at v6.13 79 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/sched/stat.h> 14#include <linux/bug.h> 15#include <linux/minmax.h> 16#include <linux/mm.h> 17#include <linux/mmu_notifier.h> 18#include <linux/preempt.h> 19#include <linux/msi.h> 20#include <linux/slab.h> 21#include <linux/vmalloc.h> 22#include <linux/rcupdate.h> 23#include <linux/ratelimit.h> 24#include <linux/err.h> 25#include <linux/irqflags.h> 26#include <linux/context_tracking.h> 27#include <linux/irqbypass.h> 28#include <linux/rcuwait.h> 29#include <linux/refcount.h> 30#include <linux/nospec.h> 31#include <linux/notifier.h> 32#include <linux/ftrace.h> 33#include <linux/hashtable.h> 34#include <linux/instrumentation.h> 35#include <linux/interval_tree.h> 36#include <linux/rbtree.h> 37#include <linux/xarray.h> 38#include <asm/signal.h> 39 40#include <linux/kvm.h> 41#include <linux/kvm_para.h> 42 43#include <linux/kvm_types.h> 44 45#include <asm/kvm_host.h> 46#include <linux/kvm_dirty_ring.h> 47 48#ifndef KVM_MAX_VCPU_IDS 49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50#endif 51 52/* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57#define KVM_MEMSLOT_INVALID (1UL << 16) 58 59/* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80/* Two fragments for cross MMIO pages. */ 81#define KVM_MAX_MMIO_FRAGMENTS 2 82 83#ifndef KVM_MAX_NR_ADDRESS_SPACES 84#define KVM_MAX_NR_ADDRESS_SPACES 1 85#endif 86 87/* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94#define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100#define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4) 101 102/* 103 * error pfns indicate that the gfn is in slot but faild to 104 * translate it to pfn on host. 105 */ 106static inline bool is_error_pfn(kvm_pfn_t pfn) 107{ 108 return !!(pfn & KVM_PFN_ERR_MASK); 109} 110 111/* 112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 113 * by a pending signal. Note, the signal may or may not be fatal. 114 */ 115static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 116{ 117 return pfn == KVM_PFN_ERR_SIGPENDING; 118} 119 120/* 121 * error_noslot pfns indicate that the gfn can not be 122 * translated to pfn - it is not in slot or failed to 123 * translate it to pfn. 124 */ 125static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 126{ 127 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 128} 129 130/* noslot pfn indicates that the gfn is not in slot. */ 131static inline bool is_noslot_pfn(kvm_pfn_t pfn) 132{ 133 return pfn == KVM_PFN_NOSLOT; 134} 135 136/* 137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 138 * provide own defines and kvm_is_error_hva 139 */ 140#ifndef KVM_HVA_ERR_BAD 141 142#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 143#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 144 145static inline bool kvm_is_error_hva(unsigned long addr) 146{ 147 return addr >= PAGE_OFFSET; 148} 149 150#endif 151 152static inline bool kvm_is_error_gpa(gpa_t gpa) 153{ 154 return gpa == INVALID_GPA; 155} 156 157#define KVM_REQUEST_MASK GENMASK(7,0) 158#define KVM_REQUEST_NO_WAKEUP BIT(8) 159#define KVM_REQUEST_WAIT BIT(9) 160#define KVM_REQUEST_NO_ACTION BIT(10) 161/* 162 * Architecture-independent vcpu->requests bit members 163 * Bits 3-7 are reserved for more arch-independent bits. 164 */ 165#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 166#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167#define KVM_REQ_UNBLOCK 2 168#define KVM_REQ_DIRTY_RING_SOFT_FULL 3 169#define KVM_REQUEST_ARCH_BASE 8 170 171/* 172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 177 * guarantee the vCPU received an IPI and has actually exited guest mode. 178 */ 179#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 180 181#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 184}) 185#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 186 187bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 188 unsigned long *vcpu_bitmap); 189bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 190 191#define KVM_USERSPACE_IRQ_SOURCE_ID 0 192#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 193 194extern struct mutex kvm_lock; 195extern struct list_head vm_list; 196 197struct kvm_io_range { 198 gpa_t addr; 199 int len; 200 struct kvm_io_device *dev; 201}; 202 203#define NR_IOBUS_DEVS 1000 204 205struct kvm_io_bus { 206 int dev_count; 207 int ioeventfd_count; 208 struct kvm_io_range range[]; 209}; 210 211enum kvm_bus { 212 KVM_MMIO_BUS, 213 KVM_PIO_BUS, 214 KVM_VIRTIO_CCW_NOTIFY_BUS, 215 KVM_FAST_MMIO_BUS, 216 KVM_IOCSR_BUS, 217 KVM_NR_BUSES 218}; 219 220int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 221 int len, const void *val); 222int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 223 gpa_t addr, int len, const void *val, long cookie); 224int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 225 int len, void *val); 226int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 227 int len, struct kvm_io_device *dev); 228int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 229 struct kvm_io_device *dev); 230struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 231 gpa_t addr); 232 233#ifdef CONFIG_KVM_ASYNC_PF 234struct kvm_async_pf { 235 struct work_struct work; 236 struct list_head link; 237 struct list_head queue; 238 struct kvm_vcpu *vcpu; 239 gpa_t cr2_or_gpa; 240 unsigned long addr; 241 struct kvm_arch_async_pf arch; 242 bool wakeup_all; 243 bool notpresent_injected; 244}; 245 246void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 247void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 248bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 249 unsigned long hva, struct kvm_arch_async_pf *arch); 250int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 251#endif 252 253#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 254union kvm_mmu_notifier_arg { 255 unsigned long attributes; 256}; 257 258struct kvm_gfn_range { 259 struct kvm_memory_slot *slot; 260 gfn_t start; 261 gfn_t end; 262 union kvm_mmu_notifier_arg arg; 263 bool may_block; 264}; 265bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 266bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 267bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 268#endif 269 270enum { 271 OUTSIDE_GUEST_MODE, 272 IN_GUEST_MODE, 273 EXITING_GUEST_MODE, 274 READING_SHADOW_PAGE_TABLES, 275}; 276 277struct kvm_host_map { 278 /* 279 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 280 * a 'struct page' for it. When using mem= kernel parameter some memory 281 * can be used as guest memory but they are not managed by host 282 * kernel). 283 */ 284 struct page *pinned_page; 285 struct page *page; 286 void *hva; 287 kvm_pfn_t pfn; 288 kvm_pfn_t gfn; 289 bool writable; 290}; 291 292/* 293 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 294 * directly to check for that. 295 */ 296static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 297{ 298 return !!map->hva; 299} 300 301static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 302{ 303 return single_task_running() && !need_resched() && ktime_before(cur, stop); 304} 305 306/* 307 * Sometimes a large or cross-page mmio needs to be broken up into separate 308 * exits for userspace servicing. 309 */ 310struct kvm_mmio_fragment { 311 gpa_t gpa; 312 void *data; 313 unsigned len; 314}; 315 316struct kvm_vcpu { 317 struct kvm *kvm; 318#ifdef CONFIG_PREEMPT_NOTIFIERS 319 struct preempt_notifier preempt_notifier; 320#endif 321 int cpu; 322 int vcpu_id; /* id given by userspace at creation */ 323 int vcpu_idx; /* index into kvm->vcpu_array */ 324 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 325#ifdef CONFIG_PROVE_RCU 326 int srcu_depth; 327#endif 328 int mode; 329 u64 requests; 330 unsigned long guest_debug; 331 332 struct mutex mutex; 333 struct kvm_run *run; 334 335#ifndef __KVM_HAVE_ARCH_WQP 336 struct rcuwait wait; 337#endif 338 struct pid *pid; 339 rwlock_t pid_lock; 340 int sigset_active; 341 sigset_t sigset; 342 unsigned int halt_poll_ns; 343 bool valid_wakeup; 344 345#ifdef CONFIG_HAS_IOMEM 346 int mmio_needed; 347 int mmio_read_completed; 348 int mmio_is_write; 349 int mmio_cur_fragment; 350 int mmio_nr_fragments; 351 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 352#endif 353 354#ifdef CONFIG_KVM_ASYNC_PF 355 struct { 356 u32 queued; 357 struct list_head queue; 358 struct list_head done; 359 spinlock_t lock; 360 } async_pf; 361#endif 362 363#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 364 /* 365 * Cpu relax intercept or pause loop exit optimization 366 * in_spin_loop: set when a vcpu does a pause loop exit 367 * or cpu relax intercepted. 368 * dy_eligible: indicates whether vcpu is eligible for directed yield. 369 */ 370 struct { 371 bool in_spin_loop; 372 bool dy_eligible; 373 } spin_loop; 374#endif 375 bool wants_to_run; 376 bool preempted; 377 bool ready; 378 bool scheduled_out; 379 struct kvm_vcpu_arch arch; 380 struct kvm_vcpu_stat stat; 381 char stats_id[KVM_STATS_NAME_SIZE]; 382 struct kvm_dirty_ring dirty_ring; 383 384 /* 385 * The most recently used memslot by this vCPU and the slots generation 386 * for which it is valid. 387 * No wraparound protection is needed since generations won't overflow in 388 * thousands of years, even assuming 1M memslot operations per second. 389 */ 390 struct kvm_memory_slot *last_used_slot; 391 u64 last_used_slot_gen; 392}; 393 394/* 395 * Start accounting time towards a guest. 396 * Must be called before entering guest context. 397 */ 398static __always_inline void guest_timing_enter_irqoff(void) 399{ 400 /* 401 * This is running in ioctl context so its safe to assume that it's the 402 * stime pending cputime to flush. 403 */ 404 instrumentation_begin(); 405 vtime_account_guest_enter(); 406 instrumentation_end(); 407} 408 409/* 410 * Enter guest context and enter an RCU extended quiescent state. 411 * 412 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 413 * unsafe to use any code which may directly or indirectly use RCU, tracing 414 * (including IRQ flag tracing), or lockdep. All code in this period must be 415 * non-instrumentable. 416 */ 417static __always_inline void guest_context_enter_irqoff(void) 418{ 419 /* 420 * KVM does not hold any references to rcu protected data when it 421 * switches CPU into a guest mode. In fact switching to a guest mode 422 * is very similar to exiting to userspace from rcu point of view. In 423 * addition CPU may stay in a guest mode for quite a long time (up to 424 * one time slice). Lets treat guest mode as quiescent state, just like 425 * we do with user-mode execution. 426 */ 427 if (!context_tracking_guest_enter()) { 428 instrumentation_begin(); 429 rcu_virt_note_context_switch(); 430 instrumentation_end(); 431 } 432} 433 434/* 435 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 436 * guest_state_enter_irqoff(). 437 */ 438static __always_inline void guest_enter_irqoff(void) 439{ 440 guest_timing_enter_irqoff(); 441 guest_context_enter_irqoff(); 442} 443 444/** 445 * guest_state_enter_irqoff - Fixup state when entering a guest 446 * 447 * Entry to a guest will enable interrupts, but the kernel state is interrupts 448 * disabled when this is invoked. Also tell RCU about it. 449 * 450 * 1) Trace interrupts on state 451 * 2) Invoke context tracking if enabled to adjust RCU state 452 * 3) Tell lockdep that interrupts are enabled 453 * 454 * Invoked from architecture specific code before entering a guest. 455 * Must be called with interrupts disabled and the caller must be 456 * non-instrumentable. 457 * The caller has to invoke guest_timing_enter_irqoff() before this. 458 * 459 * Note: this is analogous to exit_to_user_mode(). 460 */ 461static __always_inline void guest_state_enter_irqoff(void) 462{ 463 instrumentation_begin(); 464 trace_hardirqs_on_prepare(); 465 lockdep_hardirqs_on_prepare(); 466 instrumentation_end(); 467 468 guest_context_enter_irqoff(); 469 lockdep_hardirqs_on(CALLER_ADDR0); 470} 471 472/* 473 * Exit guest context and exit an RCU extended quiescent state. 474 * 475 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 476 * unsafe to use any code which may directly or indirectly use RCU, tracing 477 * (including IRQ flag tracing), or lockdep. All code in this period must be 478 * non-instrumentable. 479 */ 480static __always_inline void guest_context_exit_irqoff(void) 481{ 482 /* 483 * Guest mode is treated as a quiescent state, see 484 * guest_context_enter_irqoff() for more details. 485 */ 486 if (!context_tracking_guest_exit()) { 487 instrumentation_begin(); 488 rcu_virt_note_context_switch(); 489 instrumentation_end(); 490 } 491} 492 493/* 494 * Stop accounting time towards a guest. 495 * Must be called after exiting guest context. 496 */ 497static __always_inline void guest_timing_exit_irqoff(void) 498{ 499 instrumentation_begin(); 500 /* Flush the guest cputime we spent on the guest */ 501 vtime_account_guest_exit(); 502 instrumentation_end(); 503} 504 505/* 506 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 507 * guest_timing_exit_irqoff(). 508 */ 509static __always_inline void guest_exit_irqoff(void) 510{ 511 guest_context_exit_irqoff(); 512 guest_timing_exit_irqoff(); 513} 514 515static inline void guest_exit(void) 516{ 517 unsigned long flags; 518 519 local_irq_save(flags); 520 guest_exit_irqoff(); 521 local_irq_restore(flags); 522} 523 524/** 525 * guest_state_exit_irqoff - Establish state when returning from guest mode 526 * 527 * Entry from a guest disables interrupts, but guest mode is traced as 528 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 529 * 530 * 1) Tell lockdep that interrupts are disabled 531 * 2) Invoke context tracking if enabled to reactivate RCU 532 * 3) Trace interrupts off state 533 * 534 * Invoked from architecture specific code after exiting a guest. 535 * Must be invoked with interrupts disabled and the caller must be 536 * non-instrumentable. 537 * The caller has to invoke guest_timing_exit_irqoff() after this. 538 * 539 * Note: this is analogous to enter_from_user_mode(). 540 */ 541static __always_inline void guest_state_exit_irqoff(void) 542{ 543 lockdep_hardirqs_off(CALLER_ADDR0); 544 guest_context_exit_irqoff(); 545 546 instrumentation_begin(); 547 trace_hardirqs_off_finish(); 548 instrumentation_end(); 549} 550 551static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 552{ 553 /* 554 * The memory barrier ensures a previous write to vcpu->requests cannot 555 * be reordered with the read of vcpu->mode. It pairs with the general 556 * memory barrier following the write of vcpu->mode in VCPU RUN. 557 */ 558 smp_mb__before_atomic(); 559 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 560} 561 562/* 563 * Some of the bitops functions do not support too long bitmaps. 564 * This number must be determined not to exceed such limits. 565 */ 566#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 567 568/* 569 * Since at idle each memslot belongs to two memslot sets it has to contain 570 * two embedded nodes for each data structure that it forms a part of. 571 * 572 * Two memslot sets (one active and one inactive) are necessary so the VM 573 * continues to run on one memslot set while the other is being modified. 574 * 575 * These two memslot sets normally point to the same set of memslots. 576 * They can, however, be desynchronized when performing a memslot management 577 * operation by replacing the memslot to be modified by its copy. 578 * After the operation is complete, both memslot sets once again point to 579 * the same, common set of memslot data. 580 * 581 * The memslots themselves are independent of each other so they can be 582 * individually added or deleted. 583 */ 584struct kvm_memory_slot { 585 struct hlist_node id_node[2]; 586 struct interval_tree_node hva_node[2]; 587 struct rb_node gfn_node[2]; 588 gfn_t base_gfn; 589 unsigned long npages; 590 unsigned long *dirty_bitmap; 591 struct kvm_arch_memory_slot arch; 592 unsigned long userspace_addr; 593 u32 flags; 594 short id; 595 u16 as_id; 596 597#ifdef CONFIG_KVM_PRIVATE_MEM 598 struct { 599 struct file __rcu *file; 600 pgoff_t pgoff; 601 } gmem; 602#endif 603}; 604 605static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 606{ 607 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 608} 609 610static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 611{ 612 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 613} 614 615static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 616{ 617 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 618} 619 620static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 621{ 622 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 623 624 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 625} 626 627#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 628#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 629#endif 630 631struct kvm_s390_adapter_int { 632 u64 ind_addr; 633 u64 summary_addr; 634 u64 ind_offset; 635 u32 summary_offset; 636 u32 adapter_id; 637}; 638 639struct kvm_hv_sint { 640 u32 vcpu; 641 u32 sint; 642}; 643 644struct kvm_xen_evtchn { 645 u32 port; 646 u32 vcpu_id; 647 int vcpu_idx; 648 u32 priority; 649}; 650 651struct kvm_kernel_irq_routing_entry { 652 u32 gsi; 653 u32 type; 654 int (*set)(struct kvm_kernel_irq_routing_entry *e, 655 struct kvm *kvm, int irq_source_id, int level, 656 bool line_status); 657 union { 658 struct { 659 unsigned irqchip; 660 unsigned pin; 661 } irqchip; 662 struct { 663 u32 address_lo; 664 u32 address_hi; 665 u32 data; 666 u32 flags; 667 u32 devid; 668 } msi; 669 struct kvm_s390_adapter_int adapter; 670 struct kvm_hv_sint hv_sint; 671 struct kvm_xen_evtchn xen_evtchn; 672 }; 673 struct hlist_node link; 674}; 675 676#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 677struct kvm_irq_routing_table { 678 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 679 u32 nr_rt_entries; 680 /* 681 * Array indexed by gsi. Each entry contains list of irq chips 682 * the gsi is connected to. 683 */ 684 struct hlist_head map[] __counted_by(nr_rt_entries); 685}; 686#endif 687 688bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 689 690#ifndef KVM_INTERNAL_MEM_SLOTS 691#define KVM_INTERNAL_MEM_SLOTS 0 692#endif 693 694#define KVM_MEM_SLOTS_NUM SHRT_MAX 695#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 696 697#if KVM_MAX_NR_ADDRESS_SPACES == 1 698static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 699{ 700 return KVM_MAX_NR_ADDRESS_SPACES; 701} 702 703static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 704{ 705 return 0; 706} 707#endif 708 709/* 710 * Arch code must define kvm_arch_has_private_mem if support for private memory 711 * is enabled. 712 */ 713#if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 714static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 715{ 716 return false; 717} 718#endif 719 720#ifndef kvm_arch_has_readonly_mem 721static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 722{ 723 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 724} 725#endif 726 727struct kvm_memslots { 728 u64 generation; 729 atomic_long_t last_used_slot; 730 struct rb_root_cached hva_tree; 731 struct rb_root gfn_tree; 732 /* 733 * The mapping table from slot id to memslot. 734 * 735 * 7-bit bucket count matches the size of the old id to index array for 736 * 512 slots, while giving good performance with this slot count. 737 * Higher bucket counts bring only small performance improvements but 738 * always result in higher memory usage (even for lower memslot counts). 739 */ 740 DECLARE_HASHTABLE(id_hash, 7); 741 int node_idx; 742}; 743 744struct kvm { 745#ifdef KVM_HAVE_MMU_RWLOCK 746 rwlock_t mmu_lock; 747#else 748 spinlock_t mmu_lock; 749#endif /* KVM_HAVE_MMU_RWLOCK */ 750 751 struct mutex slots_lock; 752 753 /* 754 * Protects the arch-specific fields of struct kvm_memory_slots in 755 * use by the VM. To be used under the slots_lock (above) or in a 756 * kvm->srcu critical section where acquiring the slots_lock would 757 * lead to deadlock with the synchronize_srcu in 758 * kvm_swap_active_memslots(). 759 */ 760 struct mutex slots_arch_lock; 761 struct mm_struct *mm; /* userspace tied to this vm */ 762 unsigned long nr_memslot_pages; 763 /* The two memslot sets - active and inactive (per address space) */ 764 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 765 /* The current active memslot set for each address space */ 766 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 767 struct xarray vcpu_array; 768 /* 769 * Protected by slots_lock, but can be read outside if an 770 * incorrect answer is acceptable. 771 */ 772 atomic_t nr_memslots_dirty_logging; 773 774 /* Used to wait for completion of MMU notifiers. */ 775 spinlock_t mn_invalidate_lock; 776 unsigned long mn_active_invalidate_count; 777 struct rcuwait mn_memslots_update_rcuwait; 778 779 /* For management / invalidation of gfn_to_pfn_caches */ 780 spinlock_t gpc_lock; 781 struct list_head gpc_list; 782 783 /* 784 * created_vcpus is protected by kvm->lock, and is incremented 785 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 786 * incremented after storing the kvm_vcpu pointer in vcpus, 787 * and is accessed atomically. 788 */ 789 atomic_t online_vcpus; 790 int max_vcpus; 791 int created_vcpus; 792 int last_boosted_vcpu; 793 struct list_head vm_list; 794 struct mutex lock; 795 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 796#ifdef CONFIG_HAVE_KVM_IRQCHIP 797 struct { 798 spinlock_t lock; 799 struct list_head items; 800 /* resampler_list update side is protected by resampler_lock. */ 801 struct list_head resampler_list; 802 struct mutex resampler_lock; 803 } irqfds; 804#endif 805 struct list_head ioeventfds; 806 struct kvm_vm_stat stat; 807 struct kvm_arch arch; 808 refcount_t users_count; 809#ifdef CONFIG_KVM_MMIO 810 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 811 spinlock_t ring_lock; 812 struct list_head coalesced_zones; 813#endif 814 815 struct mutex irq_lock; 816#ifdef CONFIG_HAVE_KVM_IRQCHIP 817 /* 818 * Update side is protected by irq_lock. 819 */ 820 struct kvm_irq_routing_table __rcu *irq_routing; 821 822 struct hlist_head irq_ack_notifier_list; 823#endif 824 825#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 826 struct mmu_notifier mmu_notifier; 827 unsigned long mmu_invalidate_seq; 828 long mmu_invalidate_in_progress; 829 gfn_t mmu_invalidate_range_start; 830 gfn_t mmu_invalidate_range_end; 831#endif 832 struct list_head devices; 833 u64 manual_dirty_log_protect; 834 struct dentry *debugfs_dentry; 835 struct kvm_stat_data **debugfs_stat_data; 836 struct srcu_struct srcu; 837 struct srcu_struct irq_srcu; 838 pid_t userspace_pid; 839 bool override_halt_poll_ns; 840 unsigned int max_halt_poll_ns; 841 u32 dirty_ring_size; 842 bool dirty_ring_with_bitmap; 843 bool vm_bugged; 844 bool vm_dead; 845 846#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 847 struct notifier_block pm_notifier; 848#endif 849#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 850 /* Protected by slots_locks (for writes) and RCU (for reads) */ 851 struct xarray mem_attr_array; 852#endif 853 char stats_id[KVM_STATS_NAME_SIZE]; 854}; 855 856#define kvm_err(fmt, ...) \ 857 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 858#define kvm_info(fmt, ...) \ 859 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 860#define kvm_debug(fmt, ...) \ 861 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 862#define kvm_debug_ratelimited(fmt, ...) \ 863 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 864 ## __VA_ARGS__) 865#define kvm_pr_unimpl(fmt, ...) \ 866 pr_err_ratelimited("kvm [%i]: " fmt, \ 867 task_tgid_nr(current), ## __VA_ARGS__) 868 869/* The guest did something we don't support. */ 870#define vcpu_unimpl(vcpu, fmt, ...) \ 871 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 872 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 873 874#define vcpu_debug(vcpu, fmt, ...) \ 875 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 876#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 877 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 878 ## __VA_ARGS__) 879#define vcpu_err(vcpu, fmt, ...) \ 880 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 881 882static inline void kvm_vm_dead(struct kvm *kvm) 883{ 884 kvm->vm_dead = true; 885 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 886} 887 888static inline void kvm_vm_bugged(struct kvm *kvm) 889{ 890 kvm->vm_bugged = true; 891 kvm_vm_dead(kvm); 892} 893 894 895#define KVM_BUG(cond, kvm, fmt...) \ 896({ \ 897 bool __ret = !!(cond); \ 898 \ 899 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 900 kvm_vm_bugged(kvm); \ 901 unlikely(__ret); \ 902}) 903 904#define KVM_BUG_ON(cond, kvm) \ 905({ \ 906 bool __ret = !!(cond); \ 907 \ 908 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 909 kvm_vm_bugged(kvm); \ 910 unlikely(__ret); \ 911}) 912 913/* 914 * Note, "data corruption" refers to corruption of host kernel data structures, 915 * not guest data. Guest data corruption, suspected or confirmed, that is tied 916 * and contained to a single VM should *never* BUG() and potentially panic the 917 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 918 * is corrupted and that corruption can have a cascading effect to other parts 919 * of the hosts and/or to other VMs. 920 */ 921#define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 922({ \ 923 bool __ret = !!(cond); \ 924 \ 925 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 926 BUG_ON(__ret); \ 927 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 928 kvm_vm_bugged(kvm); \ 929 unlikely(__ret); \ 930}) 931 932static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 933{ 934#ifdef CONFIG_PROVE_RCU 935 WARN_ONCE(vcpu->srcu_depth++, 936 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 937#endif 938 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 939} 940 941static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 942{ 943 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 944 945#ifdef CONFIG_PROVE_RCU 946 WARN_ONCE(--vcpu->srcu_depth, 947 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 948#endif 949} 950 951static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 952{ 953 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 954} 955 956static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 957{ 958 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 959 lockdep_is_held(&kvm->slots_lock) || 960 !refcount_read(&kvm->users_count)); 961} 962 963static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 964{ 965 int num_vcpus = atomic_read(&kvm->online_vcpus); 966 i = array_index_nospec(i, num_vcpus); 967 968 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 969 smp_rmb(); 970 return xa_load(&kvm->vcpu_array, i); 971} 972 973#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 974 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 975 (atomic_read(&kvm->online_vcpus) - 1)) 976 977static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 978{ 979 struct kvm_vcpu *vcpu = NULL; 980 unsigned long i; 981 982 if (id < 0) 983 return NULL; 984 if (id < KVM_MAX_VCPUS) 985 vcpu = kvm_get_vcpu(kvm, id); 986 if (vcpu && vcpu->vcpu_id == id) 987 return vcpu; 988 kvm_for_each_vcpu(i, vcpu, kvm) 989 if (vcpu->vcpu_id == id) 990 return vcpu; 991 return NULL; 992} 993 994void kvm_destroy_vcpus(struct kvm *kvm); 995 996void vcpu_load(struct kvm_vcpu *vcpu); 997void vcpu_put(struct kvm_vcpu *vcpu); 998 999#ifdef __KVM_HAVE_IOAPIC 1000void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 1001void kvm_arch_post_irq_routing_update(struct kvm *kvm); 1002#else 1003static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1004{ 1005} 1006static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 1007{ 1008} 1009#endif 1010 1011#ifdef CONFIG_HAVE_KVM_IRQCHIP 1012int kvm_irqfd_init(void); 1013void kvm_irqfd_exit(void); 1014#else 1015static inline int kvm_irqfd_init(void) 1016{ 1017 return 0; 1018} 1019 1020static inline void kvm_irqfd_exit(void) 1021{ 1022} 1023#endif 1024int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1025void kvm_exit(void); 1026 1027void kvm_get_kvm(struct kvm *kvm); 1028bool kvm_get_kvm_safe(struct kvm *kvm); 1029void kvm_put_kvm(struct kvm *kvm); 1030bool file_is_kvm(struct file *file); 1031void kvm_put_kvm_no_destroy(struct kvm *kvm); 1032 1033static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1034{ 1035 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1036 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1037 lockdep_is_held(&kvm->slots_lock) || 1038 !refcount_read(&kvm->users_count)); 1039} 1040 1041static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1042{ 1043 return __kvm_memslots(kvm, 0); 1044} 1045 1046static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1047{ 1048 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1049 1050 return __kvm_memslots(vcpu->kvm, as_id); 1051} 1052 1053static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1054{ 1055 return RB_EMPTY_ROOT(&slots->gfn_tree); 1056} 1057 1058bool kvm_are_all_memslots_empty(struct kvm *kvm); 1059 1060#define kvm_for_each_memslot(memslot, bkt, slots) \ 1061 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1062 if (WARN_ON_ONCE(!memslot->npages)) { \ 1063 } else 1064 1065static inline 1066struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1067{ 1068 struct kvm_memory_slot *slot; 1069 int idx = slots->node_idx; 1070 1071 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1072 if (slot->id == id) 1073 return slot; 1074 } 1075 1076 return NULL; 1077} 1078 1079/* Iterator used for walking memslots that overlap a gfn range. */ 1080struct kvm_memslot_iter { 1081 struct kvm_memslots *slots; 1082 struct rb_node *node; 1083 struct kvm_memory_slot *slot; 1084}; 1085 1086static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1087{ 1088 iter->node = rb_next(iter->node); 1089 if (!iter->node) 1090 return; 1091 1092 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1093} 1094 1095static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1096 struct kvm_memslots *slots, 1097 gfn_t start) 1098{ 1099 int idx = slots->node_idx; 1100 struct rb_node *tmp; 1101 struct kvm_memory_slot *slot; 1102 1103 iter->slots = slots; 1104 1105 /* 1106 * Find the so called "upper bound" of a key - the first node that has 1107 * its key strictly greater than the searched one (the start gfn in our case). 1108 */ 1109 iter->node = NULL; 1110 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1111 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1112 if (start < slot->base_gfn) { 1113 iter->node = tmp; 1114 tmp = tmp->rb_left; 1115 } else { 1116 tmp = tmp->rb_right; 1117 } 1118 } 1119 1120 /* 1121 * Find the slot with the lowest gfn that can possibly intersect with 1122 * the range, so we'll ideally have slot start <= range start 1123 */ 1124 if (iter->node) { 1125 /* 1126 * A NULL previous node means that the very first slot 1127 * already has a higher start gfn. 1128 * In this case slot start > range start. 1129 */ 1130 tmp = rb_prev(iter->node); 1131 if (tmp) 1132 iter->node = tmp; 1133 } else { 1134 /* a NULL node below means no slots */ 1135 iter->node = rb_last(&slots->gfn_tree); 1136 } 1137 1138 if (iter->node) { 1139 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1140 1141 /* 1142 * It is possible in the slot start < range start case that the 1143 * found slot ends before or at range start (slot end <= range start) 1144 * and so it does not overlap the requested range. 1145 * 1146 * In such non-overlapping case the next slot (if it exists) will 1147 * already have slot start > range start, otherwise the logic above 1148 * would have found it instead of the current slot. 1149 */ 1150 if (iter->slot->base_gfn + iter->slot->npages <= start) 1151 kvm_memslot_iter_next(iter); 1152 } 1153} 1154 1155static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1156{ 1157 if (!iter->node) 1158 return false; 1159 1160 /* 1161 * If this slot starts beyond or at the end of the range so does 1162 * every next one 1163 */ 1164 return iter->slot->base_gfn < end; 1165} 1166 1167/* Iterate over each memslot at least partially intersecting [start, end) range */ 1168#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1169 for (kvm_memslot_iter_start(iter, slots, start); \ 1170 kvm_memslot_iter_is_valid(iter, end); \ 1171 kvm_memslot_iter_next(iter)) 1172 1173struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1174struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1175struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1176 1177/* 1178 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1179 * - create a new memory slot 1180 * - delete an existing memory slot 1181 * - modify an existing memory slot 1182 * -- move it in the guest physical memory space 1183 * -- just change its flags 1184 * 1185 * Since flags can be changed by some of these operations, the following 1186 * differentiation is the best we can do for __kvm_set_memory_region(): 1187 */ 1188enum kvm_mr_change { 1189 KVM_MR_CREATE, 1190 KVM_MR_DELETE, 1191 KVM_MR_MOVE, 1192 KVM_MR_FLAGS_ONLY, 1193}; 1194 1195int kvm_set_memory_region(struct kvm *kvm, 1196 const struct kvm_userspace_memory_region2 *mem); 1197int __kvm_set_memory_region(struct kvm *kvm, 1198 const struct kvm_userspace_memory_region2 *mem); 1199void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1200void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1201int kvm_arch_prepare_memory_region(struct kvm *kvm, 1202 const struct kvm_memory_slot *old, 1203 struct kvm_memory_slot *new, 1204 enum kvm_mr_change change); 1205void kvm_arch_commit_memory_region(struct kvm *kvm, 1206 struct kvm_memory_slot *old, 1207 const struct kvm_memory_slot *new, 1208 enum kvm_mr_change change); 1209/* flush all memory translations */ 1210void kvm_arch_flush_shadow_all(struct kvm *kvm); 1211/* flush memory translations pointing to 'slot' */ 1212void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1213 struct kvm_memory_slot *slot); 1214 1215int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 1216 struct page **pages, int nr_pages); 1217 1218struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write); 1219static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1220{ 1221 return __gfn_to_page(kvm, gfn, true); 1222} 1223 1224unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1225unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1226unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1227unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1228 bool *writable); 1229 1230static inline void kvm_release_page_unused(struct page *page) 1231{ 1232 if (!page) 1233 return; 1234 1235 put_page(page); 1236} 1237 1238void kvm_release_page_clean(struct page *page); 1239void kvm_release_page_dirty(struct page *page); 1240 1241static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page, 1242 bool unused, bool dirty) 1243{ 1244 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused); 1245 1246 if (!page) 1247 return; 1248 1249 /* 1250 * If the page that KVM got from the *primary MMU* is writable, and KVM 1251 * installed or reused a SPTE, mark the page/folio dirty. Note, this 1252 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if 1253 * the GFN is write-protected. Folios can't be safely marked dirty 1254 * outside of mmu_lock as doing so could race with writeback on the 1255 * folio. As a result, KVM can't mark folios dirty in the fast page 1256 * fault handler, and so KVM must (somewhat) speculatively mark the 1257 * folio dirty if KVM could locklessly make the SPTE writable. 1258 */ 1259 if (unused) 1260 kvm_release_page_unused(page); 1261 else if (dirty) 1262 kvm_release_page_dirty(page); 1263 else 1264 kvm_release_page_clean(page); 1265} 1266 1267kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 1268 unsigned int foll, bool *writable, 1269 struct page **refcounted_page); 1270 1271static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 1272 bool write, bool *writable, 1273 struct page **refcounted_page) 1274{ 1275 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, 1276 write ? FOLL_WRITE : 0, writable, refcounted_page); 1277} 1278 1279int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1280 int len); 1281int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1282int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1283 void *data, unsigned long len); 1284int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1285 void *data, unsigned int offset, 1286 unsigned long len); 1287int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1288 int offset, int len); 1289int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1290 unsigned long len); 1291int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1292 void *data, unsigned long len); 1293int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1294 void *data, unsigned int offset, 1295 unsigned long len); 1296int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1297 gpa_t gpa, unsigned long len); 1298 1299#define __kvm_get_guest(kvm, gfn, offset, v) \ 1300({ \ 1301 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1302 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1303 int __ret = -EFAULT; \ 1304 \ 1305 if (!kvm_is_error_hva(__addr)) \ 1306 __ret = get_user(v, __uaddr); \ 1307 __ret; \ 1308}) 1309 1310#define kvm_get_guest(kvm, gpa, v) \ 1311({ \ 1312 gpa_t __gpa = gpa; \ 1313 struct kvm *__kvm = kvm; \ 1314 \ 1315 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1316 offset_in_page(__gpa), v); \ 1317}) 1318 1319#define __kvm_put_guest(kvm, gfn, offset, v) \ 1320({ \ 1321 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1322 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1323 int __ret = -EFAULT; \ 1324 \ 1325 if (!kvm_is_error_hva(__addr)) \ 1326 __ret = put_user(v, __uaddr); \ 1327 if (!__ret) \ 1328 mark_page_dirty(kvm, gfn); \ 1329 __ret; \ 1330}) 1331 1332#define kvm_put_guest(kvm, gpa, v) \ 1333({ \ 1334 gpa_t __gpa = gpa; \ 1335 struct kvm *__kvm = kvm; \ 1336 \ 1337 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1338 offset_in_page(__gpa), v); \ 1339}) 1340 1341int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1342bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1343bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1344unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1345void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1346void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1347 1348int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map, 1349 bool writable); 1350void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map); 1351 1352static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, 1353 struct kvm_host_map *map) 1354{ 1355 return __kvm_vcpu_map(vcpu, gpa, map, true); 1356} 1357 1358static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa, 1359 struct kvm_host_map *map) 1360{ 1361 return __kvm_vcpu_map(vcpu, gpa, map, false); 1362} 1363 1364unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1365unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1366int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1367 int len); 1368int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1369 unsigned long len); 1370int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1371 unsigned long len); 1372int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1373 int offset, int len); 1374int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1375 unsigned long len); 1376void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1377 1378/** 1379 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1380 * 1381 * @gpc: struct gfn_to_pfn_cache object. 1382 * @kvm: pointer to kvm instance. 1383 * 1384 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1385 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1386 * the caller before init). 1387 */ 1388void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1389 1390/** 1391 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1392 * physical address. 1393 * 1394 * @gpc: struct gfn_to_pfn_cache object. 1395 * @gpa: guest physical address to map. 1396 * @len: sanity check; the range being access must fit a single page. 1397 * 1398 * @return: 0 for success. 1399 * -EINVAL for a mapping which would cross a page boundary. 1400 * -EFAULT for an untranslatable guest physical address. 1401 * 1402 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1403 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1404 * to ensure that the cache is valid before accessing the target page. 1405 */ 1406int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1407 1408/** 1409 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1410 * 1411 * @gpc: struct gfn_to_pfn_cache object. 1412 * @hva: userspace virtual address to map. 1413 * @len: sanity check; the range being access must fit a single page. 1414 * 1415 * @return: 0 for success. 1416 * -EINVAL for a mapping which would cross a page boundary. 1417 * -EFAULT for an untranslatable guest physical address. 1418 * 1419 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1420 * merely bypasses a layer of address translation. 1421 */ 1422int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1423 1424/** 1425 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1426 * 1427 * @gpc: struct gfn_to_pfn_cache object. 1428 * @len: sanity check; the range being access must fit a single page. 1429 * 1430 * @return: %true if the cache is still valid and the address matches. 1431 * %false if the cache is not valid. 1432 * 1433 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1434 * while calling this function, and then continue to hold the lock until the 1435 * access is complete. 1436 * 1437 * Callers in IN_GUEST_MODE may do so without locking, although they should 1438 * still hold a read lock on kvm->scru for the memslot checks. 1439 */ 1440bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1441 1442/** 1443 * kvm_gpc_refresh - update a previously initialized cache. 1444 * 1445 * @gpc: struct gfn_to_pfn_cache object. 1446 * @len: sanity check; the range being access must fit a single page. 1447 * 1448 * @return: 0 for success. 1449 * -EINVAL for a mapping which would cross a page boundary. 1450 * -EFAULT for an untranslatable guest physical address. 1451 * 1452 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1453 * return from this function does not mean the page can be immediately 1454 * accessed because it may have raced with an invalidation. Callers must 1455 * still lock and check the cache status, as this function does not return 1456 * with the lock still held to permit access. 1457 */ 1458int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1459 1460/** 1461 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1462 * 1463 * @gpc: struct gfn_to_pfn_cache object. 1464 * 1465 * This removes a cache from the VM's list to be processed on MMU notifier 1466 * invocation. 1467 */ 1468void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1469 1470static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1471{ 1472 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1473} 1474 1475static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1476{ 1477 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1478} 1479 1480void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1481void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1482 1483void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1484bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1485void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1486void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1487bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1488void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1489int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1490void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1491 1492void kvm_flush_remote_tlbs(struct kvm *kvm); 1493void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1494void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1495 const struct kvm_memory_slot *memslot); 1496 1497#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1498int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1499int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1500int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1501void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1502void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1503#endif 1504 1505void kvm_mmu_invalidate_begin(struct kvm *kvm); 1506void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1507void kvm_mmu_invalidate_end(struct kvm *kvm); 1508bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1509 1510long kvm_arch_dev_ioctl(struct file *filp, 1511 unsigned int ioctl, unsigned long arg); 1512long kvm_arch_vcpu_ioctl(struct file *filp, 1513 unsigned int ioctl, unsigned long arg); 1514vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1515 1516int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1517 1518void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1519 struct kvm_memory_slot *slot, 1520 gfn_t gfn_offset, 1521 unsigned long mask); 1522void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1523 1524#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1525int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1526int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1527 int *is_dirty, struct kvm_memory_slot **memslot); 1528#endif 1529 1530int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1531 bool line_status); 1532int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1533 struct kvm_enable_cap *cap); 1534int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1535long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1536 unsigned long arg); 1537 1538int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1539int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1540 1541int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1542 struct kvm_translation *tr); 1543 1544int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1545int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1546int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1547 struct kvm_sregs *sregs); 1548int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1549 struct kvm_sregs *sregs); 1550int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1551 struct kvm_mp_state *mp_state); 1552int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1553 struct kvm_mp_state *mp_state); 1554int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1555 struct kvm_guest_debug *dbg); 1556int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1557 1558void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1559void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1560int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1561int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1562void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1563void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1564 1565#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1566int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1567#endif 1568 1569#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1570void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1571#else 1572static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1573#endif 1574 1575#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1576/* 1577 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under 1578 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of 1579 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling 1580 * sequence, and at the end of the generic hardware disabling sequence. 1581 */ 1582void kvm_arch_enable_virtualization(void); 1583void kvm_arch_disable_virtualization(void); 1584/* 1585 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to 1586 * do the actual twiddling of hardware bits. The hooks are called on all 1587 * online CPUs when KVM enables/disabled virtualization, and on a single CPU 1588 * when that CPU is onlined/offlined (including for Resume/Suspend). 1589 */ 1590int kvm_arch_enable_virtualization_cpu(void); 1591void kvm_arch_disable_virtualization_cpu(void); 1592#endif 1593int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1594bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1595int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1596bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1597bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1598bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1599int kvm_arch_post_init_vm(struct kvm *kvm); 1600void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1601void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1602 1603#ifndef __KVM_HAVE_ARCH_VM_ALLOC 1604/* 1605 * All architectures that want to use vzalloc currently also 1606 * need their own kvm_arch_alloc_vm implementation. 1607 */ 1608static inline struct kvm *kvm_arch_alloc_vm(void) 1609{ 1610 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1611} 1612#endif 1613 1614static inline void __kvm_arch_free_vm(struct kvm *kvm) 1615{ 1616 kvfree(kvm); 1617} 1618 1619#ifndef __KVM_HAVE_ARCH_VM_FREE 1620static inline void kvm_arch_free_vm(struct kvm *kvm) 1621{ 1622 __kvm_arch_free_vm(kvm); 1623} 1624#endif 1625 1626#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1627static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1628{ 1629 return -ENOTSUPP; 1630} 1631#else 1632int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1633#endif 1634 1635#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1636static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1637 gfn_t gfn, u64 nr_pages) 1638{ 1639 return -EOPNOTSUPP; 1640} 1641#else 1642int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1643#endif 1644 1645#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1646void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1647void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1648bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1649#else 1650static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1651{ 1652} 1653 1654static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1655{ 1656} 1657 1658static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1659{ 1660 return false; 1661} 1662#endif 1663#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1664void kvm_arch_start_assignment(struct kvm *kvm); 1665void kvm_arch_end_assignment(struct kvm *kvm); 1666bool kvm_arch_has_assigned_device(struct kvm *kvm); 1667#else 1668static inline void kvm_arch_start_assignment(struct kvm *kvm) 1669{ 1670} 1671 1672static inline void kvm_arch_end_assignment(struct kvm *kvm) 1673{ 1674} 1675 1676static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1677{ 1678 return false; 1679} 1680#endif 1681 1682static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1683{ 1684#ifdef __KVM_HAVE_ARCH_WQP 1685 return vcpu->arch.waitp; 1686#else 1687 return &vcpu->wait; 1688#endif 1689} 1690 1691/* 1692 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1693 * true if the vCPU was blocking and was awakened, false otherwise. 1694 */ 1695static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1696{ 1697 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1698} 1699 1700static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1701{ 1702 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1703} 1704 1705#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1706/* 1707 * returns true if the virtual interrupt controller is initialized and 1708 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1709 * controller is dynamically instantiated and this is not always true. 1710 */ 1711bool kvm_arch_intc_initialized(struct kvm *kvm); 1712#else 1713static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1714{ 1715 return true; 1716} 1717#endif 1718 1719#ifdef CONFIG_GUEST_PERF_EVENTS 1720unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1721 1722void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1723void kvm_unregister_perf_callbacks(void); 1724#else 1725static inline void kvm_register_perf_callbacks(void *ign) {} 1726static inline void kvm_unregister_perf_callbacks(void) {} 1727#endif /* CONFIG_GUEST_PERF_EVENTS */ 1728 1729int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1730void kvm_arch_destroy_vm(struct kvm *kvm); 1731void kvm_arch_sync_events(struct kvm *kvm); 1732 1733int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1734 1735struct kvm_irq_ack_notifier { 1736 struct hlist_node link; 1737 unsigned gsi; 1738 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1739}; 1740 1741int kvm_irq_map_gsi(struct kvm *kvm, 1742 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1743int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1744 1745int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1746 bool line_status); 1747int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1748 int irq_source_id, int level, bool line_status); 1749int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1750 struct kvm *kvm, int irq_source_id, 1751 int level, bool line_status); 1752bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1753void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1754void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1755void kvm_register_irq_ack_notifier(struct kvm *kvm, 1756 struct kvm_irq_ack_notifier *kian); 1757void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1758 struct kvm_irq_ack_notifier *kian); 1759int kvm_request_irq_source_id(struct kvm *kvm); 1760void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1761bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1762 1763/* 1764 * Returns a pointer to the memslot if it contains gfn. 1765 * Otherwise returns NULL. 1766 */ 1767static inline struct kvm_memory_slot * 1768try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1769{ 1770 if (!slot) 1771 return NULL; 1772 1773 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1774 return slot; 1775 else 1776 return NULL; 1777} 1778 1779/* 1780 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1781 * 1782 * With "approx" set returns the memslot also when the address falls 1783 * in a hole. In that case one of the memslots bordering the hole is 1784 * returned. 1785 */ 1786static inline struct kvm_memory_slot * 1787search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1788{ 1789 struct kvm_memory_slot *slot; 1790 struct rb_node *node; 1791 int idx = slots->node_idx; 1792 1793 slot = NULL; 1794 for (node = slots->gfn_tree.rb_node; node; ) { 1795 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1796 if (gfn >= slot->base_gfn) { 1797 if (gfn < slot->base_gfn + slot->npages) 1798 return slot; 1799 node = node->rb_right; 1800 } else 1801 node = node->rb_left; 1802 } 1803 1804 return approx ? slot : NULL; 1805} 1806 1807static inline struct kvm_memory_slot * 1808____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1809{ 1810 struct kvm_memory_slot *slot; 1811 1812 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1813 slot = try_get_memslot(slot, gfn); 1814 if (slot) 1815 return slot; 1816 1817 slot = search_memslots(slots, gfn, approx); 1818 if (slot) { 1819 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1820 return slot; 1821 } 1822 1823 return NULL; 1824} 1825 1826/* 1827 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1828 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1829 * because that would bloat other code too much. 1830 */ 1831static inline struct kvm_memory_slot * 1832__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1833{ 1834 return ____gfn_to_memslot(slots, gfn, false); 1835} 1836 1837static inline unsigned long 1838__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1839{ 1840 /* 1841 * The index was checked originally in search_memslots. To avoid 1842 * that a malicious guest builds a Spectre gadget out of e.g. page 1843 * table walks, do not let the processor speculate loads outside 1844 * the guest's registered memslots. 1845 */ 1846 unsigned long offset = gfn - slot->base_gfn; 1847 offset = array_index_nospec(offset, slot->npages); 1848 return slot->userspace_addr + offset * PAGE_SIZE; 1849} 1850 1851static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1852{ 1853 return gfn_to_memslot(kvm, gfn)->id; 1854} 1855 1856static inline gfn_t 1857hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1858{ 1859 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1860 1861 return slot->base_gfn + gfn_offset; 1862} 1863 1864static inline gpa_t gfn_to_gpa(gfn_t gfn) 1865{ 1866 return (gpa_t)gfn << PAGE_SHIFT; 1867} 1868 1869static inline gfn_t gpa_to_gfn(gpa_t gpa) 1870{ 1871 return (gfn_t)(gpa >> PAGE_SHIFT); 1872} 1873 1874static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1875{ 1876 return (hpa_t)pfn << PAGE_SHIFT; 1877} 1878 1879static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1880{ 1881 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1882 1883 return !kvm_is_error_hva(hva); 1884} 1885 1886static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1887{ 1888 lockdep_assert_held(&gpc->lock); 1889 1890 if (!gpc->memslot) 1891 return; 1892 1893 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1894} 1895 1896enum kvm_stat_kind { 1897 KVM_STAT_VM, 1898 KVM_STAT_VCPU, 1899}; 1900 1901struct kvm_stat_data { 1902 struct kvm *kvm; 1903 const struct _kvm_stats_desc *desc; 1904 enum kvm_stat_kind kind; 1905}; 1906 1907struct _kvm_stats_desc { 1908 struct kvm_stats_desc desc; 1909 char name[KVM_STATS_NAME_SIZE]; 1910}; 1911 1912#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1913 .flags = type | unit | base | \ 1914 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1915 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1916 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1917 .exponent = exp, \ 1918 .size = sz, \ 1919 .bucket_size = bsz 1920 1921#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1922 { \ 1923 { \ 1924 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1925 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1926 }, \ 1927 .name = #stat, \ 1928 } 1929#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1930 { \ 1931 { \ 1932 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1933 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1934 }, \ 1935 .name = #stat, \ 1936 } 1937#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1938 { \ 1939 { \ 1940 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1941 .offset = offsetof(struct kvm_vm_stat, stat) \ 1942 }, \ 1943 .name = #stat, \ 1944 } 1945#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1946 { \ 1947 { \ 1948 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1949 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1950 }, \ 1951 .name = #stat, \ 1952 } 1953/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1954#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1955 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1956 1957#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1958 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1959 unit, base, exponent, 1, 0) 1960#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1961 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1962 unit, base, exponent, 1, 0) 1963#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1964 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1965 unit, base, exponent, 1, 0) 1966#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1967 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1968 unit, base, exponent, sz, bsz) 1969#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1970 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1971 unit, base, exponent, sz, 0) 1972 1973/* Cumulative counter, read/write */ 1974#define STATS_DESC_COUNTER(SCOPE, name) \ 1975 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1976 KVM_STATS_BASE_POW10, 0) 1977/* Instantaneous counter, read only */ 1978#define STATS_DESC_ICOUNTER(SCOPE, name) \ 1979 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1980 KVM_STATS_BASE_POW10, 0) 1981/* Peak counter, read/write */ 1982#define STATS_DESC_PCOUNTER(SCOPE, name) \ 1983 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1984 KVM_STATS_BASE_POW10, 0) 1985 1986/* Instantaneous boolean value, read only */ 1987#define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1988 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1989 KVM_STATS_BASE_POW10, 0) 1990/* Peak (sticky) boolean value, read/write */ 1991#define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1992 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1993 KVM_STATS_BASE_POW10, 0) 1994 1995/* Cumulative time in nanosecond */ 1996#define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1997 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1998 KVM_STATS_BASE_POW10, -9) 1999/* Linear histogram for time in nanosecond */ 2000#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 2001 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2002 KVM_STATS_BASE_POW10, -9, sz, bsz) 2003/* Logarithmic histogram for time in nanosecond */ 2004#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 2005 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2006 KVM_STATS_BASE_POW10, -9, sz) 2007 2008#define KVM_GENERIC_VM_STATS() \ 2009 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 2010 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 2011 2012#define KVM_GENERIC_VCPU_STATS() \ 2013 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 2014 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 2015 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 2016 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 2017 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 2018 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 2019 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 2020 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 2021 HALT_POLL_HIST_COUNT), \ 2022 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 2023 HALT_POLL_HIST_COUNT), \ 2024 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 2025 HALT_POLL_HIST_COUNT), \ 2026 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 2027 2028ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 2029 const struct _kvm_stats_desc *desc, 2030 void *stats, size_t size_stats, 2031 char __user *user_buffer, size_t size, loff_t *offset); 2032 2033/** 2034 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 2035 * statistics data. 2036 * 2037 * @data: start address of the stats data 2038 * @size: the number of bucket of the stats data 2039 * @value: the new value used to update the linear histogram's bucket 2040 * @bucket_size: the size (width) of a bucket 2041 */ 2042static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 2043 u64 value, size_t bucket_size) 2044{ 2045 size_t index = div64_u64(value, bucket_size); 2046 2047 index = min(index, size - 1); 2048 ++data[index]; 2049} 2050 2051/** 2052 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 2053 * statistics data. 2054 * 2055 * @data: start address of the stats data 2056 * @size: the number of bucket of the stats data 2057 * @value: the new value used to update the logarithmic histogram's bucket 2058 */ 2059static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 2060{ 2061 size_t index = fls64(value); 2062 2063 index = min(index, size - 1); 2064 ++data[index]; 2065} 2066 2067#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2068 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2069#define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2070 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2071 2072 2073extern const struct kvm_stats_header kvm_vm_stats_header; 2074extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2075extern const struct kvm_stats_header kvm_vcpu_stats_header; 2076extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2077 2078#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2079static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2080{ 2081 if (unlikely(kvm->mmu_invalidate_in_progress)) 2082 return 1; 2083 /* 2084 * Ensure the read of mmu_invalidate_in_progress happens before 2085 * the read of mmu_invalidate_seq. This interacts with the 2086 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2087 * that the caller either sees the old (non-zero) value of 2088 * mmu_invalidate_in_progress or the new (incremented) value of 2089 * mmu_invalidate_seq. 2090 * 2091 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2092 * than under kvm->mmu_lock, for scalability, so can't rely on 2093 * kvm->mmu_lock to keep things ordered. 2094 */ 2095 smp_rmb(); 2096 if (kvm->mmu_invalidate_seq != mmu_seq) 2097 return 1; 2098 return 0; 2099} 2100 2101static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2102 unsigned long mmu_seq, 2103 gfn_t gfn) 2104{ 2105 lockdep_assert_held(&kvm->mmu_lock); 2106 /* 2107 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2108 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2109 * that might be being invalidated. Note that it may include some false 2110 * positives, due to shortcuts when handing concurrent invalidations. 2111 */ 2112 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2113 /* 2114 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2115 * but before updating the range is a KVM bug. 2116 */ 2117 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2118 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2119 return 1; 2120 2121 if (gfn >= kvm->mmu_invalidate_range_start && 2122 gfn < kvm->mmu_invalidate_range_end) 2123 return 1; 2124 } 2125 2126 if (kvm->mmu_invalidate_seq != mmu_seq) 2127 return 1; 2128 return 0; 2129} 2130 2131/* 2132 * This lockless version of the range-based retry check *must* be paired with a 2133 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2134 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2135 * get false negatives and false positives. 2136 */ 2137static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2138 unsigned long mmu_seq, 2139 gfn_t gfn) 2140{ 2141 /* 2142 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2143 * are always read from memory, e.g. so that checking for retry in a 2144 * loop won't result in an infinite retry loop. Don't force loads for 2145 * start+end, as the key to avoiding infinite retry loops is observing 2146 * the 1=>0 transition of in-progress, i.e. getting false negatives 2147 * due to stale start+end values is acceptable. 2148 */ 2149 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2150 gfn >= kvm->mmu_invalidate_range_start && 2151 gfn < kvm->mmu_invalidate_range_end) 2152 return true; 2153 2154 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2155} 2156#endif 2157 2158#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2159 2160#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2161 2162bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2163int kvm_set_irq_routing(struct kvm *kvm, 2164 const struct kvm_irq_routing_entry *entries, 2165 unsigned nr, 2166 unsigned flags); 2167int kvm_init_irq_routing(struct kvm *kvm); 2168int kvm_set_routing_entry(struct kvm *kvm, 2169 struct kvm_kernel_irq_routing_entry *e, 2170 const struct kvm_irq_routing_entry *ue); 2171void kvm_free_irq_routing(struct kvm *kvm); 2172 2173#else 2174 2175static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2176 2177static inline int kvm_init_irq_routing(struct kvm *kvm) 2178{ 2179 return 0; 2180} 2181 2182#endif 2183 2184int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2185 2186void kvm_eventfd_init(struct kvm *kvm); 2187int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2188 2189#ifdef CONFIG_HAVE_KVM_IRQCHIP 2190int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2191void kvm_irqfd_release(struct kvm *kvm); 2192bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2193 unsigned int irqchip, 2194 unsigned int pin); 2195void kvm_irq_routing_update(struct kvm *); 2196#else 2197static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2198{ 2199 return -EINVAL; 2200} 2201 2202static inline void kvm_irqfd_release(struct kvm *kvm) {} 2203 2204static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2205 unsigned int irqchip, 2206 unsigned int pin) 2207{ 2208 return false; 2209} 2210#endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2211 2212void kvm_arch_irq_routing_update(struct kvm *kvm); 2213 2214static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2215{ 2216 /* 2217 * Ensure the rest of the request is published to kvm_check_request's 2218 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2219 */ 2220 smp_wmb(); 2221 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2222} 2223 2224static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2225{ 2226 /* 2227 * Request that don't require vCPU action should never be logged in 2228 * vcpu->requests. The vCPU won't clear the request, so it will stay 2229 * logged indefinitely and prevent the vCPU from entering the guest. 2230 */ 2231 BUILD_BUG_ON(!__builtin_constant_p(req) || 2232 (req & KVM_REQUEST_NO_ACTION)); 2233 2234 __kvm_make_request(req, vcpu); 2235} 2236 2237static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2238{ 2239 return READ_ONCE(vcpu->requests); 2240} 2241 2242static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2243{ 2244 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2245} 2246 2247static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2248{ 2249 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2250} 2251 2252static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2253{ 2254 if (kvm_test_request(req, vcpu)) { 2255 kvm_clear_request(req, vcpu); 2256 2257 /* 2258 * Ensure the rest of the request is visible to kvm_check_request's 2259 * caller. Paired with the smp_wmb in kvm_make_request. 2260 */ 2261 smp_mb__after_atomic(); 2262 return true; 2263 } else { 2264 return false; 2265 } 2266} 2267 2268#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2269extern bool kvm_rebooting; 2270#endif 2271 2272extern unsigned int halt_poll_ns; 2273extern unsigned int halt_poll_ns_grow; 2274extern unsigned int halt_poll_ns_grow_start; 2275extern unsigned int halt_poll_ns_shrink; 2276 2277struct kvm_device { 2278 const struct kvm_device_ops *ops; 2279 struct kvm *kvm; 2280 void *private; 2281 struct list_head vm_node; 2282}; 2283 2284/* create, destroy, and name are mandatory */ 2285struct kvm_device_ops { 2286 const char *name; 2287 2288 /* 2289 * create is called holding kvm->lock and any operations not suitable 2290 * to do while holding the lock should be deferred to init (see 2291 * below). 2292 */ 2293 int (*create)(struct kvm_device *dev, u32 type); 2294 2295 /* 2296 * init is called after create if create is successful and is called 2297 * outside of holding kvm->lock. 2298 */ 2299 void (*init)(struct kvm_device *dev); 2300 2301 /* 2302 * Destroy is responsible for freeing dev. 2303 * 2304 * Destroy may be called before or after destructors are called 2305 * on emulated I/O regions, depending on whether a reference is 2306 * held by a vcpu or other kvm component that gets destroyed 2307 * after the emulated I/O. 2308 */ 2309 void (*destroy)(struct kvm_device *dev); 2310 2311 /* 2312 * Release is an alternative method to free the device. It is 2313 * called when the device file descriptor is closed. Once 2314 * release is called, the destroy method will not be called 2315 * anymore as the device is removed from the device list of 2316 * the VM. kvm->lock is held. 2317 */ 2318 void (*release)(struct kvm_device *dev); 2319 2320 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2321 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2322 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2323 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2324 unsigned long arg); 2325 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2326}; 2327 2328struct kvm_device *kvm_device_from_filp(struct file *filp); 2329int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2330void kvm_unregister_device_ops(u32 type); 2331 2332extern struct kvm_device_ops kvm_mpic_ops; 2333extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2334extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2335 2336#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2337 2338static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2339{ 2340 vcpu->spin_loop.in_spin_loop = val; 2341} 2342static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2343{ 2344 vcpu->spin_loop.dy_eligible = val; 2345} 2346 2347#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2348 2349static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2350{ 2351} 2352 2353static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2354{ 2355} 2356#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2357 2358static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2359{ 2360 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2361 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2362} 2363 2364struct kvm_vcpu *kvm_get_running_vcpu(void); 2365struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2366 2367#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2368bool kvm_arch_has_irq_bypass(void); 2369int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2370 struct irq_bypass_producer *); 2371void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2372 struct irq_bypass_producer *); 2373void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2374void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2375int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2376 uint32_t guest_irq, bool set); 2377bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2378 struct kvm_kernel_irq_routing_entry *); 2379#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2380 2381#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2382/* If we wakeup during the poll time, was it a sucessful poll? */ 2383static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2384{ 2385 return vcpu->valid_wakeup; 2386} 2387 2388#else 2389static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2390{ 2391 return true; 2392} 2393#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2394 2395#ifdef CONFIG_HAVE_KVM_NO_POLL 2396/* Callback that tells if we must not poll */ 2397bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2398#else 2399static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2400{ 2401 return false; 2402} 2403#endif /* CONFIG_HAVE_KVM_NO_POLL */ 2404 2405#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2406long kvm_arch_vcpu_async_ioctl(struct file *filp, 2407 unsigned int ioctl, unsigned long arg); 2408#else 2409static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2410 unsigned int ioctl, 2411 unsigned long arg) 2412{ 2413 return -ENOIOCTLCMD; 2414} 2415#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2416 2417void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2418 2419#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2420int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2421#else 2422static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2423{ 2424 return 0; 2425} 2426#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2427 2428#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2429static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2430{ 2431 vcpu->run->exit_reason = KVM_EXIT_INTR; 2432 vcpu->stat.signal_exits++; 2433} 2434#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2435 2436/* 2437 * If more than one page is being (un)accounted, @virt must be the address of 2438 * the first page of a block of pages what were allocated together (i.e 2439 * accounted together). 2440 * 2441 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2442 * is thread-safe. 2443 */ 2444static inline void kvm_account_pgtable_pages(void *virt, int nr) 2445{ 2446 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2447} 2448 2449/* 2450 * This defines how many reserved entries we want to keep before we 2451 * kick the vcpu to the userspace to avoid dirty ring full. This 2452 * value can be tuned to higher if e.g. PML is enabled on the host. 2453 */ 2454#define KVM_DIRTY_RING_RSVD_ENTRIES 64 2455 2456/* Max number of entries allowed for each kvm dirty ring */ 2457#define KVM_DIRTY_RING_MAX_ENTRIES 65536 2458 2459static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2460 gpa_t gpa, gpa_t size, 2461 bool is_write, bool is_exec, 2462 bool is_private) 2463{ 2464 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2465 vcpu->run->memory_fault.gpa = gpa; 2466 vcpu->run->memory_fault.size = size; 2467 2468 /* RWX flags are not (yet) defined or communicated to userspace. */ 2469 vcpu->run->memory_fault.flags = 0; 2470 if (is_private) 2471 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2472} 2473 2474#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2475static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2476{ 2477 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2478} 2479 2480bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2481 unsigned long mask, unsigned long attrs); 2482bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2483 struct kvm_gfn_range *range); 2484bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2485 struct kvm_gfn_range *range); 2486 2487static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2488{ 2489 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2490 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2491} 2492#else 2493static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2494{ 2495 return false; 2496} 2497#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2498 2499#ifdef CONFIG_KVM_PRIVATE_MEM 2500int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2501 gfn_t gfn, kvm_pfn_t *pfn, struct page **page, 2502 int *max_order); 2503#else 2504static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2505 struct kvm_memory_slot *slot, gfn_t gfn, 2506 kvm_pfn_t *pfn, struct page **page, 2507 int *max_order) 2508{ 2509 KVM_BUG_ON(1, kvm); 2510 return -EIO; 2511} 2512#endif /* CONFIG_KVM_PRIVATE_MEM */ 2513 2514#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2515int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2516#endif 2517 2518#ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM 2519/** 2520 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2521 * 2522 * @kvm: KVM instance 2523 * @gfn: starting GFN to be populated 2524 * @src: userspace-provided buffer containing data to copy into GFN range 2525 * (passed to @post_populate, and incremented on each iteration 2526 * if not NULL) 2527 * @npages: number of pages to copy from userspace-buffer 2528 * @post_populate: callback to issue for each gmem page that backs the GPA 2529 * range 2530 * @opaque: opaque data to pass to @post_populate callback 2531 * 2532 * This is primarily intended for cases where a gmem-backed GPA range needs 2533 * to be initialized with userspace-provided data prior to being mapped into 2534 * the guest as a private page. This should be called with the slots->lock 2535 * held so that caller-enforced invariants regarding the expected memory 2536 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2537 * 2538 * Returns the number of pages that were populated. 2539 */ 2540typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2541 void __user *src, int order, void *opaque); 2542 2543long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2544 kvm_gmem_populate_cb post_populate, void *opaque); 2545#endif 2546 2547#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2548void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2549#endif 2550 2551#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2552long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2553 struct kvm_pre_fault_memory *range); 2554#endif 2555 2556#endif