Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2008 Michael Ellerman, IBM Corporation.
4 */
5
6#include <linux/kprobes.h>
7#include <linux/mmu_context.h>
8#include <linux/random.h>
9#include <linux/vmalloc.h>
10#include <linux/init.h>
11#include <linux/cpuhotplug.h>
12#include <linux/uaccess.h>
13#include <linux/jump_label.h>
14
15#include <asm/debug.h>
16#include <asm/pgalloc.h>
17#include <asm/tlb.h>
18#include <asm/tlbflush.h>
19#include <asm/page.h>
20#include <asm/text-patching.h>
21#include <asm/inst.h>
22
23static int __patch_mem(void *exec_addr, unsigned long val, void *patch_addr, bool is_dword)
24{
25 if (!IS_ENABLED(CONFIG_PPC64) || likely(!is_dword)) {
26 /* For big endian correctness: plain address would use the wrong half */
27 u32 val32 = val;
28
29 __put_kernel_nofault(patch_addr, &val32, u32, failed);
30 } else {
31 __put_kernel_nofault(patch_addr, &val, u64, failed);
32 }
33
34 asm ("dcbst 0, %0; sync; icbi 0,%1; sync; isync" :: "r" (patch_addr),
35 "r" (exec_addr));
36
37 return 0;
38
39failed:
40 mb(); /* sync */
41 return -EPERM;
42}
43
44int raw_patch_instruction(u32 *addr, ppc_inst_t instr)
45{
46 if (ppc_inst_prefixed(instr))
47 return __patch_mem(addr, ppc_inst_as_ulong(instr), addr, true);
48 else
49 return __patch_mem(addr, ppc_inst_val(instr), addr, false);
50}
51
52struct patch_context {
53 union {
54 struct vm_struct *area;
55 struct mm_struct *mm;
56 };
57 unsigned long addr;
58 pte_t *pte;
59};
60
61static DEFINE_PER_CPU(struct patch_context, cpu_patching_context);
62
63static int map_patch_area(void *addr, unsigned long text_poke_addr);
64static void unmap_patch_area(unsigned long addr);
65
66static bool mm_patch_enabled(void)
67{
68 return IS_ENABLED(CONFIG_SMP) && radix_enabled();
69}
70
71/*
72 * The following applies for Radix MMU. Hash MMU has different requirements,
73 * and so is not supported.
74 *
75 * Changing mm requires context synchronising instructions on both sides of
76 * the context switch, as well as a hwsync between the last instruction for
77 * which the address of an associated storage access was translated using
78 * the current context.
79 *
80 * switch_mm_irqs_off() performs an isync after the context switch. It is
81 * the responsibility of the caller to perform the CSI and hwsync before
82 * starting/stopping the temp mm.
83 */
84static struct mm_struct *start_using_temp_mm(struct mm_struct *temp_mm)
85{
86 struct mm_struct *orig_mm = current->active_mm;
87
88 lockdep_assert_irqs_disabled();
89 switch_mm_irqs_off(orig_mm, temp_mm, current);
90
91 WARN_ON(!mm_is_thread_local(temp_mm));
92
93 suspend_breakpoints();
94 return orig_mm;
95}
96
97static void stop_using_temp_mm(struct mm_struct *temp_mm,
98 struct mm_struct *orig_mm)
99{
100 lockdep_assert_irqs_disabled();
101 switch_mm_irqs_off(temp_mm, orig_mm, current);
102 restore_breakpoints();
103}
104
105static int text_area_cpu_up(unsigned int cpu)
106{
107 struct vm_struct *area;
108 unsigned long addr;
109 int err;
110
111 area = get_vm_area(PAGE_SIZE, VM_ALLOC);
112 if (!area) {
113 WARN_ONCE(1, "Failed to create text area for cpu %d\n",
114 cpu);
115 return -1;
116 }
117
118 // Map/unmap the area to ensure all page tables are pre-allocated
119 addr = (unsigned long)area->addr;
120 err = map_patch_area(empty_zero_page, addr);
121 if (err)
122 return err;
123
124 unmap_patch_area(addr);
125
126 this_cpu_write(cpu_patching_context.area, area);
127 this_cpu_write(cpu_patching_context.addr, addr);
128 this_cpu_write(cpu_patching_context.pte, virt_to_kpte(addr));
129
130 return 0;
131}
132
133static int text_area_cpu_down(unsigned int cpu)
134{
135 free_vm_area(this_cpu_read(cpu_patching_context.area));
136 this_cpu_write(cpu_patching_context.area, NULL);
137 this_cpu_write(cpu_patching_context.addr, 0);
138 this_cpu_write(cpu_patching_context.pte, NULL);
139 return 0;
140}
141
142static void put_patching_mm(struct mm_struct *mm, unsigned long patching_addr)
143{
144 struct mmu_gather tlb;
145
146 tlb_gather_mmu(&tlb, mm);
147 free_pgd_range(&tlb, patching_addr, patching_addr + PAGE_SIZE, 0, 0);
148 mmput(mm);
149}
150
151static int text_area_cpu_up_mm(unsigned int cpu)
152{
153 struct mm_struct *mm;
154 unsigned long addr;
155 pte_t *pte;
156 spinlock_t *ptl;
157
158 mm = mm_alloc();
159 if (WARN_ON(!mm))
160 goto fail_no_mm;
161
162 /*
163 * Choose a random page-aligned address from the interval
164 * [PAGE_SIZE .. DEFAULT_MAP_WINDOW - PAGE_SIZE].
165 * The lower address bound is PAGE_SIZE to avoid the zero-page.
166 */
167 addr = (1 + (get_random_long() % (DEFAULT_MAP_WINDOW / PAGE_SIZE - 2))) << PAGE_SHIFT;
168
169 /*
170 * PTE allocation uses GFP_KERNEL which means we need to
171 * pre-allocate the PTE here because we cannot do the
172 * allocation during patching when IRQs are disabled.
173 *
174 * Using get_locked_pte() to avoid open coding, the lock
175 * is unnecessary.
176 */
177 pte = get_locked_pte(mm, addr, &ptl);
178 if (!pte)
179 goto fail_no_pte;
180 pte_unmap_unlock(pte, ptl);
181
182 this_cpu_write(cpu_patching_context.mm, mm);
183 this_cpu_write(cpu_patching_context.addr, addr);
184
185 return 0;
186
187fail_no_pte:
188 put_patching_mm(mm, addr);
189fail_no_mm:
190 return -ENOMEM;
191}
192
193static int text_area_cpu_down_mm(unsigned int cpu)
194{
195 put_patching_mm(this_cpu_read(cpu_patching_context.mm),
196 this_cpu_read(cpu_patching_context.addr));
197
198 this_cpu_write(cpu_patching_context.mm, NULL);
199 this_cpu_write(cpu_patching_context.addr, 0);
200
201 return 0;
202}
203
204static __ro_after_init DEFINE_STATIC_KEY_FALSE(poking_init_done);
205
206void __init poking_init(void)
207{
208 int ret;
209
210 if (mm_patch_enabled())
211 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
212 "powerpc/text_poke_mm:online",
213 text_area_cpu_up_mm,
214 text_area_cpu_down_mm);
215 else
216 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
217 "powerpc/text_poke:online",
218 text_area_cpu_up,
219 text_area_cpu_down);
220
221 /* cpuhp_setup_state returns >= 0 on success */
222 if (WARN_ON(ret < 0))
223 return;
224
225 static_branch_enable(&poking_init_done);
226}
227
228static unsigned long get_patch_pfn(void *addr)
229{
230 if (IS_ENABLED(CONFIG_EXECMEM) && is_vmalloc_or_module_addr(addr))
231 return vmalloc_to_pfn(addr);
232 else
233 return __pa_symbol(addr) >> PAGE_SHIFT;
234}
235
236/*
237 * This can be called for kernel text or a module.
238 */
239static int map_patch_area(void *addr, unsigned long text_poke_addr)
240{
241 unsigned long pfn = get_patch_pfn(addr);
242
243 return map_kernel_page(text_poke_addr, (pfn << PAGE_SHIFT), PAGE_KERNEL);
244}
245
246static void unmap_patch_area(unsigned long addr)
247{
248 pte_t *ptep;
249 pmd_t *pmdp;
250 pud_t *pudp;
251 p4d_t *p4dp;
252 pgd_t *pgdp;
253
254 pgdp = pgd_offset_k(addr);
255 if (WARN_ON(pgd_none(*pgdp)))
256 return;
257
258 p4dp = p4d_offset(pgdp, addr);
259 if (WARN_ON(p4d_none(*p4dp)))
260 return;
261
262 pudp = pud_offset(p4dp, addr);
263 if (WARN_ON(pud_none(*pudp)))
264 return;
265
266 pmdp = pmd_offset(pudp, addr);
267 if (WARN_ON(pmd_none(*pmdp)))
268 return;
269
270 ptep = pte_offset_kernel(pmdp, addr);
271 if (WARN_ON(pte_none(*ptep)))
272 return;
273
274 /*
275 * In hash, pte_clear flushes the tlb, in radix, we have to
276 */
277 pte_clear(&init_mm, addr, ptep);
278 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
279}
280
281static int __do_patch_mem_mm(void *addr, unsigned long val, bool is_dword)
282{
283 int err;
284 u32 *patch_addr;
285 unsigned long text_poke_addr;
286 pte_t *pte;
287 unsigned long pfn = get_patch_pfn(addr);
288 struct mm_struct *patching_mm;
289 struct mm_struct *orig_mm;
290 spinlock_t *ptl;
291
292 patching_mm = __this_cpu_read(cpu_patching_context.mm);
293 text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
294 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
295
296 pte = get_locked_pte(patching_mm, text_poke_addr, &ptl);
297 if (!pte)
298 return -ENOMEM;
299
300 __set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
301
302 /* order PTE update before use, also serves as the hwsync */
303 asm volatile("ptesync": : :"memory");
304
305 /* order context switch after arbitrary prior code */
306 isync();
307
308 orig_mm = start_using_temp_mm(patching_mm);
309
310 err = __patch_mem(addr, val, patch_addr, is_dword);
311
312 /* context synchronisation performed by __patch_instruction (isync or exception) */
313 stop_using_temp_mm(patching_mm, orig_mm);
314
315 pte_clear(patching_mm, text_poke_addr, pte);
316 /*
317 * ptesync to order PTE update before TLB invalidation done
318 * by radix__local_flush_tlb_page_psize (in _tlbiel_va)
319 */
320 local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);
321
322 pte_unmap_unlock(pte, ptl);
323
324 return err;
325}
326
327static int __do_patch_mem(void *addr, unsigned long val, bool is_dword)
328{
329 int err;
330 u32 *patch_addr;
331 unsigned long text_poke_addr;
332 pte_t *pte;
333 unsigned long pfn = get_patch_pfn(addr);
334
335 text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
336 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
337
338 pte = __this_cpu_read(cpu_patching_context.pte);
339 __set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
340 /* See ptesync comment in radix__set_pte_at() */
341 if (radix_enabled())
342 asm volatile("ptesync": : :"memory");
343
344 err = __patch_mem(addr, val, patch_addr, is_dword);
345
346 pte_clear(&init_mm, text_poke_addr, pte);
347 flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);
348
349 return err;
350}
351
352static int patch_mem(void *addr, unsigned long val, bool is_dword)
353{
354 int err;
355 unsigned long flags;
356
357 /*
358 * During early early boot patch_instruction is called
359 * when text_poke_area is not ready, but we still need
360 * to allow patching. We just do the plain old patching
361 */
362 if (!IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) ||
363 !static_branch_likely(&poking_init_done))
364 return __patch_mem(addr, val, addr, is_dword);
365
366 local_irq_save(flags);
367 if (mm_patch_enabled())
368 err = __do_patch_mem_mm(addr, val, is_dword);
369 else
370 err = __do_patch_mem(addr, val, is_dword);
371 local_irq_restore(flags);
372
373 return err;
374}
375
376#ifdef CONFIG_PPC64
377
378int patch_instruction(u32 *addr, ppc_inst_t instr)
379{
380 if (ppc_inst_prefixed(instr))
381 return patch_mem(addr, ppc_inst_as_ulong(instr), true);
382 else
383 return patch_mem(addr, ppc_inst_val(instr), false);
384}
385NOKPROBE_SYMBOL(patch_instruction);
386
387int patch_uint(void *addr, unsigned int val)
388{
389 if (!IS_ALIGNED((unsigned long)addr, sizeof(unsigned int)))
390 return -EINVAL;
391
392 return patch_mem(addr, val, false);
393}
394NOKPROBE_SYMBOL(patch_uint);
395
396int patch_ulong(void *addr, unsigned long val)
397{
398 if (!IS_ALIGNED((unsigned long)addr, sizeof(unsigned long)))
399 return -EINVAL;
400
401 return patch_mem(addr, val, true);
402}
403NOKPROBE_SYMBOL(patch_ulong);
404
405#else
406
407int patch_instruction(u32 *addr, ppc_inst_t instr)
408{
409 return patch_mem(addr, ppc_inst_val(instr), false);
410}
411NOKPROBE_SYMBOL(patch_instruction)
412
413#endif
414
415static int patch_memset64(u64 *addr, u64 val, size_t count)
416{
417 for (u64 *end = addr + count; addr < end; addr++)
418 __put_kernel_nofault(addr, &val, u64, failed);
419
420 return 0;
421
422failed:
423 return -EPERM;
424}
425
426static int patch_memset32(u32 *addr, u32 val, size_t count)
427{
428 for (u32 *end = addr + count; addr < end; addr++)
429 __put_kernel_nofault(addr, &val, u32, failed);
430
431 return 0;
432
433failed:
434 return -EPERM;
435}
436
437static int __patch_instructions(u32 *patch_addr, u32 *code, size_t len, bool repeat_instr)
438{
439 unsigned long start = (unsigned long)patch_addr;
440 int err;
441
442 /* Repeat instruction */
443 if (repeat_instr) {
444 ppc_inst_t instr = ppc_inst_read(code);
445
446 if (ppc_inst_prefixed(instr)) {
447 u64 val = ppc_inst_as_ulong(instr);
448
449 err = patch_memset64((u64 *)patch_addr, val, len / 8);
450 } else {
451 u32 val = ppc_inst_val(instr);
452
453 err = patch_memset32(patch_addr, val, len / 4);
454 }
455 } else {
456 err = copy_to_kernel_nofault(patch_addr, code, len);
457 }
458
459 smp_wmb(); /* smp write barrier */
460 flush_icache_range(start, start + len);
461 return err;
462}
463
464/*
465 * A page is mapped and instructions that fit the page are patched.
466 * Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below.
467 */
468static int __do_patch_instructions_mm(u32 *addr, u32 *code, size_t len, bool repeat_instr)
469{
470 struct mm_struct *patching_mm, *orig_mm;
471 unsigned long pfn = get_patch_pfn(addr);
472 unsigned long text_poke_addr;
473 spinlock_t *ptl;
474 u32 *patch_addr;
475 pte_t *pte;
476 int err;
477
478 patching_mm = __this_cpu_read(cpu_patching_context.mm);
479 text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
480 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
481
482 pte = get_locked_pte(patching_mm, text_poke_addr, &ptl);
483 if (!pte)
484 return -ENOMEM;
485
486 __set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
487
488 /* order PTE update before use, also serves as the hwsync */
489 asm volatile("ptesync" ::: "memory");
490
491 /* order context switch after arbitrary prior code */
492 isync();
493
494 orig_mm = start_using_temp_mm(patching_mm);
495
496 err = __patch_instructions(patch_addr, code, len, repeat_instr);
497
498 /* context synchronisation performed by __patch_instructions */
499 stop_using_temp_mm(patching_mm, orig_mm);
500
501 pte_clear(patching_mm, text_poke_addr, pte);
502 /*
503 * ptesync to order PTE update before TLB invalidation done
504 * by radix__local_flush_tlb_page_psize (in _tlbiel_va)
505 */
506 local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);
507
508 pte_unmap_unlock(pte, ptl);
509
510 return err;
511}
512
513/*
514 * A page is mapped and instructions that fit the page are patched.
515 * Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below.
516 */
517static int __do_patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr)
518{
519 unsigned long pfn = get_patch_pfn(addr);
520 unsigned long text_poke_addr;
521 u32 *patch_addr;
522 pte_t *pte;
523 int err;
524
525 text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
526 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
527
528 pte = __this_cpu_read(cpu_patching_context.pte);
529 __set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
530 /* See ptesync comment in radix__set_pte_at() */
531 if (radix_enabled())
532 asm volatile("ptesync" ::: "memory");
533
534 err = __patch_instructions(patch_addr, code, len, repeat_instr);
535
536 pte_clear(&init_mm, text_poke_addr, pte);
537 flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);
538
539 return err;
540}
541
542/*
543 * Patch 'addr' with 'len' bytes of instructions from 'code'.
544 *
545 * If repeat_instr is true, the same instruction is filled for
546 * 'len' bytes.
547 */
548int patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr)
549{
550 while (len > 0) {
551 unsigned long flags;
552 size_t plen;
553 int err;
554
555 plen = min_t(size_t, PAGE_SIZE - offset_in_page(addr), len);
556
557 local_irq_save(flags);
558 if (mm_patch_enabled())
559 err = __do_patch_instructions_mm(addr, code, plen, repeat_instr);
560 else
561 err = __do_patch_instructions(addr, code, plen, repeat_instr);
562 local_irq_restore(flags);
563 if (err)
564 return err;
565
566 len -= plen;
567 addr = (u32 *)((unsigned long)addr + plen);
568 if (!repeat_instr)
569 code = (u32 *)((unsigned long)code + plen);
570 }
571
572 return 0;
573}
574NOKPROBE_SYMBOL(patch_instructions);
575
576int patch_branch(u32 *addr, unsigned long target, int flags)
577{
578 ppc_inst_t instr;
579
580 if (create_branch(&instr, addr, target, flags))
581 return -ERANGE;
582
583 return patch_instruction(addr, instr);
584}
585
586/*
587 * Helper to check if a given instruction is a conditional branch
588 * Derived from the conditional checks in analyse_instr()
589 */
590bool is_conditional_branch(ppc_inst_t instr)
591{
592 unsigned int opcode = ppc_inst_primary_opcode(instr);
593
594 if (opcode == 16) /* bc, bca, bcl, bcla */
595 return true;
596 if (opcode == 19) {
597 switch ((ppc_inst_val(instr) >> 1) & 0x3ff) {
598 case 16: /* bclr, bclrl */
599 case 528: /* bcctr, bcctrl */
600 case 560: /* bctar, bctarl */
601 return true;
602 }
603 }
604 return false;
605}
606NOKPROBE_SYMBOL(is_conditional_branch);
607
608int create_cond_branch(ppc_inst_t *instr, const u32 *addr,
609 unsigned long target, int flags)
610{
611 long offset;
612
613 offset = target;
614 if (! (flags & BRANCH_ABSOLUTE))
615 offset = offset - (unsigned long)addr;
616
617 /* Check we can represent the target in the instruction format */
618 if (!is_offset_in_cond_branch_range(offset))
619 return 1;
620
621 /* Mask out the flags and target, so they don't step on each other. */
622 *instr = ppc_inst(0x40000000 | (flags & 0x3FF0003) | (offset & 0xFFFC));
623
624 return 0;
625}
626
627int instr_is_relative_branch(ppc_inst_t instr)
628{
629 if (ppc_inst_val(instr) & BRANCH_ABSOLUTE)
630 return 0;
631
632 return instr_is_branch_iform(instr) || instr_is_branch_bform(instr);
633}
634
635int instr_is_relative_link_branch(ppc_inst_t instr)
636{
637 return instr_is_relative_branch(instr) && (ppc_inst_val(instr) & BRANCH_SET_LINK);
638}
639
640static unsigned long branch_iform_target(const u32 *instr)
641{
642 signed long imm;
643
644 imm = ppc_inst_val(ppc_inst_read(instr)) & 0x3FFFFFC;
645
646 /* If the top bit of the immediate value is set this is negative */
647 if (imm & 0x2000000)
648 imm -= 0x4000000;
649
650 if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
651 imm += (unsigned long)instr;
652
653 return (unsigned long)imm;
654}
655
656static unsigned long branch_bform_target(const u32 *instr)
657{
658 signed long imm;
659
660 imm = ppc_inst_val(ppc_inst_read(instr)) & 0xFFFC;
661
662 /* If the top bit of the immediate value is set this is negative */
663 if (imm & 0x8000)
664 imm -= 0x10000;
665
666 if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
667 imm += (unsigned long)instr;
668
669 return (unsigned long)imm;
670}
671
672unsigned long branch_target(const u32 *instr)
673{
674 if (instr_is_branch_iform(ppc_inst_read(instr)))
675 return branch_iform_target(instr);
676 else if (instr_is_branch_bform(ppc_inst_read(instr)))
677 return branch_bform_target(instr);
678
679 return 0;
680}
681
682int translate_branch(ppc_inst_t *instr, const u32 *dest, const u32 *src)
683{
684 unsigned long target;
685 target = branch_target(src);
686
687 if (instr_is_branch_iform(ppc_inst_read(src)))
688 return create_branch(instr, dest, target,
689 ppc_inst_val(ppc_inst_read(src)));
690 else if (instr_is_branch_bform(ppc_inst_read(src)))
691 return create_cond_branch(instr, dest, target,
692 ppc_inst_val(ppc_inst_read(src)));
693
694 return 1;
695}