Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/sched/stat.h>
14#include <linux/bug.h>
15#include <linux/minmax.h>
16#include <linux/mm.h>
17#include <linux/mmu_notifier.h>
18#include <linux/preempt.h>
19#include <linux/msi.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/rcupdate.h>
23#include <linux/ratelimit.h>
24#include <linux/err.h>
25#include <linux/irqflags.h>
26#include <linux/context_tracking.h>
27#include <linux/irqbypass.h>
28#include <linux/rcuwait.h>
29#include <linux/refcount.h>
30#include <linux/nospec.h>
31#include <linux/notifier.h>
32#include <linux/ftrace.h>
33#include <linux/hashtable.h>
34#include <linux/instrumentation.h>
35#include <linux/interval_tree.h>
36#include <linux/rbtree.h>
37#include <linux/xarray.h>
38#include <asm/signal.h>
39
40#include <linux/kvm.h>
41#include <linux/kvm_para.h>
42
43#include <linux/kvm_types.h>
44
45#include <asm/kvm_host.h>
46#include <linux/kvm_dirty_ring.h>
47
48#ifndef KVM_MAX_VCPU_IDS
49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50#endif
51
52/*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57#define KVM_MEMSLOT_INVALID (1UL << 16)
58
59/*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80/* Two fragments for cross MMIO pages. */
81#define KVM_MAX_MMIO_FRAGMENTS 2
82
83#ifndef KVM_MAX_NR_ADDRESS_SPACES
84#define KVM_MAX_NR_ADDRESS_SPACES 1
85#endif
86
87/*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94#define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
100#define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4)
101
102/*
103 * error pfns indicate that the gfn is in slot but faild to
104 * translate it to pfn on host.
105 */
106static inline bool is_error_pfn(kvm_pfn_t pfn)
107{
108 return !!(pfn & KVM_PFN_ERR_MASK);
109}
110
111/*
112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
113 * by a pending signal. Note, the signal may or may not be fatal.
114 */
115static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
116{
117 return pfn == KVM_PFN_ERR_SIGPENDING;
118}
119
120/*
121 * error_noslot pfns indicate that the gfn can not be
122 * translated to pfn - it is not in slot or failed to
123 * translate it to pfn.
124 */
125static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
126{
127 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
128}
129
130/* noslot pfn indicates that the gfn is not in slot. */
131static inline bool is_noslot_pfn(kvm_pfn_t pfn)
132{
133 return pfn == KVM_PFN_NOSLOT;
134}
135
136/*
137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
138 * provide own defines and kvm_is_error_hva
139 */
140#ifndef KVM_HVA_ERR_BAD
141
142#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
143#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
144
145static inline bool kvm_is_error_hva(unsigned long addr)
146{
147 return addr >= PAGE_OFFSET;
148}
149
150#endif
151
152static inline bool kvm_is_error_gpa(gpa_t gpa)
153{
154 return gpa == INVALID_GPA;
155}
156
157#define KVM_REQUEST_MASK GENMASK(7,0)
158#define KVM_REQUEST_NO_WAKEUP BIT(8)
159#define KVM_REQUEST_WAIT BIT(9)
160#define KVM_REQUEST_NO_ACTION BIT(10)
161/*
162 * Architecture-independent vcpu->requests bit members
163 * Bits 3-7 are reserved for more arch-independent bits.
164 */
165#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
166#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167#define KVM_REQ_UNBLOCK 2
168#define KVM_REQ_DIRTY_RING_SOFT_FULL 3
169#define KVM_REQUEST_ARCH_BASE 8
170
171/*
172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
177 * guarantee the vCPU received an IPI and has actually exited guest mode.
178 */
179#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
180
181#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
184})
185#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
186
187bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
188 unsigned long *vcpu_bitmap);
189bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
190
191#define KVM_USERSPACE_IRQ_SOURCE_ID 0
192#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
193
194extern struct mutex kvm_lock;
195extern struct list_head vm_list;
196
197struct kvm_io_range {
198 gpa_t addr;
199 int len;
200 struct kvm_io_device *dev;
201};
202
203#define NR_IOBUS_DEVS 1000
204
205struct kvm_io_bus {
206 int dev_count;
207 int ioeventfd_count;
208 struct kvm_io_range range[];
209};
210
211enum kvm_bus {
212 KVM_MMIO_BUS,
213 KVM_PIO_BUS,
214 KVM_VIRTIO_CCW_NOTIFY_BUS,
215 KVM_FAST_MMIO_BUS,
216 KVM_IOCSR_BUS,
217 KVM_NR_BUSES
218};
219
220int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
221 int len, const void *val);
222int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
223 gpa_t addr, int len, const void *val, long cookie);
224int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
225 int len, void *val);
226int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
227 int len, struct kvm_io_device *dev);
228int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
229 struct kvm_io_device *dev);
230struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
231 gpa_t addr);
232
233#ifdef CONFIG_KVM_ASYNC_PF
234struct kvm_async_pf {
235 struct work_struct work;
236 struct list_head link;
237 struct list_head queue;
238 struct kvm_vcpu *vcpu;
239 gpa_t cr2_or_gpa;
240 unsigned long addr;
241 struct kvm_arch_async_pf arch;
242 bool wakeup_all;
243 bool notpresent_injected;
244};
245
246void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
247void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
248bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
249 unsigned long hva, struct kvm_arch_async_pf *arch);
250int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
251#endif
252
253#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
254union kvm_mmu_notifier_arg {
255 unsigned long attributes;
256};
257
258struct kvm_gfn_range {
259 struct kvm_memory_slot *slot;
260 gfn_t start;
261 gfn_t end;
262 union kvm_mmu_notifier_arg arg;
263 bool may_block;
264};
265bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
266bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
267bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
268#endif
269
270enum {
271 OUTSIDE_GUEST_MODE,
272 IN_GUEST_MODE,
273 EXITING_GUEST_MODE,
274 READING_SHADOW_PAGE_TABLES,
275};
276
277struct kvm_host_map {
278 /*
279 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
280 * a 'struct page' for it. When using mem= kernel parameter some memory
281 * can be used as guest memory but they are not managed by host
282 * kernel).
283 */
284 struct page *pinned_page;
285 struct page *page;
286 void *hva;
287 kvm_pfn_t pfn;
288 kvm_pfn_t gfn;
289 bool writable;
290};
291
292/*
293 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
294 * directly to check for that.
295 */
296static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
297{
298 return !!map->hva;
299}
300
301static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
302{
303 return single_task_running() && !need_resched() && ktime_before(cur, stop);
304}
305
306/*
307 * Sometimes a large or cross-page mmio needs to be broken up into separate
308 * exits for userspace servicing.
309 */
310struct kvm_mmio_fragment {
311 gpa_t gpa;
312 void *data;
313 unsigned len;
314};
315
316struct kvm_vcpu {
317 struct kvm *kvm;
318#ifdef CONFIG_PREEMPT_NOTIFIERS
319 struct preempt_notifier preempt_notifier;
320#endif
321 int cpu;
322 int vcpu_id; /* id given by userspace at creation */
323 int vcpu_idx; /* index into kvm->vcpu_array */
324 int ____srcu_idx; /* Don't use this directly. You've been warned. */
325#ifdef CONFIG_PROVE_RCU
326 int srcu_depth;
327#endif
328 int mode;
329 u64 requests;
330 unsigned long guest_debug;
331
332 struct mutex mutex;
333 struct kvm_run *run;
334
335#ifndef __KVM_HAVE_ARCH_WQP
336 struct rcuwait wait;
337#endif
338 struct pid *pid;
339 rwlock_t pid_lock;
340 int sigset_active;
341 sigset_t sigset;
342 unsigned int halt_poll_ns;
343 bool valid_wakeup;
344
345#ifdef CONFIG_HAS_IOMEM
346 int mmio_needed;
347 int mmio_read_completed;
348 int mmio_is_write;
349 int mmio_cur_fragment;
350 int mmio_nr_fragments;
351 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
352#endif
353
354#ifdef CONFIG_KVM_ASYNC_PF
355 struct {
356 u32 queued;
357 struct list_head queue;
358 struct list_head done;
359 spinlock_t lock;
360 } async_pf;
361#endif
362
363#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
364 /*
365 * Cpu relax intercept or pause loop exit optimization
366 * in_spin_loop: set when a vcpu does a pause loop exit
367 * or cpu relax intercepted.
368 * dy_eligible: indicates whether vcpu is eligible for directed yield.
369 */
370 struct {
371 bool in_spin_loop;
372 bool dy_eligible;
373 } spin_loop;
374#endif
375 bool wants_to_run;
376 bool preempted;
377 bool ready;
378 bool scheduled_out;
379 struct kvm_vcpu_arch arch;
380 struct kvm_vcpu_stat stat;
381 char stats_id[KVM_STATS_NAME_SIZE];
382 struct kvm_dirty_ring dirty_ring;
383
384 /*
385 * The most recently used memslot by this vCPU and the slots generation
386 * for which it is valid.
387 * No wraparound protection is needed since generations won't overflow in
388 * thousands of years, even assuming 1M memslot operations per second.
389 */
390 struct kvm_memory_slot *last_used_slot;
391 u64 last_used_slot_gen;
392};
393
394/*
395 * Start accounting time towards a guest.
396 * Must be called before entering guest context.
397 */
398static __always_inline void guest_timing_enter_irqoff(void)
399{
400 /*
401 * This is running in ioctl context so its safe to assume that it's the
402 * stime pending cputime to flush.
403 */
404 instrumentation_begin();
405 vtime_account_guest_enter();
406 instrumentation_end();
407}
408
409/*
410 * Enter guest context and enter an RCU extended quiescent state.
411 *
412 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
413 * unsafe to use any code which may directly or indirectly use RCU, tracing
414 * (including IRQ flag tracing), or lockdep. All code in this period must be
415 * non-instrumentable.
416 */
417static __always_inline void guest_context_enter_irqoff(void)
418{
419 /*
420 * KVM does not hold any references to rcu protected data when it
421 * switches CPU into a guest mode. In fact switching to a guest mode
422 * is very similar to exiting to userspace from rcu point of view. In
423 * addition CPU may stay in a guest mode for quite a long time (up to
424 * one time slice). Lets treat guest mode as quiescent state, just like
425 * we do with user-mode execution.
426 */
427 if (!context_tracking_guest_enter()) {
428 instrumentation_begin();
429 rcu_virt_note_context_switch();
430 instrumentation_end();
431 }
432}
433
434/*
435 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
436 * guest_state_enter_irqoff().
437 */
438static __always_inline void guest_enter_irqoff(void)
439{
440 guest_timing_enter_irqoff();
441 guest_context_enter_irqoff();
442}
443
444/**
445 * guest_state_enter_irqoff - Fixup state when entering a guest
446 *
447 * Entry to a guest will enable interrupts, but the kernel state is interrupts
448 * disabled when this is invoked. Also tell RCU about it.
449 *
450 * 1) Trace interrupts on state
451 * 2) Invoke context tracking if enabled to adjust RCU state
452 * 3) Tell lockdep that interrupts are enabled
453 *
454 * Invoked from architecture specific code before entering a guest.
455 * Must be called with interrupts disabled and the caller must be
456 * non-instrumentable.
457 * The caller has to invoke guest_timing_enter_irqoff() before this.
458 *
459 * Note: this is analogous to exit_to_user_mode().
460 */
461static __always_inline void guest_state_enter_irqoff(void)
462{
463 instrumentation_begin();
464 trace_hardirqs_on_prepare();
465 lockdep_hardirqs_on_prepare();
466 instrumentation_end();
467
468 guest_context_enter_irqoff();
469 lockdep_hardirqs_on(CALLER_ADDR0);
470}
471
472/*
473 * Exit guest context and exit an RCU extended quiescent state.
474 *
475 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
476 * unsafe to use any code which may directly or indirectly use RCU, tracing
477 * (including IRQ flag tracing), or lockdep. All code in this period must be
478 * non-instrumentable.
479 */
480static __always_inline void guest_context_exit_irqoff(void)
481{
482 /*
483 * Guest mode is treated as a quiescent state, see
484 * guest_context_enter_irqoff() for more details.
485 */
486 if (!context_tracking_guest_exit()) {
487 instrumentation_begin();
488 rcu_virt_note_context_switch();
489 instrumentation_end();
490 }
491}
492
493/*
494 * Stop accounting time towards a guest.
495 * Must be called after exiting guest context.
496 */
497static __always_inline void guest_timing_exit_irqoff(void)
498{
499 instrumentation_begin();
500 /* Flush the guest cputime we spent on the guest */
501 vtime_account_guest_exit();
502 instrumentation_end();
503}
504
505/*
506 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
507 * guest_timing_exit_irqoff().
508 */
509static __always_inline void guest_exit_irqoff(void)
510{
511 guest_context_exit_irqoff();
512 guest_timing_exit_irqoff();
513}
514
515static inline void guest_exit(void)
516{
517 unsigned long flags;
518
519 local_irq_save(flags);
520 guest_exit_irqoff();
521 local_irq_restore(flags);
522}
523
524/**
525 * guest_state_exit_irqoff - Establish state when returning from guest mode
526 *
527 * Entry from a guest disables interrupts, but guest mode is traced as
528 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
529 *
530 * 1) Tell lockdep that interrupts are disabled
531 * 2) Invoke context tracking if enabled to reactivate RCU
532 * 3) Trace interrupts off state
533 *
534 * Invoked from architecture specific code after exiting a guest.
535 * Must be invoked with interrupts disabled and the caller must be
536 * non-instrumentable.
537 * The caller has to invoke guest_timing_exit_irqoff() after this.
538 *
539 * Note: this is analogous to enter_from_user_mode().
540 */
541static __always_inline void guest_state_exit_irqoff(void)
542{
543 lockdep_hardirqs_off(CALLER_ADDR0);
544 guest_context_exit_irqoff();
545
546 instrumentation_begin();
547 trace_hardirqs_off_finish();
548 instrumentation_end();
549}
550
551static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
552{
553 /*
554 * The memory barrier ensures a previous write to vcpu->requests cannot
555 * be reordered with the read of vcpu->mode. It pairs with the general
556 * memory barrier following the write of vcpu->mode in VCPU RUN.
557 */
558 smp_mb__before_atomic();
559 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
560}
561
562/*
563 * Some of the bitops functions do not support too long bitmaps.
564 * This number must be determined not to exceed such limits.
565 */
566#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
567
568/*
569 * Since at idle each memslot belongs to two memslot sets it has to contain
570 * two embedded nodes for each data structure that it forms a part of.
571 *
572 * Two memslot sets (one active and one inactive) are necessary so the VM
573 * continues to run on one memslot set while the other is being modified.
574 *
575 * These two memslot sets normally point to the same set of memslots.
576 * They can, however, be desynchronized when performing a memslot management
577 * operation by replacing the memslot to be modified by its copy.
578 * After the operation is complete, both memslot sets once again point to
579 * the same, common set of memslot data.
580 *
581 * The memslots themselves are independent of each other so they can be
582 * individually added or deleted.
583 */
584struct kvm_memory_slot {
585 struct hlist_node id_node[2];
586 struct interval_tree_node hva_node[2];
587 struct rb_node gfn_node[2];
588 gfn_t base_gfn;
589 unsigned long npages;
590 unsigned long *dirty_bitmap;
591 struct kvm_arch_memory_slot arch;
592 unsigned long userspace_addr;
593 u32 flags;
594 short id;
595 u16 as_id;
596
597#ifdef CONFIG_KVM_PRIVATE_MEM
598 struct {
599 struct file __rcu *file;
600 pgoff_t pgoff;
601 } gmem;
602#endif
603};
604
605static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
606{
607 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
608}
609
610static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
611{
612 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
613}
614
615static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
616{
617 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
618}
619
620static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
621{
622 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
623
624 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
625}
626
627#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
628#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
629#endif
630
631struct kvm_s390_adapter_int {
632 u64 ind_addr;
633 u64 summary_addr;
634 u64 ind_offset;
635 u32 summary_offset;
636 u32 adapter_id;
637};
638
639struct kvm_hv_sint {
640 u32 vcpu;
641 u32 sint;
642};
643
644struct kvm_xen_evtchn {
645 u32 port;
646 u32 vcpu_id;
647 int vcpu_idx;
648 u32 priority;
649};
650
651struct kvm_kernel_irq_routing_entry {
652 u32 gsi;
653 u32 type;
654 int (*set)(struct kvm_kernel_irq_routing_entry *e,
655 struct kvm *kvm, int irq_source_id, int level,
656 bool line_status);
657 union {
658 struct {
659 unsigned irqchip;
660 unsigned pin;
661 } irqchip;
662 struct {
663 u32 address_lo;
664 u32 address_hi;
665 u32 data;
666 u32 flags;
667 u32 devid;
668 } msi;
669 struct kvm_s390_adapter_int adapter;
670 struct kvm_hv_sint hv_sint;
671 struct kvm_xen_evtchn xen_evtchn;
672 };
673 struct hlist_node link;
674};
675
676#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
677struct kvm_irq_routing_table {
678 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
679 u32 nr_rt_entries;
680 /*
681 * Array indexed by gsi. Each entry contains list of irq chips
682 * the gsi is connected to.
683 */
684 struct hlist_head map[] __counted_by(nr_rt_entries);
685};
686#endif
687
688bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
689
690#ifndef KVM_INTERNAL_MEM_SLOTS
691#define KVM_INTERNAL_MEM_SLOTS 0
692#endif
693
694#define KVM_MEM_SLOTS_NUM SHRT_MAX
695#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
696
697#if KVM_MAX_NR_ADDRESS_SPACES == 1
698static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
699{
700 return KVM_MAX_NR_ADDRESS_SPACES;
701}
702
703static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
704{
705 return 0;
706}
707#endif
708
709/*
710 * Arch code must define kvm_arch_has_private_mem if support for private memory
711 * is enabled.
712 */
713#if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
714static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
715{
716 return false;
717}
718#endif
719
720#ifndef kvm_arch_has_readonly_mem
721static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
722{
723 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
724}
725#endif
726
727struct kvm_memslots {
728 u64 generation;
729 atomic_long_t last_used_slot;
730 struct rb_root_cached hva_tree;
731 struct rb_root gfn_tree;
732 /*
733 * The mapping table from slot id to memslot.
734 *
735 * 7-bit bucket count matches the size of the old id to index array for
736 * 512 slots, while giving good performance with this slot count.
737 * Higher bucket counts bring only small performance improvements but
738 * always result in higher memory usage (even for lower memslot counts).
739 */
740 DECLARE_HASHTABLE(id_hash, 7);
741 int node_idx;
742};
743
744struct kvm {
745#ifdef KVM_HAVE_MMU_RWLOCK
746 rwlock_t mmu_lock;
747#else
748 spinlock_t mmu_lock;
749#endif /* KVM_HAVE_MMU_RWLOCK */
750
751 struct mutex slots_lock;
752
753 /*
754 * Protects the arch-specific fields of struct kvm_memory_slots in
755 * use by the VM. To be used under the slots_lock (above) or in a
756 * kvm->srcu critical section where acquiring the slots_lock would
757 * lead to deadlock with the synchronize_srcu in
758 * kvm_swap_active_memslots().
759 */
760 struct mutex slots_arch_lock;
761 struct mm_struct *mm; /* userspace tied to this vm */
762 unsigned long nr_memslot_pages;
763 /* The two memslot sets - active and inactive (per address space) */
764 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
765 /* The current active memslot set for each address space */
766 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
767 struct xarray vcpu_array;
768 /*
769 * Protected by slots_lock, but can be read outside if an
770 * incorrect answer is acceptable.
771 */
772 atomic_t nr_memslots_dirty_logging;
773
774 /* Used to wait for completion of MMU notifiers. */
775 spinlock_t mn_invalidate_lock;
776 unsigned long mn_active_invalidate_count;
777 struct rcuwait mn_memslots_update_rcuwait;
778
779 /* For management / invalidation of gfn_to_pfn_caches */
780 spinlock_t gpc_lock;
781 struct list_head gpc_list;
782
783 /*
784 * created_vcpus is protected by kvm->lock, and is incremented
785 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
786 * incremented after storing the kvm_vcpu pointer in vcpus,
787 * and is accessed atomically.
788 */
789 atomic_t online_vcpus;
790 int max_vcpus;
791 int created_vcpus;
792 int last_boosted_vcpu;
793 struct list_head vm_list;
794 struct mutex lock;
795 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
796#ifdef CONFIG_HAVE_KVM_IRQCHIP
797 struct {
798 spinlock_t lock;
799 struct list_head items;
800 /* resampler_list update side is protected by resampler_lock. */
801 struct list_head resampler_list;
802 struct mutex resampler_lock;
803 } irqfds;
804#endif
805 struct list_head ioeventfds;
806 struct kvm_vm_stat stat;
807 struct kvm_arch arch;
808 refcount_t users_count;
809#ifdef CONFIG_KVM_MMIO
810 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
811 spinlock_t ring_lock;
812 struct list_head coalesced_zones;
813#endif
814
815 struct mutex irq_lock;
816#ifdef CONFIG_HAVE_KVM_IRQCHIP
817 /*
818 * Update side is protected by irq_lock.
819 */
820 struct kvm_irq_routing_table __rcu *irq_routing;
821
822 struct hlist_head irq_ack_notifier_list;
823#endif
824
825#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
826 struct mmu_notifier mmu_notifier;
827 unsigned long mmu_invalidate_seq;
828 long mmu_invalidate_in_progress;
829 gfn_t mmu_invalidate_range_start;
830 gfn_t mmu_invalidate_range_end;
831#endif
832 struct list_head devices;
833 u64 manual_dirty_log_protect;
834 struct dentry *debugfs_dentry;
835 struct kvm_stat_data **debugfs_stat_data;
836 struct srcu_struct srcu;
837 struct srcu_struct irq_srcu;
838 pid_t userspace_pid;
839 bool override_halt_poll_ns;
840 unsigned int max_halt_poll_ns;
841 u32 dirty_ring_size;
842 bool dirty_ring_with_bitmap;
843 bool vm_bugged;
844 bool vm_dead;
845
846#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
847 struct notifier_block pm_notifier;
848#endif
849#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
850 /* Protected by slots_locks (for writes) and RCU (for reads) */
851 struct xarray mem_attr_array;
852#endif
853 char stats_id[KVM_STATS_NAME_SIZE];
854};
855
856#define kvm_err(fmt, ...) \
857 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
858#define kvm_info(fmt, ...) \
859 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
860#define kvm_debug(fmt, ...) \
861 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
862#define kvm_debug_ratelimited(fmt, ...) \
863 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
864 ## __VA_ARGS__)
865#define kvm_pr_unimpl(fmt, ...) \
866 pr_err_ratelimited("kvm [%i]: " fmt, \
867 task_tgid_nr(current), ## __VA_ARGS__)
868
869/* The guest did something we don't support. */
870#define vcpu_unimpl(vcpu, fmt, ...) \
871 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
872 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
873
874#define vcpu_debug(vcpu, fmt, ...) \
875 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
876#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
877 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
878 ## __VA_ARGS__)
879#define vcpu_err(vcpu, fmt, ...) \
880 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
881
882static inline void kvm_vm_dead(struct kvm *kvm)
883{
884 kvm->vm_dead = true;
885 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
886}
887
888static inline void kvm_vm_bugged(struct kvm *kvm)
889{
890 kvm->vm_bugged = true;
891 kvm_vm_dead(kvm);
892}
893
894
895#define KVM_BUG(cond, kvm, fmt...) \
896({ \
897 bool __ret = !!(cond); \
898 \
899 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
900 kvm_vm_bugged(kvm); \
901 unlikely(__ret); \
902})
903
904#define KVM_BUG_ON(cond, kvm) \
905({ \
906 bool __ret = !!(cond); \
907 \
908 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
909 kvm_vm_bugged(kvm); \
910 unlikely(__ret); \
911})
912
913/*
914 * Note, "data corruption" refers to corruption of host kernel data structures,
915 * not guest data. Guest data corruption, suspected or confirmed, that is tied
916 * and contained to a single VM should *never* BUG() and potentially panic the
917 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
918 * is corrupted and that corruption can have a cascading effect to other parts
919 * of the hosts and/or to other VMs.
920 */
921#define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
922({ \
923 bool __ret = !!(cond); \
924 \
925 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
926 BUG_ON(__ret); \
927 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
928 kvm_vm_bugged(kvm); \
929 unlikely(__ret); \
930})
931
932static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
933{
934#ifdef CONFIG_PROVE_RCU
935 WARN_ONCE(vcpu->srcu_depth++,
936 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
937#endif
938 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
939}
940
941static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
942{
943 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
944
945#ifdef CONFIG_PROVE_RCU
946 WARN_ONCE(--vcpu->srcu_depth,
947 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
948#endif
949}
950
951static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
952{
953 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
954}
955
956static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
957{
958 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
959 lockdep_is_held(&kvm->slots_lock) ||
960 !refcount_read(&kvm->users_count));
961}
962
963static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
964{
965 int num_vcpus = atomic_read(&kvm->online_vcpus);
966 i = array_index_nospec(i, num_vcpus);
967
968 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
969 smp_rmb();
970 return xa_load(&kvm->vcpu_array, i);
971}
972
973#define kvm_for_each_vcpu(idx, vcpup, kvm) \
974 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
975 (atomic_read(&kvm->online_vcpus) - 1))
976
977static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
978{
979 struct kvm_vcpu *vcpu = NULL;
980 unsigned long i;
981
982 if (id < 0)
983 return NULL;
984 if (id < KVM_MAX_VCPUS)
985 vcpu = kvm_get_vcpu(kvm, id);
986 if (vcpu && vcpu->vcpu_id == id)
987 return vcpu;
988 kvm_for_each_vcpu(i, vcpu, kvm)
989 if (vcpu->vcpu_id == id)
990 return vcpu;
991 return NULL;
992}
993
994void kvm_destroy_vcpus(struct kvm *kvm);
995
996void vcpu_load(struct kvm_vcpu *vcpu);
997void vcpu_put(struct kvm_vcpu *vcpu);
998
999#ifdef __KVM_HAVE_IOAPIC
1000void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1001void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1002#else
1003static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1004{
1005}
1006static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1007{
1008}
1009#endif
1010
1011#ifdef CONFIG_HAVE_KVM_IRQCHIP
1012int kvm_irqfd_init(void);
1013void kvm_irqfd_exit(void);
1014#else
1015static inline int kvm_irqfd_init(void)
1016{
1017 return 0;
1018}
1019
1020static inline void kvm_irqfd_exit(void)
1021{
1022}
1023#endif
1024int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1025void kvm_exit(void);
1026
1027void kvm_get_kvm(struct kvm *kvm);
1028bool kvm_get_kvm_safe(struct kvm *kvm);
1029void kvm_put_kvm(struct kvm *kvm);
1030bool file_is_kvm(struct file *file);
1031void kvm_put_kvm_no_destroy(struct kvm *kvm);
1032
1033static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1034{
1035 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1036 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1037 lockdep_is_held(&kvm->slots_lock) ||
1038 !refcount_read(&kvm->users_count));
1039}
1040
1041static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1042{
1043 return __kvm_memslots(kvm, 0);
1044}
1045
1046static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1047{
1048 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1049
1050 return __kvm_memslots(vcpu->kvm, as_id);
1051}
1052
1053static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1054{
1055 return RB_EMPTY_ROOT(&slots->gfn_tree);
1056}
1057
1058bool kvm_are_all_memslots_empty(struct kvm *kvm);
1059
1060#define kvm_for_each_memslot(memslot, bkt, slots) \
1061 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1062 if (WARN_ON_ONCE(!memslot->npages)) { \
1063 } else
1064
1065static inline
1066struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1067{
1068 struct kvm_memory_slot *slot;
1069 int idx = slots->node_idx;
1070
1071 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1072 if (slot->id == id)
1073 return slot;
1074 }
1075
1076 return NULL;
1077}
1078
1079/* Iterator used for walking memslots that overlap a gfn range. */
1080struct kvm_memslot_iter {
1081 struct kvm_memslots *slots;
1082 struct rb_node *node;
1083 struct kvm_memory_slot *slot;
1084};
1085
1086static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1087{
1088 iter->node = rb_next(iter->node);
1089 if (!iter->node)
1090 return;
1091
1092 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1093}
1094
1095static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1096 struct kvm_memslots *slots,
1097 gfn_t start)
1098{
1099 int idx = slots->node_idx;
1100 struct rb_node *tmp;
1101 struct kvm_memory_slot *slot;
1102
1103 iter->slots = slots;
1104
1105 /*
1106 * Find the so called "upper bound" of a key - the first node that has
1107 * its key strictly greater than the searched one (the start gfn in our case).
1108 */
1109 iter->node = NULL;
1110 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1111 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1112 if (start < slot->base_gfn) {
1113 iter->node = tmp;
1114 tmp = tmp->rb_left;
1115 } else {
1116 tmp = tmp->rb_right;
1117 }
1118 }
1119
1120 /*
1121 * Find the slot with the lowest gfn that can possibly intersect with
1122 * the range, so we'll ideally have slot start <= range start
1123 */
1124 if (iter->node) {
1125 /*
1126 * A NULL previous node means that the very first slot
1127 * already has a higher start gfn.
1128 * In this case slot start > range start.
1129 */
1130 tmp = rb_prev(iter->node);
1131 if (tmp)
1132 iter->node = tmp;
1133 } else {
1134 /* a NULL node below means no slots */
1135 iter->node = rb_last(&slots->gfn_tree);
1136 }
1137
1138 if (iter->node) {
1139 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1140
1141 /*
1142 * It is possible in the slot start < range start case that the
1143 * found slot ends before or at range start (slot end <= range start)
1144 * and so it does not overlap the requested range.
1145 *
1146 * In such non-overlapping case the next slot (if it exists) will
1147 * already have slot start > range start, otherwise the logic above
1148 * would have found it instead of the current slot.
1149 */
1150 if (iter->slot->base_gfn + iter->slot->npages <= start)
1151 kvm_memslot_iter_next(iter);
1152 }
1153}
1154
1155static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1156{
1157 if (!iter->node)
1158 return false;
1159
1160 /*
1161 * If this slot starts beyond or at the end of the range so does
1162 * every next one
1163 */
1164 return iter->slot->base_gfn < end;
1165}
1166
1167/* Iterate over each memslot at least partially intersecting [start, end) range */
1168#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1169 for (kvm_memslot_iter_start(iter, slots, start); \
1170 kvm_memslot_iter_is_valid(iter, end); \
1171 kvm_memslot_iter_next(iter))
1172
1173struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1174struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1175struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1176
1177/*
1178 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1179 * - create a new memory slot
1180 * - delete an existing memory slot
1181 * - modify an existing memory slot
1182 * -- move it in the guest physical memory space
1183 * -- just change its flags
1184 *
1185 * Since flags can be changed by some of these operations, the following
1186 * differentiation is the best we can do for __kvm_set_memory_region():
1187 */
1188enum kvm_mr_change {
1189 KVM_MR_CREATE,
1190 KVM_MR_DELETE,
1191 KVM_MR_MOVE,
1192 KVM_MR_FLAGS_ONLY,
1193};
1194
1195int kvm_set_memory_region(struct kvm *kvm,
1196 const struct kvm_userspace_memory_region2 *mem);
1197int __kvm_set_memory_region(struct kvm *kvm,
1198 const struct kvm_userspace_memory_region2 *mem);
1199void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1200void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1201int kvm_arch_prepare_memory_region(struct kvm *kvm,
1202 const struct kvm_memory_slot *old,
1203 struct kvm_memory_slot *new,
1204 enum kvm_mr_change change);
1205void kvm_arch_commit_memory_region(struct kvm *kvm,
1206 struct kvm_memory_slot *old,
1207 const struct kvm_memory_slot *new,
1208 enum kvm_mr_change change);
1209/* flush all memory translations */
1210void kvm_arch_flush_shadow_all(struct kvm *kvm);
1211/* flush memory translations pointing to 'slot' */
1212void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1213 struct kvm_memory_slot *slot);
1214
1215int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1216 struct page **pages, int nr_pages);
1217
1218struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
1219static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1220{
1221 return __gfn_to_page(kvm, gfn, true);
1222}
1223
1224unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1225unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1226unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1227unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1228 bool *writable);
1229
1230static inline void kvm_release_page_unused(struct page *page)
1231{
1232 if (!page)
1233 return;
1234
1235 put_page(page);
1236}
1237
1238void kvm_release_page_clean(struct page *page);
1239void kvm_release_page_dirty(struct page *page);
1240
1241static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
1242 bool unused, bool dirty)
1243{
1244 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
1245
1246 if (!page)
1247 return;
1248
1249 /*
1250 * If the page that KVM got from the *primary MMU* is writable, and KVM
1251 * installed or reused a SPTE, mark the page/folio dirty. Note, this
1252 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1253 * the GFN is write-protected. Folios can't be safely marked dirty
1254 * outside of mmu_lock as doing so could race with writeback on the
1255 * folio. As a result, KVM can't mark folios dirty in the fast page
1256 * fault handler, and so KVM must (somewhat) speculatively mark the
1257 * folio dirty if KVM could locklessly make the SPTE writable.
1258 */
1259 if (unused)
1260 kvm_release_page_unused(page);
1261 else if (dirty)
1262 kvm_release_page_dirty(page);
1263 else
1264 kvm_release_page_clean(page);
1265}
1266
1267kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
1268 unsigned int foll, bool *writable,
1269 struct page **refcounted_page);
1270
1271static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
1272 bool write, bool *writable,
1273 struct page **refcounted_page)
1274{
1275 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
1276 write ? FOLL_WRITE : 0, writable, refcounted_page);
1277}
1278
1279int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1280 int len);
1281int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1282int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1283 void *data, unsigned long len);
1284int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1285 void *data, unsigned int offset,
1286 unsigned long len);
1287int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1288 int offset, int len);
1289int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1290 unsigned long len);
1291int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1292 void *data, unsigned long len);
1293int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1294 void *data, unsigned int offset,
1295 unsigned long len);
1296int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1297 gpa_t gpa, unsigned long len);
1298
1299#define __kvm_get_guest(kvm, gfn, offset, v) \
1300({ \
1301 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1302 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1303 int __ret = -EFAULT; \
1304 \
1305 if (!kvm_is_error_hva(__addr)) \
1306 __ret = get_user(v, __uaddr); \
1307 __ret; \
1308})
1309
1310#define kvm_get_guest(kvm, gpa, v) \
1311({ \
1312 gpa_t __gpa = gpa; \
1313 struct kvm *__kvm = kvm; \
1314 \
1315 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1316 offset_in_page(__gpa), v); \
1317})
1318
1319#define __kvm_put_guest(kvm, gfn, offset, v) \
1320({ \
1321 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1322 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1323 int __ret = -EFAULT; \
1324 \
1325 if (!kvm_is_error_hva(__addr)) \
1326 __ret = put_user(v, __uaddr); \
1327 if (!__ret) \
1328 mark_page_dirty(kvm, gfn); \
1329 __ret; \
1330})
1331
1332#define kvm_put_guest(kvm, gpa, v) \
1333({ \
1334 gpa_t __gpa = gpa; \
1335 struct kvm *__kvm = kvm; \
1336 \
1337 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1338 offset_in_page(__gpa), v); \
1339})
1340
1341int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1342bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1343bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1344unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1345void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1346void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1347
1348int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
1349 bool writable);
1350void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
1351
1352static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
1353 struct kvm_host_map *map)
1354{
1355 return __kvm_vcpu_map(vcpu, gpa, map, true);
1356}
1357
1358static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
1359 struct kvm_host_map *map)
1360{
1361 return __kvm_vcpu_map(vcpu, gpa, map, false);
1362}
1363
1364unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1365unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1366int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1367 int len);
1368int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1369 unsigned long len);
1370int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1371 unsigned long len);
1372int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1373 int offset, int len);
1374int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1375 unsigned long len);
1376void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1377
1378/**
1379 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1380 *
1381 * @gpc: struct gfn_to_pfn_cache object.
1382 * @kvm: pointer to kvm instance.
1383 *
1384 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1385 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1386 * the caller before init).
1387 */
1388void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1389
1390/**
1391 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1392 * physical address.
1393 *
1394 * @gpc: struct gfn_to_pfn_cache object.
1395 * @gpa: guest physical address to map.
1396 * @len: sanity check; the range being access must fit a single page.
1397 *
1398 * @return: 0 for success.
1399 * -EINVAL for a mapping which would cross a page boundary.
1400 * -EFAULT for an untranslatable guest physical address.
1401 *
1402 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1403 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1404 * to ensure that the cache is valid before accessing the target page.
1405 */
1406int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1407
1408/**
1409 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1410 *
1411 * @gpc: struct gfn_to_pfn_cache object.
1412 * @hva: userspace virtual address to map.
1413 * @len: sanity check; the range being access must fit a single page.
1414 *
1415 * @return: 0 for success.
1416 * -EINVAL for a mapping which would cross a page boundary.
1417 * -EFAULT for an untranslatable guest physical address.
1418 *
1419 * The semantics of this function are the same as those of kvm_gpc_activate(). It
1420 * merely bypasses a layer of address translation.
1421 */
1422int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1423
1424/**
1425 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1426 *
1427 * @gpc: struct gfn_to_pfn_cache object.
1428 * @len: sanity check; the range being access must fit a single page.
1429 *
1430 * @return: %true if the cache is still valid and the address matches.
1431 * %false if the cache is not valid.
1432 *
1433 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1434 * while calling this function, and then continue to hold the lock until the
1435 * access is complete.
1436 *
1437 * Callers in IN_GUEST_MODE may do so without locking, although they should
1438 * still hold a read lock on kvm->scru for the memslot checks.
1439 */
1440bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1441
1442/**
1443 * kvm_gpc_refresh - update a previously initialized cache.
1444 *
1445 * @gpc: struct gfn_to_pfn_cache object.
1446 * @len: sanity check; the range being access must fit a single page.
1447 *
1448 * @return: 0 for success.
1449 * -EINVAL for a mapping which would cross a page boundary.
1450 * -EFAULT for an untranslatable guest physical address.
1451 *
1452 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1453 * return from this function does not mean the page can be immediately
1454 * accessed because it may have raced with an invalidation. Callers must
1455 * still lock and check the cache status, as this function does not return
1456 * with the lock still held to permit access.
1457 */
1458int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1459
1460/**
1461 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1462 *
1463 * @gpc: struct gfn_to_pfn_cache object.
1464 *
1465 * This removes a cache from the VM's list to be processed on MMU notifier
1466 * invocation.
1467 */
1468void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1469
1470static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1471{
1472 return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1473}
1474
1475static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1476{
1477 return gpc->active && kvm_is_error_gpa(gpc->gpa);
1478}
1479
1480void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1481void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1482
1483void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1484bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1485void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1486void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1487bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1488void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1489int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1490void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1491
1492void kvm_flush_remote_tlbs(struct kvm *kvm);
1493void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1494void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1495 const struct kvm_memory_slot *memslot);
1496
1497#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1498int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1499int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1500int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1501void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1502void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1503#endif
1504
1505void kvm_mmu_invalidate_begin(struct kvm *kvm);
1506void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1507void kvm_mmu_invalidate_end(struct kvm *kvm);
1508bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1509
1510long kvm_arch_dev_ioctl(struct file *filp,
1511 unsigned int ioctl, unsigned long arg);
1512long kvm_arch_vcpu_ioctl(struct file *filp,
1513 unsigned int ioctl, unsigned long arg);
1514vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1515
1516int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1517
1518void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1519 struct kvm_memory_slot *slot,
1520 gfn_t gfn_offset,
1521 unsigned long mask);
1522void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1523
1524#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1525int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1526int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1527 int *is_dirty, struct kvm_memory_slot **memslot);
1528#endif
1529
1530int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1531 bool line_status);
1532int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1533 struct kvm_enable_cap *cap);
1534int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1535long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1536 unsigned long arg);
1537
1538int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1539int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1540
1541int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1542 struct kvm_translation *tr);
1543
1544int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1545int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1546int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1547 struct kvm_sregs *sregs);
1548int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1549 struct kvm_sregs *sregs);
1550int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1551 struct kvm_mp_state *mp_state);
1552int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1553 struct kvm_mp_state *mp_state);
1554int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1555 struct kvm_guest_debug *dbg);
1556int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1557
1558void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1559void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1560int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1561int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1562void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1563void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1564
1565#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1566int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1567#endif
1568
1569#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1570void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1571#else
1572static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1573#endif
1574
1575#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1576/*
1577 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1578 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1579 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1580 * sequence, and at the end of the generic hardware disabling sequence.
1581 */
1582void kvm_arch_enable_virtualization(void);
1583void kvm_arch_disable_virtualization(void);
1584/*
1585 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1586 * do the actual twiddling of hardware bits. The hooks are called on all
1587 * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1588 * when that CPU is onlined/offlined (including for Resume/Suspend).
1589 */
1590int kvm_arch_enable_virtualization_cpu(void);
1591void kvm_arch_disable_virtualization_cpu(void);
1592#endif
1593int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1594bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1595int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1596bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1597bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1598bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1599int kvm_arch_post_init_vm(struct kvm *kvm);
1600void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1601void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1602
1603#ifndef __KVM_HAVE_ARCH_VM_ALLOC
1604/*
1605 * All architectures that want to use vzalloc currently also
1606 * need their own kvm_arch_alloc_vm implementation.
1607 */
1608static inline struct kvm *kvm_arch_alloc_vm(void)
1609{
1610 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1611}
1612#endif
1613
1614static inline void __kvm_arch_free_vm(struct kvm *kvm)
1615{
1616 kvfree(kvm);
1617}
1618
1619#ifndef __KVM_HAVE_ARCH_VM_FREE
1620static inline void kvm_arch_free_vm(struct kvm *kvm)
1621{
1622 __kvm_arch_free_vm(kvm);
1623}
1624#endif
1625
1626#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1627static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1628{
1629 return -ENOTSUPP;
1630}
1631#else
1632int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1633#endif
1634
1635#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1636static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1637 gfn_t gfn, u64 nr_pages)
1638{
1639 return -EOPNOTSUPP;
1640}
1641#else
1642int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1643#endif
1644
1645#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1646void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1647void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1648bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1649#else
1650static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1651{
1652}
1653
1654static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1655{
1656}
1657
1658static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1659{
1660 return false;
1661}
1662#endif
1663#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1664void kvm_arch_start_assignment(struct kvm *kvm);
1665void kvm_arch_end_assignment(struct kvm *kvm);
1666bool kvm_arch_has_assigned_device(struct kvm *kvm);
1667#else
1668static inline void kvm_arch_start_assignment(struct kvm *kvm)
1669{
1670}
1671
1672static inline void kvm_arch_end_assignment(struct kvm *kvm)
1673{
1674}
1675
1676static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1677{
1678 return false;
1679}
1680#endif
1681
1682static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1683{
1684#ifdef __KVM_HAVE_ARCH_WQP
1685 return vcpu->arch.waitp;
1686#else
1687 return &vcpu->wait;
1688#endif
1689}
1690
1691/*
1692 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1693 * true if the vCPU was blocking and was awakened, false otherwise.
1694 */
1695static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1696{
1697 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1698}
1699
1700static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1701{
1702 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1703}
1704
1705#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1706/*
1707 * returns true if the virtual interrupt controller is initialized and
1708 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1709 * controller is dynamically instantiated and this is not always true.
1710 */
1711bool kvm_arch_intc_initialized(struct kvm *kvm);
1712#else
1713static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1714{
1715 return true;
1716}
1717#endif
1718
1719#ifdef CONFIG_GUEST_PERF_EVENTS
1720unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1721
1722void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1723void kvm_unregister_perf_callbacks(void);
1724#else
1725static inline void kvm_register_perf_callbacks(void *ign) {}
1726static inline void kvm_unregister_perf_callbacks(void) {}
1727#endif /* CONFIG_GUEST_PERF_EVENTS */
1728
1729int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1730void kvm_arch_destroy_vm(struct kvm *kvm);
1731void kvm_arch_sync_events(struct kvm *kvm);
1732
1733int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1734
1735struct kvm_irq_ack_notifier {
1736 struct hlist_node link;
1737 unsigned gsi;
1738 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1739};
1740
1741int kvm_irq_map_gsi(struct kvm *kvm,
1742 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1743int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1744
1745int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1746 bool line_status);
1747int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1748 int irq_source_id, int level, bool line_status);
1749int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1750 struct kvm *kvm, int irq_source_id,
1751 int level, bool line_status);
1752bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1753void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1754void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1755void kvm_register_irq_ack_notifier(struct kvm *kvm,
1756 struct kvm_irq_ack_notifier *kian);
1757void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1758 struct kvm_irq_ack_notifier *kian);
1759int kvm_request_irq_source_id(struct kvm *kvm);
1760void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1761bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1762
1763/*
1764 * Returns a pointer to the memslot if it contains gfn.
1765 * Otherwise returns NULL.
1766 */
1767static inline struct kvm_memory_slot *
1768try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1769{
1770 if (!slot)
1771 return NULL;
1772
1773 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1774 return slot;
1775 else
1776 return NULL;
1777}
1778
1779/*
1780 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1781 *
1782 * With "approx" set returns the memslot also when the address falls
1783 * in a hole. In that case one of the memslots bordering the hole is
1784 * returned.
1785 */
1786static inline struct kvm_memory_slot *
1787search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1788{
1789 struct kvm_memory_slot *slot;
1790 struct rb_node *node;
1791 int idx = slots->node_idx;
1792
1793 slot = NULL;
1794 for (node = slots->gfn_tree.rb_node; node; ) {
1795 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1796 if (gfn >= slot->base_gfn) {
1797 if (gfn < slot->base_gfn + slot->npages)
1798 return slot;
1799 node = node->rb_right;
1800 } else
1801 node = node->rb_left;
1802 }
1803
1804 return approx ? slot : NULL;
1805}
1806
1807static inline struct kvm_memory_slot *
1808____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1809{
1810 struct kvm_memory_slot *slot;
1811
1812 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1813 slot = try_get_memslot(slot, gfn);
1814 if (slot)
1815 return slot;
1816
1817 slot = search_memslots(slots, gfn, approx);
1818 if (slot) {
1819 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1820 return slot;
1821 }
1822
1823 return NULL;
1824}
1825
1826/*
1827 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1828 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1829 * because that would bloat other code too much.
1830 */
1831static inline struct kvm_memory_slot *
1832__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1833{
1834 return ____gfn_to_memslot(slots, gfn, false);
1835}
1836
1837static inline unsigned long
1838__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1839{
1840 /*
1841 * The index was checked originally in search_memslots. To avoid
1842 * that a malicious guest builds a Spectre gadget out of e.g. page
1843 * table walks, do not let the processor speculate loads outside
1844 * the guest's registered memslots.
1845 */
1846 unsigned long offset = gfn - slot->base_gfn;
1847 offset = array_index_nospec(offset, slot->npages);
1848 return slot->userspace_addr + offset * PAGE_SIZE;
1849}
1850
1851static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1852{
1853 return gfn_to_memslot(kvm, gfn)->id;
1854}
1855
1856static inline gfn_t
1857hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1858{
1859 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1860
1861 return slot->base_gfn + gfn_offset;
1862}
1863
1864static inline gpa_t gfn_to_gpa(gfn_t gfn)
1865{
1866 return (gpa_t)gfn << PAGE_SHIFT;
1867}
1868
1869static inline gfn_t gpa_to_gfn(gpa_t gpa)
1870{
1871 return (gfn_t)(gpa >> PAGE_SHIFT);
1872}
1873
1874static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1875{
1876 return (hpa_t)pfn << PAGE_SHIFT;
1877}
1878
1879static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1880{
1881 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1882
1883 return !kvm_is_error_hva(hva);
1884}
1885
1886static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1887{
1888 lockdep_assert_held(&gpc->lock);
1889
1890 if (!gpc->memslot)
1891 return;
1892
1893 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1894}
1895
1896enum kvm_stat_kind {
1897 KVM_STAT_VM,
1898 KVM_STAT_VCPU,
1899};
1900
1901struct kvm_stat_data {
1902 struct kvm *kvm;
1903 const struct _kvm_stats_desc *desc;
1904 enum kvm_stat_kind kind;
1905};
1906
1907struct _kvm_stats_desc {
1908 struct kvm_stats_desc desc;
1909 char name[KVM_STATS_NAME_SIZE];
1910};
1911
1912#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1913 .flags = type | unit | base | \
1914 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1915 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1916 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1917 .exponent = exp, \
1918 .size = sz, \
1919 .bucket_size = bsz
1920
1921#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1922 { \
1923 { \
1924 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1925 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1926 }, \
1927 .name = #stat, \
1928 }
1929#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1930 { \
1931 { \
1932 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1933 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1934 }, \
1935 .name = #stat, \
1936 }
1937#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1938 { \
1939 { \
1940 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1941 .offset = offsetof(struct kvm_vm_stat, stat) \
1942 }, \
1943 .name = #stat, \
1944 }
1945#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1946 { \
1947 { \
1948 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1949 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1950 }, \
1951 .name = #stat, \
1952 }
1953/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1954#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1955 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1956
1957#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1958 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1959 unit, base, exponent, 1, 0)
1960#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1961 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1962 unit, base, exponent, 1, 0)
1963#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1964 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1965 unit, base, exponent, 1, 0)
1966#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1967 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1968 unit, base, exponent, sz, bsz)
1969#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1970 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1971 unit, base, exponent, sz, 0)
1972
1973/* Cumulative counter, read/write */
1974#define STATS_DESC_COUNTER(SCOPE, name) \
1975 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1976 KVM_STATS_BASE_POW10, 0)
1977/* Instantaneous counter, read only */
1978#define STATS_DESC_ICOUNTER(SCOPE, name) \
1979 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1980 KVM_STATS_BASE_POW10, 0)
1981/* Peak counter, read/write */
1982#define STATS_DESC_PCOUNTER(SCOPE, name) \
1983 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1984 KVM_STATS_BASE_POW10, 0)
1985
1986/* Instantaneous boolean value, read only */
1987#define STATS_DESC_IBOOLEAN(SCOPE, name) \
1988 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1989 KVM_STATS_BASE_POW10, 0)
1990/* Peak (sticky) boolean value, read/write */
1991#define STATS_DESC_PBOOLEAN(SCOPE, name) \
1992 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1993 KVM_STATS_BASE_POW10, 0)
1994
1995/* Cumulative time in nanosecond */
1996#define STATS_DESC_TIME_NSEC(SCOPE, name) \
1997 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1998 KVM_STATS_BASE_POW10, -9)
1999/* Linear histogram for time in nanosecond */
2000#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
2001 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2002 KVM_STATS_BASE_POW10, -9, sz, bsz)
2003/* Logarithmic histogram for time in nanosecond */
2004#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
2005 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2006 KVM_STATS_BASE_POW10, -9, sz)
2007
2008#define KVM_GENERIC_VM_STATS() \
2009 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
2010 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2011
2012#define KVM_GENERIC_VCPU_STATS() \
2013 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
2014 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
2015 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
2016 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
2017 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
2018 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
2019 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
2020 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
2021 HALT_POLL_HIST_COUNT), \
2022 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
2023 HALT_POLL_HIST_COUNT), \
2024 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
2025 HALT_POLL_HIST_COUNT), \
2026 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2027
2028ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2029 const struct _kvm_stats_desc *desc,
2030 void *stats, size_t size_stats,
2031 char __user *user_buffer, size_t size, loff_t *offset);
2032
2033/**
2034 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2035 * statistics data.
2036 *
2037 * @data: start address of the stats data
2038 * @size: the number of bucket of the stats data
2039 * @value: the new value used to update the linear histogram's bucket
2040 * @bucket_size: the size (width) of a bucket
2041 */
2042static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2043 u64 value, size_t bucket_size)
2044{
2045 size_t index = div64_u64(value, bucket_size);
2046
2047 index = min(index, size - 1);
2048 ++data[index];
2049}
2050
2051/**
2052 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2053 * statistics data.
2054 *
2055 * @data: start address of the stats data
2056 * @size: the number of bucket of the stats data
2057 * @value: the new value used to update the logarithmic histogram's bucket
2058 */
2059static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2060{
2061 size_t index = fls64(value);
2062
2063 index = min(index, size - 1);
2064 ++data[index];
2065}
2066
2067#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
2068 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2069#define KVM_STATS_LOG_HIST_UPDATE(array, value) \
2070 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2071
2072
2073extern const struct kvm_stats_header kvm_vm_stats_header;
2074extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2075extern const struct kvm_stats_header kvm_vcpu_stats_header;
2076extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2077
2078#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2079static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2080{
2081 if (unlikely(kvm->mmu_invalidate_in_progress))
2082 return 1;
2083 /*
2084 * Ensure the read of mmu_invalidate_in_progress happens before
2085 * the read of mmu_invalidate_seq. This interacts with the
2086 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2087 * that the caller either sees the old (non-zero) value of
2088 * mmu_invalidate_in_progress or the new (incremented) value of
2089 * mmu_invalidate_seq.
2090 *
2091 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2092 * than under kvm->mmu_lock, for scalability, so can't rely on
2093 * kvm->mmu_lock to keep things ordered.
2094 */
2095 smp_rmb();
2096 if (kvm->mmu_invalidate_seq != mmu_seq)
2097 return 1;
2098 return 0;
2099}
2100
2101static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2102 unsigned long mmu_seq,
2103 gfn_t gfn)
2104{
2105 lockdep_assert_held(&kvm->mmu_lock);
2106 /*
2107 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2108 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2109 * that might be being invalidated. Note that it may include some false
2110 * positives, due to shortcuts when handing concurrent invalidations.
2111 */
2112 if (unlikely(kvm->mmu_invalidate_in_progress)) {
2113 /*
2114 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2115 * but before updating the range is a KVM bug.
2116 */
2117 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2118 kvm->mmu_invalidate_range_end == INVALID_GPA))
2119 return 1;
2120
2121 if (gfn >= kvm->mmu_invalidate_range_start &&
2122 gfn < kvm->mmu_invalidate_range_end)
2123 return 1;
2124 }
2125
2126 if (kvm->mmu_invalidate_seq != mmu_seq)
2127 return 1;
2128 return 0;
2129}
2130
2131/*
2132 * This lockless version of the range-based retry check *must* be paired with a
2133 * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2134 * use only as a pre-check to avoid contending mmu_lock. This version *will*
2135 * get false negatives and false positives.
2136 */
2137static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2138 unsigned long mmu_seq,
2139 gfn_t gfn)
2140{
2141 /*
2142 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2143 * are always read from memory, e.g. so that checking for retry in a
2144 * loop won't result in an infinite retry loop. Don't force loads for
2145 * start+end, as the key to avoiding infinite retry loops is observing
2146 * the 1=>0 transition of in-progress, i.e. getting false negatives
2147 * due to stale start+end values is acceptable.
2148 */
2149 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2150 gfn >= kvm->mmu_invalidate_range_start &&
2151 gfn < kvm->mmu_invalidate_range_end)
2152 return true;
2153
2154 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2155}
2156#endif
2157
2158#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2159
2160#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2161
2162bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2163int kvm_set_irq_routing(struct kvm *kvm,
2164 const struct kvm_irq_routing_entry *entries,
2165 unsigned nr,
2166 unsigned flags);
2167int kvm_init_irq_routing(struct kvm *kvm);
2168int kvm_set_routing_entry(struct kvm *kvm,
2169 struct kvm_kernel_irq_routing_entry *e,
2170 const struct kvm_irq_routing_entry *ue);
2171void kvm_free_irq_routing(struct kvm *kvm);
2172
2173#else
2174
2175static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2176
2177static inline int kvm_init_irq_routing(struct kvm *kvm)
2178{
2179 return 0;
2180}
2181
2182#endif
2183
2184int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2185
2186void kvm_eventfd_init(struct kvm *kvm);
2187int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2188
2189#ifdef CONFIG_HAVE_KVM_IRQCHIP
2190int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2191void kvm_irqfd_release(struct kvm *kvm);
2192bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2193 unsigned int irqchip,
2194 unsigned int pin);
2195void kvm_irq_routing_update(struct kvm *);
2196#else
2197static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2198{
2199 return -EINVAL;
2200}
2201
2202static inline void kvm_irqfd_release(struct kvm *kvm) {}
2203
2204static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2205 unsigned int irqchip,
2206 unsigned int pin)
2207{
2208 return false;
2209}
2210#endif /* CONFIG_HAVE_KVM_IRQCHIP */
2211
2212void kvm_arch_irq_routing_update(struct kvm *kvm);
2213
2214static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2215{
2216 /*
2217 * Ensure the rest of the request is published to kvm_check_request's
2218 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2219 */
2220 smp_wmb();
2221 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2222}
2223
2224static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2225{
2226 /*
2227 * Request that don't require vCPU action should never be logged in
2228 * vcpu->requests. The vCPU won't clear the request, so it will stay
2229 * logged indefinitely and prevent the vCPU from entering the guest.
2230 */
2231 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2232 (req & KVM_REQUEST_NO_ACTION));
2233
2234 __kvm_make_request(req, vcpu);
2235}
2236
2237static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2238{
2239 return READ_ONCE(vcpu->requests);
2240}
2241
2242static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2243{
2244 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2245}
2246
2247static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2248{
2249 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2250}
2251
2252static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2253{
2254 if (kvm_test_request(req, vcpu)) {
2255 kvm_clear_request(req, vcpu);
2256
2257 /*
2258 * Ensure the rest of the request is visible to kvm_check_request's
2259 * caller. Paired with the smp_wmb in kvm_make_request.
2260 */
2261 smp_mb__after_atomic();
2262 return true;
2263 } else {
2264 return false;
2265 }
2266}
2267
2268#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2269extern bool kvm_rebooting;
2270#endif
2271
2272extern unsigned int halt_poll_ns;
2273extern unsigned int halt_poll_ns_grow;
2274extern unsigned int halt_poll_ns_grow_start;
2275extern unsigned int halt_poll_ns_shrink;
2276
2277struct kvm_device {
2278 const struct kvm_device_ops *ops;
2279 struct kvm *kvm;
2280 void *private;
2281 struct list_head vm_node;
2282};
2283
2284/* create, destroy, and name are mandatory */
2285struct kvm_device_ops {
2286 const char *name;
2287
2288 /*
2289 * create is called holding kvm->lock and any operations not suitable
2290 * to do while holding the lock should be deferred to init (see
2291 * below).
2292 */
2293 int (*create)(struct kvm_device *dev, u32 type);
2294
2295 /*
2296 * init is called after create if create is successful and is called
2297 * outside of holding kvm->lock.
2298 */
2299 void (*init)(struct kvm_device *dev);
2300
2301 /*
2302 * Destroy is responsible for freeing dev.
2303 *
2304 * Destroy may be called before or after destructors are called
2305 * on emulated I/O regions, depending on whether a reference is
2306 * held by a vcpu or other kvm component that gets destroyed
2307 * after the emulated I/O.
2308 */
2309 void (*destroy)(struct kvm_device *dev);
2310
2311 /*
2312 * Release is an alternative method to free the device. It is
2313 * called when the device file descriptor is closed. Once
2314 * release is called, the destroy method will not be called
2315 * anymore as the device is removed from the device list of
2316 * the VM. kvm->lock is held.
2317 */
2318 void (*release)(struct kvm_device *dev);
2319
2320 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2321 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2322 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2323 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2324 unsigned long arg);
2325 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2326};
2327
2328struct kvm_device *kvm_device_from_filp(struct file *filp);
2329int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2330void kvm_unregister_device_ops(u32 type);
2331
2332extern struct kvm_device_ops kvm_mpic_ops;
2333extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2334extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2335
2336#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2337
2338static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2339{
2340 vcpu->spin_loop.in_spin_loop = val;
2341}
2342static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2343{
2344 vcpu->spin_loop.dy_eligible = val;
2345}
2346
2347#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2348
2349static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2350{
2351}
2352
2353static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2354{
2355}
2356#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2357
2358static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2359{
2360 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2361 !(memslot->flags & KVM_MEMSLOT_INVALID));
2362}
2363
2364struct kvm_vcpu *kvm_get_running_vcpu(void);
2365struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2366
2367#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2368bool kvm_arch_has_irq_bypass(void);
2369int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2370 struct irq_bypass_producer *);
2371void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2372 struct irq_bypass_producer *);
2373void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2374void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2375int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2376 uint32_t guest_irq, bool set);
2377bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2378 struct kvm_kernel_irq_routing_entry *);
2379#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2380
2381#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2382/* If we wakeup during the poll time, was it a sucessful poll? */
2383static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2384{
2385 return vcpu->valid_wakeup;
2386}
2387
2388#else
2389static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2390{
2391 return true;
2392}
2393#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2394
2395#ifdef CONFIG_HAVE_KVM_NO_POLL
2396/* Callback that tells if we must not poll */
2397bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2398#else
2399static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2400{
2401 return false;
2402}
2403#endif /* CONFIG_HAVE_KVM_NO_POLL */
2404
2405#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2406long kvm_arch_vcpu_async_ioctl(struct file *filp,
2407 unsigned int ioctl, unsigned long arg);
2408#else
2409static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2410 unsigned int ioctl,
2411 unsigned long arg)
2412{
2413 return -ENOIOCTLCMD;
2414}
2415#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2416
2417void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2418
2419#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2420int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2421#else
2422static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2423{
2424 return 0;
2425}
2426#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2427
2428#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2429static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2430{
2431 vcpu->run->exit_reason = KVM_EXIT_INTR;
2432 vcpu->stat.signal_exits++;
2433}
2434#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2435
2436/*
2437 * If more than one page is being (un)accounted, @virt must be the address of
2438 * the first page of a block of pages what were allocated together (i.e
2439 * accounted together).
2440 *
2441 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2442 * is thread-safe.
2443 */
2444static inline void kvm_account_pgtable_pages(void *virt, int nr)
2445{
2446 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2447}
2448
2449/*
2450 * This defines how many reserved entries we want to keep before we
2451 * kick the vcpu to the userspace to avoid dirty ring full. This
2452 * value can be tuned to higher if e.g. PML is enabled on the host.
2453 */
2454#define KVM_DIRTY_RING_RSVD_ENTRIES 64
2455
2456/* Max number of entries allowed for each kvm dirty ring */
2457#define KVM_DIRTY_RING_MAX_ENTRIES 65536
2458
2459static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2460 gpa_t gpa, gpa_t size,
2461 bool is_write, bool is_exec,
2462 bool is_private)
2463{
2464 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2465 vcpu->run->memory_fault.gpa = gpa;
2466 vcpu->run->memory_fault.size = size;
2467
2468 /* RWX flags are not (yet) defined or communicated to userspace. */
2469 vcpu->run->memory_fault.flags = 0;
2470 if (is_private)
2471 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2472}
2473
2474#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2475static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2476{
2477 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2478}
2479
2480bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2481 unsigned long mask, unsigned long attrs);
2482bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2483 struct kvm_gfn_range *range);
2484bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2485 struct kvm_gfn_range *range);
2486
2487static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2488{
2489 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2490 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2491}
2492#else
2493static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2494{
2495 return false;
2496}
2497#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2498
2499#ifdef CONFIG_KVM_PRIVATE_MEM
2500int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2501 gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
2502 int *max_order);
2503#else
2504static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2505 struct kvm_memory_slot *slot, gfn_t gfn,
2506 kvm_pfn_t *pfn, struct page **page,
2507 int *max_order)
2508{
2509 KVM_BUG_ON(1, kvm);
2510 return -EIO;
2511}
2512#endif /* CONFIG_KVM_PRIVATE_MEM */
2513
2514#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2515int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2516#endif
2517
2518#ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2519/**
2520 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2521 *
2522 * @kvm: KVM instance
2523 * @gfn: starting GFN to be populated
2524 * @src: userspace-provided buffer containing data to copy into GFN range
2525 * (passed to @post_populate, and incremented on each iteration
2526 * if not NULL)
2527 * @npages: number of pages to copy from userspace-buffer
2528 * @post_populate: callback to issue for each gmem page that backs the GPA
2529 * range
2530 * @opaque: opaque data to pass to @post_populate callback
2531 *
2532 * This is primarily intended for cases where a gmem-backed GPA range needs
2533 * to be initialized with userspace-provided data prior to being mapped into
2534 * the guest as a private page. This should be called with the slots->lock
2535 * held so that caller-enforced invariants regarding the expected memory
2536 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2537 *
2538 * Returns the number of pages that were populated.
2539 */
2540typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2541 void __user *src, int order, void *opaque);
2542
2543long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2544 kvm_gmem_populate_cb post_populate, void *opaque);
2545#endif
2546
2547#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2548void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2549#endif
2550
2551#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2552long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2553 struct kvm_pre_fault_memory *range);
2554#endif
2555
2556#endif