Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_HUGETLB_H
3#define _LINUX_HUGETLB_H
4
5#include <linux/mm.h>
6#include <linux/mm_types.h>
7#include <linux/mmdebug.h>
8#include <linux/fs.h>
9#include <linux/hugetlb_inline.h>
10#include <linux/cgroup.h>
11#include <linux/page_ref.h>
12#include <linux/list.h>
13#include <linux/kref.h>
14#include <linux/pgtable.h>
15#include <linux/gfp.h>
16#include <linux/userfaultfd_k.h>
17
18struct ctl_table;
19struct user_struct;
20struct mmu_gather;
21struct node;
22
23void free_huge_folio(struct folio *folio);
24
25#ifdef CONFIG_HUGETLB_PAGE
26
27#include <linux/pagemap.h>
28#include <linux/shm.h>
29#include <asm/tlbflush.h>
30
31/*
32 * For HugeTLB page, there are more metadata to save in the struct page. But
33 * the head struct page cannot meet our needs, so we have to abuse other tail
34 * struct page to store the metadata.
35 */
36#define __NR_USED_SUBPAGE 3
37
38struct hugepage_subpool {
39 spinlock_t lock;
40 long count;
41 long max_hpages; /* Maximum huge pages or -1 if no maximum. */
42 long used_hpages; /* Used count against maximum, includes */
43 /* both allocated and reserved pages. */
44 struct hstate *hstate;
45 long min_hpages; /* Minimum huge pages or -1 if no minimum. */
46 long rsv_hpages; /* Pages reserved against global pool to */
47 /* satisfy minimum size. */
48};
49
50struct resv_map {
51 struct kref refs;
52 spinlock_t lock;
53 struct list_head regions;
54 long adds_in_progress;
55 struct list_head region_cache;
56 long region_cache_count;
57 struct rw_semaphore rw_sema;
58#ifdef CONFIG_CGROUP_HUGETLB
59 /*
60 * On private mappings, the counter to uncharge reservations is stored
61 * here. If these fields are 0, then either the mapping is shared, or
62 * cgroup accounting is disabled for this resv_map.
63 */
64 struct page_counter *reservation_counter;
65 unsigned long pages_per_hpage;
66 struct cgroup_subsys_state *css;
67#endif
68};
69
70/*
71 * Region tracking -- allows tracking of reservations and instantiated pages
72 * across the pages in a mapping.
73 *
74 * The region data structures are embedded into a resv_map and protected
75 * by a resv_map's lock. The set of regions within the resv_map represent
76 * reservations for huge pages, or huge pages that have already been
77 * instantiated within the map. The from and to elements are huge page
78 * indices into the associated mapping. from indicates the starting index
79 * of the region. to represents the first index past the end of the region.
80 *
81 * For example, a file region structure with from == 0 and to == 4 represents
82 * four huge pages in a mapping. It is important to note that the to element
83 * represents the first element past the end of the region. This is used in
84 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
85 *
86 * Interval notation of the form [from, to) will be used to indicate that
87 * the endpoint from is inclusive and to is exclusive.
88 */
89struct file_region {
90 struct list_head link;
91 long from;
92 long to;
93#ifdef CONFIG_CGROUP_HUGETLB
94 /*
95 * On shared mappings, each reserved region appears as a struct
96 * file_region in resv_map. These fields hold the info needed to
97 * uncharge each reservation.
98 */
99 struct page_counter *reservation_counter;
100 struct cgroup_subsys_state *css;
101#endif
102};
103
104struct hugetlb_vma_lock {
105 struct kref refs;
106 struct rw_semaphore rw_sema;
107 struct vm_area_struct *vma;
108};
109
110extern struct resv_map *resv_map_alloc(void);
111void resv_map_release(struct kref *ref);
112
113extern spinlock_t hugetlb_lock;
114extern int hugetlb_max_hstate __read_mostly;
115#define for_each_hstate(h) \
116 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
117
118struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
119 long min_hpages);
120void hugepage_put_subpool(struct hugepage_subpool *spool);
121
122void hugetlb_dup_vma_private(struct vm_area_struct *vma);
123void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
124int move_hugetlb_page_tables(struct vm_area_struct *vma,
125 struct vm_area_struct *new_vma,
126 unsigned long old_addr, unsigned long new_addr,
127 unsigned long len);
128int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
129 struct vm_area_struct *, struct vm_area_struct *);
130void unmap_hugepage_range(struct vm_area_struct *,
131 unsigned long, unsigned long, struct page *,
132 zap_flags_t);
133void __unmap_hugepage_range(struct mmu_gather *tlb,
134 struct vm_area_struct *vma,
135 unsigned long start, unsigned long end,
136 struct page *ref_page, zap_flags_t zap_flags);
137void hugetlb_report_meminfo(struct seq_file *);
138int hugetlb_report_node_meminfo(char *buf, int len, int nid);
139void hugetlb_show_meminfo_node(int nid);
140unsigned long hugetlb_total_pages(void);
141vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
142 unsigned long address, unsigned int flags);
143#ifdef CONFIG_USERFAULTFD
144int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
145 struct vm_area_struct *dst_vma,
146 unsigned long dst_addr,
147 unsigned long src_addr,
148 uffd_flags_t flags,
149 struct folio **foliop);
150#endif /* CONFIG_USERFAULTFD */
151bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
152 struct vm_area_struct *vma,
153 vm_flags_t vm_flags);
154long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
155 long freed);
156bool isolate_hugetlb(struct folio *folio, struct list_head *list);
157int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
158int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
159 bool *migratable_cleared);
160void folio_putback_active_hugetlb(struct folio *folio);
161void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
162void hugetlb_fix_reserve_counts(struct inode *inode);
163extern struct mutex *hugetlb_fault_mutex_table;
164u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
165
166pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
167 unsigned long addr, pud_t *pud);
168bool hugetlbfs_pagecache_present(struct hstate *h,
169 struct vm_area_struct *vma,
170 unsigned long address);
171
172struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
173
174extern int sysctl_hugetlb_shm_group;
175extern struct list_head huge_boot_pages[MAX_NUMNODES];
176
177/* arch callbacks */
178
179#ifndef CONFIG_HIGHPTE
180/*
181 * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
182 * which may go down to the lowest PTE level in their huge_pte_offset() and
183 * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
184 */
185static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
186{
187 return pte_offset_kernel(pmd, address);
188}
189static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
190 unsigned long address)
191{
192 return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
193}
194#endif
195
196pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
197 unsigned long addr, unsigned long sz);
198/*
199 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
200 * Returns the pte_t* if found, or NULL if the address is not mapped.
201 *
202 * IMPORTANT: we should normally not directly call this function, instead
203 * this is only a common interface to implement arch-specific
204 * walker. Please use hugetlb_walk() instead, because that will attempt to
205 * verify the locking for you.
206 *
207 * Since this function will walk all the pgtable pages (including not only
208 * high-level pgtable page, but also PUD entry that can be unshared
209 * concurrently for VM_SHARED), the caller of this function should be
210 * responsible of its thread safety. One can follow this rule:
211 *
212 * (1) For private mappings: pmd unsharing is not possible, so holding the
213 * mmap_lock for either read or write is sufficient. Most callers
214 * already hold the mmap_lock, so normally, no special action is
215 * required.
216 *
217 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
218 * pgtable page can go away from under us! It can be done by a pmd
219 * unshare with a follow up munmap() on the other process), then we
220 * need either:
221 *
222 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
223 * won't happen upon the range (it also makes sure the pte_t we
224 * read is the right and stable one), or,
225 *
226 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
227 * sure even if unshare happened the racy unmap() will wait until
228 * i_mmap_rwsem is released.
229 *
230 * Option (2.1) is the safest, which guarantees pte stability from pmd
231 * sharing pov, until the vma lock released. Option (2.2) doesn't protect
232 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
233 * access.
234 */
235pte_t *huge_pte_offset(struct mm_struct *mm,
236 unsigned long addr, unsigned long sz);
237unsigned long hugetlb_mask_last_page(struct hstate *h);
238int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
239 unsigned long addr, pte_t *ptep);
240void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
241 unsigned long *start, unsigned long *end);
242
243extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
244 unsigned long *begin, unsigned long *end);
245extern void __hugetlb_zap_end(struct vm_area_struct *vma,
246 struct zap_details *details);
247
248static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
249 unsigned long *start, unsigned long *end)
250{
251 if (is_vm_hugetlb_page(vma))
252 __hugetlb_zap_begin(vma, start, end);
253}
254
255static inline void hugetlb_zap_end(struct vm_area_struct *vma,
256 struct zap_details *details)
257{
258 if (is_vm_hugetlb_page(vma))
259 __hugetlb_zap_end(vma, details);
260}
261
262void hugetlb_vma_lock_read(struct vm_area_struct *vma);
263void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
264void hugetlb_vma_lock_write(struct vm_area_struct *vma);
265void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
266int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
267void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
268void hugetlb_vma_lock_release(struct kref *kref);
269long hugetlb_change_protection(struct vm_area_struct *vma,
270 unsigned long address, unsigned long end, pgprot_t newprot,
271 unsigned long cp_flags);
272bool is_hugetlb_entry_migration(pte_t pte);
273bool is_hugetlb_entry_hwpoisoned(pte_t pte);
274void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
275
276#else /* !CONFIG_HUGETLB_PAGE */
277
278static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
279{
280}
281
282static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
283{
284}
285
286static inline unsigned long hugetlb_total_pages(void)
287{
288 return 0;
289}
290
291static inline struct address_space *hugetlb_folio_mapping_lock_write(
292 struct folio *folio)
293{
294 return NULL;
295}
296
297static inline int huge_pmd_unshare(struct mm_struct *mm,
298 struct vm_area_struct *vma,
299 unsigned long addr, pte_t *ptep)
300{
301 return 0;
302}
303
304static inline void adjust_range_if_pmd_sharing_possible(
305 struct vm_area_struct *vma,
306 unsigned long *start, unsigned long *end)
307{
308}
309
310static inline void hugetlb_zap_begin(
311 struct vm_area_struct *vma,
312 unsigned long *start, unsigned long *end)
313{
314}
315
316static inline void hugetlb_zap_end(
317 struct vm_area_struct *vma,
318 struct zap_details *details)
319{
320}
321
322static inline int copy_hugetlb_page_range(struct mm_struct *dst,
323 struct mm_struct *src,
324 struct vm_area_struct *dst_vma,
325 struct vm_area_struct *src_vma)
326{
327 BUG();
328 return 0;
329}
330
331static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
332 struct vm_area_struct *new_vma,
333 unsigned long old_addr,
334 unsigned long new_addr,
335 unsigned long len)
336{
337 BUG();
338 return 0;
339}
340
341static inline void hugetlb_report_meminfo(struct seq_file *m)
342{
343}
344
345static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
346{
347 return 0;
348}
349
350static inline void hugetlb_show_meminfo_node(int nid)
351{
352}
353
354static inline int prepare_hugepage_range(struct file *file,
355 unsigned long addr, unsigned long len)
356{
357 return -EINVAL;
358}
359
360static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
361{
362}
363
364static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
365{
366}
367
368static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
369{
370}
371
372static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
373{
374}
375
376static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
377{
378 return 1;
379}
380
381static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
382{
383}
384
385static inline int is_hugepage_only_range(struct mm_struct *mm,
386 unsigned long addr, unsigned long len)
387{
388 return 0;
389}
390
391static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
392 unsigned long addr, unsigned long end,
393 unsigned long floor, unsigned long ceiling)
394{
395 BUG();
396}
397
398#ifdef CONFIG_USERFAULTFD
399static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
400 struct vm_area_struct *dst_vma,
401 unsigned long dst_addr,
402 unsigned long src_addr,
403 uffd_flags_t flags,
404 struct folio **foliop)
405{
406 BUG();
407 return 0;
408}
409#endif /* CONFIG_USERFAULTFD */
410
411static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
412 unsigned long sz)
413{
414 return NULL;
415}
416
417static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
418{
419 return false;
420}
421
422static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
423{
424 return 0;
425}
426
427static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
428 bool *migratable_cleared)
429{
430 return 0;
431}
432
433static inline void folio_putback_active_hugetlb(struct folio *folio)
434{
435}
436
437static inline void move_hugetlb_state(struct folio *old_folio,
438 struct folio *new_folio, int reason)
439{
440}
441
442static inline long hugetlb_change_protection(
443 struct vm_area_struct *vma, unsigned long address,
444 unsigned long end, pgprot_t newprot,
445 unsigned long cp_flags)
446{
447 return 0;
448}
449
450static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
451 struct vm_area_struct *vma, unsigned long start,
452 unsigned long end, struct page *ref_page,
453 zap_flags_t zap_flags)
454{
455 BUG();
456}
457
458static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
459 struct vm_area_struct *vma, unsigned long address,
460 unsigned int flags)
461{
462 BUG();
463 return 0;
464}
465
466static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
467
468#endif /* !CONFIG_HUGETLB_PAGE */
469
470#ifndef pgd_write
471static inline int pgd_write(pgd_t pgd)
472{
473 BUG();
474 return 0;
475}
476#endif
477
478#define HUGETLB_ANON_FILE "anon_hugepage"
479
480enum {
481 /*
482 * The file will be used as an shm file so shmfs accounting rules
483 * apply
484 */
485 HUGETLB_SHMFS_INODE = 1,
486 /*
487 * The file is being created on the internal vfs mount and shmfs
488 * accounting rules do not apply
489 */
490 HUGETLB_ANONHUGE_INODE = 2,
491};
492
493#ifdef CONFIG_HUGETLBFS
494struct hugetlbfs_sb_info {
495 long max_inodes; /* inodes allowed */
496 long free_inodes; /* inodes free */
497 spinlock_t stat_lock;
498 struct hstate *hstate;
499 struct hugepage_subpool *spool;
500 kuid_t uid;
501 kgid_t gid;
502 umode_t mode;
503};
504
505static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
506{
507 return sb->s_fs_info;
508}
509
510struct hugetlbfs_inode_info {
511 struct inode vfs_inode;
512 unsigned int seals;
513};
514
515static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
516{
517 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
518}
519
520extern const struct vm_operations_struct hugetlb_vm_ops;
521struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
522 int creat_flags, int page_size_log);
523
524static inline bool is_file_hugepages(const struct file *file)
525{
526 return file->f_op->fop_flags & FOP_HUGE_PAGES;
527}
528
529static inline struct hstate *hstate_inode(struct inode *i)
530{
531 return HUGETLBFS_SB(i->i_sb)->hstate;
532}
533#else /* !CONFIG_HUGETLBFS */
534
535#define is_file_hugepages(file) false
536static inline struct file *
537hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
538 int creat_flags, int page_size_log)
539{
540 return ERR_PTR(-ENOSYS);
541}
542
543static inline struct hstate *hstate_inode(struct inode *i)
544{
545 return NULL;
546}
547#endif /* !CONFIG_HUGETLBFS */
548
549unsigned long
550hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
551 unsigned long len, unsigned long pgoff,
552 unsigned long flags);
553
554/*
555 * huegtlb page specific state flags. These flags are located in page.private
556 * of the hugetlb head page. Functions created via the below macros should be
557 * used to manipulate these flags.
558 *
559 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
560 * allocation time. Cleared when page is fully instantiated. Free
561 * routine checks flag to restore a reservation on error paths.
562 * Synchronization: Examined or modified by code that knows it has
563 * the only reference to page. i.e. After allocation but before use
564 * or when the page is being freed.
565 * HPG_migratable - Set after a newly allocated page is added to the page
566 * cache and/or page tables. Indicates the page is a candidate for
567 * migration.
568 * Synchronization: Initially set after new page allocation with no
569 * locking. When examined and modified during migration processing
570 * (isolate, migrate, putback) the hugetlb_lock is held.
571 * HPG_temporary - Set on a page that is temporarily allocated from the buddy
572 * allocator. Typically used for migration target pages when no pages
573 * are available in the pool. The hugetlb free page path will
574 * immediately free pages with this flag set to the buddy allocator.
575 * Synchronization: Can be set after huge page allocation from buddy when
576 * code knows it has only reference. All other examinations and
577 * modifications require hugetlb_lock.
578 * HPG_freed - Set when page is on the free lists.
579 * Synchronization: hugetlb_lock held for examination and modification.
580 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
581 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
582 * that is not tracked by raw_hwp_page list.
583 */
584enum hugetlb_page_flags {
585 HPG_restore_reserve = 0,
586 HPG_migratable,
587 HPG_temporary,
588 HPG_freed,
589 HPG_vmemmap_optimized,
590 HPG_raw_hwp_unreliable,
591 __NR_HPAGEFLAGS,
592};
593
594/*
595 * Macros to create test, set and clear function definitions for
596 * hugetlb specific page flags.
597 */
598#ifdef CONFIG_HUGETLB_PAGE
599#define TESTHPAGEFLAG(uname, flname) \
600static __always_inline \
601bool folio_test_hugetlb_##flname(struct folio *folio) \
602 { void *private = &folio->private; \
603 return test_bit(HPG_##flname, private); \
604 }
605
606#define SETHPAGEFLAG(uname, flname) \
607static __always_inline \
608void folio_set_hugetlb_##flname(struct folio *folio) \
609 { void *private = &folio->private; \
610 set_bit(HPG_##flname, private); \
611 }
612
613#define CLEARHPAGEFLAG(uname, flname) \
614static __always_inline \
615void folio_clear_hugetlb_##flname(struct folio *folio) \
616 { void *private = &folio->private; \
617 clear_bit(HPG_##flname, private); \
618 }
619#else
620#define TESTHPAGEFLAG(uname, flname) \
621static inline bool \
622folio_test_hugetlb_##flname(struct folio *folio) \
623 { return 0; }
624
625#define SETHPAGEFLAG(uname, flname) \
626static inline void \
627folio_set_hugetlb_##flname(struct folio *folio) \
628 { }
629
630#define CLEARHPAGEFLAG(uname, flname) \
631static inline void \
632folio_clear_hugetlb_##flname(struct folio *folio) \
633 { }
634#endif
635
636#define HPAGEFLAG(uname, flname) \
637 TESTHPAGEFLAG(uname, flname) \
638 SETHPAGEFLAG(uname, flname) \
639 CLEARHPAGEFLAG(uname, flname) \
640
641/*
642 * Create functions associated with hugetlb page flags
643 */
644HPAGEFLAG(RestoreReserve, restore_reserve)
645HPAGEFLAG(Migratable, migratable)
646HPAGEFLAG(Temporary, temporary)
647HPAGEFLAG(Freed, freed)
648HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
649HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
650
651#ifdef CONFIG_HUGETLB_PAGE
652
653#define HSTATE_NAME_LEN 32
654/* Defines one hugetlb page size */
655struct hstate {
656 struct mutex resize_lock;
657 struct lock_class_key resize_key;
658 int next_nid_to_alloc;
659 int next_nid_to_free;
660 unsigned int order;
661 unsigned int demote_order;
662 unsigned long mask;
663 unsigned long max_huge_pages;
664 unsigned long nr_huge_pages;
665 unsigned long free_huge_pages;
666 unsigned long resv_huge_pages;
667 unsigned long surplus_huge_pages;
668 unsigned long nr_overcommit_huge_pages;
669 struct list_head hugepage_activelist;
670 struct list_head hugepage_freelists[MAX_NUMNODES];
671 unsigned int max_huge_pages_node[MAX_NUMNODES];
672 unsigned int nr_huge_pages_node[MAX_NUMNODES];
673 unsigned int free_huge_pages_node[MAX_NUMNODES];
674 unsigned int surplus_huge_pages_node[MAX_NUMNODES];
675 char name[HSTATE_NAME_LEN];
676};
677
678struct huge_bootmem_page {
679 struct list_head list;
680 struct hstate *hstate;
681};
682
683int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
684struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
685 unsigned long addr, int avoid_reserve);
686struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
687 nodemask_t *nmask, gfp_t gfp_mask,
688 bool allow_alloc_fallback);
689struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
690 nodemask_t *nmask, gfp_t gfp_mask);
691
692int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
693 pgoff_t idx);
694void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
695 unsigned long address, struct folio *folio);
696
697/* arch callback */
698int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
699int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
700bool __init hugetlb_node_alloc_supported(void);
701
702void __init hugetlb_add_hstate(unsigned order);
703bool __init arch_hugetlb_valid_size(unsigned long size);
704struct hstate *size_to_hstate(unsigned long size);
705
706#ifndef HUGE_MAX_HSTATE
707#define HUGE_MAX_HSTATE 1
708#endif
709
710extern struct hstate hstates[HUGE_MAX_HSTATE];
711extern unsigned int default_hstate_idx;
712
713#define default_hstate (hstates[default_hstate_idx])
714
715static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
716{
717 return folio->_hugetlb_subpool;
718}
719
720static inline void hugetlb_set_folio_subpool(struct folio *folio,
721 struct hugepage_subpool *subpool)
722{
723 folio->_hugetlb_subpool = subpool;
724}
725
726static inline struct hstate *hstate_file(struct file *f)
727{
728 return hstate_inode(file_inode(f));
729}
730
731static inline struct hstate *hstate_sizelog(int page_size_log)
732{
733 if (!page_size_log)
734 return &default_hstate;
735
736 if (page_size_log < BITS_PER_LONG)
737 return size_to_hstate(1UL << page_size_log);
738
739 return NULL;
740}
741
742static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
743{
744 return hstate_file(vma->vm_file);
745}
746
747static inline unsigned long huge_page_size(const struct hstate *h)
748{
749 return (unsigned long)PAGE_SIZE << h->order;
750}
751
752extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
753
754extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
755
756static inline unsigned long huge_page_mask(struct hstate *h)
757{
758 return h->mask;
759}
760
761static inline unsigned int huge_page_order(struct hstate *h)
762{
763 return h->order;
764}
765
766static inline unsigned huge_page_shift(struct hstate *h)
767{
768 return h->order + PAGE_SHIFT;
769}
770
771static inline bool hstate_is_gigantic(struct hstate *h)
772{
773 return huge_page_order(h) > MAX_PAGE_ORDER;
774}
775
776static inline unsigned int pages_per_huge_page(const struct hstate *h)
777{
778 return 1 << h->order;
779}
780
781static inline unsigned int blocks_per_huge_page(struct hstate *h)
782{
783 return huge_page_size(h) / 512;
784}
785
786static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
787 struct address_space *mapping, pgoff_t idx)
788{
789 return filemap_lock_folio(mapping, idx << huge_page_order(h));
790}
791
792#include <asm/hugetlb.h>
793
794#ifndef is_hugepage_only_range
795static inline int is_hugepage_only_range(struct mm_struct *mm,
796 unsigned long addr, unsigned long len)
797{
798 return 0;
799}
800#define is_hugepage_only_range is_hugepage_only_range
801#endif
802
803#ifndef arch_clear_hugetlb_flags
804static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
805#define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
806#endif
807
808#ifndef arch_make_huge_pte
809static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
810 vm_flags_t flags)
811{
812 return pte_mkhuge(entry);
813}
814#endif
815
816static inline struct hstate *folio_hstate(struct folio *folio)
817{
818 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
819 return size_to_hstate(folio_size(folio));
820}
821
822static inline unsigned hstate_index_to_shift(unsigned index)
823{
824 return hstates[index].order + PAGE_SHIFT;
825}
826
827static inline int hstate_index(struct hstate *h)
828{
829 return h - hstates;
830}
831
832int dissolve_free_hugetlb_folio(struct folio *folio);
833int dissolve_free_hugetlb_folios(unsigned long start_pfn,
834 unsigned long end_pfn);
835
836#ifdef CONFIG_MEMORY_FAILURE
837extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
838#else
839static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
840{
841}
842#endif
843
844#ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
845#ifndef arch_hugetlb_migration_supported
846static inline bool arch_hugetlb_migration_supported(struct hstate *h)
847{
848 if ((huge_page_shift(h) == PMD_SHIFT) ||
849 (huge_page_shift(h) == PUD_SHIFT) ||
850 (huge_page_shift(h) == PGDIR_SHIFT))
851 return true;
852 else
853 return false;
854}
855#endif
856#else
857static inline bool arch_hugetlb_migration_supported(struct hstate *h)
858{
859 return false;
860}
861#endif
862
863static inline bool hugepage_migration_supported(struct hstate *h)
864{
865 return arch_hugetlb_migration_supported(h);
866}
867
868/*
869 * Movability check is different as compared to migration check.
870 * It determines whether or not a huge page should be placed on
871 * movable zone or not. Movability of any huge page should be
872 * required only if huge page size is supported for migration.
873 * There won't be any reason for the huge page to be movable if
874 * it is not migratable to start with. Also the size of the huge
875 * page should be large enough to be placed under a movable zone
876 * and still feasible enough to be migratable. Just the presence
877 * in movable zone does not make the migration feasible.
878 *
879 * So even though large huge page sizes like the gigantic ones
880 * are migratable they should not be movable because its not
881 * feasible to migrate them from movable zone.
882 */
883static inline bool hugepage_movable_supported(struct hstate *h)
884{
885 if (!hugepage_migration_supported(h))
886 return false;
887
888 if (hstate_is_gigantic(h))
889 return false;
890 return true;
891}
892
893/* Movability of hugepages depends on migration support. */
894static inline gfp_t htlb_alloc_mask(struct hstate *h)
895{
896 gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
897
898 gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
899
900 return gfp;
901}
902
903static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
904{
905 gfp_t modified_mask = htlb_alloc_mask(h);
906
907 /* Some callers might want to enforce node */
908 modified_mask |= (gfp_mask & __GFP_THISNODE);
909
910 modified_mask |= (gfp_mask & __GFP_NOWARN);
911
912 return modified_mask;
913}
914
915static inline bool htlb_allow_alloc_fallback(int reason)
916{
917 bool allowed_fallback = false;
918
919 /*
920 * Note: the memory offline, memory failure and migration syscalls will
921 * be allowed to fallback to other nodes due to lack of a better chioce,
922 * that might break the per-node hugetlb pool. While other cases will
923 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
924 */
925 switch (reason) {
926 case MR_MEMORY_HOTPLUG:
927 case MR_MEMORY_FAILURE:
928 case MR_SYSCALL:
929 case MR_MEMPOLICY_MBIND:
930 allowed_fallback = true;
931 break;
932 default:
933 break;
934 }
935
936 return allowed_fallback;
937}
938
939static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
940 struct mm_struct *mm, pte_t *pte)
941{
942 const unsigned long size = huge_page_size(h);
943
944 VM_WARN_ON(size == PAGE_SIZE);
945
946 /*
947 * hugetlb must use the exact same PT locks as core-mm page table
948 * walkers would. When modifying a PTE table, hugetlb must take the
949 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
950 * PT lock etc.
951 *
952 * The expectation is that any hugetlb folio smaller than a PMD is
953 * always mapped into a single PTE table and that any hugetlb folio
954 * smaller than a PUD (but at least as big as a PMD) is always mapped
955 * into a single PMD table.
956 *
957 * If that does not hold for an architecture, then that architecture
958 * must disable split PT locks such that all *_lockptr() functions
959 * will give us the same result: the per-MM PT lock.
960 *
961 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
962 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
963 * and core-mm would use pmd_lockptr(). However, in such configurations
964 * split PMD locks are disabled -- they don't make sense on a single
965 * PGDIR page table -- and the end result is the same.
966 */
967 if (size >= PUD_SIZE)
968 return pud_lockptr(mm, (pud_t *) pte);
969 else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
970 return pmd_lockptr(mm, (pmd_t *) pte);
971 /* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
972 return ptep_lockptr(mm, pte);
973}
974
975#ifndef hugepages_supported
976/*
977 * Some platform decide whether they support huge pages at boot
978 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
979 * when there is no such support
980 */
981#define hugepages_supported() (HPAGE_SHIFT != 0)
982#endif
983
984void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
985
986static inline void hugetlb_count_init(struct mm_struct *mm)
987{
988 atomic_long_set(&mm->hugetlb_usage, 0);
989}
990
991static inline void hugetlb_count_add(long l, struct mm_struct *mm)
992{
993 atomic_long_add(l, &mm->hugetlb_usage);
994}
995
996static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
997{
998 atomic_long_sub(l, &mm->hugetlb_usage);
999}
1000
1001#ifndef huge_ptep_modify_prot_start
1002#define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
1003static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1004 unsigned long addr, pte_t *ptep)
1005{
1006 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
1007}
1008#endif
1009
1010#ifndef huge_ptep_modify_prot_commit
1011#define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
1012static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1013 unsigned long addr, pte_t *ptep,
1014 pte_t old_pte, pte_t pte)
1015{
1016 unsigned long psize = huge_page_size(hstate_vma(vma));
1017
1018 set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1019}
1020#endif
1021
1022#ifdef CONFIG_NUMA
1023void hugetlb_register_node(struct node *node);
1024void hugetlb_unregister_node(struct node *node);
1025#endif
1026
1027/*
1028 * Check if a given raw @page in a hugepage is HWPOISON.
1029 */
1030bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1031
1032static inline unsigned long huge_page_mask_align(struct file *file)
1033{
1034 return PAGE_MASK & ~huge_page_mask(hstate_file(file));
1035}
1036
1037#else /* CONFIG_HUGETLB_PAGE */
1038struct hstate {};
1039
1040static inline unsigned long huge_page_mask_align(struct file *file)
1041{
1042 return 0;
1043}
1044
1045static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1046{
1047 return NULL;
1048}
1049
1050static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1051 struct address_space *mapping, pgoff_t idx)
1052{
1053 return NULL;
1054}
1055
1056static inline int isolate_or_dissolve_huge_page(struct page *page,
1057 struct list_head *list)
1058{
1059 return -ENOMEM;
1060}
1061
1062static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1063 unsigned long addr,
1064 int avoid_reserve)
1065{
1066 return NULL;
1067}
1068
1069static inline struct folio *
1070alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1071 nodemask_t *nmask, gfp_t gfp_mask)
1072{
1073 return NULL;
1074}
1075
1076static inline struct folio *
1077alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1078 nodemask_t *nmask, gfp_t gfp_mask,
1079 bool allow_alloc_fallback)
1080{
1081 return NULL;
1082}
1083
1084static inline int __alloc_bootmem_huge_page(struct hstate *h)
1085{
1086 return 0;
1087}
1088
1089static inline struct hstate *hstate_file(struct file *f)
1090{
1091 return NULL;
1092}
1093
1094static inline struct hstate *hstate_sizelog(int page_size_log)
1095{
1096 return NULL;
1097}
1098
1099static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1100{
1101 return NULL;
1102}
1103
1104static inline struct hstate *folio_hstate(struct folio *folio)
1105{
1106 return NULL;
1107}
1108
1109static inline struct hstate *size_to_hstate(unsigned long size)
1110{
1111 return NULL;
1112}
1113
1114static inline unsigned long huge_page_size(struct hstate *h)
1115{
1116 return PAGE_SIZE;
1117}
1118
1119static inline unsigned long huge_page_mask(struct hstate *h)
1120{
1121 return PAGE_MASK;
1122}
1123
1124static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1125{
1126 return PAGE_SIZE;
1127}
1128
1129static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1130{
1131 return PAGE_SIZE;
1132}
1133
1134static inline unsigned int huge_page_order(struct hstate *h)
1135{
1136 return 0;
1137}
1138
1139static inline unsigned int huge_page_shift(struct hstate *h)
1140{
1141 return PAGE_SHIFT;
1142}
1143
1144static inline bool hstate_is_gigantic(struct hstate *h)
1145{
1146 return false;
1147}
1148
1149static inline unsigned int pages_per_huge_page(struct hstate *h)
1150{
1151 return 1;
1152}
1153
1154static inline unsigned hstate_index_to_shift(unsigned index)
1155{
1156 return 0;
1157}
1158
1159static inline int hstate_index(struct hstate *h)
1160{
1161 return 0;
1162}
1163
1164static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1165{
1166 return 0;
1167}
1168
1169static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1170 unsigned long end_pfn)
1171{
1172 return 0;
1173}
1174
1175static inline bool hugepage_migration_supported(struct hstate *h)
1176{
1177 return false;
1178}
1179
1180static inline bool hugepage_movable_supported(struct hstate *h)
1181{
1182 return false;
1183}
1184
1185static inline gfp_t htlb_alloc_mask(struct hstate *h)
1186{
1187 return 0;
1188}
1189
1190static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1191{
1192 return 0;
1193}
1194
1195static inline bool htlb_allow_alloc_fallback(int reason)
1196{
1197 return false;
1198}
1199
1200static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1201 struct mm_struct *mm, pte_t *pte)
1202{
1203 return &mm->page_table_lock;
1204}
1205
1206static inline void hugetlb_count_init(struct mm_struct *mm)
1207{
1208}
1209
1210static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1211{
1212}
1213
1214static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1215{
1216}
1217
1218static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1219 unsigned long addr, pte_t *ptep)
1220{
1221#ifdef CONFIG_MMU
1222 return ptep_get(ptep);
1223#else
1224 return *ptep;
1225#endif
1226}
1227
1228static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1229 pte_t *ptep, pte_t pte, unsigned long sz)
1230{
1231}
1232
1233static inline void hugetlb_register_node(struct node *node)
1234{
1235}
1236
1237static inline void hugetlb_unregister_node(struct node *node)
1238{
1239}
1240
1241static inline bool hugetlbfs_pagecache_present(
1242 struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1243{
1244 return false;
1245}
1246#endif /* CONFIG_HUGETLB_PAGE */
1247
1248static inline spinlock_t *huge_pte_lock(struct hstate *h,
1249 struct mm_struct *mm, pte_t *pte)
1250{
1251 spinlock_t *ptl;
1252
1253 ptl = huge_pte_lockptr(h, mm, pte);
1254 spin_lock(ptl);
1255 return ptl;
1256}
1257
1258#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1259extern void __init hugetlb_cma_reserve(int order);
1260#else
1261static inline __init void hugetlb_cma_reserve(int order)
1262{
1263}
1264#endif
1265
1266#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
1267static inline bool hugetlb_pmd_shared(pte_t *pte)
1268{
1269 return page_count(virt_to_page(pte)) > 1;
1270}
1271#else
1272static inline bool hugetlb_pmd_shared(pte_t *pte)
1273{
1274 return false;
1275}
1276#endif
1277
1278bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1279
1280#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1281/*
1282 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1283 * implement this.
1284 */
1285#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1286#endif
1287
1288static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1289{
1290 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1291}
1292
1293bool __vma_private_lock(struct vm_area_struct *vma);
1294
1295/*
1296 * Safe version of huge_pte_offset() to check the locks. See comments
1297 * above huge_pte_offset().
1298 */
1299static inline pte_t *
1300hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1301{
1302#if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1303 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1304
1305 /*
1306 * If pmd sharing possible, locking needed to safely walk the
1307 * hugetlb pgtables. More information can be found at the comment
1308 * above huge_pte_offset() in the same file.
1309 *
1310 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1311 */
1312 if (__vma_shareable_lock(vma))
1313 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1314 !lockdep_is_held(
1315 &vma->vm_file->f_mapping->i_mmap_rwsem));
1316#endif
1317 return huge_pte_offset(vma->vm_mm, addr, sz);
1318}
1319
1320#endif /* _LINUX_HUGETLB_H */