
3442 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3443}
3444
3445/*
3446 * Invalidate hardware checksum when packet is to be mangled, and
3447 * complete checksum manually on outgoing path.
3448 */
3449int skb_checksum_help(struct sk_buff *skb)
3450{
3451 __wsum csum;
3452 int ret = 0, offset;
3453
3454 if (skb->ip_summed == CHECKSUM_COMPLETE)
3455 goto out_set_summed;
3456
3457 if (unlikely(skb_is_gso(skb))) {
3458 skb_warn_bad_offload(skb);
3459 return -EINVAL;
3460 }
3461
3462 if (!skb_frags_readable(skb)) {
3463 return -EFAULT;
3464 }
3465
3466 /* Before computing a checksum, we should make sure no frag could
3467 * be modified by an external entity : checksum could be wrong.
3468 */
3469 if (skb_has_shared_frag(skb)) {
3470 ret = __skb_linearize(skb);
3471 if (ret)
3472 goto out;
3473 }
3474
3475 offset = skb_checksum_start_offset(skb);
3476 ret = -EINVAL;
3477 if (unlikely(offset >= skb_headlen(skb))) {
3478 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3479 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3480 offset, skb_headlen(skb));
3481 goto out;
3482 }
3483 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3484
3485 offset += skb->csum_offset;
3486 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3487 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3488 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3489 offset + sizeof(__sum16), skb_headlen(skb));
3490 goto out;
3491 }
3492 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3493 if (ret)
3494 goto out;
3495
3496 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3497out_set_summed:
3498 skb->ip_summed = CHECKSUM_NONE;
3499out:
3500 return ret;
3501}
3502EXPORT_SYMBOL(skb_checksum_help);
3503
3504int skb_crc32c_csum_help(struct sk_buff *skb)
3505{
3506 __le32 crc32c_csum;
3507 int ret = 0, offset, start;
3508
3509 if (skb->ip_summed != CHECKSUM_PARTIAL)
3510 goto out;
3511
3512 if (unlikely(skb_is_gso(skb)))
3513 goto out;
3514
3515 /* Before computing a checksum, we should make sure no frag could
3516 * be modified by an external entity : checksum could be wrong.
3517 */
3518 if (unlikely(skb_has_shared_frag(skb))) {
3519 ret = __skb_linearize(skb);
3520 if (ret)
3521 goto out;
3522 }
3523 start = skb_checksum_start_offset(skb);
3524 offset = start + offsetof(struct sctphdr, checksum);
3525 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3526 ret = -EINVAL;
3527 goto out;
3528 }
3529
3530 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3531 if (ret)
3532 goto out;
3533
3534 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3535 skb->len - start, ~(__u32)0,
3536 crc32c_csum_stub));
3537 *(__le32 *)(skb->data + offset) = crc32c_csum;
3538 skb_reset_csum_not_inet(skb);
3539out:
3540 return ret;
3541}
3542EXPORT_SYMBOL(skb_crc32c_csum_help);
3543
3544__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3545{
3546 __be16 type = skb->protocol;
3547
3548 /* Tunnel gso handlers can set protocol to ethernet. */
3549 if (type == htons(ETH_P_TEB)) {
3550 struct ethhdr *eth;
3551
3552 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3553 return 0;
3554
3555 eth = (struct ethhdr *)skb->data;
3556 type = eth->h_proto;
3557 }
3558
3559 return vlan_get_protocol_and_depth(skb, type, depth);
3560}
3561
3562
3563/* Take action when hardware reception checksum errors are detected. */
3564#ifdef CONFIG_BUG
3565static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3566{
3567 netdev_err(dev, "hw csum failure\n");
3568 skb_dump(KERN_ERR, skb, true);
3569 dump_stack();
3570}
3571
3572void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3573{
3574 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3575}
3576EXPORT_SYMBOL(netdev_rx_csum_fault);
3577#endif
3578
3579/* XXX: check that highmem exists at all on the given machine. */
3580static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3581{
3582#ifdef CONFIG_HIGHMEM
3583 int i;
3584
3585 if (!(dev->features & NETIF_F_HIGHDMA)) {
3586 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3587 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3588 struct page *page = skb_frag_page(frag);
3589
3590 if (page && PageHighMem(page))
3591 return 1;
3592 }
3593 }
3594#endif
3595 return 0;
3596}
3597
3598/* If MPLS offload request, verify we are testing hardware MPLS features
3599 * instead of standard features for the netdev.
3600 */
3601#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3602static netdev_features_t net_mpls_features(struct sk_buff *skb,
3603 netdev_features_t features,
3604 __be16 type)
3605{
3606 if (eth_p_mpls(type))
3607 features &= skb->dev->mpls_features;
3608
3609 return features;
3610}
3611#else
3612static netdev_features_t net_mpls_features(struct sk_buff *skb,
3613 netdev_features_t features,
3614 __be16 type)
3615{
3616 return features;
3617}
3618#endif
3619
3620static netdev_features_t harmonize_features(struct sk_buff *skb,
3621 netdev_features_t features)
3622{
3623 __be16 type;
3624
3625 type = skb_network_protocol(skb, NULL);
3626 features = net_mpls_features(skb, features, type);
3627
3628 if (skb->ip_summed != CHECKSUM_NONE &&
3629 !can_checksum_protocol(features, type)) {
3630 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3631 }
3632 if (illegal_highdma(skb->dev, skb))
3633 features &= ~NETIF_F_SG;
3634
3635 return features;
3636}
3637
3638netdev_features_t passthru_features_check(struct sk_buff *skb,
3639 struct net_device *dev,
3640 netdev_features_t features)
3641{
3642 return features;
3643}
3644EXPORT_SYMBOL(passthru_features_check);
3645
3646static netdev_features_t dflt_features_check(struct sk_buff *skb,
3647 struct net_device *dev,
3648 netdev_features_t features)
3649{
3650 return vlan_features_check(skb, features);
3651}
3652
3653static netdev_features_t gso_features_check(const struct sk_buff *skb,
3654 struct net_device *dev,
3655 netdev_features_t features)
3656{
3657 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3658
3659 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3660 return features & ~NETIF_F_GSO_MASK;
3661
3662 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3663 return features & ~NETIF_F_GSO_MASK;
3664
3665 if (!skb_shinfo(skb)->gso_type) {
3666 skb_warn_bad_offload(skb);
3667 return features & ~NETIF_F_GSO_MASK;
3668 }
3669
3670 /* Support for GSO partial features requires software
3671 * intervention before we can actually process the packets
3672 * so we need to strip support for any partial features now
3673 * and we can pull them back in after we have partially
3674 * segmented the frame.
3675 */
3676 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3677 features &= ~dev->gso_partial_features;
3678
3679 /* Make sure to clear the IPv4 ID mangling feature if the
3680 * IPv4 header has the potential to be fragmented.
3681 */
3682 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3683 struct iphdr *iph = skb->encapsulation ?
3684 inner_ip_hdr(skb) : ip_hdr(skb);
3685
3686 if (!(iph->frag_off & htons(IP_DF)))
3687 features &= ~NETIF_F_TSO_MANGLEID;
3688 }
3689
3690 return features;
3691}
3692
3693netdev_features_t netif_skb_features(struct sk_buff *skb)
3694{
3695 struct net_device *dev = skb->dev;
3696 netdev_features_t features = dev->features;
3697
3698 if (skb_is_gso(skb))
3699 features = gso_features_check(skb, dev, features);
3700
3701 /* If encapsulation offload request, verify we are testing
3702 * hardware encapsulation features instead of standard
3703 * features for the netdev
3704 */
3705 if (skb->encapsulation)
3706 features &= dev->hw_enc_features;
3707
3708 if (skb_vlan_tagged(skb))
3709 features = netdev_intersect_features(features,
3710 dev->vlan_features |
3711 NETIF_F_HW_VLAN_CTAG_TX |
3712 NETIF_F_HW_VLAN_STAG_TX);
3713
3714 if (dev->netdev_ops->ndo_features_check)
3715 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3716 features);
3717 else
3718 features &= dflt_features_check(skb, dev, features);
3719
3720 return harmonize_features(skb, features);
3721}
3722EXPORT_SYMBOL(netif_skb_features);
3723
3724static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3725 struct netdev_queue *txq, bool more)
3726{
3727 unsigned int len;
3728 int rc;
3729
3730 if (dev_nit_active(dev))
3731 dev_queue_xmit_nit(skb, dev);
3732
3733 len = skb->len;
3734 trace_net_dev_start_xmit(skb, dev);
3735 rc = netdev_start_xmit(skb, dev, txq, more);
3736 trace_net_dev_xmit(skb, rc, dev, len);
3737
3738 return rc;
3739}
3740
3741struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3742 struct netdev_queue *txq, int *ret)
3743{
3744 struct sk_buff *skb = first;
3745 int rc = NETDEV_TX_OK;
3746
3747 while (skb) {
3748 struct sk_buff *next = skb->next;
3749
3750 skb_mark_not_on_list(skb);
3751 rc = xmit_one(skb, dev, txq, next != NULL);
3752 if (unlikely(!dev_xmit_complete(rc))) {
3753 skb->next = next;
3754 goto out;
3755 }
3756
3757 skb = next;
3758 if (netif_tx_queue_stopped(txq) && skb) {
3759 rc = NETDEV_TX_BUSY;
3760 break;
3761 }
3762 }
3763
3764out:
3765 *ret = rc;
3766 return skb;
3767}
3768
3769static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3770 netdev_features_t features)
3771{
3772 if (skb_vlan_tag_present(skb) &&
3773 !vlan_hw_offload_capable(features, skb->vlan_proto))
3774 skb = __vlan_hwaccel_push_inside(skb);
3775 return skb;
3776}
3777
3778int skb_csum_hwoffload_help(struct sk_buff *skb,
3779 const netdev_features_t features)
3780{
3781 if (unlikely(skb_csum_is_sctp(skb)))
3782 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3783 skb_crc32c_csum_help(skb);
3784
3785 if (features & NETIF_F_HW_CSUM)
3786 return 0;
3787
3788 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3789 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3790 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3791 !ipv6_has_hopopt_jumbo(skb))
3792 goto sw_checksum;
3793
3794 switch (skb->csum_offset) {
3795 case offsetof(struct tcphdr, check):
3796 case offsetof(struct udphdr, check):
3797 return 0;
3798 }
3799 }
3800
3801sw_checksum:
3802 return skb_checksum_help(skb);
3803}
3804EXPORT_SYMBOL(skb_csum_hwoffload_help);
3805
3806static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3807{
3808 netdev_features_t features;
3809
3810 features = netif_skb_features(skb);
3811 skb = validate_xmit_vlan(skb, features);
3812 if (unlikely(!skb))
3813 goto out_null;
3814
3815 skb = sk_validate_xmit_skb(skb, dev);
3816 if (unlikely(!skb))
3817 goto out_null;
3818
3819 if (netif_needs_gso(skb, features)) {
3820 struct sk_buff *segs;
3821
3822 segs = skb_gso_segment(skb, features);
3823 if (IS_ERR(segs)) {
3824 goto out_kfree_skb;
3825 } else if (segs) {
3826 consume_skb(skb);
3827 skb = segs;
3828 }
3829 } else {
3830 if (skb_needs_linearize(skb, features) &&
3831 __skb_linearize(skb))
3832 goto out_kfree_skb;
3833
3834 /* If packet is not checksummed and device does not
3835 * support checksumming for this protocol, complete
3836 * checksumming here.
3837 */
3838 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3839 if (skb->encapsulation)
3840 skb_set_inner_transport_header(skb,
3841 skb_checksum_start_offset(skb));
3842 else
3843 skb_set_transport_header(skb,
3844 skb_checksum_start_offset(skb));
3845 if (skb_csum_hwoffload_help(skb, features))
3846 goto out_kfree_skb;
3847 }
3848 }
3849
3850 skb = validate_xmit_xfrm(skb, features, again);
3851
3852 return skb;
3853
3854out_kfree_skb:
3855 kfree_skb(skb);
3856out_null:
3857 dev_core_stats_tx_dropped_inc(dev);
3858 return NULL;
3859}
3860
3861struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3862{
3863 struct sk_buff *next, *head = NULL, *tail;
3864
3865 for (; skb != NULL; skb = next) {
3866 next = skb->next;
3867 skb_mark_not_on_list(skb);
3868
3869 /* in case skb won't be segmented, point to itself */
3870 skb->prev = skb;
3871
3872 skb = validate_xmit_skb(skb, dev, again);
3873 if (!skb)
3874 continue;
3875
3876 if (!head)
3877 head = skb;
3878 else
3879 tail->next = skb;
3880 /* If skb was segmented, skb->prev points to
3881 * the last segment. If not, it still contains skb.
3882 */
3883 tail = skb->prev;
3884 }
3885 return head;
3886}
3887EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3888
3889static void qdisc_pkt_len_init(struct sk_buff *skb)
3890{
3891 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3892
3893 qdisc_skb_cb(skb)->pkt_len = skb->len;
3894
3895 /* To get more precise estimation of bytes sent on wire,
3896 * we add to pkt_len the headers size of all segments
3897 */
3898 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3899 u16 gso_segs = shinfo->gso_segs;
3900 unsigned int hdr_len;
3901
3902 /* mac layer + network layer */
3903 hdr_len = skb_transport_offset(skb);
3904
3905 /* + transport layer */
3906 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3907 const struct tcphdr *th;
3908 struct tcphdr _tcphdr;
3909
3910 th = skb_header_pointer(skb, hdr_len,
3911 sizeof(_tcphdr), &_tcphdr);
3912 if (likely(th))
3913 hdr_len += __tcp_hdrlen(th);
3914 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3915 struct udphdr _udphdr;
3916
3917 if (skb_header_pointer(skb, hdr_len,
3918 sizeof(_udphdr), &_udphdr))
3919 hdr_len += sizeof(struct udphdr);
3920 }
3921
3922 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3923 int payload = skb->len - hdr_len;
3924
3925 /* Malicious packet. */
3926 if (payload <= 0)
3927 return;
3928 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3929 }
3930 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3931 }
3932}
3933
3934static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3935 struct sk_buff **to_free,
3936 struct netdev_queue *txq)
3937{
3938 int rc;
3939
3940 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3941 if (rc == NET_XMIT_SUCCESS)
3942 trace_qdisc_enqueue(q, txq, skb);
3943 return rc;
3944}
3945
3946static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3947 struct net_device *dev,
3948 struct netdev_queue *txq)
3949{
3950 spinlock_t *root_lock = qdisc_lock(q);
3951 struct sk_buff *to_free = NULL;
3952 bool contended;
3953 int rc;
3954
3955 qdisc_calculate_pkt_len(skb, q);
3956
3957 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3958
3959 if (q->flags & TCQ_F_NOLOCK) {
3960 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3961 qdisc_run_begin(q)) {
3962 /* Retest nolock_qdisc_is_empty() within the protection
3963 * of q->seqlock to protect from racing with requeuing.
3964 */
3965 if (unlikely(!nolock_qdisc_is_empty(q))) {
3966 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3967 __qdisc_run(q);
3968 qdisc_run_end(q);
3969
3970 goto no_lock_out;
3971 }
3972
3973 qdisc_bstats_cpu_update(q, skb);
3974 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3975 !nolock_qdisc_is_empty(q))
3976 __qdisc_run(q);
3977
3978 qdisc_run_end(q);
3979 return NET_XMIT_SUCCESS;
3980 }
3981
3982 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3983 qdisc_run(q);
3984
3985no_lock_out:
3986 if (unlikely(to_free))
3987 kfree_skb_list_reason(to_free,
3988 tcf_get_drop_reason(to_free));
3989 return rc;
3990 }
3991
3992 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3993 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3994 return NET_XMIT_DROP;
3995 }
3996 /*
3997 * Heuristic to force contended enqueues to serialize on a
3998 * separate lock before trying to get qdisc main lock.
3999 * This permits qdisc->running owner to get the lock more
4000 * often and dequeue packets faster.
4001 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4002 * and then other tasks will only enqueue packets. The packets will be
4003 * sent after the qdisc owner is scheduled again. To prevent this
4004 * scenario the task always serialize on the lock.
4005 */
4006 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4007 if (unlikely(contended))
4008 spin_lock(&q->busylock);
4009
4010 spin_lock(root_lock);
4011 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4012 __qdisc_drop(skb, &to_free);
4013 rc = NET_XMIT_DROP;
4014 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4015 qdisc_run_begin(q)) {
4016 /*
4017 * This is a work-conserving queue; there are no old skbs
4018 * waiting to be sent out; and the qdisc is not running -
4019 * xmit the skb directly.
4020 */
4021
4022 qdisc_bstats_update(q, skb);
4023
4024 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4025 if (unlikely(contended)) {
4026 spin_unlock(&q->busylock);
4027 contended = false;
4028 }
4029 __qdisc_run(q);
4030 }
4031
4032 qdisc_run_end(q);
4033 rc = NET_XMIT_SUCCESS;
4034 } else {
4035 WRITE_ONCE(q->owner, smp_processor_id());
4036 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4037 WRITE_ONCE(q->owner, -1);
4038 if (qdisc_run_begin(q)) {
4039 if (unlikely(contended)) {
4040 spin_unlock(&q->busylock);
4041 contended = false;
4042 }
4043 __qdisc_run(q);
4044 qdisc_run_end(q);
4045 }
4046 }
4047 spin_unlock(root_lock);
4048 if (unlikely(to_free))
4049 kfree_skb_list_reason(to_free,
4050 tcf_get_drop_reason(to_free));
4051 if (unlikely(contended))
4052 spin_unlock(&q->busylock);
4053 return rc;
4054}
4055
4056#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4057static void skb_update_prio(struct sk_buff *skb)
4058{
4059 const struct netprio_map *map;
4060 const struct sock *sk;
4061 unsigned int prioidx;
4062
4063 if (skb->priority)
4064 return;
4065 map = rcu_dereference_bh(skb->dev->priomap);
4066 if (!map)
4067 return;
4068 sk = skb_to_full_sk(skb);
4069 if (!sk)
4070 return;
4071
4072 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4073
4074 if (prioidx < map->priomap_len)
4075 skb->priority = map->priomap[prioidx];
4076}
4077#else
4078#define skb_update_prio(skb)
4079#endif
4080
4081/**
4082 * dev_loopback_xmit - loop back @skb
4083 * @net: network namespace this loopback is happening in
4084 * @sk: sk needed to be a netfilter okfn
4085 * @skb: buffer to transmit
4086 */
4087int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4088{
4089 skb_reset_mac_header(skb);
4090 __skb_pull(skb, skb_network_offset(skb));
4091 skb->pkt_type = PACKET_LOOPBACK;
4092 if (skb->ip_summed == CHECKSUM_NONE)
4093 skb->ip_summed = CHECKSUM_UNNECESSARY;
4094 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4095 skb_dst_force(skb);
4096 netif_rx(skb);
4097 return 0;
4098}
4099EXPORT_SYMBOL(dev_loopback_xmit);
4100
4101#ifdef CONFIG_NET_EGRESS
4102static struct netdev_queue *
4103netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4104{
4105 int qm = skb_get_queue_mapping(skb);
4106
4107 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4108}
4109
4110#ifndef CONFIG_PREEMPT_RT
4111static bool netdev_xmit_txqueue_skipped(void)
4112{
4113 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4114}
4115
4116void netdev_xmit_skip_txqueue(bool skip)
4117{
4118 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4119}
4120EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4121
4122#else
4123static bool netdev_xmit_txqueue_skipped(void)
4124{
4125 return current->net_xmit.skip_txqueue;
4126}
4127
4128void netdev_xmit_skip_txqueue(bool skip)
4129{
4130 current->net_xmit.skip_txqueue = skip;
4131}
4132EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4133#endif
4134#endif /* CONFIG_NET_EGRESS */
4135
4136#ifdef CONFIG_NET_XGRESS
4137static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4138 enum skb_drop_reason *drop_reason)
4139{
4140 int ret = TC_ACT_UNSPEC;
4141#ifdef CONFIG_NET_CLS_ACT
4142 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4143 struct tcf_result res;
4144
4145 if (!miniq)
4146 return ret;
4147
4148 /* Global bypass */
4149 if (!static_branch_likely(&tcf_sw_enabled_key))
4150 return ret;
4151
4152 /* Block-wise bypass */
4153 if (tcf_block_bypass_sw(miniq->block))
4154 return ret;
4155
4156 tc_skb_cb(skb)->mru = 0;
4157 tc_skb_cb(skb)->post_ct = false;
4158 tcf_set_drop_reason(skb, *drop_reason);
4159
4160 mini_qdisc_bstats_cpu_update(miniq, skb);
4161 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4162 /* Only tcf related quirks below. */
4163 switch (ret) {
4164 case TC_ACT_SHOT:
4165 *drop_reason = tcf_get_drop_reason(skb);
4166 mini_qdisc_qstats_cpu_drop(miniq);
4167 break;
4168 case TC_ACT_OK:
4169 case TC_ACT_RECLASSIFY:
4170 skb->tc_index = TC_H_MIN(res.classid);
4171 break;
4172 }
4173#endif /* CONFIG_NET_CLS_ACT */
4174 return ret;
4175}
4176
4177static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4178
4179void tcx_inc(void)
4180{
4181 static_branch_inc(&tcx_needed_key);
4182}
4183
4184void tcx_dec(void)
4185{
4186 static_branch_dec(&tcx_needed_key);
4187}
4188
4189static __always_inline enum tcx_action_base
4190tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4191 const bool needs_mac)
4192{
4193 const struct bpf_mprog_fp *fp;
4194 const struct bpf_prog *prog;
4195 int ret = TCX_NEXT;
4196
4197 if (needs_mac)
4198 __skb_push(skb, skb->mac_len);
4199 bpf_mprog_foreach_prog(entry, fp, prog) {
4200 bpf_compute_data_pointers(skb);
4201 ret = bpf_prog_run(prog, skb);
4202 if (ret != TCX_NEXT)
4203 break;
4204 }
4205 if (needs_mac)
4206 __skb_pull(skb, skb->mac_len);
4207 return tcx_action_code(skb, ret);
4208}
4209
4210static __always_inline struct sk_buff *
4211sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4212 struct net_device *orig_dev, bool *another)
4213{
4214 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4215 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4216 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4217 int sch_ret;
4218
4219 if (!entry)
4220 return skb;
4221
4222 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4223 if (*pt_prev) {
4224 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4225 *pt_prev = NULL;
4226 }
4227
4228 qdisc_skb_cb(skb)->pkt_len = skb->len;
4229 tcx_set_ingress(skb, true);
4230
4231 if (static_branch_unlikely(&tcx_needed_key)) {
4232 sch_ret = tcx_run(entry, skb, true);
4233 if (sch_ret != TC_ACT_UNSPEC)
4234 goto ingress_verdict;
4235 }
4236 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4237ingress_verdict:
4238 switch (sch_ret) {
4239 case TC_ACT_REDIRECT:
4240 /* skb_mac_header check was done by BPF, so we can safely
4241 * push the L2 header back before redirecting to another
4242 * netdev.
4243 */
4244 __skb_push(skb, skb->mac_len);
4245 if (skb_do_redirect(skb) == -EAGAIN) {
4246 __skb_pull(skb, skb->mac_len);
4247 *another = true;
4248 break;
4249 }
4250 *ret = NET_RX_SUCCESS;
4251 bpf_net_ctx_clear(bpf_net_ctx);
4252 return NULL;
4253 case TC_ACT_SHOT:
4254 kfree_skb_reason(skb, drop_reason);
4255 *ret = NET_RX_DROP;
4256 bpf_net_ctx_clear(bpf_net_ctx);
4257 return NULL;
4258 /* used by tc_run */
4259 case TC_ACT_STOLEN:
4260 case TC_ACT_QUEUED:
4261 case TC_ACT_TRAP:
4262 consume_skb(skb);
4263 fallthrough;
4264 case TC_ACT_CONSUMED:
4265 *ret = NET_RX_SUCCESS;
4266 bpf_net_ctx_clear(bpf_net_ctx);
4267 return NULL;
4268 }
4269 bpf_net_ctx_clear(bpf_net_ctx);
4270
4271 return skb;
4272}
4273
4274static __always_inline struct sk_buff *
4275sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4276{
4277 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4278 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4279 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4280 int sch_ret;
4281
4282 if (!entry)
4283 return skb;
4284
4285 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4286
4287 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4288 * already set by the caller.
4289 */
4290 if (static_branch_unlikely(&tcx_needed_key)) {
4291 sch_ret = tcx_run(entry, skb, false);
4292 if (sch_ret != TC_ACT_UNSPEC)
4293 goto egress_verdict;
4294 }
4295 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4296egress_verdict:
4297 switch (sch_ret) {
4298 case TC_ACT_REDIRECT:
4299 /* No need to push/pop skb's mac_header here on egress! */
4300 skb_do_redirect(skb);
4301 *ret = NET_XMIT_SUCCESS;
4302 bpf_net_ctx_clear(bpf_net_ctx);
4303 return NULL;
4304 case TC_ACT_SHOT:
4305 kfree_skb_reason(skb, drop_reason);
4306 *ret = NET_XMIT_DROP;
4307 bpf_net_ctx_clear(bpf_net_ctx);
4308 return NULL;
4309 /* used by tc_run */
4310 case TC_ACT_STOLEN:
4311 case TC_ACT_QUEUED:
4312 case TC_ACT_TRAP:
4313 consume_skb(skb);
4314 fallthrough;
4315 case TC_ACT_CONSUMED:
4316 *ret = NET_XMIT_SUCCESS;
4317 bpf_net_ctx_clear(bpf_net_ctx);
4318 return NULL;
4319 }
4320 bpf_net_ctx_clear(bpf_net_ctx);
4321
4322 return skb;
4323}
4324#else
4325static __always_inline struct sk_buff *
4326sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4327 struct net_device *orig_dev, bool *another)
4328{
4329 return skb;
4330}
4331
4332static __always_inline struct sk_buff *
4333sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4334{
4335 return skb;
4336}
4337#endif /* CONFIG_NET_XGRESS */
4338
4339#ifdef CONFIG_XPS
4340static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4341 struct xps_dev_maps *dev_maps, unsigned int tci)
4342{
4343 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4344 struct xps_map *map;
4345 int queue_index = -1;
4346
4347 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4348 return queue_index;
4349
4350 tci *= dev_maps->num_tc;
4351 tci += tc;
4352
4353 map = rcu_dereference(dev_maps->attr_map[tci]);
4354 if (map) {
4355 if (map->len == 1)
4356 queue_index = map->queues[0];
4357 else
4358 queue_index = map->queues[reciprocal_scale(
4359 skb_get_hash(skb), map->len)];
4360 if (unlikely(queue_index >= dev->real_num_tx_queues))
4361 queue_index = -1;
4362 }
4363 return queue_index;
4364}
4365#endif
4366
4367static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4368 struct sk_buff *skb)
4369{
4370#ifdef CONFIG_XPS
4371 struct xps_dev_maps *dev_maps;
4372 struct sock *sk = skb->sk;
4373 int queue_index = -1;
4374
4375 if (!static_key_false(&xps_needed))
4376 return -1;
4377
4378 rcu_read_lock();
4379 if (!static_key_false(&xps_rxqs_needed))
4380 goto get_cpus_map;
4381
4382 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4383 if (dev_maps) {
4384 int tci = sk_rx_queue_get(sk);
4385
4386 if (tci >= 0)
4387 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4388 tci);
4389 }
4390
4391get_cpus_map:
4392 if (queue_index < 0) {
4393 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4394 if (dev_maps) {
4395 unsigned int tci = skb->sender_cpu - 1;
4396
4397 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4398 tci);
4399 }
4400 }
4401 rcu_read_unlock();
4402
4403 return queue_index;
4404#else
4405 return -1;
4406#endif
4407}
4408
4409u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4410 struct net_device *sb_dev)
4411{
4412 return 0;
4413}
4414EXPORT_SYMBOL(dev_pick_tx_zero);
4415
4416u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4417 struct net_device *sb_dev)
4418{
4419 struct sock *sk = skb->sk;
4420 int queue_index = sk_tx_queue_get(sk);
4421
4422 sb_dev = sb_dev ? : dev;
4423
4424 if (queue_index < 0 || skb->ooo_okay ||
4425 queue_index >= dev->real_num_tx_queues) {
4426 int new_index = get_xps_queue(dev, sb_dev, skb);
4427
4428 if (new_index < 0)
4429 new_index = skb_tx_hash(dev, sb_dev, skb);
4430
4431 if (queue_index != new_index && sk &&
4432 sk_fullsock(sk) &&
4433 rcu_access_pointer(sk->sk_dst_cache))
4434 sk_tx_queue_set(sk, new_index);
4435
4436 queue_index = new_index;
4437 }
4438
4439 return queue_index;
4440}
4441EXPORT_SYMBOL(netdev_pick_tx);
4442
4443struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4444 struct sk_buff *skb,
4445 struct net_device *sb_dev)
4446{
4447 int queue_index = 0;
4448
4449#ifdef CONFIG_XPS
4450 u32 sender_cpu = skb->sender_cpu - 1;
4451
4452 if (sender_cpu >= (u32)NR_CPUS)
4453 skb->sender_cpu = raw_smp_processor_id() + 1;
4454#endif
4455
4456 if (dev->real_num_tx_queues != 1) {
4457 const struct net_device_ops *ops = dev->netdev_ops;
4458
4459 if (ops->ndo_select_queue)
4460 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4461 else
4462 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4463
4464 queue_index = netdev_cap_txqueue(dev, queue_index);
4465 }
4466
4467 skb_set_queue_mapping(skb, queue_index);
4468 return netdev_get_tx_queue(dev, queue_index);
4469}
4470
4471/**
4472 * __dev_queue_xmit() - transmit a buffer
4473 * @skb: buffer to transmit
4474 * @sb_dev: suboordinate device used for L2 forwarding offload
4475 *
4476 * Queue a buffer for transmission to a network device. The caller must
4477 * have set the device and priority and built the buffer before calling
4478 * this function. The function can be called from an interrupt.
4479 *
4480 * When calling this method, interrupts MUST be enabled. This is because
4481 * the BH enable code must have IRQs enabled so that it will not deadlock.
4482 *
4483 * Regardless of the return value, the skb is consumed, so it is currently
4484 * difficult to retry a send to this method. (You can bump the ref count
4485 * before sending to hold a reference for retry if you are careful.)
4486 *
4487 * Return:
4488 * * 0 - buffer successfully transmitted
4489 * * positive qdisc return code - NET_XMIT_DROP etc.
4490 * * negative errno - other errors
4491 */
4492int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4493{
4494 struct net_device *dev = skb->dev;
4495 struct netdev_queue *txq = NULL;
4496 struct Qdisc *q;
4497 int rc = -ENOMEM;
4498 bool again = false;
4499
4500 skb_reset_mac_header(skb);
4501 skb_assert_len(skb);
4502
4503 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4504 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4505
4506 /* Disable soft irqs for various locks below. Also
4507 * stops preemption for RCU.
4508 */
4509 rcu_read_lock_bh();
4510
4511 skb_update_prio(skb);
4512
4513 qdisc_pkt_len_init(skb);
4514 tcx_set_ingress(skb, false);
4515#ifdef CONFIG_NET_EGRESS
4516 if (static_branch_unlikely(&egress_needed_key)) {
4517 if (nf_hook_egress_active()) {
4518 skb = nf_hook_egress(skb, &rc, dev);
4519 if (!skb)
4520 goto out;
4521 }
4522
4523 netdev_xmit_skip_txqueue(false);
4524
4525 nf_skip_egress(skb, true);
4526 skb = sch_handle_egress(skb, &rc, dev);
4527 if (!skb)
4528 goto out;
4529 nf_skip_egress(skb, false);
4530
4531 if (netdev_xmit_txqueue_skipped())
4532 txq = netdev_tx_queue_mapping(dev, skb);
4533 }
4534#endif
4535 /* If device/qdisc don't need skb->dst, release it right now while
4536 * its hot in this cpu cache.
4537 */
4538 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4539 skb_dst_drop(skb);
4540 else
4541 skb_dst_force(skb);
4542
4543 if (!txq)
4544 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4545
4546 q = rcu_dereference_bh(txq->qdisc);
4547
4548 trace_net_dev_queue(skb);
4549 if (q->enqueue) {
4550 rc = __dev_xmit_skb(skb, q, dev, txq);
4551 goto out;
4552 }
4553
4554 /* The device has no queue. Common case for software devices:
4555 * loopback, all the sorts of tunnels...
4556
4557 * Really, it is unlikely that netif_tx_lock protection is necessary
4558 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4559 * counters.)
4560 * However, it is possible, that they rely on protection
4561 * made by us here.
4562
4563 * Check this and shot the lock. It is not prone from deadlocks.
4564 *Either shot noqueue qdisc, it is even simpler 8)
4565 */
4566 if (dev->flags & IFF_UP) {
4567 int cpu = smp_processor_id(); /* ok because BHs are off */
4568
4569 /* Other cpus might concurrently change txq->xmit_lock_owner
4570 * to -1 or to their cpu id, but not to our id.
4571 */
4572 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4573 if (dev_xmit_recursion())
4574 goto recursion_alert;
4575
4576 skb = validate_xmit_skb(skb, dev, &again);
4577 if (!skb)
4578 goto out;
4579
4580 HARD_TX_LOCK(dev, txq, cpu);
4581
4582 if (!netif_xmit_stopped(txq)) {
4583 dev_xmit_recursion_inc();
4584 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4585 dev_xmit_recursion_dec();
4586 if (dev_xmit_complete(rc)) {
4587 HARD_TX_UNLOCK(dev, txq);
4588 goto out;
4589 }
4590 }
4591 HARD_TX_UNLOCK(dev, txq);
4592 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4593 dev->name);
4594 } else {
4595 /* Recursion is detected! It is possible,
4596 * unfortunately
4597 */
4598recursion_alert:
4599 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4600 dev->name);
4601 }
4602 }
4603
4604 rc = -ENETDOWN;
4605 rcu_read_unlock_bh();
4606
4607 dev_core_stats_tx_dropped_inc(dev);
4608 kfree_skb_list(skb);
4609 return rc;
4610out:
4611 rcu_read_unlock_bh();
4612 return rc;
4613}
4614EXPORT_SYMBOL(__dev_queue_xmit);
4615
4616int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4617{
4618 struct net_device *dev = skb->dev;
4619 struct sk_buff *orig_skb = skb;
4620 struct netdev_queue *txq;
4621 int ret = NETDEV_TX_BUSY;
4622 bool again = false;
4623
4624 if (unlikely(!netif_running(dev) ||
4625 !netif_carrier_ok(dev)))
4626 goto drop;
4627
4628 skb = validate_xmit_skb_list(skb, dev, &again);
4629 if (skb != orig_skb)
4630 goto drop;
4631
4632 skb_set_queue_mapping(skb, queue_id);
4633 txq = skb_get_tx_queue(dev, skb);
4634
4635 local_bh_disable();
4636
4637 dev_xmit_recursion_inc();
4638 HARD_TX_LOCK(dev, txq, smp_processor_id());
4639 if (!netif_xmit_frozen_or_drv_stopped(txq))
4640 ret = netdev_start_xmit(skb, dev, txq, false);
4641 HARD_TX_UNLOCK(dev, txq);
4642 dev_xmit_recursion_dec();
4643
4644 local_bh_enable();
4645 return ret;
4646drop:
4647 dev_core_stats_tx_dropped_inc(dev);
4648 kfree_skb_list(skb);
4649 return NET_XMIT_DROP;
4650}
4651EXPORT_SYMBOL(__dev_direct_xmit);
4652
4653/*************************************************************************
4654 * Receiver routines
4655 *************************************************************************/
4656static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4657
4658int weight_p __read_mostly = 64; /* old backlog weight */
4659int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4660int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4661
4662/* Called with irq disabled */
4663static inline void ____napi_schedule(struct softnet_data *sd,
4664 struct napi_struct *napi)
4665{
4666 struct task_struct *thread;
4667
4668 lockdep_assert_irqs_disabled();
4669
4670 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4671 /* Paired with smp_mb__before_atomic() in
4672 * napi_enable()/dev_set_threaded().
4673 * Use READ_ONCE() to guarantee a complete
4674 * read on napi->thread. Only call
4675 * wake_up_process() when it's not NULL.
4676 */
4677 thread = READ_ONCE(napi->thread);
4678 if (thread) {
4679 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4680 goto use_local_napi;
4681
4682 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4683 wake_up_process(thread);
4684 return;
4685 }
4686 }
4687
4688use_local_napi:
4689 list_add_tail(&napi->poll_list, &sd->poll_list);
4690 WRITE_ONCE(napi->list_owner, smp_processor_id());
4691 /* If not called from net_rx_action()
4692 * we have to raise NET_RX_SOFTIRQ.
4693 */
4694 if (!sd->in_net_rx_action)
4695 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4696}
4697
4698#ifdef CONFIG_RPS
4699
4700struct static_key_false rps_needed __read_mostly;
4701EXPORT_SYMBOL(rps_needed);
4702struct static_key_false rfs_needed __read_mostly;
4703EXPORT_SYMBOL(rfs_needed);
4704
4705static struct rps_dev_flow *
4706set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4707 struct rps_dev_flow *rflow, u16 next_cpu)
4708{
4709 if (next_cpu < nr_cpu_ids) {
4710 u32 head;
4711#ifdef CONFIG_RFS_ACCEL
4712 struct netdev_rx_queue *rxqueue;
4713 struct rps_dev_flow_table *flow_table;
4714 struct rps_dev_flow *old_rflow;
4715 u16 rxq_index;
4716 u32 flow_id;
4717 int rc;
4718
4719 /* Should we steer this flow to a different hardware queue? */
4720 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4721 !(dev->features & NETIF_F_NTUPLE))
4722 goto out;
4723 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4724 if (rxq_index == skb_get_rx_queue(skb))
4725 goto out;
4726
4727 rxqueue = dev->_rx + rxq_index;
4728 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4729 if (!flow_table)
4730 goto out;
4731 flow_id = skb_get_hash(skb) & flow_table->mask;
4732 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4733 rxq_index, flow_id);
4734 if (rc < 0)
4735 goto out;
4736 old_rflow = rflow;
4737 rflow = &flow_table->flows[flow_id];
4738 WRITE_ONCE(rflow->filter, rc);
4739 if (old_rflow->filter == rc)
4740 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4741 out:
4742#endif
4743 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4744 rps_input_queue_tail_save(&rflow->last_qtail, head);
4745 }
4746
4747 WRITE_ONCE(rflow->cpu, next_cpu);
4748 return rflow;
4749}
4750
4751/*
4752 * get_rps_cpu is called from netif_receive_skb and returns the target
4753 * CPU from the RPS map of the receiving queue for a given skb.
4754 * rcu_read_lock must be held on entry.
4755 */
4756static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4757 struct rps_dev_flow **rflowp)
4758{
4759 const struct rps_sock_flow_table *sock_flow_table;
4760 struct netdev_rx_queue *rxqueue = dev->_rx;
4761 struct rps_dev_flow_table *flow_table;
4762 struct rps_map *map;
4763 int cpu = -1;
4764 u32 tcpu;
4765 u32 hash;
4766
4767 if (skb_rx_queue_recorded(skb)) {
4768 u16 index = skb_get_rx_queue(skb);
4769
4770 if (unlikely(index >= dev->real_num_rx_queues)) {
4771 WARN_ONCE(dev->real_num_rx_queues > 1,
4772 "%s received packet on queue %u, but number "
4773 "of RX queues is %u\n",
4774 dev->name, index, dev->real_num_rx_queues);
4775 goto done;
4776 }
4777 rxqueue += index;
4778 }
4779
4780 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4781
4782 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4783 map = rcu_dereference(rxqueue->rps_map);
4784 if (!flow_table && !map)
4785 goto done;
4786
4787 skb_reset_network_header(skb);
4788 hash = skb_get_hash(skb);
4789 if (!hash)
4790 goto done;
4791
4792 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4793 if (flow_table && sock_flow_table) {
4794 struct rps_dev_flow *rflow;
4795 u32 next_cpu;
4796 u32 ident;
4797
4798 /* First check into global flow table if there is a match.
4799 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4800 */
4801 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4802 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4803 goto try_rps;
4804
4805 next_cpu = ident & net_hotdata.rps_cpu_mask;
4806
4807 /* OK, now we know there is a match,
4808 * we can look at the local (per receive queue) flow table
4809 */
4810 rflow = &flow_table->flows[hash & flow_table->mask];
4811 tcpu = rflow->cpu;
4812
4813 /*
4814 * If the desired CPU (where last recvmsg was done) is
4815 * different from current CPU (one in the rx-queue flow
4816 * table entry), switch if one of the following holds:
4817 * - Current CPU is unset (>= nr_cpu_ids).
4818 * - Current CPU is offline.
4819 * - The current CPU's queue tail has advanced beyond the
4820 * last packet that was enqueued using this table entry.
4821 * This guarantees that all previous packets for the flow
4822 * have been dequeued, thus preserving in order delivery.
4823 */
4824 if (unlikely(tcpu != next_cpu) &&
4825 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4826 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4827 rflow->last_qtail)) >= 0)) {
4828 tcpu = next_cpu;
4829 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4830 }
4831
4832 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4833 *rflowp = rflow;
4834 cpu = tcpu;
4835 goto done;
4836 }
4837 }
4838
4839try_rps:
4840
4841 if (map) {
4842 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4843 if (cpu_online(tcpu)) {
4844 cpu = tcpu;
4845 goto done;
4846 }
4847 }
4848
4849done:
4850 return cpu;
4851}
4852
4853#ifdef CONFIG_RFS_ACCEL
4854
4855/**
4856 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4857 * @dev: Device on which the filter was set
4858 * @rxq_index: RX queue index
4859 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4860 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4861 *
4862 * Drivers that implement ndo_rx_flow_steer() should periodically call
4863 * this function for each installed filter and remove the filters for
4864 * which it returns %true.
4865 */
4866bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4867 u32 flow_id, u16 filter_id)
4868{
4869 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4870 struct rps_dev_flow_table *flow_table;
4871 struct rps_dev_flow *rflow;
4872 bool expire = true;
4873 unsigned int cpu;
4874
4875 rcu_read_lock();
4876 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4877 if (flow_table && flow_id <= flow_table->mask) {
4878 rflow = &flow_table->flows[flow_id];
4879 cpu = READ_ONCE(rflow->cpu);
4880 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4881 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4882 READ_ONCE(rflow->last_qtail)) <
4883 (int)(10 * flow_table->mask)))
4884 expire = false;
4885 }
4886 rcu_read_unlock();
4887 return expire;
4888}
4889EXPORT_SYMBOL(rps_may_expire_flow);
4890
4891#endif /* CONFIG_RFS_ACCEL */
4892
4893/* Called from hardirq (IPI) context */
4894static void rps_trigger_softirq(void *data)
4895{
4896 struct softnet_data *sd = data;
4897
4898 ____napi_schedule(sd, &sd->backlog);
4899 sd->received_rps++;
4900}
4901
4902#endif /* CONFIG_RPS */
4903
4904/* Called from hardirq (IPI) context */
4905static void trigger_rx_softirq(void *data)
4906{
4907 struct softnet_data *sd = data;
4908
4909 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4910 smp_store_release(&sd->defer_ipi_scheduled, 0);
4911}
4912
4913/*
4914 * After we queued a packet into sd->input_pkt_queue,
4915 * we need to make sure this queue is serviced soon.
4916 *
4917 * - If this is another cpu queue, link it to our rps_ipi_list,
4918 * and make sure we will process rps_ipi_list from net_rx_action().
4919 *
4920 * - If this is our own queue, NAPI schedule our backlog.
4921 * Note that this also raises NET_RX_SOFTIRQ.
4922 */
4923static void napi_schedule_rps(struct softnet_data *sd)
4924{
4925 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4926
4927#ifdef CONFIG_RPS
4928 if (sd != mysd) {
4929 if (use_backlog_threads()) {
4930 __napi_schedule_irqoff(&sd->backlog);
4931 return;
4932 }
4933
4934 sd->rps_ipi_next = mysd->rps_ipi_list;
4935 mysd->rps_ipi_list = sd;
4936
4937 /* If not called from net_rx_action() or napi_threaded_poll()
4938 * we have to raise NET_RX_SOFTIRQ.
4939 */
4940 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4941 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4942 return;
4943 }
4944#endif /* CONFIG_RPS */
4945 __napi_schedule_irqoff(&mysd->backlog);
4946}
4947
4948void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4949{
4950 unsigned long flags;
4951
4952 if (use_backlog_threads()) {
4953 backlog_lock_irq_save(sd, &flags);
4954
4955 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4956 __napi_schedule_irqoff(&sd->backlog);
4957
4958 backlog_unlock_irq_restore(sd, &flags);
4959
4960 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4961 smp_call_function_single_async(cpu, &sd->defer_csd);
4962 }
4963}
4964
4965#ifdef CONFIG_NET_FLOW_LIMIT
4966int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4967#endif
4968
4969static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4970{
4971#ifdef CONFIG_NET_FLOW_LIMIT
4972 struct sd_flow_limit *fl;
4973 struct softnet_data *sd;
4974 unsigned int old_flow, new_flow;
4975
4976 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4977 return false;
4978
4979 sd = this_cpu_ptr(&softnet_data);
4980
4981 rcu_read_lock();
4982 fl = rcu_dereference(sd->flow_limit);
4983 if (fl) {
4984 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4985 old_flow = fl->history[fl->history_head];
4986 fl->history[fl->history_head] = new_flow;
4987
4988 fl->history_head++;
4989 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4990
4991 if (likely(fl->buckets[old_flow]))
4992 fl->buckets[old_flow]--;
4993
4994 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4995 fl->count++;
4996 rcu_read_unlock();
4997 return true;
4998 }
4999 }
5000 rcu_read_unlock();
5001#endif
5002 return false;
5003}
5004
5005/*
5006 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5007 * queue (may be a remote CPU queue).
5008 */
5009static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5010 unsigned int *qtail)
5011{
5012 enum skb_drop_reason reason;
5013 struct softnet_data *sd;
5014 unsigned long flags;
5015 unsigned int qlen;
5016 int max_backlog;
5017 u32 tail;
5018
5019 reason = SKB_DROP_REASON_DEV_READY;
5020 if (!netif_running(skb->dev))
5021 goto bad_dev;
5022
5023 reason = SKB_DROP_REASON_CPU_BACKLOG;
5024 sd = &per_cpu(softnet_data, cpu);
5025
5026 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5027 max_backlog = READ_ONCE(net_hotdata.max_backlog);
5028 if (unlikely(qlen > max_backlog))
5029 goto cpu_backlog_drop;
5030 backlog_lock_irq_save(sd, &flags);
5031 qlen = skb_queue_len(&sd->input_pkt_queue);
5032 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5033 if (!qlen) {
5034 /* Schedule NAPI for backlog device. We can use
5035 * non atomic operation as we own the queue lock.
5036 */
5037 if (!__test_and_set_bit(NAPI_STATE_SCHED,
5038 &sd->backlog.state))
5039 napi_schedule_rps(sd);
5040 }
5041 __skb_queue_tail(&sd->input_pkt_queue, skb);
5042 tail = rps_input_queue_tail_incr(sd);
5043 backlog_unlock_irq_restore(sd, &flags);
5044
5045 /* save the tail outside of the critical section */
5046 rps_input_queue_tail_save(qtail, tail);
5047 return NET_RX_SUCCESS;
5048 }
5049
5050 backlog_unlock_irq_restore(sd, &flags);
5051
5052cpu_backlog_drop:
5053 atomic_inc(&sd->dropped);
5054bad_dev:
5055 dev_core_stats_rx_dropped_inc(skb->dev);
5056 kfree_skb_reason(skb, reason);
5057 return NET_RX_DROP;
5058}
5059
5060static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5061{
5062 struct net_device *dev = skb->dev;
5063 struct netdev_rx_queue *rxqueue;
5064
5065 rxqueue = dev->_rx;
5066
5067 if (skb_rx_queue_recorded(skb)) {
5068 u16 index = skb_get_rx_queue(skb);
5069
5070 if (unlikely(index >= dev->real_num_rx_queues)) {
5071 WARN_ONCE(dev->real_num_rx_queues > 1,
5072 "%s received packet on queue %u, but number "
5073 "of RX queues is %u\n",
5074 dev->name, index, dev->real_num_rx_queues);
5075
5076 return rxqueue; /* Return first rxqueue */
5077 }
5078 rxqueue += index;
5079 }
5080 return rxqueue;
5081}
5082
5083u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5084 const struct bpf_prog *xdp_prog)
5085{
5086 void *orig_data, *orig_data_end, *hard_start;
5087 struct netdev_rx_queue *rxqueue;
5088 bool orig_bcast, orig_host;
5089 u32 mac_len, frame_sz;
5090 __be16 orig_eth_type;
5091 struct ethhdr *eth;
5092 u32 metalen, act;
5093 int off;
5094
5095 /* The XDP program wants to see the packet starting at the MAC
5096 * header.
5097 */
5098 mac_len = skb->data - skb_mac_header(skb);
5099 hard_start = skb->data - skb_headroom(skb);
5100
5101 /* SKB "head" area always have tailroom for skb_shared_info */
5102 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5103 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5104
5105 rxqueue = netif_get_rxqueue(skb);
5106 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5107 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5108 skb_headlen(skb) + mac_len, true);
5109 if (skb_is_nonlinear(skb)) {
5110 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5111 xdp_buff_set_frags_flag(xdp);
5112 } else {
5113 xdp_buff_clear_frags_flag(xdp);
5114 }
5115
5116 orig_data_end = xdp->data_end;
5117 orig_data = xdp->data;
5118 eth = (struct ethhdr *)xdp->data;
5119 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5120 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5121 orig_eth_type = eth->h_proto;
5122
5123 act = bpf_prog_run_xdp(xdp_prog, xdp);
5124
5125 /* check if bpf_xdp_adjust_head was used */
5126 off = xdp->data - orig_data;
5127 if (off) {
5128 if (off > 0)
5129 __skb_pull(skb, off);
5130 else if (off < 0)
5131 __skb_push(skb, -off);
5132
5133 skb->mac_header += off;
5134 skb_reset_network_header(skb);
5135 }
5136
5137 /* check if bpf_xdp_adjust_tail was used */
5138 off = xdp->data_end - orig_data_end;
5139 if (off != 0) {
5140 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5141 skb->len += off; /* positive on grow, negative on shrink */
5142 }
5143
5144 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5145 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5146 */
5147 if (xdp_buff_has_frags(xdp))
5148 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5149 else
5150 skb->data_len = 0;
5151
5152 /* check if XDP changed eth hdr such SKB needs update */
5153 eth = (struct ethhdr *)xdp->data;
5154 if ((orig_eth_type != eth->h_proto) ||
5155 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5156 skb->dev->dev_addr)) ||
5157 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5158 __skb_push(skb, ETH_HLEN);
5159 skb->pkt_type = PACKET_HOST;
5160 skb->protocol = eth_type_trans(skb, skb->dev);
5161 }
5162
5163 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5164 * before calling us again on redirect path. We do not call do_redirect
5165 * as we leave that up to the caller.
5166 *
5167 * Caller is responsible for managing lifetime of skb (i.e. calling
5168 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5169 */
5170 switch (act) {
5171 case XDP_REDIRECT:
5172 case XDP_TX:
5173 __skb_push(skb, mac_len);
5174 break;
5175 case XDP_PASS:
5176 metalen = xdp->data - xdp->data_meta;
5177 if (metalen)
5178 skb_metadata_set(skb, metalen);
5179 break;
5180 }
5181
5182 return act;
5183}
5184
5185static int
5186netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5187{
5188 struct sk_buff *skb = *pskb;
5189 int err, hroom, troom;
5190
5191 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5192 return 0;
5193
5194 /* In case we have to go down the path and also linearize,
5195 * then lets do the pskb_expand_head() work just once here.
5196 */
5197 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5198 troom = skb->tail + skb->data_len - skb->end;
5199 err = pskb_expand_head(skb,
5200 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5201 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5202 if (err)
5203 return err;
5204
5205 return skb_linearize(skb);
5206}
5207
5208static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5209 struct xdp_buff *xdp,
5210 const struct bpf_prog *xdp_prog)
5211{
5212 struct sk_buff *skb = *pskb;
5213 u32 mac_len, act = XDP_DROP;
5214
5215 /* Reinjected packets coming from act_mirred or similar should
5216 * not get XDP generic processing.
5217 */
5218 if (skb_is_redirected(skb))
5219 return XDP_PASS;
5220
5221 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5222 * bytes. This is the guarantee that also native XDP provides,
5223 * thus we need to do it here as well.
5224 */
5225 mac_len = skb->data - skb_mac_header(skb);
5226 __skb_push(skb, mac_len);
5227
5228 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5229 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5230 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5231 goto do_drop;
5232 }
5233
5234 __skb_pull(*pskb, mac_len);
5235
5236 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5237 switch (act) {
5238 case XDP_REDIRECT:
5239 case XDP_TX:
5240 case XDP_PASS:
5241 break;
5242 default:
5243 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5244 fallthrough;
5245 case XDP_ABORTED:
5246 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5247 fallthrough;
5248 case XDP_DROP:
5249 do_drop:
5250 kfree_skb(*pskb);
5251 break;
5252 }
5253
5254 return act;
5255}
5256
5257/* When doing generic XDP we have to bypass the qdisc layer and the
5258 * network taps in order to match in-driver-XDP behavior. This also means
5259 * that XDP packets are able to starve other packets going through a qdisc,
5260 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5261 * queues, so they do not have this starvation issue.
5262 */
5263void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5264{
5265 struct net_device *dev = skb->dev;
5266 struct netdev_queue *txq;
5267 bool free_skb = true;
5268 int cpu, rc;
5269
5270 txq = netdev_core_pick_tx(dev, skb, NULL);
5271 cpu = smp_processor_id();
5272 HARD_TX_LOCK(dev, txq, cpu);
5273 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5274 rc = netdev_start_xmit(skb, dev, txq, 0);
5275 if (dev_xmit_complete(rc))
5276 free_skb = false;
5277 }
5278 HARD_TX_UNLOCK(dev, txq);
5279 if (free_skb) {
5280 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5281 dev_core_stats_tx_dropped_inc(dev);
5282 kfree_skb(skb);
5283 }
5284}
5285
5286static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5287
5288int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5289{
5290 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5291
5292 if (xdp_prog) {
5293 struct xdp_buff xdp;
5294 u32 act;
5295 int err;
5296
5297 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5298 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5299 if (act != XDP_PASS) {
5300 switch (act) {
5301 case XDP_REDIRECT:
5302 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5303 &xdp, xdp_prog);
5304 if (err)
5305 goto out_redir;
5306 break;
5307 case XDP_TX:
5308 generic_xdp_tx(*pskb, xdp_prog);
5309 break;
5310 }
5311 bpf_net_ctx_clear(bpf_net_ctx);
5312 return XDP_DROP;
5313 }
5314 bpf_net_ctx_clear(bpf_net_ctx);
5315 }
5316 return XDP_PASS;
5317out_redir:
5318 bpf_net_ctx_clear(bpf_net_ctx);
5319 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5320 return XDP_DROP;
5321}
5322EXPORT_SYMBOL_GPL(do_xdp_generic);
5323
5324static int netif_rx_internal(struct sk_buff *skb)
5325{
5326 int ret;
5327
5328 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5329
5330 trace_netif_rx(skb);
5331
5332#ifdef CONFIG_RPS
5333 if (static_branch_unlikely(&rps_needed)) {
5334 struct rps_dev_flow voidflow, *rflow = &voidflow;
5335 int cpu;
5336
5337 rcu_read_lock();
5338
5339 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5340 if (cpu < 0)
5341 cpu = smp_processor_id();
5342
5343 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5344
5345 rcu_read_unlock();
5346 } else
5347#endif
5348 {
5349 unsigned int qtail;
5350
5351 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5352 }
5353 return ret;
5354}
5355
5356/**
5357 * __netif_rx - Slightly optimized version of netif_rx
5358 * @skb: buffer to post
5359 *
5360 * This behaves as netif_rx except that it does not disable bottom halves.
5361 * As a result this function may only be invoked from the interrupt context
5362 * (either hard or soft interrupt).
5363 */
5364int __netif_rx(struct sk_buff *skb)
5365{
5366 int ret;
5367
5368 lockdep_assert_once(hardirq_count() | softirq_count());
5369
5370 trace_netif_rx_entry(skb);
5371 ret = netif_rx_internal(skb);
5372 trace_netif_rx_exit(ret);
5373 return ret;
5374}
5375EXPORT_SYMBOL(__netif_rx);
5376
5377/**
5378 * netif_rx - post buffer to the network code
5379 * @skb: buffer to post
5380 *
5381 * This function receives a packet from a device driver and queues it for
5382 * the upper (protocol) levels to process via the backlog NAPI device. It
5383 * always succeeds. The buffer may be dropped during processing for
5384 * congestion control or by the protocol layers.
5385 * The network buffer is passed via the backlog NAPI device. Modern NIC
5386 * driver should use NAPI and GRO.
5387 * This function can used from interrupt and from process context. The
5388 * caller from process context must not disable interrupts before invoking
5389 * this function.
5390 *
5391 * return values:
5392 * NET_RX_SUCCESS (no congestion)
5393 * NET_RX_DROP (packet was dropped)
5394 *
5395 */
5396int netif_rx(struct sk_buff *skb)
5397{
5398 bool need_bh_off = !(hardirq_count() | softirq_count());
5399 int ret;
5400
5401 if (need_bh_off)
5402 local_bh_disable();
5403 trace_netif_rx_entry(skb);
5404 ret = netif_rx_internal(skb);
5405 trace_netif_rx_exit(ret);
5406 if (need_bh_off)
5407 local_bh_enable();
5408 return ret;
5409}
5410EXPORT_SYMBOL(netif_rx);
5411
5412static __latent_entropy void net_tx_action(void)
5413{
5414 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5415
5416 if (sd->completion_queue) {
5417 struct sk_buff *clist;
5418
5419 local_irq_disable();
5420 clist = sd->completion_queue;
5421 sd->completion_queue = NULL;
5422 local_irq_enable();
5423
5424 while (clist) {
5425 struct sk_buff *skb = clist;
5426
5427 clist = clist->next;
5428
5429 WARN_ON(refcount_read(&skb->users));
5430 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5431 trace_consume_skb(skb, net_tx_action);
5432 else
5433 trace_kfree_skb(skb, net_tx_action,
5434 get_kfree_skb_cb(skb)->reason, NULL);
5435
5436 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5437 __kfree_skb(skb);
5438 else
5439 __napi_kfree_skb(skb,
5440 get_kfree_skb_cb(skb)->reason);
5441 }
5442 }
5443
5444 if (sd->output_queue) {
5445 struct Qdisc *head;
5446
5447 local_irq_disable();
5448 head = sd->output_queue;
5449 sd->output_queue = NULL;
5450 sd->output_queue_tailp = &sd->output_queue;
5451 local_irq_enable();
5452
5453 rcu_read_lock();
5454
5455 while (head) {
5456 struct Qdisc *q = head;
5457 spinlock_t *root_lock = NULL;
5458
5459 head = head->next_sched;
5460
5461 /* We need to make sure head->next_sched is read
5462 * before clearing __QDISC_STATE_SCHED
5463 */
5464 smp_mb__before_atomic();
5465
5466 if (!(q->flags & TCQ_F_NOLOCK)) {
5467 root_lock = qdisc_lock(q);
5468 spin_lock(root_lock);
5469 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5470 &q->state))) {
5471 /* There is a synchronize_net() between
5472 * STATE_DEACTIVATED flag being set and
5473 * qdisc_reset()/some_qdisc_is_busy() in
5474 * dev_deactivate(), so we can safely bail out
5475 * early here to avoid data race between
5476 * qdisc_deactivate() and some_qdisc_is_busy()
5477 * for lockless qdisc.
5478 */
5479 clear_bit(__QDISC_STATE_SCHED, &q->state);
5480 continue;
5481 }
5482
5483 clear_bit(__QDISC_STATE_SCHED, &q->state);
5484 qdisc_run(q);
5485 if (root_lock)
5486 spin_unlock(root_lock);
5487 }
5488
5489 rcu_read_unlock();
5490 }
5491
5492 xfrm_dev_backlog(sd);
5493}
5494
5495#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5496/* This hook is defined here for ATM LANE */
5497int (*br_fdb_test_addr_hook)(struct net_device *dev,
5498 unsigned char *addr) __read_mostly;
5499EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5500#endif
5501
5502/**
5503 * netdev_is_rx_handler_busy - check if receive handler is registered
5504 * @dev: device to check
5505 *
5506 * Check if a receive handler is already registered for a given device.
5507 * Return true if there one.
5508 *
5509 * The caller must hold the rtnl_mutex.
5510 */
5511bool netdev_is_rx_handler_busy(struct net_device *dev)
5512{
5513 ASSERT_RTNL();
5514 return dev && rtnl_dereference(dev->rx_handler);
5515}
5516EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5517
5518/**
5519 * netdev_rx_handler_register - register receive handler
5520 * @dev: device to register a handler for
5521 * @rx_handler: receive handler to register
5522 * @rx_handler_data: data pointer that is used by rx handler
5523 *
5524 * Register a receive handler for a device. This handler will then be
5525 * called from __netif_receive_skb. A negative errno code is returned
5526 * on a failure.
5527 *
5528 * The caller must hold the rtnl_mutex.
5529 *
5530 * For a general description of rx_handler, see enum rx_handler_result.
5531 */
5532int netdev_rx_handler_register(struct net_device *dev,
5533 rx_handler_func_t *rx_handler,
5534 void *rx_handler_data)
5535{
5536 if (netdev_is_rx_handler_busy(dev))
5537 return -EBUSY;
5538
5539 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5540 return -EINVAL;
5541
5542 /* Note: rx_handler_data must be set before rx_handler */
5543 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5544 rcu_assign_pointer(dev->rx_handler, rx_handler);
5545
5546 return 0;
5547}
5548EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5549
5550/**
5551 * netdev_rx_handler_unregister - unregister receive handler
5552 * @dev: device to unregister a handler from
5553 *
5554 * Unregister a receive handler from a device.
5555 *
5556 * The caller must hold the rtnl_mutex.
5557 */
5558void netdev_rx_handler_unregister(struct net_device *dev)
5559{
5560
5561 ASSERT_RTNL();
5562 RCU_INIT_POINTER(dev->rx_handler, NULL);
5563 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5564 * section has a guarantee to see a non NULL rx_handler_data
5565 * as well.
5566 */
5567 synchronize_net();
5568 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5569}
5570EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5571
5572/*
5573 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5574 * the special handling of PFMEMALLOC skbs.
5575 */
5576static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5577{
5578 switch (skb->protocol) {
5579 case htons(ETH_P_ARP):
5580 case htons(ETH_P_IP):
5581 case htons(ETH_P_IPV6):
5582 case htons(ETH_P_8021Q):
5583 case htons(ETH_P_8021AD):
5584 return true;
5585 default:
5586 return false;
5587 }
5588}
5589
5590static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5591 int *ret, struct net_device *orig_dev)
5592{
5593 if (nf_hook_ingress_active(skb)) {
5594 int ingress_retval;
5595
5596 if (*pt_prev) {
5597 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5598 *pt_prev = NULL;
5599 }
5600
5601 rcu_read_lock();
5602 ingress_retval = nf_hook_ingress(skb);
5603 rcu_read_unlock();
5604 return ingress_retval;
5605 }
5606 return 0;
5607}
5608
5609static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5610 struct packet_type **ppt_prev)
5611{
5612 struct packet_type *ptype, *pt_prev;
5613 rx_handler_func_t *rx_handler;
5614 struct sk_buff *skb = *pskb;
5615 struct net_device *orig_dev;
5616 bool deliver_exact = false;
5617 int ret = NET_RX_DROP;
5618 __be16 type;
5619
5620 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5621
5622 trace_netif_receive_skb(skb);
5623
5624 orig_dev = skb->dev;
5625
5626 skb_reset_network_header(skb);
5627#if !defined(CONFIG_DEBUG_NET)
5628 /* We plan to no longer reset the transport header here.
5629 * Give some time to fuzzers and dev build to catch bugs
5630 * in network stacks.
5631 */
5632 if (!skb_transport_header_was_set(skb))
5633 skb_reset_transport_header(skb);
5634#endif
5635 skb_reset_mac_len(skb);
5636
5637 pt_prev = NULL;
5638
5639another_round:
5640 skb->skb_iif = skb->dev->ifindex;
5641
5642 __this_cpu_inc(softnet_data.processed);
5643
5644 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5645 int ret2;
5646
5647 migrate_disable();
5648 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5649 &skb);
5650 migrate_enable();
5651
5652 if (ret2 != XDP_PASS) {
5653 ret = NET_RX_DROP;
5654 goto out;
5655 }
5656 }
5657
5658 if (eth_type_vlan(skb->protocol)) {
5659 skb = skb_vlan_untag(skb);
5660 if (unlikely(!skb))
5661 goto out;
5662 }
5663
5664 if (skb_skip_tc_classify(skb))
5665 goto skip_classify;
5666
5667 if (pfmemalloc)
5668 goto skip_taps;
5669
5670 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5671 if (pt_prev)
5672 ret = deliver_skb(skb, pt_prev, orig_dev);
5673 pt_prev = ptype;
5674 }
5675
5676 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5677 if (pt_prev)
5678 ret = deliver_skb(skb, pt_prev, orig_dev);
5679 pt_prev = ptype;
5680 }
5681
5682skip_taps:
5683#ifdef CONFIG_NET_INGRESS
5684 if (static_branch_unlikely(&ingress_needed_key)) {
5685 bool another = false;
5686
5687 nf_skip_egress(skb, true);
5688 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5689 &another);
5690 if (another)
5691 goto another_round;
5692 if (!skb)
5693 goto out;
5694
5695 nf_skip_egress(skb, false);
5696 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5697 goto out;
5698 }
5699#endif
5700 skb_reset_redirect(skb);
5701skip_classify:
5702 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5703 goto drop;
5704
5705 if (skb_vlan_tag_present(skb)) {
5706 if (pt_prev) {
5707 ret = deliver_skb(skb, pt_prev, orig_dev);
5708 pt_prev = NULL;
5709 }
5710 if (vlan_do_receive(&skb))
5711 goto another_round;
5712 else if (unlikely(!skb))
5713 goto out;
5714 }
5715
5716 rx_handler = rcu_dereference(skb->dev->rx_handler);
5717 if (rx_handler) {
5718 if (pt_prev) {
5719 ret = deliver_skb(skb, pt_prev, orig_dev);
5720 pt_prev = NULL;
5721 }
5722 switch (rx_handler(&skb)) {
5723 case RX_HANDLER_CONSUMED:
5724 ret = NET_RX_SUCCESS;
5725 goto out;
5726 case RX_HANDLER_ANOTHER:
5727 goto another_round;
5728 case RX_HANDLER_EXACT:
5729 deliver_exact = true;
5730 break;
5731 case RX_HANDLER_PASS:
5732 break;
5733 default:
5734 BUG();
5735 }
5736 }
5737
5738 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5739check_vlan_id:
5740 if (skb_vlan_tag_get_id(skb)) {
5741 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5742 * find vlan device.
5743 */
5744 skb->pkt_type = PACKET_OTHERHOST;
5745 } else if (eth_type_vlan(skb->protocol)) {
5746 /* Outer header is 802.1P with vlan 0, inner header is
5747 * 802.1Q or 802.1AD and vlan_do_receive() above could
5748 * not find vlan dev for vlan id 0.
5749 */
5750 __vlan_hwaccel_clear_tag(skb);
5751 skb = skb_vlan_untag(skb);
5752 if (unlikely(!skb))
5753 goto out;
5754 if (vlan_do_receive(&skb))
5755 /* After stripping off 802.1P header with vlan 0
5756 * vlan dev is found for inner header.
5757 */
5758 goto another_round;
5759 else if (unlikely(!skb))
5760 goto out;
5761 else
5762 /* We have stripped outer 802.1P vlan 0 header.
5763 * But could not find vlan dev.
5764 * check again for vlan id to set OTHERHOST.
5765 */
5766 goto check_vlan_id;
5767 }
5768 /* Note: we might in the future use prio bits
5769 * and set skb->priority like in vlan_do_receive()
5770 * For the time being, just ignore Priority Code Point
5771 */
5772 __vlan_hwaccel_clear_tag(skb);
5773 }
5774
5775 type = skb->protocol;
5776
5777 /* deliver only exact match when indicated */
5778 if (likely(!deliver_exact)) {
5779 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5780 &ptype_base[ntohs(type) &
5781 PTYPE_HASH_MASK]);
5782 }
5783
5784 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5785 &orig_dev->ptype_specific);
5786
5787 if (unlikely(skb->dev != orig_dev)) {
5788 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5789 &skb->dev->ptype_specific);
5790 }
5791
5792 if (pt_prev) {
5793 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5794 goto drop;
5795 *ppt_prev = pt_prev;
5796 } else {
5797drop:
5798 if (!deliver_exact)
5799 dev_core_stats_rx_dropped_inc(skb->dev);
5800 else
5801 dev_core_stats_rx_nohandler_inc(skb->dev);
5802 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5803 /* Jamal, now you will not able to escape explaining
5804 * me how you were going to use this. :-)
5805 */
5806 ret = NET_RX_DROP;
5807 }
5808
5809out:
5810 /* The invariant here is that if *ppt_prev is not NULL
5811 * then skb should also be non-NULL.
5812 *
5813 * Apparently *ppt_prev assignment above holds this invariant due to
5814 * skb dereferencing near it.
5815 */
5816 *pskb = skb;
5817 return ret;
5818}
5819
5820static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5821{
5822 struct net_device *orig_dev = skb->dev;
5823 struct packet_type *pt_prev = NULL;
5824 int ret;
5825
5826 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5827 if (pt_prev)
5828 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5829 skb->dev, pt_prev, orig_dev);
5830 return ret;
5831}
5832
5833/**
5834 * netif_receive_skb_core - special purpose version of netif_receive_skb
5835 * @skb: buffer to process
5836 *
5837 * More direct receive version of netif_receive_skb(). It should
5838 * only be used by callers that have a need to skip RPS and Generic XDP.
5839 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5840 *
5841 * This function may only be called from softirq context and interrupts
5842 * should be enabled.
5843 *
5844 * Return values (usually ignored):
5845 * NET_RX_SUCCESS: no congestion
5846 * NET_RX_DROP: packet was dropped
5847 */
5848int netif_receive_skb_core(struct sk_buff *skb)
5849{
5850 int ret;
5851
5852 rcu_read_lock();
5853 ret = __netif_receive_skb_one_core(skb, false);
5854 rcu_read_unlock();
5855
5856 return ret;
5857}
5858EXPORT_SYMBOL(netif_receive_skb_core);
5859
5860static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5861 struct packet_type *pt_prev,
5862 struct net_device *orig_dev)
5863{
5864 struct sk_buff *skb, *next;
5865
5866 if (!pt_prev)
5867 return;
5868 if (list_empty(head))
5869 return;
5870 if (pt_prev->list_func != NULL)
5871 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5872 ip_list_rcv, head, pt_prev, orig_dev);
5873 else
5874 list_for_each_entry_safe(skb, next, head, list) {
5875 skb_list_del_init(skb);
5876 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5877 }
5878}
5879
5880static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5881{
5882 /* Fast-path assumptions:
5883 * - There is no RX handler.
5884 * - Only one packet_type matches.
5885 * If either of these fails, we will end up doing some per-packet
5886 * processing in-line, then handling the 'last ptype' for the whole
5887 * sublist. This can't cause out-of-order delivery to any single ptype,
5888 * because the 'last ptype' must be constant across the sublist, and all
5889 * other ptypes are handled per-packet.
5890 */
5891 /* Current (common) ptype of sublist */
5892 struct packet_type *pt_curr = NULL;
5893 /* Current (common) orig_dev of sublist */
5894 struct net_device *od_curr = NULL;
5895 struct sk_buff *skb, *next;
5896 LIST_HEAD(sublist);
5897
5898 list_for_each_entry_safe(skb, next, head, list) {
5899 struct net_device *orig_dev = skb->dev;
5900 struct packet_type *pt_prev = NULL;
5901
5902 skb_list_del_init(skb);
5903 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5904 if (!pt_prev)
5905 continue;
5906 if (pt_curr != pt_prev || od_curr != orig_dev) {
5907 /* dispatch old sublist */
5908 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5909 /* start new sublist */
5910 INIT_LIST_HEAD(&sublist);
5911 pt_curr = pt_prev;
5912 od_curr = orig_dev;
5913 }
5914 list_add_tail(&skb->list, &sublist);
5915 }
5916
5917 /* dispatch final sublist */
5918 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5919}
5920
5921static int __netif_receive_skb(struct sk_buff *skb)
5922{
5923 int ret;
5924
5925 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5926 unsigned int noreclaim_flag;
5927
5928 /*
5929 * PFMEMALLOC skbs are special, they should
5930 * - be delivered to SOCK_MEMALLOC sockets only
5931 * - stay away from userspace
5932 * - have bounded memory usage
5933 *
5934 * Use PF_MEMALLOC as this saves us from propagating the allocation
5935 * context down to all allocation sites.
5936 */
5937 noreclaim_flag = memalloc_noreclaim_save();
5938 ret = __netif_receive_skb_one_core(skb, true);
5939 memalloc_noreclaim_restore(noreclaim_flag);
5940 } else
5941 ret = __netif_receive_skb_one_core(skb, false);
5942
5943 return ret;
5944}
5945
5946static void __netif_receive_skb_list(struct list_head *head)
5947{
5948 unsigned long noreclaim_flag = 0;
5949 struct sk_buff *skb, *next;
5950 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5951
5952 list_for_each_entry_safe(skb, next, head, list) {
5953 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5954 struct list_head sublist;
5955
5956 /* Handle the previous sublist */
5957 list_cut_before(&sublist, head, &skb->list);
5958 if (!list_empty(&sublist))
5959 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5960 pfmemalloc = !pfmemalloc;
5961 /* See comments in __netif_receive_skb */
5962 if (pfmemalloc)
5963 noreclaim_flag = memalloc_noreclaim_save();
5964 else
5965 memalloc_noreclaim_restore(noreclaim_flag);
5966 }
5967 }
5968 /* Handle the remaining sublist */
5969 if (!list_empty(head))
5970 __netif_receive_skb_list_core(head, pfmemalloc);
5971 /* Restore pflags */
5972 if (pfmemalloc)
5973 memalloc_noreclaim_restore(noreclaim_flag);
5974}
5975
5976static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5977{
5978 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5979 struct bpf_prog *new = xdp->prog;
5980 int ret = 0;
5981
5982 switch (xdp->command) {
5983 case XDP_SETUP_PROG:
5984 rcu_assign_pointer(dev->xdp_prog, new);
5985 if (old)
5986 bpf_prog_put(old);
5987
5988 if (old && !new) {
5989 static_branch_dec(&generic_xdp_needed_key);
5990 } else if (new && !old) {
5991 static_branch_inc(&generic_xdp_needed_key);
5992 dev_disable_lro(dev);
5993 dev_disable_gro_hw(dev);
5994 }
5995 break;
5996
5997 default:
5998 ret = -EINVAL;
5999 break;
6000 }
6001
6002 return ret;
6003}
6004
6005static int netif_receive_skb_internal(struct sk_buff *skb)
6006{
6007 int ret;
6008
6009 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6010
6011 if (skb_defer_rx_timestamp(skb))
6012 return NET_RX_SUCCESS;
6013
6014 rcu_read_lock();
6015#ifdef CONFIG_RPS
6016 if (static_branch_unlikely(&rps_needed)) {
6017 struct rps_dev_flow voidflow, *rflow = &voidflow;
6018 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6019
6020 if (cpu >= 0) {
6021 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6022 rcu_read_unlock();
6023 return ret;
6024 }
6025 }
6026#endif
6027 ret = __netif_receive_skb(skb);
6028 rcu_read_unlock();
6029 return ret;
6030}
6031
6032void netif_receive_skb_list_internal(struct list_head *head)
6033{
6034 struct sk_buff *skb, *next;
6035 LIST_HEAD(sublist);
6036
6037 list_for_each_entry_safe(skb, next, head, list) {
6038 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6039 skb);
6040 skb_list_del_init(skb);
6041 if (!skb_defer_rx_timestamp(skb))
6042 list_add_tail(&skb->list, &sublist);
6043 }
6044 list_splice_init(&sublist, head);
6045
6046 rcu_read_lock();
6047#ifdef CONFIG_RPS
6048 if (static_branch_unlikely(&rps_needed)) {
6049 list_for_each_entry_safe(skb, next, head, list) {
6050 struct rps_dev_flow voidflow, *rflow = &voidflow;
6051 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6052
6053 if (cpu >= 0) {
6054 /* Will be handled, remove from list */
6055 skb_list_del_init(skb);
6056 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6057 }
6058 }
6059 }
6060#endif
6061 __netif_receive_skb_list(head);
6062 rcu_read_unlock();
6063}
6064
6065/**
6066 * netif_receive_skb - process receive buffer from network
6067 * @skb: buffer to process
6068 *
6069 * netif_receive_skb() is the main receive data processing function.
6070 * It always succeeds. The buffer may be dropped during processing
6071 * for congestion control or by the protocol layers.
6072 *
6073 * This function may only be called from softirq context and interrupts
6074 * should be enabled.
6075 *
6076 * Return values (usually ignored):
6077 * NET_RX_SUCCESS: no congestion
6078 * NET_RX_DROP: packet was dropped
6079 */
6080int netif_receive_skb(struct sk_buff *skb)
6081{
6082 int ret;
6083
6084 trace_netif_receive_skb_entry(skb);
6085
6086 ret = netif_receive_skb_internal(skb);
6087 trace_netif_receive_skb_exit(ret);
6088
6089 return ret;
6090}
6091EXPORT_SYMBOL(netif_receive_skb);
6092
6093/**
6094 * netif_receive_skb_list - process many receive buffers from network
6095 * @head: list of skbs to process.
6096 *
6097 * Since return value of netif_receive_skb() is normally ignored, and
6098 * wouldn't be meaningful for a list, this function returns void.
6099 *
6100 * This function may only be called from softirq context and interrupts
6101 * should be enabled.
6102 */
6103void netif_receive_skb_list(struct list_head *head)
6104{
6105 struct sk_buff *skb;
6106
6107 if (list_empty(head))
6108 return;
6109 if (trace_netif_receive_skb_list_entry_enabled()) {
6110 list_for_each_entry(skb, head, list)
6111 trace_netif_receive_skb_list_entry(skb);
6112 }
6113 netif_receive_skb_list_internal(head);
6114 trace_netif_receive_skb_list_exit(0);
6115}
6116EXPORT_SYMBOL(netif_receive_skb_list);
6117
6118/* Network device is going away, flush any packets still pending */
6119static void flush_backlog(struct work_struct *work)
6120{
6121 struct sk_buff *skb, *tmp;
6122 struct softnet_data *sd;
6123
6124 local_bh_disable();
6125 sd = this_cpu_ptr(&softnet_data);
6126
6127 backlog_lock_irq_disable(sd);
6128 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6129 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6130 __skb_unlink(skb, &sd->input_pkt_queue);
6131 dev_kfree_skb_irq(skb);
6132 rps_input_queue_head_incr(sd);
6133 }
6134 }
6135 backlog_unlock_irq_enable(sd);
6136
6137 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6138 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6139 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6140 __skb_unlink(skb, &sd->process_queue);
6141 kfree_skb(skb);
6142 rps_input_queue_head_incr(sd);
6143 }
6144 }
6145 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6146 local_bh_enable();
6147}
6148
6149static bool flush_required(int cpu)
6150{
6151#if IS_ENABLED(CONFIG_RPS)
6152 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6153 bool do_flush;
6154
6155 backlog_lock_irq_disable(sd);
6156
6157 /* as insertion into process_queue happens with the rps lock held,
6158 * process_queue access may race only with dequeue
6159 */
6160 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6161 !skb_queue_empty_lockless(&sd->process_queue);
6162 backlog_unlock_irq_enable(sd);
6163
6164 return do_flush;
6165#endif
6166 /* without RPS we can't safely check input_pkt_queue: during a
6167 * concurrent remote skb_queue_splice() we can detect as empty both
6168 * input_pkt_queue and process_queue even if the latter could end-up
6169 * containing a lot of packets.
6170 */
6171 return true;
6172}
6173
6174struct flush_backlogs {
6175 cpumask_t flush_cpus;
6176 struct work_struct w[];
6177};
6178
6179static struct flush_backlogs *flush_backlogs_alloc(void)
6180{
6181 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6182 GFP_KERNEL);
6183}
6184
6185static struct flush_backlogs *flush_backlogs_fallback;
6186static DEFINE_MUTEX(flush_backlogs_mutex);
6187
6188static void flush_all_backlogs(void)
6189{
6190 struct flush_backlogs *ptr = flush_backlogs_alloc();
6191 unsigned int cpu;
6192
6193 if (!ptr) {
6194 mutex_lock(&flush_backlogs_mutex);
6195 ptr = flush_backlogs_fallback;
6196 }
6197 cpumask_clear(&ptr->flush_cpus);
6198
6199 cpus_read_lock();
6200
6201 for_each_online_cpu(cpu) {
6202 if (flush_required(cpu)) {
6203 INIT_WORK(&ptr->w[cpu], flush_backlog);
6204 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6205 __cpumask_set_cpu(cpu, &ptr->flush_cpus);
6206 }
6207 }
6208
6209 /* we can have in flight packet[s] on the cpus we are not flushing,
6210 * synchronize_net() in unregister_netdevice_many() will take care of
6211 * them.
6212 */
6213 for_each_cpu(cpu, &ptr->flush_cpus)
6214 flush_work(&ptr->w[cpu]);
6215
6216 cpus_read_unlock();
6217
6218 if (ptr != flush_backlogs_fallback)
6219 kfree(ptr);
6220 else
6221 mutex_unlock(&flush_backlogs_mutex);
6222}
6223
6224static void net_rps_send_ipi(struct softnet_data *remsd)
6225{
6226#ifdef CONFIG_RPS
6227 while (remsd) {
6228 struct softnet_data *next = remsd->rps_ipi_next;
6229
6230 if (cpu_online(remsd->cpu))
6231 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6232 remsd = next;
6233 }
6234#endif
6235}
6236
6237/*
6238 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6239 * Note: called with local irq disabled, but exits with local irq enabled.
6240 */
6241static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6242{
6243#ifdef CONFIG_RPS
6244 struct softnet_data *remsd = sd->rps_ipi_list;
6245
6246 if (!use_backlog_threads() && remsd) {
6247 sd->rps_ipi_list = NULL;
6248
6249 local_irq_enable();
6250
6251 /* Send pending IPI's to kick RPS processing on remote cpus. */
6252 net_rps_send_ipi(remsd);
6253 } else
6254#endif
6255 local_irq_enable();
6256}
6257
6258static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6259{
6260#ifdef CONFIG_RPS
6261 return !use_backlog_threads() && sd->rps_ipi_list;
6262#else
6263 return false;
6264#endif
6265}
6266
6267static int process_backlog(struct napi_struct *napi, int quota)
6268{
6269 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6270 bool again = true;
6271 int work = 0;
6272
6273 /* Check if we have pending ipi, its better to send them now,
6274 * not waiting net_rx_action() end.
6275 */
6276 if (sd_has_rps_ipi_waiting(sd)) {
6277 local_irq_disable();
6278 net_rps_action_and_irq_enable(sd);
6279 }
6280
6281 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6282 while (again) {
6283 struct sk_buff *skb;
6284
6285 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6286 while ((skb = __skb_dequeue(&sd->process_queue))) {
6287 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6288 rcu_read_lock();
6289 __netif_receive_skb(skb);
6290 rcu_read_unlock();
6291 if (++work >= quota) {
6292 rps_input_queue_head_add(sd, work);
6293 return work;
6294 }
6295
6296 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6297 }
6298 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6299
6300 backlog_lock_irq_disable(sd);
6301 if (skb_queue_empty(&sd->input_pkt_queue)) {
6302 /*
6303 * Inline a custom version of __napi_complete().
6304 * only current cpu owns and manipulates this napi,
6305 * and NAPI_STATE_SCHED is the only possible flag set
6306 * on backlog.
6307 * We can use a plain write instead of clear_bit(),
6308 * and we dont need an smp_mb() memory barrier.
6309 */
6310 napi->state &= NAPIF_STATE_THREADED;
6311 again = false;
6312 } else {
6313 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6314 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6315 &sd->process_queue);
6316 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6317 }
6318 backlog_unlock_irq_enable(sd);
6319 }
6320
6321 if (work)
6322 rps_input_queue_head_add(sd, work);
6323 return work;
6324}
6325
6326/**
6327 * __napi_schedule - schedule for receive
6328 * @n: entry to schedule
6329 *
6330 * The entry's receive function will be scheduled to run.
6331 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6332 */
6333void __napi_schedule(struct napi_struct *n)
6334{
6335 unsigned long flags;
6336
6337 local_irq_save(flags);
6338 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6339 local_irq_restore(flags);
6340}
6341EXPORT_SYMBOL(__napi_schedule);
6342
6343/**
6344 * napi_schedule_prep - check if napi can be scheduled
6345 * @n: napi context
6346 *
6347 * Test if NAPI routine is already running, and if not mark
6348 * it as running. This is used as a condition variable to
6349 * insure only one NAPI poll instance runs. We also make
6350 * sure there is no pending NAPI disable.
6351 */
6352bool napi_schedule_prep(struct napi_struct *n)
6353{
6354 unsigned long new, val = READ_ONCE(n->state);
6355
6356 do {
6357 if (unlikely(val & NAPIF_STATE_DISABLE))
6358 return false;
6359 new = val | NAPIF_STATE_SCHED;
6360
6361 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6362 * This was suggested by Alexander Duyck, as compiler
6363 * emits better code than :
6364 * if (val & NAPIF_STATE_SCHED)
6365 * new |= NAPIF_STATE_MISSED;
6366 */
6367 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6368 NAPIF_STATE_MISSED;
6369 } while (!try_cmpxchg(&n->state, &val, new));
6370
6371 return !(val & NAPIF_STATE_SCHED);
6372}
6373EXPORT_SYMBOL(napi_schedule_prep);
6374
6375/**
6376 * __napi_schedule_irqoff - schedule for receive
6377 * @n: entry to schedule
6378 *
6379 * Variant of __napi_schedule() assuming hard irqs are masked.
6380 *
6381 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6382 * because the interrupt disabled assumption might not be true
6383 * due to force-threaded interrupts and spinlock substitution.
6384 */
6385void __napi_schedule_irqoff(struct napi_struct *n)
6386{
6387 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6388 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6389 else
6390 __napi_schedule(n);
6391}
6392EXPORT_SYMBOL(__napi_schedule_irqoff);
6393
6394bool napi_complete_done(struct napi_struct *n, int work_done)
6395{
6396 unsigned long flags, val, new, timeout = 0;
6397 bool ret = true;
6398
6399 /*
6400 * 1) Don't let napi dequeue from the cpu poll list
6401 * just in case its running on a different cpu.
6402 * 2) If we are busy polling, do nothing here, we have
6403 * the guarantee we will be called later.
6404 */
6405 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6406 NAPIF_STATE_IN_BUSY_POLL)))
6407 return false;
6408
6409 if (work_done) {
6410 if (n->gro_bitmask)
6411 timeout = napi_get_gro_flush_timeout(n);
6412 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6413 }
6414 if (n->defer_hard_irqs_count > 0) {
6415 n->defer_hard_irqs_count--;
6416 timeout = napi_get_gro_flush_timeout(n);
6417 if (timeout)
6418 ret = false;
6419 }
6420 if (n->gro_bitmask) {
6421 /* When the NAPI instance uses a timeout and keeps postponing
6422 * it, we need to bound somehow the time packets are kept in
6423 * the GRO layer
6424 */
6425 napi_gro_flush(n, !!timeout);
6426 }
6427
6428 gro_normal_list(n);
6429
6430 if (unlikely(!list_empty(&n->poll_list))) {
6431 /* If n->poll_list is not empty, we need to mask irqs */
6432 local_irq_save(flags);
6433 list_del_init(&n->poll_list);
6434 local_irq_restore(flags);
6435 }
6436 WRITE_ONCE(n->list_owner, -1);
6437
6438 val = READ_ONCE(n->state);
6439 do {
6440 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6441
6442 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6443 NAPIF_STATE_SCHED_THREADED |
6444 NAPIF_STATE_PREFER_BUSY_POLL);
6445
6446 /* If STATE_MISSED was set, leave STATE_SCHED set,
6447 * because we will call napi->poll() one more time.
6448 * This C code was suggested by Alexander Duyck to help gcc.
6449 */
6450 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6451 NAPIF_STATE_SCHED;
6452 } while (!try_cmpxchg(&n->state, &val, new));
6453
6454 if (unlikely(val & NAPIF_STATE_MISSED)) {
6455 __napi_schedule(n);
6456 return false;
6457 }
6458
6459 if (timeout)
6460 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6461 HRTIMER_MODE_REL_PINNED);
6462 return ret;
6463}
6464EXPORT_SYMBOL(napi_complete_done);
6465
6466static void skb_defer_free_flush(struct softnet_data *sd)
6467{
6468 struct sk_buff *skb, *next;
6469
6470 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6471 if (!READ_ONCE(sd->defer_list))
6472 return;
6473
6474 spin_lock(&sd->defer_lock);
6475 skb = sd->defer_list;
6476 sd->defer_list = NULL;
6477 sd->defer_count = 0;
6478 spin_unlock(&sd->defer_lock);
6479
6480 while (skb != NULL) {
6481 next = skb->next;
6482 napi_consume_skb(skb, 1);
6483 skb = next;
6484 }
6485}
6486
6487#if defined(CONFIG_NET_RX_BUSY_POLL)
6488
6489static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6490{
6491 if (!skip_schedule) {
6492 gro_normal_list(napi);
6493 __napi_schedule(napi);
6494 return;
6495 }
6496
6497 if (napi->gro_bitmask) {
6498 /* flush too old packets
6499 * If HZ < 1000, flush all packets.
6500 */
6501 napi_gro_flush(napi, HZ >= 1000);
6502 }
6503
6504 gro_normal_list(napi);
6505 clear_bit(NAPI_STATE_SCHED, &napi->state);
6506}
6507
6508enum {
6509 NAPI_F_PREFER_BUSY_POLL = 1,
6510 NAPI_F_END_ON_RESCHED = 2,
6511};
6512
6513static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6514 unsigned flags, u16 budget)
6515{
6516 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6517 bool skip_schedule = false;
6518 unsigned long timeout;
6519 int rc;
6520
6521 /* Busy polling means there is a high chance device driver hard irq
6522 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6523 * set in napi_schedule_prep().
6524 * Since we are about to call napi->poll() once more, we can safely
6525 * clear NAPI_STATE_MISSED.
6526 *
6527 * Note: x86 could use a single "lock and ..." instruction
6528 * to perform these two clear_bit()
6529 */
6530 clear_bit(NAPI_STATE_MISSED, &napi->state);
6531 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6532
6533 local_bh_disable();
6534 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6535
6536 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6537 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6538 timeout = napi_get_gro_flush_timeout(napi);
6539 if (napi->defer_hard_irqs_count && timeout) {
6540 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6541 skip_schedule = true;
6542 }
6543 }
6544
6545 /* All we really want here is to re-enable device interrupts.
6546 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6547 */
6548 rc = napi->poll(napi, budget);
6549 /* We can't gro_normal_list() here, because napi->poll() might have
6550 * rearmed the napi (napi_complete_done()) in which case it could
6551 * already be running on another CPU.
6552 */
6553 trace_napi_poll(napi, rc, budget);
6554 netpoll_poll_unlock(have_poll_lock);
6555 if (rc == budget)
6556 __busy_poll_stop(napi, skip_schedule);
6557 bpf_net_ctx_clear(bpf_net_ctx);
6558 local_bh_enable();
6559}
6560
6561static void __napi_busy_loop(unsigned int napi_id,
6562 bool (*loop_end)(void *, unsigned long),
6563 void *loop_end_arg, unsigned flags, u16 budget)
6564{
6565 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6566 int (*napi_poll)(struct napi_struct *napi, int budget);
6567 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6568 void *have_poll_lock = NULL;
6569 struct napi_struct *napi;
6570
6571 WARN_ON_ONCE(!rcu_read_lock_held());
6572
6573restart:
6574 napi_poll = NULL;
6575
6576 napi = napi_by_id(napi_id);
6577 if (!napi)
6578 return;
6579
6580 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6581 preempt_disable();
6582 for (;;) {
6583 int work = 0;
6584
6585 local_bh_disable();
6586 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6587 if (!napi_poll) {
6588 unsigned long val = READ_ONCE(napi->state);
6589
6590 /* If multiple threads are competing for this napi,
6591 * we avoid dirtying napi->state as much as we can.
6592 */
6593 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6594 NAPIF_STATE_IN_BUSY_POLL)) {
6595 if (flags & NAPI_F_PREFER_BUSY_POLL)
6596 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6597 goto count;
6598 }
6599 if (cmpxchg(&napi->state, val,
6600 val | NAPIF_STATE_IN_BUSY_POLL |
6601 NAPIF_STATE_SCHED) != val) {
6602 if (flags & NAPI_F_PREFER_BUSY_POLL)
6603 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6604 goto count;
6605 }
6606 have_poll_lock = netpoll_poll_lock(napi);
6607 napi_poll = napi->poll;
6608 }
6609 work = napi_poll(napi, budget);
6610 trace_napi_poll(napi, work, budget);
6611 gro_normal_list(napi);
6612count:
6613 if (work > 0)
6614 __NET_ADD_STATS(dev_net(napi->dev),
6615 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6616 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6617 bpf_net_ctx_clear(bpf_net_ctx);
6618 local_bh_enable();
6619
6620 if (!loop_end || loop_end(loop_end_arg, start_time))
6621 break;
6622
6623 if (unlikely(need_resched())) {
6624 if (flags & NAPI_F_END_ON_RESCHED)
6625 break;
6626 if (napi_poll)
6627 busy_poll_stop(napi, have_poll_lock, flags, budget);
6628 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6629 preempt_enable();
6630 rcu_read_unlock();
6631 cond_resched();
6632 rcu_read_lock();
6633 if (loop_end(loop_end_arg, start_time))
6634 return;
6635 goto restart;
6636 }
6637 cpu_relax();
6638 }
6639 if (napi_poll)
6640 busy_poll_stop(napi, have_poll_lock, flags, budget);
6641 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6642 preempt_enable();
6643}
6644
6645void napi_busy_loop_rcu(unsigned int napi_id,
6646 bool (*loop_end)(void *, unsigned long),
6647 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6648{
6649 unsigned flags = NAPI_F_END_ON_RESCHED;
6650
6651 if (prefer_busy_poll)
6652 flags |= NAPI_F_PREFER_BUSY_POLL;
6653
6654 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6655}
6656
6657void napi_busy_loop(unsigned int napi_id,
6658 bool (*loop_end)(void *, unsigned long),
6659 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6660{
6661 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6662
6663 rcu_read_lock();
6664 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6665 rcu_read_unlock();
6666}
6667EXPORT_SYMBOL(napi_busy_loop);
6668
6669void napi_suspend_irqs(unsigned int napi_id)
6670{
6671 struct napi_struct *napi;
6672
6673 rcu_read_lock();
6674 napi = napi_by_id(napi_id);
6675 if (napi) {
6676 unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6677
6678 if (timeout)
6679 hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6680 HRTIMER_MODE_REL_PINNED);
6681 }
6682 rcu_read_unlock();
6683}
6684
6685void napi_resume_irqs(unsigned int napi_id)
6686{
6687 struct napi_struct *napi;
6688
6689 rcu_read_lock();
6690 napi = napi_by_id(napi_id);
6691 if (napi) {
6692 /* If irq_suspend_timeout is set to 0 between the call to
6693 * napi_suspend_irqs and now, the original value still
6694 * determines the safety timeout as intended and napi_watchdog
6695 * will resume irq processing.
6696 */
6697 if (napi_get_irq_suspend_timeout(napi)) {
6698 local_bh_disable();
6699 napi_schedule(napi);
6700 local_bh_enable();
6701 }
6702 }
6703 rcu_read_unlock();
6704}
6705
6706#endif /* CONFIG_NET_RX_BUSY_POLL */
6707
6708static void __napi_hash_add_with_id(struct napi_struct *napi,
6709 unsigned int napi_id)
6710{
6711 WRITE_ONCE(napi->napi_id, napi_id);
6712 hlist_add_head_rcu(&napi->napi_hash_node,
6713 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6714}
6715
6716static void napi_hash_add_with_id(struct napi_struct *napi,
6717 unsigned int napi_id)
6718{
6719 unsigned long flags;
6720
6721 spin_lock_irqsave(&napi_hash_lock, flags);
6722 WARN_ON_ONCE(napi_by_id(napi_id));
6723 __napi_hash_add_with_id(napi, napi_id);
6724 spin_unlock_irqrestore(&napi_hash_lock, flags);
6725}
6726
6727static void napi_hash_add(struct napi_struct *napi)
6728{
6729 unsigned long flags;
6730
6731 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6732 return;
6733
6734 spin_lock_irqsave(&napi_hash_lock, flags);
6735
6736 /* 0..NR_CPUS range is reserved for sender_cpu use */
6737 do {
6738 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6739 napi_gen_id = MIN_NAPI_ID;
6740 } while (napi_by_id(napi_gen_id));
6741
6742 __napi_hash_add_with_id(napi, napi_gen_id);
6743
6744 spin_unlock_irqrestore(&napi_hash_lock, flags);
6745}
6746
6747/* Warning : caller is responsible to make sure rcu grace period
6748 * is respected before freeing memory containing @napi
6749 */
6750static void napi_hash_del(struct napi_struct *napi)
6751{
6752 unsigned long flags;
6753
6754 spin_lock_irqsave(&napi_hash_lock, flags);
6755
6756 hlist_del_init_rcu(&napi->napi_hash_node);
6757
6758 spin_unlock_irqrestore(&napi_hash_lock, flags);
6759}
6760
6761static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6762{
6763 struct napi_struct *napi;
6764
6765 napi = container_of(timer, struct napi_struct, timer);
6766
6767 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6768 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6769 */
6770 if (!napi_disable_pending(napi) &&
6771 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6772 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6773 __napi_schedule_irqoff(napi);
6774 }
6775
6776 return HRTIMER_NORESTART;
6777}
6778
6779static void init_gro_hash(struct napi_struct *napi)
6780{
6781 int i;
6782
6783 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6784 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6785 napi->gro_hash[i].count = 0;
6786 }
6787 napi->gro_bitmask = 0;
6788}
6789
6790int dev_set_threaded(struct net_device *dev, bool threaded)
6791{
6792 struct napi_struct *napi;
6793 int err = 0;
6794
6795 netdev_assert_locked_or_invisible(dev);
6796
6797 if (dev->threaded == threaded)
6798 return 0;
6799
6800 if (threaded) {
6801 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6802 if (!napi->thread) {
6803 err = napi_kthread_create(napi);
6804 if (err) {
6805 threaded = false;
6806 break;
6807 }
6808 }
6809 }
6810 }
6811
6812 WRITE_ONCE(dev->threaded, threaded);
6813
6814 /* Make sure kthread is created before THREADED bit
6815 * is set.
6816 */
6817 smp_mb__before_atomic();
6818
6819 /* Setting/unsetting threaded mode on a napi might not immediately
6820 * take effect, if the current napi instance is actively being
6821 * polled. In this case, the switch between threaded mode and
6822 * softirq mode will happen in the next round of napi_schedule().
6823 * This should not cause hiccups/stalls to the live traffic.
6824 */
6825 list_for_each_entry(napi, &dev->napi_list, dev_list)
6826 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6827
6828 return err;
6829}
6830EXPORT_SYMBOL(dev_set_threaded);
6831
6832/**
6833 * netif_queue_set_napi - Associate queue with the napi
6834 * @dev: device to which NAPI and queue belong
6835 * @queue_index: Index of queue
6836 * @type: queue type as RX or TX
6837 * @napi: NAPI context, pass NULL to clear previously set NAPI
6838 *
6839 * Set queue with its corresponding napi context. This should be done after
6840 * registering the NAPI handler for the queue-vector and the queues have been
6841 * mapped to the corresponding interrupt vector.
6842 */
6843void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6844 enum netdev_queue_type type, struct napi_struct *napi)
6845{
6846 struct netdev_rx_queue *rxq;
6847 struct netdev_queue *txq;
6848
6849 if (WARN_ON_ONCE(napi && !napi->dev))
6850 return;
6851 if (dev->reg_state >= NETREG_REGISTERED)
6852 ASSERT_RTNL();
6853
6854 switch (type) {
6855 case NETDEV_QUEUE_TYPE_RX:
6856 rxq = __netif_get_rx_queue(dev, queue_index);
6857 rxq->napi = napi;
6858 return;
6859 case NETDEV_QUEUE_TYPE_TX:
6860 txq = netdev_get_tx_queue(dev, queue_index);
6861 txq->napi = napi;
6862 return;
6863 default:
6864 return;
6865 }
6866}
6867EXPORT_SYMBOL(netif_queue_set_napi);
6868
6869static void napi_restore_config(struct napi_struct *n)
6870{
6871 n->defer_hard_irqs = n->config->defer_hard_irqs;
6872 n->gro_flush_timeout = n->config->gro_flush_timeout;
6873 n->irq_suspend_timeout = n->config->irq_suspend_timeout;
6874 /* a NAPI ID might be stored in the config, if so use it. if not, use
6875 * napi_hash_add to generate one for us.
6876 */
6877 if (n->config->napi_id) {
6878 napi_hash_add_with_id(n, n->config->napi_id);
6879 } else {
6880 napi_hash_add(n);
6881 n->config->napi_id = n->napi_id;
6882 }
6883}
6884
6885static void napi_save_config(struct napi_struct *n)
6886{
6887 n->config->defer_hard_irqs = n->defer_hard_irqs;
6888 n->config->gro_flush_timeout = n->gro_flush_timeout;
6889 n->config->irq_suspend_timeout = n->irq_suspend_timeout;
6890 napi_hash_del(n);
6891}
6892
6893/* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
6894 * inherit an existing ID try to insert it at the right position.
6895 */
6896static void
6897netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
6898{
6899 unsigned int new_id, pos_id;
6900 struct list_head *higher;
6901 struct napi_struct *pos;
6902
6903 new_id = UINT_MAX;
6904 if (napi->config && napi->config->napi_id)
6905 new_id = napi->config->napi_id;
6906
6907 higher = &dev->napi_list;
6908 list_for_each_entry(pos, &dev->napi_list, dev_list) {
6909 if (pos->napi_id >= MIN_NAPI_ID)
6910 pos_id = pos->napi_id;
6911 else if (pos->config)
6912 pos_id = pos->config->napi_id;
6913 else
6914 pos_id = UINT_MAX;
6915
6916 if (pos_id <= new_id)
6917 break;
6918 higher = &pos->dev_list;
6919 }
6920 list_add_rcu(&napi->dev_list, higher); /* adds after higher */
6921}
6922
6923void netif_napi_add_weight_locked(struct net_device *dev,
6924 struct napi_struct *napi,
6925 int (*poll)(struct napi_struct *, int),
6926 int weight)
6927{
6928 netdev_assert_locked(dev);
6929 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6930 return;
6931
6932 INIT_LIST_HEAD(&napi->poll_list);
6933 INIT_HLIST_NODE(&napi->napi_hash_node);
6934 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6935 napi->timer.function = napi_watchdog;
6936 init_gro_hash(napi);
6937 napi->skb = NULL;
6938 INIT_LIST_HEAD(&napi->rx_list);
6939 napi->rx_count = 0;
6940 napi->poll = poll;
6941 if (weight > NAPI_POLL_WEIGHT)
6942 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6943 weight);
6944 napi->weight = weight;
6945 napi->dev = dev;
6946#ifdef CONFIG_NETPOLL
6947 napi->poll_owner = -1;
6948#endif
6949 napi->list_owner = -1;
6950 set_bit(NAPI_STATE_SCHED, &napi->state);
6951 set_bit(NAPI_STATE_NPSVC, &napi->state);
6952 netif_napi_dev_list_add(dev, napi);
6953
6954 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
6955 * configuration will be loaded in napi_enable
6956 */
6957 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
6958 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
6959
6960 napi_get_frags_check(napi);
6961 /* Create kthread for this napi if dev->threaded is set.
6962 * Clear dev->threaded if kthread creation failed so that
6963 * threaded mode will not be enabled in napi_enable().
6964 */
6965 if (dev->threaded && napi_kthread_create(napi))
6966 dev->threaded = false;
6967 netif_napi_set_irq_locked(napi, -1);
6968}
6969EXPORT_SYMBOL(netif_napi_add_weight_locked);
6970
6971void napi_disable_locked(struct napi_struct *n)
6972{
6973 unsigned long val, new;
6974
6975 might_sleep();
6976 netdev_assert_locked(n->dev);
6977
6978 set_bit(NAPI_STATE_DISABLE, &n->state);
6979
6980 val = READ_ONCE(n->state);
6981 do {
6982 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6983 usleep_range(20, 200);
6984 val = READ_ONCE(n->state);
6985 }
6986
6987 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6988 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6989 } while (!try_cmpxchg(&n->state, &val, new));
6990
6991 hrtimer_cancel(&n->timer);
6992
6993 if (n->config)
6994 napi_save_config(n);
6995 else
6996 napi_hash_del(n);
6997
6998 clear_bit(NAPI_STATE_DISABLE, &n->state);
6999}
7000EXPORT_SYMBOL(napi_disable_locked);
7001
7002/**
7003 * napi_disable() - prevent NAPI from scheduling
7004 * @n: NAPI context
7005 *
7006 * Stop NAPI from being scheduled on this context.
7007 * Waits till any outstanding processing completes.
7008 * Takes netdev_lock() for associated net_device.
7009 */
7010void napi_disable(struct napi_struct *n)
7011{
7012 netdev_lock(n->dev);
7013 napi_disable_locked(n);
7014 netdev_unlock(n->dev);
7015}
7016EXPORT_SYMBOL(napi_disable);
7017
7018void napi_enable_locked(struct napi_struct *n)
7019{
7020 unsigned long new, val = READ_ONCE(n->state);
7021
7022 if (n->config)
7023 napi_restore_config(n);
7024 else
7025 napi_hash_add(n);
7026
7027 do {
7028 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7029
7030 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7031 if (n->dev->threaded && n->thread)
7032 new |= NAPIF_STATE_THREADED;
7033 } while (!try_cmpxchg(&n->state, &val, new));
7034}
7035EXPORT_SYMBOL(napi_enable_locked);
7036
7037/**
7038 * napi_enable() - enable NAPI scheduling
7039 * @n: NAPI context
7040 *
7041 * Enable scheduling of a NAPI instance.
7042 * Must be paired with napi_disable().
7043 * Takes netdev_lock() for associated net_device.
7044 */
7045void napi_enable(struct napi_struct *n)
7046{
7047 netdev_lock(n->dev);
7048 napi_enable_locked(n);
7049 netdev_unlock(n->dev);
7050}
7051EXPORT_SYMBOL(napi_enable);
7052
7053static void flush_gro_hash(struct napi_struct *napi)
7054{
7055 int i;
7056
7057 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
7058 struct sk_buff *skb, *n;
7059
7060 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
7061 kfree_skb(skb);
7062 napi->gro_hash[i].count = 0;
7063 }
7064}
7065
7066/* Must be called in process context */
7067void __netif_napi_del_locked(struct napi_struct *napi)
7068{
7069 netdev_assert_locked(napi->dev);
7070
7071 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7072 return;
7073
7074 if (napi->config) {
7075 napi->index = -1;
7076 napi->config = NULL;
7077 }
7078
7079 list_del_rcu(&napi->dev_list);
7080 napi_free_frags(napi);
7081
7082 flush_gro_hash(napi);
7083 napi->gro_bitmask = 0;
7084
7085 if (napi->thread) {
7086 kthread_stop(napi->thread);
7087 napi->thread = NULL;
7088 }
7089}
7090EXPORT_SYMBOL(__netif_napi_del_locked);
7091
7092static int __napi_poll(struct napi_struct *n, bool *repoll)
7093{
7094 int work, weight;
7095
7096 weight = n->weight;
7097
7098 /* This NAPI_STATE_SCHED test is for avoiding a race
7099 * with netpoll's poll_napi(). Only the entity which
7100 * obtains the lock and sees NAPI_STATE_SCHED set will
7101 * actually make the ->poll() call. Therefore we avoid
7102 * accidentally calling ->poll() when NAPI is not scheduled.
7103 */
7104 work = 0;
7105 if (napi_is_scheduled(n)) {
7106 work = n->poll(n, weight);
7107 trace_napi_poll(n, work, weight);
7108
7109 xdp_do_check_flushed(n);
7110 }
7111
7112 if (unlikely(work > weight))
7113 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7114 n->poll, work, weight);
7115
7116 if (likely(work < weight))
7117 return work;
7118
7119 /* Drivers must not modify the NAPI state if they
7120 * consume the entire weight. In such cases this code
7121 * still "owns" the NAPI instance and therefore can
7122 * move the instance around on the list at-will.
7123 */
7124 if (unlikely(napi_disable_pending(n))) {
7125 napi_complete(n);
7126 return work;
7127 }
7128
7129 /* The NAPI context has more processing work, but busy-polling
7130 * is preferred. Exit early.
7131 */
7132 if (napi_prefer_busy_poll(n)) {
7133 if (napi_complete_done(n, work)) {
7134 /* If timeout is not set, we need to make sure
7135 * that the NAPI is re-scheduled.
7136 */
7137 napi_schedule(n);
7138 }
7139 return work;
7140 }
7141
7142 if (n->gro_bitmask) {
7143 /* flush too old packets
7144 * If HZ < 1000, flush all packets.
7145 */
7146 napi_gro_flush(n, HZ >= 1000);
7147 }
7148
7149 gro_normal_list(n);
7150
7151 /* Some drivers may have called napi_schedule
7152 * prior to exhausting their budget.
7153 */
7154 if (unlikely(!list_empty(&n->poll_list))) {
7155 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7156 n->dev ? n->dev->name : "backlog");
7157 return work;
7158 }
7159
7160 *repoll = true;
7161
7162 return work;
7163}
7164
7165static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7166{
7167 bool do_repoll = false;
7168 void *have;
7169 int work;
7170
7171 list_del_init(&n->poll_list);
7172
7173 have = netpoll_poll_lock(n);
7174
7175 work = __napi_poll(n, &do_repoll);
7176
7177 if (do_repoll)
7178 list_add_tail(&n->poll_list, repoll);
7179
7180 netpoll_poll_unlock(have);
7181
7182 return work;
7183}
7184
7185static int napi_thread_wait(struct napi_struct *napi)
7186{
7187 set_current_state(TASK_INTERRUPTIBLE);
7188
7189 while (!kthread_should_stop()) {
7190 /* Testing SCHED_THREADED bit here to make sure the current
7191 * kthread owns this napi and could poll on this napi.
7192 * Testing SCHED bit is not enough because SCHED bit might be
7193 * set by some other busy poll thread or by napi_disable().
7194 */
7195 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7196 WARN_ON(!list_empty(&napi->poll_list));
7197 __set_current_state(TASK_RUNNING);
7198 return 0;
7199 }
7200
7201 schedule();
7202 set_current_state(TASK_INTERRUPTIBLE);
7203 }
7204 __set_current_state(TASK_RUNNING);
7205
7206 return -1;
7207}
7208
7209static void napi_threaded_poll_loop(struct napi_struct *napi)
7210{
7211 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7212 struct softnet_data *sd;
7213 unsigned long last_qs = jiffies;
7214
7215 for (;;) {
7216 bool repoll = false;
7217 void *have;
7218
7219 local_bh_disable();
7220 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7221
7222 sd = this_cpu_ptr(&softnet_data);
7223 sd->in_napi_threaded_poll = true;
7224
7225 have = netpoll_poll_lock(napi);
7226 __napi_poll(napi, &repoll);
7227 netpoll_poll_unlock(have);
7228
7229 sd->in_napi_threaded_poll = false;
7230 barrier();
7231
7232 if (sd_has_rps_ipi_waiting(sd)) {
7233 local_irq_disable();
7234 net_rps_action_and_irq_enable(sd);
7235 }
7236 skb_defer_free_flush(sd);
7237 bpf_net_ctx_clear(bpf_net_ctx);
7238 local_bh_enable();
7239
7240 if (!repoll)
7241 break;
7242
7243 rcu_softirq_qs_periodic(last_qs);
7244 cond_resched();
7245 }
7246}
7247
7248static int napi_threaded_poll(void *data)
7249{
7250 struct napi_struct *napi = data;
7251
7252 while (!napi_thread_wait(napi))
7253 napi_threaded_poll_loop(napi);
7254
7255 return 0;
7256}
7257
7258static __latent_entropy void net_rx_action(void)
7259{
7260 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7261 unsigned long time_limit = jiffies +
7262 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7263 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7264 int budget = READ_ONCE(net_hotdata.netdev_budget);
7265 LIST_HEAD(list);
7266 LIST_HEAD(repoll);
7267
7268 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7269start:
7270 sd->in_net_rx_action = true;
7271 local_irq_disable();
7272 list_splice_init(&sd->poll_list, &list);
7273 local_irq_enable();
7274
7275 for (;;) {
7276 struct napi_struct *n;
7277
7278 skb_defer_free_flush(sd);
7279
7280 if (list_empty(&list)) {
7281 if (list_empty(&repoll)) {
7282 sd->in_net_rx_action = false;
7283 barrier();
7284 /* We need to check if ____napi_schedule()
7285 * had refilled poll_list while
7286 * sd->in_net_rx_action was true.
7287 */
7288 if (!list_empty(&sd->poll_list))
7289 goto start;
7290 if (!sd_has_rps_ipi_waiting(sd))
7291 goto end;
7292 }
7293 break;
7294 }
7295
7296 n = list_first_entry(&list, struct napi_struct, poll_list);
7297 budget -= napi_poll(n, &repoll);
7298
7299 /* If softirq window is exhausted then punt.
7300 * Allow this to run for 2 jiffies since which will allow
7301 * an average latency of 1.5/HZ.
7302 */
7303 if (unlikely(budget <= 0 ||
7304 time_after_eq(jiffies, time_limit))) {
7305 sd->time_squeeze++;
7306 break;
7307 }
7308 }
7309
7310 local_irq_disable();
7311
7312 list_splice_tail_init(&sd->poll_list, &list);
7313 list_splice_tail(&repoll, &list);
7314 list_splice(&list, &sd->poll_list);
7315 if (!list_empty(&sd->poll_list))
7316 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7317 else
7318 sd->in_net_rx_action = false;
7319
7320 net_rps_action_and_irq_enable(sd);
7321end:
7322 bpf_net_ctx_clear(bpf_net_ctx);
7323}
7324
7325struct netdev_adjacent {
7326 struct net_device *dev;
7327 netdevice_tracker dev_tracker;
7328
7329 /* upper master flag, there can only be one master device per list */
7330 bool master;
7331
7332 /* lookup ignore flag */
7333 bool ignore;
7334
7335 /* counter for the number of times this device was added to us */
7336 u16 ref_nr;
7337
7338 /* private field for the users */
7339 void *private;
7340
7341 struct list_head list;
7342 struct rcu_head rcu;
7343};
7344
7345static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7346 struct list_head *adj_list)
7347{
7348 struct netdev_adjacent *adj;
7349
7350 list_for_each_entry(adj, adj_list, list) {
7351 if (adj->dev == adj_dev)
7352 return adj;
7353 }
7354 return NULL;
7355}
7356
7357static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7358 struct netdev_nested_priv *priv)
7359{
7360 struct net_device *dev = (struct net_device *)priv->data;
7361
7362 return upper_dev == dev;
7363}
7364
7365/**
7366 * netdev_has_upper_dev - Check if device is linked to an upper device
7367 * @dev: device
7368 * @upper_dev: upper device to check
7369 *
7370 * Find out if a device is linked to specified upper device and return true
7371 * in case it is. Note that this checks only immediate upper device,
7372 * not through a complete stack of devices. The caller must hold the RTNL lock.
7373 */
7374bool netdev_has_upper_dev(struct net_device *dev,
7375 struct net_device *upper_dev)
7376{
7377 struct netdev_nested_priv priv = {
7378 .data = (void *)upper_dev,
7379 };
7380
7381 ASSERT_RTNL();
7382
7383 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7384 &priv);
7385}
7386EXPORT_SYMBOL(netdev_has_upper_dev);
7387
7388/**
7389 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7390 * @dev: device
7391 * @upper_dev: upper device to check
7392 *
7393 * Find out if a device is linked to specified upper device and return true
7394 * in case it is. Note that this checks the entire upper device chain.
7395 * The caller must hold rcu lock.
7396 */
7397
7398bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7399 struct net_device *upper_dev)
7400{
7401 struct netdev_nested_priv priv = {
7402 .data = (void *)upper_dev,
7403 };
7404
7405 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7406 &priv);
7407}
7408EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7409
7410/**
7411 * netdev_has_any_upper_dev - Check if device is linked to some device
7412 * @dev: device
7413 *
7414 * Find out if a device is linked to an upper device and return true in case
7415 * it is. The caller must hold the RTNL lock.
7416 */
7417bool netdev_has_any_upper_dev(struct net_device *dev)
7418{
7419 ASSERT_RTNL();
7420
7421 return !list_empty(&dev->adj_list.upper);
7422}
7423EXPORT_SYMBOL(netdev_has_any_upper_dev);
7424
7425/**
7426 * netdev_master_upper_dev_get - Get master upper device
7427 * @dev: device
7428 *
7429 * Find a master upper device and return pointer to it or NULL in case
7430 * it's not there. The caller must hold the RTNL lock.
7431 */
7432struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7433{
7434 struct netdev_adjacent *upper;
7435
7436 ASSERT_RTNL();
7437
7438 if (list_empty(&dev->adj_list.upper))
7439 return NULL;
7440
7441 upper = list_first_entry(&dev->adj_list.upper,
7442 struct netdev_adjacent, list);
7443 if (likely(upper->master))
7444 return upper->dev;
7445 return NULL;
7446}
7447EXPORT_SYMBOL(netdev_master_upper_dev_get);
7448
7449static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7450{
7451 struct netdev_adjacent *upper;
7452
7453 ASSERT_RTNL();
7454
7455 if (list_empty(&dev->adj_list.upper))
7456 return NULL;
7457
7458 upper = list_first_entry(&dev->adj_list.upper,
7459 struct netdev_adjacent, list);
7460 if (likely(upper->master) && !upper->ignore)
7461 return upper->dev;
7462 return NULL;
7463}
7464
7465/**
7466 * netdev_has_any_lower_dev - Check if device is linked to some device
7467 * @dev: device
7468 *
7469 * Find out if a device is linked to a lower device and return true in case
7470 * it is. The caller must hold the RTNL lock.
7471 */
7472static bool netdev_has_any_lower_dev(struct net_device *dev)
7473{
7474 ASSERT_RTNL();
7475
7476 return !list_empty(&dev->adj_list.lower);
7477}
7478
7479void *netdev_adjacent_get_private(struct list_head *adj_list)
7480{
7481 struct netdev_adjacent *adj;
7482
7483 adj = list_entry(adj_list, struct netdev_adjacent, list);
7484
7485 return adj->private;
7486}
7487EXPORT_SYMBOL(netdev_adjacent_get_private);
7488
7489/**
7490 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7491 * @dev: device
7492 * @iter: list_head ** of the current position
7493 *
7494 * Gets the next device from the dev's upper list, starting from iter
7495 * position. The caller must hold RCU read lock.
7496 */
7497struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7498 struct list_head **iter)
7499{
7500 struct netdev_adjacent *upper;
7501
7502 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7503
7504 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7505
7506 if (&upper->list == &dev->adj_list.upper)
7507 return NULL;
7508
7509 *iter = &upper->list;
7510
7511 return upper->dev;
7512}
7513EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7514
7515static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7516 struct list_head **iter,
7517 bool *ignore)
7518{
7519 struct netdev_adjacent *upper;
7520
7521 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7522
7523 if (&upper->list == &dev->adj_list.upper)
7524 return NULL;
7525
7526 *iter = &upper->list;
7527 *ignore = upper->ignore;
7528
7529 return upper->dev;
7530}
7531
7532static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7533 struct list_head **iter)
7534{
7535 struct netdev_adjacent *upper;
7536
7537 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7538
7539 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7540
7541 if (&upper->list == &dev->adj_list.upper)
7542 return NULL;
7543
7544 *iter = &upper->list;
7545
7546 return upper->dev;
7547}
7548
7549static int __netdev_walk_all_upper_dev(struct net_device *dev,
7550 int (*fn)(struct net_device *dev,
7551 struct netdev_nested_priv *priv),
7552 struct netdev_nested_priv *priv)
7553{
7554 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7555 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7556 int ret, cur = 0;
7557 bool ignore;
7558
7559 now = dev;
7560 iter = &dev->adj_list.upper;
7561
7562 while (1) {
7563 if (now != dev) {
7564 ret = fn(now, priv);
7565 if (ret)
7566 return ret;
7567 }
7568
7569 next = NULL;
7570 while (1) {
7571 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7572 if (!udev)
7573 break;
7574 if (ignore)
7575 continue;
7576
7577 next = udev;
7578 niter = &udev->adj_list.upper;
7579 dev_stack[cur] = now;
7580 iter_stack[cur++] = iter;
7581 break;
7582 }
7583
7584 if (!next) {
7585 if (!cur)
7586 return 0;
7587 next = dev_stack[--cur];
7588 niter = iter_stack[cur];
7589 }
7590
7591 now = next;
7592 iter = niter;
7593 }
7594
7595 return 0;
7596}
7597
7598int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7599 int (*fn)(struct net_device *dev,
7600 struct netdev_nested_priv *priv),
7601 struct netdev_nested_priv *priv)
7602{
7603 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7604 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7605 int ret, cur = 0;
7606
7607 now = dev;
7608 iter = &dev->adj_list.upper;
7609
7610 while (1) {
7611 if (now != dev) {
7612 ret = fn(now, priv);
7613 if (ret)
7614 return ret;
7615 }
7616
7617 next = NULL;
7618 while (1) {
7619 udev = netdev_next_upper_dev_rcu(now, &iter);
7620 if (!udev)
7621 break;
7622
7623 next = udev;
7624 niter = &udev->adj_list.upper;
7625 dev_stack[cur] = now;
7626 iter_stack[cur++] = iter;
7627 break;
7628 }
7629
7630 if (!next) {
7631 if (!cur)
7632 return 0;
7633 next = dev_stack[--cur];
7634 niter = iter_stack[cur];
7635 }
7636
7637 now = next;
7638 iter = niter;
7639 }
7640
7641 return 0;
7642}
7643EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7644
7645static bool __netdev_has_upper_dev(struct net_device *dev,
7646 struct net_device *upper_dev)
7647{
7648 struct netdev_nested_priv priv = {
7649 .flags = 0,
7650 .data = (void *)upper_dev,
7651 };
7652
7653 ASSERT_RTNL();
7654
7655 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7656 &priv);
7657}
7658
7659/**
7660 * netdev_lower_get_next_private - Get the next ->private from the
7661 * lower neighbour list
7662 * @dev: device
7663 * @iter: list_head ** of the current position
7664 *
7665 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7666 * list, starting from iter position. The caller must hold either hold the
7667 * RTNL lock or its own locking that guarantees that the neighbour lower
7668 * list will remain unchanged.
7669 */
7670void *netdev_lower_get_next_private(struct net_device *dev,
7671 struct list_head **iter)
7672{
7673 struct netdev_adjacent *lower;
7674
7675 lower = list_entry(*iter, struct netdev_adjacent, list);
7676
7677 if (&lower->list == &dev->adj_list.lower)
7678 return NULL;
7679
7680 *iter = lower->list.next;
7681
7682 return lower->private;
7683}
7684EXPORT_SYMBOL(netdev_lower_get_next_private);
7685
7686/**
7687 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7688 * lower neighbour list, RCU
7689 * variant
7690 * @dev: device
7691 * @iter: list_head ** of the current position
7692 *
7693 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7694 * list, starting from iter position. The caller must hold RCU read lock.
7695 */
7696void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7697 struct list_head **iter)
7698{
7699 struct netdev_adjacent *lower;
7700
7701 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7702
7703 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7704
7705 if (&lower->list == &dev->adj_list.lower)
7706 return NULL;
7707
7708 *iter = &lower->list;
7709
7710 return lower->private;
7711}
7712EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7713
7714/**
7715 * netdev_lower_get_next - Get the next device from the lower neighbour
7716 * list
7717 * @dev: device
7718 * @iter: list_head ** of the current position
7719 *
7720 * Gets the next netdev_adjacent from the dev's lower neighbour
7721 * list, starting from iter position. The caller must hold RTNL lock or
7722 * its own locking that guarantees that the neighbour lower
7723 * list will remain unchanged.
7724 */
7725void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7726{
7727 struct netdev_adjacent *lower;
7728
7729 lower = list_entry(*iter, struct netdev_adjacent, list);
7730
7731 if (&lower->list == &dev->adj_list.lower)
7732 return NULL;
7733
7734 *iter = lower->list.next;
7735
7736 return lower->dev;
7737}
7738EXPORT_SYMBOL(netdev_lower_get_next);
7739
7740static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7741 struct list_head **iter)
7742{
7743 struct netdev_adjacent *lower;
7744
7745 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7746
7747 if (&lower->list == &dev->adj_list.lower)
7748 return NULL;
7749
7750 *iter = &lower->list;
7751
7752 return lower->dev;
7753}
7754
7755static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7756 struct list_head **iter,
7757 bool *ignore)
7758{
7759 struct netdev_adjacent *lower;
7760
7761 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7762
7763 if (&lower->list == &dev->adj_list.lower)
7764 return NULL;
7765
7766 *iter = &lower->list;
7767 *ignore = lower->ignore;
7768
7769 return lower->dev;
7770}
7771
7772int netdev_walk_all_lower_dev(struct net_device *dev,
7773 int (*fn)(struct net_device *dev,
7774 struct netdev_nested_priv *priv),
7775 struct netdev_nested_priv *priv)
7776{
7777 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7778 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7779 int ret, cur = 0;
7780
7781 now = dev;
7782 iter = &dev->adj_list.lower;
7783
7784 while (1) {
7785 if (now != dev) {
7786 ret = fn(now, priv);
7787 if (ret)
7788 return ret;
7789 }
7790
7791 next = NULL;
7792 while (1) {
7793 ldev = netdev_next_lower_dev(now, &iter);
7794 if (!ldev)
7795 break;
7796
7797 next = ldev;
7798 niter = &ldev->adj_list.lower;
7799 dev_stack[cur] = now;
7800 iter_stack[cur++] = iter;
7801 break;
7802 }
7803
7804 if (!next) {
7805 if (!cur)
7806 return 0;
7807 next = dev_stack[--cur];
7808 niter = iter_stack[cur];
7809 }
7810
7811 now = next;
7812 iter = niter;
7813 }
7814
7815 return 0;
7816}
7817EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7818
7819static int __netdev_walk_all_lower_dev(struct net_device *dev,
7820 int (*fn)(struct net_device *dev,
7821 struct netdev_nested_priv *priv),
7822 struct netdev_nested_priv *priv)
7823{
7824 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7825 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7826 int ret, cur = 0;
7827 bool ignore;
7828
7829 now = dev;
7830 iter = &dev->adj_list.lower;
7831
7832 while (1) {
7833 if (now != dev) {
7834 ret = fn(now, priv);
7835 if (ret)
7836 return ret;
7837 }
7838
7839 next = NULL;
7840 while (1) {
7841 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7842 if (!ldev)
7843 break;
7844 if (ignore)
7845 continue;
7846
7847 next = ldev;
7848 niter = &ldev->adj_list.lower;
7849 dev_stack[cur] = now;
7850 iter_stack[cur++] = iter;
7851 break;
7852 }
7853
7854 if (!next) {
7855 if (!cur)
7856 return 0;
7857 next = dev_stack[--cur];
7858 niter = iter_stack[cur];
7859 }
7860
7861 now = next;
7862 iter = niter;
7863 }
7864
7865 return 0;
7866}
7867
7868struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7869 struct list_head **iter)
7870{
7871 struct netdev_adjacent *lower;
7872
7873 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7874 if (&lower->list == &dev->adj_list.lower)
7875 return NULL;
7876
7877 *iter = &lower->list;
7878
7879 return lower->dev;
7880}
7881EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7882
7883static u8 __netdev_upper_depth(struct net_device *dev)
7884{
7885 struct net_device *udev;
7886 struct list_head *iter;
7887 u8 max_depth = 0;
7888 bool ignore;
7889
7890 for (iter = &dev->adj_list.upper,
7891 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7892 udev;
7893 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7894 if (ignore)
7895 continue;
7896 if (max_depth < udev->upper_level)
7897 max_depth = udev->upper_level;
7898 }
7899
7900 return max_depth;
7901}
7902
7903static u8 __netdev_lower_depth(struct net_device *dev)
7904{
7905 struct net_device *ldev;
7906 struct list_head *iter;
7907 u8 max_depth = 0;
7908 bool ignore;
7909
7910 for (iter = &dev->adj_list.lower,
7911 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7912 ldev;
7913 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7914 if (ignore)
7915 continue;
7916 if (max_depth < ldev->lower_level)
7917 max_depth = ldev->lower_level;
7918 }
7919
7920 return max_depth;
7921}
7922
7923static int __netdev_update_upper_level(struct net_device *dev,
7924 struct netdev_nested_priv *__unused)
7925{
7926 dev->upper_level = __netdev_upper_depth(dev) + 1;
7927 return 0;
7928}
7929
7930#ifdef CONFIG_LOCKDEP
7931static LIST_HEAD(net_unlink_list);
7932
7933static void net_unlink_todo(struct net_device *dev)
7934{
7935 if (list_empty(&dev->unlink_list))
7936 list_add_tail(&dev->unlink_list, &net_unlink_list);
7937}
7938#endif
7939
7940static int __netdev_update_lower_level(struct net_device *dev,
7941 struct netdev_nested_priv *priv)
7942{
7943 dev->lower_level = __netdev_lower_depth(dev) + 1;
7944
7945#ifdef CONFIG_LOCKDEP
7946 if (!priv)
7947 return 0;
7948
7949 if (priv->flags & NESTED_SYNC_IMM)
7950 dev->nested_level = dev->lower_level - 1;
7951 if (priv->flags & NESTED_SYNC_TODO)
7952 net_unlink_todo(dev);
7953#endif
7954 return 0;
7955}
7956
7957int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7958 int (*fn)(struct net_device *dev,
7959 struct netdev_nested_priv *priv),
7960 struct netdev_nested_priv *priv)
7961{
7962 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7963 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7964 int ret, cur = 0;
7965
7966 now = dev;
7967 iter = &dev->adj_list.lower;
7968
7969 while (1) {
7970 if (now != dev) {
7971 ret = fn(now, priv);
7972 if (ret)
7973 return ret;
7974 }
7975
7976 next = NULL;
7977 while (1) {
7978 ldev = netdev_next_lower_dev_rcu(now, &iter);
7979 if (!ldev)
7980 break;
7981
7982 next = ldev;
7983 niter = &ldev->adj_list.lower;
7984 dev_stack[cur] = now;
7985 iter_stack[cur++] = iter;
7986 break;
7987 }
7988
7989 if (!next) {
7990 if (!cur)
7991 return 0;
7992 next = dev_stack[--cur];
7993 niter = iter_stack[cur];
7994 }
7995
7996 now = next;
7997 iter = niter;
7998 }
7999
8000 return 0;
8001}
8002EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8003
8004/**
8005 * netdev_lower_get_first_private_rcu - Get the first ->private from the
8006 * lower neighbour list, RCU
8007 * variant
8008 * @dev: device
8009 *
8010 * Gets the first netdev_adjacent->private from the dev's lower neighbour
8011 * list. The caller must hold RCU read lock.
8012 */
8013void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8014{
8015 struct netdev_adjacent *lower;
8016
8017 lower = list_first_or_null_rcu(&dev->adj_list.lower,
8018 struct netdev_adjacent, list);
8019 if (lower)
8020 return lower->private;
8021 return NULL;
8022}
8023EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8024
8025/**
8026 * netdev_master_upper_dev_get_rcu - Get master upper device
8027 * @dev: device
8028 *
8029 * Find a master upper device and return pointer to it or NULL in case
8030 * it's not there. The caller must hold the RCU read lock.
8031 */
8032struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8033{
8034 struct netdev_adjacent *upper;
8035
8036 upper = list_first_or_null_rcu(&dev->adj_list.upper,
8037 struct netdev_adjacent, list);
8038 if (upper && likely(upper->master))
8039 return upper->dev;
8040 return NULL;
8041}
8042EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8043
8044static int netdev_adjacent_sysfs_add(struct net_device *dev,
8045 struct net_device *adj_dev,
8046 struct list_head *dev_list)
8047{
8048 char linkname[IFNAMSIZ+7];
8049
8050 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8051 "upper_%s" : "lower_%s", adj_dev->name);
8052 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8053 linkname);
8054}
8055static void netdev_adjacent_sysfs_del(struct net_device *dev,
8056 char *name,
8057 struct list_head *dev_list)
8058{
8059 char linkname[IFNAMSIZ+7];
8060
8061 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8062 "upper_%s" : "lower_%s", name);
8063 sysfs_remove_link(&(dev->dev.kobj), linkname);
8064}
8065
8066static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8067 struct net_device *adj_dev,
8068 struct list_head *dev_list)
8069{
8070 return (dev_list == &dev->adj_list.upper ||
8071 dev_list == &dev->adj_list.lower) &&
8072 net_eq(dev_net(dev), dev_net(adj_dev));
8073}
8074
8075static int __netdev_adjacent_dev_insert(struct net_device *dev,
8076 struct net_device *adj_dev,
8077 struct list_head *dev_list,
8078 void *private, bool master)
8079{
8080 struct netdev_adjacent *adj;
8081 int ret;
8082
8083 adj = __netdev_find_adj(adj_dev, dev_list);
8084
8085 if (adj) {
8086 adj->ref_nr += 1;
8087 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8088 dev->name, adj_dev->name, adj->ref_nr);
8089
8090 return 0;
8091 }
8092
8093 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8094 if (!adj)
8095 return -ENOMEM;
8096
8097 adj->dev = adj_dev;
8098 adj->master = master;
8099 adj->ref_nr = 1;
8100 adj->private = private;
8101 adj->ignore = false;
8102 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8103
8104 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8105 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8106
8107 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8108 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8109 if (ret)
8110 goto free_adj;
8111 }
8112
8113 /* Ensure that master link is always the first item in list. */
8114 if (master) {
8115 ret = sysfs_create_link(&(dev->dev.kobj),
8116 &(adj_dev->dev.kobj), "master");
8117 if (ret)
8118 goto remove_symlinks;
8119
8120 list_add_rcu(&adj->list, dev_list);
8121 } else {
8122 list_add_tail_rcu(&adj->list, dev_list);
8123 }
8124
8125 return 0;
8126
8127remove_symlinks:
8128 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8129 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8130free_adj:
8131 netdev_put(adj_dev, &adj->dev_tracker);
8132 kfree(adj);
8133
8134 return ret;
8135}
8136
8137static void __netdev_adjacent_dev_remove(struct net_device *dev,
8138 struct net_device *adj_dev,
8139 u16 ref_nr,
8140 struct list_head *dev_list)
8141{
8142 struct netdev_adjacent *adj;
8143
8144 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8145 dev->name, adj_dev->name, ref_nr);
8146
8147 adj = __netdev_find_adj(adj_dev, dev_list);
8148
8149 if (!adj) {
8150 pr_err("Adjacency does not exist for device %s from %s\n",
8151 dev->name, adj_dev->name);
8152 WARN_ON(1);
8153 return;
8154 }
8155
8156 if (adj->ref_nr > ref_nr) {
8157 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8158 dev->name, adj_dev->name, ref_nr,
8159 adj->ref_nr - ref_nr);
8160 adj->ref_nr -= ref_nr;
8161 return;
8162 }
8163
8164 if (adj->master)
8165 sysfs_remove_link(&(dev->dev.kobj), "master");
8166
8167 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8168 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8169
8170 list_del_rcu(&adj->list);
8171 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8172 adj_dev->name, dev->name, adj_dev->name);
8173 netdev_put(adj_dev, &adj->dev_tracker);
8174 kfree_rcu(adj, rcu);
8175}
8176
8177static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8178 struct net_device *upper_dev,
8179 struct list_head *up_list,
8180 struct list_head *down_list,
8181 void *private, bool master)
8182{
8183 int ret;
8184
8185 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8186 private, master);
8187 if (ret)
8188 return ret;
8189
8190 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8191 private, false);
8192 if (ret) {
8193 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8194 return ret;
8195 }
8196
8197 return 0;
8198}
8199
8200static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8201 struct net_device *upper_dev,
8202 u16 ref_nr,
8203 struct list_head *up_list,
8204 struct list_head *down_list)
8205{
8206 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8207 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8208}
8209
8210static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8211 struct net_device *upper_dev,
8212 void *private, bool master)
8213{
8214 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8215 &dev->adj_list.upper,
8216 &upper_dev->adj_list.lower,
8217 private, master);
8218}
8219
8220static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8221 struct net_device *upper_dev)
8222{
8223 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8224 &dev->adj_list.upper,
8225 &upper_dev->adj_list.lower);
8226}
8227
8228static int __netdev_upper_dev_link(struct net_device *dev,
8229 struct net_device *upper_dev, bool master,
8230 void *upper_priv, void *upper_info,
8231 struct netdev_nested_priv *priv,
8232 struct netlink_ext_ack *extack)
8233{
8234 struct netdev_notifier_changeupper_info changeupper_info = {
8235 .info = {
8236 .dev = dev,
8237 .extack = extack,
8238 },
8239 .upper_dev = upper_dev,
8240 .master = master,
8241 .linking = true,
8242 .upper_info = upper_info,
8243 };
8244 struct net_device *master_dev;
8245 int ret = 0;
8246
8247 ASSERT_RTNL();
8248
8249 if (dev == upper_dev)
8250 return -EBUSY;
8251
8252 /* To prevent loops, check if dev is not upper device to upper_dev. */
8253 if (__netdev_has_upper_dev(upper_dev, dev))
8254 return -EBUSY;
8255
8256 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8257 return -EMLINK;
8258
8259 if (!master) {
8260 if (__netdev_has_upper_dev(dev, upper_dev))
8261 return -EEXIST;
8262 } else {
8263 master_dev = __netdev_master_upper_dev_get(dev);
8264 if (master_dev)
8265 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8266 }
8267
8268 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8269 &changeupper_info.info);
8270 ret = notifier_to_errno(ret);
8271 if (ret)
8272 return ret;
8273
8274 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8275 master);
8276 if (ret)
8277 return ret;
8278
8279 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8280 &changeupper_info.info);
8281 ret = notifier_to_errno(ret);
8282 if (ret)
8283 goto rollback;
8284
8285 __netdev_update_upper_level(dev, NULL);
8286 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8287
8288 __netdev_update_lower_level(upper_dev, priv);
8289 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8290 priv);
8291
8292 return 0;
8293
8294rollback:
8295 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8296
8297 return ret;
8298}
8299
8300/**
8301 * netdev_upper_dev_link - Add a link to the upper device
8302 * @dev: device
8303 * @upper_dev: new upper device
8304 * @extack: netlink extended ack
8305 *
8306 * Adds a link to device which is upper to this one. The caller must hold
8307 * the RTNL lock. On a failure a negative errno code is returned.
8308 * On success the reference counts are adjusted and the function
8309 * returns zero.
8310 */
8311int netdev_upper_dev_link(struct net_device *dev,
8312 struct net_device *upper_dev,
8313 struct netlink_ext_ack *extack)
8314{
8315 struct netdev_nested_priv priv = {
8316 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8317 .data = NULL,
8318 };
8319
8320 return __netdev_upper_dev_link(dev, upper_dev, false,
8321 NULL, NULL, &priv, extack);
8322}
8323EXPORT_SYMBOL(netdev_upper_dev_link);
8324
8325/**
8326 * netdev_master_upper_dev_link - Add a master link to the upper device
8327 * @dev: device
8328 * @upper_dev: new upper device
8329 * @upper_priv: upper device private
8330 * @upper_info: upper info to be passed down via notifier
8331 * @extack: netlink extended ack
8332 *
8333 * Adds a link to device which is upper to this one. In this case, only
8334 * one master upper device can be linked, although other non-master devices
8335 * might be linked as well. The caller must hold the RTNL lock.
8336 * On a failure a negative errno code is returned. On success the reference
8337 * counts are adjusted and the function returns zero.
8338 */
8339int netdev_master_upper_dev_link(struct net_device *dev,
8340 struct net_device *upper_dev,
8341 void *upper_priv, void *upper_info,
8342 struct netlink_ext_ack *extack)
8343{
8344 struct netdev_nested_priv priv = {
8345 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8346 .data = NULL,
8347 };
8348
8349 return __netdev_upper_dev_link(dev, upper_dev, true,
8350 upper_priv, upper_info, &priv, extack);
8351}
8352EXPORT_SYMBOL(netdev_master_upper_dev_link);
8353
8354static void __netdev_upper_dev_unlink(struct net_device *dev,
8355 struct net_device *upper_dev,
8356 struct netdev_nested_priv *priv)
8357{
8358 struct netdev_notifier_changeupper_info changeupper_info = {
8359 .info = {
8360 .dev = dev,
8361 },
8362 .upper_dev = upper_dev,
8363 .linking = false,
8364 };
8365
8366 ASSERT_RTNL();
8367
8368 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8369
8370 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8371 &changeupper_info.info);
8372
8373 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8374
8375 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8376 &changeupper_info.info);
8377
8378 __netdev_update_upper_level(dev, NULL);
8379 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8380
8381 __netdev_update_lower_level(upper_dev, priv);
8382 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8383 priv);
8384}
8385
8386/**
8387 * netdev_upper_dev_unlink - Removes a link to upper device
8388 * @dev: device
8389 * @upper_dev: new upper device
8390 *
8391 * Removes a link to device which is upper to this one. The caller must hold
8392 * the RTNL lock.
8393 */
8394void netdev_upper_dev_unlink(struct net_device *dev,
8395 struct net_device *upper_dev)
8396{
8397 struct netdev_nested_priv priv = {
8398 .flags = NESTED_SYNC_TODO,
8399 .data = NULL,
8400 };
8401
8402 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8403}
8404EXPORT_SYMBOL(netdev_upper_dev_unlink);
8405
8406static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8407 struct net_device *lower_dev,
8408 bool val)
8409{
8410 struct netdev_adjacent *adj;
8411
8412 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8413 if (adj)
8414 adj->ignore = val;
8415
8416 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8417 if (adj)
8418 adj->ignore = val;
8419}
8420
8421static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8422 struct net_device *lower_dev)
8423{
8424 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8425}
8426
8427static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8428 struct net_device *lower_dev)
8429{
8430 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8431}
8432
8433int netdev_adjacent_change_prepare(struct net_device *old_dev,
8434 struct net_device *new_dev,
8435 struct net_device *dev,
8436 struct netlink_ext_ack *extack)
8437{
8438 struct netdev_nested_priv priv = {
8439 .flags = 0,
8440 .data = NULL,
8441 };
8442 int err;
8443
8444 if (!new_dev)
8445 return 0;
8446
8447 if (old_dev && new_dev != old_dev)
8448 netdev_adjacent_dev_disable(dev, old_dev);
8449 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8450 extack);
8451 if (err) {
8452 if (old_dev && new_dev != old_dev)
8453 netdev_adjacent_dev_enable(dev, old_dev);
8454 return err;
8455 }
8456
8457 return 0;
8458}
8459EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8460
8461void netdev_adjacent_change_commit(struct net_device *old_dev,
8462 struct net_device *new_dev,
8463 struct net_device *dev)
8464{
8465 struct netdev_nested_priv priv = {
8466 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8467 .data = NULL,
8468 };
8469
8470 if (!new_dev || !old_dev)
8471 return;
8472
8473 if (new_dev == old_dev)
8474 return;
8475
8476 netdev_adjacent_dev_enable(dev, old_dev);
8477 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8478}
8479EXPORT_SYMBOL(netdev_adjacent_change_commit);
8480
8481void netdev_adjacent_change_abort(struct net_device *old_dev,
8482 struct net_device *new_dev,
8483 struct net_device *dev)
8484{
8485 struct netdev_nested_priv priv = {
8486 .flags = 0,
8487 .data = NULL,
8488 };
8489
8490 if (!new_dev)
8491 return;
8492
8493 if (old_dev && new_dev != old_dev)
8494 netdev_adjacent_dev_enable(dev, old_dev);
8495
8496 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8497}
8498EXPORT_SYMBOL(netdev_adjacent_change_abort);
8499
8500/**
8501 * netdev_bonding_info_change - Dispatch event about slave change
8502 * @dev: device
8503 * @bonding_info: info to dispatch
8504 *
8505 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8506 * The caller must hold the RTNL lock.
8507 */
8508void netdev_bonding_info_change(struct net_device *dev,
8509 struct netdev_bonding_info *bonding_info)
8510{
8511 struct netdev_notifier_bonding_info info = {
8512 .info.dev = dev,
8513 };
8514
8515 memcpy(&info.bonding_info, bonding_info,
8516 sizeof(struct netdev_bonding_info));
8517 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8518 &info.info);
8519}
8520EXPORT_SYMBOL(netdev_bonding_info_change);
8521
8522static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8523 struct netlink_ext_ack *extack)
8524{
8525 struct netdev_notifier_offload_xstats_info info = {
8526 .info.dev = dev,
8527 .info.extack = extack,
8528 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8529 };
8530 int err;
8531 int rc;
8532
8533 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8534 GFP_KERNEL);
8535 if (!dev->offload_xstats_l3)
8536 return -ENOMEM;
8537
8538 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8539 NETDEV_OFFLOAD_XSTATS_DISABLE,
8540 &info.info);
8541 err = notifier_to_errno(rc);
8542 if (err)
8543 goto free_stats;
8544
8545 return 0;
8546
8547free_stats:
8548 kfree(dev->offload_xstats_l3);
8549 dev->offload_xstats_l3 = NULL;
8550 return err;
8551}
8552
8553int netdev_offload_xstats_enable(struct net_device *dev,
8554 enum netdev_offload_xstats_type type,
8555 struct netlink_ext_ack *extack)
8556{
8557 ASSERT_RTNL();
8558
8559 if (netdev_offload_xstats_enabled(dev, type))
8560 return -EALREADY;
8561
8562 switch (type) {
8563 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8564 return netdev_offload_xstats_enable_l3(dev, extack);
8565 }
8566
8567 WARN_ON(1);
8568 return -EINVAL;
8569}
8570EXPORT_SYMBOL(netdev_offload_xstats_enable);
8571
8572static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8573{
8574 struct netdev_notifier_offload_xstats_info info = {
8575 .info.dev = dev,
8576 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8577 };
8578
8579 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8580 &info.info);
8581 kfree(dev->offload_xstats_l3);
8582 dev->offload_xstats_l3 = NULL;
8583}
8584
8585int netdev_offload_xstats_disable(struct net_device *dev,
8586 enum netdev_offload_xstats_type type)
8587{
8588 ASSERT_RTNL();
8589
8590 if (!netdev_offload_xstats_enabled(dev, type))
8591 return -EALREADY;
8592
8593 switch (type) {
8594 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8595 netdev_offload_xstats_disable_l3(dev);
8596 return 0;
8597 }
8598
8599 WARN_ON(1);
8600 return -EINVAL;
8601}
8602EXPORT_SYMBOL(netdev_offload_xstats_disable);
8603
8604static void netdev_offload_xstats_disable_all(struct net_device *dev)
8605{
8606 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8607}
8608
8609static struct rtnl_hw_stats64 *
8610netdev_offload_xstats_get_ptr(const struct net_device *dev,
8611 enum netdev_offload_xstats_type type)
8612{
8613 switch (type) {
8614 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8615 return dev->offload_xstats_l3;
8616 }
8617
8618 WARN_ON(1);
8619 return NULL;
8620}
8621
8622bool netdev_offload_xstats_enabled(const struct net_device *dev,
8623 enum netdev_offload_xstats_type type)
8624{
8625 ASSERT_RTNL();
8626
8627 return netdev_offload_xstats_get_ptr(dev, type);
8628}
8629EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8630
8631struct netdev_notifier_offload_xstats_ru {
8632 bool used;
8633};
8634
8635struct netdev_notifier_offload_xstats_rd {
8636 struct rtnl_hw_stats64 stats;
8637 bool used;
8638};
8639
8640static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8641 const struct rtnl_hw_stats64 *src)
8642{
8643 dest->rx_packets += src->rx_packets;
8644 dest->tx_packets += src->tx_packets;
8645 dest->rx_bytes += src->rx_bytes;
8646 dest->tx_bytes += src->tx_bytes;
8647 dest->rx_errors += src->rx_errors;
8648 dest->tx_errors += src->tx_errors;
8649 dest->rx_dropped += src->rx_dropped;
8650 dest->tx_dropped += src->tx_dropped;
8651 dest->multicast += src->multicast;
8652}
8653
8654static int netdev_offload_xstats_get_used(struct net_device *dev,
8655 enum netdev_offload_xstats_type type,
8656 bool *p_used,
8657 struct netlink_ext_ack *extack)
8658{
8659 struct netdev_notifier_offload_xstats_ru report_used = {};
8660 struct netdev_notifier_offload_xstats_info info = {
8661 .info.dev = dev,
8662 .info.extack = extack,
8663 .type = type,
8664 .report_used = &report_used,
8665 };
8666 int rc;
8667
8668 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8669 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8670 &info.info);
8671 *p_used = report_used.used;
8672 return notifier_to_errno(rc);
8673}
8674
8675static int netdev_offload_xstats_get_stats(struct net_device *dev,
8676 enum netdev_offload_xstats_type type,
8677 struct rtnl_hw_stats64 *p_stats,
8678 bool *p_used,
8679 struct netlink_ext_ack *extack)
8680{
8681 struct netdev_notifier_offload_xstats_rd report_delta = {};
8682 struct netdev_notifier_offload_xstats_info info = {
8683 .info.dev = dev,
8684 .info.extack = extack,
8685 .type = type,
8686 .report_delta = &report_delta,
8687 };
8688 struct rtnl_hw_stats64 *stats;
8689 int rc;
8690
8691 stats = netdev_offload_xstats_get_ptr(dev, type);
8692 if (WARN_ON(!stats))
8693 return -EINVAL;
8694
8695 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8696 &info.info);
8697
8698 /* Cache whatever we got, even if there was an error, otherwise the
8699 * successful stats retrievals would get lost.
8700 */
8701 netdev_hw_stats64_add(stats, &report_delta.stats);
8702
8703 if (p_stats)
8704 *p_stats = *stats;
8705 *p_used = report_delta.used;
8706
8707 return notifier_to_errno(rc);
8708}
8709
8710int netdev_offload_xstats_get(struct net_device *dev,
8711 enum netdev_offload_xstats_type type,
8712 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8713 struct netlink_ext_ack *extack)
8714{
8715 ASSERT_RTNL();
8716
8717 if (p_stats)
8718 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8719 p_used, extack);
8720 else
8721 return netdev_offload_xstats_get_used(dev, type, p_used,
8722 extack);
8723}
8724EXPORT_SYMBOL(netdev_offload_xstats_get);
8725
8726void
8727netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8728 const struct rtnl_hw_stats64 *stats)
8729{
8730 report_delta->used = true;
8731 netdev_hw_stats64_add(&report_delta->stats, stats);
8732}
8733EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8734
8735void
8736netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8737{
8738 report_used->used = true;
8739}
8740EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8741
8742void netdev_offload_xstats_push_delta(struct net_device *dev,
8743 enum netdev_offload_xstats_type type,
8744 const struct rtnl_hw_stats64 *p_stats)
8745{
8746 struct rtnl_hw_stats64 *stats;
8747
8748 ASSERT_RTNL();
8749
8750 stats = netdev_offload_xstats_get_ptr(dev, type);
8751 if (WARN_ON(!stats))
8752 return;
8753
8754 netdev_hw_stats64_add(stats, p_stats);
8755}
8756EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8757
8758/**
8759 * netdev_get_xmit_slave - Get the xmit slave of master device
8760 * @dev: device
8761 * @skb: The packet
8762 * @all_slaves: assume all the slaves are active
8763 *
8764 * The reference counters are not incremented so the caller must be
8765 * careful with locks. The caller must hold RCU lock.
8766 * %NULL is returned if no slave is found.
8767 */
8768
8769struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8770 struct sk_buff *skb,
8771 bool all_slaves)
8772{
8773 const struct net_device_ops *ops = dev->netdev_ops;
8774
8775 if (!ops->ndo_get_xmit_slave)
8776 return NULL;
8777 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8778}
8779EXPORT_SYMBOL(netdev_get_xmit_slave);
8780
8781static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8782 struct sock *sk)
8783{
8784 const struct net_device_ops *ops = dev->netdev_ops;
8785
8786 if (!ops->ndo_sk_get_lower_dev)
8787 return NULL;
8788 return ops->ndo_sk_get_lower_dev(dev, sk);
8789}
8790
8791/**
8792 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8793 * @dev: device
8794 * @sk: the socket
8795 *
8796 * %NULL is returned if no lower device is found.
8797 */
8798
8799struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8800 struct sock *sk)
8801{
8802 struct net_device *lower;
8803
8804 lower = netdev_sk_get_lower_dev(dev, sk);
8805 while (lower) {
8806 dev = lower;
8807 lower = netdev_sk_get_lower_dev(dev, sk);
8808 }
8809
8810 return dev;
8811}
8812EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8813
8814static void netdev_adjacent_add_links(struct net_device *dev)
8815{
8816 struct netdev_adjacent *iter;
8817
8818 struct net *net = dev_net(dev);
8819
8820 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8821 if (!net_eq(net, dev_net(iter->dev)))
8822 continue;
8823 netdev_adjacent_sysfs_add(iter->dev, dev,
8824 &iter->dev->adj_list.lower);
8825 netdev_adjacent_sysfs_add(dev, iter->dev,
8826 &dev->adj_list.upper);
8827 }
8828
8829 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8830 if (!net_eq(net, dev_net(iter->dev)))
8831 continue;
8832 netdev_adjacent_sysfs_add(iter->dev, dev,
8833 &iter->dev->adj_list.upper);
8834 netdev_adjacent_sysfs_add(dev, iter->dev,
8835 &dev->adj_list.lower);
8836 }
8837}
8838
8839static void netdev_adjacent_del_links(struct net_device *dev)
8840{
8841 struct netdev_adjacent *iter;
8842
8843 struct net *net = dev_net(dev);
8844
8845 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8846 if (!net_eq(net, dev_net(iter->dev)))
8847 continue;
8848 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8849 &iter->dev->adj_list.lower);
8850 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8851 &dev->adj_list.upper);
8852 }
8853
8854 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8855 if (!net_eq(net, dev_net(iter->dev)))
8856 continue;
8857 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8858 &iter->dev->adj_list.upper);
8859 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8860 &dev->adj_list.lower);
8861 }
8862}
8863
8864void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8865{
8866 struct netdev_adjacent *iter;
8867
8868 struct net *net = dev_net(dev);
8869
8870 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8871 if (!net_eq(net, dev_net(iter->dev)))
8872 continue;
8873 netdev_adjacent_sysfs_del(iter->dev, oldname,
8874 &iter->dev->adj_list.lower);
8875 netdev_adjacent_sysfs_add(iter->dev, dev,
8876 &iter->dev->adj_list.lower);
8877 }
8878
8879 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8880 if (!net_eq(net, dev_net(iter->dev)))
8881 continue;
8882 netdev_adjacent_sysfs_del(iter->dev, oldname,
8883 &iter->dev->adj_list.upper);
8884 netdev_adjacent_sysfs_add(iter->dev, dev,
8885 &iter->dev->adj_list.upper);
8886 }
8887}
8888
8889void *netdev_lower_dev_get_private(struct net_device *dev,
8890 struct net_device *lower_dev)
8891{
8892 struct netdev_adjacent *lower;
8893
8894 if (!lower_dev)
8895 return NULL;
8896 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8897 if (!lower)
8898 return NULL;
8899
8900 return lower->private;
8901}
8902EXPORT_SYMBOL(netdev_lower_dev_get_private);
8903
8904
8905/**
8906 * netdev_lower_state_changed - Dispatch event about lower device state change
8907 * @lower_dev: device
8908 * @lower_state_info: state to dispatch
8909 *
8910 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8911 * The caller must hold the RTNL lock.
8912 */
8913void netdev_lower_state_changed(struct net_device *lower_dev,
8914 void *lower_state_info)
8915{
8916 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8917 .info.dev = lower_dev,
8918 };
8919
8920 ASSERT_RTNL();
8921 changelowerstate_info.lower_state_info = lower_state_info;
8922 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8923 &changelowerstate_info.info);
8924}
8925EXPORT_SYMBOL(netdev_lower_state_changed);
8926
8927static void dev_change_rx_flags(struct net_device *dev, int flags)
8928{
8929 const struct net_device_ops *ops = dev->netdev_ops;
8930
8931 if (ops->ndo_change_rx_flags)
8932 ops->ndo_change_rx_flags(dev, flags);
8933}
8934
8935static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8936{
8937 unsigned int old_flags = dev->flags;
8938 unsigned int promiscuity, flags;
8939 kuid_t uid;
8940 kgid_t gid;
8941
8942 ASSERT_RTNL();
8943
8944 promiscuity = dev->promiscuity + inc;
8945 if (promiscuity == 0) {
8946 /*
8947 * Avoid overflow.
8948 * If inc causes overflow, untouch promisc and return error.
8949 */
8950 if (unlikely(inc > 0)) {
8951 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8952 return -EOVERFLOW;
8953 }
8954 flags = old_flags & ~IFF_PROMISC;
8955 } else {
8956 flags = old_flags | IFF_PROMISC;
8957 }
8958 WRITE_ONCE(dev->promiscuity, promiscuity);
8959 if (flags != old_flags) {
8960 WRITE_ONCE(dev->flags, flags);
8961 netdev_info(dev, "%s promiscuous mode\n",
8962 dev->flags & IFF_PROMISC ? "entered" : "left");
8963 if (audit_enabled) {
8964 current_uid_gid(&uid, &gid);
8965 audit_log(audit_context(), GFP_ATOMIC,
8966 AUDIT_ANOM_PROMISCUOUS,
8967 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8968 dev->name, (dev->flags & IFF_PROMISC),
8969 (old_flags & IFF_PROMISC),
8970 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8971 from_kuid(&init_user_ns, uid),
8972 from_kgid(&init_user_ns, gid),
8973 audit_get_sessionid(current));
8974 }
8975
8976 dev_change_rx_flags(dev, IFF_PROMISC);
8977 }
8978 if (notify)
8979 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8980 return 0;
8981}
8982
8983/**
8984 * dev_set_promiscuity - update promiscuity count on a device
8985 * @dev: device
8986 * @inc: modifier
8987 *
8988 * Add or remove promiscuity from a device. While the count in the device
8989 * remains above zero the interface remains promiscuous. Once it hits zero
8990 * the device reverts back to normal filtering operation. A negative inc
8991 * value is used to drop promiscuity on the device.
8992 * Return 0 if successful or a negative errno code on error.
8993 */
8994int dev_set_promiscuity(struct net_device *dev, int inc)
8995{
8996 unsigned int old_flags = dev->flags;
8997 int err;
8998
8999 err = __dev_set_promiscuity(dev, inc, true);
9000 if (err < 0)
9001 return err;
9002 if (dev->flags != old_flags)
9003 dev_set_rx_mode(dev);
9004 return err;
9005}
9006EXPORT_SYMBOL(dev_set_promiscuity);
9007
9008static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
9009{
9010 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9011 unsigned int allmulti, flags;
9012
9013 ASSERT_RTNL();
9014
9015 allmulti = dev->allmulti + inc;
9016 if (allmulti == 0) {
9017 /*
9018 * Avoid overflow.
9019 * If inc causes overflow, untouch allmulti and return error.
9020 */
9021 if (unlikely(inc > 0)) {
9022 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9023 return -EOVERFLOW;
9024 }
9025 flags = old_flags & ~IFF_ALLMULTI;
9026 } else {
9027 flags = old_flags | IFF_ALLMULTI;
9028 }
9029 WRITE_ONCE(dev->allmulti, allmulti);
9030 if (flags != old_flags) {
9031 WRITE_ONCE(dev->flags, flags);
9032 netdev_info(dev, "%s allmulticast mode\n",
9033 dev->flags & IFF_ALLMULTI ? "entered" : "left");
9034 dev_change_rx_flags(dev, IFF_ALLMULTI);
9035 dev_set_rx_mode(dev);
9036 if (notify)
9037 __dev_notify_flags(dev, old_flags,
9038 dev->gflags ^ old_gflags, 0, NULL);
9039 }
9040 return 0;
9041}
9042
9043/**
9044 * dev_set_allmulti - update allmulti count on a device
9045 * @dev: device
9046 * @inc: modifier
9047 *
9048 * Add or remove reception of all multicast frames to a device. While the
9049 * count in the device remains above zero the interface remains listening
9050 * to all interfaces. Once it hits zero the device reverts back to normal
9051 * filtering operation. A negative @inc value is used to drop the counter
9052 * when releasing a resource needing all multicasts.
9053 * Return 0 if successful or a negative errno code on error.
9054 */
9055
9056int dev_set_allmulti(struct net_device *dev, int inc)
9057{
9058 return __dev_set_allmulti(dev, inc, true);
9059}
9060EXPORT_SYMBOL(dev_set_allmulti);
9061
9062/*
9063 * Upload unicast and multicast address lists to device and
9064 * configure RX filtering. When the device doesn't support unicast
9065 * filtering it is put in promiscuous mode while unicast addresses
9066 * are present.
9067 */
9068void __dev_set_rx_mode(struct net_device *dev)
9069{
9070 const struct net_device_ops *ops = dev->netdev_ops;
9071
9072 /* dev_open will call this function so the list will stay sane. */
9073 if (!(dev->flags&IFF_UP))
9074 return;
9075
9076 if (!netif_device_present(dev))
9077 return;
9078
9079 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9080 /* Unicast addresses changes may only happen under the rtnl,
9081 * therefore calling __dev_set_promiscuity here is safe.
9082 */
9083 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9084 __dev_set_promiscuity(dev, 1, false);
9085 dev->uc_promisc = true;
9086 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9087 __dev_set_promiscuity(dev, -1, false);
9088 dev->uc_promisc = false;
9089 }
9090 }
9091
9092 if (ops->ndo_set_rx_mode)
9093 ops->ndo_set_rx_mode(dev);
9094}
9095
9096void dev_set_rx_mode(struct net_device *dev)
9097{
9098 netif_addr_lock_bh(dev);
9099 __dev_set_rx_mode(dev);
9100 netif_addr_unlock_bh(dev);
9101}
9102
9103/**
9104 * dev_get_flags - get flags reported to userspace
9105 * @dev: device
9106 *
9107 * Get the combination of flag bits exported through APIs to userspace.
9108 */
9109unsigned int dev_get_flags(const struct net_device *dev)
9110{
9111 unsigned int flags;
9112
9113 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9114 IFF_ALLMULTI |
9115 IFF_RUNNING |
9116 IFF_LOWER_UP |
9117 IFF_DORMANT)) |
9118 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
9119 IFF_ALLMULTI));
9120
9121 if (netif_running(dev)) {
9122 if (netif_oper_up(dev))
9123 flags |= IFF_RUNNING;
9124 if (netif_carrier_ok(dev))
9125 flags |= IFF_LOWER_UP;
9126 if (netif_dormant(dev))
9127 flags |= IFF_DORMANT;
9128 }
9129
9130 return flags;
9131}
9132EXPORT_SYMBOL(dev_get_flags);
9133
9134int __dev_change_flags(struct net_device *dev, unsigned int flags,
9135 struct netlink_ext_ack *extack)
9136{
9137 unsigned int old_flags = dev->flags;
9138 int ret;
9139
9140 ASSERT_RTNL();
9141
9142 /*
9143 * Set the flags on our device.
9144 */
9145
9146 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9147 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9148 IFF_AUTOMEDIA)) |
9149 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9150 IFF_ALLMULTI));
9151
9152 /*
9153 * Load in the correct multicast list now the flags have changed.
9154 */
9155
9156 if ((old_flags ^ flags) & IFF_MULTICAST)
9157 dev_change_rx_flags(dev, IFF_MULTICAST);
9158
9159 dev_set_rx_mode(dev);
9160
9161 /*
9162 * Have we downed the interface. We handle IFF_UP ourselves
9163 * according to user attempts to set it, rather than blindly
9164 * setting it.
9165 */
9166
9167 ret = 0;
9168 if ((old_flags ^ flags) & IFF_UP) {
9169 if (old_flags & IFF_UP)
9170 __dev_close(dev);
9171 else
9172 ret = __dev_open(dev, extack);
9173 }
9174
9175 if ((flags ^ dev->gflags) & IFF_PROMISC) {
9176 int inc = (flags & IFF_PROMISC) ? 1 : -1;
9177 unsigned int old_flags = dev->flags;
9178
9179 dev->gflags ^= IFF_PROMISC;
9180
9181 if (__dev_set_promiscuity(dev, inc, false) >= 0)
9182 if (dev->flags != old_flags)
9183 dev_set_rx_mode(dev);
9184 }
9185
9186 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9187 * is important. Some (broken) drivers set IFF_PROMISC, when
9188 * IFF_ALLMULTI is requested not asking us and not reporting.
9189 */
9190 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9191 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9192
9193 dev->gflags ^= IFF_ALLMULTI;
9194 __dev_set_allmulti(dev, inc, false);
9195 }
9196
9197 return ret;
9198}
9199
9200void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9201 unsigned int gchanges, u32 portid,
9202 const struct nlmsghdr *nlh)
9203{
9204 unsigned int changes = dev->flags ^ old_flags;
9205
9206 if (gchanges)
9207 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9208
9209 if (changes & IFF_UP) {
9210 if (dev->flags & IFF_UP)
9211 call_netdevice_notifiers(NETDEV_UP, dev);
9212 else
9213 call_netdevice_notifiers(NETDEV_DOWN, dev);
9214 }
9215
9216 if (dev->flags & IFF_UP &&
9217 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9218 struct netdev_notifier_change_info change_info = {
9219 .info = {
9220 .dev = dev,
9221 },
9222 .flags_changed = changes,
9223 };
9224
9225 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9226 }
9227}
9228
9229/**
9230 * dev_change_flags - change device settings
9231 * @dev: device
9232 * @flags: device state flags
9233 * @extack: netlink extended ack
9234 *
9235 * Change settings on device based state flags. The flags are
9236 * in the userspace exported format.
9237 */
9238int dev_change_flags(struct net_device *dev, unsigned int flags,
9239 struct netlink_ext_ack *extack)
9240{
9241 int ret;
9242 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9243
9244 ret = __dev_change_flags(dev, flags, extack);
9245 if (ret < 0)
9246 return ret;
9247
9248 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9249 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
9250 return ret;
9251}
9252EXPORT_SYMBOL(dev_change_flags);
9253
9254int __dev_set_mtu(struct net_device *dev, int new_mtu)
9255{
9256 const struct net_device_ops *ops = dev->netdev_ops;
9257
9258 if (ops->ndo_change_mtu)
9259 return ops->ndo_change_mtu(dev, new_mtu);
9260
9261 /* Pairs with all the lockless reads of dev->mtu in the stack */
9262 WRITE_ONCE(dev->mtu, new_mtu);
9263 return 0;
9264}
9265EXPORT_SYMBOL(__dev_set_mtu);
9266
9267int dev_validate_mtu(struct net_device *dev, int new_mtu,
9268 struct netlink_ext_ack *extack)
9269{
9270 /* MTU must be positive, and in range */
9271 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9272 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9273 return -EINVAL;
9274 }
9275
9276 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9277 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9278 return -EINVAL;
9279 }
9280 return 0;
9281}
9282
9283/**
9284 * dev_set_mtu_ext - Change maximum transfer unit
9285 * @dev: device
9286 * @new_mtu: new transfer unit
9287 * @extack: netlink extended ack
9288 *
9289 * Change the maximum transfer size of the network device.
9290 */
9291int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
9292 struct netlink_ext_ack *extack)
9293{
9294 int err, orig_mtu;
9295
9296 if (new_mtu == dev->mtu)
9297 return 0;
9298
9299 err = dev_validate_mtu(dev, new_mtu, extack);
9300 if (err)
9301 return err;
9302
9303 if (!netif_device_present(dev))
9304 return -ENODEV;
9305
9306 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9307 err = notifier_to_errno(err);
9308 if (err)
9309 return err;
9310
9311 orig_mtu = dev->mtu;
9312 err = __dev_set_mtu(dev, new_mtu);
9313
9314 if (!err) {
9315 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9316 orig_mtu);
9317 err = notifier_to_errno(err);
9318 if (err) {
9319 /* setting mtu back and notifying everyone again,
9320 * so that they have a chance to revert changes.
9321 */
9322 __dev_set_mtu(dev, orig_mtu);
9323 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9324 new_mtu);
9325 }
9326 }
9327 return err;
9328}
9329
9330int dev_set_mtu(struct net_device *dev, int new_mtu)
9331{
9332 struct netlink_ext_ack extack;
9333 int err;
9334
9335 memset(&extack, 0, sizeof(extack));
9336 err = dev_set_mtu_ext(dev, new_mtu, &extack);
9337 if (err && extack._msg)
9338 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9339 return err;
9340}
9341EXPORT_SYMBOL(dev_set_mtu);
9342
9343/**
9344 * dev_change_tx_queue_len - Change TX queue length of a netdevice
9345 * @dev: device
9346 * @new_len: new tx queue length
9347 */
9348int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9349{
9350 unsigned int orig_len = dev->tx_queue_len;
9351 int res;
9352
9353 if (new_len != (unsigned int)new_len)
9354 return -ERANGE;
9355
9356 if (new_len != orig_len) {
9357 WRITE_ONCE(dev->tx_queue_len, new_len);
9358 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9359 res = notifier_to_errno(res);
9360 if (res)
9361 goto err_rollback;
9362 res = dev_qdisc_change_tx_queue_len(dev);
9363 if (res)
9364 goto err_rollback;
9365 }
9366
9367 return 0;
9368
9369err_rollback:
9370 netdev_err(dev, "refused to change device tx_queue_len\n");
9371 WRITE_ONCE(dev->tx_queue_len, orig_len);
9372 return res;
9373}
9374
9375/**
9376 * dev_set_group - Change group this device belongs to
9377 * @dev: device
9378 * @new_group: group this device should belong to
9379 */
9380void dev_set_group(struct net_device *dev, int new_group)
9381{
9382 dev->group = new_group;
9383}
9384
9385/**
9386 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9387 * @dev: device
9388 * @addr: new address
9389 * @extack: netlink extended ack
9390 */
9391int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9392 struct netlink_ext_ack *extack)
9393{
9394 struct netdev_notifier_pre_changeaddr_info info = {
9395 .info.dev = dev,
9396 .info.extack = extack,
9397 .dev_addr = addr,
9398 };
9399 int rc;
9400
9401 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9402 return notifier_to_errno(rc);
9403}
9404EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9405
9406/**
9407 * dev_set_mac_address - Change Media Access Control Address
9408 * @dev: device
9409 * @sa: new address
9410 * @extack: netlink extended ack
9411 *
9412 * Change the hardware (MAC) address of the device
9413 */
9414int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9415 struct netlink_ext_ack *extack)
9416{
9417 const struct net_device_ops *ops = dev->netdev_ops;
9418 int err;
9419
9420 if (!ops->ndo_set_mac_address)
9421 return -EOPNOTSUPP;
9422 if (sa->sa_family != dev->type)
9423 return -EINVAL;
9424 if (!netif_device_present(dev))
9425 return -ENODEV;
9426 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9427 if (err)
9428 return err;
9429 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9430 err = ops->ndo_set_mac_address(dev, sa);
9431 if (err)
9432 return err;
9433 }
9434 dev->addr_assign_type = NET_ADDR_SET;
9435 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9436 add_device_randomness(dev->dev_addr, dev->addr_len);
9437 return 0;
9438}
9439EXPORT_SYMBOL(dev_set_mac_address);
9440
9441DECLARE_RWSEM(dev_addr_sem);
9442
9443int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9444 struct netlink_ext_ack *extack)
9445{
9446 int ret;
9447
9448 down_write(&dev_addr_sem);
9449 ret = dev_set_mac_address(dev, sa, extack);
9450 up_write(&dev_addr_sem);
9451 return ret;
9452}
9453EXPORT_SYMBOL(dev_set_mac_address_user);
9454
9455int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9456{
9457 size_t size = sizeof(sa->sa_data_min);
9458 struct net_device *dev;
9459 int ret = 0;
9460
9461 down_read(&dev_addr_sem);
9462 rcu_read_lock();
9463
9464 dev = dev_get_by_name_rcu(net, dev_name);
9465 if (!dev) {
9466 ret = -ENODEV;
9467 goto unlock;
9468 }
9469 if (!dev->addr_len)
9470 memset(sa->sa_data, 0, size);
9471 else
9472 memcpy(sa->sa_data, dev->dev_addr,
9473 min_t(size_t, size, dev->addr_len));
9474 sa->sa_family = dev->type;
9475
9476unlock:
9477 rcu_read_unlock();
9478 up_read(&dev_addr_sem);
9479 return ret;
9480}
9481EXPORT_SYMBOL(dev_get_mac_address);
9482
9483/**
9484 * dev_change_carrier - Change device carrier
9485 * @dev: device
9486 * @new_carrier: new value
9487 *
9488 * Change device carrier
9489 */
9490int dev_change_carrier(struct net_device *dev, bool new_carrier)
9491{
9492 const struct net_device_ops *ops = dev->netdev_ops;
9493
9494 if (!ops->ndo_change_carrier)
9495 return -EOPNOTSUPP;
9496 if (!netif_device_present(dev))
9497 return -ENODEV;
9498 return ops->ndo_change_carrier(dev, new_carrier);
9499}
9500
9501/**
9502 * dev_get_phys_port_id - Get device physical port ID
9503 * @dev: device
9504 * @ppid: port ID
9505 *
9506 * Get device physical port ID
9507 */
9508int dev_get_phys_port_id(struct net_device *dev,
9509 struct netdev_phys_item_id *ppid)
9510{
9511 const struct net_device_ops *ops = dev->netdev_ops;
9512
9513 if (!ops->ndo_get_phys_port_id)
9514 return -EOPNOTSUPP;
9515 return ops->ndo_get_phys_port_id(dev, ppid);
9516}
9517
9518/**
9519 * dev_get_phys_port_name - Get device physical port name
9520 * @dev: device
9521 * @name: port name
9522 * @len: limit of bytes to copy to name
9523 *
9524 * Get device physical port name
9525 */
9526int dev_get_phys_port_name(struct net_device *dev,
9527 char *name, size_t len)
9528{
9529 const struct net_device_ops *ops = dev->netdev_ops;
9530 int err;
9531
9532 if (ops->ndo_get_phys_port_name) {
9533 err = ops->ndo_get_phys_port_name(dev, name, len);
9534 if (err != -EOPNOTSUPP)
9535 return err;
9536 }
9537 return devlink_compat_phys_port_name_get(dev, name, len);
9538}
9539
9540/**
9541 * dev_get_port_parent_id - Get the device's port parent identifier
9542 * @dev: network device
9543 * @ppid: pointer to a storage for the port's parent identifier
9544 * @recurse: allow/disallow recursion to lower devices
9545 *
9546 * Get the devices's port parent identifier
9547 */
9548int dev_get_port_parent_id(struct net_device *dev,
9549 struct netdev_phys_item_id *ppid,
9550 bool recurse)
9551{
9552 const struct net_device_ops *ops = dev->netdev_ops;
9553 struct netdev_phys_item_id first = { };
9554 struct net_device *lower_dev;
9555 struct list_head *iter;
9556 int err;
9557
9558 if (ops->ndo_get_port_parent_id) {
9559 err = ops->ndo_get_port_parent_id(dev, ppid);
9560 if (err != -EOPNOTSUPP)
9561 return err;
9562 }
9563
9564 err = devlink_compat_switch_id_get(dev, ppid);
9565 if (!recurse || err != -EOPNOTSUPP)
9566 return err;
9567
9568 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9569 err = dev_get_port_parent_id(lower_dev, ppid, true);
9570 if (err)
9571 break;
9572 if (!first.id_len)
9573 first = *ppid;
9574 else if (memcmp(&first, ppid, sizeof(*ppid)))
9575 return -EOPNOTSUPP;
9576 }
9577
9578 return err;
9579}
9580EXPORT_SYMBOL(dev_get_port_parent_id);
9581
9582/**
9583 * netdev_port_same_parent_id - Indicate if two network devices have
9584 * the same port parent identifier
9585 * @a: first network device
9586 * @b: second network device
9587 */
9588bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9589{
9590 struct netdev_phys_item_id a_id = { };
9591 struct netdev_phys_item_id b_id = { };
9592
9593 if (dev_get_port_parent_id(a, &a_id, true) ||
9594 dev_get_port_parent_id(b, &b_id, true))
9595 return false;
9596
9597 return netdev_phys_item_id_same(&a_id, &b_id);
9598}
9599EXPORT_SYMBOL(netdev_port_same_parent_id);
9600
9601/**
9602 * dev_change_proto_down - set carrier according to proto_down.
9603 *
9604 * @dev: device
9605 * @proto_down: new value
9606 */
9607int dev_change_proto_down(struct net_device *dev, bool proto_down)
9608{
9609 if (!dev->change_proto_down)
9610 return -EOPNOTSUPP;
9611 if (!netif_device_present(dev))
9612 return -ENODEV;
9613 if (proto_down)
9614 netif_carrier_off(dev);
9615 else
9616 netif_carrier_on(dev);
9617 WRITE_ONCE(dev->proto_down, proto_down);
9618 return 0;
9619}
9620
9621/**
9622 * dev_change_proto_down_reason - proto down reason
9623 *
9624 * @dev: device
9625 * @mask: proto down mask
9626 * @value: proto down value
9627 */
9628void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9629 u32 value)
9630{
9631 u32 proto_down_reason;
9632 int b;
9633
9634 if (!mask) {
9635 proto_down_reason = value;
9636 } else {
9637 proto_down_reason = dev->proto_down_reason;
9638 for_each_set_bit(b, &mask, 32) {
9639 if (value & (1 << b))
9640 proto_down_reason |= BIT(b);
9641 else
9642 proto_down_reason &= ~BIT(b);
9643 }
9644 }
9645 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9646}
9647
9648struct bpf_xdp_link {
9649 struct bpf_link link;
9650 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9651 int flags;
9652};
9653
9654static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9655{
9656 if (flags & XDP_FLAGS_HW_MODE)
9657 return XDP_MODE_HW;
9658 if (flags & XDP_FLAGS_DRV_MODE)
9659 return XDP_MODE_DRV;
9660 if (flags & XDP_FLAGS_SKB_MODE)
9661 return XDP_MODE_SKB;
9662 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9663}
9664
9665static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9666{
9667 switch (mode) {
9668 case XDP_MODE_SKB:
9669 return generic_xdp_install;
9670 case XDP_MODE_DRV:
9671 case XDP_MODE_HW:
9672 return dev->netdev_ops->ndo_bpf;
9673 default:
9674 return NULL;
9675 }
9676}
9677
9678static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9679 enum bpf_xdp_mode mode)
9680{
9681 return dev->xdp_state[mode].link;
9682}
9683
9684static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9685 enum bpf_xdp_mode mode)
9686{
9687 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9688
9689 if (link)
9690 return link->link.prog;
9691 return dev->xdp_state[mode].prog;
9692}
9693
9694u8 dev_xdp_prog_count(struct net_device *dev)
9695{
9696 u8 count = 0;
9697 int i;
9698
9699 for (i = 0; i < __MAX_XDP_MODE; i++)
9700 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9701 count++;
9702 return count;
9703}
9704EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9705
9706u8 dev_xdp_sb_prog_count(struct net_device *dev)
9707{
9708 u8 count = 0;
9709 int i;
9710
9711 for (i = 0; i < __MAX_XDP_MODE; i++)
9712 if (dev->xdp_state[i].prog &&
9713 !dev->xdp_state[i].prog->aux->xdp_has_frags)
9714 count++;
9715 return count;
9716}
9717
9718int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9719{
9720 if (!dev->netdev_ops->ndo_bpf)
9721 return -EOPNOTSUPP;
9722
9723 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9724 bpf->command == XDP_SETUP_PROG &&
9725 bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9726 NL_SET_ERR_MSG(bpf->extack,
9727 "unable to propagate XDP to device using tcp-data-split");
9728 return -EBUSY;
9729 }
9730
9731 if (dev_get_min_mp_channel_count(dev)) {
9732 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9733 return -EBUSY;
9734 }
9735
9736 return dev->netdev_ops->ndo_bpf(dev, bpf);
9737}
9738EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9739
9740u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9741{
9742 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9743
9744 return prog ? prog->aux->id : 0;
9745}
9746
9747static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9748 struct bpf_xdp_link *link)
9749{
9750 dev->xdp_state[mode].link = link;
9751 dev->xdp_state[mode].prog = NULL;
9752}
9753
9754static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9755 struct bpf_prog *prog)
9756{
9757 dev->xdp_state[mode].link = NULL;
9758 dev->xdp_state[mode].prog = prog;
9759}
9760
9761static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9762 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9763 u32 flags, struct bpf_prog *prog)
9764{
9765 struct netdev_bpf xdp;
9766 int err;
9767
9768 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9769 prog && !prog->aux->xdp_has_frags) {
9770 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9771 return -EBUSY;
9772 }
9773
9774 if (dev_get_min_mp_channel_count(dev)) {
9775 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9776 return -EBUSY;
9777 }
9778
9779 memset(&xdp, 0, sizeof(xdp));
9780 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9781 xdp.extack = extack;
9782 xdp.flags = flags;
9783 xdp.prog = prog;
9784
9785 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9786 * "moved" into driver), so they don't increment it on their own, but
9787 * they do decrement refcnt when program is detached or replaced.
9788 * Given net_device also owns link/prog, we need to bump refcnt here
9789 * to prevent drivers from underflowing it.
9790 */
9791 if (prog)
9792 bpf_prog_inc(prog);
9793 err = bpf_op(dev, &xdp);
9794 if (err) {
9795 if (prog)
9796 bpf_prog_put(prog);
9797 return err;
9798 }
9799
9800 if (mode != XDP_MODE_HW)
9801 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9802
9803 return 0;
9804}
9805
9806static void dev_xdp_uninstall(struct net_device *dev)
9807{
9808 struct bpf_xdp_link *link;
9809 struct bpf_prog *prog;
9810 enum bpf_xdp_mode mode;
9811 bpf_op_t bpf_op;
9812
9813 ASSERT_RTNL();
9814
9815 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9816 prog = dev_xdp_prog(dev, mode);
9817 if (!prog)
9818 continue;
9819
9820 bpf_op = dev_xdp_bpf_op(dev, mode);
9821 if (!bpf_op)
9822 continue;
9823
9824 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9825
9826 /* auto-detach link from net device */
9827 link = dev_xdp_link(dev, mode);
9828 if (link)
9829 link->dev = NULL;
9830 else
9831 bpf_prog_put(prog);
9832
9833 dev_xdp_set_link(dev, mode, NULL);
9834 }
9835}
9836
9837static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9838 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9839 struct bpf_prog *old_prog, u32 flags)
9840{
9841 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9842 struct bpf_prog *cur_prog;
9843 struct net_device *upper;
9844 struct list_head *iter;
9845 enum bpf_xdp_mode mode;
9846 bpf_op_t bpf_op;
9847 int err;
9848
9849 ASSERT_RTNL();
9850
9851 /* either link or prog attachment, never both */
9852 if (link && (new_prog || old_prog))
9853 return -EINVAL;
9854 /* link supports only XDP mode flags */
9855 if (link && (flags & ~XDP_FLAGS_MODES)) {
9856 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9857 return -EINVAL;
9858 }
9859 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9860 if (num_modes > 1) {
9861 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9862 return -EINVAL;
9863 }
9864 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9865 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9866 NL_SET_ERR_MSG(extack,
9867 "More than one program loaded, unset mode is ambiguous");
9868 return -EINVAL;
9869 }
9870 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9871 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9872 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9873 return -EINVAL;
9874 }
9875
9876 mode = dev_xdp_mode(dev, flags);
9877 /* can't replace attached link */
9878 if (dev_xdp_link(dev, mode)) {
9879 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9880 return -EBUSY;
9881 }
9882
9883 /* don't allow if an upper device already has a program */
9884 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9885 if (dev_xdp_prog_count(upper) > 0) {
9886 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9887 return -EEXIST;
9888 }
9889 }
9890
9891 cur_prog = dev_xdp_prog(dev, mode);
9892 /* can't replace attached prog with link */
9893 if (link && cur_prog) {
9894 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9895 return -EBUSY;
9896 }
9897 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9898 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9899 return -EEXIST;
9900 }
9901
9902 /* put effective new program into new_prog */
9903 if (link)
9904 new_prog = link->link.prog;
9905
9906 if (new_prog) {
9907 bool offload = mode == XDP_MODE_HW;
9908 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9909 ? XDP_MODE_DRV : XDP_MODE_SKB;
9910
9911 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9912 NL_SET_ERR_MSG(extack, "XDP program already attached");
9913 return -EBUSY;
9914 }
9915 if (!offload && dev_xdp_prog(dev, other_mode)) {
9916 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9917 return -EEXIST;
9918 }
9919 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9920 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9921 return -EINVAL;
9922 }
9923 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9924 NL_SET_ERR_MSG(extack, "Program bound to different device");
9925 return -EINVAL;
9926 }
9927 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
9928 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
9929 return -EINVAL;
9930 }
9931 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9932 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9933 return -EINVAL;
9934 }
9935 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9936 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9937 return -EINVAL;
9938 }
9939 }
9940
9941 /* don't call drivers if the effective program didn't change */
9942 if (new_prog != cur_prog) {
9943 bpf_op = dev_xdp_bpf_op(dev, mode);
9944 if (!bpf_op) {
9945 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9946 return -EOPNOTSUPP;
9947 }
9948
9949 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9950 if (err)
9951 return err;
9952 }
9953
9954 if (link)
9955 dev_xdp_set_link(dev, mode, link);
9956 else
9957 dev_xdp_set_prog(dev, mode, new_prog);
9958 if (cur_prog)
9959 bpf_prog_put(cur_prog);
9960
9961 return 0;
9962}
9963
9964static int dev_xdp_attach_link(struct net_device *dev,
9965 struct netlink_ext_ack *extack,
9966 struct bpf_xdp_link *link)
9967{
9968 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9969}
9970
9971static int dev_xdp_detach_link(struct net_device *dev,
9972 struct netlink_ext_ack *extack,
9973 struct bpf_xdp_link *link)
9974{
9975 enum bpf_xdp_mode mode;
9976 bpf_op_t bpf_op;
9977
9978 ASSERT_RTNL();
9979
9980 mode = dev_xdp_mode(dev, link->flags);
9981 if (dev_xdp_link(dev, mode) != link)
9982 return -EINVAL;
9983
9984 bpf_op = dev_xdp_bpf_op(dev, mode);
9985 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9986 dev_xdp_set_link(dev, mode, NULL);
9987 return 0;
9988}
9989
9990static void bpf_xdp_link_release(struct bpf_link *link)
9991{
9992 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9993
9994 rtnl_lock();
9995
9996 /* if racing with net_device's tear down, xdp_link->dev might be
9997 * already NULL, in which case link was already auto-detached
9998 */
9999 if (xdp_link->dev) {
10000 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10001 xdp_link->dev = NULL;
10002 }
10003
10004 rtnl_unlock();
10005}
10006
10007static int bpf_xdp_link_detach(struct bpf_link *link)
10008{
10009 bpf_xdp_link_release(link);
10010 return 0;
10011}
10012
10013static void bpf_xdp_link_dealloc(struct bpf_link *link)
10014{
10015 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10016
10017 kfree(xdp_link);
10018}
10019
10020static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10021 struct seq_file *seq)
10022{
10023 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10024 u32 ifindex = 0;
10025
10026 rtnl_lock();
10027 if (xdp_link->dev)
10028 ifindex = xdp_link->dev->ifindex;
10029 rtnl_unlock();
10030
10031 seq_printf(seq, "ifindex:\t%u\n", ifindex);
10032}
10033
10034static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10035 struct bpf_link_info *info)
10036{
10037 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10038 u32 ifindex = 0;
10039
10040 rtnl_lock();
10041 if (xdp_link->dev)
10042 ifindex = xdp_link->dev->ifindex;
10043 rtnl_unlock();
10044
10045 info->xdp.ifindex = ifindex;
10046 return 0;
10047}
10048
10049static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10050 struct bpf_prog *old_prog)
10051{
10052 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10053 enum bpf_xdp_mode mode;
10054 bpf_op_t bpf_op;
10055 int err = 0;
10056
10057 rtnl_lock();
10058
10059 /* link might have been auto-released already, so fail */
10060 if (!xdp_link->dev) {
10061 err = -ENOLINK;
10062 goto out_unlock;
10063 }
10064
10065 if (old_prog && link->prog != old_prog) {
10066 err = -EPERM;
10067 goto out_unlock;
10068 }
10069 old_prog = link->prog;
10070 if (old_prog->type != new_prog->type ||
10071 old_prog->expected_attach_type != new_prog->expected_attach_type) {
10072 err = -EINVAL;
10073 goto out_unlock;
10074 }
10075
10076 if (old_prog == new_prog) {
10077 /* no-op, don't disturb drivers */
10078 bpf_prog_put(new_prog);
10079 goto out_unlock;
10080 }
10081
10082 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10083 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10084 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10085 xdp_link->flags, new_prog);
10086 if (err)
10087 goto out_unlock;
10088
10089 old_prog = xchg(&link->prog, new_prog);
10090 bpf_prog_put(old_prog);
10091
10092out_unlock:
10093 rtnl_unlock();
10094 return err;
10095}
10096
10097static const struct bpf_link_ops bpf_xdp_link_lops = {
10098 .release = bpf_xdp_link_release,
10099 .dealloc = bpf_xdp_link_dealloc,
10100 .detach = bpf_xdp_link_detach,
10101 .show_fdinfo = bpf_xdp_link_show_fdinfo,
10102 .fill_link_info = bpf_xdp_link_fill_link_info,
10103 .update_prog = bpf_xdp_link_update,
10104};
10105
10106int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10107{
10108 struct net *net = current->nsproxy->net_ns;
10109 struct bpf_link_primer link_primer;
10110 struct netlink_ext_ack extack = {};
10111 struct bpf_xdp_link *link;
10112 struct net_device *dev;
10113 int err, fd;
10114
10115 rtnl_lock();
10116 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10117 if (!dev) {
10118 rtnl_unlock();
10119 return -EINVAL;
10120 }
10121
10122 link = kzalloc(sizeof(*link), GFP_USER);
10123 if (!link) {
10124 err = -ENOMEM;
10125 goto unlock;
10126 }
10127
10128 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10129 link->dev = dev;
10130 link->flags = attr->link_create.flags;
10131
10132 err = bpf_link_prime(&link->link, &link_primer);
10133 if (err) {
10134 kfree(link);
10135 goto unlock;
10136 }
10137
10138 err = dev_xdp_attach_link(dev, &extack, link);
10139 rtnl_unlock();
10140
10141 if (err) {
10142 link->dev = NULL;
10143 bpf_link_cleanup(&link_primer);
10144 trace_bpf_xdp_link_attach_failed(extack._msg);
10145 goto out_put_dev;
10146 }
10147
10148 fd = bpf_link_settle(&link_primer);
10149 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
10150 dev_put(dev);
10151 return fd;
10152
10153unlock:
10154 rtnl_unlock();
10155
10156out_put_dev:
10157 dev_put(dev);
10158 return err;
10159}
10160
10161/**
10162 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
10163 * @dev: device
10164 * @extack: netlink extended ack
10165 * @fd: new program fd or negative value to clear
10166 * @expected_fd: old program fd that userspace expects to replace or clear
10167 * @flags: xdp-related flags
10168 *
10169 * Set or clear a bpf program for a device
10170 */
10171int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10172 int fd, int expected_fd, u32 flags)
10173{
10174 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10175 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10176 int err;
10177
10178 ASSERT_RTNL();
10179
10180 if (fd >= 0) {
10181 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10182 mode != XDP_MODE_SKB);
10183 if (IS_ERR(new_prog))
10184 return PTR_ERR(new_prog);
10185 }
10186
10187 if (expected_fd >= 0) {
10188 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10189 mode != XDP_MODE_SKB);
10190 if (IS_ERR(old_prog)) {
10191 err = PTR_ERR(old_prog);
10192 old_prog = NULL;
10193 goto err_out;
10194 }
10195 }
10196
10197 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10198
10199err_out:
10200 if (err && new_prog)
10201 bpf_prog_put(new_prog);
10202 if (old_prog)
10203 bpf_prog_put(old_prog);
10204 return err;
10205}
10206
10207u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10208{
10209 int i;
10210
10211 ASSERT_RTNL();
10212
10213 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10214 if (dev->_rx[i].mp_params.mp_priv)
10215 /* The channel count is the idx plus 1. */
10216 return i + 1;
10217
10218 return 0;
10219}
10220
10221/**
10222 * dev_index_reserve() - allocate an ifindex in a namespace
10223 * @net: the applicable net namespace
10224 * @ifindex: requested ifindex, pass %0 to get one allocated
10225 *
10226 * Allocate a ifindex for a new device. Caller must either use the ifindex
10227 * to store the device (via list_netdevice()) or call dev_index_release()
10228 * to give the index up.
10229 *
10230 * Return: a suitable unique value for a new device interface number or -errno.
10231 */
10232static int dev_index_reserve(struct net *net, u32 ifindex)
10233{
10234 int err;
10235
10236 if (ifindex > INT_MAX) {
10237 DEBUG_NET_WARN_ON_ONCE(1);
10238 return -EINVAL;
10239 }
10240
10241 if (!ifindex)
10242 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10243 xa_limit_31b, &net->ifindex, GFP_KERNEL);
10244 else
10245 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10246 if (err < 0)
10247 return err;
10248
10249 return ifindex;
10250}
10251
10252static void dev_index_release(struct net *net, int ifindex)
10253{
10254 /* Expect only unused indexes, unlist_netdevice() removes the used */
10255 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10256}
10257
10258static bool from_cleanup_net(void)
10259{
10260#ifdef CONFIG_NET_NS
10261 return current == cleanup_net_task;
10262#else
10263 return false;
10264#endif
10265}
10266
10267/* Delayed registration/unregisteration */
10268LIST_HEAD(net_todo_list);
10269DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10270atomic_t dev_unreg_count = ATOMIC_INIT(0);
10271
10272static void net_set_todo(struct net_device *dev)
10273{
10274 list_add_tail(&dev->todo_list, &net_todo_list);
10275}
10276
10277static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10278 struct net_device *upper, netdev_features_t features)
10279{
10280 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10281 netdev_features_t feature;
10282 int feature_bit;
10283
10284 for_each_netdev_feature(upper_disables, feature_bit) {
10285 feature = __NETIF_F_BIT(feature_bit);
10286 if (!(upper->wanted_features & feature)
10287 && (features & feature)) {
10288 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10289 &feature, upper->name);
10290 features &= ~feature;
10291 }
10292 }
10293
10294 return features;
10295}
10296
10297static void netdev_sync_lower_features(struct net_device *upper,
10298 struct net_device *lower, netdev_features_t features)
10299{
10300 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10301 netdev_features_t feature;
10302 int feature_bit;
10303
10304 for_each_netdev_feature(upper_disables, feature_bit) {
10305 feature = __NETIF_F_BIT(feature_bit);
10306 if (!(features & feature) && (lower->features & feature)) {
10307 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10308 &feature, lower->name);
10309 lower->wanted_features &= ~feature;
10310 __netdev_update_features(lower);
10311
10312 if (unlikely(lower->features & feature))
10313 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10314 &feature, lower->name);
10315 else
10316 netdev_features_change(lower);
10317 }
10318 }
10319}
10320
10321static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10322{
10323 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10324 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10325 bool hw_csum = features & NETIF_F_HW_CSUM;
10326
10327 return ip_csum || hw_csum;
10328}
10329
10330static netdev_features_t netdev_fix_features(struct net_device *dev,
10331 netdev_features_t features)
10332{
10333 /* Fix illegal checksum combinations */
10334 if ((features & NETIF_F_HW_CSUM) &&
10335 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10336 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10337 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10338 }
10339
10340 /* TSO requires that SG is present as well. */
10341 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10342 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10343 features &= ~NETIF_F_ALL_TSO;
10344 }
10345
10346 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10347 !(features & NETIF_F_IP_CSUM)) {
10348 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10349 features &= ~NETIF_F_TSO;
10350 features &= ~NETIF_F_TSO_ECN;
10351 }
10352
10353 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10354 !(features & NETIF_F_IPV6_CSUM)) {
10355 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10356 features &= ~NETIF_F_TSO6;
10357 }
10358
10359 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10360 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10361 features &= ~NETIF_F_TSO_MANGLEID;
10362
10363 /* TSO ECN requires that TSO is present as well. */
10364 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10365 features &= ~NETIF_F_TSO_ECN;
10366
10367 /* Software GSO depends on SG. */
10368 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10369 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10370 features &= ~NETIF_F_GSO;
10371 }
10372
10373 /* GSO partial features require GSO partial be set */
10374 if ((features & dev->gso_partial_features) &&
10375 !(features & NETIF_F_GSO_PARTIAL)) {
10376 netdev_dbg(dev,
10377 "Dropping partially supported GSO features since no GSO partial.\n");
10378 features &= ~dev->gso_partial_features;
10379 }
10380
10381 if (!(features & NETIF_F_RXCSUM)) {
10382 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10383 * successfully merged by hardware must also have the
10384 * checksum verified by hardware. If the user does not
10385 * want to enable RXCSUM, logically, we should disable GRO_HW.
10386 */
10387 if (features & NETIF_F_GRO_HW) {
10388 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10389 features &= ~NETIF_F_GRO_HW;
10390 }
10391 }
10392
10393 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10394 if (features & NETIF_F_RXFCS) {
10395 if (features & NETIF_F_LRO) {
10396 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10397 features &= ~NETIF_F_LRO;
10398 }
10399
10400 if (features & NETIF_F_GRO_HW) {
10401 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10402 features &= ~NETIF_F_GRO_HW;
10403 }
10404 }
10405
10406 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10407 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10408 features &= ~NETIF_F_LRO;
10409 }
10410
10411 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10412 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10413 features &= ~NETIF_F_HW_TLS_TX;
10414 }
10415
10416 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10417 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10418 features &= ~NETIF_F_HW_TLS_RX;
10419 }
10420
10421 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10422 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10423 features &= ~NETIF_F_GSO_UDP_L4;
10424 }
10425
10426 return features;
10427}
10428
10429int __netdev_update_features(struct net_device *dev)
10430{
10431 struct net_device *upper, *lower;
10432 netdev_features_t features;
10433 struct list_head *iter;
10434 int err = -1;
10435
10436 ASSERT_RTNL();
10437
10438 features = netdev_get_wanted_features(dev);
10439
10440 if (dev->netdev_ops->ndo_fix_features)
10441 features = dev->netdev_ops->ndo_fix_features(dev, features);
10442
10443 /* driver might be less strict about feature dependencies */
10444 features = netdev_fix_features(dev, features);
10445
10446 /* some features can't be enabled if they're off on an upper device */
10447 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10448 features = netdev_sync_upper_features(dev, upper, features);
10449
10450 if (dev->features == features)
10451 goto sync_lower;
10452
10453 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10454 &dev->features, &features);
10455
10456 if (dev->netdev_ops->ndo_set_features)
10457 err = dev->netdev_ops->ndo_set_features(dev, features);
10458 else
10459 err = 0;
10460
10461 if (unlikely(err < 0)) {
10462 netdev_err(dev,
10463 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10464 err, &features, &dev->features);
10465 /* return non-0 since some features might have changed and
10466 * it's better to fire a spurious notification than miss it
10467 */
10468 return -1;
10469 }
10470
10471sync_lower:
10472 /* some features must be disabled on lower devices when disabled
10473 * on an upper device (think: bonding master or bridge)
10474 */
10475 netdev_for_each_lower_dev(dev, lower, iter)
10476 netdev_sync_lower_features(dev, lower, features);
10477
10478 if (!err) {
10479 netdev_features_t diff = features ^ dev->features;
10480
10481 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10482 /* udp_tunnel_{get,drop}_rx_info both need
10483 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10484 * device, or they won't do anything.
10485 * Thus we need to update dev->features
10486 * *before* calling udp_tunnel_get_rx_info,
10487 * but *after* calling udp_tunnel_drop_rx_info.
10488 */
10489 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10490 dev->features = features;
10491 udp_tunnel_get_rx_info(dev);
10492 } else {
10493 udp_tunnel_drop_rx_info(dev);
10494 }
10495 }
10496
10497 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10498 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10499 dev->features = features;
10500 err |= vlan_get_rx_ctag_filter_info(dev);
10501 } else {
10502 vlan_drop_rx_ctag_filter_info(dev);
10503 }
10504 }
10505
10506 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10507 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10508 dev->features = features;
10509 err |= vlan_get_rx_stag_filter_info(dev);
10510 } else {
10511 vlan_drop_rx_stag_filter_info(dev);
10512 }
10513 }
10514
10515 dev->features = features;
10516 }
10517
10518 return err < 0 ? 0 : 1;
10519}
10520
10521/**
10522 * netdev_update_features - recalculate device features
10523 * @dev: the device to check
10524 *
10525 * Recalculate dev->features set and send notifications if it
10526 * has changed. Should be called after driver or hardware dependent
10527 * conditions might have changed that influence the features.
10528 */
10529void netdev_update_features(struct net_device *dev)
10530{
10531 if (__netdev_update_features(dev))
10532 netdev_features_change(dev);
10533}
10534EXPORT_SYMBOL(netdev_update_features);
10535
10536/**
10537 * netdev_change_features - recalculate device features
10538 * @dev: the device to check
10539 *
10540 * Recalculate dev->features set and send notifications even
10541 * if they have not changed. Should be called instead of
10542 * netdev_update_features() if also dev->vlan_features might
10543 * have changed to allow the changes to be propagated to stacked
10544 * VLAN devices.
10545 */
10546void netdev_change_features(struct net_device *dev)
10547{
10548 __netdev_update_features(dev);
10549 netdev_features_change(dev);
10550}
10551EXPORT_SYMBOL(netdev_change_features);
10552
10553/**
10554 * netif_stacked_transfer_operstate - transfer operstate
10555 * @rootdev: the root or lower level device to transfer state from
10556 * @dev: the device to transfer operstate to
10557 *
10558 * Transfer operational state from root to device. This is normally
10559 * called when a stacking relationship exists between the root
10560 * device and the device(a leaf device).
10561 */
10562void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10563 struct net_device *dev)
10564{
10565 if (rootdev->operstate == IF_OPER_DORMANT)
10566 netif_dormant_on(dev);
10567 else
10568 netif_dormant_off(dev);
10569
10570 if (rootdev->operstate == IF_OPER_TESTING)
10571 netif_testing_on(dev);
10572 else
10573 netif_testing_off(dev);
10574
10575 if (netif_carrier_ok(rootdev))
10576 netif_carrier_on(dev);
10577 else
10578 netif_carrier_off(dev);
10579}
10580EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10581
10582static int netif_alloc_rx_queues(struct net_device *dev)
10583{
10584 unsigned int i, count = dev->num_rx_queues;
10585 struct netdev_rx_queue *rx;
10586 size_t sz = count * sizeof(*rx);
10587 int err = 0;
10588
10589 BUG_ON(count < 1);
10590
10591 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10592 if (!rx)
10593 return -ENOMEM;
10594
10595 dev->_rx = rx;
10596
10597 for (i = 0; i < count; i++) {
10598 rx[i].dev = dev;
10599
10600 /* XDP RX-queue setup */
10601 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10602 if (err < 0)
10603 goto err_rxq_info;
10604 }
10605 return 0;
10606
10607err_rxq_info:
10608 /* Rollback successful reg's and free other resources */
10609 while (i--)
10610 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10611 kvfree(dev->_rx);
10612 dev->_rx = NULL;
10613 return err;
10614}
10615
10616static void netif_free_rx_queues(struct net_device *dev)
10617{
10618 unsigned int i, count = dev->num_rx_queues;
10619
10620 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10621 if (!dev->_rx)
10622 return;
10623
10624 for (i = 0; i < count; i++)
10625 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10626
10627 kvfree(dev->_rx);
10628}
10629
10630static void netdev_init_one_queue(struct net_device *dev,
10631 struct netdev_queue *queue, void *_unused)
10632{
10633 /* Initialize queue lock */
10634 spin_lock_init(&queue->_xmit_lock);
10635 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10636 queue->xmit_lock_owner = -1;
10637 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10638 queue->dev = dev;
10639#ifdef CONFIG_BQL
10640 dql_init(&queue->dql, HZ);
10641#endif
10642}
10643
10644static void netif_free_tx_queues(struct net_device *dev)
10645{
10646 kvfree(dev->_tx);
10647}
10648
10649static int netif_alloc_netdev_queues(struct net_device *dev)
10650{
10651 unsigned int count = dev->num_tx_queues;
10652 struct netdev_queue *tx;
10653 size_t sz = count * sizeof(*tx);
10654
10655 if (count < 1 || count > 0xffff)
10656 return -EINVAL;
10657
10658 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10659 if (!tx)
10660 return -ENOMEM;
10661
10662 dev->_tx = tx;
10663
10664 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10665 spin_lock_init(&dev->tx_global_lock);
10666
10667 return 0;
10668}
10669
10670void netif_tx_stop_all_queues(struct net_device *dev)
10671{
10672 unsigned int i;
10673
10674 for (i = 0; i < dev->num_tx_queues; i++) {
10675 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10676
10677 netif_tx_stop_queue(txq);
10678 }
10679}
10680EXPORT_SYMBOL(netif_tx_stop_all_queues);
10681
10682static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10683{
10684 void __percpu *v;
10685
10686 /* Drivers implementing ndo_get_peer_dev must support tstat
10687 * accounting, so that skb_do_redirect() can bump the dev's
10688 * RX stats upon network namespace switch.
10689 */
10690 if (dev->netdev_ops->ndo_get_peer_dev &&
10691 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10692 return -EOPNOTSUPP;
10693
10694 switch (dev->pcpu_stat_type) {
10695 case NETDEV_PCPU_STAT_NONE:
10696 return 0;
10697 case NETDEV_PCPU_STAT_LSTATS:
10698 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10699 break;
10700 case NETDEV_PCPU_STAT_TSTATS:
10701 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10702 break;
10703 case NETDEV_PCPU_STAT_DSTATS:
10704 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10705 break;
10706 default:
10707 return -EINVAL;
10708 }
10709
10710 return v ? 0 : -ENOMEM;
10711}
10712
10713static void netdev_do_free_pcpu_stats(struct net_device *dev)
10714{
10715 switch (dev->pcpu_stat_type) {
10716 case NETDEV_PCPU_STAT_NONE:
10717 return;
10718 case NETDEV_PCPU_STAT_LSTATS:
10719 free_percpu(dev->lstats);
10720 break;
10721 case NETDEV_PCPU_STAT_TSTATS:
10722 free_percpu(dev->tstats);
10723 break;
10724 case NETDEV_PCPU_STAT_DSTATS:
10725 free_percpu(dev->dstats);
10726 break;
10727 }
10728}
10729
10730static void netdev_free_phy_link_topology(struct net_device *dev)
10731{
10732 struct phy_link_topology *topo = dev->link_topo;
10733
10734 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10735 xa_destroy(&topo->phys);
10736 kfree(topo);
10737 dev->link_topo = NULL;
10738 }
10739}
10740
10741/**
10742 * register_netdevice() - register a network device
10743 * @dev: device to register
10744 *
10745 * Take a prepared network device structure and make it externally accessible.
10746 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10747 * Callers must hold the rtnl lock - you may want register_netdev()
10748 * instead of this.
10749 */
10750int register_netdevice(struct net_device *dev)
10751{
10752 int ret;
10753 struct net *net = dev_net(dev);
10754
10755 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10756 NETDEV_FEATURE_COUNT);
10757 BUG_ON(dev_boot_phase);
10758 ASSERT_RTNL();
10759
10760 might_sleep();
10761
10762 /* When net_device's are persistent, this will be fatal. */
10763 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10764 BUG_ON(!net);
10765
10766 ret = ethtool_check_ops(dev->ethtool_ops);
10767 if (ret)
10768 return ret;
10769
10770 /* rss ctx ID 0 is reserved for the default context, start from 1 */
10771 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10772 mutex_init(&dev->ethtool->rss_lock);
10773
10774 spin_lock_init(&dev->addr_list_lock);
10775 netdev_set_addr_lockdep_class(dev);
10776
10777 ret = dev_get_valid_name(net, dev, dev->name);
10778 if (ret < 0)
10779 goto out;
10780
10781 ret = -ENOMEM;
10782 dev->name_node = netdev_name_node_head_alloc(dev);
10783 if (!dev->name_node)
10784 goto out;
10785
10786 /* Init, if this function is available */
10787 if (dev->netdev_ops->ndo_init) {
10788 ret = dev->netdev_ops->ndo_init(dev);
10789 if (ret) {
10790 if (ret > 0)
10791 ret = -EIO;
10792 goto err_free_name;
10793 }
10794 }
10795
10796 if (((dev->hw_features | dev->features) &
10797 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10798 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10799 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10800 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10801 ret = -EINVAL;
10802 goto err_uninit;
10803 }
10804
10805 ret = netdev_do_alloc_pcpu_stats(dev);
10806 if (ret)
10807 goto err_uninit;
10808
10809 ret = dev_index_reserve(net, dev->ifindex);
10810 if (ret < 0)
10811 goto err_free_pcpu;
10812 dev->ifindex = ret;
10813
10814 /* Transfer changeable features to wanted_features and enable
10815 * software offloads (GSO and GRO).
10816 */
10817 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10818 dev->features |= NETIF_F_SOFT_FEATURES;
10819
10820 if (dev->udp_tunnel_nic_info) {
10821 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10822 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10823 }
10824
10825 dev->wanted_features = dev->features & dev->hw_features;
10826
10827 if (!(dev->flags & IFF_LOOPBACK))
10828 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10829
10830 /* If IPv4 TCP segmentation offload is supported we should also
10831 * allow the device to enable segmenting the frame with the option
10832 * of ignoring a static IP ID value. This doesn't enable the
10833 * feature itself but allows the user to enable it later.
10834 */
10835 if (dev->hw_features & NETIF_F_TSO)
10836 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10837 if (dev->vlan_features & NETIF_F_TSO)
10838 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10839 if (dev->mpls_features & NETIF_F_TSO)
10840 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10841 if (dev->hw_enc_features & NETIF_F_TSO)
10842 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10843
10844 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10845 */
10846 dev->vlan_features |= NETIF_F_HIGHDMA;
10847
10848 /* Make NETIF_F_SG inheritable to tunnel devices.
10849 */
10850 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10851
10852 /* Make NETIF_F_SG inheritable to MPLS.
10853 */
10854 dev->mpls_features |= NETIF_F_SG;
10855
10856 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10857 ret = notifier_to_errno(ret);
10858 if (ret)
10859 goto err_ifindex_release;
10860
10861 ret = netdev_register_kobject(dev);
10862
10863 netdev_lock(dev);
10864 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10865 netdev_unlock(dev);
10866
10867 if (ret)
10868 goto err_uninit_notify;
10869
10870 __netdev_update_features(dev);
10871
10872 /*
10873 * Default initial state at registry is that the
10874 * device is present.
10875 */
10876
10877 set_bit(__LINK_STATE_PRESENT, &dev->state);
10878
10879 linkwatch_init_dev(dev);
10880
10881 dev_init_scheduler(dev);
10882
10883 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10884 list_netdevice(dev);
10885
10886 add_device_randomness(dev->dev_addr, dev->addr_len);
10887
10888 /* If the device has permanent device address, driver should
10889 * set dev_addr and also addr_assign_type should be set to
10890 * NET_ADDR_PERM (default value).
10891 */
10892 if (dev->addr_assign_type == NET_ADDR_PERM)
10893 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10894
10895 /* Notify protocols, that a new device appeared. */
10896 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10897 ret = notifier_to_errno(ret);
10898 if (ret) {
10899 /* Expect explicit free_netdev() on failure */
10900 dev->needs_free_netdev = false;
10901 unregister_netdevice_queue(dev, NULL);
10902 goto out;
10903 }
10904 /*
10905 * Prevent userspace races by waiting until the network
10906 * device is fully setup before sending notifications.
10907 */
10908 if (!dev->rtnl_link_ops ||
10909 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10910 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10911
10912out:
10913 return ret;
10914
10915err_uninit_notify:
10916 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10917err_ifindex_release:
10918 dev_index_release(net, dev->ifindex);
10919err_free_pcpu:
10920 netdev_do_free_pcpu_stats(dev);
10921err_uninit:
10922 if (dev->netdev_ops->ndo_uninit)
10923 dev->netdev_ops->ndo_uninit(dev);
10924 if (dev->priv_destructor)
10925 dev->priv_destructor(dev);
10926err_free_name:
10927 netdev_name_node_free(dev->name_node);
10928 goto out;
10929}
10930EXPORT_SYMBOL(register_netdevice);
10931
10932/* Initialize the core of a dummy net device.
10933 * The setup steps dummy netdevs need which normal netdevs get by going
10934 * through register_netdevice().
10935 */
10936static void init_dummy_netdev(struct net_device *dev)
10937{
10938 /* make sure we BUG if trying to hit standard
10939 * register/unregister code path
10940 */
10941 dev->reg_state = NETREG_DUMMY;
10942
10943 /* a dummy interface is started by default */
10944 set_bit(__LINK_STATE_PRESENT, &dev->state);
10945 set_bit(__LINK_STATE_START, &dev->state);
10946
10947 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10948 * because users of this 'device' dont need to change
10949 * its refcount.
10950 */
10951}
10952
10953/**
10954 * register_netdev - register a network device
10955 * @dev: device to register
10956 *
10957 * Take a completed network device structure and add it to the kernel
10958 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10959 * chain. 0 is returned on success. A negative errno code is returned
10960 * on a failure to set up the device, or if the name is a duplicate.
10961 *
10962 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10963 * and expands the device name if you passed a format string to
10964 * alloc_netdev.
10965 */
10966int register_netdev(struct net_device *dev)
10967{
10968 struct net *net = dev_net(dev);
10969 int err;
10970
10971 if (rtnl_net_lock_killable(net))
10972 return -EINTR;
10973
10974 err = register_netdevice(dev);
10975
10976 rtnl_net_unlock(net);
10977
10978 return err;
10979}
10980EXPORT_SYMBOL(register_netdev);
10981
10982int netdev_refcnt_read(const struct net_device *dev)
10983{
10984#ifdef CONFIG_PCPU_DEV_REFCNT
10985 int i, refcnt = 0;
10986
10987 for_each_possible_cpu(i)
10988 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10989 return refcnt;
10990#else
10991 return refcount_read(&dev->dev_refcnt);
10992#endif
10993}
10994EXPORT_SYMBOL(netdev_refcnt_read);
10995
10996int netdev_unregister_timeout_secs __read_mostly = 10;
10997
10998#define WAIT_REFS_MIN_MSECS 1
10999#define WAIT_REFS_MAX_MSECS 250
11000/**
11001 * netdev_wait_allrefs_any - wait until all references are gone.
11002 * @list: list of net_devices to wait on
11003 *
11004 * This is called when unregistering network devices.
11005 *
11006 * Any protocol or device that holds a reference should register
11007 * for netdevice notification, and cleanup and put back the
11008 * reference if they receive an UNREGISTER event.
11009 * We can get stuck here if buggy protocols don't correctly
11010 * call dev_put.
11011 */
11012static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11013{
11014 unsigned long rebroadcast_time, warning_time;
11015 struct net_device *dev;
11016 int wait = 0;
11017
11018 rebroadcast_time = warning_time = jiffies;
11019
11020 list_for_each_entry(dev, list, todo_list)
11021 if (netdev_refcnt_read(dev) == 1)
11022 return dev;
11023
11024 while (true) {
11025 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11026 rtnl_lock();
11027
11028 /* Rebroadcast unregister notification */
11029 list_for_each_entry(dev, list, todo_list)
11030 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11031
11032 __rtnl_unlock();
11033 rcu_barrier();
11034 rtnl_lock();
11035
11036 list_for_each_entry(dev, list, todo_list)
11037 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11038 &dev->state)) {
11039 /* We must not have linkwatch events
11040 * pending on unregister. If this
11041 * happens, we simply run the queue
11042 * unscheduled, resulting in a noop
11043 * for this device.
11044 */
11045 linkwatch_run_queue();
11046 break;
11047 }
11048
11049 __rtnl_unlock();
11050
11051 rebroadcast_time = jiffies;
11052 }
11053
11054 rcu_barrier();
11055
11056 if (!wait) {
11057 wait = WAIT_REFS_MIN_MSECS;
11058 } else {
11059 msleep(wait);
11060 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11061 }
11062
11063 list_for_each_entry(dev, list, todo_list)
11064 if (netdev_refcnt_read(dev) == 1)
11065 return dev;
11066
11067 if (time_after(jiffies, warning_time +
11068 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11069 list_for_each_entry(dev, list, todo_list) {
11070 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11071 dev->name, netdev_refcnt_read(dev));
11072 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11073 }
11074
11075 warning_time = jiffies;
11076 }
11077 }
11078}
11079
11080/* The sequence is:
11081 *
11082 * rtnl_lock();
11083 * ...
11084 * register_netdevice(x1);
11085 * register_netdevice(x2);
11086 * ...
11087 * unregister_netdevice(y1);
11088 * unregister_netdevice(y2);
11089 * ...
11090 * rtnl_unlock();
11091 * free_netdev(y1);
11092 * free_netdev(y2);
11093 *
11094 * We are invoked by rtnl_unlock().
11095 * This allows us to deal with problems:
11096 * 1) We can delete sysfs objects which invoke hotplug
11097 * without deadlocking with linkwatch via keventd.
11098 * 2) Since we run with the RTNL semaphore not held, we can sleep
11099 * safely in order to wait for the netdev refcnt to drop to zero.
11100 *
11101 * We must not return until all unregister events added during
11102 * the interval the lock was held have been completed.
11103 */
11104void netdev_run_todo(void)
11105{
11106 struct net_device *dev, *tmp;
11107 struct list_head list;
11108 int cnt;
11109#ifdef CONFIG_LOCKDEP
11110 struct list_head unlink_list;
11111
11112 list_replace_init(&net_unlink_list, &unlink_list);
11113
11114 while (!list_empty(&unlink_list)) {
11115 struct net_device *dev = list_first_entry(&unlink_list,
11116 struct net_device,
11117 unlink_list);
11118 list_del_init(&dev->unlink_list);
11119 dev->nested_level = dev->lower_level - 1;
11120 }
11121#endif
11122
11123 /* Snapshot list, allow later requests */
11124 list_replace_init(&net_todo_list, &list);
11125
11126 __rtnl_unlock();
11127
11128 /* Wait for rcu callbacks to finish before next phase */
11129 if (!list_empty(&list))
11130 rcu_barrier();
11131
11132 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11133 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11134 netdev_WARN(dev, "run_todo but not unregistering\n");
11135 list_del(&dev->todo_list);
11136 continue;
11137 }
11138
11139 netdev_lock(dev);
11140 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11141 netdev_unlock(dev);
11142 linkwatch_sync_dev(dev);
11143 }
11144
11145 cnt = 0;
11146 while (!list_empty(&list)) {
11147 dev = netdev_wait_allrefs_any(&list);
11148 list_del(&dev->todo_list);
11149
11150 /* paranoia */
11151 BUG_ON(netdev_refcnt_read(dev) != 1);
11152 BUG_ON(!list_empty(&dev->ptype_all));
11153 BUG_ON(!list_empty(&dev->ptype_specific));
11154 WARN_ON(rcu_access_pointer(dev->ip_ptr));
11155 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11156
11157 netdev_do_free_pcpu_stats(dev);
11158 if (dev->priv_destructor)
11159 dev->priv_destructor(dev);
11160 if (dev->needs_free_netdev)
11161 free_netdev(dev);
11162
11163 cnt++;
11164
11165 /* Free network device */
11166 kobject_put(&dev->dev.kobj);
11167 }
11168 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11169 wake_up(&netdev_unregistering_wq);
11170}
11171
11172/* Collate per-cpu network dstats statistics
11173 *
11174 * Read per-cpu network statistics from dev->dstats and populate the related
11175 * fields in @s.
11176 */
11177static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11178 const struct pcpu_dstats __percpu *dstats)
11179{
11180 int cpu;
11181
11182 for_each_possible_cpu(cpu) {
11183 u64 rx_packets, rx_bytes, rx_drops;
11184 u64 tx_packets, tx_bytes, tx_drops;
11185 const struct pcpu_dstats *stats;
11186 unsigned int start;
11187
11188 stats = per_cpu_ptr(dstats, cpu);
11189 do {
11190 start = u64_stats_fetch_begin(&stats->syncp);
11191 rx_packets = u64_stats_read(&stats->rx_packets);
11192 rx_bytes = u64_stats_read(&stats->rx_bytes);
11193 rx_drops = u64_stats_read(&stats->rx_drops);
11194 tx_packets = u64_stats_read(&stats->tx_packets);
11195 tx_bytes = u64_stats_read(&stats->tx_bytes);
11196 tx_drops = u64_stats_read(&stats->tx_drops);
11197 } while (u64_stats_fetch_retry(&stats->syncp, start));
11198
11199 s->rx_packets += rx_packets;
11200 s->rx_bytes += rx_bytes;
11201 s->rx_dropped += rx_drops;
11202 s->tx_packets += tx_packets;
11203 s->tx_bytes += tx_bytes;
11204 s->tx_dropped += tx_drops;
11205 }
11206}
11207
11208/* ndo_get_stats64 implementation for dtstats-based accounting.
11209 *
11210 * Populate @s from dev->stats and dev->dstats. This is used internally by the
11211 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11212 */
11213static void dev_get_dstats64(const struct net_device *dev,
11214 struct rtnl_link_stats64 *s)
11215{
11216 netdev_stats_to_stats64(s, &dev->stats);
11217 dev_fetch_dstats(s, dev->dstats);
11218}
11219
11220/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11221 * all the same fields in the same order as net_device_stats, with only
11222 * the type differing, but rtnl_link_stats64 may have additional fields
11223 * at the end for newer counters.
11224 */
11225void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11226 const struct net_device_stats *netdev_stats)
11227{
11228 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11229 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11230 u64 *dst = (u64 *)stats64;
11231
11232 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11233 for (i = 0; i < n; i++)
11234 dst[i] = (unsigned long)atomic_long_read(&src[i]);
11235 /* zero out counters that only exist in rtnl_link_stats64 */
11236 memset((char *)stats64 + n * sizeof(u64), 0,
11237 sizeof(*stats64) - n * sizeof(u64));
11238}
11239EXPORT_SYMBOL(netdev_stats_to_stats64);
11240
11241static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11242 struct net_device *dev)
11243{
11244 struct net_device_core_stats __percpu *p;
11245
11246 p = alloc_percpu_gfp(struct net_device_core_stats,
11247 GFP_ATOMIC | __GFP_NOWARN);
11248
11249 if (p && cmpxchg(&dev->core_stats, NULL, p))
11250 free_percpu(p);
11251
11252 /* This READ_ONCE() pairs with the cmpxchg() above */
11253 return READ_ONCE(dev->core_stats);
11254}
11255
11256noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11257{
11258 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11259 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11260 unsigned long __percpu *field;
11261
11262 if (unlikely(!p)) {
11263 p = netdev_core_stats_alloc(dev);
11264 if (!p)
11265 return;
11266 }
11267
11268 field = (unsigned long __percpu *)((void __percpu *)p + offset);
11269 this_cpu_inc(*field);
11270}
11271EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11272
11273/**
11274 * dev_get_stats - get network device statistics
11275 * @dev: device to get statistics from
11276 * @storage: place to store stats
11277 *
11278 * Get network statistics from device. Return @storage.
11279 * The device driver may provide its own method by setting
11280 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11281 * otherwise the internal statistics structure is used.
11282 */
11283struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11284 struct rtnl_link_stats64 *storage)
11285{
11286 const struct net_device_ops *ops = dev->netdev_ops;
11287 const struct net_device_core_stats __percpu *p;
11288
11289 if (ops->ndo_get_stats64) {
11290 memset(storage, 0, sizeof(*storage));
11291 ops->ndo_get_stats64(dev, storage);
11292 } else if (ops->ndo_get_stats) {
11293 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11294 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11295 dev_get_tstats64(dev, storage);
11296 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11297 dev_get_dstats64(dev, storage);
11298 } else {
11299 netdev_stats_to_stats64(storage, &dev->stats);
11300 }
11301
11302 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11303 p = READ_ONCE(dev->core_stats);
11304 if (p) {
11305 const struct net_device_core_stats *core_stats;
11306 int i;
11307
11308 for_each_possible_cpu(i) {
11309 core_stats = per_cpu_ptr(p, i);
11310 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11311 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11312 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11313 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11314 }
11315 }
11316 return storage;
11317}
11318EXPORT_SYMBOL(dev_get_stats);
11319
11320/**
11321 * dev_fetch_sw_netstats - get per-cpu network device statistics
11322 * @s: place to store stats
11323 * @netstats: per-cpu network stats to read from
11324 *
11325 * Read per-cpu network statistics and populate the related fields in @s.
11326 */
11327void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11328 const struct pcpu_sw_netstats __percpu *netstats)
11329{
11330 int cpu;
11331
11332 for_each_possible_cpu(cpu) {
11333 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11334 const struct pcpu_sw_netstats *stats;
11335 unsigned int start;
11336
11337 stats = per_cpu_ptr(netstats, cpu);
11338 do {
11339 start = u64_stats_fetch_begin(&stats->syncp);
11340 rx_packets = u64_stats_read(&stats->rx_packets);
11341 rx_bytes = u64_stats_read(&stats->rx_bytes);
11342 tx_packets = u64_stats_read(&stats->tx_packets);
11343 tx_bytes = u64_stats_read(&stats->tx_bytes);
11344 } while (u64_stats_fetch_retry(&stats->syncp, start));
11345
11346 s->rx_packets += rx_packets;
11347 s->rx_bytes += rx_bytes;
11348 s->tx_packets += tx_packets;
11349 s->tx_bytes += tx_bytes;
11350 }
11351}
11352EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11353
11354/**
11355 * dev_get_tstats64 - ndo_get_stats64 implementation
11356 * @dev: device to get statistics from
11357 * @s: place to store stats
11358 *
11359 * Populate @s from dev->stats and dev->tstats. Can be used as
11360 * ndo_get_stats64() callback.
11361 */
11362void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11363{
11364 netdev_stats_to_stats64(s, &dev->stats);
11365 dev_fetch_sw_netstats(s, dev->tstats);
11366}
11367EXPORT_SYMBOL_GPL(dev_get_tstats64);
11368
11369struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11370{
11371 struct netdev_queue *queue = dev_ingress_queue(dev);
11372
11373#ifdef CONFIG_NET_CLS_ACT
11374 if (queue)
11375 return queue;
11376 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11377 if (!queue)
11378 return NULL;
11379 netdev_init_one_queue(dev, queue, NULL);
11380 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11381 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11382 rcu_assign_pointer(dev->ingress_queue, queue);
11383#endif
11384 return queue;
11385}
11386
11387static const struct ethtool_ops default_ethtool_ops;
11388
11389void netdev_set_default_ethtool_ops(struct net_device *dev,
11390 const struct ethtool_ops *ops)
11391{
11392 if (dev->ethtool_ops == &default_ethtool_ops)
11393 dev->ethtool_ops = ops;
11394}
11395EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11396
11397/**
11398 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11399 * @dev: netdev to enable the IRQ coalescing on
11400 *
11401 * Sets a conservative default for SW IRQ coalescing. Users can use
11402 * sysfs attributes to override the default values.
11403 */
11404void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11405{
11406 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11407
11408 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11409 netdev_set_gro_flush_timeout(dev, 20000);
11410 netdev_set_defer_hard_irqs(dev, 1);
11411 }
11412}
11413EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11414
11415/**
11416 * alloc_netdev_mqs - allocate network device
11417 * @sizeof_priv: size of private data to allocate space for
11418 * @name: device name format string
11419 * @name_assign_type: origin of device name
11420 * @setup: callback to initialize device
11421 * @txqs: the number of TX subqueues to allocate
11422 * @rxqs: the number of RX subqueues to allocate
11423 *
11424 * Allocates a struct net_device with private data area for driver use
11425 * and performs basic initialization. Also allocates subqueue structs
11426 * for each queue on the device.
11427 */
11428struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11429 unsigned char name_assign_type,
11430 void (*setup)(struct net_device *),
11431 unsigned int txqs, unsigned int rxqs)
11432{
11433 struct net_device *dev;
11434 size_t napi_config_sz;
11435 unsigned int maxqs;
11436
11437 BUG_ON(strlen(name) >= sizeof(dev->name));
11438
11439 if (txqs < 1) {
11440 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11441 return NULL;
11442 }
11443
11444 if (rxqs < 1) {
11445 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11446 return NULL;
11447 }
11448
11449 maxqs = max(txqs, rxqs);
11450
11451 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11452 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11453 if (!dev)
11454 return NULL;
11455
11456 dev->priv_len = sizeof_priv;
11457
11458 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11459#ifdef CONFIG_PCPU_DEV_REFCNT
11460 dev->pcpu_refcnt = alloc_percpu(int);
11461 if (!dev->pcpu_refcnt)
11462 goto free_dev;
11463 __dev_hold(dev);
11464#else
11465 refcount_set(&dev->dev_refcnt, 1);
11466#endif
11467
11468 if (dev_addr_init(dev))
11469 goto free_pcpu;
11470
11471 dev_mc_init(dev);
11472 dev_uc_init(dev);
11473
11474 dev_net_set(dev, &init_net);
11475
11476 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11477 dev->xdp_zc_max_segs = 1;
11478 dev->gso_max_segs = GSO_MAX_SEGS;
11479 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11480 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11481 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11482 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11483 dev->tso_max_segs = TSO_MAX_SEGS;
11484 dev->upper_level = 1;
11485 dev->lower_level = 1;
11486#ifdef CONFIG_LOCKDEP
11487 dev->nested_level = 0;
11488 INIT_LIST_HEAD(&dev->unlink_list);
11489#endif
11490
11491 INIT_LIST_HEAD(&dev->napi_list);
11492 INIT_LIST_HEAD(&dev->unreg_list);
11493 INIT_LIST_HEAD(&dev->close_list);
11494 INIT_LIST_HEAD(&dev->link_watch_list);
11495 INIT_LIST_HEAD(&dev->adj_list.upper);
11496 INIT_LIST_HEAD(&dev->adj_list.lower);
11497 INIT_LIST_HEAD(&dev->ptype_all);
11498 INIT_LIST_HEAD(&dev->ptype_specific);
11499 INIT_LIST_HEAD(&dev->net_notifier_list);
11500#ifdef CONFIG_NET_SCHED
11501 hash_init(dev->qdisc_hash);
11502#endif
11503
11504 mutex_init(&dev->lock);
11505
11506 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11507 setup(dev);
11508
11509 if (!dev->tx_queue_len) {
11510 dev->priv_flags |= IFF_NO_QUEUE;
11511 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11512 }
11513
11514 dev->num_tx_queues = txqs;
11515 dev->real_num_tx_queues = txqs;
11516 if (netif_alloc_netdev_queues(dev))
11517 goto free_all;
11518
11519 dev->num_rx_queues = rxqs;
11520 dev->real_num_rx_queues = rxqs;
11521 if (netif_alloc_rx_queues(dev))
11522 goto free_all;
11523 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11524 if (!dev->ethtool)
11525 goto free_all;
11526
11527 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11528 if (!dev->cfg)
11529 goto free_all;
11530 dev->cfg_pending = dev->cfg;
11531
11532 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11533 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11534 if (!dev->napi_config)
11535 goto free_all;
11536
11537 strscpy(dev->name, name);
11538 dev->name_assign_type = name_assign_type;
11539 dev->group = INIT_NETDEV_GROUP;
11540 if (!dev->ethtool_ops)
11541 dev->ethtool_ops = &default_ethtool_ops;
11542
11543 nf_hook_netdev_init(dev);
11544
11545 return dev;
11546
11547free_all:
11548 free_netdev(dev);
11549 return NULL;
11550
11551free_pcpu:
11552#ifdef CONFIG_PCPU_DEV_REFCNT
11553 free_percpu(dev->pcpu_refcnt);
11554free_dev:
11555#endif
11556 kvfree(dev);
11557 return NULL;
11558}
11559EXPORT_SYMBOL(alloc_netdev_mqs);
11560
11561static void netdev_napi_exit(struct net_device *dev)
11562{
11563 if (!list_empty(&dev->napi_list)) {
11564 struct napi_struct *p, *n;
11565
11566 netdev_lock(dev);
11567 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11568 __netif_napi_del_locked(p);
11569 netdev_unlock(dev);
11570
11571 synchronize_net();
11572 }
11573
11574 kvfree(dev->napi_config);
11575}
11576
11577/**
11578 * free_netdev - free network device
11579 * @dev: device
11580 *
11581 * This function does the last stage of destroying an allocated device
11582 * interface. The reference to the device object is released. If this
11583 * is the last reference then it will be freed.Must be called in process
11584 * context.
11585 */
11586void free_netdev(struct net_device *dev)
11587{
11588 might_sleep();
11589
11590 /* When called immediately after register_netdevice() failed the unwind
11591 * handling may still be dismantling the device. Handle that case by
11592 * deferring the free.
11593 */
11594 if (dev->reg_state == NETREG_UNREGISTERING) {
11595 ASSERT_RTNL();
11596 dev->needs_free_netdev = true;
11597 return;
11598 }
11599
11600 WARN_ON(dev->cfg != dev->cfg_pending);
11601 kfree(dev->cfg);
11602 kfree(dev->ethtool);
11603 netif_free_tx_queues(dev);
11604 netif_free_rx_queues(dev);
11605
11606 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11607
11608 /* Flush device addresses */
11609 dev_addr_flush(dev);
11610
11611 netdev_napi_exit(dev);
11612
11613 ref_tracker_dir_exit(&dev->refcnt_tracker);
11614#ifdef CONFIG_PCPU_DEV_REFCNT
11615 free_percpu(dev->pcpu_refcnt);
11616 dev->pcpu_refcnt = NULL;
11617#endif
11618 free_percpu(dev->core_stats);
11619 dev->core_stats = NULL;
11620 free_percpu(dev->xdp_bulkq);
11621 dev->xdp_bulkq = NULL;
11622
11623 netdev_free_phy_link_topology(dev);
11624
11625 mutex_destroy(&dev->lock);
11626
11627 /* Compatibility with error handling in drivers */
11628 if (dev->reg_state == NETREG_UNINITIALIZED ||
11629 dev->reg_state == NETREG_DUMMY) {
11630 kvfree(dev);
11631 return;
11632 }
11633
11634 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11635 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11636
11637 /* will free via device release */
11638 put_device(&dev->dev);
11639}
11640EXPORT_SYMBOL(free_netdev);
11641
11642/**
11643 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11644 * @sizeof_priv: size of private data to allocate space for
11645 *
11646 * Return: the allocated net_device on success, NULL otherwise
11647 */
11648struct net_device *alloc_netdev_dummy(int sizeof_priv)
11649{
11650 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11651 init_dummy_netdev);
11652}
11653EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11654
11655/**
11656 * synchronize_net - Synchronize with packet receive processing
11657 *
11658 * Wait for packets currently being received to be done.
11659 * Does not block later packets from starting.
11660 */
11661void synchronize_net(void)
11662{
11663 might_sleep();
11664 if (from_cleanup_net() || rtnl_is_locked())
11665 synchronize_rcu_expedited();
11666 else
11667 synchronize_rcu();
11668}
11669EXPORT_SYMBOL(synchronize_net);
11670
11671static void netdev_rss_contexts_free(struct net_device *dev)
11672{
11673 struct ethtool_rxfh_context *ctx;
11674 unsigned long context;
11675
11676 mutex_lock(&dev->ethtool->rss_lock);
11677 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11678 struct ethtool_rxfh_param rxfh;
11679
11680 rxfh.indir = ethtool_rxfh_context_indir(ctx);
11681 rxfh.key = ethtool_rxfh_context_key(ctx);
11682 rxfh.hfunc = ctx->hfunc;
11683 rxfh.input_xfrm = ctx->input_xfrm;
11684 rxfh.rss_context = context;
11685 rxfh.rss_delete = true;
11686
11687 xa_erase(&dev->ethtool->rss_ctx, context);
11688 if (dev->ethtool_ops->create_rxfh_context)
11689 dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11690 context, NULL);
11691 else
11692 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11693 kfree(ctx);
11694 }
11695 xa_destroy(&dev->ethtool->rss_ctx);
11696 mutex_unlock(&dev->ethtool->rss_lock);
11697}
11698
11699/**
11700 * unregister_netdevice_queue - remove device from the kernel
11701 * @dev: device
11702 * @head: list
11703 *
11704 * This function shuts down a device interface and removes it
11705 * from the kernel tables.
11706 * If head not NULL, device is queued to be unregistered later.
11707 *
11708 * Callers must hold the rtnl semaphore. You may want
11709 * unregister_netdev() instead of this.
11710 */
11711
11712void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11713{
11714 ASSERT_RTNL();
11715
11716 if (head) {
11717 list_move_tail(&dev->unreg_list, head);
11718 } else {
11719 LIST_HEAD(single);
11720
11721 list_add(&dev->unreg_list, &single);
11722 unregister_netdevice_many(&single);
11723 }
11724}
11725EXPORT_SYMBOL(unregister_netdevice_queue);
11726
11727void unregister_netdevice_many_notify(struct list_head *head,
11728 u32 portid, const struct nlmsghdr *nlh)
11729{
11730 struct net_device *dev, *tmp;
11731 LIST_HEAD(close_head);
11732 int cnt = 0;
11733
11734 BUG_ON(dev_boot_phase);
11735 ASSERT_RTNL();
11736
11737 if (list_empty(head))
11738 return;
11739
11740 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11741 /* Some devices call without registering
11742 * for initialization unwind. Remove those
11743 * devices and proceed with the remaining.
11744 */
11745 if (dev->reg_state == NETREG_UNINITIALIZED) {
11746 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11747 dev->name, dev);
11748
11749 WARN_ON(1);
11750 list_del(&dev->unreg_list);
11751 continue;
11752 }
11753 dev->dismantle = true;
11754 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11755 }
11756
11757 /* If device is running, close it first. */
11758 list_for_each_entry(dev, head, unreg_list)
11759 list_add_tail(&dev->close_list, &close_head);
11760 dev_close_many(&close_head, true);
11761
11762 list_for_each_entry(dev, head, unreg_list) {
11763 /* And unlink it from device chain. */
11764 unlist_netdevice(dev);
11765 netdev_lock(dev);
11766 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11767 netdev_unlock(dev);
11768 }
11769 flush_all_backlogs();
11770
11771 synchronize_net();
11772
11773 list_for_each_entry(dev, head, unreg_list) {
11774 struct sk_buff *skb = NULL;
11775
11776 /* Shutdown queueing discipline. */
11777 dev_shutdown(dev);
11778 dev_tcx_uninstall(dev);
11779 dev_xdp_uninstall(dev);
11780 bpf_dev_bound_netdev_unregister(dev);
11781 dev_dmabuf_uninstall(dev);
11782
11783 netdev_offload_xstats_disable_all(dev);
11784
11785 /* Notify protocols, that we are about to destroy
11786 * this device. They should clean all the things.
11787 */
11788 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11789
11790 if (!dev->rtnl_link_ops ||
11791 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11792 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11793 GFP_KERNEL, NULL, 0,
11794 portid, nlh);
11795
11796 /*
11797 * Flush the unicast and multicast chains
11798 */
11799 dev_uc_flush(dev);
11800 dev_mc_flush(dev);
11801
11802 netdev_name_node_alt_flush(dev);
11803 netdev_name_node_free(dev->name_node);
11804
11805 netdev_rss_contexts_free(dev);
11806
11807 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11808
11809 if (dev->netdev_ops->ndo_uninit)
11810 dev->netdev_ops->ndo_uninit(dev);
11811
11812 mutex_destroy(&dev->ethtool->rss_lock);
11813
11814 net_shaper_flush_netdev(dev);
11815
11816 if (skb)
11817 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11818
11819 /* Notifier chain MUST detach us all upper devices. */
11820 WARN_ON(netdev_has_any_upper_dev(dev));
11821 WARN_ON(netdev_has_any_lower_dev(dev));
11822
11823 /* Remove entries from kobject tree */
11824 netdev_unregister_kobject(dev);
11825#ifdef CONFIG_XPS
11826 /* Remove XPS queueing entries */
11827 netif_reset_xps_queues_gt(dev, 0);
11828#endif
11829 }
11830
11831 synchronize_net();
11832
11833 list_for_each_entry(dev, head, unreg_list) {
11834 netdev_put(dev, &dev->dev_registered_tracker);
11835 net_set_todo(dev);
11836 cnt++;
11837 }
11838 atomic_add(cnt, &dev_unreg_count);
11839
11840 list_del(head);
11841}
11842
11843/**
11844 * unregister_netdevice_many - unregister many devices
11845 * @head: list of devices
11846 *
11847 * Note: As most callers use a stack allocated list_head,
11848 * we force a list_del() to make sure stack won't be corrupted later.
11849 */
11850void unregister_netdevice_many(struct list_head *head)
11851{
11852 unregister_netdevice_many_notify(head, 0, NULL);
11853}
11854EXPORT_SYMBOL(unregister_netdevice_many);
11855
11856/**
11857 * unregister_netdev - remove device from the kernel
11858 * @dev: device
11859 *
11860 * This function shuts down a device interface and removes it
11861 * from the kernel tables.
11862 *
11863 * This is just a wrapper for unregister_netdevice that takes
11864 * the rtnl semaphore. In general you want to use this and not
11865 * unregister_netdevice.
11866 */
11867void unregister_netdev(struct net_device *dev)
11868{
11869 struct net *net = dev_net(dev);
11870
11871 rtnl_net_lock(net);
11872 unregister_netdevice(dev);
11873 rtnl_net_unlock(net);
11874}
11875EXPORT_SYMBOL(unregister_netdev);
11876
11877/**
11878 * __dev_change_net_namespace - move device to different nethost namespace
11879 * @dev: device
11880 * @net: network namespace
11881 * @pat: If not NULL name pattern to try if the current device name
11882 * is already taken in the destination network namespace.
11883 * @new_ifindex: If not zero, specifies device index in the target
11884 * namespace.
11885 *
11886 * This function shuts down a device interface and moves it
11887 * to a new network namespace. On success 0 is returned, on
11888 * a failure a netagive errno code is returned.
11889 *
11890 * Callers must hold the rtnl semaphore.
11891 */
11892
11893int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11894 const char *pat, int new_ifindex)
11895{
11896 struct netdev_name_node *name_node;
11897 struct net *net_old = dev_net(dev);
11898 char new_name[IFNAMSIZ] = {};
11899 int err, new_nsid;
11900
11901 ASSERT_RTNL();
11902
11903 /* Don't allow namespace local devices to be moved. */
11904 err = -EINVAL;
11905 if (dev->netns_local)
11906 goto out;
11907
11908 /* Ensure the device has been registered */
11909 if (dev->reg_state != NETREG_REGISTERED)
11910 goto out;
11911
11912 /* Get out if there is nothing todo */
11913 err = 0;
11914 if (net_eq(net_old, net))
11915 goto out;
11916
11917 /* Pick the destination device name, and ensure
11918 * we can use it in the destination network namespace.
11919 */
11920 err = -EEXIST;
11921 if (netdev_name_in_use(net, dev->name)) {
11922 /* We get here if we can't use the current device name */
11923 if (!pat)
11924 goto out;
11925 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11926 if (err < 0)
11927 goto out;
11928 }
11929 /* Check that none of the altnames conflicts. */
11930 err = -EEXIST;
11931 netdev_for_each_altname(dev, name_node)
11932 if (netdev_name_in_use(net, name_node->name))
11933 goto out;
11934
11935 /* Check that new_ifindex isn't used yet. */
11936 if (new_ifindex) {
11937 err = dev_index_reserve(net, new_ifindex);
11938 if (err < 0)
11939 goto out;
11940 } else {
11941 /* If there is an ifindex conflict assign a new one */
11942 err = dev_index_reserve(net, dev->ifindex);
11943 if (err == -EBUSY)
11944 err = dev_index_reserve(net, 0);
11945 if (err < 0)
11946 goto out;
11947 new_ifindex = err;
11948 }
11949
11950 /*
11951 * And now a mini version of register_netdevice unregister_netdevice.
11952 */
11953
11954 /* If device is running close it first. */
11955 dev_close(dev);
11956
11957 /* And unlink it from device chain */
11958 unlist_netdevice(dev);
11959
11960 synchronize_net();
11961
11962 /* Shutdown queueing discipline. */
11963 dev_shutdown(dev);
11964
11965 /* Notify protocols, that we are about to destroy
11966 * this device. They should clean all the things.
11967 *
11968 * Note that dev->reg_state stays at NETREG_REGISTERED.
11969 * This is wanted because this way 8021q and macvlan know
11970 * the device is just moving and can keep their slaves up.
11971 */
11972 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11973 rcu_barrier();
11974
11975 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11976
11977 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11978 new_ifindex);
11979
11980 /*
11981 * Flush the unicast and multicast chains
11982 */
11983 dev_uc_flush(dev);
11984 dev_mc_flush(dev);
11985
11986 /* Send a netdev-removed uevent to the old namespace */
11987 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11988 netdev_adjacent_del_links(dev);
11989
11990 /* Move per-net netdevice notifiers that are following the netdevice */
11991 move_netdevice_notifiers_dev_net(dev, net);
11992
11993 /* Actually switch the network namespace */
11994 dev_net_set(dev, net);
11995 dev->ifindex = new_ifindex;
11996
11997 if (new_name[0]) {
11998 /* Rename the netdev to prepared name */
11999 write_seqlock_bh(&netdev_rename_lock);
12000 strscpy(dev->name, new_name, IFNAMSIZ);
12001 write_sequnlock_bh(&netdev_rename_lock);
12002 }
12003
12004 /* Fixup kobjects */
12005 dev_set_uevent_suppress(&dev->dev, 1);
12006 err = device_rename(&dev->dev, dev->name);
12007 dev_set_uevent_suppress(&dev->dev, 0);
12008 WARN_ON(err);
12009
12010 /* Send a netdev-add uevent to the new namespace */
12011 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12012 netdev_adjacent_add_links(dev);
12013
12014 /* Adapt owner in case owning user namespace of target network
12015 * namespace is different from the original one.
12016 */
12017 err = netdev_change_owner(dev, net_old, net);
12018 WARN_ON(err);
12019
12020 /* Add the device back in the hashes */
12021 list_netdevice(dev);
12022
12023 /* Notify protocols, that a new device appeared. */
12024 call_netdevice_notifiers(NETDEV_REGISTER, dev);
12025
12026 /*
12027 * Prevent userspace races by waiting until the network
12028 * device is fully setup before sending notifications.
12029 */
12030 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12031
12032 synchronize_net();
12033 err = 0;
12034out:
12035 return err;
12036}
12037EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
12038
12039static int dev_cpu_dead(unsigned int oldcpu)
12040{
12041 struct sk_buff **list_skb;
12042 struct sk_buff *skb;
12043 unsigned int cpu;
12044 struct softnet_data *sd, *oldsd, *remsd = NULL;
12045
12046 local_irq_disable();
12047 cpu = smp_processor_id();
12048 sd = &per_cpu(softnet_data, cpu);
12049 oldsd = &per_cpu(softnet_data, oldcpu);
12050
12051 /* Find end of our completion_queue. */
12052 list_skb = &sd->completion_queue;
12053 while (*list_skb)
12054 list_skb = &(*list_skb)->next;
12055 /* Append completion queue from offline CPU. */
12056 *list_skb = oldsd->completion_queue;
12057 oldsd->completion_queue = NULL;
12058
12059 /* Append output queue from offline CPU. */
12060 if (oldsd->output_queue) {
12061 *sd->output_queue_tailp = oldsd->output_queue;
12062 sd->output_queue_tailp = oldsd->output_queue_tailp;
12063 oldsd->output_queue = NULL;
12064 oldsd->output_queue_tailp = &oldsd->output_queue;
12065 }
12066 /* Append NAPI poll list from offline CPU, with one exception :
12067 * process_backlog() must be called by cpu owning percpu backlog.
12068 * We properly handle process_queue & input_pkt_queue later.
12069 */
12070 while (!list_empty(&oldsd->poll_list)) {
12071 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12072 struct napi_struct,
12073 poll_list);
12074
12075 list_del_init(&napi->poll_list);
12076 if (napi->poll == process_backlog)
12077 napi->state &= NAPIF_STATE_THREADED;
12078 else
12079 ____napi_schedule(sd, napi);
12080 }
12081
12082 raise_softirq_irqoff(NET_TX_SOFTIRQ);
12083 local_irq_enable();
12084
12085 if (!use_backlog_threads()) {
12086#ifdef CONFIG_RPS
12087 remsd = oldsd->rps_ipi_list;
12088 oldsd->rps_ipi_list = NULL;
12089#endif
12090 /* send out pending IPI's on offline CPU */
12091 net_rps_send_ipi(remsd);
12092 }
12093
12094 /* Process offline CPU's input_pkt_queue */
12095 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12096 netif_rx(skb);
12097 rps_input_queue_head_incr(oldsd);
12098 }
12099 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12100 netif_rx(skb);
12101 rps_input_queue_head_incr(oldsd);
12102 }
12103
12104 return 0;
12105}
12106
12107/**
12108 * netdev_increment_features - increment feature set by one
12109 * @all: current feature set
12110 * @one: new feature set
12111 * @mask: mask feature set
12112 *
12113 * Computes a new feature set after adding a device with feature set
12114 * @one to the master device with current feature set @all. Will not
12115 * enable anything that is off in @mask. Returns the new feature set.
12116 */
12117netdev_features_t netdev_increment_features(netdev_features_t all,
12118 netdev_features_t one, netdev_features_t mask)
12119{
12120 if (mask & NETIF_F_HW_CSUM)
12121 mask |= NETIF_F_CSUM_MASK;
12122 mask |= NETIF_F_VLAN_CHALLENGED;
12123
12124 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12125 all &= one | ~NETIF_F_ALL_FOR_ALL;
12126
12127 /* If one device supports hw checksumming, set for all. */
12128 if (all & NETIF_F_HW_CSUM)
12129 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12130
12131 return all;
12132}
12133EXPORT_SYMBOL(netdev_increment_features);
12134
12135static struct hlist_head * __net_init netdev_create_hash(void)
12136{
12137 int i;
12138 struct hlist_head *hash;
12139
12140 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12141 if (hash != NULL)
12142 for (i = 0; i < NETDEV_HASHENTRIES; i++)
12143 INIT_HLIST_HEAD(&hash[i]);
12144
12145 return hash;
12146}
12147
12148/* Initialize per network namespace state */
12149static int __net_init netdev_init(struct net *net)
12150{
12151 BUILD_BUG_ON(GRO_HASH_BUCKETS >
12152 8 * sizeof_field(struct napi_struct, gro_bitmask));
12153
12154 INIT_LIST_HEAD(&net->dev_base_head);
12155
12156 net->dev_name_head = netdev_create_hash();
12157 if (net->dev_name_head == NULL)
12158 goto err_name;
12159
12160 net->dev_index_head = netdev_create_hash();
12161 if (net->dev_index_head == NULL)
12162 goto err_idx;
12163
12164 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12165
12166 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12167
12168 return 0;
12169
12170err_idx:
12171 kfree(net->dev_name_head);
12172err_name:
12173 return -ENOMEM;
12174}
12175
12176/**
12177 * netdev_drivername - network driver for the device
12178 * @dev: network device
12179 *
12180 * Determine network driver for device.
12181 */
12182const char *netdev_drivername(const struct net_device *dev)
12183{
12184 const struct device_driver *driver;
12185 const struct device *parent;
12186 const char *empty = "";
12187
12188 parent = dev->dev.parent;
12189 if (!parent)
12190 return empty;
12191
12192 driver = parent->driver;
12193 if (driver && driver->name)
12194 return driver->name;
12195 return empty;
12196}
12197
12198static void __netdev_printk(const char *level, const struct net_device *dev,
12199 struct va_format *vaf)
12200{
12201 if (dev && dev->dev.parent) {
12202 dev_printk_emit(level[1] - '0',
12203 dev->dev.parent,
12204 "%s %s %s%s: %pV",
12205 dev_driver_string(dev->dev.parent),
12206 dev_name(dev->dev.parent),
12207 netdev_name(dev), netdev_reg_state(dev),
12208 vaf);
12209 } else if (dev) {
12210 printk("%s%s%s: %pV",
12211 level, netdev_name(dev), netdev_reg_state(dev), vaf);
12212 } else {
12213 printk("%s(NULL net_device): %pV", level, vaf);
12214 }
12215}
12216
12217void netdev_printk(const char *level, const struct net_device *dev,
12218 const char *format, ...)
12219{
12220 struct va_format vaf;
12221 va_list args;
12222
12223 va_start(args, format);
12224
12225 vaf.fmt = format;
12226 vaf.va = &args;
12227
12228 __netdev_printk(level, dev, &vaf);
12229
12230 va_end(args);
12231}
12232EXPORT_SYMBOL(netdev_printk);
12233
12234#define define_netdev_printk_level(func, level) \
12235void func(const struct net_device *dev, const char *fmt, ...) \
12236{ \
12237 struct va_format vaf; \
12238 va_list args; \
12239 \
12240 va_start(args, fmt); \
12241 \
12242 vaf.fmt = fmt; \
12243 vaf.va = &args; \
12244 \
12245 __netdev_printk(level, dev, &vaf); \
12246 \
12247 va_end(args); \
12248} \
12249EXPORT_SYMBOL(func);
12250
12251define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12252define_netdev_printk_level(netdev_alert, KERN_ALERT);
12253define_netdev_printk_level(netdev_crit, KERN_CRIT);
12254define_netdev_printk_level(netdev_err, KERN_ERR);
12255define_netdev_printk_level(netdev_warn, KERN_WARNING);
12256define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12257define_netdev_printk_level(netdev_info, KERN_INFO);
12258
12259static void __net_exit netdev_exit(struct net *net)
12260{
12261 kfree(net->dev_name_head);
12262 kfree(net->dev_index_head);
12263 xa_destroy(&net->dev_by_index);
12264 if (net != &init_net)
12265 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12266}
12267
12268static struct pernet_operations __net_initdata netdev_net_ops = {
12269 .init = netdev_init,
12270 .exit = netdev_exit,
12271};
12272
12273static void __net_exit default_device_exit_net(struct net *net)
12274{
12275 struct netdev_name_node *name_node, *tmp;
12276 struct net_device *dev, *aux;
12277 /*
12278 * Push all migratable network devices back to the
12279 * initial network namespace
12280 */
12281 ASSERT_RTNL();
12282 for_each_netdev_safe(net, dev, aux) {
12283 int err;
12284 char fb_name[IFNAMSIZ];
12285
12286 /* Ignore unmoveable devices (i.e. loopback) */
12287 if (dev->netns_local)
12288 continue;
12289
12290 /* Leave virtual devices for the generic cleanup */
12291 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12292 continue;
12293
12294 /* Push remaining network devices to init_net */
12295 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12296 if (netdev_name_in_use(&init_net, fb_name))
12297 snprintf(fb_name, IFNAMSIZ, "dev%%d");
12298
12299 netdev_for_each_altname_safe(dev, name_node, tmp)
12300 if (netdev_name_in_use(&init_net, name_node->name))
12301 __netdev_name_node_alt_destroy(name_node);
12302
12303 err = dev_change_net_namespace(dev, &init_net, fb_name);
12304 if (err) {
12305 pr_emerg("%s: failed to move %s to init_net: %d\n",
12306 __func__, dev->name, err);
12307 BUG();
12308 }
12309 }
12310}
12311
12312static void __net_exit default_device_exit_batch(struct list_head *net_list)
12313{
12314 /* At exit all network devices most be removed from a network
12315 * namespace. Do this in the reverse order of registration.
12316 * Do this across as many network namespaces as possible to
12317 * improve batching efficiency.
12318 */
12319 struct net_device *dev;
12320 struct net *net;
12321 LIST_HEAD(dev_kill_list);
12322
12323 rtnl_lock();
12324 list_for_each_entry(net, net_list, exit_list) {
12325 default_device_exit_net(net);
12326 cond_resched();
12327 }
12328
12329 list_for_each_entry(net, net_list, exit_list) {
12330 for_each_netdev_reverse(net, dev) {
12331 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12332 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12333 else
12334 unregister_netdevice_queue(dev, &dev_kill_list);
12335 }
12336 }
12337 unregister_netdevice_many(&dev_kill_list);
12338 rtnl_unlock();
12339}
12340
12341static struct pernet_operations __net_initdata default_device_ops = {
12342 .exit_batch = default_device_exit_batch,
12343};
12344
12345static void __init net_dev_struct_check(void)
12346{
12347 /* TX read-mostly hotpath */
12348 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12349 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12350 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12351 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12352 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12353 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12354 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12355 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12356 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12357 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12358 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12359 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12360 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12361#ifdef CONFIG_XPS
12362 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12363#endif
12364#ifdef CONFIG_NETFILTER_EGRESS
12365 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12366#endif
12367#ifdef CONFIG_NET_XGRESS
12368 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12369#endif
12370 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12371
12372 /* TXRX read-mostly hotpath */
12373 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12374 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12375 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12376 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12377 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12378 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12379 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12380
12381 /* RX read-mostly hotpath */
12382 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12383 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12384 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12385 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12386 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12387 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12388 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12389 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12390 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12391#ifdef CONFIG_NETPOLL
12392 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12393#endif
12394#ifdef CONFIG_NET_XGRESS
12395 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12396#endif
12397 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12398}
12399
12400/*
12401 * Initialize the DEV module. At boot time this walks the device list and
12402 * unhooks any devices that fail to initialise (normally hardware not
12403 * present) and leaves us with a valid list of present and active devices.
12404 *
12405 */
12406
12407/* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12408#define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12409
12410static int net_page_pool_create(int cpuid)
12411{
12412#if IS_ENABLED(CONFIG_PAGE_POOL)
12413 struct page_pool_params page_pool_params = {
12414 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12415 .flags = PP_FLAG_SYSTEM_POOL,
12416 .nid = cpu_to_mem(cpuid),
12417 };
12418 struct page_pool *pp_ptr;
12419 int err;
12420
12421 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12422 if (IS_ERR(pp_ptr))
12423 return -ENOMEM;
12424
12425 err = xdp_reg_page_pool(pp_ptr);
12426 if (err) {
12427 page_pool_destroy(pp_ptr);
12428 return err;
12429 }
12430
12431 per_cpu(system_page_pool, cpuid) = pp_ptr;
12432#endif
12433 return 0;
12434}
12435
12436static int backlog_napi_should_run(unsigned int cpu)
12437{
12438 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12439 struct napi_struct *napi = &sd->backlog;
12440
12441 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12442}
12443
12444static void run_backlog_napi(unsigned int cpu)
12445{
12446 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12447
12448 napi_threaded_poll_loop(&sd->backlog);
12449}
12450
12451static void backlog_napi_setup(unsigned int cpu)
12452{
12453 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12454 struct napi_struct *napi = &sd->backlog;
12455
12456 napi->thread = this_cpu_read(backlog_napi);
12457 set_bit(NAPI_STATE_THREADED, &napi->state);
12458}
12459
12460static struct smp_hotplug_thread backlog_threads = {
12461 .store = &backlog_napi,
12462 .thread_should_run = backlog_napi_should_run,
12463 .thread_fn = run_backlog_napi,
12464 .thread_comm = "backlog_napi/%u",
12465 .setup = backlog_napi_setup,
12466};
12467
12468/*
12469 * This is called single threaded during boot, so no need
12470 * to take the rtnl semaphore.
12471 */
12472static int __init net_dev_init(void)
12473{
12474 int i, rc = -ENOMEM;
12475
12476 BUG_ON(!dev_boot_phase);
12477
12478 net_dev_struct_check();
12479
12480 if (dev_proc_init())
12481 goto out;
12482
12483 if (netdev_kobject_init())
12484 goto out;
12485
12486 for (i = 0; i < PTYPE_HASH_SIZE; i++)
12487 INIT_LIST_HEAD(&ptype_base[i]);
12488
12489 if (register_pernet_subsys(&netdev_net_ops))
12490 goto out;
12491
12492 /*
12493 * Initialise the packet receive queues.
12494 */
12495
12496 flush_backlogs_fallback = flush_backlogs_alloc();
12497 if (!flush_backlogs_fallback)
12498 goto out;
12499
12500 for_each_possible_cpu(i) {
12501 struct softnet_data *sd = &per_cpu(softnet_data, i);
12502
12503 skb_queue_head_init(&sd->input_pkt_queue);
12504 skb_queue_head_init(&sd->process_queue);
12505#ifdef CONFIG_XFRM_OFFLOAD
12506 skb_queue_head_init(&sd->xfrm_backlog);
12507#endif
12508 INIT_LIST_HEAD(&sd->poll_list);
12509 sd->output_queue_tailp = &sd->output_queue;
12510#ifdef CONFIG_RPS
12511 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12512 sd->cpu = i;
12513#endif
12514 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12515 spin_lock_init(&sd->defer_lock);
12516
12517 init_gro_hash(&sd->backlog);
12518 sd->backlog.poll = process_backlog;
12519 sd->backlog.weight = weight_p;
12520 INIT_LIST_HEAD(&sd->backlog.poll_list);
12521
12522 if (net_page_pool_create(i))
12523 goto out;
12524 }
12525 if (use_backlog_threads())
12526 smpboot_register_percpu_thread(&backlog_threads);
12527
12528 dev_boot_phase = 0;
12529
12530 /* The loopback device is special if any other network devices
12531 * is present in a network namespace the loopback device must
12532 * be present. Since we now dynamically allocate and free the
12533 * loopback device ensure this invariant is maintained by
12534 * keeping the loopback device as the first device on the
12535 * list of network devices. Ensuring the loopback devices
12536 * is the first device that appears and the last network device
12537 * that disappears.
12538 */
12539 if (register_pernet_device(&loopback_net_ops))
12540 goto out;
12541
12542 if (register_pernet_device(&default_device_ops))
12543 goto out;
12544
12545 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12546 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12547
12548 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12549 NULL, dev_cpu_dead);
12550 WARN_ON(rc < 0);
12551 rc = 0;
12552
12553 /* avoid static key IPIs to isolated CPUs */
12554 if (housekeeping_enabled(HK_TYPE_MISC))
12555 net_enable_timestamp();
12556out:
12557 if (rc < 0) {
12558 for_each_possible_cpu(i) {
12559 struct page_pool *pp_ptr;
12560
12561 pp_ptr = per_cpu(system_page_pool, i);
12562 if (!pp_ptr)
12563 continue;
12564
12565 xdp_unreg_page_pool(pp_ptr);
12566 page_pool_destroy(pp_ptr);
12567 per_cpu(system_page_pool, i) = NULL;
12568 }
12569 }
12570
12571 return rc;
12572}
12573
12574subsys_initcall(net_dev_init);