at v6.13 36 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_HUGETLB_H 3#define _LINUX_HUGETLB_H 4 5#include <linux/mm.h> 6#include <linux/mm_types.h> 7#include <linux/mmdebug.h> 8#include <linux/fs.h> 9#include <linux/hugetlb_inline.h> 10#include <linux/cgroup.h> 11#include <linux/page_ref.h> 12#include <linux/list.h> 13#include <linux/kref.h> 14#include <linux/pgtable.h> 15#include <linux/gfp.h> 16#include <linux/userfaultfd_k.h> 17 18struct ctl_table; 19struct user_struct; 20struct mmu_gather; 21struct node; 22 23void free_huge_folio(struct folio *folio); 24 25#ifdef CONFIG_HUGETLB_PAGE 26 27#include <linux/pagemap.h> 28#include <linux/shm.h> 29#include <asm/tlbflush.h> 30 31/* 32 * For HugeTLB page, there are more metadata to save in the struct page. But 33 * the head struct page cannot meet our needs, so we have to abuse other tail 34 * struct page to store the metadata. 35 */ 36#define __NR_USED_SUBPAGE 3 37 38struct hugepage_subpool { 39 spinlock_t lock; 40 long count; 41 long max_hpages; /* Maximum huge pages or -1 if no maximum. */ 42 long used_hpages; /* Used count against maximum, includes */ 43 /* both allocated and reserved pages. */ 44 struct hstate *hstate; 45 long min_hpages; /* Minimum huge pages or -1 if no minimum. */ 46 long rsv_hpages; /* Pages reserved against global pool to */ 47 /* satisfy minimum size. */ 48}; 49 50struct resv_map { 51 struct kref refs; 52 spinlock_t lock; 53 struct list_head regions; 54 long adds_in_progress; 55 struct list_head region_cache; 56 long region_cache_count; 57 struct rw_semaphore rw_sema; 58#ifdef CONFIG_CGROUP_HUGETLB 59 /* 60 * On private mappings, the counter to uncharge reservations is stored 61 * here. If these fields are 0, then either the mapping is shared, or 62 * cgroup accounting is disabled for this resv_map. 63 */ 64 struct page_counter *reservation_counter; 65 unsigned long pages_per_hpage; 66 struct cgroup_subsys_state *css; 67#endif 68}; 69 70/* 71 * Region tracking -- allows tracking of reservations and instantiated pages 72 * across the pages in a mapping. 73 * 74 * The region data structures are embedded into a resv_map and protected 75 * by a resv_map's lock. The set of regions within the resv_map represent 76 * reservations for huge pages, or huge pages that have already been 77 * instantiated within the map. The from and to elements are huge page 78 * indices into the associated mapping. from indicates the starting index 79 * of the region. to represents the first index past the end of the region. 80 * 81 * For example, a file region structure with from == 0 and to == 4 represents 82 * four huge pages in a mapping. It is important to note that the to element 83 * represents the first element past the end of the region. This is used in 84 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 85 * 86 * Interval notation of the form [from, to) will be used to indicate that 87 * the endpoint from is inclusive and to is exclusive. 88 */ 89struct file_region { 90 struct list_head link; 91 long from; 92 long to; 93#ifdef CONFIG_CGROUP_HUGETLB 94 /* 95 * On shared mappings, each reserved region appears as a struct 96 * file_region in resv_map. These fields hold the info needed to 97 * uncharge each reservation. 98 */ 99 struct page_counter *reservation_counter; 100 struct cgroup_subsys_state *css; 101#endif 102}; 103 104struct hugetlb_vma_lock { 105 struct kref refs; 106 struct rw_semaphore rw_sema; 107 struct vm_area_struct *vma; 108}; 109 110extern struct resv_map *resv_map_alloc(void); 111void resv_map_release(struct kref *ref); 112 113extern spinlock_t hugetlb_lock; 114extern int hugetlb_max_hstate __read_mostly; 115#define for_each_hstate(h) \ 116 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++) 117 118struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 119 long min_hpages); 120void hugepage_put_subpool(struct hugepage_subpool *spool); 121 122void hugetlb_dup_vma_private(struct vm_area_struct *vma); 123void clear_vma_resv_huge_pages(struct vm_area_struct *vma); 124int move_hugetlb_page_tables(struct vm_area_struct *vma, 125 struct vm_area_struct *new_vma, 126 unsigned long old_addr, unsigned long new_addr, 127 unsigned long len); 128int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *, 129 struct vm_area_struct *, struct vm_area_struct *); 130void unmap_hugepage_range(struct vm_area_struct *, 131 unsigned long, unsigned long, struct page *, 132 zap_flags_t); 133void __unmap_hugepage_range(struct mmu_gather *tlb, 134 struct vm_area_struct *vma, 135 unsigned long start, unsigned long end, 136 struct page *ref_page, zap_flags_t zap_flags); 137void hugetlb_report_meminfo(struct seq_file *); 138int hugetlb_report_node_meminfo(char *buf, int len, int nid); 139void hugetlb_show_meminfo_node(int nid); 140unsigned long hugetlb_total_pages(void); 141vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 142 unsigned long address, unsigned int flags); 143#ifdef CONFIG_USERFAULTFD 144int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 145 struct vm_area_struct *dst_vma, 146 unsigned long dst_addr, 147 unsigned long src_addr, 148 uffd_flags_t flags, 149 struct folio **foliop); 150#endif /* CONFIG_USERFAULTFD */ 151bool hugetlb_reserve_pages(struct inode *inode, long from, long to, 152 struct vm_area_struct *vma, 153 vm_flags_t vm_flags); 154long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 155 long freed); 156bool isolate_hugetlb(struct folio *folio, struct list_head *list); 157int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison); 158int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 159 bool *migratable_cleared); 160void folio_putback_active_hugetlb(struct folio *folio); 161void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason); 162void hugetlb_fix_reserve_counts(struct inode *inode); 163extern struct mutex *hugetlb_fault_mutex_table; 164u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx); 165 166pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 167 unsigned long addr, pud_t *pud); 168bool hugetlbfs_pagecache_present(struct hstate *h, 169 struct vm_area_struct *vma, 170 unsigned long address); 171 172struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio); 173 174extern int sysctl_hugetlb_shm_group; 175extern struct list_head huge_boot_pages[MAX_NUMNODES]; 176 177/* arch callbacks */ 178 179#ifndef CONFIG_HIGHPTE 180/* 181 * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures 182 * which may go down to the lowest PTE level in their huge_pte_offset() and 183 * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap(). 184 */ 185static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address) 186{ 187 return pte_offset_kernel(pmd, address); 188} 189static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd, 190 unsigned long address) 191{ 192 return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address); 193} 194#endif 195 196pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 197 unsigned long addr, unsigned long sz); 198/* 199 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE. 200 * Returns the pte_t* if found, or NULL if the address is not mapped. 201 * 202 * IMPORTANT: we should normally not directly call this function, instead 203 * this is only a common interface to implement arch-specific 204 * walker. Please use hugetlb_walk() instead, because that will attempt to 205 * verify the locking for you. 206 * 207 * Since this function will walk all the pgtable pages (including not only 208 * high-level pgtable page, but also PUD entry that can be unshared 209 * concurrently for VM_SHARED), the caller of this function should be 210 * responsible of its thread safety. One can follow this rule: 211 * 212 * (1) For private mappings: pmd unsharing is not possible, so holding the 213 * mmap_lock for either read or write is sufficient. Most callers 214 * already hold the mmap_lock, so normally, no special action is 215 * required. 216 * 217 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged 218 * pgtable page can go away from under us! It can be done by a pmd 219 * unshare with a follow up munmap() on the other process), then we 220 * need either: 221 * 222 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare 223 * won't happen upon the range (it also makes sure the pte_t we 224 * read is the right and stable one), or, 225 * 226 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make 227 * sure even if unshare happened the racy unmap() will wait until 228 * i_mmap_rwsem is released. 229 * 230 * Option (2.1) is the safest, which guarantees pte stability from pmd 231 * sharing pov, until the vma lock released. Option (2.2) doesn't protect 232 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to 233 * access. 234 */ 235pte_t *huge_pte_offset(struct mm_struct *mm, 236 unsigned long addr, unsigned long sz); 237unsigned long hugetlb_mask_last_page(struct hstate *h); 238int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 239 unsigned long addr, pte_t *ptep); 240void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 241 unsigned long *start, unsigned long *end); 242 243extern void __hugetlb_zap_begin(struct vm_area_struct *vma, 244 unsigned long *begin, unsigned long *end); 245extern void __hugetlb_zap_end(struct vm_area_struct *vma, 246 struct zap_details *details); 247 248static inline void hugetlb_zap_begin(struct vm_area_struct *vma, 249 unsigned long *start, unsigned long *end) 250{ 251 if (is_vm_hugetlb_page(vma)) 252 __hugetlb_zap_begin(vma, start, end); 253} 254 255static inline void hugetlb_zap_end(struct vm_area_struct *vma, 256 struct zap_details *details) 257{ 258 if (is_vm_hugetlb_page(vma)) 259 __hugetlb_zap_end(vma, details); 260} 261 262void hugetlb_vma_lock_read(struct vm_area_struct *vma); 263void hugetlb_vma_unlock_read(struct vm_area_struct *vma); 264void hugetlb_vma_lock_write(struct vm_area_struct *vma); 265void hugetlb_vma_unlock_write(struct vm_area_struct *vma); 266int hugetlb_vma_trylock_write(struct vm_area_struct *vma); 267void hugetlb_vma_assert_locked(struct vm_area_struct *vma); 268void hugetlb_vma_lock_release(struct kref *kref); 269long hugetlb_change_protection(struct vm_area_struct *vma, 270 unsigned long address, unsigned long end, pgprot_t newprot, 271 unsigned long cp_flags); 272bool is_hugetlb_entry_migration(pte_t pte); 273bool is_hugetlb_entry_hwpoisoned(pte_t pte); 274void hugetlb_unshare_all_pmds(struct vm_area_struct *vma); 275 276#else /* !CONFIG_HUGETLB_PAGE */ 277 278static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma) 279{ 280} 281 282static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 283{ 284} 285 286static inline unsigned long hugetlb_total_pages(void) 287{ 288 return 0; 289} 290 291static inline struct address_space *hugetlb_folio_mapping_lock_write( 292 struct folio *folio) 293{ 294 return NULL; 295} 296 297static inline int huge_pmd_unshare(struct mm_struct *mm, 298 struct vm_area_struct *vma, 299 unsigned long addr, pte_t *ptep) 300{ 301 return 0; 302} 303 304static inline void adjust_range_if_pmd_sharing_possible( 305 struct vm_area_struct *vma, 306 unsigned long *start, unsigned long *end) 307{ 308} 309 310static inline void hugetlb_zap_begin( 311 struct vm_area_struct *vma, 312 unsigned long *start, unsigned long *end) 313{ 314} 315 316static inline void hugetlb_zap_end( 317 struct vm_area_struct *vma, 318 struct zap_details *details) 319{ 320} 321 322static inline int copy_hugetlb_page_range(struct mm_struct *dst, 323 struct mm_struct *src, 324 struct vm_area_struct *dst_vma, 325 struct vm_area_struct *src_vma) 326{ 327 BUG(); 328 return 0; 329} 330 331static inline int move_hugetlb_page_tables(struct vm_area_struct *vma, 332 struct vm_area_struct *new_vma, 333 unsigned long old_addr, 334 unsigned long new_addr, 335 unsigned long len) 336{ 337 BUG(); 338 return 0; 339} 340 341static inline void hugetlb_report_meminfo(struct seq_file *m) 342{ 343} 344 345static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid) 346{ 347 return 0; 348} 349 350static inline void hugetlb_show_meminfo_node(int nid) 351{ 352} 353 354static inline int prepare_hugepage_range(struct file *file, 355 unsigned long addr, unsigned long len) 356{ 357 return -EINVAL; 358} 359 360static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma) 361{ 362} 363 364static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 365{ 366} 367 368static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma) 369{ 370} 371 372static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 373{ 374} 375 376static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 377{ 378 return 1; 379} 380 381static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 382{ 383} 384 385static inline int is_hugepage_only_range(struct mm_struct *mm, 386 unsigned long addr, unsigned long len) 387{ 388 return 0; 389} 390 391static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb, 392 unsigned long addr, unsigned long end, 393 unsigned long floor, unsigned long ceiling) 394{ 395 BUG(); 396} 397 398#ifdef CONFIG_USERFAULTFD 399static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 400 struct vm_area_struct *dst_vma, 401 unsigned long dst_addr, 402 unsigned long src_addr, 403 uffd_flags_t flags, 404 struct folio **foliop) 405{ 406 BUG(); 407 return 0; 408} 409#endif /* CONFIG_USERFAULTFD */ 410 411static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, 412 unsigned long sz) 413{ 414 return NULL; 415} 416 417static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list) 418{ 419 return false; 420} 421 422static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 423{ 424 return 0; 425} 426 427static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 428 bool *migratable_cleared) 429{ 430 return 0; 431} 432 433static inline void folio_putback_active_hugetlb(struct folio *folio) 434{ 435} 436 437static inline void move_hugetlb_state(struct folio *old_folio, 438 struct folio *new_folio, int reason) 439{ 440} 441 442static inline long hugetlb_change_protection( 443 struct vm_area_struct *vma, unsigned long address, 444 unsigned long end, pgprot_t newprot, 445 unsigned long cp_flags) 446{ 447 return 0; 448} 449 450static inline void __unmap_hugepage_range(struct mmu_gather *tlb, 451 struct vm_area_struct *vma, unsigned long start, 452 unsigned long end, struct page *ref_page, 453 zap_flags_t zap_flags) 454{ 455 BUG(); 456} 457 458static inline vm_fault_t hugetlb_fault(struct mm_struct *mm, 459 struct vm_area_struct *vma, unsigned long address, 460 unsigned int flags) 461{ 462 BUG(); 463 return 0; 464} 465 466static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { } 467 468#endif /* !CONFIG_HUGETLB_PAGE */ 469 470#ifndef pgd_write 471static inline int pgd_write(pgd_t pgd) 472{ 473 BUG(); 474 return 0; 475} 476#endif 477 478#define HUGETLB_ANON_FILE "anon_hugepage" 479 480enum { 481 /* 482 * The file will be used as an shm file so shmfs accounting rules 483 * apply 484 */ 485 HUGETLB_SHMFS_INODE = 1, 486 /* 487 * The file is being created on the internal vfs mount and shmfs 488 * accounting rules do not apply 489 */ 490 HUGETLB_ANONHUGE_INODE = 2, 491}; 492 493#ifdef CONFIG_HUGETLBFS 494struct hugetlbfs_sb_info { 495 long max_inodes; /* inodes allowed */ 496 long free_inodes; /* inodes free */ 497 spinlock_t stat_lock; 498 struct hstate *hstate; 499 struct hugepage_subpool *spool; 500 kuid_t uid; 501 kgid_t gid; 502 umode_t mode; 503}; 504 505static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb) 506{ 507 return sb->s_fs_info; 508} 509 510struct hugetlbfs_inode_info { 511 struct inode vfs_inode; 512 unsigned int seals; 513}; 514 515static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode) 516{ 517 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode); 518} 519 520extern const struct vm_operations_struct hugetlb_vm_ops; 521struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct, 522 int creat_flags, int page_size_log); 523 524static inline bool is_file_hugepages(const struct file *file) 525{ 526 return file->f_op->fop_flags & FOP_HUGE_PAGES; 527} 528 529static inline struct hstate *hstate_inode(struct inode *i) 530{ 531 return HUGETLBFS_SB(i->i_sb)->hstate; 532} 533#else /* !CONFIG_HUGETLBFS */ 534 535#define is_file_hugepages(file) false 536static inline struct file * 537hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag, 538 int creat_flags, int page_size_log) 539{ 540 return ERR_PTR(-ENOSYS); 541} 542 543static inline struct hstate *hstate_inode(struct inode *i) 544{ 545 return NULL; 546} 547#endif /* !CONFIG_HUGETLBFS */ 548 549unsigned long 550hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 551 unsigned long len, unsigned long pgoff, 552 unsigned long flags); 553 554/* 555 * huegtlb page specific state flags. These flags are located in page.private 556 * of the hugetlb head page. Functions created via the below macros should be 557 * used to manipulate these flags. 558 * 559 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at 560 * allocation time. Cleared when page is fully instantiated. Free 561 * routine checks flag to restore a reservation on error paths. 562 * Synchronization: Examined or modified by code that knows it has 563 * the only reference to page. i.e. After allocation but before use 564 * or when the page is being freed. 565 * HPG_migratable - Set after a newly allocated page is added to the page 566 * cache and/or page tables. Indicates the page is a candidate for 567 * migration. 568 * Synchronization: Initially set after new page allocation with no 569 * locking. When examined and modified during migration processing 570 * (isolate, migrate, putback) the hugetlb_lock is held. 571 * HPG_temporary - Set on a page that is temporarily allocated from the buddy 572 * allocator. Typically used for migration target pages when no pages 573 * are available in the pool. The hugetlb free page path will 574 * immediately free pages with this flag set to the buddy allocator. 575 * Synchronization: Can be set after huge page allocation from buddy when 576 * code knows it has only reference. All other examinations and 577 * modifications require hugetlb_lock. 578 * HPG_freed - Set when page is on the free lists. 579 * Synchronization: hugetlb_lock held for examination and modification. 580 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed. 581 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page 582 * that is not tracked by raw_hwp_page list. 583 */ 584enum hugetlb_page_flags { 585 HPG_restore_reserve = 0, 586 HPG_migratable, 587 HPG_temporary, 588 HPG_freed, 589 HPG_vmemmap_optimized, 590 HPG_raw_hwp_unreliable, 591 __NR_HPAGEFLAGS, 592}; 593 594/* 595 * Macros to create test, set and clear function definitions for 596 * hugetlb specific page flags. 597 */ 598#ifdef CONFIG_HUGETLB_PAGE 599#define TESTHPAGEFLAG(uname, flname) \ 600static __always_inline \ 601bool folio_test_hugetlb_##flname(struct folio *folio) \ 602 { void *private = &folio->private; \ 603 return test_bit(HPG_##flname, private); \ 604 } 605 606#define SETHPAGEFLAG(uname, flname) \ 607static __always_inline \ 608void folio_set_hugetlb_##flname(struct folio *folio) \ 609 { void *private = &folio->private; \ 610 set_bit(HPG_##flname, private); \ 611 } 612 613#define CLEARHPAGEFLAG(uname, flname) \ 614static __always_inline \ 615void folio_clear_hugetlb_##flname(struct folio *folio) \ 616 { void *private = &folio->private; \ 617 clear_bit(HPG_##flname, private); \ 618 } 619#else 620#define TESTHPAGEFLAG(uname, flname) \ 621static inline bool \ 622folio_test_hugetlb_##flname(struct folio *folio) \ 623 { return 0; } 624 625#define SETHPAGEFLAG(uname, flname) \ 626static inline void \ 627folio_set_hugetlb_##flname(struct folio *folio) \ 628 { } 629 630#define CLEARHPAGEFLAG(uname, flname) \ 631static inline void \ 632folio_clear_hugetlb_##flname(struct folio *folio) \ 633 { } 634#endif 635 636#define HPAGEFLAG(uname, flname) \ 637 TESTHPAGEFLAG(uname, flname) \ 638 SETHPAGEFLAG(uname, flname) \ 639 CLEARHPAGEFLAG(uname, flname) \ 640 641/* 642 * Create functions associated with hugetlb page flags 643 */ 644HPAGEFLAG(RestoreReserve, restore_reserve) 645HPAGEFLAG(Migratable, migratable) 646HPAGEFLAG(Temporary, temporary) 647HPAGEFLAG(Freed, freed) 648HPAGEFLAG(VmemmapOptimized, vmemmap_optimized) 649HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable) 650 651#ifdef CONFIG_HUGETLB_PAGE 652 653#define HSTATE_NAME_LEN 32 654/* Defines one hugetlb page size */ 655struct hstate { 656 struct mutex resize_lock; 657 struct lock_class_key resize_key; 658 int next_nid_to_alloc; 659 int next_nid_to_free; 660 unsigned int order; 661 unsigned int demote_order; 662 unsigned long mask; 663 unsigned long max_huge_pages; 664 unsigned long nr_huge_pages; 665 unsigned long free_huge_pages; 666 unsigned long resv_huge_pages; 667 unsigned long surplus_huge_pages; 668 unsigned long nr_overcommit_huge_pages; 669 struct list_head hugepage_activelist; 670 struct list_head hugepage_freelists[MAX_NUMNODES]; 671 unsigned int max_huge_pages_node[MAX_NUMNODES]; 672 unsigned int nr_huge_pages_node[MAX_NUMNODES]; 673 unsigned int free_huge_pages_node[MAX_NUMNODES]; 674 unsigned int surplus_huge_pages_node[MAX_NUMNODES]; 675 char name[HSTATE_NAME_LEN]; 676}; 677 678struct huge_bootmem_page { 679 struct list_head list; 680 struct hstate *hstate; 681}; 682 683int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list); 684struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 685 unsigned long addr, int avoid_reserve); 686struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 687 nodemask_t *nmask, gfp_t gfp_mask, 688 bool allow_alloc_fallback); 689struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 690 nodemask_t *nmask, gfp_t gfp_mask); 691 692int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 693 pgoff_t idx); 694void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 695 unsigned long address, struct folio *folio); 696 697/* arch callback */ 698int __init __alloc_bootmem_huge_page(struct hstate *h, int nid); 699int __init alloc_bootmem_huge_page(struct hstate *h, int nid); 700bool __init hugetlb_node_alloc_supported(void); 701 702void __init hugetlb_add_hstate(unsigned order); 703bool __init arch_hugetlb_valid_size(unsigned long size); 704struct hstate *size_to_hstate(unsigned long size); 705 706#ifndef HUGE_MAX_HSTATE 707#define HUGE_MAX_HSTATE 1 708#endif 709 710extern struct hstate hstates[HUGE_MAX_HSTATE]; 711extern unsigned int default_hstate_idx; 712 713#define default_hstate (hstates[default_hstate_idx]) 714 715static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio) 716{ 717 return folio->_hugetlb_subpool; 718} 719 720static inline void hugetlb_set_folio_subpool(struct folio *folio, 721 struct hugepage_subpool *subpool) 722{ 723 folio->_hugetlb_subpool = subpool; 724} 725 726static inline struct hstate *hstate_file(struct file *f) 727{ 728 return hstate_inode(file_inode(f)); 729} 730 731static inline struct hstate *hstate_sizelog(int page_size_log) 732{ 733 if (!page_size_log) 734 return &default_hstate; 735 736 if (page_size_log < BITS_PER_LONG) 737 return size_to_hstate(1UL << page_size_log); 738 739 return NULL; 740} 741 742static inline struct hstate *hstate_vma(struct vm_area_struct *vma) 743{ 744 return hstate_file(vma->vm_file); 745} 746 747static inline unsigned long huge_page_size(const struct hstate *h) 748{ 749 return (unsigned long)PAGE_SIZE << h->order; 750} 751 752extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma); 753 754extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma); 755 756static inline unsigned long huge_page_mask(struct hstate *h) 757{ 758 return h->mask; 759} 760 761static inline unsigned int huge_page_order(struct hstate *h) 762{ 763 return h->order; 764} 765 766static inline unsigned huge_page_shift(struct hstate *h) 767{ 768 return h->order + PAGE_SHIFT; 769} 770 771static inline bool hstate_is_gigantic(struct hstate *h) 772{ 773 return huge_page_order(h) > MAX_PAGE_ORDER; 774} 775 776static inline unsigned int pages_per_huge_page(const struct hstate *h) 777{ 778 return 1 << h->order; 779} 780 781static inline unsigned int blocks_per_huge_page(struct hstate *h) 782{ 783 return huge_page_size(h) / 512; 784} 785 786static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h, 787 struct address_space *mapping, pgoff_t idx) 788{ 789 return filemap_lock_folio(mapping, idx << huge_page_order(h)); 790} 791 792#include <asm/hugetlb.h> 793 794#ifndef is_hugepage_only_range 795static inline int is_hugepage_only_range(struct mm_struct *mm, 796 unsigned long addr, unsigned long len) 797{ 798 return 0; 799} 800#define is_hugepage_only_range is_hugepage_only_range 801#endif 802 803#ifndef arch_clear_hugetlb_flags 804static inline void arch_clear_hugetlb_flags(struct folio *folio) { } 805#define arch_clear_hugetlb_flags arch_clear_hugetlb_flags 806#endif 807 808#ifndef arch_make_huge_pte 809static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift, 810 vm_flags_t flags) 811{ 812 return pte_mkhuge(entry); 813} 814#endif 815 816static inline struct hstate *folio_hstate(struct folio *folio) 817{ 818 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio); 819 return size_to_hstate(folio_size(folio)); 820} 821 822static inline unsigned hstate_index_to_shift(unsigned index) 823{ 824 return hstates[index].order + PAGE_SHIFT; 825} 826 827static inline int hstate_index(struct hstate *h) 828{ 829 return h - hstates; 830} 831 832int dissolve_free_hugetlb_folio(struct folio *folio); 833int dissolve_free_hugetlb_folios(unsigned long start_pfn, 834 unsigned long end_pfn); 835 836#ifdef CONFIG_MEMORY_FAILURE 837extern void folio_clear_hugetlb_hwpoison(struct folio *folio); 838#else 839static inline void folio_clear_hugetlb_hwpoison(struct folio *folio) 840{ 841} 842#endif 843 844#ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION 845#ifndef arch_hugetlb_migration_supported 846static inline bool arch_hugetlb_migration_supported(struct hstate *h) 847{ 848 if ((huge_page_shift(h) == PMD_SHIFT) || 849 (huge_page_shift(h) == PUD_SHIFT) || 850 (huge_page_shift(h) == PGDIR_SHIFT)) 851 return true; 852 else 853 return false; 854} 855#endif 856#else 857static inline bool arch_hugetlb_migration_supported(struct hstate *h) 858{ 859 return false; 860} 861#endif 862 863static inline bool hugepage_migration_supported(struct hstate *h) 864{ 865 return arch_hugetlb_migration_supported(h); 866} 867 868/* 869 * Movability check is different as compared to migration check. 870 * It determines whether or not a huge page should be placed on 871 * movable zone or not. Movability of any huge page should be 872 * required only if huge page size is supported for migration. 873 * There won't be any reason for the huge page to be movable if 874 * it is not migratable to start with. Also the size of the huge 875 * page should be large enough to be placed under a movable zone 876 * and still feasible enough to be migratable. Just the presence 877 * in movable zone does not make the migration feasible. 878 * 879 * So even though large huge page sizes like the gigantic ones 880 * are migratable they should not be movable because its not 881 * feasible to migrate them from movable zone. 882 */ 883static inline bool hugepage_movable_supported(struct hstate *h) 884{ 885 if (!hugepage_migration_supported(h)) 886 return false; 887 888 if (hstate_is_gigantic(h)) 889 return false; 890 return true; 891} 892 893/* Movability of hugepages depends on migration support. */ 894static inline gfp_t htlb_alloc_mask(struct hstate *h) 895{ 896 gfp_t gfp = __GFP_COMP | __GFP_NOWARN; 897 898 gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER; 899 900 return gfp; 901} 902 903static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask) 904{ 905 gfp_t modified_mask = htlb_alloc_mask(h); 906 907 /* Some callers might want to enforce node */ 908 modified_mask |= (gfp_mask & __GFP_THISNODE); 909 910 modified_mask |= (gfp_mask & __GFP_NOWARN); 911 912 return modified_mask; 913} 914 915static inline bool htlb_allow_alloc_fallback(int reason) 916{ 917 bool allowed_fallback = false; 918 919 /* 920 * Note: the memory offline, memory failure and migration syscalls will 921 * be allowed to fallback to other nodes due to lack of a better chioce, 922 * that might break the per-node hugetlb pool. While other cases will 923 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool. 924 */ 925 switch (reason) { 926 case MR_MEMORY_HOTPLUG: 927 case MR_MEMORY_FAILURE: 928 case MR_SYSCALL: 929 case MR_MEMPOLICY_MBIND: 930 allowed_fallback = true; 931 break; 932 default: 933 break; 934 } 935 936 return allowed_fallback; 937} 938 939static inline spinlock_t *huge_pte_lockptr(struct hstate *h, 940 struct mm_struct *mm, pte_t *pte) 941{ 942 const unsigned long size = huge_page_size(h); 943 944 VM_WARN_ON(size == PAGE_SIZE); 945 946 /* 947 * hugetlb must use the exact same PT locks as core-mm page table 948 * walkers would. When modifying a PTE table, hugetlb must take the 949 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD 950 * PT lock etc. 951 * 952 * The expectation is that any hugetlb folio smaller than a PMD is 953 * always mapped into a single PTE table and that any hugetlb folio 954 * smaller than a PUD (but at least as big as a PMD) is always mapped 955 * into a single PMD table. 956 * 957 * If that does not hold for an architecture, then that architecture 958 * must disable split PT locks such that all *_lockptr() functions 959 * will give us the same result: the per-MM PT lock. 960 * 961 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where 962 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr() 963 * and core-mm would use pmd_lockptr(). However, in such configurations 964 * split PMD locks are disabled -- they don't make sense on a single 965 * PGDIR page table -- and the end result is the same. 966 */ 967 if (size >= PUD_SIZE) 968 return pud_lockptr(mm, (pud_t *) pte); 969 else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE)) 970 return pmd_lockptr(mm, (pmd_t *) pte); 971 /* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */ 972 return ptep_lockptr(mm, pte); 973} 974 975#ifndef hugepages_supported 976/* 977 * Some platform decide whether they support huge pages at boot 978 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0 979 * when there is no such support 980 */ 981#define hugepages_supported() (HPAGE_SHIFT != 0) 982#endif 983 984void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm); 985 986static inline void hugetlb_count_init(struct mm_struct *mm) 987{ 988 atomic_long_set(&mm->hugetlb_usage, 0); 989} 990 991static inline void hugetlb_count_add(long l, struct mm_struct *mm) 992{ 993 atomic_long_add(l, &mm->hugetlb_usage); 994} 995 996static inline void hugetlb_count_sub(long l, struct mm_struct *mm) 997{ 998 atomic_long_sub(l, &mm->hugetlb_usage); 999} 1000 1001#ifndef huge_ptep_modify_prot_start 1002#define huge_ptep_modify_prot_start huge_ptep_modify_prot_start 1003static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma, 1004 unsigned long addr, pte_t *ptep) 1005{ 1006 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep); 1007} 1008#endif 1009 1010#ifndef huge_ptep_modify_prot_commit 1011#define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit 1012static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma, 1013 unsigned long addr, pte_t *ptep, 1014 pte_t old_pte, pte_t pte) 1015{ 1016 unsigned long psize = huge_page_size(hstate_vma(vma)); 1017 1018 set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize); 1019} 1020#endif 1021 1022#ifdef CONFIG_NUMA 1023void hugetlb_register_node(struct node *node); 1024void hugetlb_unregister_node(struct node *node); 1025#endif 1026 1027/* 1028 * Check if a given raw @page in a hugepage is HWPOISON. 1029 */ 1030bool is_raw_hwpoison_page_in_hugepage(struct page *page); 1031 1032static inline unsigned long huge_page_mask_align(struct file *file) 1033{ 1034 return PAGE_MASK & ~huge_page_mask(hstate_file(file)); 1035} 1036 1037#else /* CONFIG_HUGETLB_PAGE */ 1038struct hstate {}; 1039 1040static inline unsigned long huge_page_mask_align(struct file *file) 1041{ 1042 return 0; 1043} 1044 1045static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio) 1046{ 1047 return NULL; 1048} 1049 1050static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h, 1051 struct address_space *mapping, pgoff_t idx) 1052{ 1053 return NULL; 1054} 1055 1056static inline int isolate_or_dissolve_huge_page(struct page *page, 1057 struct list_head *list) 1058{ 1059 return -ENOMEM; 1060} 1061 1062static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 1063 unsigned long addr, 1064 int avoid_reserve) 1065{ 1066 return NULL; 1067} 1068 1069static inline struct folio * 1070alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 1071 nodemask_t *nmask, gfp_t gfp_mask) 1072{ 1073 return NULL; 1074} 1075 1076static inline struct folio * 1077alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 1078 nodemask_t *nmask, gfp_t gfp_mask, 1079 bool allow_alloc_fallback) 1080{ 1081 return NULL; 1082} 1083 1084static inline int __alloc_bootmem_huge_page(struct hstate *h) 1085{ 1086 return 0; 1087} 1088 1089static inline struct hstate *hstate_file(struct file *f) 1090{ 1091 return NULL; 1092} 1093 1094static inline struct hstate *hstate_sizelog(int page_size_log) 1095{ 1096 return NULL; 1097} 1098 1099static inline struct hstate *hstate_vma(struct vm_area_struct *vma) 1100{ 1101 return NULL; 1102} 1103 1104static inline struct hstate *folio_hstate(struct folio *folio) 1105{ 1106 return NULL; 1107} 1108 1109static inline struct hstate *size_to_hstate(unsigned long size) 1110{ 1111 return NULL; 1112} 1113 1114static inline unsigned long huge_page_size(struct hstate *h) 1115{ 1116 return PAGE_SIZE; 1117} 1118 1119static inline unsigned long huge_page_mask(struct hstate *h) 1120{ 1121 return PAGE_MASK; 1122} 1123 1124static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1125{ 1126 return PAGE_SIZE; 1127} 1128 1129static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1130{ 1131 return PAGE_SIZE; 1132} 1133 1134static inline unsigned int huge_page_order(struct hstate *h) 1135{ 1136 return 0; 1137} 1138 1139static inline unsigned int huge_page_shift(struct hstate *h) 1140{ 1141 return PAGE_SHIFT; 1142} 1143 1144static inline bool hstate_is_gigantic(struct hstate *h) 1145{ 1146 return false; 1147} 1148 1149static inline unsigned int pages_per_huge_page(struct hstate *h) 1150{ 1151 return 1; 1152} 1153 1154static inline unsigned hstate_index_to_shift(unsigned index) 1155{ 1156 return 0; 1157} 1158 1159static inline int hstate_index(struct hstate *h) 1160{ 1161 return 0; 1162} 1163 1164static inline int dissolve_free_hugetlb_folio(struct folio *folio) 1165{ 1166 return 0; 1167} 1168 1169static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn, 1170 unsigned long end_pfn) 1171{ 1172 return 0; 1173} 1174 1175static inline bool hugepage_migration_supported(struct hstate *h) 1176{ 1177 return false; 1178} 1179 1180static inline bool hugepage_movable_supported(struct hstate *h) 1181{ 1182 return false; 1183} 1184 1185static inline gfp_t htlb_alloc_mask(struct hstate *h) 1186{ 1187 return 0; 1188} 1189 1190static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask) 1191{ 1192 return 0; 1193} 1194 1195static inline bool htlb_allow_alloc_fallback(int reason) 1196{ 1197 return false; 1198} 1199 1200static inline spinlock_t *huge_pte_lockptr(struct hstate *h, 1201 struct mm_struct *mm, pte_t *pte) 1202{ 1203 return &mm->page_table_lock; 1204} 1205 1206static inline void hugetlb_count_init(struct mm_struct *mm) 1207{ 1208} 1209 1210static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m) 1211{ 1212} 1213 1214static inline void hugetlb_count_sub(long l, struct mm_struct *mm) 1215{ 1216} 1217 1218static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma, 1219 unsigned long addr, pte_t *ptep) 1220{ 1221#ifdef CONFIG_MMU 1222 return ptep_get(ptep); 1223#else 1224 return *ptep; 1225#endif 1226} 1227 1228static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, 1229 pte_t *ptep, pte_t pte, unsigned long sz) 1230{ 1231} 1232 1233static inline void hugetlb_register_node(struct node *node) 1234{ 1235} 1236 1237static inline void hugetlb_unregister_node(struct node *node) 1238{ 1239} 1240 1241static inline bool hugetlbfs_pagecache_present( 1242 struct hstate *h, struct vm_area_struct *vma, unsigned long address) 1243{ 1244 return false; 1245} 1246#endif /* CONFIG_HUGETLB_PAGE */ 1247 1248static inline spinlock_t *huge_pte_lock(struct hstate *h, 1249 struct mm_struct *mm, pte_t *pte) 1250{ 1251 spinlock_t *ptl; 1252 1253 ptl = huge_pte_lockptr(h, mm, pte); 1254 spin_lock(ptl); 1255 return ptl; 1256} 1257 1258#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) 1259extern void __init hugetlb_cma_reserve(int order); 1260#else 1261static inline __init void hugetlb_cma_reserve(int order) 1262{ 1263} 1264#endif 1265 1266#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 1267static inline bool hugetlb_pmd_shared(pte_t *pte) 1268{ 1269 return page_count(virt_to_page(pte)) > 1; 1270} 1271#else 1272static inline bool hugetlb_pmd_shared(pte_t *pte) 1273{ 1274 return false; 1275} 1276#endif 1277 1278bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr); 1279 1280#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 1281/* 1282 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 1283 * implement this. 1284 */ 1285#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1286#endif 1287 1288static inline bool __vma_shareable_lock(struct vm_area_struct *vma) 1289{ 1290 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data; 1291} 1292 1293bool __vma_private_lock(struct vm_area_struct *vma); 1294 1295/* 1296 * Safe version of huge_pte_offset() to check the locks. See comments 1297 * above huge_pte_offset(). 1298 */ 1299static inline pte_t * 1300hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz) 1301{ 1302#if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP) 1303 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1304 1305 /* 1306 * If pmd sharing possible, locking needed to safely walk the 1307 * hugetlb pgtables. More information can be found at the comment 1308 * above huge_pte_offset() in the same file. 1309 * 1310 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP. 1311 */ 1312 if (__vma_shareable_lock(vma)) 1313 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) && 1314 !lockdep_is_held( 1315 &vma->vm_file->f_mapping->i_mmap_rwsem)); 1316#endif 1317 return huge_pte_offset(vma->vm_mm, addr, sz); 1318} 1319 1320#endif /* _LINUX_HUGETLB_H */