at v6.13 40 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12#ifndef __LINUX_POWER_SUPPLY_H__ 13#define __LINUX_POWER_SUPPLY_H__ 14 15#include <linux/device.h> 16#include <linux/workqueue.h> 17#include <linux/leds.h> 18#include <linux/spinlock.h> 19#include <linux/notifier.h> 20 21/* 22 * All voltages, currents, charges, energies, time and temperatures in uV, 23 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise 24 * stated. It's driver's job to convert its raw values to units in which 25 * this class operates. 26 */ 27 28/* 29 * For systems where the charger determines the maximum battery capacity 30 * the min and max fields should be used to present these values to user 31 * space. Unused/unknown fields will not appear in sysfs. 32 */ 33 34enum { 35 POWER_SUPPLY_STATUS_UNKNOWN = 0, 36 POWER_SUPPLY_STATUS_CHARGING, 37 POWER_SUPPLY_STATUS_DISCHARGING, 38 POWER_SUPPLY_STATUS_NOT_CHARGING, 39 POWER_SUPPLY_STATUS_FULL, 40}; 41 42/* What algorithm is the charger using? */ 43enum { 44 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0, 45 POWER_SUPPLY_CHARGE_TYPE_NONE, 46 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */ 47 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */ 48 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */ 49 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */ 50 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */ 51 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */ 52 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */ 53}; 54 55enum { 56 POWER_SUPPLY_HEALTH_UNKNOWN = 0, 57 POWER_SUPPLY_HEALTH_GOOD, 58 POWER_SUPPLY_HEALTH_OVERHEAT, 59 POWER_SUPPLY_HEALTH_DEAD, 60 POWER_SUPPLY_HEALTH_OVERVOLTAGE, 61 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE, 62 POWER_SUPPLY_HEALTH_COLD, 63 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE, 64 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE, 65 POWER_SUPPLY_HEALTH_OVERCURRENT, 66 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED, 67 POWER_SUPPLY_HEALTH_WARM, 68 POWER_SUPPLY_HEALTH_COOL, 69 POWER_SUPPLY_HEALTH_HOT, 70 POWER_SUPPLY_HEALTH_NO_BATTERY, 71}; 72 73enum { 74 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0, 75 POWER_SUPPLY_TECHNOLOGY_NiMH, 76 POWER_SUPPLY_TECHNOLOGY_LION, 77 POWER_SUPPLY_TECHNOLOGY_LIPO, 78 POWER_SUPPLY_TECHNOLOGY_LiFe, 79 POWER_SUPPLY_TECHNOLOGY_NiCd, 80 POWER_SUPPLY_TECHNOLOGY_LiMn, 81}; 82 83enum { 84 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0, 85 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL, 86 POWER_SUPPLY_CAPACITY_LEVEL_LOW, 87 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL, 88 POWER_SUPPLY_CAPACITY_LEVEL_HIGH, 89 POWER_SUPPLY_CAPACITY_LEVEL_FULL, 90}; 91 92enum { 93 POWER_SUPPLY_SCOPE_UNKNOWN = 0, 94 POWER_SUPPLY_SCOPE_SYSTEM, 95 POWER_SUPPLY_SCOPE_DEVICE, 96}; 97 98enum power_supply_property { 99 /* Properties of type `int' */ 100 POWER_SUPPLY_PROP_STATUS = 0, 101 POWER_SUPPLY_PROP_CHARGE_TYPE, 102 POWER_SUPPLY_PROP_HEALTH, 103 POWER_SUPPLY_PROP_PRESENT, 104 POWER_SUPPLY_PROP_ONLINE, 105 POWER_SUPPLY_PROP_AUTHENTIC, 106 POWER_SUPPLY_PROP_TECHNOLOGY, 107 POWER_SUPPLY_PROP_CYCLE_COUNT, 108 POWER_SUPPLY_PROP_VOLTAGE_MAX, 109 POWER_SUPPLY_PROP_VOLTAGE_MIN, 110 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 111 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 112 POWER_SUPPLY_PROP_VOLTAGE_NOW, 113 POWER_SUPPLY_PROP_VOLTAGE_AVG, 114 POWER_SUPPLY_PROP_VOLTAGE_OCV, 115 POWER_SUPPLY_PROP_VOLTAGE_BOOT, 116 POWER_SUPPLY_PROP_CURRENT_MAX, 117 POWER_SUPPLY_PROP_CURRENT_NOW, 118 POWER_SUPPLY_PROP_CURRENT_AVG, 119 POWER_SUPPLY_PROP_CURRENT_BOOT, 120 POWER_SUPPLY_PROP_POWER_NOW, 121 POWER_SUPPLY_PROP_POWER_AVG, 122 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 123 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN, 124 POWER_SUPPLY_PROP_CHARGE_FULL, 125 POWER_SUPPLY_PROP_CHARGE_EMPTY, 126 POWER_SUPPLY_PROP_CHARGE_NOW, 127 POWER_SUPPLY_PROP_CHARGE_AVG, 128 POWER_SUPPLY_PROP_CHARGE_COUNTER, 129 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, 130 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 131 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, 132 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 133 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, 134 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, 135 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */ 136 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */ 137 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR, 138 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, 139 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, 140 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT, 141 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 142 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN, 143 POWER_SUPPLY_PROP_ENERGY_FULL, 144 POWER_SUPPLY_PROP_ENERGY_EMPTY, 145 POWER_SUPPLY_PROP_ENERGY_NOW, 146 POWER_SUPPLY_PROP_ENERGY_AVG, 147 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */ 148 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */ 149 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */ 150 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */ 151 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 152 POWER_SUPPLY_PROP_TEMP, 153 POWER_SUPPLY_PROP_TEMP_MAX, 154 POWER_SUPPLY_PROP_TEMP_MIN, 155 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 156 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 157 POWER_SUPPLY_PROP_TEMP_AMBIENT, 158 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 159 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 160 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 161 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 162 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, 163 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 164 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */ 165 POWER_SUPPLY_PROP_USB_TYPE, 166 POWER_SUPPLY_PROP_SCOPE, 167 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 168 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 169 POWER_SUPPLY_PROP_CALIBRATE, 170 POWER_SUPPLY_PROP_MANUFACTURE_YEAR, 171 POWER_SUPPLY_PROP_MANUFACTURE_MONTH, 172 POWER_SUPPLY_PROP_MANUFACTURE_DAY, 173 /* Properties of type `const char *' */ 174 POWER_SUPPLY_PROP_MODEL_NAME, 175 POWER_SUPPLY_PROP_MANUFACTURER, 176 POWER_SUPPLY_PROP_SERIAL_NUMBER, 177}; 178 179enum power_supply_type { 180 POWER_SUPPLY_TYPE_UNKNOWN = 0, 181 POWER_SUPPLY_TYPE_BATTERY, 182 POWER_SUPPLY_TYPE_UPS, 183 POWER_SUPPLY_TYPE_MAINS, 184 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */ 185 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */ 186 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */ 187 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */ 188 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */ 189 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */ 190 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */ 191 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 192 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */ 193}; 194 195enum power_supply_usb_type { 196 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0, 197 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */ 198 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */ 199 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */ 200 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */ 201 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */ 202 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */ 203 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */ 204 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */ 205 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 206}; 207 208enum power_supply_charge_behaviour { 209 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0, 210 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE, 211 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE, 212}; 213 214enum power_supply_notifier_events { 215 PSY_EVENT_PROP_CHANGED, 216}; 217 218union power_supply_propval { 219 int intval; 220 const char *strval; 221}; 222 223struct device_node; 224struct power_supply; 225 226/* Run-time specific power supply configuration */ 227struct power_supply_config { 228 struct device_node *of_node; 229 struct fwnode_handle *fwnode; 230 231 /* Driver private data */ 232 void *drv_data; 233 234 /* Device specific sysfs attributes */ 235 const struct attribute_group **attr_grp; 236 237 char **supplied_to; 238 size_t num_supplicants; 239 240 bool no_wakeup_source; 241}; 242 243/* Description of power supply */ 244struct power_supply_desc { 245 const char *name; 246 enum power_supply_type type; 247 u8 charge_behaviours; 248 u32 usb_types; 249 const enum power_supply_property *properties; 250 size_t num_properties; 251 252 /* 253 * Functions for drivers implementing power supply class. 254 * These shouldn't be called directly by other drivers for accessing 255 * this power supply. Instead use power_supply_*() functions (for 256 * example power_supply_get_property()). 257 */ 258 int (*get_property)(struct power_supply *psy, 259 enum power_supply_property psp, 260 union power_supply_propval *val); 261 int (*set_property)(struct power_supply *psy, 262 enum power_supply_property psp, 263 const union power_supply_propval *val); 264 /* 265 * property_is_writeable() will be called during registration 266 * of power supply. If this happens during device probe then it must 267 * not access internal data of device (because probe did not end). 268 */ 269 int (*property_is_writeable)(struct power_supply *psy, 270 enum power_supply_property psp); 271 void (*external_power_changed)(struct power_supply *psy); 272 void (*set_charged)(struct power_supply *psy); 273 274 /* 275 * Set if thermal zone should not be created for this power supply. 276 * For example for virtual supplies forwarding calls to actual 277 * sensors or other supplies. 278 */ 279 bool no_thermal; 280 /* For APM emulation, think legacy userspace. */ 281 int use_for_apm; 282}; 283 284struct power_supply { 285 const struct power_supply_desc *desc; 286 287 char **supplied_to; 288 size_t num_supplicants; 289 290 char **supplied_from; 291 size_t num_supplies; 292 struct device_node *of_node; 293 294 /* Driver private data */ 295 void *drv_data; 296 297 /* private */ 298 struct device dev; 299 struct work_struct changed_work; 300 struct delayed_work deferred_register_work; 301 spinlock_t changed_lock; 302 bool changed; 303 bool initialized; 304 bool removing; 305 atomic_t use_cnt; 306 struct power_supply_battery_info *battery_info; 307#ifdef CONFIG_THERMAL 308 struct thermal_zone_device *tzd; 309 struct thermal_cooling_device *tcd; 310#endif 311 312#ifdef CONFIG_LEDS_TRIGGERS 313 struct led_trigger *trig; 314 struct led_trigger *charging_trig; 315 struct led_trigger *full_trig; 316 struct led_trigger *charging_blink_full_solid_trig; 317 struct led_trigger *charging_orange_full_green_trig; 318#endif 319}; 320 321/* 322 * This is recommended structure to specify static power supply parameters. 323 * Generic one, parametrizable for different power supplies. Power supply 324 * class itself does not use it, but that's what implementing most platform 325 * drivers, should try reuse for consistency. 326 */ 327 328struct power_supply_info { 329 const char *name; 330 int technology; 331 int voltage_max_design; 332 int voltage_min_design; 333 int charge_full_design; 334 int charge_empty_design; 335 int energy_full_design; 336 int energy_empty_design; 337 int use_for_apm; 338}; 339 340struct power_supply_battery_ocv_table { 341 int ocv; /* microVolts */ 342 int capacity; /* percent */ 343}; 344 345struct power_supply_resistance_temp_table { 346 int temp; /* celsius */ 347 int resistance; /* internal resistance percent */ 348}; 349 350struct power_supply_vbat_ri_table { 351 int vbat_uv; /* Battery voltage in microvolt */ 352 int ri_uohm; /* Internal resistance in microohm */ 353}; 354 355/** 356 * struct power_supply_maintenance_charge_table - setting for maintenace charging 357 * @charge_current_max_ua: maintenance charging current that is used to keep 358 * the charge of the battery full as current is consumed after full charging. 359 * The corresponding charge_voltage_max_uv is used as a safeguard: when we 360 * reach this voltage the maintenance charging current is turned off. It is 361 * turned back on if we fall below this voltage. 362 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit 363 * lower than the constant_charge_voltage_max_uv. We can apply this settings 364 * charge_current_max_ua until we get back up to this voltage. 365 * @safety_timer_minutes: maintenance charging safety timer, with an expiry 366 * time in minutes. We will only use maintenance charging in this setting 367 * for a certain amount of time, then we will first move to the next 368 * maintenance charge current and voltage pair in respective array and wait 369 * for the next safety timer timeout, or, if we reached the last maintencance 370 * charging setting, disable charging until we reach 371 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there. 372 * These timers should be chosen to align with the typical discharge curve 373 * for the battery. 374 * 375 * Ordinary CC/CV charging will stop charging when the charge current goes 376 * below charge_term_current_ua, and then restart it (if the device is still 377 * plugged into the charger) at charge_restart_voltage_uv. This happens in most 378 * consumer products because the power usage while connected to a charger is 379 * not zero, and devices are not manufactured to draw power directly from the 380 * charger: instead they will at all times dissipate the battery a little, like 381 * the power used in standby mode. This will over time give a charge graph 382 * such as this: 383 * 384 * Energy 385 * ^ ... ... ... ... ... ... ... 386 * | . . . . . . . . . . . . . 387 * | .. . .. . .. . .. . .. . .. . .. 388 * |. .. .. .. .. .. .. 389 * +-------------------------------------------------------------------> t 390 * 391 * Practically this means that the Li-ions are wandering back and forth in the 392 * battery and this causes degeneration of the battery anode and cathode. 393 * To prolong the life of the battery, maintenance charging is applied after 394 * reaching charge_term_current_ua to hold up the charge in the battery while 395 * consuming power, thus lowering the wear on the battery: 396 * 397 * Energy 398 * ^ ....................................... 399 * | . ...................... 400 * | .. 401 * |. 402 * +-------------------------------------------------------------------> t 403 * 404 * Maintenance charging uses the voltages from this table: a table of settings 405 * is traversed using a slightly lower current and voltage than what is used for 406 * CC/CV charging. The maintenance charging will for safety reasons not go on 407 * indefinately: we lower the current and voltage with successive maintenance 408 * settings, then disable charging completely after we reach the last one, 409 * and after that we do not restart charging until we reach 410 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart 411 * ordinary CC/CV charging from there. 412 * 413 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged 414 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to 415 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours. 416 * After this the charge cycle is restarted waiting for 417 * charge_restart_voltage_uv. 418 * 419 * For most mobile electronics this type of maintenance charging is enough for 420 * the user to disconnect the device and make use of it before both maintenance 421 * charging cycles are complete, if the current and voltage has been chosen 422 * appropriately. These need to be determined from battery discharge curves 423 * and expected standby current. 424 * 425 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance 426 * charging, ordinary CC/CV charging is restarted. This can happen if the 427 * device is e.g. actively used during charging, so more current is drawn than 428 * the expected stand-by current. Also overvoltage protection will be applied 429 * as usual. 430 */ 431struct power_supply_maintenance_charge_table { 432 int charge_current_max_ua; 433 int charge_voltage_max_uv; 434 int charge_safety_timer_minutes; 435}; 436 437#define POWER_SUPPLY_OCV_TEMP_MAX 20 438 439/** 440 * struct power_supply_battery_info - information about batteries 441 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum 442 * @energy_full_design_uwh: energy content when fully charged in microwatt 443 * hours 444 * @charge_full_design_uah: charge content when fully charged in microampere 445 * hours 446 * @voltage_min_design_uv: minimum voltage across the poles when the battery 447 * is at minimum voltage level in microvolts. If the voltage drops below this 448 * level the battery will need precharging when using CC/CV charging. 449 * @voltage_max_design_uv: voltage across the poles when the battery is fully 450 * charged in microvolts. This is the "nominal voltage" i.e. the voltage 451 * printed on the label of the battery. 452 * @tricklecharge_current_ua: the tricklecharge current used when trickle 453 * charging the battery in microamperes. This is the charging phase when the 454 * battery is completely empty and we need to carefully trickle in some 455 * charge until we reach the precharging voltage. 456 * @precharge_current_ua: current to use in the precharge phase in microamperes, 457 * the precharge rate is limited by limiting the current to this value. 458 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in 459 * microvolts. When we pass this voltage we will nominally switch over to the 460 * CC (constant current) charging phase defined by constant_charge_current_ua 461 * and constant_charge_voltage_max_uv. 462 * @charge_term_current_ua: when the current in the CV (constant voltage) 463 * charging phase drops below this value in microamperes the charging will 464 * terminate completely and not restart until the voltage over the battery 465 * poles reach charge_restart_voltage_uv unless we use maintenance charging. 466 * @charge_restart_voltage_uv: when the battery has been fully charged by 467 * CC/CV charging and charging has been disabled, and the voltage subsequently 468 * drops below this value in microvolts, the charging will be restarted 469 * (typically using CV charging). 470 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage 471 * voltage_max_design_uv and we reach this voltage level, all charging must 472 * stop and emergency procedures take place, such as shutting down the system 473 * in some cases. 474 * @constant_charge_current_max_ua: current in microamperes to use in the CC 475 * (constant current) charging phase. The charging rate is limited 476 * by this current. This is the main charging phase and as the current is 477 * constant into the battery the voltage slowly ascends to 478 * constant_charge_voltage_max_uv. 479 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of 480 * the CC (constant current) charging phase and the beginning of the CV 481 * (constant voltage) charging phase. 482 * @maintenance_charge: an array of maintenance charging settings to be used 483 * after the main CC/CV charging phase is complete. 484 * @maintenance_charge_size: the number of maintenance charging settings in 485 * maintenance_charge. 486 * @alert_low_temp_charge_current_ua: The charging current to use if the battery 487 * enters low alert temperature, i.e. if the internal temperature is between 488 * temp_alert_min and temp_min. No matter the charging phase, this 489 * and alert_high_temp_charge_voltage_uv will be applied. 490 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua, 491 * but for the charging voltage. 492 * @alert_high_temp_charge_current_ua: The charging current to use if the 493 * battery enters high alert temperature, i.e. if the internal temperature is 494 * between temp_alert_max and temp_max. No matter the charging phase, this 495 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering 496 * the charging current as an evasive manouver. 497 * @alert_high_temp_charge_voltage_uv: Same as 498 * alert_high_temp_charge_current_ua, but for the charging voltage. 499 * @factory_internal_resistance_uohm: the internal resistance of the battery 500 * at fabrication time, expressed in microohms. This resistance will vary 501 * depending on the lifetime and charge of the battery, so this is just a 502 * nominal ballpark figure. This internal resistance is given for the state 503 * when the battery is discharging. 504 * @factory_internal_resistance_charging_uohm: the internal resistance of the 505 * battery at fabrication time while charging, expressed in microohms. 506 * The charging process will affect the internal resistance of the battery 507 * so this value provides a better resistance under these circumstances. 508 * This resistance will vary depending on the lifetime and charge of the 509 * battery, so this is just a nominal ballpark figure. 510 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity 511 * temperature indices. This is an array of temperatures in degrees Celsius 512 * indicating which capacity table to use for a certain temperature, since 513 * the capacity for reasons of chemistry will be different at different 514 * temperatures. Determining capacity is a multivariate problem and the 515 * temperature is the first variable we determine. 516 * @temp_ambient_alert_min: the battery will go outside of operating conditions 517 * when the ambient temperature goes below this temperature in degrees 518 * Celsius. 519 * @temp_ambient_alert_max: the battery will go outside of operating conditions 520 * when the ambient temperature goes above this temperature in degrees 521 * Celsius. 522 * @temp_alert_min: the battery should issue an alert if the internal 523 * temperature goes below this temperature in degrees Celsius. 524 * @temp_alert_max: the battery should issue an alert if the internal 525 * temperature goes above this temperature in degrees Celsius. 526 * @temp_min: the battery will go outside of operating conditions when 527 * the internal temperature goes below this temperature in degrees Celsius. 528 * Normally this means the system should shut down. 529 * @temp_max: the battery will go outside of operating conditions when 530 * the internal temperature goes above this temperature in degrees Celsius. 531 * Normally this means the system should shut down. 532 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in 533 * ocv_table and a size for each entry in ocv_table_size. These arrays 534 * determine the capacity in percent in relation to the voltage in microvolts 535 * at the indexed temperature. 536 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of 537 * each entry in the array of capacity arrays in ocv_table. 538 * @resist_table: this is a table that correlates a battery temperature to the 539 * expected internal resistance at this temperature. The resistance is given 540 * as a percentage of factory_internal_resistance_uohm. Knowing the 541 * resistance of the battery is usually necessary for calculating the open 542 * circuit voltage (OCV) that is then used with the ocv_table to calculate 543 * the capacity of the battery. The resist_table must be ordered descending 544 * by temperature: highest temperature with lowest resistance first, lowest 545 * temperature with highest resistance last. 546 * @resist_table_size: the number of items in the resist_table. 547 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT) 548 * to internal resistance (Ri). The resistance is given in microohm for the 549 * corresponding voltage in microvolts. The internal resistance is used to 550 * determine the open circuit voltage so that we can determine the capacity 551 * of the battery. These voltages to resistance tables apply when the battery 552 * is discharging. The table must be ordered descending by voltage: highest 553 * voltage first. 554 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging 555 * table. 556 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state 557 * when the battery is charging. Being under charge changes the battery's 558 * internal resistance characteristics so a separate table is needed.* 559 * The table must be ordered descending by voltage: highest voltage first. 560 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging 561 * table. 562 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance 563 * in ohms for this battery, if an identification resistor is mounted 564 * between a third battery terminal and ground. This scheme is used by a lot 565 * of mobile device batteries. 566 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance, 567 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the 568 * tolerance is 10% we will detect a proper battery if the BTI resistance 569 * is between 6300 and 7700 Ohm. 570 * 571 * This is the recommended struct to manage static battery parameters, 572 * populated by power_supply_get_battery_info(). Most platform drivers should 573 * use these for consistency. 574 * 575 * Its field names must correspond to elements in enum power_supply_property. 576 * The default field value is -EINVAL or NULL for pointers. 577 * 578 * CC/CV CHARGING: 579 * 580 * The charging parameters here assume a CC/CV charging scheme. This method 581 * is most common with Lithium Ion batteries (other methods are possible) and 582 * looks as follows: 583 * 584 * ^ Battery voltage 585 * | --- overvoltage_limit_uv 586 * | 587 * | ................................................... 588 * | .. constant_charge_voltage_max_uv 589 * | .. 590 * | . 591 * | . 592 * | . 593 * | . 594 * | . 595 * | .. precharge_voltage_max_uv 596 * | .. 597 * |. (trickle charging) 598 * +------------------------------------------------------------------> time 599 * 600 * ^ Current into the battery 601 * | 602 * | ............. constant_charge_current_max_ua 603 * | . . 604 * | . . 605 * | . . 606 * | . . 607 * | . .. 608 * | . .... 609 * | . ..... 610 * | ... precharge_current_ua ....... charge_term_current_ua 611 * | . . 612 * | . . 613 * |.... tricklecharge_current_ua . 614 * | . 615 * +-----------------------------------------------------------------> time 616 * 617 * These diagrams are synchronized on time and the voltage and current 618 * follow each other. 619 * 620 * With CC/CV charging commence over time like this for an empty battery: 621 * 622 * 1. When the battery is completely empty it may need to be charged with 623 * an especially small current so that electrons just "trickle in", 624 * this is the tricklecharge_current_ua. 625 * 626 * 2. Next a small initial pre-charge current (precharge_current_ua) 627 * is applied if the voltage is below precharge_voltage_max_uv until we 628 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred 629 * to as "trickle charging" but the use in the Linux kernel is different 630 * see below! 631 * 632 * 3. Then the main charging current is applied, which is called the constant 633 * current (CC) phase. A current regulator is set up to allow 634 * constant_charge_current_max_ua of current to flow into the battery. 635 * The chemical reaction in the battery will make the voltage go up as 636 * charge goes into the battery. This current is applied until we reach 637 * the constant_charge_voltage_max_uv voltage. 638 * 639 * 4. At this voltage we switch over to the constant voltage (CV) phase. This 640 * means we allow current to go into the battery, but we keep the voltage 641 * fixed. This current will continue to charge the battery while keeping 642 * the voltage the same. A chemical reaction in the battery goes on 643 * storing energy without affecting the voltage. Over time the current 644 * will slowly drop and when we reach charge_term_current_ua we will 645 * end the constant voltage phase. 646 * 647 * After this the battery is fully charged, and if we do not support maintenance 648 * charging, the charging will not restart until power dissipation makes the 649 * voltage fall so that we reach charge_restart_voltage_uv and at this point 650 * we restart charging at the appropriate phase, usually this will be inside 651 * the CV phase. 652 * 653 * If we support maintenance charging the voltage is however kept high after 654 * the CV phase with a very low current. This is meant to let the same charge 655 * go in for usage while the charger is still connected, mainly for 656 * dissipation for the power consuming entity while connected to the 657 * charger. 658 * 659 * All charging MUST terminate if the overvoltage_limit_uv is ever reached. 660 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or 661 * explosions. 662 * 663 * DETERMINING BATTERY CAPACITY: 664 * 665 * Several members of the struct deal with trying to determine the remaining 666 * capacity in the battery, usually as a percentage of charge. In practice 667 * many chargers uses a so-called fuel gauge or coloumb counter that measure 668 * how much charge goes into the battery and how much goes out (+/- leak 669 * consumption). This does not help if we do not know how much capacity the 670 * battery has to begin with, such as when it is first used or was taken out 671 * and charged in a separate charger. Therefore many capacity algorithms use 672 * the open circuit voltage with a look-up table to determine the rough 673 * capacity of the battery. The open circuit voltage can be conceptualized 674 * with an ideal voltage source (V) in series with an internal resistance (Ri) 675 * like this: 676 * 677 * +-------> IBAT >----------------+ 678 * | ^ | 679 * [ ] Ri | | 680 * | | VBAT | 681 * o <---------- | | 682 * +| ^ | [ ] Rload 683 * .---. | | | 684 * | V | | OCV | | 685 * '---' | | | 686 * | | | | 687 * GND +-------------------------------+ 688 * 689 * If we disconnect the load (here simplified as a fixed resistance Rload) 690 * and measure VBAT with a infinite impedance voltage meter we will get 691 * VBAT = OCV and this assumption is sometimes made even under load, assuming 692 * Rload is insignificant. However this will be of dubious quality because the 693 * load is rarely that small and Ri is strongly nonlinear depending on 694 * temperature and how much capacity is left in the battery due to the 695 * chemistry involved. 696 * 697 * In many practical applications we cannot just disconnect the battery from 698 * the load, so instead we often try to measure the instantaneous IBAT (the 699 * current out from the battery), estimate the Ri and thus calculate the 700 * voltage drop over Ri and compensate like this: 701 * 702 * OCV = VBAT - (IBAT * Ri) 703 * 704 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine 705 * (by interpolation) the Ri from the VBAT under load. These curves are highly 706 * nonlinear and may need many datapoints but can be found in datasheets for 707 * some batteries. This gives the compensated open circuit voltage (OCV) for 708 * the battery even under load. Using this method will also compensate for 709 * temperature changes in the environment: this will also make the internal 710 * resistance change, and it will affect the VBAT under load, so correlating 711 * VBAT to Ri takes both remaining capacity and temperature into consideration. 712 * 713 * Alternatively a manufacturer can specify how the capacity of the battery 714 * is dependent on the battery temperature which is the main factor affecting 715 * Ri. As we know all checmical reactions are faster when it is warm and slower 716 * when it is cold. You can put in 1500mAh and only get 800mAh out before the 717 * voltage drops too low for example. This effect is also highly nonlinear and 718 * the purpose of the table resist_table: this will take a temperature and 719 * tell us how big percentage of Ri the specified temperature correlates to. 720 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees 721 * Celsius. 722 * 723 * The power supply class itself doesn't use this struct as of now. 724 */ 725 726struct power_supply_battery_info { 727 unsigned int technology; 728 int energy_full_design_uwh; 729 int charge_full_design_uah; 730 int voltage_min_design_uv; 731 int voltage_max_design_uv; 732 int tricklecharge_current_ua; 733 int precharge_current_ua; 734 int precharge_voltage_max_uv; 735 int charge_term_current_ua; 736 int charge_restart_voltage_uv; 737 int overvoltage_limit_uv; 738 int constant_charge_current_max_ua; 739 int constant_charge_voltage_max_uv; 740 const struct power_supply_maintenance_charge_table *maintenance_charge; 741 int maintenance_charge_size; 742 int alert_low_temp_charge_current_ua; 743 int alert_low_temp_charge_voltage_uv; 744 int alert_high_temp_charge_current_ua; 745 int alert_high_temp_charge_voltage_uv; 746 int factory_internal_resistance_uohm; 747 int factory_internal_resistance_charging_uohm; 748 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX]; 749 int temp_ambient_alert_min; 750 int temp_ambient_alert_max; 751 int temp_alert_min; 752 int temp_alert_max; 753 int temp_min; 754 int temp_max; 755 const struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX]; 756 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX]; 757 const struct power_supply_resistance_temp_table *resist_table; 758 int resist_table_size; 759 const struct power_supply_vbat_ri_table *vbat2ri_discharging; 760 int vbat2ri_discharging_size; 761 const struct power_supply_vbat_ri_table *vbat2ri_charging; 762 int vbat2ri_charging_size; 763 int bti_resistance_ohm; 764 int bti_resistance_tolerance; 765}; 766 767extern int power_supply_reg_notifier(struct notifier_block *nb); 768extern void power_supply_unreg_notifier(struct notifier_block *nb); 769#if IS_ENABLED(CONFIG_POWER_SUPPLY) 770extern struct power_supply *power_supply_get_by_name(const char *name); 771extern void power_supply_put(struct power_supply *psy); 772#else 773static inline void power_supply_put(struct power_supply *psy) {} 774static inline struct power_supply *power_supply_get_by_name(const char *name) 775{ return NULL; } 776#endif 777#ifdef CONFIG_OF 778extern struct power_supply *power_supply_get_by_phandle(struct device_node *np, 779 const char *property); 780extern struct power_supply *devm_power_supply_get_by_phandle( 781 struct device *dev, const char *property); 782#else /* !CONFIG_OF */ 783static inline struct power_supply * 784power_supply_get_by_phandle(struct device_node *np, const char *property) 785{ return NULL; } 786static inline struct power_supply * 787devm_power_supply_get_by_phandle(struct device *dev, const char *property) 788{ return NULL; } 789#endif /* CONFIG_OF */ 790 791extern const enum power_supply_property power_supply_battery_info_properties[]; 792extern const size_t power_supply_battery_info_properties_size; 793extern int power_supply_get_battery_info(struct power_supply *psy, 794 struct power_supply_battery_info **info_out); 795extern void power_supply_put_battery_info(struct power_supply *psy, 796 struct power_supply_battery_info *info); 797extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, 798 enum power_supply_property psp); 799extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, 800 enum power_supply_property psp, 801 union power_supply_propval *val); 802extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table, 803 int table_len, int ocv); 804extern const struct power_supply_battery_ocv_table * 805power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 806 int temp, int *table_len); 807extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 808 int ocv, int temp); 809extern int 810power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table, 811 int table_len, int temp); 812extern int power_supply_vbat2ri(struct power_supply_battery_info *info, 813 int vbat_uv, bool charging); 814extern const struct power_supply_maintenance_charge_table * 815power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index); 816extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 817 int resistance); 818extern void power_supply_changed(struct power_supply *psy); 819extern int power_supply_am_i_supplied(struct power_supply *psy); 820int power_supply_get_property_from_supplier(struct power_supply *psy, 821 enum power_supply_property psp, 822 union power_supply_propval *val); 823extern int power_supply_set_battery_charged(struct power_supply *psy); 824 825static inline bool 826power_supply_supports_maintenance_charging(struct power_supply_battery_info *info) 827{ 828 const struct power_supply_maintenance_charge_table *mt; 829 830 mt = power_supply_get_maintenance_charging_setting(info, 0); 831 832 return (mt != NULL); 833} 834 835static inline bool 836power_supply_supports_vbat2ri(struct power_supply_battery_info *info) 837{ 838 return ((info->vbat2ri_discharging != NULL) && 839 info->vbat2ri_discharging_size > 0); 840} 841 842static inline bool 843power_supply_supports_temp2ri(struct power_supply_battery_info *info) 844{ 845 return ((info->resist_table != NULL) && 846 info->resist_table_size > 0); 847} 848 849#ifdef CONFIG_POWER_SUPPLY 850extern int power_supply_is_system_supplied(void); 851#else 852static inline int power_supply_is_system_supplied(void) { return -ENOSYS; } 853#endif 854 855extern int power_supply_get_property(struct power_supply *psy, 856 enum power_supply_property psp, 857 union power_supply_propval *val); 858#if IS_ENABLED(CONFIG_POWER_SUPPLY) 859extern int power_supply_set_property(struct power_supply *psy, 860 enum power_supply_property psp, 861 const union power_supply_propval *val); 862#else 863static inline int power_supply_set_property(struct power_supply *psy, 864 enum power_supply_property psp, 865 const union power_supply_propval *val) 866{ return 0; } 867#endif 868extern void power_supply_external_power_changed(struct power_supply *psy); 869 870extern struct power_supply *__must_check 871power_supply_register(struct device *parent, 872 const struct power_supply_desc *desc, 873 const struct power_supply_config *cfg); 874extern struct power_supply *__must_check 875devm_power_supply_register(struct device *parent, 876 const struct power_supply_desc *desc, 877 const struct power_supply_config *cfg); 878extern void power_supply_unregister(struct power_supply *psy); 879extern int power_supply_powers(struct power_supply *psy, struct device *dev); 880 881#define to_power_supply(device) container_of(device, struct power_supply, dev) 882 883extern void *power_supply_get_drvdata(struct power_supply *psy); 884extern int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data)); 885 886static inline bool power_supply_is_amp_property(enum power_supply_property psp) 887{ 888 switch (psp) { 889 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 890 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN: 891 case POWER_SUPPLY_PROP_CHARGE_FULL: 892 case POWER_SUPPLY_PROP_CHARGE_EMPTY: 893 case POWER_SUPPLY_PROP_CHARGE_NOW: 894 case POWER_SUPPLY_PROP_CHARGE_AVG: 895 case POWER_SUPPLY_PROP_CHARGE_COUNTER: 896 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 897 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 898 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: 899 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 900 case POWER_SUPPLY_PROP_CURRENT_MAX: 901 case POWER_SUPPLY_PROP_CURRENT_NOW: 902 case POWER_SUPPLY_PROP_CURRENT_AVG: 903 case POWER_SUPPLY_PROP_CURRENT_BOOT: 904 return true; 905 default: 906 break; 907 } 908 909 return false; 910} 911 912static inline bool power_supply_is_watt_property(enum power_supply_property psp) 913{ 914 switch (psp) { 915 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 916 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN: 917 case POWER_SUPPLY_PROP_ENERGY_FULL: 918 case POWER_SUPPLY_PROP_ENERGY_EMPTY: 919 case POWER_SUPPLY_PROP_ENERGY_NOW: 920 case POWER_SUPPLY_PROP_ENERGY_AVG: 921 case POWER_SUPPLY_PROP_VOLTAGE_MAX: 922 case POWER_SUPPLY_PROP_VOLTAGE_MIN: 923 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 924 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 925 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 926 case POWER_SUPPLY_PROP_VOLTAGE_AVG: 927 case POWER_SUPPLY_PROP_VOLTAGE_OCV: 928 case POWER_SUPPLY_PROP_VOLTAGE_BOOT: 929 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: 930 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 931 case POWER_SUPPLY_PROP_POWER_NOW: 932 return true; 933 default: 934 break; 935 } 936 937 return false; 938} 939 940#ifdef CONFIG_SYSFS 941ssize_t power_supply_charge_behaviour_show(struct device *dev, 942 unsigned int available_behaviours, 943 enum power_supply_charge_behaviour behaviour, 944 char *buf); 945 946int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf); 947#else 948static inline 949ssize_t power_supply_charge_behaviour_show(struct device *dev, 950 unsigned int available_behaviours, 951 enum power_supply_charge_behaviour behaviour, 952 char *buf) 953{ 954 return -EOPNOTSUPP; 955} 956 957static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours, 958 const char *buf) 959{ 960 return -EOPNOTSUPP; 961} 962#endif 963 964#endif /* __LINUX_POWER_SUPPLY_H__ */