at v6.13 1172 lines 34 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef BLK_MQ_H 3#define BLK_MQ_H 4 5#include <linux/blkdev.h> 6#include <linux/sbitmap.h> 7#include <linux/lockdep.h> 8#include <linux/scatterlist.h> 9#include <linux/prefetch.h> 10#include <linux/srcu.h> 11#include <linux/rw_hint.h> 12 13struct blk_mq_tags; 14struct blk_flush_queue; 15 16#define BLKDEV_MIN_RQ 4 17#define BLKDEV_DEFAULT_RQ 128 18 19enum rq_end_io_ret { 20 RQ_END_IO_NONE, 21 RQ_END_IO_FREE, 22}; 23 24typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t); 25 26/* 27 * request flags */ 28typedef __u32 __bitwise req_flags_t; 29 30/* Keep rqf_name[] in sync with the definitions below */ 31enum { 32 /* drive already may have started this one */ 33 __RQF_STARTED, 34 /* request for flush sequence */ 35 __RQF_FLUSH_SEQ, 36 /* merge of different types, fail separately */ 37 __RQF_MIXED_MERGE, 38 /* don't call prep for this one */ 39 __RQF_DONTPREP, 40 /* use hctx->sched_tags */ 41 __RQF_SCHED_TAGS, 42 /* use an I/O scheduler for this request */ 43 __RQF_USE_SCHED, 44 /* vaguely specified driver internal error. Ignored by block layer */ 45 __RQF_FAILED, 46 /* don't warn about errors */ 47 __RQF_QUIET, 48 /* account into disk and partition IO statistics */ 49 __RQF_IO_STAT, 50 /* runtime pm request */ 51 __RQF_PM, 52 /* on IO scheduler merge hash */ 53 __RQF_HASHED, 54 /* track IO completion time */ 55 __RQF_STATS, 56 /* Look at ->special_vec for the actual data payload instead of the 57 bio chain. */ 58 __RQF_SPECIAL_PAYLOAD, 59 /* request completion needs to be signaled to zone write plugging. */ 60 __RQF_ZONE_WRITE_PLUGGING, 61 /* ->timeout has been called, don't expire again */ 62 __RQF_TIMED_OUT, 63 __RQF_RESV, 64 __RQF_BITS 65}; 66 67#define RQF_STARTED ((__force req_flags_t)(1 << __RQF_STARTED)) 68#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << __RQF_FLUSH_SEQ)) 69#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << __RQF_MIXED_MERGE)) 70#define RQF_DONTPREP ((__force req_flags_t)(1 << __RQF_DONTPREP)) 71#define RQF_SCHED_TAGS ((__force req_flags_t)(1 << __RQF_SCHED_TAGS)) 72#define RQF_USE_SCHED ((__force req_flags_t)(1 << __RQF_USE_SCHED)) 73#define RQF_FAILED ((__force req_flags_t)(1 << __RQF_FAILED)) 74#define RQF_QUIET ((__force req_flags_t)(1 << __RQF_QUIET)) 75#define RQF_IO_STAT ((__force req_flags_t)(1 << __RQF_IO_STAT)) 76#define RQF_PM ((__force req_flags_t)(1 << __RQF_PM)) 77#define RQF_HASHED ((__force req_flags_t)(1 << __RQF_HASHED)) 78#define RQF_STATS ((__force req_flags_t)(1 << __RQF_STATS)) 79#define RQF_SPECIAL_PAYLOAD \ 80 ((__force req_flags_t)(1 << __RQF_SPECIAL_PAYLOAD)) 81#define RQF_ZONE_WRITE_PLUGGING \ 82 ((__force req_flags_t)(1 << __RQF_ZONE_WRITE_PLUGGING)) 83#define RQF_TIMED_OUT ((__force req_flags_t)(1 << __RQF_TIMED_OUT)) 84#define RQF_RESV ((__force req_flags_t)(1 << __RQF_RESV)) 85 86/* flags that prevent us from merging requests: */ 87#define RQF_NOMERGE_FLAGS \ 88 (RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 89 90enum mq_rq_state { 91 MQ_RQ_IDLE = 0, 92 MQ_RQ_IN_FLIGHT = 1, 93 MQ_RQ_COMPLETE = 2, 94}; 95 96/* 97 * Try to put the fields that are referenced together in the same cacheline. 98 * 99 * If you modify this structure, make sure to update blk_rq_init() and 100 * especially blk_mq_rq_ctx_init() to take care of the added fields. 101 */ 102struct request { 103 struct request_queue *q; 104 struct blk_mq_ctx *mq_ctx; 105 struct blk_mq_hw_ctx *mq_hctx; 106 107 blk_opf_t cmd_flags; /* op and common flags */ 108 req_flags_t rq_flags; 109 110 int tag; 111 int internal_tag; 112 113 unsigned int timeout; 114 115 /* the following two fields are internal, NEVER access directly */ 116 unsigned int __data_len; /* total data len */ 117 sector_t __sector; /* sector cursor */ 118 119 struct bio *bio; 120 struct bio *biotail; 121 122 union { 123 struct list_head queuelist; 124 struct request *rq_next; 125 }; 126 127 struct block_device *part; 128#ifdef CONFIG_BLK_RQ_ALLOC_TIME 129 /* Time that the first bio started allocating this request. */ 130 u64 alloc_time_ns; 131#endif 132 /* Time that this request was allocated for this IO. */ 133 u64 start_time_ns; 134 /* Time that I/O was submitted to the device. */ 135 u64 io_start_time_ns; 136 137#ifdef CONFIG_BLK_WBT 138 unsigned short wbt_flags; 139#endif 140 /* 141 * rq sectors used for blk stats. It has the same value 142 * with blk_rq_sectors(rq), except that it never be zeroed 143 * by completion. 144 */ 145 unsigned short stats_sectors; 146 147 /* 148 * Number of scatter-gather DMA addr+len pairs after 149 * physical address coalescing is performed. 150 */ 151 unsigned short nr_phys_segments; 152 unsigned short nr_integrity_segments; 153 154#ifdef CONFIG_BLK_INLINE_ENCRYPTION 155 struct bio_crypt_ctx *crypt_ctx; 156 struct blk_crypto_keyslot *crypt_keyslot; 157#endif 158 159 enum mq_rq_state state; 160 atomic_t ref; 161 162 unsigned long deadline; 163 164 /* 165 * The hash is used inside the scheduler, and killed once the 166 * request reaches the dispatch list. The ipi_list is only used 167 * to queue the request for softirq completion, which is long 168 * after the request has been unhashed (and even removed from 169 * the dispatch list). 170 */ 171 union { 172 struct hlist_node hash; /* merge hash */ 173 struct llist_node ipi_list; 174 }; 175 176 /* 177 * The rb_node is only used inside the io scheduler, requests 178 * are pruned when moved to the dispatch queue. special_vec must 179 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be 180 * insert into an IO scheduler. 181 */ 182 union { 183 struct rb_node rb_node; /* sort/lookup */ 184 struct bio_vec special_vec; 185 }; 186 187 /* 188 * Three pointers are available for the IO schedulers, if they need 189 * more they have to dynamically allocate it. 190 */ 191 struct { 192 struct io_cq *icq; 193 void *priv[2]; 194 } elv; 195 196 struct { 197 unsigned int seq; 198 rq_end_io_fn *saved_end_io; 199 } flush; 200 201 u64 fifo_time; 202 203 /* 204 * completion callback. 205 */ 206 rq_end_io_fn *end_io; 207 void *end_io_data; 208}; 209 210static inline enum req_op req_op(const struct request *req) 211{ 212 return req->cmd_flags & REQ_OP_MASK; 213} 214 215static inline bool blk_rq_is_passthrough(struct request *rq) 216{ 217 return blk_op_is_passthrough(rq->cmd_flags); 218} 219 220static inline unsigned short req_get_ioprio(struct request *req) 221{ 222 if (req->bio) 223 return req->bio->bi_ioprio; 224 return 0; 225} 226 227#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 228 229#define rq_dma_dir(rq) \ 230 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 231 232static inline int rq_list_empty(const struct rq_list *rl) 233{ 234 return rl->head == NULL; 235} 236 237static inline void rq_list_init(struct rq_list *rl) 238{ 239 rl->head = NULL; 240 rl->tail = NULL; 241} 242 243static inline void rq_list_add_tail(struct rq_list *rl, struct request *rq) 244{ 245 rq->rq_next = NULL; 246 if (rl->tail) 247 rl->tail->rq_next = rq; 248 else 249 rl->head = rq; 250 rl->tail = rq; 251} 252 253static inline void rq_list_add_head(struct rq_list *rl, struct request *rq) 254{ 255 rq->rq_next = rl->head; 256 rl->head = rq; 257 if (!rl->tail) 258 rl->tail = rq; 259} 260 261static inline struct request *rq_list_pop(struct rq_list *rl) 262{ 263 struct request *rq = rl->head; 264 265 if (rq) { 266 rl->head = rl->head->rq_next; 267 if (!rl->head) 268 rl->tail = NULL; 269 rq->rq_next = NULL; 270 } 271 272 return rq; 273} 274 275static inline struct request *rq_list_peek(struct rq_list *rl) 276{ 277 return rl->head; 278} 279 280#define rq_list_for_each(rl, pos) \ 281 for (pos = rq_list_peek((rl)); (pos); pos = pos->rq_next) 282 283#define rq_list_for_each_safe(rl, pos, nxt) \ 284 for (pos = rq_list_peek((rl)), nxt = pos->rq_next; \ 285 pos; pos = nxt, nxt = pos ? pos->rq_next : NULL) 286 287/** 288 * enum blk_eh_timer_return - How the timeout handler should proceed 289 * @BLK_EH_DONE: The block driver completed the command or will complete it at 290 * a later time. 291 * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the 292 * request to complete. 293 */ 294enum blk_eh_timer_return { 295 BLK_EH_DONE, 296 BLK_EH_RESET_TIMER, 297}; 298 299/* Keep alloc_policy_name[] in sync with the definitions below */ 300enum { 301 BLK_TAG_ALLOC_FIFO, /* allocate starting from 0 */ 302 BLK_TAG_ALLOC_RR, /* allocate starting from last allocated tag */ 303 BLK_TAG_ALLOC_MAX 304}; 305 306/** 307 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware 308 * block device 309 */ 310struct blk_mq_hw_ctx { 311 struct { 312 /** @lock: Protects the dispatch list. */ 313 spinlock_t lock; 314 /** 315 * @dispatch: Used for requests that are ready to be 316 * dispatched to the hardware but for some reason (e.g. lack of 317 * resources) could not be sent to the hardware. As soon as the 318 * driver can send new requests, requests at this list will 319 * be sent first for a fairer dispatch. 320 */ 321 struct list_head dispatch; 322 /** 323 * @state: BLK_MQ_S_* flags. Defines the state of the hw 324 * queue (active, scheduled to restart, stopped). 325 */ 326 unsigned long state; 327 } ____cacheline_aligned_in_smp; 328 329 /** 330 * @run_work: Used for scheduling a hardware queue run at a later time. 331 */ 332 struct delayed_work run_work; 333 /** @cpumask: Map of available CPUs where this hctx can run. */ 334 cpumask_var_t cpumask; 335 /** 336 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU 337 * selection from @cpumask. 338 */ 339 int next_cpu; 340 /** 341 * @next_cpu_batch: Counter of how many works left in the batch before 342 * changing to the next CPU. 343 */ 344 int next_cpu_batch; 345 346 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */ 347 unsigned long flags; 348 349 /** 350 * @sched_data: Pointer owned by the IO scheduler attached to a request 351 * queue. It's up to the IO scheduler how to use this pointer. 352 */ 353 void *sched_data; 354 /** 355 * @queue: Pointer to the request queue that owns this hardware context. 356 */ 357 struct request_queue *queue; 358 /** @fq: Queue of requests that need to perform a flush operation. */ 359 struct blk_flush_queue *fq; 360 361 /** 362 * @driver_data: Pointer to data owned by the block driver that created 363 * this hctx 364 */ 365 void *driver_data; 366 367 /** 368 * @ctx_map: Bitmap for each software queue. If bit is on, there is a 369 * pending request in that software queue. 370 */ 371 struct sbitmap ctx_map; 372 373 /** 374 * @dispatch_from: Software queue to be used when no scheduler was 375 * selected. 376 */ 377 struct blk_mq_ctx *dispatch_from; 378 /** 379 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to 380 * decide if the hw_queue is busy using Exponential Weighted Moving 381 * Average algorithm. 382 */ 383 unsigned int dispatch_busy; 384 385 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */ 386 unsigned short type; 387 /** @nr_ctx: Number of software queues. */ 388 unsigned short nr_ctx; 389 /** @ctxs: Array of software queues. */ 390 struct blk_mq_ctx **ctxs; 391 392 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */ 393 spinlock_t dispatch_wait_lock; 394 /** 395 * @dispatch_wait: Waitqueue to put requests when there is no tag 396 * available at the moment, to wait for another try in the future. 397 */ 398 wait_queue_entry_t dispatch_wait; 399 400 /** 401 * @wait_index: Index of next available dispatch_wait queue to insert 402 * requests. 403 */ 404 atomic_t wait_index; 405 406 /** 407 * @tags: Tags owned by the block driver. A tag at this set is only 408 * assigned when a request is dispatched from a hardware queue. 409 */ 410 struct blk_mq_tags *tags; 411 /** 412 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O 413 * scheduler associated with a request queue, a tag is assigned when 414 * that request is allocated. Else, this member is not used. 415 */ 416 struct blk_mq_tags *sched_tags; 417 418 /** @numa_node: NUMA node the storage adapter has been connected to. */ 419 unsigned int numa_node; 420 /** @queue_num: Index of this hardware queue. */ 421 unsigned int queue_num; 422 423 /** 424 * @nr_active: Number of active requests. Only used when a tag set is 425 * shared across request queues. 426 */ 427 atomic_t nr_active; 428 429 /** @cpuhp_online: List to store request if CPU is going to die */ 430 struct hlist_node cpuhp_online; 431 /** @cpuhp_dead: List to store request if some CPU die. */ 432 struct hlist_node cpuhp_dead; 433 /** @kobj: Kernel object for sysfs. */ 434 struct kobject kobj; 435 436#ifdef CONFIG_BLK_DEBUG_FS 437 /** 438 * @debugfs_dir: debugfs directory for this hardware queue. Named 439 * as cpu<cpu_number>. 440 */ 441 struct dentry *debugfs_dir; 442 /** @sched_debugfs_dir: debugfs directory for the scheduler. */ 443 struct dentry *sched_debugfs_dir; 444#endif 445 446 /** 447 * @hctx_list: if this hctx is not in use, this is an entry in 448 * q->unused_hctx_list. 449 */ 450 struct list_head hctx_list; 451}; 452 453/** 454 * struct blk_mq_queue_map - Map software queues to hardware queues 455 * @mq_map: CPU ID to hardware queue index map. This is an array 456 * with nr_cpu_ids elements. Each element has a value in the range 457 * [@queue_offset, @queue_offset + @nr_queues). 458 * @nr_queues: Number of hardware queues to map CPU IDs onto. 459 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe 460 * driver to map each hardware queue type (enum hctx_type) onto a distinct 461 * set of hardware queues. 462 */ 463struct blk_mq_queue_map { 464 unsigned int *mq_map; 465 unsigned int nr_queues; 466 unsigned int queue_offset; 467}; 468 469/** 470 * enum hctx_type - Type of hardware queue 471 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for. 472 * @HCTX_TYPE_READ: Just for READ I/O. 473 * @HCTX_TYPE_POLL: Polled I/O of any kind. 474 * @HCTX_MAX_TYPES: Number of types of hctx. 475 */ 476enum hctx_type { 477 HCTX_TYPE_DEFAULT, 478 HCTX_TYPE_READ, 479 HCTX_TYPE_POLL, 480 481 HCTX_MAX_TYPES, 482}; 483 484/** 485 * struct blk_mq_tag_set - tag set that can be shared between request queues 486 * @ops: Pointers to functions that implement block driver behavior. 487 * @map: One or more ctx -> hctx mappings. One map exists for each 488 * hardware queue type (enum hctx_type) that the driver wishes 489 * to support. There are no restrictions on maps being of the 490 * same size, and it's perfectly legal to share maps between 491 * types. 492 * @nr_maps: Number of elements in the @map array. A number in the range 493 * [1, HCTX_MAX_TYPES]. 494 * @nr_hw_queues: Number of hardware queues supported by the block driver that 495 * owns this data structure. 496 * @queue_depth: Number of tags per hardware queue, reserved tags included. 497 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag 498 * allocations. 499 * @cmd_size: Number of additional bytes to allocate per request. The block 500 * driver owns these additional bytes. 501 * @numa_node: NUMA node the storage adapter has been connected to. 502 * @timeout: Request processing timeout in jiffies. 503 * @flags: Zero or more BLK_MQ_F_* flags. 504 * @driver_data: Pointer to data owned by the block driver that created this 505 * tag set. 506 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues 507 * elements. 508 * @shared_tags: 509 * Shared set of tags. Has @nr_hw_queues elements. If set, 510 * shared by all @tags. 511 * @tag_list_lock: Serializes tag_list accesses. 512 * @tag_list: List of the request queues that use this tag set. See also 513 * request_queue.tag_set_list. 514 * @srcu: Use as lock when type of the request queue is blocking 515 * (BLK_MQ_F_BLOCKING). 516 */ 517struct blk_mq_tag_set { 518 const struct blk_mq_ops *ops; 519 struct blk_mq_queue_map map[HCTX_MAX_TYPES]; 520 unsigned int nr_maps; 521 unsigned int nr_hw_queues; 522 unsigned int queue_depth; 523 unsigned int reserved_tags; 524 unsigned int cmd_size; 525 int numa_node; 526 unsigned int timeout; 527 unsigned int flags; 528 void *driver_data; 529 530 struct blk_mq_tags **tags; 531 532 struct blk_mq_tags *shared_tags; 533 534 struct mutex tag_list_lock; 535 struct list_head tag_list; 536 struct srcu_struct *srcu; 537}; 538 539/** 540 * struct blk_mq_queue_data - Data about a request inserted in a queue 541 * 542 * @rq: Request pointer. 543 * @last: If it is the last request in the queue. 544 */ 545struct blk_mq_queue_data { 546 struct request *rq; 547 bool last; 548}; 549 550typedef bool (busy_tag_iter_fn)(struct request *, void *); 551 552/** 553 * struct blk_mq_ops - Callback functions that implements block driver 554 * behaviour. 555 */ 556struct blk_mq_ops { 557 /** 558 * @queue_rq: Queue a new request from block IO. 559 */ 560 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *, 561 const struct blk_mq_queue_data *); 562 563 /** 564 * @commit_rqs: If a driver uses bd->last to judge when to submit 565 * requests to hardware, it must define this function. In case of errors 566 * that make us stop issuing further requests, this hook serves the 567 * purpose of kicking the hardware (which the last request otherwise 568 * would have done). 569 */ 570 void (*commit_rqs)(struct blk_mq_hw_ctx *); 571 572 /** 573 * @queue_rqs: Queue a list of new requests. Driver is guaranteed 574 * that each request belongs to the same queue. If the driver doesn't 575 * empty the @rqlist completely, then the rest will be queued 576 * individually by the block layer upon return. 577 */ 578 void (*queue_rqs)(struct rq_list *rqlist); 579 580 /** 581 * @get_budget: Reserve budget before queue request, once .queue_rq is 582 * run, it is driver's responsibility to release the 583 * reserved budget. Also we have to handle failure case 584 * of .get_budget for avoiding I/O deadlock. 585 */ 586 int (*get_budget)(struct request_queue *); 587 588 /** 589 * @put_budget: Release the reserved budget. 590 */ 591 void (*put_budget)(struct request_queue *, int); 592 593 /** 594 * @set_rq_budget_token: store rq's budget token 595 */ 596 void (*set_rq_budget_token)(struct request *, int); 597 /** 598 * @get_rq_budget_token: retrieve rq's budget token 599 */ 600 int (*get_rq_budget_token)(struct request *); 601 602 /** 603 * @timeout: Called on request timeout. 604 */ 605 enum blk_eh_timer_return (*timeout)(struct request *); 606 607 /** 608 * @poll: Called to poll for completion of a specific tag. 609 */ 610 int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *); 611 612 /** 613 * @complete: Mark the request as complete. 614 */ 615 void (*complete)(struct request *); 616 617 /** 618 * @init_hctx: Called when the block layer side of a hardware queue has 619 * been set up, allowing the driver to allocate/init matching 620 * structures. 621 */ 622 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int); 623 /** 624 * @exit_hctx: Ditto for exit/teardown. 625 */ 626 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int); 627 628 /** 629 * @init_request: Called for every command allocated by the block layer 630 * to allow the driver to set up driver specific data. 631 * 632 * Tag greater than or equal to queue_depth is for setting up 633 * flush request. 634 */ 635 int (*init_request)(struct blk_mq_tag_set *set, struct request *, 636 unsigned int, unsigned int); 637 /** 638 * @exit_request: Ditto for exit/teardown. 639 */ 640 void (*exit_request)(struct blk_mq_tag_set *set, struct request *, 641 unsigned int); 642 643 /** 644 * @cleanup_rq: Called before freeing one request which isn't completed 645 * yet, and usually for freeing the driver private data. 646 */ 647 void (*cleanup_rq)(struct request *); 648 649 /** 650 * @busy: If set, returns whether or not this queue currently is busy. 651 */ 652 bool (*busy)(struct request_queue *); 653 654 /** 655 * @map_queues: This allows drivers specify their own queue mapping by 656 * overriding the setup-time function that builds the mq_map. 657 */ 658 void (*map_queues)(struct blk_mq_tag_set *set); 659 660#ifdef CONFIG_BLK_DEBUG_FS 661 /** 662 * @show_rq: Used by the debugfs implementation to show driver-specific 663 * information about a request. 664 */ 665 void (*show_rq)(struct seq_file *m, struct request *rq); 666#endif 667}; 668 669/* Keep hctx_flag_name[] in sync with the definitions below */ 670enum { 671 BLK_MQ_F_SHOULD_MERGE = 1 << 0, 672 BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1, 673 /* 674 * Set when this device requires underlying blk-mq device for 675 * completing IO: 676 */ 677 BLK_MQ_F_STACKING = 1 << 2, 678 BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3, 679 BLK_MQ_F_BLOCKING = 1 << 4, 680 /* Do not allow an I/O scheduler to be configured. */ 681 BLK_MQ_F_NO_SCHED = 1 << 5, 682 683 /* 684 * Select 'none' during queue registration in case of a single hwq 685 * or shared hwqs instead of 'mq-deadline'. 686 */ 687 BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 6, 688 BLK_MQ_F_ALLOC_POLICY_START_BIT = 7, 689 BLK_MQ_F_ALLOC_POLICY_BITS = 1, 690}; 691#define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \ 692 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \ 693 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) 694#define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \ 695 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \ 696 << BLK_MQ_F_ALLOC_POLICY_START_BIT) 697 698#define BLK_MQ_MAX_DEPTH (10240) 699#define BLK_MQ_NO_HCTX_IDX (-1U) 700 701enum { 702 /* Keep hctx_state_name[] in sync with the definitions below */ 703 BLK_MQ_S_STOPPED, 704 BLK_MQ_S_TAG_ACTIVE, 705 BLK_MQ_S_SCHED_RESTART, 706 /* hw queue is inactive after all its CPUs become offline */ 707 BLK_MQ_S_INACTIVE, 708 BLK_MQ_S_MAX 709}; 710 711struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 712 struct queue_limits *lim, void *queuedata, 713 struct lock_class_key *lkclass); 714#define blk_mq_alloc_disk(set, lim, queuedata) \ 715({ \ 716 static struct lock_class_key __key; \ 717 \ 718 __blk_mq_alloc_disk(set, lim, queuedata, &__key); \ 719}) 720struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 721 struct lock_class_key *lkclass); 722struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 723 struct queue_limits *lim, void *queuedata); 724int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 725 struct request_queue *q); 726void blk_mq_destroy_queue(struct request_queue *); 727 728int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set); 729int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 730 const struct blk_mq_ops *ops, unsigned int queue_depth, 731 unsigned int set_flags); 732void blk_mq_free_tag_set(struct blk_mq_tag_set *set); 733 734void blk_mq_free_request(struct request *rq); 735int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 736 unsigned int poll_flags); 737 738bool blk_mq_queue_inflight(struct request_queue *q); 739 740enum { 741 /* return when out of requests */ 742 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0), 743 /* allocate from reserved pool */ 744 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1), 745 /* set RQF_PM */ 746 BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2), 747}; 748 749struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 750 blk_mq_req_flags_t flags); 751struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 752 blk_opf_t opf, blk_mq_req_flags_t flags, 753 unsigned int hctx_idx); 754 755/* 756 * Tag address space map. 757 */ 758struct blk_mq_tags { 759 unsigned int nr_tags; 760 unsigned int nr_reserved_tags; 761 unsigned int active_queues; 762 763 struct sbitmap_queue bitmap_tags; 764 struct sbitmap_queue breserved_tags; 765 766 struct request **rqs; 767 struct request **static_rqs; 768 struct list_head page_list; 769 770 /* 771 * used to clear request reference in rqs[] before freeing one 772 * request pool 773 */ 774 spinlock_t lock; 775}; 776 777static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, 778 unsigned int tag) 779{ 780 if (tag < tags->nr_tags) { 781 prefetch(tags->rqs[tag]); 782 return tags->rqs[tag]; 783 } 784 785 return NULL; 786} 787 788enum { 789 BLK_MQ_UNIQUE_TAG_BITS = 16, 790 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1, 791}; 792 793u32 blk_mq_unique_tag(struct request *rq); 794 795static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag) 796{ 797 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS; 798} 799 800static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag) 801{ 802 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK; 803} 804 805/** 806 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request 807 * @rq: target request. 808 */ 809static inline enum mq_rq_state blk_mq_rq_state(struct request *rq) 810{ 811 return READ_ONCE(rq->state); 812} 813 814static inline int blk_mq_request_started(struct request *rq) 815{ 816 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 817} 818 819static inline int blk_mq_request_completed(struct request *rq) 820{ 821 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE; 822} 823 824/* 825 * 826 * Set the state to complete when completing a request from inside ->queue_rq. 827 * This is used by drivers that want to ensure special complete actions that 828 * need access to the request are called on failure, e.g. by nvme for 829 * multipathing. 830 */ 831static inline void blk_mq_set_request_complete(struct request *rq) 832{ 833 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 834} 835 836/* 837 * Complete the request directly instead of deferring it to softirq or 838 * completing it another CPU. Useful in preemptible instead of an interrupt. 839 */ 840static inline void blk_mq_complete_request_direct(struct request *rq, 841 void (*complete)(struct request *rq)) 842{ 843 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 844 complete(rq); 845} 846 847void blk_mq_start_request(struct request *rq); 848void blk_mq_end_request(struct request *rq, blk_status_t error); 849void __blk_mq_end_request(struct request *rq, blk_status_t error); 850void blk_mq_end_request_batch(struct io_comp_batch *ib); 851 852/* 853 * Only need start/end time stamping if we have iostat or 854 * blk stats enabled, or using an IO scheduler. 855 */ 856static inline bool blk_mq_need_time_stamp(struct request *rq) 857{ 858 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED)); 859} 860 861static inline bool blk_mq_is_reserved_rq(struct request *rq) 862{ 863 return rq->rq_flags & RQF_RESV; 864} 865 866/* 867 * Batched completions only work when there is no I/O error and no special 868 * ->end_io handler. 869 */ 870static inline bool blk_mq_add_to_batch(struct request *req, 871 struct io_comp_batch *iob, int ioerror, 872 void (*complete)(struct io_comp_batch *)) 873{ 874 /* 875 * blk_mq_end_request_batch() can't end request allocated from 876 * sched tags 877 */ 878 if (!iob || (req->rq_flags & RQF_SCHED_TAGS) || ioerror || 879 (req->end_io && !blk_rq_is_passthrough(req))) 880 return false; 881 882 if (!iob->complete) 883 iob->complete = complete; 884 else if (iob->complete != complete) 885 return false; 886 iob->need_ts |= blk_mq_need_time_stamp(req); 887 rq_list_add_tail(&iob->req_list, req); 888 return true; 889} 890 891void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list); 892void blk_mq_kick_requeue_list(struct request_queue *q); 893void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs); 894void blk_mq_complete_request(struct request *rq); 895bool blk_mq_complete_request_remote(struct request *rq); 896void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx); 897void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx); 898void blk_mq_stop_hw_queues(struct request_queue *q); 899void blk_mq_start_hw_queues(struct request_queue *q); 900void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); 901void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async); 902void blk_mq_quiesce_queue(struct request_queue *q); 903void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set); 904void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set); 905void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set); 906void blk_mq_unquiesce_queue(struct request_queue *q); 907void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs); 908void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); 909void blk_mq_run_hw_queues(struct request_queue *q, bool async); 910void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs); 911void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 912 busy_tag_iter_fn *fn, void *priv); 913void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset); 914void blk_mq_freeze_queue(struct request_queue *q); 915void blk_mq_unfreeze_queue(struct request_queue *q); 916void blk_freeze_queue_start(struct request_queue *q); 917void blk_mq_freeze_queue_wait(struct request_queue *q); 918int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 919 unsigned long timeout); 920void blk_mq_unfreeze_queue_non_owner(struct request_queue *q); 921void blk_freeze_queue_start_non_owner(struct request_queue *q); 922 923void blk_mq_map_queues(struct blk_mq_queue_map *qmap); 924void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues); 925 926void blk_mq_quiesce_queue_nowait(struct request_queue *q); 927 928unsigned int blk_mq_rq_cpu(struct request *rq); 929 930bool __blk_should_fake_timeout(struct request_queue *q); 931static inline bool blk_should_fake_timeout(struct request_queue *q) 932{ 933 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) && 934 test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags)) 935 return __blk_should_fake_timeout(q); 936 return false; 937} 938 939/** 940 * blk_mq_rq_from_pdu - cast a PDU to a request 941 * @pdu: the PDU (Protocol Data Unit) to be casted 942 * 943 * Return: request 944 * 945 * Driver command data is immediately after the request. So subtract request 946 * size to get back to the original request. 947 */ 948static inline struct request *blk_mq_rq_from_pdu(void *pdu) 949{ 950 return pdu - sizeof(struct request); 951} 952 953/** 954 * blk_mq_rq_to_pdu - cast a request to a PDU 955 * @rq: the request to be casted 956 * 957 * Return: pointer to the PDU 958 * 959 * Driver command data is immediately after the request. So add request to get 960 * the PDU. 961 */ 962static inline void *blk_mq_rq_to_pdu(struct request *rq) 963{ 964 return rq + 1; 965} 966 967#define queue_for_each_hw_ctx(q, hctx, i) \ 968 xa_for_each(&(q)->hctx_table, (i), (hctx)) 969 970#define hctx_for_each_ctx(hctx, ctx, i) \ 971 for ((i) = 0; (i) < (hctx)->nr_ctx && \ 972 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++) 973 974static inline void blk_mq_cleanup_rq(struct request *rq) 975{ 976 if (rq->q->mq_ops->cleanup_rq) 977 rq->q->mq_ops->cleanup_rq(rq); 978} 979 980static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio, 981 unsigned int nr_segs) 982{ 983 rq->nr_phys_segments = nr_segs; 984 rq->__data_len = bio->bi_iter.bi_size; 985 rq->bio = rq->biotail = bio; 986} 987 988void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, 989 struct lock_class_key *key); 990 991static inline bool rq_is_sync(struct request *rq) 992{ 993 return op_is_sync(rq->cmd_flags); 994} 995 996void blk_rq_init(struct request_queue *q, struct request *rq); 997int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 998 struct bio_set *bs, gfp_t gfp_mask, 999 int (*bio_ctr)(struct bio *, struct bio *, void *), void *data); 1000void blk_rq_unprep_clone(struct request *rq); 1001blk_status_t blk_insert_cloned_request(struct request *rq); 1002 1003struct rq_map_data { 1004 struct page **pages; 1005 unsigned long offset; 1006 unsigned short page_order; 1007 unsigned short nr_entries; 1008 bool null_mapped; 1009 bool from_user; 1010}; 1011 1012int blk_rq_map_user(struct request_queue *, struct request *, 1013 struct rq_map_data *, void __user *, unsigned long, gfp_t); 1014int blk_rq_map_user_io(struct request *, struct rq_map_data *, 1015 void __user *, unsigned long, gfp_t, bool, int, bool, int); 1016int blk_rq_map_user_iov(struct request_queue *, struct request *, 1017 struct rq_map_data *, const struct iov_iter *, gfp_t); 1018int blk_rq_unmap_user(struct bio *); 1019int blk_rq_map_kern(struct request_queue *, struct request *, void *, 1020 unsigned int, gfp_t); 1021int blk_rq_append_bio(struct request *rq, struct bio *bio); 1022void blk_execute_rq_nowait(struct request *rq, bool at_head); 1023blk_status_t blk_execute_rq(struct request *rq, bool at_head); 1024bool blk_rq_is_poll(struct request *rq); 1025 1026struct req_iterator { 1027 struct bvec_iter iter; 1028 struct bio *bio; 1029}; 1030 1031#define __rq_for_each_bio(_bio, rq) \ 1032 if ((rq->bio)) \ 1033 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 1034 1035#define rq_for_each_segment(bvl, _rq, _iter) \ 1036 __rq_for_each_bio(_iter.bio, _rq) \ 1037 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 1038 1039#define rq_for_each_bvec(bvl, _rq, _iter) \ 1040 __rq_for_each_bio(_iter.bio, _rq) \ 1041 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 1042 1043#define rq_iter_last(bvec, _iter) \ 1044 (_iter.bio->bi_next == NULL && \ 1045 bio_iter_last(bvec, _iter.iter)) 1046 1047/* 1048 * blk_rq_pos() : the current sector 1049 * blk_rq_bytes() : bytes left in the entire request 1050 * blk_rq_cur_bytes() : bytes left in the current segment 1051 * blk_rq_sectors() : sectors left in the entire request 1052 * blk_rq_cur_sectors() : sectors left in the current segment 1053 * blk_rq_stats_sectors() : sectors of the entire request used for stats 1054 */ 1055static inline sector_t blk_rq_pos(const struct request *rq) 1056{ 1057 return rq->__sector; 1058} 1059 1060static inline unsigned int blk_rq_bytes(const struct request *rq) 1061{ 1062 return rq->__data_len; 1063} 1064 1065static inline int blk_rq_cur_bytes(const struct request *rq) 1066{ 1067 if (!rq->bio) 1068 return 0; 1069 if (!bio_has_data(rq->bio)) /* dataless requests such as discard */ 1070 return rq->bio->bi_iter.bi_size; 1071 return bio_iovec(rq->bio).bv_len; 1072} 1073 1074static inline unsigned int blk_rq_sectors(const struct request *rq) 1075{ 1076 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 1077} 1078 1079static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1080{ 1081 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1082} 1083 1084static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 1085{ 1086 return rq->stats_sectors; 1087} 1088 1089/* 1090 * Some commands like WRITE SAME have a payload or data transfer size which 1091 * is different from the size of the request. Any driver that supports such 1092 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1093 * calculate the data transfer size. 1094 */ 1095static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1096{ 1097 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1098 return rq->special_vec.bv_len; 1099 return blk_rq_bytes(rq); 1100} 1101 1102/* 1103 * Return the first full biovec in the request. The caller needs to check that 1104 * there are any bvecs before calling this helper. 1105 */ 1106static inline struct bio_vec req_bvec(struct request *rq) 1107{ 1108 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1109 return rq->special_vec; 1110 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1111} 1112 1113static inline unsigned int blk_rq_count_bios(struct request *rq) 1114{ 1115 unsigned int nr_bios = 0; 1116 struct bio *bio; 1117 1118 __rq_for_each_bio(bio, rq) 1119 nr_bios++; 1120 1121 return nr_bios; 1122} 1123 1124void blk_steal_bios(struct bio_list *list, struct request *rq); 1125 1126/* 1127 * Request completion related functions. 1128 * 1129 * blk_update_request() completes given number of bytes and updates 1130 * the request without completing it. 1131 */ 1132bool blk_update_request(struct request *rq, blk_status_t error, 1133 unsigned int nr_bytes); 1134void blk_abort_request(struct request *); 1135 1136/* 1137 * Number of physical segments as sent to the device. 1138 * 1139 * Normally this is the number of discontiguous data segments sent by the 1140 * submitter. But for data-less command like discard we might have no 1141 * actual data segments submitted, but the driver might have to add it's 1142 * own special payload. In that case we still return 1 here so that this 1143 * special payload will be mapped. 1144 */ 1145static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1146{ 1147 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1148 return 1; 1149 return rq->nr_phys_segments; 1150} 1151 1152/* 1153 * Number of discard segments (or ranges) the driver needs to fill in. 1154 * Each discard bio merged into a request is counted as one segment. 1155 */ 1156static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1157{ 1158 return max_t(unsigned short, rq->nr_phys_segments, 1); 1159} 1160 1161int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1162 struct scatterlist *sglist, struct scatterlist **last_sg); 1163static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1164 struct scatterlist *sglist) 1165{ 1166 struct scatterlist *last_sg = NULL; 1167 1168 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1169} 1170void blk_dump_rq_flags(struct request *, char *); 1171 1172#endif /* BLK_MQ_H */