at v6.13 53 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/kref.h> 9#include <linux/list.h> 10#include <linux/spinlock.h> 11#include <linux/rbtree.h> 12#include <linux/maple_tree.h> 13#include <linux/rwsem.h> 14#include <linux/completion.h> 15#include <linux/cpumask.h> 16#include <linux/uprobes.h> 17#include <linux/rcupdate.h> 18#include <linux/page-flags-layout.h> 19#include <linux/workqueue.h> 20#include <linux/seqlock.h> 21#include <linux/percpu_counter.h> 22 23#include <asm/mmu.h> 24 25#ifndef AT_VECTOR_SIZE_ARCH 26#define AT_VECTOR_SIZE_ARCH 0 27#endif 28#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 29 30#define INIT_PASID 0 31 32struct address_space; 33struct mem_cgroup; 34 35/* 36 * Each physical page in the system has a struct page associated with 37 * it to keep track of whatever it is we are using the page for at the 38 * moment. Note that we have no way to track which tasks are using 39 * a page, though if it is a pagecache page, rmap structures can tell us 40 * who is mapping it. 41 * 42 * If you allocate the page using alloc_pages(), you can use some of the 43 * space in struct page for your own purposes. The five words in the main 44 * union are available, except for bit 0 of the first word which must be 45 * kept clear. Many users use this word to store a pointer to an object 46 * which is guaranteed to be aligned. If you use the same storage as 47 * page->mapping, you must restore it to NULL before freeing the page. 48 * 49 * The mapcount field must not be used for own purposes. 50 * 51 * If you want to use the refcount field, it must be used in such a way 52 * that other CPUs temporarily incrementing and then decrementing the 53 * refcount does not cause problems. On receiving the page from 54 * alloc_pages(), the refcount will be positive. 55 * 56 * If you allocate pages of order > 0, you can use some of the fields 57 * in each subpage, but you may need to restore some of their values 58 * afterwards. 59 * 60 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 61 * That requires that freelist & counters in struct slab be adjacent and 62 * double-word aligned. Because struct slab currently just reinterprets the 63 * bits of struct page, we align all struct pages to double-word boundaries, 64 * and ensure that 'freelist' is aligned within struct slab. 65 */ 66#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 67#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 68#else 69#define _struct_page_alignment __aligned(sizeof(unsigned long)) 70#endif 71 72struct page { 73 unsigned long flags; /* Atomic flags, some possibly 74 * updated asynchronously */ 75 /* 76 * Five words (20/40 bytes) are available in this union. 77 * WARNING: bit 0 of the first word is used for PageTail(). That 78 * means the other users of this union MUST NOT use the bit to 79 * avoid collision and false-positive PageTail(). 80 */ 81 union { 82 struct { /* Page cache and anonymous pages */ 83 /** 84 * @lru: Pageout list, eg. active_list protected by 85 * lruvec->lru_lock. Sometimes used as a generic list 86 * by the page owner. 87 */ 88 union { 89 struct list_head lru; 90 91 /* Or, for the Unevictable "LRU list" slot */ 92 struct { 93 /* Always even, to negate PageTail */ 94 void *__filler; 95 /* Count page's or folio's mlocks */ 96 unsigned int mlock_count; 97 }; 98 99 /* Or, free page */ 100 struct list_head buddy_list; 101 struct list_head pcp_list; 102 }; 103 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 104 struct address_space *mapping; 105 union { 106 pgoff_t index; /* Our offset within mapping. */ 107 unsigned long share; /* share count for fsdax */ 108 }; 109 /** 110 * @private: Mapping-private opaque data. 111 * Usually used for buffer_heads if PagePrivate. 112 * Used for swp_entry_t if swapcache flag set. 113 * Indicates order in the buddy system if PageBuddy. 114 */ 115 unsigned long private; 116 }; 117 struct { /* page_pool used by netstack */ 118 /** 119 * @pp_magic: magic value to avoid recycling non 120 * page_pool allocated pages. 121 */ 122 unsigned long pp_magic; 123 struct page_pool *pp; 124 unsigned long _pp_mapping_pad; 125 unsigned long dma_addr; 126 atomic_long_t pp_ref_count; 127 }; 128 struct { /* Tail pages of compound page */ 129 unsigned long compound_head; /* Bit zero is set */ 130 }; 131 struct { /* ZONE_DEVICE pages */ 132 /** @pgmap: Points to the hosting device page map. */ 133 struct dev_pagemap *pgmap; 134 void *zone_device_data; 135 /* 136 * ZONE_DEVICE private pages are counted as being 137 * mapped so the next 3 words hold the mapping, index, 138 * and private fields from the source anonymous or 139 * page cache page while the page is migrated to device 140 * private memory. 141 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 142 * use the mapping, index, and private fields when 143 * pmem backed DAX files are mapped. 144 */ 145 }; 146 147 /** @rcu_head: You can use this to free a page by RCU. */ 148 struct rcu_head rcu_head; 149 }; 150 151 union { /* This union is 4 bytes in size. */ 152 /* 153 * For head pages of typed folios, the value stored here 154 * allows for determining what this page is used for. The 155 * tail pages of typed folios will not store a type 156 * (page_type == _mapcount == -1). 157 * 158 * See page-flags.h for a list of page types which are currently 159 * stored here. 160 * 161 * Owners of typed folios may reuse the lower 16 bit of the 162 * head page page_type field after setting the page type, 163 * but must reset these 16 bit to -1 before clearing the 164 * page type. 165 */ 166 unsigned int page_type; 167 168 /* 169 * For pages that are part of non-typed folios for which mappings 170 * are tracked via the RMAP, encodes the number of times this page 171 * is directly referenced by a page table. 172 * 173 * Note that the mapcount is always initialized to -1, so that 174 * transitions both from it and to it can be tracked, using 175 * atomic_inc_and_test() and atomic_add_negative(-1). 176 */ 177 atomic_t _mapcount; 178 }; 179 180 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 181 atomic_t _refcount; 182 183#ifdef CONFIG_MEMCG 184 unsigned long memcg_data; 185#elif defined(CONFIG_SLAB_OBJ_EXT) 186 unsigned long _unused_slab_obj_exts; 187#endif 188 189 /* 190 * On machines where all RAM is mapped into kernel address space, 191 * we can simply calculate the virtual address. On machines with 192 * highmem some memory is mapped into kernel virtual memory 193 * dynamically, so we need a place to store that address. 194 * Note that this field could be 16 bits on x86 ... ;) 195 * 196 * Architectures with slow multiplication can define 197 * WANT_PAGE_VIRTUAL in asm/page.h 198 */ 199#if defined(WANT_PAGE_VIRTUAL) 200 void *virtual; /* Kernel virtual address (NULL if 201 not kmapped, ie. highmem) */ 202#endif /* WANT_PAGE_VIRTUAL */ 203 204#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 205 int _last_cpupid; 206#endif 207 208#ifdef CONFIG_KMSAN 209 /* 210 * KMSAN metadata for this page: 211 * - shadow page: every bit indicates whether the corresponding 212 * bit of the original page is initialized (0) or not (1); 213 * - origin page: every 4 bytes contain an id of the stack trace 214 * where the uninitialized value was created. 215 */ 216 struct page *kmsan_shadow; 217 struct page *kmsan_origin; 218#endif 219} _struct_page_alignment; 220 221/* 222 * struct encoded_page - a nonexistent type marking this pointer 223 * 224 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but 225 * with the low bits of the pointer indicating extra context-dependent 226 * information. Only used in mmu_gather handling, and this acts as a type 227 * system check on that use. 228 * 229 * We only really have two guaranteed bits in general, although you could 230 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 231 * for more. 232 * 233 * Use the supplied helper functions to endcode/decode the pointer and bits. 234 */ 235struct encoded_page; 236 237#define ENCODED_PAGE_BITS 3ul 238 239/* Perform rmap removal after we have flushed the TLB. */ 240#define ENCODED_PAGE_BIT_DELAY_RMAP 1ul 241 242/* 243 * The next item in an encoded_page array is the "nr_pages" argument, specifying 244 * the number of consecutive pages starting from this page, that all belong to 245 * the same folio. For example, "nr_pages" corresponds to the number of folio 246 * references that must be dropped. If this bit is not set, "nr_pages" is 247 * implicitly 1. 248 */ 249#define ENCODED_PAGE_BIT_NR_PAGES_NEXT 2ul 250 251static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags) 252{ 253 BUILD_BUG_ON(flags > ENCODED_PAGE_BITS); 254 return (struct encoded_page *)(flags | (unsigned long)page); 255} 256 257static inline unsigned long encoded_page_flags(struct encoded_page *page) 258{ 259 return ENCODED_PAGE_BITS & (unsigned long)page; 260} 261 262static inline struct page *encoded_page_ptr(struct encoded_page *page) 263{ 264 return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page); 265} 266 267static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr) 268{ 269 VM_WARN_ON_ONCE((nr << 2) >> 2 != nr); 270 return (struct encoded_page *)(nr << 2); 271} 272 273static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page) 274{ 275 return ((unsigned long)page) >> 2; 276} 277 278/* 279 * A swap entry has to fit into a "unsigned long", as the entry is hidden 280 * in the "index" field of the swapper address space. 281 */ 282typedef struct { 283 unsigned long val; 284} swp_entry_t; 285 286/** 287 * struct folio - Represents a contiguous set of bytes. 288 * @flags: Identical to the page flags. 289 * @lru: Least Recently Used list; tracks how recently this folio was used. 290 * @mlock_count: Number of times this folio has been pinned by mlock(). 291 * @mapping: The file this page belongs to, or refers to the anon_vma for 292 * anonymous memory. 293 * @index: Offset within the file, in units of pages. For anonymous memory, 294 * this is the index from the beginning of the mmap. 295 * @private: Filesystem per-folio data (see folio_attach_private()). 296 * @swap: Used for swp_entry_t if folio_test_swapcache(). 297 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 298 * find out how many times this folio is mapped by userspace. 299 * @_refcount: Do not access this member directly. Use folio_ref_count() 300 * to find how many references there are to this folio. 301 * @memcg_data: Memory Control Group data. 302 * @virtual: Virtual address in the kernel direct map. 303 * @_last_cpupid: IDs of last CPU and last process that accessed the folio. 304 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount(). 305 * @_large_mapcount: Do not use directly, call folio_mapcount(). 306 * @_nr_pages_mapped: Do not use outside of rmap and debug code. 307 * @_pincount: Do not use directly, call folio_maybe_dma_pinned(). 308 * @_folio_nr_pages: Do not use directly, call folio_nr_pages(). 309 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h. 310 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h. 311 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h. 312 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head(). 313 * @_deferred_list: Folios to be split under memory pressure. 314 * @_unused_slab_obj_exts: Placeholder to match obj_exts in struct slab. 315 * 316 * A folio is a physically, virtually and logically contiguous set 317 * of bytes. It is a power-of-two in size, and it is aligned to that 318 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 319 * in the page cache, it is at a file offset which is a multiple of that 320 * power-of-two. It may be mapped into userspace at an address which is 321 * at an arbitrary page offset, but its kernel virtual address is aligned 322 * to its size. 323 */ 324struct folio { 325 /* private: don't document the anon union */ 326 union { 327 struct { 328 /* public: */ 329 unsigned long flags; 330 union { 331 struct list_head lru; 332 /* private: avoid cluttering the output */ 333 struct { 334 void *__filler; 335 /* public: */ 336 unsigned int mlock_count; 337 /* private: */ 338 }; 339 /* public: */ 340 }; 341 struct address_space *mapping; 342 pgoff_t index; 343 union { 344 void *private; 345 swp_entry_t swap; 346 }; 347 atomic_t _mapcount; 348 atomic_t _refcount; 349#ifdef CONFIG_MEMCG 350 unsigned long memcg_data; 351#elif defined(CONFIG_SLAB_OBJ_EXT) 352 unsigned long _unused_slab_obj_exts; 353#endif 354#if defined(WANT_PAGE_VIRTUAL) 355 void *virtual; 356#endif 357#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 358 int _last_cpupid; 359#endif 360 /* private: the union with struct page is transitional */ 361 }; 362 struct page page; 363 }; 364 union { 365 struct { 366 unsigned long _flags_1; 367 unsigned long _head_1; 368 /* public: */ 369 atomic_t _large_mapcount; 370 atomic_t _entire_mapcount; 371 atomic_t _nr_pages_mapped; 372 atomic_t _pincount; 373#ifdef CONFIG_64BIT 374 unsigned int _folio_nr_pages; 375#endif 376 /* private: the union with struct page is transitional */ 377 }; 378 struct page __page_1; 379 }; 380 union { 381 struct { 382 unsigned long _flags_2; 383 unsigned long _head_2; 384 /* public: */ 385 void *_hugetlb_subpool; 386 void *_hugetlb_cgroup; 387 void *_hugetlb_cgroup_rsvd; 388 void *_hugetlb_hwpoison; 389 /* private: the union with struct page is transitional */ 390 }; 391 struct { 392 unsigned long _flags_2a; 393 unsigned long _head_2a; 394 /* public: */ 395 struct list_head _deferred_list; 396 /* private: the union with struct page is transitional */ 397 }; 398 struct page __page_2; 399 }; 400}; 401 402#define FOLIO_MATCH(pg, fl) \ 403 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 404FOLIO_MATCH(flags, flags); 405FOLIO_MATCH(lru, lru); 406FOLIO_MATCH(mapping, mapping); 407FOLIO_MATCH(compound_head, lru); 408FOLIO_MATCH(index, index); 409FOLIO_MATCH(private, private); 410FOLIO_MATCH(_mapcount, _mapcount); 411FOLIO_MATCH(_refcount, _refcount); 412#ifdef CONFIG_MEMCG 413FOLIO_MATCH(memcg_data, memcg_data); 414#endif 415#if defined(WANT_PAGE_VIRTUAL) 416FOLIO_MATCH(virtual, virtual); 417#endif 418#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 419FOLIO_MATCH(_last_cpupid, _last_cpupid); 420#endif 421#undef FOLIO_MATCH 422#define FOLIO_MATCH(pg, fl) \ 423 static_assert(offsetof(struct folio, fl) == \ 424 offsetof(struct page, pg) + sizeof(struct page)) 425FOLIO_MATCH(flags, _flags_1); 426FOLIO_MATCH(compound_head, _head_1); 427#undef FOLIO_MATCH 428#define FOLIO_MATCH(pg, fl) \ 429 static_assert(offsetof(struct folio, fl) == \ 430 offsetof(struct page, pg) + 2 * sizeof(struct page)) 431FOLIO_MATCH(flags, _flags_2); 432FOLIO_MATCH(compound_head, _head_2); 433FOLIO_MATCH(flags, _flags_2a); 434FOLIO_MATCH(compound_head, _head_2a); 435#undef FOLIO_MATCH 436 437/** 438 * struct ptdesc - Memory descriptor for page tables. 439 * @__page_flags: Same as page flags. Powerpc only. 440 * @pt_rcu_head: For freeing page table pages. 441 * @pt_list: List of used page tables. Used for s390 and x86. 442 * @_pt_pad_1: Padding that aliases with page's compound head. 443 * @pmd_huge_pte: Protected by ptdesc->ptl, used for THPs. 444 * @__page_mapping: Aliases with page->mapping. Unused for page tables. 445 * @pt_index: Used for s390 gmap. 446 * @pt_mm: Used for x86 pgds. 447 * @pt_frag_refcount: For fragmented page table tracking. Powerpc only. 448 * @pt_share_count: Used for HugeTLB PMD page table share count. 449 * @_pt_pad_2: Padding to ensure proper alignment. 450 * @ptl: Lock for the page table. 451 * @__page_type: Same as page->page_type. Unused for page tables. 452 * @__page_refcount: Same as page refcount. 453 * @pt_memcg_data: Memcg data. Tracked for page tables here. 454 * 455 * This struct overlays struct page for now. Do not modify without a good 456 * understanding of the issues. 457 */ 458struct ptdesc { 459 unsigned long __page_flags; 460 461 union { 462 struct rcu_head pt_rcu_head; 463 struct list_head pt_list; 464 struct { 465 unsigned long _pt_pad_1; 466 pgtable_t pmd_huge_pte; 467 }; 468 }; 469 unsigned long __page_mapping; 470 471 union { 472 pgoff_t pt_index; 473 struct mm_struct *pt_mm; 474 atomic_t pt_frag_refcount; 475#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 476 atomic_t pt_share_count; 477#endif 478 }; 479 480 union { 481 unsigned long _pt_pad_2; 482#if ALLOC_SPLIT_PTLOCKS 483 spinlock_t *ptl; 484#else 485 spinlock_t ptl; 486#endif 487 }; 488 unsigned int __page_type; 489 atomic_t __page_refcount; 490#ifdef CONFIG_MEMCG 491 unsigned long pt_memcg_data; 492#endif 493}; 494 495#define TABLE_MATCH(pg, pt) \ 496 static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt)) 497TABLE_MATCH(flags, __page_flags); 498TABLE_MATCH(compound_head, pt_list); 499TABLE_MATCH(compound_head, _pt_pad_1); 500TABLE_MATCH(mapping, __page_mapping); 501TABLE_MATCH(index, pt_index); 502TABLE_MATCH(rcu_head, pt_rcu_head); 503TABLE_MATCH(page_type, __page_type); 504TABLE_MATCH(_refcount, __page_refcount); 505#ifdef CONFIG_MEMCG 506TABLE_MATCH(memcg_data, pt_memcg_data); 507#endif 508#undef TABLE_MATCH 509static_assert(sizeof(struct ptdesc) <= sizeof(struct page)); 510 511#define ptdesc_page(pt) (_Generic((pt), \ 512 const struct ptdesc *: (const struct page *)(pt), \ 513 struct ptdesc *: (struct page *)(pt))) 514 515#define ptdesc_folio(pt) (_Generic((pt), \ 516 const struct ptdesc *: (const struct folio *)(pt), \ 517 struct ptdesc *: (struct folio *)(pt))) 518 519#define page_ptdesc(p) (_Generic((p), \ 520 const struct page *: (const struct ptdesc *)(p), \ 521 struct page *: (struct ptdesc *)(p))) 522 523#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 524static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc) 525{ 526 atomic_set(&ptdesc->pt_share_count, 0); 527} 528 529static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc) 530{ 531 atomic_inc(&ptdesc->pt_share_count); 532} 533 534static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc) 535{ 536 atomic_dec(&ptdesc->pt_share_count); 537} 538 539static inline int ptdesc_pmd_pts_count(struct ptdesc *ptdesc) 540{ 541 return atomic_read(&ptdesc->pt_share_count); 542} 543#else 544static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc) 545{ 546} 547#endif 548 549/* 550 * Used for sizing the vmemmap region on some architectures 551 */ 552#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 553 554/* 555 * page_private can be used on tail pages. However, PagePrivate is only 556 * checked by the VM on the head page. So page_private on the tail pages 557 * should be used for data that's ancillary to the head page (eg attaching 558 * buffer heads to tail pages after attaching buffer heads to the head page) 559 */ 560#define page_private(page) ((page)->private) 561 562static inline void set_page_private(struct page *page, unsigned long private) 563{ 564 page->private = private; 565} 566 567static inline void *folio_get_private(struct folio *folio) 568{ 569 return folio->private; 570} 571 572typedef unsigned long vm_flags_t; 573 574/* 575 * A region containing a mapping of a non-memory backed file under NOMMU 576 * conditions. These are held in a global tree and are pinned by the VMAs that 577 * map parts of them. 578 */ 579struct vm_region { 580 struct rb_node vm_rb; /* link in global region tree */ 581 vm_flags_t vm_flags; /* VMA vm_flags */ 582 unsigned long vm_start; /* start address of region */ 583 unsigned long vm_end; /* region initialised to here */ 584 unsigned long vm_top; /* region allocated to here */ 585 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 586 struct file *vm_file; /* the backing file or NULL */ 587 588 int vm_usage; /* region usage count (access under nommu_region_sem) */ 589 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 590 * this region */ 591}; 592 593#ifdef CONFIG_USERFAULTFD 594#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 595struct vm_userfaultfd_ctx { 596 struct userfaultfd_ctx *ctx; 597}; 598#else /* CONFIG_USERFAULTFD */ 599#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 600struct vm_userfaultfd_ctx {}; 601#endif /* CONFIG_USERFAULTFD */ 602 603struct anon_vma_name { 604 struct kref kref; 605 /* The name needs to be at the end because it is dynamically sized. */ 606 char name[]; 607}; 608 609#ifdef CONFIG_ANON_VMA_NAME 610/* 611 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should 612 * either keep holding the lock while using the returned pointer or it should 613 * raise anon_vma_name refcount before releasing the lock. 614 */ 615struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma); 616struct anon_vma_name *anon_vma_name_alloc(const char *name); 617void anon_vma_name_free(struct kref *kref); 618#else /* CONFIG_ANON_VMA_NAME */ 619static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 620{ 621 return NULL; 622} 623 624static inline struct anon_vma_name *anon_vma_name_alloc(const char *name) 625{ 626 return NULL; 627} 628#endif 629 630struct vma_lock { 631 struct rw_semaphore lock; 632}; 633 634struct vma_numab_state { 635 /* 636 * Initialised as time in 'jiffies' after which VMA 637 * should be scanned. Delays first scan of new VMA by at 638 * least sysctl_numa_balancing_scan_delay: 639 */ 640 unsigned long next_scan; 641 642 /* 643 * Time in jiffies when pids_active[] is reset to 644 * detect phase change behaviour: 645 */ 646 unsigned long pids_active_reset; 647 648 /* 649 * Approximate tracking of PIDs that trapped a NUMA hinting 650 * fault. May produce false positives due to hash collisions. 651 * 652 * [0] Previous PID tracking 653 * [1] Current PID tracking 654 * 655 * Window moves after next_pid_reset has expired approximately 656 * every VMA_PID_RESET_PERIOD jiffies: 657 */ 658 unsigned long pids_active[2]; 659 660 /* MM scan sequence ID when scan first started after VMA creation */ 661 int start_scan_seq; 662 663 /* 664 * MM scan sequence ID when the VMA was last completely scanned. 665 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq 666 */ 667 int prev_scan_seq; 668}; 669 670/* 671 * This struct describes a virtual memory area. There is one of these 672 * per VM-area/task. A VM area is any part of the process virtual memory 673 * space that has a special rule for the page-fault handlers (ie a shared 674 * library, the executable area etc). 675 * 676 * Only explicitly marked struct members may be accessed by RCU readers before 677 * getting a stable reference. 678 */ 679struct vm_area_struct { 680 /* The first cache line has the info for VMA tree walking. */ 681 682 union { 683 struct { 684 /* VMA covers [vm_start; vm_end) addresses within mm */ 685 unsigned long vm_start; 686 unsigned long vm_end; 687 }; 688#ifdef CONFIG_PER_VMA_LOCK 689 struct rcu_head vm_rcu; /* Used for deferred freeing. */ 690#endif 691 }; 692 693 /* 694 * The address space we belong to. 695 * Unstable RCU readers are allowed to read this. 696 */ 697 struct mm_struct *vm_mm; 698 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 699 700 /* 701 * Flags, see mm.h. 702 * To modify use vm_flags_{init|reset|set|clear|mod} functions. 703 */ 704 union { 705 const vm_flags_t vm_flags; 706 vm_flags_t __private __vm_flags; 707 }; 708 709#ifdef CONFIG_PER_VMA_LOCK 710 /* 711 * Flag to indicate areas detached from the mm->mm_mt tree. 712 * Unstable RCU readers are allowed to read this. 713 */ 714 bool detached; 715 716 /* 717 * Can only be written (using WRITE_ONCE()) while holding both: 718 * - mmap_lock (in write mode) 719 * - vm_lock->lock (in write mode) 720 * Can be read reliably while holding one of: 721 * - mmap_lock (in read or write mode) 722 * - vm_lock->lock (in read or write mode) 723 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout 724 * while holding nothing (except RCU to keep the VMA struct allocated). 725 * 726 * This sequence counter is explicitly allowed to overflow; sequence 727 * counter reuse can only lead to occasional unnecessary use of the 728 * slowpath. 729 */ 730 int vm_lock_seq; 731 /* Unstable RCU readers are allowed to read this. */ 732 struct vma_lock *vm_lock; 733#endif 734 735 /* 736 * For areas with an address space and backing store, 737 * linkage into the address_space->i_mmap interval tree. 738 * 739 */ 740 struct { 741 struct rb_node rb; 742 unsigned long rb_subtree_last; 743 } shared; 744 745 /* 746 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 747 * list, after a COW of one of the file pages. A MAP_SHARED vma 748 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 749 * or brk vma (with NULL file) can only be in an anon_vma list. 750 */ 751 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 752 * page_table_lock */ 753 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 754 755 /* Function pointers to deal with this struct. */ 756 const struct vm_operations_struct *vm_ops; 757 758 /* Information about our backing store: */ 759 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 760 units */ 761 struct file * vm_file; /* File we map to (can be NULL). */ 762 void * vm_private_data; /* was vm_pte (shared mem) */ 763 764#ifdef CONFIG_ANON_VMA_NAME 765 /* 766 * For private and shared anonymous mappings, a pointer to a null 767 * terminated string containing the name given to the vma, or NULL if 768 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access. 769 */ 770 struct anon_vma_name *anon_name; 771#endif 772#ifdef CONFIG_SWAP 773 atomic_long_t swap_readahead_info; 774#endif 775#ifndef CONFIG_MMU 776 struct vm_region *vm_region; /* NOMMU mapping region */ 777#endif 778#ifdef CONFIG_NUMA 779 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 780#endif 781#ifdef CONFIG_NUMA_BALANCING 782 struct vma_numab_state *numab_state; /* NUMA Balancing state */ 783#endif 784 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 785} __randomize_layout; 786 787#ifdef CONFIG_NUMA 788#define vma_policy(vma) ((vma)->vm_policy) 789#else 790#define vma_policy(vma) NULL 791#endif 792 793#ifdef CONFIG_SCHED_MM_CID 794struct mm_cid { 795 u64 time; 796 int cid; 797 int recent_cid; 798}; 799#endif 800 801struct kioctx_table; 802struct iommu_mm_data; 803struct mm_struct { 804 struct { 805 /* 806 * Fields which are often written to are placed in a separate 807 * cache line. 808 */ 809 struct { 810 /** 811 * @mm_count: The number of references to &struct 812 * mm_struct (@mm_users count as 1). 813 * 814 * Use mmgrab()/mmdrop() to modify. When this drops to 815 * 0, the &struct mm_struct is freed. 816 */ 817 atomic_t mm_count; 818 } ____cacheline_aligned_in_smp; 819 820 struct maple_tree mm_mt; 821 822 unsigned long mmap_base; /* base of mmap area */ 823 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 824#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 825 /* Base addresses for compatible mmap() */ 826 unsigned long mmap_compat_base; 827 unsigned long mmap_compat_legacy_base; 828#endif 829 unsigned long task_size; /* size of task vm space */ 830 pgd_t * pgd; 831 832#ifdef CONFIG_MEMBARRIER 833 /** 834 * @membarrier_state: Flags controlling membarrier behavior. 835 * 836 * This field is close to @pgd to hopefully fit in the same 837 * cache-line, which needs to be touched by switch_mm(). 838 */ 839 atomic_t membarrier_state; 840#endif 841 842 /** 843 * @mm_users: The number of users including userspace. 844 * 845 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 846 * drops to 0 (i.e. when the task exits and there are no other 847 * temporary reference holders), we also release a reference on 848 * @mm_count (which may then free the &struct mm_struct if 849 * @mm_count also drops to 0). 850 */ 851 atomic_t mm_users; 852 853#ifdef CONFIG_SCHED_MM_CID 854 /** 855 * @pcpu_cid: Per-cpu current cid. 856 * 857 * Keep track of the currently allocated mm_cid for each cpu. 858 * The per-cpu mm_cid values are serialized by their respective 859 * runqueue locks. 860 */ 861 struct mm_cid __percpu *pcpu_cid; 862 /* 863 * @mm_cid_next_scan: Next mm_cid scan (in jiffies). 864 * 865 * When the next mm_cid scan is due (in jiffies). 866 */ 867 unsigned long mm_cid_next_scan; 868 /** 869 * @nr_cpus_allowed: Number of CPUs allowed for mm. 870 * 871 * Number of CPUs allowed in the union of all mm's 872 * threads allowed CPUs. 873 */ 874 unsigned int nr_cpus_allowed; 875 /** 876 * @max_nr_cid: Maximum number of concurrency IDs allocated. 877 * 878 * Track the highest number of concurrency IDs allocated for the 879 * mm. 880 */ 881 atomic_t max_nr_cid; 882 /** 883 * @cpus_allowed_lock: Lock protecting mm cpus_allowed. 884 * 885 * Provide mutual exclusion for mm cpus_allowed and 886 * mm nr_cpus_allowed updates. 887 */ 888 raw_spinlock_t cpus_allowed_lock; 889#endif 890#ifdef CONFIG_MMU 891 atomic_long_t pgtables_bytes; /* size of all page tables */ 892#endif 893 int map_count; /* number of VMAs */ 894 895 spinlock_t page_table_lock; /* Protects page tables and some 896 * counters 897 */ 898 /* 899 * With some kernel config, the current mmap_lock's offset 900 * inside 'mm_struct' is at 0x120, which is very optimal, as 901 * its two hot fields 'count' and 'owner' sit in 2 different 902 * cachelines, and when mmap_lock is highly contended, both 903 * of the 2 fields will be accessed frequently, current layout 904 * will help to reduce cache bouncing. 905 * 906 * So please be careful with adding new fields before 907 * mmap_lock, which can easily push the 2 fields into one 908 * cacheline. 909 */ 910 struct rw_semaphore mmap_lock; 911 912 struct list_head mmlist; /* List of maybe swapped mm's. These 913 * are globally strung together off 914 * init_mm.mmlist, and are protected 915 * by mmlist_lock 916 */ 917#ifdef CONFIG_PER_VMA_LOCK 918 /* 919 * This field has lock-like semantics, meaning it is sometimes 920 * accessed with ACQUIRE/RELEASE semantics. 921 * Roughly speaking, incrementing the sequence number is 922 * equivalent to releasing locks on VMAs; reading the sequence 923 * number can be part of taking a read lock on a VMA. 924 * 925 * Can be modified under write mmap_lock using RELEASE 926 * semantics. 927 * Can be read with no other protection when holding write 928 * mmap_lock. 929 * Can be read with ACQUIRE semantics if not holding write 930 * mmap_lock. 931 */ 932 int mm_lock_seq; 933#endif 934 935 936 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 937 unsigned long hiwater_vm; /* High-water virtual memory usage */ 938 939 unsigned long total_vm; /* Total pages mapped */ 940 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 941 atomic64_t pinned_vm; /* Refcount permanently increased */ 942 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 943 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 944 unsigned long stack_vm; /* VM_STACK */ 945 unsigned long def_flags; 946 947 /** 948 * @write_protect_seq: Locked when any thread is write 949 * protecting pages mapped by this mm to enforce a later COW, 950 * for instance during page table copying for fork(). 951 */ 952 seqcount_t write_protect_seq; 953 954 spinlock_t arg_lock; /* protect the below fields */ 955 956 unsigned long start_code, end_code, start_data, end_data; 957 unsigned long start_brk, brk, start_stack; 958 unsigned long arg_start, arg_end, env_start, env_end; 959 960 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 961 962 struct percpu_counter rss_stat[NR_MM_COUNTERS]; 963 964 struct linux_binfmt *binfmt; 965 966 /* Architecture-specific MM context */ 967 mm_context_t context; 968 969 unsigned long flags; /* Must use atomic bitops to access */ 970 971#ifdef CONFIG_AIO 972 spinlock_t ioctx_lock; 973 struct kioctx_table __rcu *ioctx_table; 974#endif 975#ifdef CONFIG_MEMCG 976 /* 977 * "owner" points to a task that is regarded as the canonical 978 * user/owner of this mm. All of the following must be true in 979 * order for it to be changed: 980 * 981 * current == mm->owner 982 * current->mm != mm 983 * new_owner->mm == mm 984 * new_owner->alloc_lock is held 985 */ 986 struct task_struct __rcu *owner; 987#endif 988 struct user_namespace *user_ns; 989 990 /* store ref to file /proc/<pid>/exe symlink points to */ 991 struct file __rcu *exe_file; 992#ifdef CONFIG_MMU_NOTIFIER 993 struct mmu_notifier_subscriptions *notifier_subscriptions; 994#endif 995#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 996 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 997#endif 998#ifdef CONFIG_NUMA_BALANCING 999 /* 1000 * numa_next_scan is the next time that PTEs will be remapped 1001 * PROT_NONE to trigger NUMA hinting faults; such faults gather 1002 * statistics and migrate pages to new nodes if necessary. 1003 */ 1004 unsigned long numa_next_scan; 1005 1006 /* Restart point for scanning and remapping PTEs. */ 1007 unsigned long numa_scan_offset; 1008 1009 /* numa_scan_seq prevents two threads remapping PTEs. */ 1010 int numa_scan_seq; 1011#endif 1012 /* 1013 * An operation with batched TLB flushing is going on. Anything 1014 * that can move process memory needs to flush the TLB when 1015 * moving a PROT_NONE mapped page. 1016 */ 1017 atomic_t tlb_flush_pending; 1018#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1019 /* See flush_tlb_batched_pending() */ 1020 atomic_t tlb_flush_batched; 1021#endif 1022 struct uprobes_state uprobes_state; 1023#ifdef CONFIG_PREEMPT_RT 1024 struct rcu_head delayed_drop; 1025#endif 1026#ifdef CONFIG_HUGETLB_PAGE 1027 atomic_long_t hugetlb_usage; 1028#endif 1029 struct work_struct async_put_work; 1030 1031#ifdef CONFIG_IOMMU_MM_DATA 1032 struct iommu_mm_data *iommu_mm; 1033#endif 1034#ifdef CONFIG_KSM 1035 /* 1036 * Represent how many pages of this process are involved in KSM 1037 * merging (not including ksm_zero_pages). 1038 */ 1039 unsigned long ksm_merging_pages; 1040 /* 1041 * Represent how many pages are checked for ksm merging 1042 * including merged and not merged. 1043 */ 1044 unsigned long ksm_rmap_items; 1045 /* 1046 * Represent how many empty pages are merged with kernel zero 1047 * pages when enabling KSM use_zero_pages. 1048 */ 1049 atomic_long_t ksm_zero_pages; 1050#endif /* CONFIG_KSM */ 1051#ifdef CONFIG_LRU_GEN_WALKS_MMU 1052 struct { 1053 /* this mm_struct is on lru_gen_mm_list */ 1054 struct list_head list; 1055 /* 1056 * Set when switching to this mm_struct, as a hint of 1057 * whether it has been used since the last time per-node 1058 * page table walkers cleared the corresponding bits. 1059 */ 1060 unsigned long bitmap; 1061#ifdef CONFIG_MEMCG 1062 /* points to the memcg of "owner" above */ 1063 struct mem_cgroup *memcg; 1064#endif 1065 } lru_gen; 1066#endif /* CONFIG_LRU_GEN_WALKS_MMU */ 1067 } __randomize_layout; 1068 1069 /* 1070 * The mm_cpumask needs to be at the end of mm_struct, because it 1071 * is dynamically sized based on nr_cpu_ids. 1072 */ 1073 unsigned long cpu_bitmap[]; 1074}; 1075 1076#define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \ 1077 MT_FLAGS_USE_RCU) 1078extern struct mm_struct init_mm; 1079 1080/* Pointer magic because the dynamic array size confuses some compilers. */ 1081static inline void mm_init_cpumask(struct mm_struct *mm) 1082{ 1083 unsigned long cpu_bitmap = (unsigned long)mm; 1084 1085 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 1086 cpumask_clear((struct cpumask *)cpu_bitmap); 1087} 1088 1089/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 1090static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 1091{ 1092 return (struct cpumask *)&mm->cpu_bitmap; 1093} 1094 1095#ifdef CONFIG_LRU_GEN 1096 1097struct lru_gen_mm_list { 1098 /* mm_struct list for page table walkers */ 1099 struct list_head fifo; 1100 /* protects the list above */ 1101 spinlock_t lock; 1102}; 1103 1104#endif /* CONFIG_LRU_GEN */ 1105 1106#ifdef CONFIG_LRU_GEN_WALKS_MMU 1107 1108void lru_gen_add_mm(struct mm_struct *mm); 1109void lru_gen_del_mm(struct mm_struct *mm); 1110void lru_gen_migrate_mm(struct mm_struct *mm); 1111 1112static inline void lru_gen_init_mm(struct mm_struct *mm) 1113{ 1114 INIT_LIST_HEAD(&mm->lru_gen.list); 1115 mm->lru_gen.bitmap = 0; 1116#ifdef CONFIG_MEMCG 1117 mm->lru_gen.memcg = NULL; 1118#endif 1119} 1120 1121static inline void lru_gen_use_mm(struct mm_struct *mm) 1122{ 1123 /* 1124 * When the bitmap is set, page reclaim knows this mm_struct has been 1125 * used since the last time it cleared the bitmap. So it might be worth 1126 * walking the page tables of this mm_struct to clear the accessed bit. 1127 */ 1128 WRITE_ONCE(mm->lru_gen.bitmap, -1); 1129} 1130 1131#else /* !CONFIG_LRU_GEN_WALKS_MMU */ 1132 1133static inline void lru_gen_add_mm(struct mm_struct *mm) 1134{ 1135} 1136 1137static inline void lru_gen_del_mm(struct mm_struct *mm) 1138{ 1139} 1140 1141static inline void lru_gen_migrate_mm(struct mm_struct *mm) 1142{ 1143} 1144 1145static inline void lru_gen_init_mm(struct mm_struct *mm) 1146{ 1147} 1148 1149static inline void lru_gen_use_mm(struct mm_struct *mm) 1150{ 1151} 1152 1153#endif /* CONFIG_LRU_GEN_WALKS_MMU */ 1154 1155struct vma_iterator { 1156 struct ma_state mas; 1157}; 1158 1159#define VMA_ITERATOR(name, __mm, __addr) \ 1160 struct vma_iterator name = { \ 1161 .mas = { \ 1162 .tree = &(__mm)->mm_mt, \ 1163 .index = __addr, \ 1164 .node = NULL, \ 1165 .status = ma_start, \ 1166 }, \ 1167 } 1168 1169static inline void vma_iter_init(struct vma_iterator *vmi, 1170 struct mm_struct *mm, unsigned long addr) 1171{ 1172 mas_init(&vmi->mas, &mm->mm_mt, addr); 1173} 1174 1175#ifdef CONFIG_SCHED_MM_CID 1176 1177enum mm_cid_state { 1178 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */ 1179 MM_CID_LAZY_PUT = (1U << 31), 1180}; 1181 1182static inline bool mm_cid_is_unset(int cid) 1183{ 1184 return cid == MM_CID_UNSET; 1185} 1186 1187static inline bool mm_cid_is_lazy_put(int cid) 1188{ 1189 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT); 1190} 1191 1192static inline bool mm_cid_is_valid(int cid) 1193{ 1194 return !(cid & MM_CID_LAZY_PUT); 1195} 1196 1197static inline int mm_cid_set_lazy_put(int cid) 1198{ 1199 return cid | MM_CID_LAZY_PUT; 1200} 1201 1202static inline int mm_cid_clear_lazy_put(int cid) 1203{ 1204 return cid & ~MM_CID_LAZY_PUT; 1205} 1206 1207/* 1208 * mm_cpus_allowed: Union of all mm's threads allowed CPUs. 1209 */ 1210static inline cpumask_t *mm_cpus_allowed(struct mm_struct *mm) 1211{ 1212 unsigned long bitmap = (unsigned long)mm; 1213 1214 bitmap += offsetof(struct mm_struct, cpu_bitmap); 1215 /* Skip cpu_bitmap */ 1216 bitmap += cpumask_size(); 1217 return (struct cpumask *)bitmap; 1218} 1219 1220/* Accessor for struct mm_struct's cidmask. */ 1221static inline cpumask_t *mm_cidmask(struct mm_struct *mm) 1222{ 1223 unsigned long cid_bitmap = (unsigned long)mm_cpus_allowed(mm); 1224 1225 /* Skip mm_cpus_allowed */ 1226 cid_bitmap += cpumask_size(); 1227 return (struct cpumask *)cid_bitmap; 1228} 1229 1230static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) 1231{ 1232 int i; 1233 1234 for_each_possible_cpu(i) { 1235 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i); 1236 1237 pcpu_cid->cid = MM_CID_UNSET; 1238 pcpu_cid->recent_cid = MM_CID_UNSET; 1239 pcpu_cid->time = 0; 1240 } 1241 mm->nr_cpus_allowed = p->nr_cpus_allowed; 1242 atomic_set(&mm->max_nr_cid, 0); 1243 raw_spin_lock_init(&mm->cpus_allowed_lock); 1244 cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask); 1245 cpumask_clear(mm_cidmask(mm)); 1246} 1247 1248static inline int mm_alloc_cid_noprof(struct mm_struct *mm, struct task_struct *p) 1249{ 1250 mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid); 1251 if (!mm->pcpu_cid) 1252 return -ENOMEM; 1253 mm_init_cid(mm, p); 1254 return 0; 1255} 1256#define mm_alloc_cid(...) alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__)) 1257 1258static inline void mm_destroy_cid(struct mm_struct *mm) 1259{ 1260 free_percpu(mm->pcpu_cid); 1261 mm->pcpu_cid = NULL; 1262} 1263 1264static inline unsigned int mm_cid_size(void) 1265{ 1266 return 2 * cpumask_size(); /* mm_cpus_allowed(), mm_cidmask(). */ 1267} 1268 1269static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) 1270{ 1271 struct cpumask *mm_allowed = mm_cpus_allowed(mm); 1272 1273 if (!mm) 1274 return; 1275 /* The mm_cpus_allowed is the union of each thread allowed CPUs masks. */ 1276 raw_spin_lock(&mm->cpus_allowed_lock); 1277 cpumask_or(mm_allowed, mm_allowed, cpumask); 1278 WRITE_ONCE(mm->nr_cpus_allowed, cpumask_weight(mm_allowed)); 1279 raw_spin_unlock(&mm->cpus_allowed_lock); 1280} 1281#else /* CONFIG_SCHED_MM_CID */ 1282static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { } 1283static inline int mm_alloc_cid(struct mm_struct *mm, struct task_struct *p) { return 0; } 1284static inline void mm_destroy_cid(struct mm_struct *mm) { } 1285 1286static inline unsigned int mm_cid_size(void) 1287{ 1288 return 0; 1289} 1290static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) { } 1291#endif /* CONFIG_SCHED_MM_CID */ 1292 1293struct mmu_gather; 1294extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 1295extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 1296extern void tlb_finish_mmu(struct mmu_gather *tlb); 1297 1298struct vm_fault; 1299 1300/** 1301 * typedef vm_fault_t - Return type for page fault handlers. 1302 * 1303 * Page fault handlers return a bitmask of %VM_FAULT values. 1304 */ 1305typedef __bitwise unsigned int vm_fault_t; 1306 1307/** 1308 * enum vm_fault_reason - Page fault handlers return a bitmask of 1309 * these values to tell the core VM what happened when handling the 1310 * fault. Used to decide whether a process gets delivered SIGBUS or 1311 * just gets major/minor fault counters bumped up. 1312 * 1313 * @VM_FAULT_OOM: Out Of Memory 1314 * @VM_FAULT_SIGBUS: Bad access 1315 * @VM_FAULT_MAJOR: Page read from storage 1316 * @VM_FAULT_HWPOISON: Hit poisoned small page 1317 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 1318 * in upper bits 1319 * @VM_FAULT_SIGSEGV: segmentation fault 1320 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 1321 * @VM_FAULT_LOCKED: ->fault locked the returned page 1322 * @VM_FAULT_RETRY: ->fault blocked, must retry 1323 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 1324 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 1325 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 1326 * fsync() to complete (for synchronous page faults 1327 * in DAX) 1328 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released 1329 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 1330 * 1331 */ 1332enum vm_fault_reason { 1333 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 1334 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 1335 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 1336 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 1337 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 1338 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 1339 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 1340 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 1341 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 1342 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 1343 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 1344 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 1345 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000, 1346 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 1347}; 1348 1349/* Encode hstate index for a hwpoisoned large page */ 1350#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 1351#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 1352 1353#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 1354 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 1355 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 1356 1357#define VM_FAULT_RESULT_TRACE \ 1358 { VM_FAULT_OOM, "OOM" }, \ 1359 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1360 { VM_FAULT_MAJOR, "MAJOR" }, \ 1361 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1362 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1363 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1364 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1365 { VM_FAULT_LOCKED, "LOCKED" }, \ 1366 { VM_FAULT_RETRY, "RETRY" }, \ 1367 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1368 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1369 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }, \ 1370 { VM_FAULT_COMPLETED, "COMPLETED" } 1371 1372struct vm_special_mapping { 1373 const char *name; /* The name, e.g. "[vdso]". */ 1374 1375 /* 1376 * If .fault is not provided, this points to a 1377 * NULL-terminated array of pages that back the special mapping. 1378 * 1379 * This must not be NULL unless .fault is provided. 1380 */ 1381 struct page **pages; 1382 1383 /* 1384 * If non-NULL, then this is called to resolve page faults 1385 * on the special mapping. If used, .pages is not checked. 1386 */ 1387 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 1388 struct vm_area_struct *vma, 1389 struct vm_fault *vmf); 1390 1391 int (*mremap)(const struct vm_special_mapping *sm, 1392 struct vm_area_struct *new_vma); 1393 1394 void (*close)(const struct vm_special_mapping *sm, 1395 struct vm_area_struct *vma); 1396}; 1397 1398enum tlb_flush_reason { 1399 TLB_FLUSH_ON_TASK_SWITCH, 1400 TLB_REMOTE_SHOOTDOWN, 1401 TLB_LOCAL_SHOOTDOWN, 1402 TLB_LOCAL_MM_SHOOTDOWN, 1403 TLB_REMOTE_SEND_IPI, 1404 NR_TLB_FLUSH_REASONS, 1405}; 1406 1407/** 1408 * enum fault_flag - Fault flag definitions. 1409 * @FAULT_FLAG_WRITE: Fault was a write fault. 1410 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 1411 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 1412 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 1413 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 1414 * @FAULT_FLAG_TRIED: The fault has been tried once. 1415 * @FAULT_FLAG_USER: The fault originated in userspace. 1416 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 1417 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 1418 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 1419 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a 1420 * COW mapping, making sure that an exclusive anon page is 1421 * mapped after the fault. 1422 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 1423 * We should only access orig_pte if this flag set. 1424 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock. 1425 * 1426 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 1427 * whether we would allow page faults to retry by specifying these two 1428 * fault flags correctly. Currently there can be three legal combinations: 1429 * 1430 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 1431 * this is the first try 1432 * 1433 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 1434 * we've already tried at least once 1435 * 1436 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 1437 * 1438 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 1439 * be used. Note that page faults can be allowed to retry for multiple times, 1440 * in which case we'll have an initial fault with flags (a) then later on 1441 * continuous faults with flags (b). We should always try to detect pending 1442 * signals before a retry to make sure the continuous page faults can still be 1443 * interrupted if necessary. 1444 * 1445 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 1446 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 1447 * applied to mappings that are not COW mappings. 1448 */ 1449enum fault_flag { 1450 FAULT_FLAG_WRITE = 1 << 0, 1451 FAULT_FLAG_MKWRITE = 1 << 1, 1452 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 1453 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 1454 FAULT_FLAG_KILLABLE = 1 << 4, 1455 FAULT_FLAG_TRIED = 1 << 5, 1456 FAULT_FLAG_USER = 1 << 6, 1457 FAULT_FLAG_REMOTE = 1 << 7, 1458 FAULT_FLAG_INSTRUCTION = 1 << 8, 1459 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 1460 FAULT_FLAG_UNSHARE = 1 << 10, 1461 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 1462 FAULT_FLAG_VMA_LOCK = 1 << 12, 1463}; 1464 1465typedef unsigned int __bitwise zap_flags_t; 1466 1467/* Flags for clear_young_dirty_ptes(). */ 1468typedef int __bitwise cydp_t; 1469 1470/* Clear the access bit */ 1471#define CYDP_CLEAR_YOUNG ((__force cydp_t)BIT(0)) 1472 1473/* Clear the dirty bit */ 1474#define CYDP_CLEAR_DIRTY ((__force cydp_t)BIT(1)) 1475 1476/* 1477 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 1478 * other. Here is what they mean, and how to use them: 1479 * 1480 * 1481 * FIXME: For pages which are part of a filesystem, mappings are subject to the 1482 * lifetime enforced by the filesystem and we need guarantees that longterm 1483 * users like RDMA and V4L2 only establish mappings which coordinate usage with 1484 * the filesystem. Ideas for this coordination include revoking the longterm 1485 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 1486 * added after the problem with filesystems was found FS DAX VMAs are 1487 * specifically failed. Filesystem pages are still subject to bugs and use of 1488 * FOLL_LONGTERM should be avoided on those pages. 1489 * 1490 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 1491 * that region. And so, CMA attempts to migrate the page before pinning, when 1492 * FOLL_LONGTERM is specified. 1493 * 1494 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 1495 * but an additional pin counting system) will be invoked. This is intended for 1496 * anything that gets a page reference and then touches page data (for example, 1497 * Direct IO). This lets the filesystem know that some non-file-system entity is 1498 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 1499 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 1500 * a call to unpin_user_page(). 1501 * 1502 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 1503 * and separate refcounting mechanisms, however, and that means that each has 1504 * its own acquire and release mechanisms: 1505 * 1506 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 1507 * 1508 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 1509 * 1510 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 1511 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 1512 * calls applied to them, and that's perfectly OK. This is a constraint on the 1513 * callers, not on the pages.) 1514 * 1515 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 1516 * directly by the caller. That's in order to help avoid mismatches when 1517 * releasing pages: get_user_pages*() pages must be released via put_page(), 1518 * while pin_user_pages*() pages must be released via unpin_user_page(). 1519 * 1520 * Please see Documentation/core-api/pin_user_pages.rst for more information. 1521 */ 1522 1523enum { 1524 /* check pte is writable */ 1525 FOLL_WRITE = 1 << 0, 1526 /* do get_page on page */ 1527 FOLL_GET = 1 << 1, 1528 /* give error on hole if it would be zero */ 1529 FOLL_DUMP = 1 << 2, 1530 /* get_user_pages read/write w/o permission */ 1531 FOLL_FORCE = 1 << 3, 1532 /* 1533 * if a disk transfer is needed, start the IO and return without waiting 1534 * upon it 1535 */ 1536 FOLL_NOWAIT = 1 << 4, 1537 /* do not fault in pages */ 1538 FOLL_NOFAULT = 1 << 5, 1539 /* check page is hwpoisoned */ 1540 FOLL_HWPOISON = 1 << 6, 1541 /* don't do file mappings */ 1542 FOLL_ANON = 1 << 7, 1543 /* 1544 * FOLL_LONGTERM indicates that the page will be held for an indefinite 1545 * time period _often_ under userspace control. This is in contrast to 1546 * iov_iter_get_pages(), whose usages are transient. 1547 */ 1548 FOLL_LONGTERM = 1 << 8, 1549 /* split huge pmd before returning */ 1550 FOLL_SPLIT_PMD = 1 << 9, 1551 /* allow returning PCI P2PDMA pages */ 1552 FOLL_PCI_P2PDMA = 1 << 10, 1553 /* allow interrupts from generic signals */ 1554 FOLL_INTERRUPTIBLE = 1 << 11, 1555 /* 1556 * Always honor (trigger) NUMA hinting faults. 1557 * 1558 * FOLL_WRITE implicitly honors NUMA hinting faults because a 1559 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE 1560 * apply). get_user_pages_fast_only() always implicitly honors NUMA 1561 * hinting faults. 1562 */ 1563 FOLL_HONOR_NUMA_FAULT = 1 << 12, 1564 1565 /* See also internal only FOLL flags in mm/internal.h */ 1566}; 1567 1568/* mm flags */ 1569 1570/* 1571 * The first two bits represent core dump modes for set-user-ID, 1572 * the modes are SUID_DUMP_* defined in linux/sched/coredump.h 1573 */ 1574#define MMF_DUMPABLE_BITS 2 1575#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 1576/* coredump filter bits */ 1577#define MMF_DUMP_ANON_PRIVATE 2 1578#define MMF_DUMP_ANON_SHARED 3 1579#define MMF_DUMP_MAPPED_PRIVATE 4 1580#define MMF_DUMP_MAPPED_SHARED 5 1581#define MMF_DUMP_ELF_HEADERS 6 1582#define MMF_DUMP_HUGETLB_PRIVATE 7 1583#define MMF_DUMP_HUGETLB_SHARED 8 1584#define MMF_DUMP_DAX_PRIVATE 9 1585#define MMF_DUMP_DAX_SHARED 10 1586 1587#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 1588#define MMF_DUMP_FILTER_BITS 9 1589#define MMF_DUMP_FILTER_MASK \ 1590 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 1591#define MMF_DUMP_FILTER_DEFAULT \ 1592 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 1593 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 1594 1595#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 1596# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 1597#else 1598# define MMF_DUMP_MASK_DEFAULT_ELF 0 1599#endif 1600 /* leave room for more dump flags */ 1601#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 1602#define MMF_VM_HUGEPAGE 17 /* set when mm is available for khugepaged */ 1603 1604/* 1605 * This one-shot flag is dropped due to necessity of changing exe once again 1606 * on NFS restore 1607 */ 1608//#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 1609 1610#define MMF_HAS_UPROBES 19 /* has uprobes */ 1611#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 1612#define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */ 1613#define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */ 1614#define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */ 1615#define MMF_DISABLE_THP 24 /* disable THP for all VMAs */ 1616#define MMF_DISABLE_THP_MASK (1 << MMF_DISABLE_THP) 1617#define MMF_OOM_REAP_QUEUED 25 /* mm was queued for oom_reaper */ 1618#define MMF_MULTIPROCESS 26 /* mm is shared between processes */ 1619/* 1620 * MMF_HAS_PINNED: Whether this mm has pinned any pages. This can be either 1621 * replaced in the future by mm.pinned_vm when it becomes stable, or grow into 1622 * a counter on its own. We're aggresive on this bit for now: even if the 1623 * pinned pages were unpinned later on, we'll still keep this bit set for the 1624 * lifecycle of this mm, just for simplicity. 1625 */ 1626#define MMF_HAS_PINNED 27 /* FOLL_PIN has run, never cleared */ 1627 1628#define MMF_HAS_MDWE 28 1629#define MMF_HAS_MDWE_MASK (1 << MMF_HAS_MDWE) 1630 1631 1632#define MMF_HAS_MDWE_NO_INHERIT 29 1633 1634#define MMF_VM_MERGE_ANY 30 1635#define MMF_VM_MERGE_ANY_MASK (1 << MMF_VM_MERGE_ANY) 1636 1637#define MMF_TOPDOWN 31 /* mm searches top down by default */ 1638#define MMF_TOPDOWN_MASK (1 << MMF_TOPDOWN) 1639 1640#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\ 1641 MMF_DISABLE_THP_MASK | MMF_HAS_MDWE_MASK |\ 1642 MMF_VM_MERGE_ANY_MASK | MMF_TOPDOWN_MASK) 1643 1644static inline unsigned long mmf_init_flags(unsigned long flags) 1645{ 1646 if (flags & (1UL << MMF_HAS_MDWE_NO_INHERIT)) 1647 flags &= ~((1UL << MMF_HAS_MDWE) | 1648 (1UL << MMF_HAS_MDWE_NO_INHERIT)); 1649 return flags & MMF_INIT_MASK; 1650} 1651 1652#endif /* _LINUX_MM_TYPES_H */