at v6.13 60 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2013-2022, Intel Corporation. */ 3 4#ifndef _VIRTCHNL_H_ 5#define _VIRTCHNL_H_ 6 7#include <linux/bitops.h> 8#include <linux/bits.h> 9#include <linux/overflow.h> 10#include <uapi/linux/if_ether.h> 11 12/* Description: 13 * This header file describes the Virtual Function (VF) - Physical Function 14 * (PF) communication protocol used by the drivers for all devices starting 15 * from our 40G product line 16 * 17 * Admin queue buffer usage: 18 * desc->opcode is always aqc_opc_send_msg_to_pf 19 * flags, retval, datalen, and data addr are all used normally. 20 * The Firmware copies the cookie fields when sending messages between the 21 * PF and VF, but uses all other fields internally. Due to this limitation, 22 * we must send all messages as "indirect", i.e. using an external buffer. 23 * 24 * All the VSI indexes are relative to the VF. Each VF can have maximum of 25 * three VSIs. All the queue indexes are relative to the VSI. Each VF can 26 * have a maximum of sixteen queues for all of its VSIs. 27 * 28 * The PF is required to return a status code in v_retval for all messages 29 * except RESET_VF, which does not require any response. The returned value 30 * is of virtchnl_status_code type, defined here. 31 * 32 * In general, VF driver initialization should roughly follow the order of 33 * these opcodes. The VF driver must first validate the API version of the 34 * PF driver, then request a reset, then get resources, then configure 35 * queues and interrupts. After these operations are complete, the VF 36 * driver may start its queues, optionally add MAC and VLAN filters, and 37 * process traffic. 38 */ 39 40/* START GENERIC DEFINES 41 * Need to ensure the following enums and defines hold the same meaning and 42 * value in current and future projects 43 */ 44 45/* Error Codes */ 46enum virtchnl_status_code { 47 VIRTCHNL_STATUS_SUCCESS = 0, 48 VIRTCHNL_STATUS_ERR_PARAM = -5, 49 VIRTCHNL_STATUS_ERR_NO_MEMORY = -18, 50 VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38, 51 VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39, 52 VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40, 53 VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53, 54 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64, 55}; 56 57/* Backward compatibility */ 58#define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM 59#define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED 60 61#define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0 62#define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1 63#define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2 64#define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3 65#define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4 66#define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5 67#define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6 68#define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7 69 70enum virtchnl_link_speed { 71 VIRTCHNL_LINK_SPEED_UNKNOWN = 0, 72 VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT), 73 VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT), 74 VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT), 75 VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT), 76 VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT), 77 VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT), 78 VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT), 79 VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT), 80}; 81 82/* for hsplit_0 field of Rx HMC context */ 83/* deprecated with AVF 1.0 */ 84enum virtchnl_rx_hsplit { 85 VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0, 86 VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1, 87 VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2, 88 VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4, 89 VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8, 90}; 91 92enum virtchnl_bw_limit_type { 93 VIRTCHNL_BW_SHAPER = 0, 94}; 95/* END GENERIC DEFINES */ 96 97/* Opcodes for VF-PF communication. These are placed in the v_opcode field 98 * of the virtchnl_msg structure. 99 */ 100enum virtchnl_ops { 101/* The PF sends status change events to VFs using 102 * the VIRTCHNL_OP_EVENT opcode. 103 * VFs send requests to the PF using the other ops. 104 * Use of "advanced opcode" features must be negotiated as part of capabilities 105 * exchange and are not considered part of base mode feature set. 106 */ 107 VIRTCHNL_OP_UNKNOWN = 0, 108 VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */ 109 VIRTCHNL_OP_RESET_VF = 2, 110 VIRTCHNL_OP_GET_VF_RESOURCES = 3, 111 VIRTCHNL_OP_CONFIG_TX_QUEUE = 4, 112 VIRTCHNL_OP_CONFIG_RX_QUEUE = 5, 113 VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6, 114 VIRTCHNL_OP_CONFIG_IRQ_MAP = 7, 115 VIRTCHNL_OP_ENABLE_QUEUES = 8, 116 VIRTCHNL_OP_DISABLE_QUEUES = 9, 117 VIRTCHNL_OP_ADD_ETH_ADDR = 10, 118 VIRTCHNL_OP_DEL_ETH_ADDR = 11, 119 VIRTCHNL_OP_ADD_VLAN = 12, 120 VIRTCHNL_OP_DEL_VLAN = 13, 121 VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14, 122 VIRTCHNL_OP_GET_STATS = 15, 123 VIRTCHNL_OP_RSVD = 16, 124 VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */ 125 VIRTCHNL_OP_CONFIG_RSS_HFUNC = 18, 126 /* opcode 19 is reserved */ 127 VIRTCHNL_OP_IWARP = 20, /* advanced opcode */ 128 VIRTCHNL_OP_RDMA = VIRTCHNL_OP_IWARP, 129 VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */ 130 VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP = VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP, 131 VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */ 132 VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP = VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP, 133 VIRTCHNL_OP_CONFIG_RSS_KEY = 23, 134 VIRTCHNL_OP_CONFIG_RSS_LUT = 24, 135 VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25, 136 VIRTCHNL_OP_SET_RSS_HENA = 26, 137 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27, 138 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28, 139 VIRTCHNL_OP_REQUEST_QUEUES = 29, 140 VIRTCHNL_OP_ENABLE_CHANNELS = 30, 141 VIRTCHNL_OP_DISABLE_CHANNELS = 31, 142 VIRTCHNL_OP_ADD_CLOUD_FILTER = 32, 143 VIRTCHNL_OP_DEL_CLOUD_FILTER = 33, 144 /* opcode 34 - 43 are reserved */ 145 VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44, 146 VIRTCHNL_OP_ADD_RSS_CFG = 45, 147 VIRTCHNL_OP_DEL_RSS_CFG = 46, 148 VIRTCHNL_OP_ADD_FDIR_FILTER = 47, 149 VIRTCHNL_OP_DEL_FDIR_FILTER = 48, 150 VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51, 151 VIRTCHNL_OP_ADD_VLAN_V2 = 52, 152 VIRTCHNL_OP_DEL_VLAN_V2 = 53, 153 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54, 154 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55, 155 VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56, 156 VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57, 157 /* opcode 57 - 65 are reserved */ 158 VIRTCHNL_OP_GET_QOS_CAPS = 66, 159 /* opcode 68 through 111 are reserved */ 160 VIRTCHNL_OP_CONFIG_QUEUE_BW = 112, 161 VIRTCHNL_OP_CONFIG_QUANTA = 113, 162 VIRTCHNL_OP_MAX, 163}; 164 165/* These macros are used to generate compilation errors if a structure/union 166 * is not exactly the correct length. It gives a divide by zero error if the 167 * structure/union is not of the correct size, otherwise it creates an enum 168 * that is never used. 169 */ 170#define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \ 171 { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) } 172#define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \ 173 { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) } 174 175/* Message descriptions and data structures. */ 176 177/* VIRTCHNL_OP_VERSION 178 * VF posts its version number to the PF. PF responds with its version number 179 * in the same format, along with a return code. 180 * Reply from PF has its major/minor versions also in param0 and param1. 181 * If there is a major version mismatch, then the VF cannot operate. 182 * If there is a minor version mismatch, then the VF can operate but should 183 * add a warning to the system log. 184 * 185 * This enum element MUST always be specified as == 1, regardless of other 186 * changes in the API. The PF must always respond to this message without 187 * error regardless of version mismatch. 188 */ 189#define VIRTCHNL_VERSION_MAJOR 1 190#define VIRTCHNL_VERSION_MINOR 1 191#define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0 192 193struct virtchnl_version_info { 194 u32 major; 195 u32 minor; 196}; 197 198VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info); 199 200#define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0)) 201#define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1)) 202 203/* VIRTCHNL_OP_RESET_VF 204 * VF sends this request to PF with no parameters 205 * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register 206 * until reset completion is indicated. The admin queue must be reinitialized 207 * after this operation. 208 * 209 * When reset is complete, PF must ensure that all queues in all VSIs associated 210 * with the VF are stopped, all queue configurations in the HMC are set to 0, 211 * and all MAC and VLAN filters (except the default MAC address) on all VSIs 212 * are cleared. 213 */ 214 215/* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV 216 * vsi_type should always be 6 for backward compatibility. Add other fields 217 * as needed. 218 */ 219enum virtchnl_vsi_type { 220 VIRTCHNL_VSI_TYPE_INVALID = 0, 221 VIRTCHNL_VSI_SRIOV = 6, 222}; 223 224/* VIRTCHNL_OP_GET_VF_RESOURCES 225 * Version 1.0 VF sends this request to PF with no parameters 226 * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities 227 * PF responds with an indirect message containing 228 * virtchnl_vf_resource and one or more 229 * virtchnl_vsi_resource structures. 230 */ 231 232struct virtchnl_vsi_resource { 233 u16 vsi_id; 234 u16 num_queue_pairs; 235 236 /* see enum virtchnl_vsi_type */ 237 s32 vsi_type; 238 u16 qset_handle; 239 u8 default_mac_addr[ETH_ALEN]; 240}; 241 242VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource); 243 244/* VF capability flags 245 * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including 246 * TX/RX Checksum offloading and TSO for non-tunnelled packets. 247 */ 248#define VIRTCHNL_VF_OFFLOAD_L2 BIT(0) 249#define VIRTCHNL_VF_OFFLOAD_RDMA BIT(1) 250#define VIRTCHNL_VF_CAP_RDMA VIRTCHNL_VF_OFFLOAD_RDMA 251#define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3) 252#define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4) 253#define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5) 254#define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6) 255/* used to negotiate communicating link speeds in Mbps */ 256#define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7) 257#define VIRTCHNL_VF_OFFLOAD_CRC BIT(10) 258#define VIRTCHNL_VF_OFFLOAD_TC_U32 BIT(11) 259#define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15) 260#define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16) 261#define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17) 262#define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18) 263#define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19) 264#define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20) 265#define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21) 266#define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22) 267#define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23) 268#define VIRTCHNL_VF_OFFLOAD_USO BIT(25) 269#define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC BIT(26) 270#define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27) 271#define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28) 272#define VIRTCHNL_VF_OFFLOAD_QOS BIT(29) 273 274#define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \ 275 VIRTCHNL_VF_OFFLOAD_VLAN | \ 276 VIRTCHNL_VF_OFFLOAD_RSS_PF) 277 278struct virtchnl_vf_resource { 279 u16 num_vsis; 280 u16 num_queue_pairs; 281 u16 max_vectors; 282 u16 max_mtu; 283 284 u32 vf_cap_flags; 285 u32 rss_key_size; 286 u32 rss_lut_size; 287 288 struct virtchnl_vsi_resource vsi_res[]; 289}; 290 291VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_vf_resource); 292#define virtchnl_vf_resource_LEGACY_SIZEOF 36 293 294/* VIRTCHNL_OP_CONFIG_TX_QUEUE 295 * VF sends this message to set up parameters for one TX queue. 296 * External data buffer contains one instance of virtchnl_txq_info. 297 * PF configures requested queue and returns a status code. 298 */ 299 300/* Tx queue config info */ 301struct virtchnl_txq_info { 302 u16 vsi_id; 303 u16 queue_id; 304 u16 ring_len; /* number of descriptors, multiple of 8 */ 305 u16 headwb_enabled; /* deprecated with AVF 1.0 */ 306 u64 dma_ring_addr; 307 u64 dma_headwb_addr; /* deprecated with AVF 1.0 */ 308}; 309 310VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info); 311 312/* VIRTCHNL_OP_CONFIG_RX_QUEUE 313 * VF sends this message to set up parameters for one RX queue. 314 * External data buffer contains one instance of virtchnl_rxq_info. 315 * PF configures requested queue and returns a status code. The 316 * crc_disable flag disables CRC stripping on the VF. Setting 317 * the crc_disable flag to 1 will disable CRC stripping for each 318 * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC 319 * offload must have been set prior to sending this info or the PF 320 * will ignore the request. This flag should be set the same for 321 * all of the queues for a VF. 322 */ 323 324/* Rx queue config info */ 325struct virtchnl_rxq_info { 326 u16 vsi_id; 327 u16 queue_id; 328 u32 ring_len; /* number of descriptors, multiple of 32 */ 329 u16 hdr_size; 330 u16 splithdr_enabled; /* deprecated with AVF 1.0 */ 331 u32 databuffer_size; 332 u32 max_pkt_size; 333 u8 crc_disable; 334 u8 rxdid; 335 u8 pad1[2]; 336 u64 dma_ring_addr; 337 338 /* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */ 339 s32 rx_split_pos; 340 u32 pad2; 341}; 342 343VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info); 344 345/* VIRTCHNL_OP_CONFIG_VSI_QUEUES 346 * VF sends this message to set parameters for all active TX and RX queues 347 * associated with the specified VSI. 348 * PF configures queues and returns status. 349 * If the number of queues specified is greater than the number of queues 350 * associated with the VSI, an error is returned and no queues are configured. 351 * NOTE: The VF is not required to configure all queues in a single request. 352 * It may send multiple messages. PF drivers must correctly handle all VF 353 * requests. 354 */ 355struct virtchnl_queue_pair_info { 356 /* NOTE: vsi_id and queue_id should be identical for both queues. */ 357 struct virtchnl_txq_info txq; 358 struct virtchnl_rxq_info rxq; 359}; 360 361VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info); 362 363struct virtchnl_vsi_queue_config_info { 364 u16 vsi_id; 365 u16 num_queue_pairs; 366 u32 pad; 367 struct virtchnl_queue_pair_info qpair[]; 368}; 369 370VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vsi_queue_config_info); 371#define virtchnl_vsi_queue_config_info_LEGACY_SIZEOF 72 372 373/* VIRTCHNL_OP_REQUEST_QUEUES 374 * VF sends this message to request the PF to allocate additional queues to 375 * this VF. Each VF gets a guaranteed number of queues on init but asking for 376 * additional queues must be negotiated. This is a best effort request as it 377 * is possible the PF does not have enough queues left to support the request. 378 * If the PF cannot support the number requested it will respond with the 379 * maximum number it is able to support. If the request is successful, PF will 380 * then reset the VF to institute required changes. 381 */ 382 383/* VF resource request */ 384struct virtchnl_vf_res_request { 385 u16 num_queue_pairs; 386}; 387 388/* VIRTCHNL_OP_CONFIG_IRQ_MAP 389 * VF uses this message to map vectors to queues. 390 * The rxq_map and txq_map fields are bitmaps used to indicate which queues 391 * are to be associated with the specified vector. 392 * The "other" causes are always mapped to vector 0. The VF may not request 393 * that vector 0 be used for traffic. 394 * PF configures interrupt mapping and returns status. 395 * NOTE: due to hardware requirements, all active queues (both TX and RX) 396 * should be mapped to interrupts, even if the driver intends to operate 397 * only in polling mode. In this case the interrupt may be disabled, but 398 * the ITR timer will still run to trigger writebacks. 399 */ 400struct virtchnl_vector_map { 401 u16 vsi_id; 402 u16 vector_id; 403 u16 rxq_map; 404 u16 txq_map; 405 u16 rxitr_idx; 406 u16 txitr_idx; 407}; 408 409VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map); 410 411struct virtchnl_irq_map_info { 412 u16 num_vectors; 413 struct virtchnl_vector_map vecmap[]; 414}; 415 416VIRTCHNL_CHECK_STRUCT_LEN(2, virtchnl_irq_map_info); 417#define virtchnl_irq_map_info_LEGACY_SIZEOF 14 418 419/* VIRTCHNL_OP_ENABLE_QUEUES 420 * VIRTCHNL_OP_DISABLE_QUEUES 421 * VF sends these message to enable or disable TX/RX queue pairs. 422 * The queues fields are bitmaps indicating which queues to act upon. 423 * (Currently, we only support 16 queues per VF, but we make the field 424 * u32 to allow for expansion.) 425 * PF performs requested action and returns status. 426 * NOTE: The VF is not required to enable/disable all queues in a single 427 * request. It may send multiple messages. 428 * PF drivers must correctly handle all VF requests. 429 */ 430struct virtchnl_queue_select { 431 u16 vsi_id; 432 u16 pad; 433 u32 rx_queues; 434 u32 tx_queues; 435}; 436 437VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select); 438 439/* VIRTCHNL_OP_ADD_ETH_ADDR 440 * VF sends this message in order to add one or more unicast or multicast 441 * address filters for the specified VSI. 442 * PF adds the filters and returns status. 443 */ 444 445/* VIRTCHNL_OP_DEL_ETH_ADDR 446 * VF sends this message in order to remove one or more unicast or multicast 447 * filters for the specified VSI. 448 * PF removes the filters and returns status. 449 */ 450 451/* VIRTCHNL_ETHER_ADDR_LEGACY 452 * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad 453 * bytes. Moving forward all VF drivers should not set type to 454 * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy 455 * behavior. The control plane function (i.e. PF) can use a best effort method 456 * of tracking the primary/device unicast in this case, but there is no 457 * guarantee and functionality depends on the implementation of the PF. 458 */ 459 460/* VIRTCHNL_ETHER_ADDR_PRIMARY 461 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the 462 * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and 463 * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane 464 * function (i.e. PF) to accurately track and use this MAC address for 465 * displaying on the host and for VM/function reset. 466 */ 467 468/* VIRTCHNL_ETHER_ADDR_EXTRA 469 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra 470 * unicast and/or multicast filters that are being added/deleted via 471 * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively. 472 */ 473struct virtchnl_ether_addr { 474 u8 addr[ETH_ALEN]; 475 u8 type; 476#define VIRTCHNL_ETHER_ADDR_LEGACY 0 477#define VIRTCHNL_ETHER_ADDR_PRIMARY 1 478#define VIRTCHNL_ETHER_ADDR_EXTRA 2 479#define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */ 480 u8 pad; 481}; 482 483VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr); 484 485struct virtchnl_ether_addr_list { 486 u16 vsi_id; 487 u16 num_elements; 488 struct virtchnl_ether_addr list[]; 489}; 490 491VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_ether_addr_list); 492#define virtchnl_ether_addr_list_LEGACY_SIZEOF 12 493 494/* VIRTCHNL_OP_ADD_VLAN 495 * VF sends this message to add one or more VLAN tag filters for receives. 496 * PF adds the filters and returns status. 497 * If a port VLAN is configured by the PF, this operation will return an 498 * error to the VF. 499 */ 500 501/* VIRTCHNL_OP_DEL_VLAN 502 * VF sends this message to remove one or more VLAN tag filters for receives. 503 * PF removes the filters and returns status. 504 * If a port VLAN is configured by the PF, this operation will return an 505 * error to the VF. 506 */ 507 508struct virtchnl_vlan_filter_list { 509 u16 vsi_id; 510 u16 num_elements; 511 u16 vlan_id[]; 512}; 513 514VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_vlan_filter_list); 515#define virtchnl_vlan_filter_list_LEGACY_SIZEOF 6 516 517/* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related 518 * structures and opcodes. 519 * 520 * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver 521 * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED. 522 * 523 * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype. 524 * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype. 525 * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype. 526 * 527 * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported 528 * by the PF concurrently. For example, if the PF can support 529 * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it 530 * would OR the following bits: 531 * 532 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 533 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 534 * VIRTCHNL_VLAN_ETHERTYPE_AND; 535 * 536 * The VF would interpret this as VLAN filtering can be supported on both 0x8100 537 * and 0x88A8 VLAN ethertypes. 538 * 539 * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported 540 * by the PF concurrently. For example if the PF can support 541 * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping 542 * offload it would OR the following bits: 543 * 544 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 545 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 546 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 547 * 548 * The VF would interpret this as VLAN stripping can be supported on either 549 * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via 550 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override 551 * the previously set value. 552 * 553 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or 554 * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors. 555 * 556 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware 557 * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor. 558 * 559 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware 560 * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor. 561 * 562 * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for 563 * VLAN filtering if the underlying PF supports it. 564 * 565 * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a 566 * certain VLAN capability can be toggled. For example if the underlying PF/CP 567 * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should 568 * set this bit along with the supported ethertypes. 569 */ 570enum virtchnl_vlan_support { 571 VIRTCHNL_VLAN_UNSUPPORTED = 0, 572 VIRTCHNL_VLAN_ETHERTYPE_8100 = BIT(0), 573 VIRTCHNL_VLAN_ETHERTYPE_88A8 = BIT(1), 574 VIRTCHNL_VLAN_ETHERTYPE_9100 = BIT(2), 575 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = BIT(8), 576 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = BIT(9), 577 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = BIT(10), 578 VIRTCHNL_VLAN_PRIO = BIT(24), 579 VIRTCHNL_VLAN_FILTER_MASK = BIT(28), 580 VIRTCHNL_VLAN_ETHERTYPE_AND = BIT(29), 581 VIRTCHNL_VLAN_ETHERTYPE_XOR = BIT(30), 582 VIRTCHNL_VLAN_TOGGLE = BIT(31), 583}; 584 585/* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 586 * for filtering, insertion, and stripping capabilities. 587 * 588 * If only outer capabilities are supported (for filtering, insertion, and/or 589 * stripping) then this refers to the outer most or single VLAN from the VF's 590 * perspective. 591 * 592 * If only inner capabilities are supported (for filtering, insertion, and/or 593 * stripping) then this refers to the outer most or single VLAN from the VF's 594 * perspective. Functionally this is the same as if only outer capabilities are 595 * supported. The VF driver is just forced to use the inner fields when 596 * adding/deleting filters and enabling/disabling offloads (if supported). 597 * 598 * If both outer and inner capabilities are supported (for filtering, insertion, 599 * and/or stripping) then outer refers to the outer most or single VLAN and 600 * inner refers to the second VLAN, if it exists, in the packet. 601 * 602 * There is no support for tunneled VLAN offloads, so outer or inner are never 603 * referring to a tunneled packet from the VF's perspective. 604 */ 605struct virtchnl_vlan_supported_caps { 606 u32 outer; 607 u32 inner; 608}; 609 610/* The PF populates these fields based on the supported VLAN filtering. If a 611 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 612 * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using 613 * the unsupported fields. 614 * 615 * Also, a VF is only allowed to toggle its VLAN filtering setting if the 616 * VIRTCHNL_VLAN_TOGGLE bit is set. 617 * 618 * The ethertype(s) specified in the ethertype_init field are the ethertypes 619 * enabled for VLAN filtering. VLAN filtering in this case refers to the outer 620 * most VLAN from the VF's perspective. If both inner and outer filtering are 621 * allowed then ethertype_init only refers to the outer most VLAN as only 622 * VLAN ethertype supported for inner VLAN filtering is 623 * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled 624 * when both inner and outer filtering are allowed. 625 * 626 * The max_filters field tells the VF how many VLAN filters it's allowed to have 627 * at any one time. If it exceeds this amount and tries to add another filter, 628 * then the request will be rejected by the PF. To prevent failures, the VF 629 * should keep track of how many VLAN filters it has added and not attempt to 630 * add more than max_filters. 631 */ 632struct virtchnl_vlan_filtering_caps { 633 struct virtchnl_vlan_supported_caps filtering_support; 634 u32 ethertype_init; 635 u16 max_filters; 636 u8 pad[2]; 637}; 638 639VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps); 640 641/* This enum is used for the virtchnl_vlan_offload_caps structure to specify 642 * if the PF supports a different ethertype for stripping and insertion. 643 * 644 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified 645 * for stripping affect the ethertype(s) specified for insertion and visa versa 646 * as well. If the VF tries to configure VLAN stripping via 647 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then 648 * that will be the ethertype for both stripping and insertion. 649 * 650 * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for 651 * stripping do not affect the ethertype(s) specified for insertion and visa 652 * versa. 653 */ 654enum virtchnl_vlan_ethertype_match { 655 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0, 656 VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1, 657}; 658 659/* The PF populates these fields based on the supported VLAN offloads. If a 660 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 661 * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or 662 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields. 663 * 664 * Also, a VF is only allowed to toggle its VLAN offload setting if the 665 * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set. 666 * 667 * The VF driver needs to be aware of how the tags are stripped by hardware and 668 * inserted by the VF driver based on the level of offload support. The PF will 669 * populate these fields based on where the VLAN tags are expected to be 670 * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to 671 * interpret these fields. See the definition of the 672 * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support 673 * enumeration. 674 */ 675struct virtchnl_vlan_offload_caps { 676 struct virtchnl_vlan_supported_caps stripping_support; 677 struct virtchnl_vlan_supported_caps insertion_support; 678 u32 ethertype_init; 679 u8 ethertype_match; 680 u8 pad[3]; 681}; 682 683VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps); 684 685/* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 686 * VF sends this message to determine its VLAN capabilities. 687 * 688 * PF will mark which capabilities it supports based on hardware support and 689 * current configuration. For example, if a port VLAN is configured the PF will 690 * not allow outer VLAN filtering, stripping, or insertion to be configured so 691 * it will block these features from the VF. 692 * 693 * The VF will need to cross reference its capabilities with the PFs 694 * capabilities in the response message from the PF to determine the VLAN 695 * support. 696 */ 697struct virtchnl_vlan_caps { 698 struct virtchnl_vlan_filtering_caps filtering; 699 struct virtchnl_vlan_offload_caps offloads; 700}; 701 702VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps); 703 704struct virtchnl_vlan { 705 u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */ 706 u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in 707 * filtering caps 708 */ 709 u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in 710 * filtering caps. Note that tpid here does not refer to 711 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the 712 * actual 2-byte VLAN TPID 713 */ 714 u8 pad[2]; 715}; 716 717VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan); 718 719struct virtchnl_vlan_filter { 720 struct virtchnl_vlan inner; 721 struct virtchnl_vlan outer; 722 u8 pad[16]; 723}; 724 725VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter); 726 727/* VIRTCHNL_OP_ADD_VLAN_V2 728 * VIRTCHNL_OP_DEL_VLAN_V2 729 * 730 * VF sends these messages to add/del one or more VLAN tag filters for Rx 731 * traffic. 732 * 733 * The PF attempts to add the filters and returns status. 734 * 735 * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the 736 * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS. 737 */ 738struct virtchnl_vlan_filter_list_v2 { 739 u16 vport_id; 740 u16 num_elements; 741 u8 pad[4]; 742 struct virtchnl_vlan_filter filters[]; 743}; 744 745VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan_filter_list_v2); 746#define virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF 40 747 748/* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 749 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 750 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 751 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 752 * 753 * VF sends this message to enable or disable VLAN stripping or insertion. It 754 * also needs to specify an ethertype. The VF knows which VLAN ethertypes are 755 * allowed and whether or not it's allowed to enable/disable the specific 756 * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to 757 * parse the virtchnl_vlan_caps.offloads fields to determine which offload 758 * messages are allowed. 759 * 760 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 761 * following manner the VF will be allowed to enable and/or disable 0x8100 inner 762 * VLAN insertion and/or stripping via the opcodes listed above. Inner in this 763 * case means the outer most or single VLAN from the VF's perspective. This is 764 * because no outer offloads are supported. See the comments above the 765 * virtchnl_vlan_supported_caps structure for more details. 766 * 767 * virtchnl_vlan_caps.offloads.stripping_support.inner = 768 * VIRTCHNL_VLAN_TOGGLE | 769 * VIRTCHNL_VLAN_ETHERTYPE_8100; 770 * 771 * virtchnl_vlan_caps.offloads.insertion_support.inner = 772 * VIRTCHNL_VLAN_TOGGLE | 773 * VIRTCHNL_VLAN_ETHERTYPE_8100; 774 * 775 * In order to enable inner (again note that in this case inner is the outer 776 * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100 777 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the 778 * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 779 * 780 * virtchnl_vlan_setting.inner_ethertype_setting = 781 * VIRTCHNL_VLAN_ETHERTYPE_8100; 782 * 783 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 784 * initialization. 785 * 786 * The reason that VLAN TPID(s) are not being used for the 787 * outer_ethertype_setting and inner_ethertype_setting fields is because it's 788 * possible a device could support VLAN insertion and/or stripping offload on 789 * multiple ethertypes concurrently, so this method allows a VF to request 790 * multiple ethertypes in one message using the virtchnl_vlan_support 791 * enumeration. 792 * 793 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 794 * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer 795 * VLAN insertion and stripping simultaneously. The 796 * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be 797 * populated based on what the PF can support. 798 * 799 * virtchnl_vlan_caps.offloads.stripping_support.outer = 800 * VIRTCHNL_VLAN_TOGGLE | 801 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 802 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 803 * VIRTCHNL_VLAN_ETHERTYPE_AND; 804 * 805 * virtchnl_vlan_caps.offloads.insertion_support.outer = 806 * VIRTCHNL_VLAN_TOGGLE | 807 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 808 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 809 * VIRTCHNL_VLAN_ETHERTYPE_AND; 810 * 811 * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF 812 * would populate the virthcnl_vlan_offload_structure in the following manner 813 * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 814 * 815 * virtchnl_vlan_setting.outer_ethertype_setting = 816 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 817 * VIRTHCNL_VLAN_ETHERTYPE_88A8; 818 * 819 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 820 * initialization. 821 * 822 * There is also the case where a PF and the underlying hardware can support 823 * VLAN offloads on multiple ethertypes, but not concurrently. For example, if 824 * the PF populates the virtchnl_vlan_caps.offloads in the following manner the 825 * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN 826 * offloads. The ethertypes must match for stripping and insertion. 827 * 828 * virtchnl_vlan_caps.offloads.stripping_support.outer = 829 * VIRTCHNL_VLAN_TOGGLE | 830 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 831 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 832 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 833 * 834 * virtchnl_vlan_caps.offloads.insertion_support.outer = 835 * VIRTCHNL_VLAN_TOGGLE | 836 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 837 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 838 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 839 * 840 * virtchnl_vlan_caps.offloads.ethertype_match = 841 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 842 * 843 * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would 844 * populate the virtchnl_vlan_setting structure in the following manner and send 845 * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the 846 * ethertype for VLAN insertion if it's enabled. So, for completeness, a 847 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent. 848 * 849 * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8; 850 * 851 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 852 * initialization. 853 */ 854struct virtchnl_vlan_setting { 855 u32 outer_ethertype_setting; 856 u32 inner_ethertype_setting; 857 u16 vport_id; 858 u8 pad[6]; 859}; 860 861VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting); 862 863/* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE 864 * VF sends VSI id and flags. 865 * PF returns status code in retval. 866 * Note: we assume that broadcast accept mode is always enabled. 867 */ 868struct virtchnl_promisc_info { 869 u16 vsi_id; 870 u16 flags; 871}; 872 873VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info); 874 875#define FLAG_VF_UNICAST_PROMISC 0x00000001 876#define FLAG_VF_MULTICAST_PROMISC 0x00000002 877 878/* VIRTCHNL_OP_GET_STATS 879 * VF sends this message to request stats for the selected VSI. VF uses 880 * the virtchnl_queue_select struct to specify the VSI. The queue_id 881 * field is ignored by the PF. 882 * 883 * PF replies with struct eth_stats in an external buffer. 884 */ 885 886/* VIRTCHNL_OP_CONFIG_RSS_KEY 887 * VIRTCHNL_OP_CONFIG_RSS_LUT 888 * VF sends these messages to configure RSS. Only supported if both PF 889 * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during 890 * configuration negotiation. If this is the case, then the RSS fields in 891 * the VF resource struct are valid. 892 * Both the key and LUT are initialized to 0 by the PF, meaning that 893 * RSS is effectively disabled until set up by the VF. 894 */ 895struct virtchnl_rss_key { 896 u16 vsi_id; 897 u16 key_len; 898 u8 key[]; /* RSS hash key, packed bytes */ 899}; 900 901VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_key); 902#define virtchnl_rss_key_LEGACY_SIZEOF 6 903 904struct virtchnl_rss_lut { 905 u16 vsi_id; 906 u16 lut_entries; 907 u8 lut[]; /* RSS lookup table */ 908}; 909 910VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_lut); 911#define virtchnl_rss_lut_LEGACY_SIZEOF 6 912 913/* VIRTCHNL_OP_GET_RSS_HENA_CAPS 914 * VIRTCHNL_OP_SET_RSS_HENA 915 * VF sends these messages to get and set the hash filter enable bits for RSS. 916 * By default, the PF sets these to all possible traffic types that the 917 * hardware supports. The VF can query this value if it wants to change the 918 * traffic types that are hashed by the hardware. 919 */ 920struct virtchnl_rss_hena { 921 u64 hena; 922}; 923 924VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena); 925 926/* Type of RSS algorithm */ 927enum virtchnl_rss_algorithm { 928 VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0, 929 VIRTCHNL_RSS_ALG_R_ASYMMETRIC = 1, 930 VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2, 931 VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3, 932}; 933 934/* VIRTCHNL_OP_CONFIG_RSS_HFUNC 935 * VF sends this message to configure the RSS hash function. Only supported 936 * if both PF and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during 937 * configuration negotiation. 938 * The hash function is initialized to VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC 939 * by the PF. 940 */ 941struct virtchnl_rss_hfunc { 942 u16 vsi_id; 943 u16 rss_algorithm; /* enum virtchnl_rss_algorithm */ 944 u32 reserved; 945}; 946 947VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hfunc); 948 949/* VIRTCHNL_OP_ENABLE_CHANNELS 950 * VIRTCHNL_OP_DISABLE_CHANNELS 951 * VF sends these messages to enable or disable channels based on 952 * the user specified queue count and queue offset for each traffic class. 953 * This struct encompasses all the information that the PF needs from 954 * VF to create a channel. 955 */ 956struct virtchnl_channel_info { 957 u16 count; /* number of queues in a channel */ 958 u16 offset; /* queues in a channel start from 'offset' */ 959 u32 pad; 960 u64 max_tx_rate; 961}; 962 963VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info); 964 965struct virtchnl_tc_info { 966 u32 num_tc; 967 u32 pad; 968 struct virtchnl_channel_info list[]; 969}; 970 971VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_tc_info); 972#define virtchnl_tc_info_LEGACY_SIZEOF 24 973 974/* VIRTCHNL_ADD_CLOUD_FILTER 975 * VIRTCHNL_DEL_CLOUD_FILTER 976 * VF sends these messages to add or delete a cloud filter based on the 977 * user specified match and action filters. These structures encompass 978 * all the information that the PF needs from the VF to add/delete a 979 * cloud filter. 980 */ 981 982struct virtchnl_l4_spec { 983 u8 src_mac[ETH_ALEN]; 984 u8 dst_mac[ETH_ALEN]; 985 __be16 vlan_id; 986 __be16 pad; /* reserved for future use */ 987 __be32 src_ip[4]; 988 __be32 dst_ip[4]; 989 __be16 src_port; 990 __be16 dst_port; 991}; 992 993VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec); 994 995union virtchnl_flow_spec { 996 struct virtchnl_l4_spec tcp_spec; 997 u8 buffer[128]; /* reserved for future use */ 998}; 999 1000VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec); 1001 1002enum virtchnl_action { 1003 /* action types */ 1004 VIRTCHNL_ACTION_DROP = 0, 1005 VIRTCHNL_ACTION_TC_REDIRECT, 1006 VIRTCHNL_ACTION_PASSTHRU, 1007 VIRTCHNL_ACTION_QUEUE, 1008 VIRTCHNL_ACTION_Q_REGION, 1009 VIRTCHNL_ACTION_MARK, 1010 VIRTCHNL_ACTION_COUNT, 1011}; 1012 1013enum virtchnl_flow_type { 1014 /* flow types */ 1015 VIRTCHNL_TCP_V4_FLOW = 0, 1016 VIRTCHNL_TCP_V6_FLOW, 1017}; 1018 1019struct virtchnl_filter { 1020 union virtchnl_flow_spec data; 1021 union virtchnl_flow_spec mask; 1022 1023 /* see enum virtchnl_flow_type */ 1024 s32 flow_type; 1025 1026 /* see enum virtchnl_action */ 1027 s32 action; 1028 u32 action_meta; 1029 u8 field_flags; 1030 u8 pad[3]; 1031}; 1032 1033VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter); 1034 1035struct virtchnl_supported_rxdids { 1036 u64 supported_rxdids; 1037}; 1038 1039/* VIRTCHNL_OP_EVENT 1040 * PF sends this message to inform the VF driver of events that may affect it. 1041 * No direct response is expected from the VF, though it may generate other 1042 * messages in response to this one. 1043 */ 1044enum virtchnl_event_codes { 1045 VIRTCHNL_EVENT_UNKNOWN = 0, 1046 VIRTCHNL_EVENT_LINK_CHANGE, 1047 VIRTCHNL_EVENT_RESET_IMPENDING, 1048 VIRTCHNL_EVENT_PF_DRIVER_CLOSE, 1049}; 1050 1051#define PF_EVENT_SEVERITY_INFO 0 1052#define PF_EVENT_SEVERITY_CERTAIN_DOOM 255 1053 1054struct virtchnl_pf_event { 1055 /* see enum virtchnl_event_codes */ 1056 s32 event; 1057 union { 1058 /* If the PF driver does not support the new speed reporting 1059 * capabilities then use link_event else use link_event_adv to 1060 * get the speed and link information. The ability to understand 1061 * new speeds is indicated by setting the capability flag 1062 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter 1063 * in virtchnl_vf_resource struct and can be used to determine 1064 * which link event struct to use below. 1065 */ 1066 struct { 1067 enum virtchnl_link_speed link_speed; 1068 bool link_status; 1069 u8 pad[3]; 1070 } link_event; 1071 struct { 1072 /* link_speed provided in Mbps */ 1073 u32 link_speed; 1074 u8 link_status; 1075 u8 pad[3]; 1076 } link_event_adv; 1077 } event_data; 1078 1079 s32 severity; 1080}; 1081 1082VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event); 1083 1084/* used to specify if a ceq_idx or aeq_idx is invalid */ 1085#define VIRTCHNL_RDMA_INVALID_QUEUE_IDX 0xFFFF 1086/* VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP 1087 * VF uses this message to request PF to map RDMA vectors to RDMA queues. 1088 * The request for this originates from the VF RDMA driver through 1089 * a client interface between VF LAN and VF RDMA driver. 1090 * A vector could have an AEQ and CEQ attached to it although 1091 * there is a single AEQ per VF RDMA instance in which case 1092 * most vectors will have an VIRTCHNL_RDMA_INVALID_QUEUE_IDX for aeq and valid 1093 * idx for ceqs There will never be a case where there will be multiple CEQs 1094 * attached to a single vector. 1095 * PF configures interrupt mapping and returns status. 1096 */ 1097 1098struct virtchnl_rdma_qv_info { 1099 u32 v_idx; /* msix_vector */ 1100 u16 ceq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */ 1101 u16 aeq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */ 1102 u8 itr_idx; 1103 u8 pad[3]; 1104}; 1105 1106VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_rdma_qv_info); 1107 1108struct virtchnl_rdma_qvlist_info { 1109 u32 num_vectors; 1110 struct virtchnl_rdma_qv_info qv_info[]; 1111}; 1112 1113VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rdma_qvlist_info); 1114#define virtchnl_rdma_qvlist_info_LEGACY_SIZEOF 16 1115 1116/* VF reset states - these are written into the RSTAT register: 1117 * VFGEN_RSTAT on the VF 1118 * When the PF initiates a reset, it writes 0 1119 * When the reset is complete, it writes 1 1120 * When the PF detects that the VF has recovered, it writes 2 1121 * VF checks this register periodically to determine if a reset has occurred, 1122 * then polls it to know when the reset is complete. 1123 * If either the PF or VF reads the register while the hardware 1124 * is in a reset state, it will return DEADBEEF, which, when masked 1125 * will result in 3. 1126 */ 1127enum virtchnl_vfr_states { 1128 VIRTCHNL_VFR_INPROGRESS = 0, 1129 VIRTCHNL_VFR_COMPLETED, 1130 VIRTCHNL_VFR_VFACTIVE, 1131}; 1132 1133#define VIRTCHNL_MAX_NUM_PROTO_HDRS 32 1134#define VIRTCHNL_MAX_SIZE_RAW_PACKET 1024 1135#define PROTO_HDR_SHIFT 5 1136#define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT) 1137#define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1) 1138 1139/* VF use these macros to configure each protocol header. 1140 * Specify which protocol headers and protocol header fields base on 1141 * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field. 1142 * @param hdr: a struct of virtchnl_proto_hdr 1143 * @param hdr_type: ETH/IPV4/TCP, etc 1144 * @param field: SRC/DST/TEID/SPI, etc 1145 */ 1146#define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \ 1147 ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK)) 1148#define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \ 1149 ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK)) 1150#define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \ 1151 ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK)) 1152#define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector) 1153 1154#define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1155 (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \ 1156 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1157#define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1158 (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \ 1159 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1160 1161#define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \ 1162 ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type) 1163#define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \ 1164 (((hdr)->type) >> PROTO_HDR_SHIFT) 1165#define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \ 1166 ((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT))) 1167#define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \ 1168 (VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \ 1169 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val))) 1170 1171/* Protocol header type within a packet segment. A segment consists of one or 1172 * more protocol headers that make up a logical group of protocol headers. Each 1173 * logical group of protocol headers encapsulates or is encapsulated using/by 1174 * tunneling or encapsulation protocols for network virtualization. 1175 */ 1176enum virtchnl_proto_hdr_type { 1177 VIRTCHNL_PROTO_HDR_NONE, 1178 VIRTCHNL_PROTO_HDR_ETH, 1179 VIRTCHNL_PROTO_HDR_S_VLAN, 1180 VIRTCHNL_PROTO_HDR_C_VLAN, 1181 VIRTCHNL_PROTO_HDR_IPV4, 1182 VIRTCHNL_PROTO_HDR_IPV6, 1183 VIRTCHNL_PROTO_HDR_TCP, 1184 VIRTCHNL_PROTO_HDR_UDP, 1185 VIRTCHNL_PROTO_HDR_SCTP, 1186 VIRTCHNL_PROTO_HDR_GTPU_IP, 1187 VIRTCHNL_PROTO_HDR_GTPU_EH, 1188 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 1189 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 1190 VIRTCHNL_PROTO_HDR_PPPOE, 1191 VIRTCHNL_PROTO_HDR_L2TPV3, 1192 VIRTCHNL_PROTO_HDR_ESP, 1193 VIRTCHNL_PROTO_HDR_AH, 1194 VIRTCHNL_PROTO_HDR_PFCP, 1195}; 1196 1197/* Protocol header field within a protocol header. */ 1198enum virtchnl_proto_hdr_field { 1199 /* ETHER */ 1200 VIRTCHNL_PROTO_HDR_ETH_SRC = 1201 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH), 1202 VIRTCHNL_PROTO_HDR_ETH_DST, 1203 VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE, 1204 /* S-VLAN */ 1205 VIRTCHNL_PROTO_HDR_S_VLAN_ID = 1206 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN), 1207 /* C-VLAN */ 1208 VIRTCHNL_PROTO_HDR_C_VLAN_ID = 1209 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN), 1210 /* IPV4 */ 1211 VIRTCHNL_PROTO_HDR_IPV4_SRC = 1212 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4), 1213 VIRTCHNL_PROTO_HDR_IPV4_DST, 1214 VIRTCHNL_PROTO_HDR_IPV4_DSCP, 1215 VIRTCHNL_PROTO_HDR_IPV4_TTL, 1216 VIRTCHNL_PROTO_HDR_IPV4_PROT, 1217 /* IPV6 */ 1218 VIRTCHNL_PROTO_HDR_IPV6_SRC = 1219 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6), 1220 VIRTCHNL_PROTO_HDR_IPV6_DST, 1221 VIRTCHNL_PROTO_HDR_IPV6_TC, 1222 VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT, 1223 VIRTCHNL_PROTO_HDR_IPV6_PROT, 1224 /* TCP */ 1225 VIRTCHNL_PROTO_HDR_TCP_SRC_PORT = 1226 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP), 1227 VIRTCHNL_PROTO_HDR_TCP_DST_PORT, 1228 /* UDP */ 1229 VIRTCHNL_PROTO_HDR_UDP_SRC_PORT = 1230 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP), 1231 VIRTCHNL_PROTO_HDR_UDP_DST_PORT, 1232 /* SCTP */ 1233 VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT = 1234 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP), 1235 VIRTCHNL_PROTO_HDR_SCTP_DST_PORT, 1236 /* GTPU_IP */ 1237 VIRTCHNL_PROTO_HDR_GTPU_IP_TEID = 1238 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP), 1239 /* GTPU_EH */ 1240 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU = 1241 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH), 1242 VIRTCHNL_PROTO_HDR_GTPU_EH_QFI, 1243 /* PPPOE */ 1244 VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID = 1245 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE), 1246 /* L2TPV3 */ 1247 VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID = 1248 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3), 1249 /* ESP */ 1250 VIRTCHNL_PROTO_HDR_ESP_SPI = 1251 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP), 1252 /* AH */ 1253 VIRTCHNL_PROTO_HDR_AH_SPI = 1254 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH), 1255 /* PFCP */ 1256 VIRTCHNL_PROTO_HDR_PFCP_S_FIELD = 1257 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP), 1258 VIRTCHNL_PROTO_HDR_PFCP_SEID, 1259}; 1260 1261struct virtchnl_proto_hdr { 1262 /* see enum virtchnl_proto_hdr_type */ 1263 s32 type; 1264 u32 field_selector; /* a bit mask to select field for header type */ 1265 u8 buffer[64]; 1266 /** 1267 * binary buffer in network order for specific header type. 1268 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4 1269 * header is expected to be copied into the buffer. 1270 */ 1271}; 1272 1273VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr); 1274 1275struct virtchnl_proto_hdrs { 1276 u8 tunnel_level; 1277 u8 pad[3]; 1278 /** 1279 * specify where protocol header start from. 1280 * must be 0 when sending a raw packet request. 1281 * 0 - from the outer layer 1282 * 1 - from the first inner layer 1283 * 2 - from the second inner layer 1284 * .... 1285 **/ 1286 int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */ 1287 union { 1288 struct virtchnl_proto_hdr 1289 proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS]; 1290 struct { 1291 u16 pkt_len; 1292 u8 spec[VIRTCHNL_MAX_SIZE_RAW_PACKET]; 1293 u8 mask[VIRTCHNL_MAX_SIZE_RAW_PACKET]; 1294 } raw; 1295 }; 1296}; 1297 1298VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs); 1299 1300struct virtchnl_rss_cfg { 1301 struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */ 1302 1303 /* see enum virtchnl_rss_algorithm; rss algorithm type */ 1304 s32 rss_algorithm; 1305 u8 reserved[128]; /* reserve for future */ 1306}; 1307 1308VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg); 1309 1310/* action configuration for FDIR */ 1311struct virtchnl_filter_action { 1312 /* see enum virtchnl_action type */ 1313 s32 type; 1314 union { 1315 /* used for queue and qgroup action */ 1316 struct { 1317 u16 index; 1318 u8 region; 1319 } queue; 1320 /* used for count action */ 1321 struct { 1322 /* share counter ID with other flow rules */ 1323 u8 shared; 1324 u32 id; /* counter ID */ 1325 } count; 1326 /* used for mark action */ 1327 u32 mark_id; 1328 u8 reserve[32]; 1329 } act_conf; 1330}; 1331 1332VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action); 1333 1334#define VIRTCHNL_MAX_NUM_ACTIONS 8 1335 1336struct virtchnl_filter_action_set { 1337 /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */ 1338 int count; 1339 struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS]; 1340}; 1341 1342VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set); 1343 1344/* pattern and action for FDIR rule */ 1345struct virtchnl_fdir_rule { 1346 struct virtchnl_proto_hdrs proto_hdrs; 1347 struct virtchnl_filter_action_set action_set; 1348}; 1349 1350VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule); 1351 1352/* Status returned to VF after VF requests FDIR commands 1353 * VIRTCHNL_FDIR_SUCCESS 1354 * VF FDIR related request is successfully done by PF 1355 * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER. 1356 * 1357 * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE 1358 * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource. 1359 * 1360 * VIRTCHNL_FDIR_FAILURE_RULE_EXIST 1361 * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed. 1362 * 1363 * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT 1364 * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule. 1365 * 1366 * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST 1367 * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist. 1368 * 1369 * VIRTCHNL_FDIR_FAILURE_RULE_INVALID 1370 * OP_ADD_FDIR_FILTER request is failed due to parameters validation 1371 * or HW doesn't support. 1372 * 1373 * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT 1374 * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out 1375 * for programming. 1376 * 1377 * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID 1378 * OP_QUERY_FDIR_FILTER request is failed due to parameters validation, 1379 * for example, VF query counter of a rule who has no counter action. 1380 */ 1381enum virtchnl_fdir_prgm_status { 1382 VIRTCHNL_FDIR_SUCCESS = 0, 1383 VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE, 1384 VIRTCHNL_FDIR_FAILURE_RULE_EXIST, 1385 VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT, 1386 VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST, 1387 VIRTCHNL_FDIR_FAILURE_RULE_INVALID, 1388 VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT, 1389 VIRTCHNL_FDIR_FAILURE_QUERY_INVALID, 1390}; 1391 1392/* VIRTCHNL_OP_ADD_FDIR_FILTER 1393 * VF sends this request to PF by filling out vsi_id, 1394 * validate_only and rule_cfg. PF will return flow_id 1395 * if the request is successfully done and return add_status to VF. 1396 */ 1397struct virtchnl_fdir_add { 1398 u16 vsi_id; /* INPUT */ 1399 /* 1400 * 1 for validating a fdir rule, 0 for creating a fdir rule. 1401 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER. 1402 */ 1403 u16 validate_only; /* INPUT */ 1404 u32 flow_id; /* OUTPUT */ 1405 struct virtchnl_fdir_rule rule_cfg; /* INPUT */ 1406 1407 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1408 s32 status; 1409}; 1410 1411VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add); 1412 1413/* VIRTCHNL_OP_DEL_FDIR_FILTER 1414 * VF sends this request to PF by filling out vsi_id 1415 * and flow_id. PF will return del_status to VF. 1416 */ 1417struct virtchnl_fdir_del { 1418 u16 vsi_id; /* INPUT */ 1419 u16 pad; 1420 u32 flow_id; /* INPUT */ 1421 1422 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1423 s32 status; 1424}; 1425 1426VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del); 1427 1428struct virtchnl_shaper_bw { 1429 /* Unit is Kbps */ 1430 u32 committed; 1431 u32 peak; 1432}; 1433 1434VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_shaper_bw); 1435 1436/* VIRTCHNL_OP_GET_QOS_CAPS 1437 * VF sends this message to get its QoS Caps, such as 1438 * TC number, Arbiter and Bandwidth. 1439 */ 1440struct virtchnl_qos_cap_elem { 1441 u8 tc_num; 1442 u8 tc_prio; 1443#define VIRTCHNL_ABITER_STRICT 0 1444#define VIRTCHNL_ABITER_ETS 2 1445 u8 arbiter; 1446#define VIRTCHNL_STRICT_WEIGHT 1 1447 u8 weight; 1448 enum virtchnl_bw_limit_type type; 1449 union { 1450 struct virtchnl_shaper_bw shaper; 1451 u8 pad2[32]; 1452 }; 1453}; 1454 1455VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_qos_cap_elem); 1456 1457struct virtchnl_qos_cap_list { 1458 u16 vsi_id; 1459 u16 num_elem; 1460 struct virtchnl_qos_cap_elem cap[]; 1461}; 1462 1463VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_qos_cap_list); 1464#define virtchnl_qos_cap_list_LEGACY_SIZEOF 44 1465 1466/* VIRTCHNL_OP_CONFIG_QUEUE_BW */ 1467struct virtchnl_queue_bw { 1468 u16 queue_id; 1469 u8 tc; 1470 u8 pad; 1471 struct virtchnl_shaper_bw shaper; 1472}; 1473 1474VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_bw); 1475 1476struct virtchnl_queues_bw_cfg { 1477 u16 vsi_id; 1478 u16 num_queues; 1479 struct virtchnl_queue_bw cfg[]; 1480}; 1481 1482VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_queues_bw_cfg); 1483#define virtchnl_queues_bw_cfg_LEGACY_SIZEOF 16 1484 1485enum virtchnl_queue_type { 1486 VIRTCHNL_QUEUE_TYPE_TX = 0, 1487 VIRTCHNL_QUEUE_TYPE_RX = 1, 1488}; 1489 1490/* structure to specify a chunk of contiguous queues */ 1491struct virtchnl_queue_chunk { 1492 /* see enum virtchnl_queue_type */ 1493 s32 type; 1494 u16 start_queue_id; 1495 u16 num_queues; 1496}; 1497 1498VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk); 1499 1500struct virtchnl_quanta_cfg { 1501 u16 quanta_size; 1502 u16 pad; 1503 struct virtchnl_queue_chunk queue_select; 1504}; 1505 1506VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_quanta_cfg); 1507 1508#define __vss_byone(p, member, count, old) \ 1509 (struct_size(p, member, count) + (old - 1 - struct_size(p, member, 0))) 1510 1511#define __vss_byelem(p, member, count, old) \ 1512 (struct_size(p, member, count - 1) + (old - struct_size(p, member, 0))) 1513 1514#define __vss_full(p, member, count, old) \ 1515 (struct_size(p, member, count) + (old - struct_size(p, member, 0))) 1516 1517#define __vss(type, func, p, member, count) \ 1518 struct type: func(p, member, count, type##_LEGACY_SIZEOF) 1519 1520#define virtchnl_struct_size(p, m, c) \ 1521 _Generic(*p, \ 1522 __vss(virtchnl_vf_resource, __vss_full, p, m, c), \ 1523 __vss(virtchnl_vsi_queue_config_info, __vss_full, p, m, c), \ 1524 __vss(virtchnl_irq_map_info, __vss_full, p, m, c), \ 1525 __vss(virtchnl_ether_addr_list, __vss_full, p, m, c), \ 1526 __vss(virtchnl_vlan_filter_list, __vss_full, p, m, c), \ 1527 __vss(virtchnl_vlan_filter_list_v2, __vss_byelem, p, m, c), \ 1528 __vss(virtchnl_tc_info, __vss_byelem, p, m, c), \ 1529 __vss(virtchnl_rdma_qvlist_info, __vss_byelem, p, m, c), \ 1530 __vss(virtchnl_qos_cap_list, __vss_byelem, p, m, c), \ 1531 __vss(virtchnl_queues_bw_cfg, __vss_byelem, p, m, c), \ 1532 __vss(virtchnl_rss_key, __vss_byone, p, m, c), \ 1533 __vss(virtchnl_rss_lut, __vss_byone, p, m, c)) 1534 1535/** 1536 * virtchnl_vc_validate_vf_msg 1537 * @ver: Virtchnl version info 1538 * @v_opcode: Opcode for the message 1539 * @msg: pointer to the msg buffer 1540 * @msglen: msg length 1541 * 1542 * validate msg format against struct for each opcode 1543 */ 1544static inline int 1545virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode, 1546 u8 *msg, u16 msglen) 1547{ 1548 bool err_msg_format = false; 1549 u32 valid_len = 0; 1550 1551 /* Validate message length. */ 1552 switch (v_opcode) { 1553 case VIRTCHNL_OP_VERSION: 1554 valid_len = sizeof(struct virtchnl_version_info); 1555 break; 1556 case VIRTCHNL_OP_RESET_VF: 1557 break; 1558 case VIRTCHNL_OP_GET_VF_RESOURCES: 1559 if (VF_IS_V11(ver)) 1560 valid_len = sizeof(u32); 1561 break; 1562 case VIRTCHNL_OP_CONFIG_TX_QUEUE: 1563 valid_len = sizeof(struct virtchnl_txq_info); 1564 break; 1565 case VIRTCHNL_OP_CONFIG_RX_QUEUE: 1566 valid_len = sizeof(struct virtchnl_rxq_info); 1567 break; 1568 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 1569 valid_len = virtchnl_vsi_queue_config_info_LEGACY_SIZEOF; 1570 if (msglen >= valid_len) { 1571 struct virtchnl_vsi_queue_config_info *vqc = 1572 (struct virtchnl_vsi_queue_config_info *)msg; 1573 valid_len = virtchnl_struct_size(vqc, qpair, 1574 vqc->num_queue_pairs); 1575 if (vqc->num_queue_pairs == 0) 1576 err_msg_format = true; 1577 } 1578 break; 1579 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 1580 valid_len = virtchnl_irq_map_info_LEGACY_SIZEOF; 1581 if (msglen >= valid_len) { 1582 struct virtchnl_irq_map_info *vimi = 1583 (struct virtchnl_irq_map_info *)msg; 1584 valid_len = virtchnl_struct_size(vimi, vecmap, 1585 vimi->num_vectors); 1586 if (vimi->num_vectors == 0) 1587 err_msg_format = true; 1588 } 1589 break; 1590 case VIRTCHNL_OP_ENABLE_QUEUES: 1591 case VIRTCHNL_OP_DISABLE_QUEUES: 1592 valid_len = sizeof(struct virtchnl_queue_select); 1593 break; 1594 case VIRTCHNL_OP_ADD_ETH_ADDR: 1595 case VIRTCHNL_OP_DEL_ETH_ADDR: 1596 valid_len = virtchnl_ether_addr_list_LEGACY_SIZEOF; 1597 if (msglen >= valid_len) { 1598 struct virtchnl_ether_addr_list *veal = 1599 (struct virtchnl_ether_addr_list *)msg; 1600 valid_len = virtchnl_struct_size(veal, list, 1601 veal->num_elements); 1602 if (veal->num_elements == 0) 1603 err_msg_format = true; 1604 } 1605 break; 1606 case VIRTCHNL_OP_ADD_VLAN: 1607 case VIRTCHNL_OP_DEL_VLAN: 1608 valid_len = virtchnl_vlan_filter_list_LEGACY_SIZEOF; 1609 if (msglen >= valid_len) { 1610 struct virtchnl_vlan_filter_list *vfl = 1611 (struct virtchnl_vlan_filter_list *)msg; 1612 valid_len = virtchnl_struct_size(vfl, vlan_id, 1613 vfl->num_elements); 1614 if (vfl->num_elements == 0) 1615 err_msg_format = true; 1616 } 1617 break; 1618 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 1619 valid_len = sizeof(struct virtchnl_promisc_info); 1620 break; 1621 case VIRTCHNL_OP_GET_STATS: 1622 valid_len = sizeof(struct virtchnl_queue_select); 1623 break; 1624 case VIRTCHNL_OP_RDMA: 1625 /* These messages are opaque to us and will be validated in 1626 * the RDMA client code. We just need to check for nonzero 1627 * length. The firmware will enforce max length restrictions. 1628 */ 1629 if (msglen) 1630 valid_len = msglen; 1631 else 1632 err_msg_format = true; 1633 break; 1634 case VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP: 1635 break; 1636 case VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP: 1637 valid_len = virtchnl_rdma_qvlist_info_LEGACY_SIZEOF; 1638 if (msglen >= valid_len) { 1639 struct virtchnl_rdma_qvlist_info *qv = 1640 (struct virtchnl_rdma_qvlist_info *)msg; 1641 1642 valid_len = virtchnl_struct_size(qv, qv_info, 1643 qv->num_vectors); 1644 } 1645 break; 1646 case VIRTCHNL_OP_CONFIG_RSS_KEY: 1647 valid_len = virtchnl_rss_key_LEGACY_SIZEOF; 1648 if (msglen >= valid_len) { 1649 struct virtchnl_rss_key *vrk = 1650 (struct virtchnl_rss_key *)msg; 1651 valid_len = virtchnl_struct_size(vrk, key, 1652 vrk->key_len); 1653 } 1654 break; 1655 case VIRTCHNL_OP_CONFIG_RSS_LUT: 1656 valid_len = virtchnl_rss_lut_LEGACY_SIZEOF; 1657 if (msglen >= valid_len) { 1658 struct virtchnl_rss_lut *vrl = 1659 (struct virtchnl_rss_lut *)msg; 1660 valid_len = virtchnl_struct_size(vrl, lut, 1661 vrl->lut_entries); 1662 } 1663 break; 1664 case VIRTCHNL_OP_CONFIG_RSS_HFUNC: 1665 valid_len = sizeof(struct virtchnl_rss_hfunc); 1666 break; 1667 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 1668 break; 1669 case VIRTCHNL_OP_SET_RSS_HENA: 1670 valid_len = sizeof(struct virtchnl_rss_hena); 1671 break; 1672 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 1673 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 1674 break; 1675 case VIRTCHNL_OP_REQUEST_QUEUES: 1676 valid_len = sizeof(struct virtchnl_vf_res_request); 1677 break; 1678 case VIRTCHNL_OP_ENABLE_CHANNELS: 1679 valid_len = virtchnl_tc_info_LEGACY_SIZEOF; 1680 if (msglen >= valid_len) { 1681 struct virtchnl_tc_info *vti = 1682 (struct virtchnl_tc_info *)msg; 1683 valid_len = virtchnl_struct_size(vti, list, 1684 vti->num_tc); 1685 if (vti->num_tc == 0) 1686 err_msg_format = true; 1687 } 1688 break; 1689 case VIRTCHNL_OP_DISABLE_CHANNELS: 1690 break; 1691 case VIRTCHNL_OP_ADD_CLOUD_FILTER: 1692 case VIRTCHNL_OP_DEL_CLOUD_FILTER: 1693 valid_len = sizeof(struct virtchnl_filter); 1694 break; 1695 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 1696 break; 1697 case VIRTCHNL_OP_ADD_RSS_CFG: 1698 case VIRTCHNL_OP_DEL_RSS_CFG: 1699 valid_len = sizeof(struct virtchnl_rss_cfg); 1700 break; 1701 case VIRTCHNL_OP_ADD_FDIR_FILTER: 1702 valid_len = sizeof(struct virtchnl_fdir_add); 1703 break; 1704 case VIRTCHNL_OP_DEL_FDIR_FILTER: 1705 valid_len = sizeof(struct virtchnl_fdir_del); 1706 break; 1707 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 1708 break; 1709 case VIRTCHNL_OP_ADD_VLAN_V2: 1710 case VIRTCHNL_OP_DEL_VLAN_V2: 1711 valid_len = virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF; 1712 if (msglen >= valid_len) { 1713 struct virtchnl_vlan_filter_list_v2 *vfl = 1714 (struct virtchnl_vlan_filter_list_v2 *)msg; 1715 1716 valid_len = virtchnl_struct_size(vfl, filters, 1717 vfl->num_elements); 1718 1719 if (vfl->num_elements == 0) { 1720 err_msg_format = true; 1721 break; 1722 } 1723 } 1724 break; 1725 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 1726 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 1727 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 1728 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 1729 valid_len = sizeof(struct virtchnl_vlan_setting); 1730 break; 1731 case VIRTCHNL_OP_GET_QOS_CAPS: 1732 break; 1733 case VIRTCHNL_OP_CONFIG_QUEUE_BW: 1734 valid_len = virtchnl_queues_bw_cfg_LEGACY_SIZEOF; 1735 if (msglen >= valid_len) { 1736 struct virtchnl_queues_bw_cfg *q_bw = 1737 (struct virtchnl_queues_bw_cfg *)msg; 1738 1739 valid_len = virtchnl_struct_size(q_bw, cfg, 1740 q_bw->num_queues); 1741 if (q_bw->num_queues == 0) { 1742 err_msg_format = true; 1743 break; 1744 } 1745 } 1746 break; 1747 case VIRTCHNL_OP_CONFIG_QUANTA: 1748 valid_len = sizeof(struct virtchnl_quanta_cfg); 1749 if (msglen >= valid_len) { 1750 struct virtchnl_quanta_cfg *q_quanta = 1751 (struct virtchnl_quanta_cfg *)msg; 1752 1753 if (q_quanta->quanta_size == 0 || 1754 q_quanta->queue_select.num_queues == 0) { 1755 err_msg_format = true; 1756 break; 1757 } 1758 } 1759 break; 1760 /* These are always errors coming from the VF. */ 1761 case VIRTCHNL_OP_EVENT: 1762 case VIRTCHNL_OP_UNKNOWN: 1763 default: 1764 return VIRTCHNL_STATUS_ERR_PARAM; 1765 } 1766 /* few more checks */ 1767 if (err_msg_format || valid_len != msglen) 1768 return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH; 1769 1770 return 0; 1771} 1772#endif /* _VIRTCHNL_H_ */