Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitmap.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/isolation.h>
81#include <linux/sched/mm.h>
82#include <linux/smpboot.h>
83#include <linux/mutex.h>
84#include <linux/rwsem.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/skbuff.h>
96#include <linux/kthread.h>
97#include <linux/bpf.h>
98#include <linux/bpf_trace.h>
99#include <net/net_namespace.h>
100#include <net/sock.h>
101#include <net/busy_poll.h>
102#include <linux/rtnetlink.h>
103#include <linux/stat.h>
104#include <net/dsa.h>
105#include <net/dst.h>
106#include <net/dst_metadata.h>
107#include <net/gro.h>
108#include <net/pkt_sched.h>
109#include <net/pkt_cls.h>
110#include <net/checksum.h>
111#include <net/xfrm.h>
112#include <net/tcx.h>
113#include <linux/highmem.h>
114#include <linux/init.h>
115#include <linux/module.h>
116#include <linux/netpoll.h>
117#include <linux/rcupdate.h>
118#include <linux/delay.h>
119#include <net/iw_handler.h>
120#include <asm/current.h>
121#include <linux/audit.h>
122#include <linux/dmaengine.h>
123#include <linux/err.h>
124#include <linux/ctype.h>
125#include <linux/if_arp.h>
126#include <linux/if_vlan.h>
127#include <linux/ip.h>
128#include <net/ip.h>
129#include <net/mpls.h>
130#include <linux/ipv6.h>
131#include <linux/in.h>
132#include <linux/jhash.h>
133#include <linux/random.h>
134#include <trace/events/napi.h>
135#include <trace/events/net.h>
136#include <trace/events/skb.h>
137#include <trace/events/qdisc.h>
138#include <trace/events/xdp.h>
139#include <linux/inetdevice.h>
140#include <linux/cpu_rmap.h>
141#include <linux/static_key.h>
142#include <linux/hashtable.h>
143#include <linux/vmalloc.h>
144#include <linux/if_macvlan.h>
145#include <linux/errqueue.h>
146#include <linux/hrtimer.h>
147#include <linux/netfilter_netdev.h>
148#include <linux/crash_dump.h>
149#include <linux/sctp.h>
150#include <net/udp_tunnel.h>
151#include <linux/net_namespace.h>
152#include <linux/indirect_call_wrapper.h>
153#include <net/devlink.h>
154#include <linux/pm_runtime.h>
155#include <linux/prandom.h>
156#include <linux/once_lite.h>
157#include <net/netdev_rx_queue.h>
158#include <net/page_pool/types.h>
159#include <net/page_pool/helpers.h>
160#include <net/rps.h>
161#include <linux/phy_link_topology.h>
162
163#include "dev.h"
164#include "devmem.h"
165#include "net-sysfs.h"
166
167static DEFINE_SPINLOCK(ptype_lock);
168struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
169
170static int netif_rx_internal(struct sk_buff *skb);
171static int call_netdevice_notifiers_extack(unsigned long val,
172 struct net_device *dev,
173 struct netlink_ext_ack *extack);
174
175static DEFINE_MUTEX(ifalias_mutex);
176
177/* protects napi_hash addition/deletion and napi_gen_id */
178static DEFINE_SPINLOCK(napi_hash_lock);
179
180static unsigned int napi_gen_id = NR_CPUS;
181static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
182
183static DECLARE_RWSEM(devnet_rename_sem);
184
185static inline void dev_base_seq_inc(struct net *net)
186{
187 unsigned int val = net->dev_base_seq + 1;
188
189 WRITE_ONCE(net->dev_base_seq, val ?: 1);
190}
191
192static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193{
194 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195
196 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197}
198
199static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200{
201 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202}
203
204#ifndef CONFIG_PREEMPT_RT
205
206static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207
208static int __init setup_backlog_napi_threads(char *arg)
209{
210 static_branch_enable(&use_backlog_threads_key);
211 return 0;
212}
213early_param("thread_backlog_napi", setup_backlog_napi_threads);
214
215static bool use_backlog_threads(void)
216{
217 return static_branch_unlikely(&use_backlog_threads_key);
218}
219
220#else
221
222static bool use_backlog_threads(void)
223{
224 return true;
225}
226
227#endif
228
229static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 unsigned long *flags)
231{
232 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 else
235 local_irq_save(*flags);
236}
237
238static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239{
240 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 spin_lock_irq(&sd->input_pkt_queue.lock);
242 else
243 local_irq_disable();
244}
245
246static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 unsigned long *flags)
248{
249 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 else
252 local_irq_restore(*flags);
253}
254
255static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256{
257 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 spin_unlock_irq(&sd->input_pkt_queue.lock);
259 else
260 local_irq_enable();
261}
262
263static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 const char *name)
265{
266 struct netdev_name_node *name_node;
267
268 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 if (!name_node)
270 return NULL;
271 INIT_HLIST_NODE(&name_node->hlist);
272 name_node->dev = dev;
273 name_node->name = name;
274 return name_node;
275}
276
277static struct netdev_name_node *
278netdev_name_node_head_alloc(struct net_device *dev)
279{
280 struct netdev_name_node *name_node;
281
282 name_node = netdev_name_node_alloc(dev, dev->name);
283 if (!name_node)
284 return NULL;
285 INIT_LIST_HEAD(&name_node->list);
286 return name_node;
287}
288
289static void netdev_name_node_free(struct netdev_name_node *name_node)
290{
291 kfree(name_node);
292}
293
294static void netdev_name_node_add(struct net *net,
295 struct netdev_name_node *name_node)
296{
297 hlist_add_head_rcu(&name_node->hlist,
298 dev_name_hash(net, name_node->name));
299}
300
301static void netdev_name_node_del(struct netdev_name_node *name_node)
302{
303 hlist_del_rcu(&name_node->hlist);
304}
305
306static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 const char *name)
308{
309 struct hlist_head *head = dev_name_hash(net, name);
310 struct netdev_name_node *name_node;
311
312 hlist_for_each_entry(name_node, head, hlist)
313 if (!strcmp(name_node->name, name))
314 return name_node;
315 return NULL;
316}
317
318static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 const char *name)
320{
321 struct hlist_head *head = dev_name_hash(net, name);
322 struct netdev_name_node *name_node;
323
324 hlist_for_each_entry_rcu(name_node, head, hlist)
325 if (!strcmp(name_node->name, name))
326 return name_node;
327 return NULL;
328}
329
330bool netdev_name_in_use(struct net *net, const char *name)
331{
332 return netdev_name_node_lookup(net, name);
333}
334EXPORT_SYMBOL(netdev_name_in_use);
335
336int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337{
338 struct netdev_name_node *name_node;
339 struct net *net = dev_net(dev);
340
341 name_node = netdev_name_node_lookup(net, name);
342 if (name_node)
343 return -EEXIST;
344 name_node = netdev_name_node_alloc(dev, name);
345 if (!name_node)
346 return -ENOMEM;
347 netdev_name_node_add(net, name_node);
348 /* The node that holds dev->name acts as a head of per-device list. */
349 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350
351 return 0;
352}
353
354static void netdev_name_node_alt_free(struct rcu_head *head)
355{
356 struct netdev_name_node *name_node =
357 container_of(head, struct netdev_name_node, rcu);
358
359 kfree(name_node->name);
360 netdev_name_node_free(name_node);
361}
362
363static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364{
365 netdev_name_node_del(name_node);
366 list_del(&name_node->list);
367 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368}
369
370int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371{
372 struct netdev_name_node *name_node;
373 struct net *net = dev_net(dev);
374
375 name_node = netdev_name_node_lookup(net, name);
376 if (!name_node)
377 return -ENOENT;
378 /* lookup might have found our primary name or a name belonging
379 * to another device.
380 */
381 if (name_node == dev->name_node || name_node->dev != dev)
382 return -EINVAL;
383
384 __netdev_name_node_alt_destroy(name_node);
385 return 0;
386}
387
388static void netdev_name_node_alt_flush(struct net_device *dev)
389{
390 struct netdev_name_node *name_node, *tmp;
391
392 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 list_del(&name_node->list);
394 netdev_name_node_alt_free(&name_node->rcu);
395 }
396}
397
398/* Device list insertion */
399static void list_netdevice(struct net_device *dev)
400{
401 struct netdev_name_node *name_node;
402 struct net *net = dev_net(dev);
403
404 ASSERT_RTNL();
405
406 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 netdev_name_node_add(net, dev->name_node);
408 hlist_add_head_rcu(&dev->index_hlist,
409 dev_index_hash(net, dev->ifindex));
410
411 netdev_for_each_altname(dev, name_node)
412 netdev_name_node_add(net, name_node);
413
414 /* We reserved the ifindex, this can't fail */
415 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416
417 dev_base_seq_inc(net);
418}
419
420/* Device list removal
421 * caller must respect a RCU grace period before freeing/reusing dev
422 */
423static void unlist_netdevice(struct net_device *dev)
424{
425 struct netdev_name_node *name_node;
426 struct net *net = dev_net(dev);
427
428 ASSERT_RTNL();
429
430 xa_erase(&net->dev_by_index, dev->ifindex);
431
432 netdev_for_each_altname(dev, name_node)
433 netdev_name_node_del(name_node);
434
435 /* Unlink dev from the device chain */
436 list_del_rcu(&dev->dev_list);
437 netdev_name_node_del(dev->name_node);
438 hlist_del_rcu(&dev->index_hlist);
439
440 dev_base_seq_inc(dev_net(dev));
441}
442
443/*
444 * Our notifier list
445 */
446
447static RAW_NOTIFIER_HEAD(netdev_chain);
448
449/*
450 * Device drivers call our routines to queue packets here. We empty the
451 * queue in the local softnet handler.
452 */
453
454DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456};
457EXPORT_PER_CPU_SYMBOL(softnet_data);
458
459/* Page_pool has a lockless array/stack to alloc/recycle pages.
460 * PP consumers must pay attention to run APIs in the appropriate context
461 * (e.g. NAPI context).
462 */
463static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464
465#ifdef CONFIG_LOCKDEP
466/*
467 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468 * according to dev->type
469 */
470static const unsigned short netdev_lock_type[] = {
471 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486
487static const char *const netdev_lock_name[] = {
488 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503
504static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506
507static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508{
509 int i;
510
511 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 if (netdev_lock_type[i] == dev_type)
513 return i;
514 /* the last key is used by default */
515 return ARRAY_SIZE(netdev_lock_type) - 1;
516}
517
518static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 unsigned short dev_type)
520{
521 int i;
522
523 i = netdev_lock_pos(dev_type);
524 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 netdev_lock_name[i]);
526}
527
528static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529{
530 int i;
531
532 i = netdev_lock_pos(dev->type);
533 lockdep_set_class_and_name(&dev->addr_list_lock,
534 &netdev_addr_lock_key[i],
535 netdev_lock_name[i]);
536}
537#else
538static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 unsigned short dev_type)
540{
541}
542
543static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544{
545}
546#endif
547
548/*******************************************************************************
549 *
550 * Protocol management and registration routines
551 *
552 *******************************************************************************/
553
554
555/*
556 * Add a protocol ID to the list. Now that the input handler is
557 * smarter we can dispense with all the messy stuff that used to be
558 * here.
559 *
560 * BEWARE!!! Protocol handlers, mangling input packets,
561 * MUST BE last in hash buckets and checking protocol handlers
562 * MUST start from promiscuous ptype_all chain in net_bh.
563 * It is true now, do not change it.
564 * Explanation follows: if protocol handler, mangling packet, will
565 * be the first on list, it is not able to sense, that packet
566 * is cloned and should be copied-on-write, so that it will
567 * change it and subsequent readers will get broken packet.
568 * --ANK (980803)
569 */
570
571static inline struct list_head *ptype_head(const struct packet_type *pt)
572{
573 if (pt->type == htons(ETH_P_ALL))
574 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 else
576 return pt->dev ? &pt->dev->ptype_specific :
577 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578}
579
580/**
581 * dev_add_pack - add packet handler
582 * @pt: packet type declaration
583 *
584 * Add a protocol handler to the networking stack. The passed &packet_type
585 * is linked into kernel lists and may not be freed until it has been
586 * removed from the kernel lists.
587 *
588 * This call does not sleep therefore it can not
589 * guarantee all CPU's that are in middle of receiving packets
590 * will see the new packet type (until the next received packet).
591 */
592
593void dev_add_pack(struct packet_type *pt)
594{
595 struct list_head *head = ptype_head(pt);
596
597 spin_lock(&ptype_lock);
598 list_add_rcu(&pt->list, head);
599 spin_unlock(&ptype_lock);
600}
601EXPORT_SYMBOL(dev_add_pack);
602
603/**
604 * __dev_remove_pack - remove packet handler
605 * @pt: packet type declaration
606 *
607 * Remove a protocol handler that was previously added to the kernel
608 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
609 * from the kernel lists and can be freed or reused once this function
610 * returns.
611 *
612 * The packet type might still be in use by receivers
613 * and must not be freed until after all the CPU's have gone
614 * through a quiescent state.
615 */
616void __dev_remove_pack(struct packet_type *pt)
617{
618 struct list_head *head = ptype_head(pt);
619 struct packet_type *pt1;
620
621 spin_lock(&ptype_lock);
622
623 list_for_each_entry(pt1, head, list) {
624 if (pt == pt1) {
625 list_del_rcu(&pt->list);
626 goto out;
627 }
628 }
629
630 pr_warn("dev_remove_pack: %p not found\n", pt);
631out:
632 spin_unlock(&ptype_lock);
633}
634EXPORT_SYMBOL(__dev_remove_pack);
635
636/**
637 * dev_remove_pack - remove packet handler
638 * @pt: packet type declaration
639 *
640 * Remove a protocol handler that was previously added to the kernel
641 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
642 * from the kernel lists and can be freed or reused once this function
643 * returns.
644 *
645 * This call sleeps to guarantee that no CPU is looking at the packet
646 * type after return.
647 */
648void dev_remove_pack(struct packet_type *pt)
649{
650 __dev_remove_pack(pt);
651
652 synchronize_net();
653}
654EXPORT_SYMBOL(dev_remove_pack);
655
656
657/*******************************************************************************
658 *
659 * Device Interface Subroutines
660 *
661 *******************************************************************************/
662
663/**
664 * dev_get_iflink - get 'iflink' value of a interface
665 * @dev: targeted interface
666 *
667 * Indicates the ifindex the interface is linked to.
668 * Physical interfaces have the same 'ifindex' and 'iflink' values.
669 */
670
671int dev_get_iflink(const struct net_device *dev)
672{
673 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 return dev->netdev_ops->ndo_get_iflink(dev);
675
676 return READ_ONCE(dev->ifindex);
677}
678EXPORT_SYMBOL(dev_get_iflink);
679
680/**
681 * dev_fill_metadata_dst - Retrieve tunnel egress information.
682 * @dev: targeted interface
683 * @skb: The packet.
684 *
685 * For better visibility of tunnel traffic OVS needs to retrieve
686 * egress tunnel information for a packet. Following API allows
687 * user to get this info.
688 */
689int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690{
691 struct ip_tunnel_info *info;
692
693 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
694 return -EINVAL;
695
696 info = skb_tunnel_info_unclone(skb);
697 if (!info)
698 return -ENOMEM;
699 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 return -EINVAL;
701
702 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703}
704EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705
706static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707{
708 int k = stack->num_paths++;
709
710 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 return NULL;
712
713 return &stack->path[k];
714}
715
716int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 struct net_device_path_stack *stack)
718{
719 const struct net_device *last_dev;
720 struct net_device_path_ctx ctx = {
721 .dev = dev,
722 };
723 struct net_device_path *path;
724 int ret = 0;
725
726 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 stack->num_paths = 0;
728 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 last_dev = ctx.dev;
730 path = dev_fwd_path(stack);
731 if (!path)
732 return -1;
733
734 memset(path, 0, sizeof(struct net_device_path));
735 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 if (ret < 0)
737 return -1;
738
739 if (WARN_ON_ONCE(last_dev == ctx.dev))
740 return -1;
741 }
742
743 if (!ctx.dev)
744 return ret;
745
746 path = dev_fwd_path(stack);
747 if (!path)
748 return -1;
749 path->type = DEV_PATH_ETHERNET;
750 path->dev = ctx.dev;
751
752 return ret;
753}
754EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755
756/**
757 * __dev_get_by_name - find a device by its name
758 * @net: the applicable net namespace
759 * @name: name to find
760 *
761 * Find an interface by name. Must be called under RTNL semaphore.
762 * If the name is found a pointer to the device is returned.
763 * If the name is not found then %NULL is returned. The
764 * reference counters are not incremented so the caller must be
765 * careful with locks.
766 */
767
768struct net_device *__dev_get_by_name(struct net *net, const char *name)
769{
770 struct netdev_name_node *node_name;
771
772 node_name = netdev_name_node_lookup(net, name);
773 return node_name ? node_name->dev : NULL;
774}
775EXPORT_SYMBOL(__dev_get_by_name);
776
777/**
778 * dev_get_by_name_rcu - find a device by its name
779 * @net: the applicable net namespace
780 * @name: name to find
781 *
782 * Find an interface by name.
783 * If the name is found a pointer to the device is returned.
784 * If the name is not found then %NULL is returned.
785 * The reference counters are not incremented so the caller must be
786 * careful with locks. The caller must hold RCU lock.
787 */
788
789struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
790{
791 struct netdev_name_node *node_name;
792
793 node_name = netdev_name_node_lookup_rcu(net, name);
794 return node_name ? node_name->dev : NULL;
795}
796EXPORT_SYMBOL(dev_get_by_name_rcu);
797
798/* Deprecated for new users, call netdev_get_by_name() instead */
799struct net_device *dev_get_by_name(struct net *net, const char *name)
800{
801 struct net_device *dev;
802
803 rcu_read_lock();
804 dev = dev_get_by_name_rcu(net, name);
805 dev_hold(dev);
806 rcu_read_unlock();
807 return dev;
808}
809EXPORT_SYMBOL(dev_get_by_name);
810
811/**
812 * netdev_get_by_name() - find a device by its name
813 * @net: the applicable net namespace
814 * @name: name to find
815 * @tracker: tracking object for the acquired reference
816 * @gfp: allocation flags for the tracker
817 *
818 * Find an interface by name. This can be called from any
819 * context and does its own locking. The returned handle has
820 * the usage count incremented and the caller must use netdev_put() to
821 * release it when it is no longer needed. %NULL is returned if no
822 * matching device is found.
823 */
824struct net_device *netdev_get_by_name(struct net *net, const char *name,
825 netdevice_tracker *tracker, gfp_t gfp)
826{
827 struct net_device *dev;
828
829 dev = dev_get_by_name(net, name);
830 if (dev)
831 netdev_tracker_alloc(dev, tracker, gfp);
832 return dev;
833}
834EXPORT_SYMBOL(netdev_get_by_name);
835
836/**
837 * __dev_get_by_index - find a device by its ifindex
838 * @net: the applicable net namespace
839 * @ifindex: index of device
840 *
841 * Search for an interface by index. Returns %NULL if the device
842 * is not found or a pointer to the device. The device has not
843 * had its reference counter increased so the caller must be careful
844 * about locking. The caller must hold the RTNL semaphore.
845 */
846
847struct net_device *__dev_get_by_index(struct net *net, int ifindex)
848{
849 struct net_device *dev;
850 struct hlist_head *head = dev_index_hash(net, ifindex);
851
852 hlist_for_each_entry(dev, head, index_hlist)
853 if (dev->ifindex == ifindex)
854 return dev;
855
856 return NULL;
857}
858EXPORT_SYMBOL(__dev_get_by_index);
859
860/**
861 * dev_get_by_index_rcu - find a device by its ifindex
862 * @net: the applicable net namespace
863 * @ifindex: index of device
864 *
865 * Search for an interface by index. Returns %NULL if the device
866 * is not found or a pointer to the device. The device has not
867 * had its reference counter increased so the caller must be careful
868 * about locking. The caller must hold RCU lock.
869 */
870
871struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
872{
873 struct net_device *dev;
874 struct hlist_head *head = dev_index_hash(net, ifindex);
875
876 hlist_for_each_entry_rcu(dev, head, index_hlist)
877 if (dev->ifindex == ifindex)
878 return dev;
879
880 return NULL;
881}
882EXPORT_SYMBOL(dev_get_by_index_rcu);
883
884/* Deprecated for new users, call netdev_get_by_index() instead */
885struct net_device *dev_get_by_index(struct net *net, int ifindex)
886{
887 struct net_device *dev;
888
889 rcu_read_lock();
890 dev = dev_get_by_index_rcu(net, ifindex);
891 dev_hold(dev);
892 rcu_read_unlock();
893 return dev;
894}
895EXPORT_SYMBOL(dev_get_by_index);
896
897/**
898 * netdev_get_by_index() - find a device by its ifindex
899 * @net: the applicable net namespace
900 * @ifindex: index of device
901 * @tracker: tracking object for the acquired reference
902 * @gfp: allocation flags for the tracker
903 *
904 * Search for an interface by index. Returns NULL if the device
905 * is not found or a pointer to the device. The device returned has
906 * had a reference added and the pointer is safe until the user calls
907 * netdev_put() to indicate they have finished with it.
908 */
909struct net_device *netdev_get_by_index(struct net *net, int ifindex,
910 netdevice_tracker *tracker, gfp_t gfp)
911{
912 struct net_device *dev;
913
914 dev = dev_get_by_index(net, ifindex);
915 if (dev)
916 netdev_tracker_alloc(dev, tracker, gfp);
917 return dev;
918}
919EXPORT_SYMBOL(netdev_get_by_index);
920
921/**
922 * dev_get_by_napi_id - find a device by napi_id
923 * @napi_id: ID of the NAPI struct
924 *
925 * Search for an interface by NAPI ID. Returns %NULL if the device
926 * is not found or a pointer to the device. The device has not had
927 * its reference counter increased so the caller must be careful
928 * about locking. The caller must hold RCU lock.
929 */
930
931struct net_device *dev_get_by_napi_id(unsigned int napi_id)
932{
933 struct napi_struct *napi;
934
935 WARN_ON_ONCE(!rcu_read_lock_held());
936
937 if (napi_id < MIN_NAPI_ID)
938 return NULL;
939
940 napi = napi_by_id(napi_id);
941
942 return napi ? napi->dev : NULL;
943}
944EXPORT_SYMBOL(dev_get_by_napi_id);
945
946static DEFINE_SEQLOCK(netdev_rename_lock);
947
948void netdev_copy_name(struct net_device *dev, char *name)
949{
950 unsigned int seq;
951
952 do {
953 seq = read_seqbegin(&netdev_rename_lock);
954 strscpy(name, dev->name, IFNAMSIZ);
955 } while (read_seqretry(&netdev_rename_lock, seq));
956}
957
958/**
959 * netdev_get_name - get a netdevice name, knowing its ifindex.
960 * @net: network namespace
961 * @name: a pointer to the buffer where the name will be stored.
962 * @ifindex: the ifindex of the interface to get the name from.
963 */
964int netdev_get_name(struct net *net, char *name, int ifindex)
965{
966 struct net_device *dev;
967 int ret;
968
969 rcu_read_lock();
970
971 dev = dev_get_by_index_rcu(net, ifindex);
972 if (!dev) {
973 ret = -ENODEV;
974 goto out;
975 }
976
977 netdev_copy_name(dev, name);
978
979 ret = 0;
980out:
981 rcu_read_unlock();
982 return ret;
983}
984
985/**
986 * dev_getbyhwaddr_rcu - find a device by its hardware address
987 * @net: the applicable net namespace
988 * @type: media type of device
989 * @ha: hardware address
990 *
991 * Search for an interface by MAC address. Returns NULL if the device
992 * is not found or a pointer to the device.
993 * The caller must hold RCU or RTNL.
994 * The returned device has not had its ref count increased
995 * and the caller must therefore be careful about locking
996 *
997 */
998
999struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1000 const char *ha)
1001{
1002 struct net_device *dev;
1003
1004 for_each_netdev_rcu(net, dev)
1005 if (dev->type == type &&
1006 !memcmp(dev->dev_addr, ha, dev->addr_len))
1007 return dev;
1008
1009 return NULL;
1010}
1011EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1012
1013struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1014{
1015 struct net_device *dev, *ret = NULL;
1016
1017 rcu_read_lock();
1018 for_each_netdev_rcu(net, dev)
1019 if (dev->type == type) {
1020 dev_hold(dev);
1021 ret = dev;
1022 break;
1023 }
1024 rcu_read_unlock();
1025 return ret;
1026}
1027EXPORT_SYMBOL(dev_getfirstbyhwtype);
1028
1029/**
1030 * __dev_get_by_flags - find any device with given flags
1031 * @net: the applicable net namespace
1032 * @if_flags: IFF_* values
1033 * @mask: bitmask of bits in if_flags to check
1034 *
1035 * Search for any interface with the given flags. Returns NULL if a device
1036 * is not found or a pointer to the device. Must be called inside
1037 * rtnl_lock(), and result refcount is unchanged.
1038 */
1039
1040struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1041 unsigned short mask)
1042{
1043 struct net_device *dev, *ret;
1044
1045 ASSERT_RTNL();
1046
1047 ret = NULL;
1048 for_each_netdev(net, dev) {
1049 if (((dev->flags ^ if_flags) & mask) == 0) {
1050 ret = dev;
1051 break;
1052 }
1053 }
1054 return ret;
1055}
1056EXPORT_SYMBOL(__dev_get_by_flags);
1057
1058/**
1059 * dev_valid_name - check if name is okay for network device
1060 * @name: name string
1061 *
1062 * Network device names need to be valid file names to
1063 * allow sysfs to work. We also disallow any kind of
1064 * whitespace.
1065 */
1066bool dev_valid_name(const char *name)
1067{
1068 if (*name == '\0')
1069 return false;
1070 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1071 return false;
1072 if (!strcmp(name, ".") || !strcmp(name, ".."))
1073 return false;
1074
1075 while (*name) {
1076 if (*name == '/' || *name == ':' || isspace(*name))
1077 return false;
1078 name++;
1079 }
1080 return true;
1081}
1082EXPORT_SYMBOL(dev_valid_name);
1083
1084/**
1085 * __dev_alloc_name - allocate a name for a device
1086 * @net: network namespace to allocate the device name in
1087 * @name: name format string
1088 * @res: result name string
1089 *
1090 * Passed a format string - eg "lt%d" it will try and find a suitable
1091 * id. It scans list of devices to build up a free map, then chooses
1092 * the first empty slot. The caller must hold the dev_base or rtnl lock
1093 * while allocating the name and adding the device in order to avoid
1094 * duplicates.
1095 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1096 * Returns the number of the unit assigned or a negative errno code.
1097 */
1098
1099static int __dev_alloc_name(struct net *net, const char *name, char *res)
1100{
1101 int i = 0;
1102 const char *p;
1103 const int max_netdevices = 8*PAGE_SIZE;
1104 unsigned long *inuse;
1105 struct net_device *d;
1106 char buf[IFNAMSIZ];
1107
1108 /* Verify the string as this thing may have come from the user.
1109 * There must be one "%d" and no other "%" characters.
1110 */
1111 p = strchr(name, '%');
1112 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1113 return -EINVAL;
1114
1115 /* Use one page as a bit array of possible slots */
1116 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1117 if (!inuse)
1118 return -ENOMEM;
1119
1120 for_each_netdev(net, d) {
1121 struct netdev_name_node *name_node;
1122
1123 netdev_for_each_altname(d, name_node) {
1124 if (!sscanf(name_node->name, name, &i))
1125 continue;
1126 if (i < 0 || i >= max_netdevices)
1127 continue;
1128
1129 /* avoid cases where sscanf is not exact inverse of printf */
1130 snprintf(buf, IFNAMSIZ, name, i);
1131 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1132 __set_bit(i, inuse);
1133 }
1134 if (!sscanf(d->name, name, &i))
1135 continue;
1136 if (i < 0 || i >= max_netdevices)
1137 continue;
1138
1139 /* avoid cases where sscanf is not exact inverse of printf */
1140 snprintf(buf, IFNAMSIZ, name, i);
1141 if (!strncmp(buf, d->name, IFNAMSIZ))
1142 __set_bit(i, inuse);
1143 }
1144
1145 i = find_first_zero_bit(inuse, max_netdevices);
1146 bitmap_free(inuse);
1147 if (i == max_netdevices)
1148 return -ENFILE;
1149
1150 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1151 strscpy(buf, name, IFNAMSIZ);
1152 snprintf(res, IFNAMSIZ, buf, i);
1153 return i;
1154}
1155
1156/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1157static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1158 const char *want_name, char *out_name,
1159 int dup_errno)
1160{
1161 if (!dev_valid_name(want_name))
1162 return -EINVAL;
1163
1164 if (strchr(want_name, '%'))
1165 return __dev_alloc_name(net, want_name, out_name);
1166
1167 if (netdev_name_in_use(net, want_name))
1168 return -dup_errno;
1169 if (out_name != want_name)
1170 strscpy(out_name, want_name, IFNAMSIZ);
1171 return 0;
1172}
1173
1174/**
1175 * dev_alloc_name - allocate a name for a device
1176 * @dev: device
1177 * @name: name format string
1178 *
1179 * Passed a format string - eg "lt%d" it will try and find a suitable
1180 * id. It scans list of devices to build up a free map, then chooses
1181 * the first empty slot. The caller must hold the dev_base or rtnl lock
1182 * while allocating the name and adding the device in order to avoid
1183 * duplicates.
1184 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1185 * Returns the number of the unit assigned or a negative errno code.
1186 */
1187
1188int dev_alloc_name(struct net_device *dev, const char *name)
1189{
1190 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1191}
1192EXPORT_SYMBOL(dev_alloc_name);
1193
1194static int dev_get_valid_name(struct net *net, struct net_device *dev,
1195 const char *name)
1196{
1197 int ret;
1198
1199 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1200 return ret < 0 ? ret : 0;
1201}
1202
1203/**
1204 * dev_change_name - change name of a device
1205 * @dev: device
1206 * @newname: name (or format string) must be at least IFNAMSIZ
1207 *
1208 * Change name of a device, can pass format strings "eth%d".
1209 * for wildcarding.
1210 */
1211int dev_change_name(struct net_device *dev, const char *newname)
1212{
1213 unsigned char old_assign_type;
1214 char oldname[IFNAMSIZ];
1215 int err = 0;
1216 int ret;
1217 struct net *net;
1218
1219 ASSERT_RTNL();
1220 BUG_ON(!dev_net(dev));
1221
1222 net = dev_net(dev);
1223
1224 down_write(&devnet_rename_sem);
1225
1226 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 up_write(&devnet_rename_sem);
1228 return 0;
1229 }
1230
1231 memcpy(oldname, dev->name, IFNAMSIZ);
1232
1233 write_seqlock_bh(&netdev_rename_lock);
1234 err = dev_get_valid_name(net, dev, newname);
1235 write_sequnlock_bh(&netdev_rename_lock);
1236
1237 if (err < 0) {
1238 up_write(&devnet_rename_sem);
1239 return err;
1240 }
1241
1242 if (oldname[0] && !strchr(oldname, '%'))
1243 netdev_info(dev, "renamed from %s%s\n", oldname,
1244 dev->flags & IFF_UP ? " (while UP)" : "");
1245
1246 old_assign_type = dev->name_assign_type;
1247 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1248
1249rollback:
1250 ret = device_rename(&dev->dev, dev->name);
1251 if (ret) {
1252 memcpy(dev->name, oldname, IFNAMSIZ);
1253 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1254 up_write(&devnet_rename_sem);
1255 return ret;
1256 }
1257
1258 up_write(&devnet_rename_sem);
1259
1260 netdev_adjacent_rename_links(dev, oldname);
1261
1262 netdev_name_node_del(dev->name_node);
1263
1264 synchronize_net();
1265
1266 netdev_name_node_add(net, dev->name_node);
1267
1268 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1269 ret = notifier_to_errno(ret);
1270
1271 if (ret) {
1272 /* err >= 0 after dev_alloc_name() or stores the first errno */
1273 if (err >= 0) {
1274 err = ret;
1275 down_write(&devnet_rename_sem);
1276 write_seqlock_bh(&netdev_rename_lock);
1277 memcpy(dev->name, oldname, IFNAMSIZ);
1278 write_sequnlock_bh(&netdev_rename_lock);
1279 memcpy(oldname, newname, IFNAMSIZ);
1280 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1281 old_assign_type = NET_NAME_RENAMED;
1282 goto rollback;
1283 } else {
1284 netdev_err(dev, "name change rollback failed: %d\n",
1285 ret);
1286 }
1287 }
1288
1289 return err;
1290}
1291
1292/**
1293 * dev_set_alias - change ifalias of a device
1294 * @dev: device
1295 * @alias: name up to IFALIASZ
1296 * @len: limit of bytes to copy from info
1297 *
1298 * Set ifalias for a device,
1299 */
1300int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301{
1302 struct dev_ifalias *new_alias = NULL;
1303
1304 if (len >= IFALIASZ)
1305 return -EINVAL;
1306
1307 if (len) {
1308 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309 if (!new_alias)
1310 return -ENOMEM;
1311
1312 memcpy(new_alias->ifalias, alias, len);
1313 new_alias->ifalias[len] = 0;
1314 }
1315
1316 mutex_lock(&ifalias_mutex);
1317 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318 mutex_is_locked(&ifalias_mutex));
1319 mutex_unlock(&ifalias_mutex);
1320
1321 if (new_alias)
1322 kfree_rcu(new_alias, rcuhead);
1323
1324 return len;
1325}
1326EXPORT_SYMBOL(dev_set_alias);
1327
1328/**
1329 * dev_get_alias - get ifalias of a device
1330 * @dev: device
1331 * @name: buffer to store name of ifalias
1332 * @len: size of buffer
1333 *
1334 * get ifalias for a device. Caller must make sure dev cannot go
1335 * away, e.g. rcu read lock or own a reference count to device.
1336 */
1337int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338{
1339 const struct dev_ifalias *alias;
1340 int ret = 0;
1341
1342 rcu_read_lock();
1343 alias = rcu_dereference(dev->ifalias);
1344 if (alias)
1345 ret = snprintf(name, len, "%s", alias->ifalias);
1346 rcu_read_unlock();
1347
1348 return ret;
1349}
1350
1351/**
1352 * netdev_features_change - device changes features
1353 * @dev: device to cause notification
1354 *
1355 * Called to indicate a device has changed features.
1356 */
1357void netdev_features_change(struct net_device *dev)
1358{
1359 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360}
1361EXPORT_SYMBOL(netdev_features_change);
1362
1363/**
1364 * netdev_state_change - device changes state
1365 * @dev: device to cause notification
1366 *
1367 * Called to indicate a device has changed state. This function calls
1368 * the notifier chains for netdev_chain and sends a NEWLINK message
1369 * to the routing socket.
1370 */
1371void netdev_state_change(struct net_device *dev)
1372{
1373 if (dev->flags & IFF_UP) {
1374 struct netdev_notifier_change_info change_info = {
1375 .info.dev = dev,
1376 };
1377
1378 call_netdevice_notifiers_info(NETDEV_CHANGE,
1379 &change_info.info);
1380 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1381 }
1382}
1383EXPORT_SYMBOL(netdev_state_change);
1384
1385/**
1386 * __netdev_notify_peers - notify network peers about existence of @dev,
1387 * to be called when rtnl lock is already held.
1388 * @dev: network device
1389 *
1390 * Generate traffic such that interested network peers are aware of
1391 * @dev, such as by generating a gratuitous ARP. This may be used when
1392 * a device wants to inform the rest of the network about some sort of
1393 * reconfiguration such as a failover event or virtual machine
1394 * migration.
1395 */
1396void __netdev_notify_peers(struct net_device *dev)
1397{
1398 ASSERT_RTNL();
1399 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1400 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1401}
1402EXPORT_SYMBOL(__netdev_notify_peers);
1403
1404/**
1405 * netdev_notify_peers - notify network peers about existence of @dev
1406 * @dev: network device
1407 *
1408 * Generate traffic such that interested network peers are aware of
1409 * @dev, such as by generating a gratuitous ARP. This may be used when
1410 * a device wants to inform the rest of the network about some sort of
1411 * reconfiguration such as a failover event or virtual machine
1412 * migration.
1413 */
1414void netdev_notify_peers(struct net_device *dev)
1415{
1416 rtnl_lock();
1417 __netdev_notify_peers(dev);
1418 rtnl_unlock();
1419}
1420EXPORT_SYMBOL(netdev_notify_peers);
1421
1422static int napi_threaded_poll(void *data);
1423
1424static int napi_kthread_create(struct napi_struct *n)
1425{
1426 int err = 0;
1427
1428 /* Create and wake up the kthread once to put it in
1429 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1430 * warning and work with loadavg.
1431 */
1432 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1433 n->dev->name, n->napi_id);
1434 if (IS_ERR(n->thread)) {
1435 err = PTR_ERR(n->thread);
1436 pr_err("kthread_run failed with err %d\n", err);
1437 n->thread = NULL;
1438 }
1439
1440 return err;
1441}
1442
1443static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1444{
1445 const struct net_device_ops *ops = dev->netdev_ops;
1446 int ret;
1447
1448 ASSERT_RTNL();
1449 dev_addr_check(dev);
1450
1451 if (!netif_device_present(dev)) {
1452 /* may be detached because parent is runtime-suspended */
1453 if (dev->dev.parent)
1454 pm_runtime_resume(dev->dev.parent);
1455 if (!netif_device_present(dev))
1456 return -ENODEV;
1457 }
1458
1459 /* Block netpoll from trying to do any rx path servicing.
1460 * If we don't do this there is a chance ndo_poll_controller
1461 * or ndo_poll may be running while we open the device
1462 */
1463 netpoll_poll_disable(dev);
1464
1465 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1466 ret = notifier_to_errno(ret);
1467 if (ret)
1468 return ret;
1469
1470 set_bit(__LINK_STATE_START, &dev->state);
1471
1472 if (ops->ndo_validate_addr)
1473 ret = ops->ndo_validate_addr(dev);
1474
1475 if (!ret && ops->ndo_open)
1476 ret = ops->ndo_open(dev);
1477
1478 netpoll_poll_enable(dev);
1479
1480 if (ret)
1481 clear_bit(__LINK_STATE_START, &dev->state);
1482 else {
1483 dev->flags |= IFF_UP;
1484 dev_set_rx_mode(dev);
1485 dev_activate(dev);
1486 add_device_randomness(dev->dev_addr, dev->addr_len);
1487 }
1488
1489 return ret;
1490}
1491
1492/**
1493 * dev_open - prepare an interface for use.
1494 * @dev: device to open
1495 * @extack: netlink extended ack
1496 *
1497 * Takes a device from down to up state. The device's private open
1498 * function is invoked and then the multicast lists are loaded. Finally
1499 * the device is moved into the up state and a %NETDEV_UP message is
1500 * sent to the netdev notifier chain.
1501 *
1502 * Calling this function on an active interface is a nop. On a failure
1503 * a negative errno code is returned.
1504 */
1505int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1506{
1507 int ret;
1508
1509 if (dev->flags & IFF_UP)
1510 return 0;
1511
1512 ret = __dev_open(dev, extack);
1513 if (ret < 0)
1514 return ret;
1515
1516 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1517 call_netdevice_notifiers(NETDEV_UP, dev);
1518
1519 return ret;
1520}
1521EXPORT_SYMBOL(dev_open);
1522
1523static void __dev_close_many(struct list_head *head)
1524{
1525 struct net_device *dev;
1526
1527 ASSERT_RTNL();
1528 might_sleep();
1529
1530 list_for_each_entry(dev, head, close_list) {
1531 /* Temporarily disable netpoll until the interface is down */
1532 netpoll_poll_disable(dev);
1533
1534 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1535
1536 clear_bit(__LINK_STATE_START, &dev->state);
1537
1538 /* Synchronize to scheduled poll. We cannot touch poll list, it
1539 * can be even on different cpu. So just clear netif_running().
1540 *
1541 * dev->stop() will invoke napi_disable() on all of it's
1542 * napi_struct instances on this device.
1543 */
1544 smp_mb__after_atomic(); /* Commit netif_running(). */
1545 }
1546
1547 dev_deactivate_many(head);
1548
1549 list_for_each_entry(dev, head, close_list) {
1550 const struct net_device_ops *ops = dev->netdev_ops;
1551
1552 /*
1553 * Call the device specific close. This cannot fail.
1554 * Only if device is UP
1555 *
1556 * We allow it to be called even after a DETACH hot-plug
1557 * event.
1558 */
1559 if (ops->ndo_stop)
1560 ops->ndo_stop(dev);
1561
1562 dev->flags &= ~IFF_UP;
1563 netpoll_poll_enable(dev);
1564 }
1565}
1566
1567static void __dev_close(struct net_device *dev)
1568{
1569 LIST_HEAD(single);
1570
1571 list_add(&dev->close_list, &single);
1572 __dev_close_many(&single);
1573 list_del(&single);
1574}
1575
1576void dev_close_many(struct list_head *head, bool unlink)
1577{
1578 struct net_device *dev, *tmp;
1579
1580 /* Remove the devices that don't need to be closed */
1581 list_for_each_entry_safe(dev, tmp, head, close_list)
1582 if (!(dev->flags & IFF_UP))
1583 list_del_init(&dev->close_list);
1584
1585 __dev_close_many(head);
1586
1587 list_for_each_entry_safe(dev, tmp, head, close_list) {
1588 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1589 call_netdevice_notifiers(NETDEV_DOWN, dev);
1590 if (unlink)
1591 list_del_init(&dev->close_list);
1592 }
1593}
1594EXPORT_SYMBOL(dev_close_many);
1595
1596/**
1597 * dev_close - shutdown an interface.
1598 * @dev: device to shutdown
1599 *
1600 * This function moves an active device into down state. A
1601 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1602 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1603 * chain.
1604 */
1605void dev_close(struct net_device *dev)
1606{
1607 if (dev->flags & IFF_UP) {
1608 LIST_HEAD(single);
1609
1610 list_add(&dev->close_list, &single);
1611 dev_close_many(&single, true);
1612 list_del(&single);
1613 }
1614}
1615EXPORT_SYMBOL(dev_close);
1616
1617
1618/**
1619 * dev_disable_lro - disable Large Receive Offload on a device
1620 * @dev: device
1621 *
1622 * Disable Large Receive Offload (LRO) on a net device. Must be
1623 * called under RTNL. This is needed if received packets may be
1624 * forwarded to another interface.
1625 */
1626void dev_disable_lro(struct net_device *dev)
1627{
1628 struct net_device *lower_dev;
1629 struct list_head *iter;
1630
1631 dev->wanted_features &= ~NETIF_F_LRO;
1632 netdev_update_features(dev);
1633
1634 if (unlikely(dev->features & NETIF_F_LRO))
1635 netdev_WARN(dev, "failed to disable LRO!\n");
1636
1637 netdev_for_each_lower_dev(dev, lower_dev, iter)
1638 dev_disable_lro(lower_dev);
1639}
1640EXPORT_SYMBOL(dev_disable_lro);
1641
1642/**
1643 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1644 * @dev: device
1645 *
1646 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1647 * called under RTNL. This is needed if Generic XDP is installed on
1648 * the device.
1649 */
1650static void dev_disable_gro_hw(struct net_device *dev)
1651{
1652 dev->wanted_features &= ~NETIF_F_GRO_HW;
1653 netdev_update_features(dev);
1654
1655 if (unlikely(dev->features & NETIF_F_GRO_HW))
1656 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1657}
1658
1659const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1660{
1661#define N(val) \
1662 case NETDEV_##val: \
1663 return "NETDEV_" __stringify(val);
1664 switch (cmd) {
1665 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1666 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1667 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1668 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1669 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1670 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1671 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1672 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1673 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1674 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1675 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1676 N(XDP_FEAT_CHANGE)
1677 }
1678#undef N
1679 return "UNKNOWN_NETDEV_EVENT";
1680}
1681EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1682
1683static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1684 struct net_device *dev)
1685{
1686 struct netdev_notifier_info info = {
1687 .dev = dev,
1688 };
1689
1690 return nb->notifier_call(nb, val, &info);
1691}
1692
1693static int call_netdevice_register_notifiers(struct notifier_block *nb,
1694 struct net_device *dev)
1695{
1696 int err;
1697
1698 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1699 err = notifier_to_errno(err);
1700 if (err)
1701 return err;
1702
1703 if (!(dev->flags & IFF_UP))
1704 return 0;
1705
1706 call_netdevice_notifier(nb, NETDEV_UP, dev);
1707 return 0;
1708}
1709
1710static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1711 struct net_device *dev)
1712{
1713 if (dev->flags & IFF_UP) {
1714 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1715 dev);
1716 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1717 }
1718 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1719}
1720
1721static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1722 struct net *net)
1723{
1724 struct net_device *dev;
1725 int err;
1726
1727 for_each_netdev(net, dev) {
1728 err = call_netdevice_register_notifiers(nb, dev);
1729 if (err)
1730 goto rollback;
1731 }
1732 return 0;
1733
1734rollback:
1735 for_each_netdev_continue_reverse(net, dev)
1736 call_netdevice_unregister_notifiers(nb, dev);
1737 return err;
1738}
1739
1740static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1741 struct net *net)
1742{
1743 struct net_device *dev;
1744
1745 for_each_netdev(net, dev)
1746 call_netdevice_unregister_notifiers(nb, dev);
1747}
1748
1749static int dev_boot_phase = 1;
1750
1751/**
1752 * register_netdevice_notifier - register a network notifier block
1753 * @nb: notifier
1754 *
1755 * Register a notifier to be called when network device events occur.
1756 * The notifier passed is linked into the kernel structures and must
1757 * not be reused until it has been unregistered. A negative errno code
1758 * is returned on a failure.
1759 *
1760 * When registered all registration and up events are replayed
1761 * to the new notifier to allow device to have a race free
1762 * view of the network device list.
1763 */
1764
1765int register_netdevice_notifier(struct notifier_block *nb)
1766{
1767 struct net *net;
1768 int err;
1769
1770 /* Close race with setup_net() and cleanup_net() */
1771 down_write(&pernet_ops_rwsem);
1772 rtnl_lock();
1773 err = raw_notifier_chain_register(&netdev_chain, nb);
1774 if (err)
1775 goto unlock;
1776 if (dev_boot_phase)
1777 goto unlock;
1778 for_each_net(net) {
1779 err = call_netdevice_register_net_notifiers(nb, net);
1780 if (err)
1781 goto rollback;
1782 }
1783
1784unlock:
1785 rtnl_unlock();
1786 up_write(&pernet_ops_rwsem);
1787 return err;
1788
1789rollback:
1790 for_each_net_continue_reverse(net)
1791 call_netdevice_unregister_net_notifiers(nb, net);
1792
1793 raw_notifier_chain_unregister(&netdev_chain, nb);
1794 goto unlock;
1795}
1796EXPORT_SYMBOL(register_netdevice_notifier);
1797
1798/**
1799 * unregister_netdevice_notifier - unregister a network notifier block
1800 * @nb: notifier
1801 *
1802 * Unregister a notifier previously registered by
1803 * register_netdevice_notifier(). The notifier is unlinked into the
1804 * kernel structures and may then be reused. A negative errno code
1805 * is returned on a failure.
1806 *
1807 * After unregistering unregister and down device events are synthesized
1808 * for all devices on the device list to the removed notifier to remove
1809 * the need for special case cleanup code.
1810 */
1811
1812int unregister_netdevice_notifier(struct notifier_block *nb)
1813{
1814 struct net *net;
1815 int err;
1816
1817 /* Close race with setup_net() and cleanup_net() */
1818 down_write(&pernet_ops_rwsem);
1819 rtnl_lock();
1820 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1821 if (err)
1822 goto unlock;
1823
1824 for_each_net(net)
1825 call_netdevice_unregister_net_notifiers(nb, net);
1826
1827unlock:
1828 rtnl_unlock();
1829 up_write(&pernet_ops_rwsem);
1830 return err;
1831}
1832EXPORT_SYMBOL(unregister_netdevice_notifier);
1833
1834static int __register_netdevice_notifier_net(struct net *net,
1835 struct notifier_block *nb,
1836 bool ignore_call_fail)
1837{
1838 int err;
1839
1840 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1841 if (err)
1842 return err;
1843 if (dev_boot_phase)
1844 return 0;
1845
1846 err = call_netdevice_register_net_notifiers(nb, net);
1847 if (err && !ignore_call_fail)
1848 goto chain_unregister;
1849
1850 return 0;
1851
1852chain_unregister:
1853 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1854 return err;
1855}
1856
1857static int __unregister_netdevice_notifier_net(struct net *net,
1858 struct notifier_block *nb)
1859{
1860 int err;
1861
1862 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1863 if (err)
1864 return err;
1865
1866 call_netdevice_unregister_net_notifiers(nb, net);
1867 return 0;
1868}
1869
1870/**
1871 * register_netdevice_notifier_net - register a per-netns network notifier block
1872 * @net: network namespace
1873 * @nb: notifier
1874 *
1875 * Register a notifier to be called when network device events occur.
1876 * The notifier passed is linked into the kernel structures and must
1877 * not be reused until it has been unregistered. A negative errno code
1878 * is returned on a failure.
1879 *
1880 * When registered all registration and up events are replayed
1881 * to the new notifier to allow device to have a race free
1882 * view of the network device list.
1883 */
1884
1885int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1886{
1887 int err;
1888
1889 rtnl_lock();
1890 err = __register_netdevice_notifier_net(net, nb, false);
1891 rtnl_unlock();
1892 return err;
1893}
1894EXPORT_SYMBOL(register_netdevice_notifier_net);
1895
1896/**
1897 * unregister_netdevice_notifier_net - unregister a per-netns
1898 * network notifier block
1899 * @net: network namespace
1900 * @nb: notifier
1901 *
1902 * Unregister a notifier previously registered by
1903 * register_netdevice_notifier_net(). The notifier is unlinked from the
1904 * kernel structures and may then be reused. A negative errno code
1905 * is returned on a failure.
1906 *
1907 * After unregistering unregister and down device events are synthesized
1908 * for all devices on the device list to the removed notifier to remove
1909 * the need for special case cleanup code.
1910 */
1911
1912int unregister_netdevice_notifier_net(struct net *net,
1913 struct notifier_block *nb)
1914{
1915 int err;
1916
1917 rtnl_lock();
1918 err = __unregister_netdevice_notifier_net(net, nb);
1919 rtnl_unlock();
1920 return err;
1921}
1922EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1923
1924static void __move_netdevice_notifier_net(struct net *src_net,
1925 struct net *dst_net,
1926 struct notifier_block *nb)
1927{
1928 __unregister_netdevice_notifier_net(src_net, nb);
1929 __register_netdevice_notifier_net(dst_net, nb, true);
1930}
1931
1932int register_netdevice_notifier_dev_net(struct net_device *dev,
1933 struct notifier_block *nb,
1934 struct netdev_net_notifier *nn)
1935{
1936 int err;
1937
1938 rtnl_lock();
1939 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940 if (!err) {
1941 nn->nb = nb;
1942 list_add(&nn->list, &dev->net_notifier_list);
1943 }
1944 rtnl_unlock();
1945 return err;
1946}
1947EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948
1949int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950 struct notifier_block *nb,
1951 struct netdev_net_notifier *nn)
1952{
1953 int err;
1954
1955 rtnl_lock();
1956 list_del(&nn->list);
1957 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958 rtnl_unlock();
1959 return err;
1960}
1961EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962
1963static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964 struct net *net)
1965{
1966 struct netdev_net_notifier *nn;
1967
1968 list_for_each_entry(nn, &dev->net_notifier_list, list)
1969 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1970}
1971
1972/**
1973 * call_netdevice_notifiers_info - call all network notifier blocks
1974 * @val: value passed unmodified to notifier function
1975 * @info: notifier information data
1976 *
1977 * Call all network notifier blocks. Parameters and return value
1978 * are as for raw_notifier_call_chain().
1979 */
1980
1981int call_netdevice_notifiers_info(unsigned long val,
1982 struct netdev_notifier_info *info)
1983{
1984 struct net *net = dev_net(info->dev);
1985 int ret;
1986
1987 ASSERT_RTNL();
1988
1989 /* Run per-netns notifier block chain first, then run the global one.
1990 * Hopefully, one day, the global one is going to be removed after
1991 * all notifier block registrators get converted to be per-netns.
1992 */
1993 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994 if (ret & NOTIFY_STOP_MASK)
1995 return ret;
1996 return raw_notifier_call_chain(&netdev_chain, val, info);
1997}
1998
1999/**
2000 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2001 * for and rollback on error
2002 * @val_up: value passed unmodified to notifier function
2003 * @val_down: value passed unmodified to the notifier function when
2004 * recovering from an error on @val_up
2005 * @info: notifier information data
2006 *
2007 * Call all per-netns network notifier blocks, but not notifier blocks on
2008 * the global notifier chain. Parameters and return value are as for
2009 * raw_notifier_call_chain_robust().
2010 */
2011
2012static int
2013call_netdevice_notifiers_info_robust(unsigned long val_up,
2014 unsigned long val_down,
2015 struct netdev_notifier_info *info)
2016{
2017 struct net *net = dev_net(info->dev);
2018
2019 ASSERT_RTNL();
2020
2021 return raw_notifier_call_chain_robust(&net->netdev_chain,
2022 val_up, val_down, info);
2023}
2024
2025static int call_netdevice_notifiers_extack(unsigned long val,
2026 struct net_device *dev,
2027 struct netlink_ext_ack *extack)
2028{
2029 struct netdev_notifier_info info = {
2030 .dev = dev,
2031 .extack = extack,
2032 };
2033
2034 return call_netdevice_notifiers_info(val, &info);
2035}
2036
2037/**
2038 * call_netdevice_notifiers - call all network notifier blocks
2039 * @val: value passed unmodified to notifier function
2040 * @dev: net_device pointer passed unmodified to notifier function
2041 *
2042 * Call all network notifier blocks. Parameters and return value
2043 * are as for raw_notifier_call_chain().
2044 */
2045
2046int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2047{
2048 return call_netdevice_notifiers_extack(val, dev, NULL);
2049}
2050EXPORT_SYMBOL(call_netdevice_notifiers);
2051
2052/**
2053 * call_netdevice_notifiers_mtu - call all network notifier blocks
2054 * @val: value passed unmodified to notifier function
2055 * @dev: net_device pointer passed unmodified to notifier function
2056 * @arg: additional u32 argument passed to the notifier function
2057 *
2058 * Call all network notifier blocks. Parameters and return value
2059 * are as for raw_notifier_call_chain().
2060 */
2061static int call_netdevice_notifiers_mtu(unsigned long val,
2062 struct net_device *dev, u32 arg)
2063{
2064 struct netdev_notifier_info_ext info = {
2065 .info.dev = dev,
2066 .ext.mtu = arg,
2067 };
2068
2069 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2070
2071 return call_netdevice_notifiers_info(val, &info.info);
2072}
2073
2074#ifdef CONFIG_NET_INGRESS
2075static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2076
2077void net_inc_ingress_queue(void)
2078{
2079 static_branch_inc(&ingress_needed_key);
2080}
2081EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2082
2083void net_dec_ingress_queue(void)
2084{
2085 static_branch_dec(&ingress_needed_key);
2086}
2087EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2088#endif
2089
2090#ifdef CONFIG_NET_EGRESS
2091static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2092
2093void net_inc_egress_queue(void)
2094{
2095 static_branch_inc(&egress_needed_key);
2096}
2097EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2098
2099void net_dec_egress_queue(void)
2100{
2101 static_branch_dec(&egress_needed_key);
2102}
2103EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2104#endif
2105
2106#ifdef CONFIG_NET_CLS_ACT
2107DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2108EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2109#endif
2110
2111DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112EXPORT_SYMBOL(netstamp_needed_key);
2113#ifdef CONFIG_JUMP_LABEL
2114static atomic_t netstamp_needed_deferred;
2115static atomic_t netstamp_wanted;
2116static void netstamp_clear(struct work_struct *work)
2117{
2118 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2119 int wanted;
2120
2121 wanted = atomic_add_return(deferred, &netstamp_wanted);
2122 if (wanted > 0)
2123 static_branch_enable(&netstamp_needed_key);
2124 else
2125 static_branch_disable(&netstamp_needed_key);
2126}
2127static DECLARE_WORK(netstamp_work, netstamp_clear);
2128#endif
2129
2130void net_enable_timestamp(void)
2131{
2132#ifdef CONFIG_JUMP_LABEL
2133 int wanted = atomic_read(&netstamp_wanted);
2134
2135 while (wanted > 0) {
2136 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2137 return;
2138 }
2139 atomic_inc(&netstamp_needed_deferred);
2140 schedule_work(&netstamp_work);
2141#else
2142 static_branch_inc(&netstamp_needed_key);
2143#endif
2144}
2145EXPORT_SYMBOL(net_enable_timestamp);
2146
2147void net_disable_timestamp(void)
2148{
2149#ifdef CONFIG_JUMP_LABEL
2150 int wanted = atomic_read(&netstamp_wanted);
2151
2152 while (wanted > 1) {
2153 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2154 return;
2155 }
2156 atomic_dec(&netstamp_needed_deferred);
2157 schedule_work(&netstamp_work);
2158#else
2159 static_branch_dec(&netstamp_needed_key);
2160#endif
2161}
2162EXPORT_SYMBOL(net_disable_timestamp);
2163
2164static inline void net_timestamp_set(struct sk_buff *skb)
2165{
2166 skb->tstamp = 0;
2167 skb->tstamp_type = SKB_CLOCK_REALTIME;
2168 if (static_branch_unlikely(&netstamp_needed_key))
2169 skb->tstamp = ktime_get_real();
2170}
2171
2172#define net_timestamp_check(COND, SKB) \
2173 if (static_branch_unlikely(&netstamp_needed_key)) { \
2174 if ((COND) && !(SKB)->tstamp) \
2175 (SKB)->tstamp = ktime_get_real(); \
2176 } \
2177
2178bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2179{
2180 return __is_skb_forwardable(dev, skb, true);
2181}
2182EXPORT_SYMBOL_GPL(is_skb_forwardable);
2183
2184static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2185 bool check_mtu)
2186{
2187 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2188
2189 if (likely(!ret)) {
2190 skb->protocol = eth_type_trans(skb, dev);
2191 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2192 }
2193
2194 return ret;
2195}
2196
2197int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2198{
2199 return __dev_forward_skb2(dev, skb, true);
2200}
2201EXPORT_SYMBOL_GPL(__dev_forward_skb);
2202
2203/**
2204 * dev_forward_skb - loopback an skb to another netif
2205 *
2206 * @dev: destination network device
2207 * @skb: buffer to forward
2208 *
2209 * return values:
2210 * NET_RX_SUCCESS (no congestion)
2211 * NET_RX_DROP (packet was dropped, but freed)
2212 *
2213 * dev_forward_skb can be used for injecting an skb from the
2214 * start_xmit function of one device into the receive queue
2215 * of another device.
2216 *
2217 * The receiving device may be in another namespace, so
2218 * we have to clear all information in the skb that could
2219 * impact namespace isolation.
2220 */
2221int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2222{
2223 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2224}
2225EXPORT_SYMBOL_GPL(dev_forward_skb);
2226
2227int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2228{
2229 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2230}
2231
2232static inline int deliver_skb(struct sk_buff *skb,
2233 struct packet_type *pt_prev,
2234 struct net_device *orig_dev)
2235{
2236 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2237 return -ENOMEM;
2238 refcount_inc(&skb->users);
2239 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2240}
2241
2242static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2243 struct packet_type **pt,
2244 struct net_device *orig_dev,
2245 __be16 type,
2246 struct list_head *ptype_list)
2247{
2248 struct packet_type *ptype, *pt_prev = *pt;
2249
2250 list_for_each_entry_rcu(ptype, ptype_list, list) {
2251 if (ptype->type != type)
2252 continue;
2253 if (pt_prev)
2254 deliver_skb(skb, pt_prev, orig_dev);
2255 pt_prev = ptype;
2256 }
2257 *pt = pt_prev;
2258}
2259
2260static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2261{
2262 if (!ptype->af_packet_priv || !skb->sk)
2263 return false;
2264
2265 if (ptype->id_match)
2266 return ptype->id_match(ptype, skb->sk);
2267 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2268 return true;
2269
2270 return false;
2271}
2272
2273/**
2274 * dev_nit_active - return true if any network interface taps are in use
2275 *
2276 * @dev: network device to check for the presence of taps
2277 */
2278bool dev_nit_active(struct net_device *dev)
2279{
2280 return !list_empty(&net_hotdata.ptype_all) ||
2281 !list_empty(&dev->ptype_all);
2282}
2283EXPORT_SYMBOL_GPL(dev_nit_active);
2284
2285/*
2286 * Support routine. Sends outgoing frames to any network
2287 * taps currently in use.
2288 */
2289
2290void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2291{
2292 struct list_head *ptype_list = &net_hotdata.ptype_all;
2293 struct packet_type *ptype, *pt_prev = NULL;
2294 struct sk_buff *skb2 = NULL;
2295
2296 rcu_read_lock();
2297again:
2298 list_for_each_entry_rcu(ptype, ptype_list, list) {
2299 if (READ_ONCE(ptype->ignore_outgoing))
2300 continue;
2301
2302 /* Never send packets back to the socket
2303 * they originated from - MvS (miquels@drinkel.ow.org)
2304 */
2305 if (skb_loop_sk(ptype, skb))
2306 continue;
2307
2308 if (pt_prev) {
2309 deliver_skb(skb2, pt_prev, skb->dev);
2310 pt_prev = ptype;
2311 continue;
2312 }
2313
2314 /* need to clone skb, done only once */
2315 skb2 = skb_clone(skb, GFP_ATOMIC);
2316 if (!skb2)
2317 goto out_unlock;
2318
2319 net_timestamp_set(skb2);
2320
2321 /* skb->nh should be correctly
2322 * set by sender, so that the second statement is
2323 * just protection against buggy protocols.
2324 */
2325 skb_reset_mac_header(skb2);
2326
2327 if (skb_network_header(skb2) < skb2->data ||
2328 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2329 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2330 ntohs(skb2->protocol),
2331 dev->name);
2332 skb_reset_network_header(skb2);
2333 }
2334
2335 skb2->transport_header = skb2->network_header;
2336 skb2->pkt_type = PACKET_OUTGOING;
2337 pt_prev = ptype;
2338 }
2339
2340 if (ptype_list == &net_hotdata.ptype_all) {
2341 ptype_list = &dev->ptype_all;
2342 goto again;
2343 }
2344out_unlock:
2345 if (pt_prev) {
2346 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2347 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2348 else
2349 kfree_skb(skb2);
2350 }
2351 rcu_read_unlock();
2352}
2353EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2354
2355/**
2356 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2357 * @dev: Network device
2358 * @txq: number of queues available
2359 *
2360 * If real_num_tx_queues is changed the tc mappings may no longer be
2361 * valid. To resolve this verify the tc mapping remains valid and if
2362 * not NULL the mapping. With no priorities mapping to this
2363 * offset/count pair it will no longer be used. In the worst case TC0
2364 * is invalid nothing can be done so disable priority mappings. If is
2365 * expected that drivers will fix this mapping if they can before
2366 * calling netif_set_real_num_tx_queues.
2367 */
2368static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2369{
2370 int i;
2371 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372
2373 /* If TC0 is invalidated disable TC mapping */
2374 if (tc->offset + tc->count > txq) {
2375 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2376 dev->num_tc = 0;
2377 return;
2378 }
2379
2380 /* Invalidated prio to tc mappings set to TC0 */
2381 for (i = 1; i < TC_BITMASK + 1; i++) {
2382 int q = netdev_get_prio_tc_map(dev, i);
2383
2384 tc = &dev->tc_to_txq[q];
2385 if (tc->offset + tc->count > txq) {
2386 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2387 i, q);
2388 netdev_set_prio_tc_map(dev, i, 0);
2389 }
2390 }
2391}
2392
2393int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2394{
2395 if (dev->num_tc) {
2396 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2397 int i;
2398
2399 /* walk through the TCs and see if it falls into any of them */
2400 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2401 if ((txq - tc->offset) < tc->count)
2402 return i;
2403 }
2404
2405 /* didn't find it, just return -1 to indicate no match */
2406 return -1;
2407 }
2408
2409 return 0;
2410}
2411EXPORT_SYMBOL(netdev_txq_to_tc);
2412
2413#ifdef CONFIG_XPS
2414static struct static_key xps_needed __read_mostly;
2415static struct static_key xps_rxqs_needed __read_mostly;
2416static DEFINE_MUTEX(xps_map_mutex);
2417#define xmap_dereference(P) \
2418 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2419
2420static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2421 struct xps_dev_maps *old_maps, int tci, u16 index)
2422{
2423 struct xps_map *map = NULL;
2424 int pos;
2425
2426 map = xmap_dereference(dev_maps->attr_map[tci]);
2427 if (!map)
2428 return false;
2429
2430 for (pos = map->len; pos--;) {
2431 if (map->queues[pos] != index)
2432 continue;
2433
2434 if (map->len > 1) {
2435 map->queues[pos] = map->queues[--map->len];
2436 break;
2437 }
2438
2439 if (old_maps)
2440 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2441 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2442 kfree_rcu(map, rcu);
2443 return false;
2444 }
2445
2446 return true;
2447}
2448
2449static bool remove_xps_queue_cpu(struct net_device *dev,
2450 struct xps_dev_maps *dev_maps,
2451 int cpu, u16 offset, u16 count)
2452{
2453 int num_tc = dev_maps->num_tc;
2454 bool active = false;
2455 int tci;
2456
2457 for (tci = cpu * num_tc; num_tc--; tci++) {
2458 int i, j;
2459
2460 for (i = count, j = offset; i--; j++) {
2461 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2462 break;
2463 }
2464
2465 active |= i < 0;
2466 }
2467
2468 return active;
2469}
2470
2471static void reset_xps_maps(struct net_device *dev,
2472 struct xps_dev_maps *dev_maps,
2473 enum xps_map_type type)
2474{
2475 static_key_slow_dec_cpuslocked(&xps_needed);
2476 if (type == XPS_RXQS)
2477 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2478
2479 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2480
2481 kfree_rcu(dev_maps, rcu);
2482}
2483
2484static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2485 u16 offset, u16 count)
2486{
2487 struct xps_dev_maps *dev_maps;
2488 bool active = false;
2489 int i, j;
2490
2491 dev_maps = xmap_dereference(dev->xps_maps[type]);
2492 if (!dev_maps)
2493 return;
2494
2495 for (j = 0; j < dev_maps->nr_ids; j++)
2496 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2497 if (!active)
2498 reset_xps_maps(dev, dev_maps, type);
2499
2500 if (type == XPS_CPUS) {
2501 for (i = offset + (count - 1); count--; i--)
2502 netdev_queue_numa_node_write(
2503 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2504 }
2505}
2506
2507static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2508 u16 count)
2509{
2510 if (!static_key_false(&xps_needed))
2511 return;
2512
2513 cpus_read_lock();
2514 mutex_lock(&xps_map_mutex);
2515
2516 if (static_key_false(&xps_rxqs_needed))
2517 clean_xps_maps(dev, XPS_RXQS, offset, count);
2518
2519 clean_xps_maps(dev, XPS_CPUS, offset, count);
2520
2521 mutex_unlock(&xps_map_mutex);
2522 cpus_read_unlock();
2523}
2524
2525static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2526{
2527 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2528}
2529
2530static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2531 u16 index, bool is_rxqs_map)
2532{
2533 struct xps_map *new_map;
2534 int alloc_len = XPS_MIN_MAP_ALLOC;
2535 int i, pos;
2536
2537 for (pos = 0; map && pos < map->len; pos++) {
2538 if (map->queues[pos] != index)
2539 continue;
2540 return map;
2541 }
2542
2543 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2544 if (map) {
2545 if (pos < map->alloc_len)
2546 return map;
2547
2548 alloc_len = map->alloc_len * 2;
2549 }
2550
2551 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2552 * map
2553 */
2554 if (is_rxqs_map)
2555 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2556 else
2557 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2558 cpu_to_node(attr_index));
2559 if (!new_map)
2560 return NULL;
2561
2562 for (i = 0; i < pos; i++)
2563 new_map->queues[i] = map->queues[i];
2564 new_map->alloc_len = alloc_len;
2565 new_map->len = pos;
2566
2567 return new_map;
2568}
2569
2570/* Copy xps maps at a given index */
2571static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2572 struct xps_dev_maps *new_dev_maps, int index,
2573 int tc, bool skip_tc)
2574{
2575 int i, tci = index * dev_maps->num_tc;
2576 struct xps_map *map;
2577
2578 /* copy maps belonging to foreign traffic classes */
2579 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2580 if (i == tc && skip_tc)
2581 continue;
2582
2583 /* fill in the new device map from the old device map */
2584 map = xmap_dereference(dev_maps->attr_map[tci]);
2585 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2586 }
2587}
2588
2589/* Must be called under cpus_read_lock */
2590int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2591 u16 index, enum xps_map_type type)
2592{
2593 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2594 const unsigned long *online_mask = NULL;
2595 bool active = false, copy = false;
2596 int i, j, tci, numa_node_id = -2;
2597 int maps_sz, num_tc = 1, tc = 0;
2598 struct xps_map *map, *new_map;
2599 unsigned int nr_ids;
2600
2601 WARN_ON_ONCE(index >= dev->num_tx_queues);
2602
2603 if (dev->num_tc) {
2604 /* Do not allow XPS on subordinate device directly */
2605 num_tc = dev->num_tc;
2606 if (num_tc < 0)
2607 return -EINVAL;
2608
2609 /* If queue belongs to subordinate dev use its map */
2610 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2611
2612 tc = netdev_txq_to_tc(dev, index);
2613 if (tc < 0)
2614 return -EINVAL;
2615 }
2616
2617 mutex_lock(&xps_map_mutex);
2618
2619 dev_maps = xmap_dereference(dev->xps_maps[type]);
2620 if (type == XPS_RXQS) {
2621 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2622 nr_ids = dev->num_rx_queues;
2623 } else {
2624 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2625 if (num_possible_cpus() > 1)
2626 online_mask = cpumask_bits(cpu_online_mask);
2627 nr_ids = nr_cpu_ids;
2628 }
2629
2630 if (maps_sz < L1_CACHE_BYTES)
2631 maps_sz = L1_CACHE_BYTES;
2632
2633 /* The old dev_maps could be larger or smaller than the one we're
2634 * setting up now, as dev->num_tc or nr_ids could have been updated in
2635 * between. We could try to be smart, but let's be safe instead and only
2636 * copy foreign traffic classes if the two map sizes match.
2637 */
2638 if (dev_maps &&
2639 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2640 copy = true;
2641
2642 /* allocate memory for queue storage */
2643 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2644 j < nr_ids;) {
2645 if (!new_dev_maps) {
2646 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2647 if (!new_dev_maps) {
2648 mutex_unlock(&xps_map_mutex);
2649 return -ENOMEM;
2650 }
2651
2652 new_dev_maps->nr_ids = nr_ids;
2653 new_dev_maps->num_tc = num_tc;
2654 }
2655
2656 tci = j * num_tc + tc;
2657 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2658
2659 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2660 if (!map)
2661 goto error;
2662
2663 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2664 }
2665
2666 if (!new_dev_maps)
2667 goto out_no_new_maps;
2668
2669 if (!dev_maps) {
2670 /* Increment static keys at most once per type */
2671 static_key_slow_inc_cpuslocked(&xps_needed);
2672 if (type == XPS_RXQS)
2673 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2674 }
2675
2676 for (j = 0; j < nr_ids; j++) {
2677 bool skip_tc = false;
2678
2679 tci = j * num_tc + tc;
2680 if (netif_attr_test_mask(j, mask, nr_ids) &&
2681 netif_attr_test_online(j, online_mask, nr_ids)) {
2682 /* add tx-queue to CPU/rx-queue maps */
2683 int pos = 0;
2684
2685 skip_tc = true;
2686
2687 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688 while ((pos < map->len) && (map->queues[pos] != index))
2689 pos++;
2690
2691 if (pos == map->len)
2692 map->queues[map->len++] = index;
2693#ifdef CONFIG_NUMA
2694 if (type == XPS_CPUS) {
2695 if (numa_node_id == -2)
2696 numa_node_id = cpu_to_node(j);
2697 else if (numa_node_id != cpu_to_node(j))
2698 numa_node_id = -1;
2699 }
2700#endif
2701 }
2702
2703 if (copy)
2704 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2705 skip_tc);
2706 }
2707
2708 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2709
2710 /* Cleanup old maps */
2711 if (!dev_maps)
2712 goto out_no_old_maps;
2713
2714 for (j = 0; j < dev_maps->nr_ids; j++) {
2715 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2716 map = xmap_dereference(dev_maps->attr_map[tci]);
2717 if (!map)
2718 continue;
2719
2720 if (copy) {
2721 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2722 if (map == new_map)
2723 continue;
2724 }
2725
2726 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2727 kfree_rcu(map, rcu);
2728 }
2729 }
2730
2731 old_dev_maps = dev_maps;
2732
2733out_no_old_maps:
2734 dev_maps = new_dev_maps;
2735 active = true;
2736
2737out_no_new_maps:
2738 if (type == XPS_CPUS)
2739 /* update Tx queue numa node */
2740 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2741 (numa_node_id >= 0) ?
2742 numa_node_id : NUMA_NO_NODE);
2743
2744 if (!dev_maps)
2745 goto out_no_maps;
2746
2747 /* removes tx-queue from unused CPUs/rx-queues */
2748 for (j = 0; j < dev_maps->nr_ids; j++) {
2749 tci = j * dev_maps->num_tc;
2750
2751 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2752 if (i == tc &&
2753 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2754 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2755 continue;
2756
2757 active |= remove_xps_queue(dev_maps,
2758 copy ? old_dev_maps : NULL,
2759 tci, index);
2760 }
2761 }
2762
2763 if (old_dev_maps)
2764 kfree_rcu(old_dev_maps, rcu);
2765
2766 /* free map if not active */
2767 if (!active)
2768 reset_xps_maps(dev, dev_maps, type);
2769
2770out_no_maps:
2771 mutex_unlock(&xps_map_mutex);
2772
2773 return 0;
2774error:
2775 /* remove any maps that we added */
2776 for (j = 0; j < nr_ids; j++) {
2777 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2778 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2779 map = copy ?
2780 xmap_dereference(dev_maps->attr_map[tci]) :
2781 NULL;
2782 if (new_map && new_map != map)
2783 kfree(new_map);
2784 }
2785 }
2786
2787 mutex_unlock(&xps_map_mutex);
2788
2789 kfree(new_dev_maps);
2790 return -ENOMEM;
2791}
2792EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2793
2794int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2795 u16 index)
2796{
2797 int ret;
2798
2799 cpus_read_lock();
2800 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2801 cpus_read_unlock();
2802
2803 return ret;
2804}
2805EXPORT_SYMBOL(netif_set_xps_queue);
2806
2807#endif
2808static void netdev_unbind_all_sb_channels(struct net_device *dev)
2809{
2810 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2811
2812 /* Unbind any subordinate channels */
2813 while (txq-- != &dev->_tx[0]) {
2814 if (txq->sb_dev)
2815 netdev_unbind_sb_channel(dev, txq->sb_dev);
2816 }
2817}
2818
2819void netdev_reset_tc(struct net_device *dev)
2820{
2821#ifdef CONFIG_XPS
2822 netif_reset_xps_queues_gt(dev, 0);
2823#endif
2824 netdev_unbind_all_sb_channels(dev);
2825
2826 /* Reset TC configuration of device */
2827 dev->num_tc = 0;
2828 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2829 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2830}
2831EXPORT_SYMBOL(netdev_reset_tc);
2832
2833int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2834{
2835 if (tc >= dev->num_tc)
2836 return -EINVAL;
2837
2838#ifdef CONFIG_XPS
2839 netif_reset_xps_queues(dev, offset, count);
2840#endif
2841 dev->tc_to_txq[tc].count = count;
2842 dev->tc_to_txq[tc].offset = offset;
2843 return 0;
2844}
2845EXPORT_SYMBOL(netdev_set_tc_queue);
2846
2847int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2848{
2849 if (num_tc > TC_MAX_QUEUE)
2850 return -EINVAL;
2851
2852#ifdef CONFIG_XPS
2853 netif_reset_xps_queues_gt(dev, 0);
2854#endif
2855 netdev_unbind_all_sb_channels(dev);
2856
2857 dev->num_tc = num_tc;
2858 return 0;
2859}
2860EXPORT_SYMBOL(netdev_set_num_tc);
2861
2862void netdev_unbind_sb_channel(struct net_device *dev,
2863 struct net_device *sb_dev)
2864{
2865 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2866
2867#ifdef CONFIG_XPS
2868 netif_reset_xps_queues_gt(sb_dev, 0);
2869#endif
2870 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2871 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2872
2873 while (txq-- != &dev->_tx[0]) {
2874 if (txq->sb_dev == sb_dev)
2875 txq->sb_dev = NULL;
2876 }
2877}
2878EXPORT_SYMBOL(netdev_unbind_sb_channel);
2879
2880int netdev_bind_sb_channel_queue(struct net_device *dev,
2881 struct net_device *sb_dev,
2882 u8 tc, u16 count, u16 offset)
2883{
2884 /* Make certain the sb_dev and dev are already configured */
2885 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2886 return -EINVAL;
2887
2888 /* We cannot hand out queues we don't have */
2889 if ((offset + count) > dev->real_num_tx_queues)
2890 return -EINVAL;
2891
2892 /* Record the mapping */
2893 sb_dev->tc_to_txq[tc].count = count;
2894 sb_dev->tc_to_txq[tc].offset = offset;
2895
2896 /* Provide a way for Tx queue to find the tc_to_txq map or
2897 * XPS map for itself.
2898 */
2899 while (count--)
2900 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2901
2902 return 0;
2903}
2904EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2905
2906int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2907{
2908 /* Do not use a multiqueue device to represent a subordinate channel */
2909 if (netif_is_multiqueue(dev))
2910 return -ENODEV;
2911
2912 /* We allow channels 1 - 32767 to be used for subordinate channels.
2913 * Channel 0 is meant to be "native" mode and used only to represent
2914 * the main root device. We allow writing 0 to reset the device back
2915 * to normal mode after being used as a subordinate channel.
2916 */
2917 if (channel > S16_MAX)
2918 return -EINVAL;
2919
2920 dev->num_tc = -channel;
2921
2922 return 0;
2923}
2924EXPORT_SYMBOL(netdev_set_sb_channel);
2925
2926/*
2927 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2928 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2929 */
2930int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2931{
2932 bool disabling;
2933 int rc;
2934
2935 disabling = txq < dev->real_num_tx_queues;
2936
2937 if (txq < 1 || txq > dev->num_tx_queues)
2938 return -EINVAL;
2939
2940 if (dev->reg_state == NETREG_REGISTERED ||
2941 dev->reg_state == NETREG_UNREGISTERING) {
2942 ASSERT_RTNL();
2943
2944 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2945 txq);
2946 if (rc)
2947 return rc;
2948
2949 if (dev->num_tc)
2950 netif_setup_tc(dev, txq);
2951
2952 net_shaper_set_real_num_tx_queues(dev, txq);
2953
2954 dev_qdisc_change_real_num_tx(dev, txq);
2955
2956 dev->real_num_tx_queues = txq;
2957
2958 if (disabling) {
2959 synchronize_net();
2960 qdisc_reset_all_tx_gt(dev, txq);
2961#ifdef CONFIG_XPS
2962 netif_reset_xps_queues_gt(dev, txq);
2963#endif
2964 }
2965 } else {
2966 dev->real_num_tx_queues = txq;
2967 }
2968
2969 return 0;
2970}
2971EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2972
2973#ifdef CONFIG_SYSFS
2974/**
2975 * netif_set_real_num_rx_queues - set actual number of RX queues used
2976 * @dev: Network device
2977 * @rxq: Actual number of RX queues
2978 *
2979 * This must be called either with the rtnl_lock held or before
2980 * registration of the net device. Returns 0 on success, or a
2981 * negative error code. If called before registration, it always
2982 * succeeds.
2983 */
2984int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2985{
2986 int rc;
2987
2988 if (rxq < 1 || rxq > dev->num_rx_queues)
2989 return -EINVAL;
2990
2991 if (dev->reg_state == NETREG_REGISTERED) {
2992 ASSERT_RTNL();
2993
2994 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2995 rxq);
2996 if (rc)
2997 return rc;
2998 }
2999
3000 dev->real_num_rx_queues = rxq;
3001 return 0;
3002}
3003EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3004#endif
3005
3006/**
3007 * netif_set_real_num_queues - set actual number of RX and TX queues used
3008 * @dev: Network device
3009 * @txq: Actual number of TX queues
3010 * @rxq: Actual number of RX queues
3011 *
3012 * Set the real number of both TX and RX queues.
3013 * Does nothing if the number of queues is already correct.
3014 */
3015int netif_set_real_num_queues(struct net_device *dev,
3016 unsigned int txq, unsigned int rxq)
3017{
3018 unsigned int old_rxq = dev->real_num_rx_queues;
3019 int err;
3020
3021 if (txq < 1 || txq > dev->num_tx_queues ||
3022 rxq < 1 || rxq > dev->num_rx_queues)
3023 return -EINVAL;
3024
3025 /* Start from increases, so the error path only does decreases -
3026 * decreases can't fail.
3027 */
3028 if (rxq > dev->real_num_rx_queues) {
3029 err = netif_set_real_num_rx_queues(dev, rxq);
3030 if (err)
3031 return err;
3032 }
3033 if (txq > dev->real_num_tx_queues) {
3034 err = netif_set_real_num_tx_queues(dev, txq);
3035 if (err)
3036 goto undo_rx;
3037 }
3038 if (rxq < dev->real_num_rx_queues)
3039 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3040 if (txq < dev->real_num_tx_queues)
3041 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3042
3043 return 0;
3044undo_rx:
3045 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3046 return err;
3047}
3048EXPORT_SYMBOL(netif_set_real_num_queues);
3049
3050/**
3051 * netif_set_tso_max_size() - set the max size of TSO frames supported
3052 * @dev: netdev to update
3053 * @size: max skb->len of a TSO frame
3054 *
3055 * Set the limit on the size of TSO super-frames the device can handle.
3056 * Unless explicitly set the stack will assume the value of
3057 * %GSO_LEGACY_MAX_SIZE.
3058 */
3059void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3060{
3061 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3062 if (size < READ_ONCE(dev->gso_max_size))
3063 netif_set_gso_max_size(dev, size);
3064 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3065 netif_set_gso_ipv4_max_size(dev, size);
3066}
3067EXPORT_SYMBOL(netif_set_tso_max_size);
3068
3069/**
3070 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3071 * @dev: netdev to update
3072 * @segs: max number of TCP segments
3073 *
3074 * Set the limit on the number of TCP segments the device can generate from
3075 * a single TSO super-frame.
3076 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3077 */
3078void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3079{
3080 dev->tso_max_segs = segs;
3081 if (segs < READ_ONCE(dev->gso_max_segs))
3082 netif_set_gso_max_segs(dev, segs);
3083}
3084EXPORT_SYMBOL(netif_set_tso_max_segs);
3085
3086/**
3087 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3088 * @to: netdev to update
3089 * @from: netdev from which to copy the limits
3090 */
3091void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3092{
3093 netif_set_tso_max_size(to, from->tso_max_size);
3094 netif_set_tso_max_segs(to, from->tso_max_segs);
3095}
3096EXPORT_SYMBOL(netif_inherit_tso_max);
3097
3098/**
3099 * netif_get_num_default_rss_queues - default number of RSS queues
3100 *
3101 * Default value is the number of physical cores if there are only 1 or 2, or
3102 * divided by 2 if there are more.
3103 */
3104int netif_get_num_default_rss_queues(void)
3105{
3106 cpumask_var_t cpus;
3107 int cpu, count = 0;
3108
3109 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3110 return 1;
3111
3112 cpumask_copy(cpus, cpu_online_mask);
3113 for_each_cpu(cpu, cpus) {
3114 ++count;
3115 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3116 }
3117 free_cpumask_var(cpus);
3118
3119 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3120}
3121EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3122
3123static void __netif_reschedule(struct Qdisc *q)
3124{
3125 struct softnet_data *sd;
3126 unsigned long flags;
3127
3128 local_irq_save(flags);
3129 sd = this_cpu_ptr(&softnet_data);
3130 q->next_sched = NULL;
3131 *sd->output_queue_tailp = q;
3132 sd->output_queue_tailp = &q->next_sched;
3133 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3134 local_irq_restore(flags);
3135}
3136
3137void __netif_schedule(struct Qdisc *q)
3138{
3139 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3140 __netif_reschedule(q);
3141}
3142EXPORT_SYMBOL(__netif_schedule);
3143
3144struct dev_kfree_skb_cb {
3145 enum skb_drop_reason reason;
3146};
3147
3148static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3149{
3150 return (struct dev_kfree_skb_cb *)skb->cb;
3151}
3152
3153void netif_schedule_queue(struct netdev_queue *txq)
3154{
3155 rcu_read_lock();
3156 if (!netif_xmit_stopped(txq)) {
3157 struct Qdisc *q = rcu_dereference(txq->qdisc);
3158
3159 __netif_schedule(q);
3160 }
3161 rcu_read_unlock();
3162}
3163EXPORT_SYMBOL(netif_schedule_queue);
3164
3165void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3166{
3167 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3168 struct Qdisc *q;
3169
3170 rcu_read_lock();
3171 q = rcu_dereference(dev_queue->qdisc);
3172 __netif_schedule(q);
3173 rcu_read_unlock();
3174 }
3175}
3176EXPORT_SYMBOL(netif_tx_wake_queue);
3177
3178void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3179{
3180 unsigned long flags;
3181
3182 if (unlikely(!skb))
3183 return;
3184
3185 if (likely(refcount_read(&skb->users) == 1)) {
3186 smp_rmb();
3187 refcount_set(&skb->users, 0);
3188 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3189 return;
3190 }
3191 get_kfree_skb_cb(skb)->reason = reason;
3192 local_irq_save(flags);
3193 skb->next = __this_cpu_read(softnet_data.completion_queue);
3194 __this_cpu_write(softnet_data.completion_queue, skb);
3195 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3196 local_irq_restore(flags);
3197}
3198EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3199
3200void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3201{
3202 if (in_hardirq() || irqs_disabled())
3203 dev_kfree_skb_irq_reason(skb, reason);
3204 else
3205 kfree_skb_reason(skb, reason);
3206}
3207EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3208
3209
3210/**
3211 * netif_device_detach - mark device as removed
3212 * @dev: network device
3213 *
3214 * Mark device as removed from system and therefore no longer available.
3215 */
3216void netif_device_detach(struct net_device *dev)
3217{
3218 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3219 netif_running(dev)) {
3220 netif_tx_stop_all_queues(dev);
3221 }
3222}
3223EXPORT_SYMBOL(netif_device_detach);
3224
3225/**
3226 * netif_device_attach - mark device as attached
3227 * @dev: network device
3228 *
3229 * Mark device as attached from system and restart if needed.
3230 */
3231void netif_device_attach(struct net_device *dev)
3232{
3233 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3234 netif_running(dev)) {
3235 netif_tx_wake_all_queues(dev);
3236 __netdev_watchdog_up(dev);
3237 }
3238}
3239EXPORT_SYMBOL(netif_device_attach);
3240
3241/*
3242 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3243 * to be used as a distribution range.
3244 */
3245static u16 skb_tx_hash(const struct net_device *dev,
3246 const struct net_device *sb_dev,
3247 struct sk_buff *skb)
3248{
3249 u32 hash;
3250 u16 qoffset = 0;
3251 u16 qcount = dev->real_num_tx_queues;
3252
3253 if (dev->num_tc) {
3254 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3255
3256 qoffset = sb_dev->tc_to_txq[tc].offset;
3257 qcount = sb_dev->tc_to_txq[tc].count;
3258 if (unlikely(!qcount)) {
3259 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3260 sb_dev->name, qoffset, tc);
3261 qoffset = 0;
3262 qcount = dev->real_num_tx_queues;
3263 }
3264 }
3265
3266 if (skb_rx_queue_recorded(skb)) {
3267 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3268 hash = skb_get_rx_queue(skb);
3269 if (hash >= qoffset)
3270 hash -= qoffset;
3271 while (unlikely(hash >= qcount))
3272 hash -= qcount;
3273 return hash + qoffset;
3274 }
3275
3276 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3277}
3278
3279void skb_warn_bad_offload(const struct sk_buff *skb)
3280{
3281 static const netdev_features_t null_features;
3282 struct net_device *dev = skb->dev;
3283 const char *name = "";
3284
3285 if (!net_ratelimit())
3286 return;
3287
3288 if (dev) {
3289 if (dev->dev.parent)
3290 name = dev_driver_string(dev->dev.parent);
3291 else
3292 name = netdev_name(dev);
3293 }
3294 skb_dump(KERN_WARNING, skb, false);
3295 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3296 name, dev ? &dev->features : &null_features,
3297 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3298}
3299
3300/*
3301 * Invalidate hardware checksum when packet is to be mangled, and
3302 * complete checksum manually on outgoing path.
3303 */
3304int skb_checksum_help(struct sk_buff *skb)
3305{
3306 __wsum csum;
3307 int ret = 0, offset;
3308
3309 if (skb->ip_summed == CHECKSUM_COMPLETE)
3310 goto out_set_summed;
3311
3312 if (unlikely(skb_is_gso(skb))) {
3313 skb_warn_bad_offload(skb);
3314 return -EINVAL;
3315 }
3316
3317 if (!skb_frags_readable(skb)) {
3318 return -EFAULT;
3319 }
3320
3321 /* Before computing a checksum, we should make sure no frag could
3322 * be modified by an external entity : checksum could be wrong.
3323 */
3324 if (skb_has_shared_frag(skb)) {
3325 ret = __skb_linearize(skb);
3326 if (ret)
3327 goto out;
3328 }
3329
3330 offset = skb_checksum_start_offset(skb);
3331 ret = -EINVAL;
3332 if (unlikely(offset >= skb_headlen(skb))) {
3333 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3334 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3335 offset, skb_headlen(skb));
3336 goto out;
3337 }
3338 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3339
3340 offset += skb->csum_offset;
3341 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3342 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3343 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3344 offset + sizeof(__sum16), skb_headlen(skb));
3345 goto out;
3346 }
3347 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3348 if (ret)
3349 goto out;
3350
3351 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3352out_set_summed:
3353 skb->ip_summed = CHECKSUM_NONE;
3354out:
3355 return ret;
3356}
3357EXPORT_SYMBOL(skb_checksum_help);
3358
3359int skb_crc32c_csum_help(struct sk_buff *skb)
3360{
3361 __le32 crc32c_csum;
3362 int ret = 0, offset, start;
3363
3364 if (skb->ip_summed != CHECKSUM_PARTIAL)
3365 goto out;
3366
3367 if (unlikely(skb_is_gso(skb)))
3368 goto out;
3369
3370 /* Before computing a checksum, we should make sure no frag could
3371 * be modified by an external entity : checksum could be wrong.
3372 */
3373 if (unlikely(skb_has_shared_frag(skb))) {
3374 ret = __skb_linearize(skb);
3375 if (ret)
3376 goto out;
3377 }
3378 start = skb_checksum_start_offset(skb);
3379 offset = start + offsetof(struct sctphdr, checksum);
3380 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3381 ret = -EINVAL;
3382 goto out;
3383 }
3384
3385 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3386 if (ret)
3387 goto out;
3388
3389 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3390 skb->len - start, ~(__u32)0,
3391 crc32c_csum_stub));
3392 *(__le32 *)(skb->data + offset) = crc32c_csum;
3393 skb_reset_csum_not_inet(skb);
3394out:
3395 return ret;
3396}
3397EXPORT_SYMBOL(skb_crc32c_csum_help);
3398
3399__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3400{
3401 __be16 type = skb->protocol;
3402
3403 /* Tunnel gso handlers can set protocol to ethernet. */
3404 if (type == htons(ETH_P_TEB)) {
3405 struct ethhdr *eth;
3406
3407 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3408 return 0;
3409
3410 eth = (struct ethhdr *)skb->data;
3411 type = eth->h_proto;
3412 }
3413
3414 return vlan_get_protocol_and_depth(skb, type, depth);
3415}
3416
3417
3418/* Take action when hardware reception checksum errors are detected. */
3419#ifdef CONFIG_BUG
3420static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3421{
3422 netdev_err(dev, "hw csum failure\n");
3423 skb_dump(KERN_ERR, skb, true);
3424 dump_stack();
3425}
3426
3427void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3428{
3429 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3430}
3431EXPORT_SYMBOL(netdev_rx_csum_fault);
3432#endif
3433
3434/* XXX: check that highmem exists at all on the given machine. */
3435static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3436{
3437#ifdef CONFIG_HIGHMEM
3438 int i;
3439
3440 if (!(dev->features & NETIF_F_HIGHDMA)) {
3441 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3442 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3443 struct page *page = skb_frag_page(frag);
3444
3445 if (page && PageHighMem(page))
3446 return 1;
3447 }
3448 }
3449#endif
3450 return 0;
3451}
3452
3453/* If MPLS offload request, verify we are testing hardware MPLS features
3454 * instead of standard features for the netdev.
3455 */
3456#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3457static netdev_features_t net_mpls_features(struct sk_buff *skb,
3458 netdev_features_t features,
3459 __be16 type)
3460{
3461 if (eth_p_mpls(type))
3462 features &= skb->dev->mpls_features;
3463
3464 return features;
3465}
3466#else
3467static netdev_features_t net_mpls_features(struct sk_buff *skb,
3468 netdev_features_t features,
3469 __be16 type)
3470{
3471 return features;
3472}
3473#endif
3474
3475static netdev_features_t harmonize_features(struct sk_buff *skb,
3476 netdev_features_t features)
3477{
3478 __be16 type;
3479
3480 type = skb_network_protocol(skb, NULL);
3481 features = net_mpls_features(skb, features, type);
3482
3483 if (skb->ip_summed != CHECKSUM_NONE &&
3484 !can_checksum_protocol(features, type)) {
3485 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3486 }
3487 if (illegal_highdma(skb->dev, skb))
3488 features &= ~NETIF_F_SG;
3489
3490 return features;
3491}
3492
3493netdev_features_t passthru_features_check(struct sk_buff *skb,
3494 struct net_device *dev,
3495 netdev_features_t features)
3496{
3497 return features;
3498}
3499EXPORT_SYMBOL(passthru_features_check);
3500
3501static netdev_features_t dflt_features_check(struct sk_buff *skb,
3502 struct net_device *dev,
3503 netdev_features_t features)
3504{
3505 return vlan_features_check(skb, features);
3506}
3507
3508static netdev_features_t gso_features_check(const struct sk_buff *skb,
3509 struct net_device *dev,
3510 netdev_features_t features)
3511{
3512 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3513
3514 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3515 return features & ~NETIF_F_GSO_MASK;
3516
3517 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3518 return features & ~NETIF_F_GSO_MASK;
3519
3520 if (!skb_shinfo(skb)->gso_type) {
3521 skb_warn_bad_offload(skb);
3522 return features & ~NETIF_F_GSO_MASK;
3523 }
3524
3525 /* Support for GSO partial features requires software
3526 * intervention before we can actually process the packets
3527 * so we need to strip support for any partial features now
3528 * and we can pull them back in after we have partially
3529 * segmented the frame.
3530 */
3531 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3532 features &= ~dev->gso_partial_features;
3533
3534 /* Make sure to clear the IPv4 ID mangling feature if the
3535 * IPv4 header has the potential to be fragmented.
3536 */
3537 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3538 struct iphdr *iph = skb->encapsulation ?
3539 inner_ip_hdr(skb) : ip_hdr(skb);
3540
3541 if (!(iph->frag_off & htons(IP_DF)))
3542 features &= ~NETIF_F_TSO_MANGLEID;
3543 }
3544
3545 return features;
3546}
3547
3548netdev_features_t netif_skb_features(struct sk_buff *skb)
3549{
3550 struct net_device *dev = skb->dev;
3551 netdev_features_t features = dev->features;
3552
3553 if (skb_is_gso(skb))
3554 features = gso_features_check(skb, dev, features);
3555
3556 /* If encapsulation offload request, verify we are testing
3557 * hardware encapsulation features instead of standard
3558 * features for the netdev
3559 */
3560 if (skb->encapsulation)
3561 features &= dev->hw_enc_features;
3562
3563 if (skb_vlan_tagged(skb))
3564 features = netdev_intersect_features(features,
3565 dev->vlan_features |
3566 NETIF_F_HW_VLAN_CTAG_TX |
3567 NETIF_F_HW_VLAN_STAG_TX);
3568
3569 if (dev->netdev_ops->ndo_features_check)
3570 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571 features);
3572 else
3573 features &= dflt_features_check(skb, dev, features);
3574
3575 return harmonize_features(skb, features);
3576}
3577EXPORT_SYMBOL(netif_skb_features);
3578
3579static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3580 struct netdev_queue *txq, bool more)
3581{
3582 unsigned int len;
3583 int rc;
3584
3585 if (dev_nit_active(dev))
3586 dev_queue_xmit_nit(skb, dev);
3587
3588 len = skb->len;
3589 trace_net_dev_start_xmit(skb, dev);
3590 rc = netdev_start_xmit(skb, dev, txq, more);
3591 trace_net_dev_xmit(skb, rc, dev, len);
3592
3593 return rc;
3594}
3595
3596struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597 struct netdev_queue *txq, int *ret)
3598{
3599 struct sk_buff *skb = first;
3600 int rc = NETDEV_TX_OK;
3601
3602 while (skb) {
3603 struct sk_buff *next = skb->next;
3604
3605 skb_mark_not_on_list(skb);
3606 rc = xmit_one(skb, dev, txq, next != NULL);
3607 if (unlikely(!dev_xmit_complete(rc))) {
3608 skb->next = next;
3609 goto out;
3610 }
3611
3612 skb = next;
3613 if (netif_tx_queue_stopped(txq) && skb) {
3614 rc = NETDEV_TX_BUSY;
3615 break;
3616 }
3617 }
3618
3619out:
3620 *ret = rc;
3621 return skb;
3622}
3623
3624static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625 netdev_features_t features)
3626{
3627 if (skb_vlan_tag_present(skb) &&
3628 !vlan_hw_offload_capable(features, skb->vlan_proto))
3629 skb = __vlan_hwaccel_push_inside(skb);
3630 return skb;
3631}
3632
3633int skb_csum_hwoffload_help(struct sk_buff *skb,
3634 const netdev_features_t features)
3635{
3636 if (unlikely(skb_csum_is_sctp(skb)))
3637 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638 skb_crc32c_csum_help(skb);
3639
3640 if (features & NETIF_F_HW_CSUM)
3641 return 0;
3642
3643 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3645 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3646 !ipv6_has_hopopt_jumbo(skb))
3647 goto sw_checksum;
3648
3649 switch (skb->csum_offset) {
3650 case offsetof(struct tcphdr, check):
3651 case offsetof(struct udphdr, check):
3652 return 0;
3653 }
3654 }
3655
3656sw_checksum:
3657 return skb_checksum_help(skb);
3658}
3659EXPORT_SYMBOL(skb_csum_hwoffload_help);
3660
3661static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3662{
3663 netdev_features_t features;
3664
3665 features = netif_skb_features(skb);
3666 skb = validate_xmit_vlan(skb, features);
3667 if (unlikely(!skb))
3668 goto out_null;
3669
3670 skb = sk_validate_xmit_skb(skb, dev);
3671 if (unlikely(!skb))
3672 goto out_null;
3673
3674 if (netif_needs_gso(skb, features)) {
3675 struct sk_buff *segs;
3676
3677 segs = skb_gso_segment(skb, features);
3678 if (IS_ERR(segs)) {
3679 goto out_kfree_skb;
3680 } else if (segs) {
3681 consume_skb(skb);
3682 skb = segs;
3683 }
3684 } else {
3685 if (skb_needs_linearize(skb, features) &&
3686 __skb_linearize(skb))
3687 goto out_kfree_skb;
3688
3689 /* If packet is not checksummed and device does not
3690 * support checksumming for this protocol, complete
3691 * checksumming here.
3692 */
3693 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3694 if (skb->encapsulation)
3695 skb_set_inner_transport_header(skb,
3696 skb_checksum_start_offset(skb));
3697 else
3698 skb_set_transport_header(skb,
3699 skb_checksum_start_offset(skb));
3700 if (skb_csum_hwoffload_help(skb, features))
3701 goto out_kfree_skb;
3702 }
3703 }
3704
3705 skb = validate_xmit_xfrm(skb, features, again);
3706
3707 return skb;
3708
3709out_kfree_skb:
3710 kfree_skb(skb);
3711out_null:
3712 dev_core_stats_tx_dropped_inc(dev);
3713 return NULL;
3714}
3715
3716struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3717{
3718 struct sk_buff *next, *head = NULL, *tail;
3719
3720 for (; skb != NULL; skb = next) {
3721 next = skb->next;
3722 skb_mark_not_on_list(skb);
3723
3724 /* in case skb won't be segmented, point to itself */
3725 skb->prev = skb;
3726
3727 skb = validate_xmit_skb(skb, dev, again);
3728 if (!skb)
3729 continue;
3730
3731 if (!head)
3732 head = skb;
3733 else
3734 tail->next = skb;
3735 /* If skb was segmented, skb->prev points to
3736 * the last segment. If not, it still contains skb.
3737 */
3738 tail = skb->prev;
3739 }
3740 return head;
3741}
3742EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3743
3744static void qdisc_pkt_len_init(struct sk_buff *skb)
3745{
3746 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3747
3748 qdisc_skb_cb(skb)->pkt_len = skb->len;
3749
3750 /* To get more precise estimation of bytes sent on wire,
3751 * we add to pkt_len the headers size of all segments
3752 */
3753 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3754 u16 gso_segs = shinfo->gso_segs;
3755 unsigned int hdr_len;
3756
3757 /* mac layer + network layer */
3758 hdr_len = skb_transport_offset(skb);
3759
3760 /* + transport layer */
3761 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3762 const struct tcphdr *th;
3763 struct tcphdr _tcphdr;
3764
3765 th = skb_header_pointer(skb, hdr_len,
3766 sizeof(_tcphdr), &_tcphdr);
3767 if (likely(th))
3768 hdr_len += __tcp_hdrlen(th);
3769 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3770 struct udphdr _udphdr;
3771
3772 if (skb_header_pointer(skb, hdr_len,
3773 sizeof(_udphdr), &_udphdr))
3774 hdr_len += sizeof(struct udphdr);
3775 }
3776
3777 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3778 int payload = skb->len - hdr_len;
3779
3780 /* Malicious packet. */
3781 if (payload <= 0)
3782 return;
3783 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3784 }
3785 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3786 }
3787}
3788
3789static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3790 struct sk_buff **to_free,
3791 struct netdev_queue *txq)
3792{
3793 int rc;
3794
3795 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3796 if (rc == NET_XMIT_SUCCESS)
3797 trace_qdisc_enqueue(q, txq, skb);
3798 return rc;
3799}
3800
3801static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3802 struct net_device *dev,
3803 struct netdev_queue *txq)
3804{
3805 spinlock_t *root_lock = qdisc_lock(q);
3806 struct sk_buff *to_free = NULL;
3807 bool contended;
3808 int rc;
3809
3810 qdisc_calculate_pkt_len(skb, q);
3811
3812 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3813
3814 if (q->flags & TCQ_F_NOLOCK) {
3815 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3816 qdisc_run_begin(q)) {
3817 /* Retest nolock_qdisc_is_empty() within the protection
3818 * of q->seqlock to protect from racing with requeuing.
3819 */
3820 if (unlikely(!nolock_qdisc_is_empty(q))) {
3821 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3822 __qdisc_run(q);
3823 qdisc_run_end(q);
3824
3825 goto no_lock_out;
3826 }
3827
3828 qdisc_bstats_cpu_update(q, skb);
3829 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3830 !nolock_qdisc_is_empty(q))
3831 __qdisc_run(q);
3832
3833 qdisc_run_end(q);
3834 return NET_XMIT_SUCCESS;
3835 }
3836
3837 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3838 qdisc_run(q);
3839
3840no_lock_out:
3841 if (unlikely(to_free))
3842 kfree_skb_list_reason(to_free,
3843 tcf_get_drop_reason(to_free));
3844 return rc;
3845 }
3846
3847 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3848 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3849 return NET_XMIT_DROP;
3850 }
3851 /*
3852 * Heuristic to force contended enqueues to serialize on a
3853 * separate lock before trying to get qdisc main lock.
3854 * This permits qdisc->running owner to get the lock more
3855 * often and dequeue packets faster.
3856 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3857 * and then other tasks will only enqueue packets. The packets will be
3858 * sent after the qdisc owner is scheduled again. To prevent this
3859 * scenario the task always serialize on the lock.
3860 */
3861 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3862 if (unlikely(contended))
3863 spin_lock(&q->busylock);
3864
3865 spin_lock(root_lock);
3866 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3867 __qdisc_drop(skb, &to_free);
3868 rc = NET_XMIT_DROP;
3869 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3870 qdisc_run_begin(q)) {
3871 /*
3872 * This is a work-conserving queue; there are no old skbs
3873 * waiting to be sent out; and the qdisc is not running -
3874 * xmit the skb directly.
3875 */
3876
3877 qdisc_bstats_update(q, skb);
3878
3879 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3880 if (unlikely(contended)) {
3881 spin_unlock(&q->busylock);
3882 contended = false;
3883 }
3884 __qdisc_run(q);
3885 }
3886
3887 qdisc_run_end(q);
3888 rc = NET_XMIT_SUCCESS;
3889 } else {
3890 WRITE_ONCE(q->owner, smp_processor_id());
3891 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3892 WRITE_ONCE(q->owner, -1);
3893 if (qdisc_run_begin(q)) {
3894 if (unlikely(contended)) {
3895 spin_unlock(&q->busylock);
3896 contended = false;
3897 }
3898 __qdisc_run(q);
3899 qdisc_run_end(q);
3900 }
3901 }
3902 spin_unlock(root_lock);
3903 if (unlikely(to_free))
3904 kfree_skb_list_reason(to_free,
3905 tcf_get_drop_reason(to_free));
3906 if (unlikely(contended))
3907 spin_unlock(&q->busylock);
3908 return rc;
3909}
3910
3911#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3912static void skb_update_prio(struct sk_buff *skb)
3913{
3914 const struct netprio_map *map;
3915 const struct sock *sk;
3916 unsigned int prioidx;
3917
3918 if (skb->priority)
3919 return;
3920 map = rcu_dereference_bh(skb->dev->priomap);
3921 if (!map)
3922 return;
3923 sk = skb_to_full_sk(skb);
3924 if (!sk)
3925 return;
3926
3927 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3928
3929 if (prioidx < map->priomap_len)
3930 skb->priority = map->priomap[prioidx];
3931}
3932#else
3933#define skb_update_prio(skb)
3934#endif
3935
3936/**
3937 * dev_loopback_xmit - loop back @skb
3938 * @net: network namespace this loopback is happening in
3939 * @sk: sk needed to be a netfilter okfn
3940 * @skb: buffer to transmit
3941 */
3942int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3943{
3944 skb_reset_mac_header(skb);
3945 __skb_pull(skb, skb_network_offset(skb));
3946 skb->pkt_type = PACKET_LOOPBACK;
3947 if (skb->ip_summed == CHECKSUM_NONE)
3948 skb->ip_summed = CHECKSUM_UNNECESSARY;
3949 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3950 skb_dst_force(skb);
3951 netif_rx(skb);
3952 return 0;
3953}
3954EXPORT_SYMBOL(dev_loopback_xmit);
3955
3956#ifdef CONFIG_NET_EGRESS
3957static struct netdev_queue *
3958netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3959{
3960 int qm = skb_get_queue_mapping(skb);
3961
3962 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3963}
3964
3965#ifndef CONFIG_PREEMPT_RT
3966static bool netdev_xmit_txqueue_skipped(void)
3967{
3968 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3969}
3970
3971void netdev_xmit_skip_txqueue(bool skip)
3972{
3973 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3974}
3975EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3976
3977#else
3978static bool netdev_xmit_txqueue_skipped(void)
3979{
3980 return current->net_xmit.skip_txqueue;
3981}
3982
3983void netdev_xmit_skip_txqueue(bool skip)
3984{
3985 current->net_xmit.skip_txqueue = skip;
3986}
3987EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3988#endif
3989#endif /* CONFIG_NET_EGRESS */
3990
3991#ifdef CONFIG_NET_XGRESS
3992static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3993 enum skb_drop_reason *drop_reason)
3994{
3995 int ret = TC_ACT_UNSPEC;
3996#ifdef CONFIG_NET_CLS_ACT
3997 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3998 struct tcf_result res;
3999
4000 if (!miniq)
4001 return ret;
4002
4003 if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
4004 if (tcf_block_bypass_sw(miniq->block))
4005 return ret;
4006 }
4007
4008 tc_skb_cb(skb)->mru = 0;
4009 tc_skb_cb(skb)->post_ct = false;
4010 tcf_set_drop_reason(skb, *drop_reason);
4011
4012 mini_qdisc_bstats_cpu_update(miniq, skb);
4013 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4014 /* Only tcf related quirks below. */
4015 switch (ret) {
4016 case TC_ACT_SHOT:
4017 *drop_reason = tcf_get_drop_reason(skb);
4018 mini_qdisc_qstats_cpu_drop(miniq);
4019 break;
4020 case TC_ACT_OK:
4021 case TC_ACT_RECLASSIFY:
4022 skb->tc_index = TC_H_MIN(res.classid);
4023 break;
4024 }
4025#endif /* CONFIG_NET_CLS_ACT */
4026 return ret;
4027}
4028
4029static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4030
4031void tcx_inc(void)
4032{
4033 static_branch_inc(&tcx_needed_key);
4034}
4035
4036void tcx_dec(void)
4037{
4038 static_branch_dec(&tcx_needed_key);
4039}
4040
4041static __always_inline enum tcx_action_base
4042tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4043 const bool needs_mac)
4044{
4045 const struct bpf_mprog_fp *fp;
4046 const struct bpf_prog *prog;
4047 int ret = TCX_NEXT;
4048
4049 if (needs_mac)
4050 __skb_push(skb, skb->mac_len);
4051 bpf_mprog_foreach_prog(entry, fp, prog) {
4052 bpf_compute_data_pointers(skb);
4053 ret = bpf_prog_run(prog, skb);
4054 if (ret != TCX_NEXT)
4055 break;
4056 }
4057 if (needs_mac)
4058 __skb_pull(skb, skb->mac_len);
4059 return tcx_action_code(skb, ret);
4060}
4061
4062static __always_inline struct sk_buff *
4063sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4064 struct net_device *orig_dev, bool *another)
4065{
4066 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4067 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4068 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4069 int sch_ret;
4070
4071 if (!entry)
4072 return skb;
4073
4074 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4075 if (*pt_prev) {
4076 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4077 *pt_prev = NULL;
4078 }
4079
4080 qdisc_skb_cb(skb)->pkt_len = skb->len;
4081 tcx_set_ingress(skb, true);
4082
4083 if (static_branch_unlikely(&tcx_needed_key)) {
4084 sch_ret = tcx_run(entry, skb, true);
4085 if (sch_ret != TC_ACT_UNSPEC)
4086 goto ingress_verdict;
4087 }
4088 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4089ingress_verdict:
4090 switch (sch_ret) {
4091 case TC_ACT_REDIRECT:
4092 /* skb_mac_header check was done by BPF, so we can safely
4093 * push the L2 header back before redirecting to another
4094 * netdev.
4095 */
4096 __skb_push(skb, skb->mac_len);
4097 if (skb_do_redirect(skb) == -EAGAIN) {
4098 __skb_pull(skb, skb->mac_len);
4099 *another = true;
4100 break;
4101 }
4102 *ret = NET_RX_SUCCESS;
4103 bpf_net_ctx_clear(bpf_net_ctx);
4104 return NULL;
4105 case TC_ACT_SHOT:
4106 kfree_skb_reason(skb, drop_reason);
4107 *ret = NET_RX_DROP;
4108 bpf_net_ctx_clear(bpf_net_ctx);
4109 return NULL;
4110 /* used by tc_run */
4111 case TC_ACT_STOLEN:
4112 case TC_ACT_QUEUED:
4113 case TC_ACT_TRAP:
4114 consume_skb(skb);
4115 fallthrough;
4116 case TC_ACT_CONSUMED:
4117 *ret = NET_RX_SUCCESS;
4118 bpf_net_ctx_clear(bpf_net_ctx);
4119 return NULL;
4120 }
4121 bpf_net_ctx_clear(bpf_net_ctx);
4122
4123 return skb;
4124}
4125
4126static __always_inline struct sk_buff *
4127sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4128{
4129 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4130 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4131 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4132 int sch_ret;
4133
4134 if (!entry)
4135 return skb;
4136
4137 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4138
4139 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4140 * already set by the caller.
4141 */
4142 if (static_branch_unlikely(&tcx_needed_key)) {
4143 sch_ret = tcx_run(entry, skb, false);
4144 if (sch_ret != TC_ACT_UNSPEC)
4145 goto egress_verdict;
4146 }
4147 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4148egress_verdict:
4149 switch (sch_ret) {
4150 case TC_ACT_REDIRECT:
4151 /* No need to push/pop skb's mac_header here on egress! */
4152 skb_do_redirect(skb);
4153 *ret = NET_XMIT_SUCCESS;
4154 bpf_net_ctx_clear(bpf_net_ctx);
4155 return NULL;
4156 case TC_ACT_SHOT:
4157 kfree_skb_reason(skb, drop_reason);
4158 *ret = NET_XMIT_DROP;
4159 bpf_net_ctx_clear(bpf_net_ctx);
4160 return NULL;
4161 /* used by tc_run */
4162 case TC_ACT_STOLEN:
4163 case TC_ACT_QUEUED:
4164 case TC_ACT_TRAP:
4165 consume_skb(skb);
4166 fallthrough;
4167 case TC_ACT_CONSUMED:
4168 *ret = NET_XMIT_SUCCESS;
4169 bpf_net_ctx_clear(bpf_net_ctx);
4170 return NULL;
4171 }
4172 bpf_net_ctx_clear(bpf_net_ctx);
4173
4174 return skb;
4175}
4176#else
4177static __always_inline struct sk_buff *
4178sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4179 struct net_device *orig_dev, bool *another)
4180{
4181 return skb;
4182}
4183
4184static __always_inline struct sk_buff *
4185sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4186{
4187 return skb;
4188}
4189#endif /* CONFIG_NET_XGRESS */
4190
4191#ifdef CONFIG_XPS
4192static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4193 struct xps_dev_maps *dev_maps, unsigned int tci)
4194{
4195 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4196 struct xps_map *map;
4197 int queue_index = -1;
4198
4199 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4200 return queue_index;
4201
4202 tci *= dev_maps->num_tc;
4203 tci += tc;
4204
4205 map = rcu_dereference(dev_maps->attr_map[tci]);
4206 if (map) {
4207 if (map->len == 1)
4208 queue_index = map->queues[0];
4209 else
4210 queue_index = map->queues[reciprocal_scale(
4211 skb_get_hash(skb), map->len)];
4212 if (unlikely(queue_index >= dev->real_num_tx_queues))
4213 queue_index = -1;
4214 }
4215 return queue_index;
4216}
4217#endif
4218
4219static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4220 struct sk_buff *skb)
4221{
4222#ifdef CONFIG_XPS
4223 struct xps_dev_maps *dev_maps;
4224 struct sock *sk = skb->sk;
4225 int queue_index = -1;
4226
4227 if (!static_key_false(&xps_needed))
4228 return -1;
4229
4230 rcu_read_lock();
4231 if (!static_key_false(&xps_rxqs_needed))
4232 goto get_cpus_map;
4233
4234 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4235 if (dev_maps) {
4236 int tci = sk_rx_queue_get(sk);
4237
4238 if (tci >= 0)
4239 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4240 tci);
4241 }
4242
4243get_cpus_map:
4244 if (queue_index < 0) {
4245 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4246 if (dev_maps) {
4247 unsigned int tci = skb->sender_cpu - 1;
4248
4249 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4250 tci);
4251 }
4252 }
4253 rcu_read_unlock();
4254
4255 return queue_index;
4256#else
4257 return -1;
4258#endif
4259}
4260
4261u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4262 struct net_device *sb_dev)
4263{
4264 return 0;
4265}
4266EXPORT_SYMBOL(dev_pick_tx_zero);
4267
4268u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4269 struct net_device *sb_dev)
4270{
4271 struct sock *sk = skb->sk;
4272 int queue_index = sk_tx_queue_get(sk);
4273
4274 sb_dev = sb_dev ? : dev;
4275
4276 if (queue_index < 0 || skb->ooo_okay ||
4277 queue_index >= dev->real_num_tx_queues) {
4278 int new_index = get_xps_queue(dev, sb_dev, skb);
4279
4280 if (new_index < 0)
4281 new_index = skb_tx_hash(dev, sb_dev, skb);
4282
4283 if (queue_index != new_index && sk &&
4284 sk_fullsock(sk) &&
4285 rcu_access_pointer(sk->sk_dst_cache))
4286 sk_tx_queue_set(sk, new_index);
4287
4288 queue_index = new_index;
4289 }
4290
4291 return queue_index;
4292}
4293EXPORT_SYMBOL(netdev_pick_tx);
4294
4295struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4296 struct sk_buff *skb,
4297 struct net_device *sb_dev)
4298{
4299 int queue_index = 0;
4300
4301#ifdef CONFIG_XPS
4302 u32 sender_cpu = skb->sender_cpu - 1;
4303
4304 if (sender_cpu >= (u32)NR_CPUS)
4305 skb->sender_cpu = raw_smp_processor_id() + 1;
4306#endif
4307
4308 if (dev->real_num_tx_queues != 1) {
4309 const struct net_device_ops *ops = dev->netdev_ops;
4310
4311 if (ops->ndo_select_queue)
4312 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4313 else
4314 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4315
4316 queue_index = netdev_cap_txqueue(dev, queue_index);
4317 }
4318
4319 skb_set_queue_mapping(skb, queue_index);
4320 return netdev_get_tx_queue(dev, queue_index);
4321}
4322
4323/**
4324 * __dev_queue_xmit() - transmit a buffer
4325 * @skb: buffer to transmit
4326 * @sb_dev: suboordinate device used for L2 forwarding offload
4327 *
4328 * Queue a buffer for transmission to a network device. The caller must
4329 * have set the device and priority and built the buffer before calling
4330 * this function. The function can be called from an interrupt.
4331 *
4332 * When calling this method, interrupts MUST be enabled. This is because
4333 * the BH enable code must have IRQs enabled so that it will not deadlock.
4334 *
4335 * Regardless of the return value, the skb is consumed, so it is currently
4336 * difficult to retry a send to this method. (You can bump the ref count
4337 * before sending to hold a reference for retry if you are careful.)
4338 *
4339 * Return:
4340 * * 0 - buffer successfully transmitted
4341 * * positive qdisc return code - NET_XMIT_DROP etc.
4342 * * negative errno - other errors
4343 */
4344int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4345{
4346 struct net_device *dev = skb->dev;
4347 struct netdev_queue *txq = NULL;
4348 struct Qdisc *q;
4349 int rc = -ENOMEM;
4350 bool again = false;
4351
4352 skb_reset_mac_header(skb);
4353 skb_assert_len(skb);
4354
4355 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4356 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4357
4358 /* Disable soft irqs for various locks below. Also
4359 * stops preemption for RCU.
4360 */
4361 rcu_read_lock_bh();
4362
4363 skb_update_prio(skb);
4364
4365 qdisc_pkt_len_init(skb);
4366 tcx_set_ingress(skb, false);
4367#ifdef CONFIG_NET_EGRESS
4368 if (static_branch_unlikely(&egress_needed_key)) {
4369 if (nf_hook_egress_active()) {
4370 skb = nf_hook_egress(skb, &rc, dev);
4371 if (!skb)
4372 goto out;
4373 }
4374
4375 netdev_xmit_skip_txqueue(false);
4376
4377 nf_skip_egress(skb, true);
4378 skb = sch_handle_egress(skb, &rc, dev);
4379 if (!skb)
4380 goto out;
4381 nf_skip_egress(skb, false);
4382
4383 if (netdev_xmit_txqueue_skipped())
4384 txq = netdev_tx_queue_mapping(dev, skb);
4385 }
4386#endif
4387 /* If device/qdisc don't need skb->dst, release it right now while
4388 * its hot in this cpu cache.
4389 */
4390 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4391 skb_dst_drop(skb);
4392 else
4393 skb_dst_force(skb);
4394
4395 if (!txq)
4396 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4397
4398 q = rcu_dereference_bh(txq->qdisc);
4399
4400 trace_net_dev_queue(skb);
4401 if (q->enqueue) {
4402 rc = __dev_xmit_skb(skb, q, dev, txq);
4403 goto out;
4404 }
4405
4406 /* The device has no queue. Common case for software devices:
4407 * loopback, all the sorts of tunnels...
4408
4409 * Really, it is unlikely that netif_tx_lock protection is necessary
4410 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4411 * counters.)
4412 * However, it is possible, that they rely on protection
4413 * made by us here.
4414
4415 * Check this and shot the lock. It is not prone from deadlocks.
4416 *Either shot noqueue qdisc, it is even simpler 8)
4417 */
4418 if (dev->flags & IFF_UP) {
4419 int cpu = smp_processor_id(); /* ok because BHs are off */
4420
4421 /* Other cpus might concurrently change txq->xmit_lock_owner
4422 * to -1 or to their cpu id, but not to our id.
4423 */
4424 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4425 if (dev_xmit_recursion())
4426 goto recursion_alert;
4427
4428 skb = validate_xmit_skb(skb, dev, &again);
4429 if (!skb)
4430 goto out;
4431
4432 HARD_TX_LOCK(dev, txq, cpu);
4433
4434 if (!netif_xmit_stopped(txq)) {
4435 dev_xmit_recursion_inc();
4436 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4437 dev_xmit_recursion_dec();
4438 if (dev_xmit_complete(rc)) {
4439 HARD_TX_UNLOCK(dev, txq);
4440 goto out;
4441 }
4442 }
4443 HARD_TX_UNLOCK(dev, txq);
4444 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4445 dev->name);
4446 } else {
4447 /* Recursion is detected! It is possible,
4448 * unfortunately
4449 */
4450recursion_alert:
4451 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4452 dev->name);
4453 }
4454 }
4455
4456 rc = -ENETDOWN;
4457 rcu_read_unlock_bh();
4458
4459 dev_core_stats_tx_dropped_inc(dev);
4460 kfree_skb_list(skb);
4461 return rc;
4462out:
4463 rcu_read_unlock_bh();
4464 return rc;
4465}
4466EXPORT_SYMBOL(__dev_queue_xmit);
4467
4468int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4469{
4470 struct net_device *dev = skb->dev;
4471 struct sk_buff *orig_skb = skb;
4472 struct netdev_queue *txq;
4473 int ret = NETDEV_TX_BUSY;
4474 bool again = false;
4475
4476 if (unlikely(!netif_running(dev) ||
4477 !netif_carrier_ok(dev)))
4478 goto drop;
4479
4480 skb = validate_xmit_skb_list(skb, dev, &again);
4481 if (skb != orig_skb)
4482 goto drop;
4483
4484 skb_set_queue_mapping(skb, queue_id);
4485 txq = skb_get_tx_queue(dev, skb);
4486
4487 local_bh_disable();
4488
4489 dev_xmit_recursion_inc();
4490 HARD_TX_LOCK(dev, txq, smp_processor_id());
4491 if (!netif_xmit_frozen_or_drv_stopped(txq))
4492 ret = netdev_start_xmit(skb, dev, txq, false);
4493 HARD_TX_UNLOCK(dev, txq);
4494 dev_xmit_recursion_dec();
4495
4496 local_bh_enable();
4497 return ret;
4498drop:
4499 dev_core_stats_tx_dropped_inc(dev);
4500 kfree_skb_list(skb);
4501 return NET_XMIT_DROP;
4502}
4503EXPORT_SYMBOL(__dev_direct_xmit);
4504
4505/*************************************************************************
4506 * Receiver routines
4507 *************************************************************************/
4508static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4509
4510int weight_p __read_mostly = 64; /* old backlog weight */
4511int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4512int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4513
4514/* Called with irq disabled */
4515static inline void ____napi_schedule(struct softnet_data *sd,
4516 struct napi_struct *napi)
4517{
4518 struct task_struct *thread;
4519
4520 lockdep_assert_irqs_disabled();
4521
4522 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4523 /* Paired with smp_mb__before_atomic() in
4524 * napi_enable()/dev_set_threaded().
4525 * Use READ_ONCE() to guarantee a complete
4526 * read on napi->thread. Only call
4527 * wake_up_process() when it's not NULL.
4528 */
4529 thread = READ_ONCE(napi->thread);
4530 if (thread) {
4531 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4532 goto use_local_napi;
4533
4534 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4535 wake_up_process(thread);
4536 return;
4537 }
4538 }
4539
4540use_local_napi:
4541 list_add_tail(&napi->poll_list, &sd->poll_list);
4542 WRITE_ONCE(napi->list_owner, smp_processor_id());
4543 /* If not called from net_rx_action()
4544 * we have to raise NET_RX_SOFTIRQ.
4545 */
4546 if (!sd->in_net_rx_action)
4547 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4548}
4549
4550#ifdef CONFIG_RPS
4551
4552struct static_key_false rps_needed __read_mostly;
4553EXPORT_SYMBOL(rps_needed);
4554struct static_key_false rfs_needed __read_mostly;
4555EXPORT_SYMBOL(rfs_needed);
4556
4557static struct rps_dev_flow *
4558set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4559 struct rps_dev_flow *rflow, u16 next_cpu)
4560{
4561 if (next_cpu < nr_cpu_ids) {
4562 u32 head;
4563#ifdef CONFIG_RFS_ACCEL
4564 struct netdev_rx_queue *rxqueue;
4565 struct rps_dev_flow_table *flow_table;
4566 struct rps_dev_flow *old_rflow;
4567 u16 rxq_index;
4568 u32 flow_id;
4569 int rc;
4570
4571 /* Should we steer this flow to a different hardware queue? */
4572 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4573 !(dev->features & NETIF_F_NTUPLE))
4574 goto out;
4575 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4576 if (rxq_index == skb_get_rx_queue(skb))
4577 goto out;
4578
4579 rxqueue = dev->_rx + rxq_index;
4580 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4581 if (!flow_table)
4582 goto out;
4583 flow_id = skb_get_hash(skb) & flow_table->mask;
4584 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4585 rxq_index, flow_id);
4586 if (rc < 0)
4587 goto out;
4588 old_rflow = rflow;
4589 rflow = &flow_table->flows[flow_id];
4590 WRITE_ONCE(rflow->filter, rc);
4591 if (old_rflow->filter == rc)
4592 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4593 out:
4594#endif
4595 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4596 rps_input_queue_tail_save(&rflow->last_qtail, head);
4597 }
4598
4599 WRITE_ONCE(rflow->cpu, next_cpu);
4600 return rflow;
4601}
4602
4603/*
4604 * get_rps_cpu is called from netif_receive_skb and returns the target
4605 * CPU from the RPS map of the receiving queue for a given skb.
4606 * rcu_read_lock must be held on entry.
4607 */
4608static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4609 struct rps_dev_flow **rflowp)
4610{
4611 const struct rps_sock_flow_table *sock_flow_table;
4612 struct netdev_rx_queue *rxqueue = dev->_rx;
4613 struct rps_dev_flow_table *flow_table;
4614 struct rps_map *map;
4615 int cpu = -1;
4616 u32 tcpu;
4617 u32 hash;
4618
4619 if (skb_rx_queue_recorded(skb)) {
4620 u16 index = skb_get_rx_queue(skb);
4621
4622 if (unlikely(index >= dev->real_num_rx_queues)) {
4623 WARN_ONCE(dev->real_num_rx_queues > 1,
4624 "%s received packet on queue %u, but number "
4625 "of RX queues is %u\n",
4626 dev->name, index, dev->real_num_rx_queues);
4627 goto done;
4628 }
4629 rxqueue += index;
4630 }
4631
4632 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4633
4634 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4635 map = rcu_dereference(rxqueue->rps_map);
4636 if (!flow_table && !map)
4637 goto done;
4638
4639 skb_reset_network_header(skb);
4640 hash = skb_get_hash(skb);
4641 if (!hash)
4642 goto done;
4643
4644 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4645 if (flow_table && sock_flow_table) {
4646 struct rps_dev_flow *rflow;
4647 u32 next_cpu;
4648 u32 ident;
4649
4650 /* First check into global flow table if there is a match.
4651 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4652 */
4653 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4654 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4655 goto try_rps;
4656
4657 next_cpu = ident & net_hotdata.rps_cpu_mask;
4658
4659 /* OK, now we know there is a match,
4660 * we can look at the local (per receive queue) flow table
4661 */
4662 rflow = &flow_table->flows[hash & flow_table->mask];
4663 tcpu = rflow->cpu;
4664
4665 /*
4666 * If the desired CPU (where last recvmsg was done) is
4667 * different from current CPU (one in the rx-queue flow
4668 * table entry), switch if one of the following holds:
4669 * - Current CPU is unset (>= nr_cpu_ids).
4670 * - Current CPU is offline.
4671 * - The current CPU's queue tail has advanced beyond the
4672 * last packet that was enqueued using this table entry.
4673 * This guarantees that all previous packets for the flow
4674 * have been dequeued, thus preserving in order delivery.
4675 */
4676 if (unlikely(tcpu != next_cpu) &&
4677 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4678 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4679 rflow->last_qtail)) >= 0)) {
4680 tcpu = next_cpu;
4681 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4682 }
4683
4684 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4685 *rflowp = rflow;
4686 cpu = tcpu;
4687 goto done;
4688 }
4689 }
4690
4691try_rps:
4692
4693 if (map) {
4694 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4695 if (cpu_online(tcpu)) {
4696 cpu = tcpu;
4697 goto done;
4698 }
4699 }
4700
4701done:
4702 return cpu;
4703}
4704
4705#ifdef CONFIG_RFS_ACCEL
4706
4707/**
4708 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4709 * @dev: Device on which the filter was set
4710 * @rxq_index: RX queue index
4711 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4712 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4713 *
4714 * Drivers that implement ndo_rx_flow_steer() should periodically call
4715 * this function for each installed filter and remove the filters for
4716 * which it returns %true.
4717 */
4718bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4719 u32 flow_id, u16 filter_id)
4720{
4721 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4722 struct rps_dev_flow_table *flow_table;
4723 struct rps_dev_flow *rflow;
4724 bool expire = true;
4725 unsigned int cpu;
4726
4727 rcu_read_lock();
4728 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4729 if (flow_table && flow_id <= flow_table->mask) {
4730 rflow = &flow_table->flows[flow_id];
4731 cpu = READ_ONCE(rflow->cpu);
4732 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4733 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4734 READ_ONCE(rflow->last_qtail)) <
4735 (int)(10 * flow_table->mask)))
4736 expire = false;
4737 }
4738 rcu_read_unlock();
4739 return expire;
4740}
4741EXPORT_SYMBOL(rps_may_expire_flow);
4742
4743#endif /* CONFIG_RFS_ACCEL */
4744
4745/* Called from hardirq (IPI) context */
4746static void rps_trigger_softirq(void *data)
4747{
4748 struct softnet_data *sd = data;
4749
4750 ____napi_schedule(sd, &sd->backlog);
4751 sd->received_rps++;
4752}
4753
4754#endif /* CONFIG_RPS */
4755
4756/* Called from hardirq (IPI) context */
4757static void trigger_rx_softirq(void *data)
4758{
4759 struct softnet_data *sd = data;
4760
4761 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4762 smp_store_release(&sd->defer_ipi_scheduled, 0);
4763}
4764
4765/*
4766 * After we queued a packet into sd->input_pkt_queue,
4767 * we need to make sure this queue is serviced soon.
4768 *
4769 * - If this is another cpu queue, link it to our rps_ipi_list,
4770 * and make sure we will process rps_ipi_list from net_rx_action().
4771 *
4772 * - If this is our own queue, NAPI schedule our backlog.
4773 * Note that this also raises NET_RX_SOFTIRQ.
4774 */
4775static void napi_schedule_rps(struct softnet_data *sd)
4776{
4777 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4778
4779#ifdef CONFIG_RPS
4780 if (sd != mysd) {
4781 if (use_backlog_threads()) {
4782 __napi_schedule_irqoff(&sd->backlog);
4783 return;
4784 }
4785
4786 sd->rps_ipi_next = mysd->rps_ipi_list;
4787 mysd->rps_ipi_list = sd;
4788
4789 /* If not called from net_rx_action() or napi_threaded_poll()
4790 * we have to raise NET_RX_SOFTIRQ.
4791 */
4792 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4793 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4794 return;
4795 }
4796#endif /* CONFIG_RPS */
4797 __napi_schedule_irqoff(&mysd->backlog);
4798}
4799
4800void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4801{
4802 unsigned long flags;
4803
4804 if (use_backlog_threads()) {
4805 backlog_lock_irq_save(sd, &flags);
4806
4807 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4808 __napi_schedule_irqoff(&sd->backlog);
4809
4810 backlog_unlock_irq_restore(sd, &flags);
4811
4812 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4813 smp_call_function_single_async(cpu, &sd->defer_csd);
4814 }
4815}
4816
4817#ifdef CONFIG_NET_FLOW_LIMIT
4818int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4819#endif
4820
4821static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4822{
4823#ifdef CONFIG_NET_FLOW_LIMIT
4824 struct sd_flow_limit *fl;
4825 struct softnet_data *sd;
4826 unsigned int old_flow, new_flow;
4827
4828 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4829 return false;
4830
4831 sd = this_cpu_ptr(&softnet_data);
4832
4833 rcu_read_lock();
4834 fl = rcu_dereference(sd->flow_limit);
4835 if (fl) {
4836 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4837 old_flow = fl->history[fl->history_head];
4838 fl->history[fl->history_head] = new_flow;
4839
4840 fl->history_head++;
4841 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4842
4843 if (likely(fl->buckets[old_flow]))
4844 fl->buckets[old_flow]--;
4845
4846 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4847 fl->count++;
4848 rcu_read_unlock();
4849 return true;
4850 }
4851 }
4852 rcu_read_unlock();
4853#endif
4854 return false;
4855}
4856
4857/*
4858 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4859 * queue (may be a remote CPU queue).
4860 */
4861static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4862 unsigned int *qtail)
4863{
4864 enum skb_drop_reason reason;
4865 struct softnet_data *sd;
4866 unsigned long flags;
4867 unsigned int qlen;
4868 int max_backlog;
4869 u32 tail;
4870
4871 reason = SKB_DROP_REASON_DEV_READY;
4872 if (!netif_running(skb->dev))
4873 goto bad_dev;
4874
4875 reason = SKB_DROP_REASON_CPU_BACKLOG;
4876 sd = &per_cpu(softnet_data, cpu);
4877
4878 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4879 max_backlog = READ_ONCE(net_hotdata.max_backlog);
4880 if (unlikely(qlen > max_backlog))
4881 goto cpu_backlog_drop;
4882 backlog_lock_irq_save(sd, &flags);
4883 qlen = skb_queue_len(&sd->input_pkt_queue);
4884 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4885 if (!qlen) {
4886 /* Schedule NAPI for backlog device. We can use
4887 * non atomic operation as we own the queue lock.
4888 */
4889 if (!__test_and_set_bit(NAPI_STATE_SCHED,
4890 &sd->backlog.state))
4891 napi_schedule_rps(sd);
4892 }
4893 __skb_queue_tail(&sd->input_pkt_queue, skb);
4894 tail = rps_input_queue_tail_incr(sd);
4895 backlog_unlock_irq_restore(sd, &flags);
4896
4897 /* save the tail outside of the critical section */
4898 rps_input_queue_tail_save(qtail, tail);
4899 return NET_RX_SUCCESS;
4900 }
4901
4902 backlog_unlock_irq_restore(sd, &flags);
4903
4904cpu_backlog_drop:
4905 atomic_inc(&sd->dropped);
4906bad_dev:
4907 dev_core_stats_rx_dropped_inc(skb->dev);
4908 kfree_skb_reason(skb, reason);
4909 return NET_RX_DROP;
4910}
4911
4912static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4913{
4914 struct net_device *dev = skb->dev;
4915 struct netdev_rx_queue *rxqueue;
4916
4917 rxqueue = dev->_rx;
4918
4919 if (skb_rx_queue_recorded(skb)) {
4920 u16 index = skb_get_rx_queue(skb);
4921
4922 if (unlikely(index >= dev->real_num_rx_queues)) {
4923 WARN_ONCE(dev->real_num_rx_queues > 1,
4924 "%s received packet on queue %u, but number "
4925 "of RX queues is %u\n",
4926 dev->name, index, dev->real_num_rx_queues);
4927
4928 return rxqueue; /* Return first rxqueue */
4929 }
4930 rxqueue += index;
4931 }
4932 return rxqueue;
4933}
4934
4935u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4936 struct bpf_prog *xdp_prog)
4937{
4938 void *orig_data, *orig_data_end, *hard_start;
4939 struct netdev_rx_queue *rxqueue;
4940 bool orig_bcast, orig_host;
4941 u32 mac_len, frame_sz;
4942 __be16 orig_eth_type;
4943 struct ethhdr *eth;
4944 u32 metalen, act;
4945 int off;
4946
4947 /* The XDP program wants to see the packet starting at the MAC
4948 * header.
4949 */
4950 mac_len = skb->data - skb_mac_header(skb);
4951 hard_start = skb->data - skb_headroom(skb);
4952
4953 /* SKB "head" area always have tailroom for skb_shared_info */
4954 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4955 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4956
4957 rxqueue = netif_get_rxqueue(skb);
4958 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4959 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4960 skb_headlen(skb) + mac_len, true);
4961 if (skb_is_nonlinear(skb)) {
4962 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4963 xdp_buff_set_frags_flag(xdp);
4964 } else {
4965 xdp_buff_clear_frags_flag(xdp);
4966 }
4967
4968 orig_data_end = xdp->data_end;
4969 orig_data = xdp->data;
4970 eth = (struct ethhdr *)xdp->data;
4971 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4972 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4973 orig_eth_type = eth->h_proto;
4974
4975 act = bpf_prog_run_xdp(xdp_prog, xdp);
4976
4977 /* check if bpf_xdp_adjust_head was used */
4978 off = xdp->data - orig_data;
4979 if (off) {
4980 if (off > 0)
4981 __skb_pull(skb, off);
4982 else if (off < 0)
4983 __skb_push(skb, -off);
4984
4985 skb->mac_header += off;
4986 skb_reset_network_header(skb);
4987 }
4988
4989 /* check if bpf_xdp_adjust_tail was used */
4990 off = xdp->data_end - orig_data_end;
4991 if (off != 0) {
4992 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4993 skb->len += off; /* positive on grow, negative on shrink */
4994 }
4995
4996 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4997 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4998 */
4999 if (xdp_buff_has_frags(xdp))
5000 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5001 else
5002 skb->data_len = 0;
5003
5004 /* check if XDP changed eth hdr such SKB needs update */
5005 eth = (struct ethhdr *)xdp->data;
5006 if ((orig_eth_type != eth->h_proto) ||
5007 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5008 skb->dev->dev_addr)) ||
5009 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5010 __skb_push(skb, ETH_HLEN);
5011 skb->pkt_type = PACKET_HOST;
5012 skb->protocol = eth_type_trans(skb, skb->dev);
5013 }
5014
5015 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5016 * before calling us again on redirect path. We do not call do_redirect
5017 * as we leave that up to the caller.
5018 *
5019 * Caller is responsible for managing lifetime of skb (i.e. calling
5020 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5021 */
5022 switch (act) {
5023 case XDP_REDIRECT:
5024 case XDP_TX:
5025 __skb_push(skb, mac_len);
5026 break;
5027 case XDP_PASS:
5028 metalen = xdp->data - xdp->data_meta;
5029 if (metalen)
5030 skb_metadata_set(skb, metalen);
5031 break;
5032 }
5033
5034 return act;
5035}
5036
5037static int
5038netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5039{
5040 struct sk_buff *skb = *pskb;
5041 int err, hroom, troom;
5042
5043 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5044 return 0;
5045
5046 /* In case we have to go down the path and also linearize,
5047 * then lets do the pskb_expand_head() work just once here.
5048 */
5049 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5050 troom = skb->tail + skb->data_len - skb->end;
5051 err = pskb_expand_head(skb,
5052 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5053 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5054 if (err)
5055 return err;
5056
5057 return skb_linearize(skb);
5058}
5059
5060static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5061 struct xdp_buff *xdp,
5062 struct bpf_prog *xdp_prog)
5063{
5064 struct sk_buff *skb = *pskb;
5065 u32 mac_len, act = XDP_DROP;
5066
5067 /* Reinjected packets coming from act_mirred or similar should
5068 * not get XDP generic processing.
5069 */
5070 if (skb_is_redirected(skb))
5071 return XDP_PASS;
5072
5073 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5074 * bytes. This is the guarantee that also native XDP provides,
5075 * thus we need to do it here as well.
5076 */
5077 mac_len = skb->data - skb_mac_header(skb);
5078 __skb_push(skb, mac_len);
5079
5080 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5081 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5082 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5083 goto do_drop;
5084 }
5085
5086 __skb_pull(*pskb, mac_len);
5087
5088 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5089 switch (act) {
5090 case XDP_REDIRECT:
5091 case XDP_TX:
5092 case XDP_PASS:
5093 break;
5094 default:
5095 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5096 fallthrough;
5097 case XDP_ABORTED:
5098 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5099 fallthrough;
5100 case XDP_DROP:
5101 do_drop:
5102 kfree_skb(*pskb);
5103 break;
5104 }
5105
5106 return act;
5107}
5108
5109/* When doing generic XDP we have to bypass the qdisc layer and the
5110 * network taps in order to match in-driver-XDP behavior. This also means
5111 * that XDP packets are able to starve other packets going through a qdisc,
5112 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5113 * queues, so they do not have this starvation issue.
5114 */
5115void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5116{
5117 struct net_device *dev = skb->dev;
5118 struct netdev_queue *txq;
5119 bool free_skb = true;
5120 int cpu, rc;
5121
5122 txq = netdev_core_pick_tx(dev, skb, NULL);
5123 cpu = smp_processor_id();
5124 HARD_TX_LOCK(dev, txq, cpu);
5125 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5126 rc = netdev_start_xmit(skb, dev, txq, 0);
5127 if (dev_xmit_complete(rc))
5128 free_skb = false;
5129 }
5130 HARD_TX_UNLOCK(dev, txq);
5131 if (free_skb) {
5132 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5133 dev_core_stats_tx_dropped_inc(dev);
5134 kfree_skb(skb);
5135 }
5136}
5137
5138static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5139
5140int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5141{
5142 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5143
5144 if (xdp_prog) {
5145 struct xdp_buff xdp;
5146 u32 act;
5147 int err;
5148
5149 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5150 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5151 if (act != XDP_PASS) {
5152 switch (act) {
5153 case XDP_REDIRECT:
5154 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5155 &xdp, xdp_prog);
5156 if (err)
5157 goto out_redir;
5158 break;
5159 case XDP_TX:
5160 generic_xdp_tx(*pskb, xdp_prog);
5161 break;
5162 }
5163 bpf_net_ctx_clear(bpf_net_ctx);
5164 return XDP_DROP;
5165 }
5166 bpf_net_ctx_clear(bpf_net_ctx);
5167 }
5168 return XDP_PASS;
5169out_redir:
5170 bpf_net_ctx_clear(bpf_net_ctx);
5171 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5172 return XDP_DROP;
5173}
5174EXPORT_SYMBOL_GPL(do_xdp_generic);
5175
5176static int netif_rx_internal(struct sk_buff *skb)
5177{
5178 int ret;
5179
5180 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5181
5182 trace_netif_rx(skb);
5183
5184#ifdef CONFIG_RPS
5185 if (static_branch_unlikely(&rps_needed)) {
5186 struct rps_dev_flow voidflow, *rflow = &voidflow;
5187 int cpu;
5188
5189 rcu_read_lock();
5190
5191 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5192 if (cpu < 0)
5193 cpu = smp_processor_id();
5194
5195 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5196
5197 rcu_read_unlock();
5198 } else
5199#endif
5200 {
5201 unsigned int qtail;
5202
5203 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5204 }
5205 return ret;
5206}
5207
5208/**
5209 * __netif_rx - Slightly optimized version of netif_rx
5210 * @skb: buffer to post
5211 *
5212 * This behaves as netif_rx except that it does not disable bottom halves.
5213 * As a result this function may only be invoked from the interrupt context
5214 * (either hard or soft interrupt).
5215 */
5216int __netif_rx(struct sk_buff *skb)
5217{
5218 int ret;
5219
5220 lockdep_assert_once(hardirq_count() | softirq_count());
5221
5222 trace_netif_rx_entry(skb);
5223 ret = netif_rx_internal(skb);
5224 trace_netif_rx_exit(ret);
5225 return ret;
5226}
5227EXPORT_SYMBOL(__netif_rx);
5228
5229/**
5230 * netif_rx - post buffer to the network code
5231 * @skb: buffer to post
5232 *
5233 * This function receives a packet from a device driver and queues it for
5234 * the upper (protocol) levels to process via the backlog NAPI device. It
5235 * always succeeds. The buffer may be dropped during processing for
5236 * congestion control or by the protocol layers.
5237 * The network buffer is passed via the backlog NAPI device. Modern NIC
5238 * driver should use NAPI and GRO.
5239 * This function can used from interrupt and from process context. The
5240 * caller from process context must not disable interrupts before invoking
5241 * this function.
5242 *
5243 * return values:
5244 * NET_RX_SUCCESS (no congestion)
5245 * NET_RX_DROP (packet was dropped)
5246 *
5247 */
5248int netif_rx(struct sk_buff *skb)
5249{
5250 bool need_bh_off = !(hardirq_count() | softirq_count());
5251 int ret;
5252
5253 if (need_bh_off)
5254 local_bh_disable();
5255 trace_netif_rx_entry(skb);
5256 ret = netif_rx_internal(skb);
5257 trace_netif_rx_exit(ret);
5258 if (need_bh_off)
5259 local_bh_enable();
5260 return ret;
5261}
5262EXPORT_SYMBOL(netif_rx);
5263
5264static __latent_entropy void net_tx_action(void)
5265{
5266 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5267
5268 if (sd->completion_queue) {
5269 struct sk_buff *clist;
5270
5271 local_irq_disable();
5272 clist = sd->completion_queue;
5273 sd->completion_queue = NULL;
5274 local_irq_enable();
5275
5276 while (clist) {
5277 struct sk_buff *skb = clist;
5278
5279 clist = clist->next;
5280
5281 WARN_ON(refcount_read(&skb->users));
5282 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5283 trace_consume_skb(skb, net_tx_action);
5284 else
5285 trace_kfree_skb(skb, net_tx_action,
5286 get_kfree_skb_cb(skb)->reason, NULL);
5287
5288 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5289 __kfree_skb(skb);
5290 else
5291 __napi_kfree_skb(skb,
5292 get_kfree_skb_cb(skb)->reason);
5293 }
5294 }
5295
5296 if (sd->output_queue) {
5297 struct Qdisc *head;
5298
5299 local_irq_disable();
5300 head = sd->output_queue;
5301 sd->output_queue = NULL;
5302 sd->output_queue_tailp = &sd->output_queue;
5303 local_irq_enable();
5304
5305 rcu_read_lock();
5306
5307 while (head) {
5308 struct Qdisc *q = head;
5309 spinlock_t *root_lock = NULL;
5310
5311 head = head->next_sched;
5312
5313 /* We need to make sure head->next_sched is read
5314 * before clearing __QDISC_STATE_SCHED
5315 */
5316 smp_mb__before_atomic();
5317
5318 if (!(q->flags & TCQ_F_NOLOCK)) {
5319 root_lock = qdisc_lock(q);
5320 spin_lock(root_lock);
5321 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5322 &q->state))) {
5323 /* There is a synchronize_net() between
5324 * STATE_DEACTIVATED flag being set and
5325 * qdisc_reset()/some_qdisc_is_busy() in
5326 * dev_deactivate(), so we can safely bail out
5327 * early here to avoid data race between
5328 * qdisc_deactivate() and some_qdisc_is_busy()
5329 * for lockless qdisc.
5330 */
5331 clear_bit(__QDISC_STATE_SCHED, &q->state);
5332 continue;
5333 }
5334
5335 clear_bit(__QDISC_STATE_SCHED, &q->state);
5336 qdisc_run(q);
5337 if (root_lock)
5338 spin_unlock(root_lock);
5339 }
5340
5341 rcu_read_unlock();
5342 }
5343
5344 xfrm_dev_backlog(sd);
5345}
5346
5347#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5348/* This hook is defined here for ATM LANE */
5349int (*br_fdb_test_addr_hook)(struct net_device *dev,
5350 unsigned char *addr) __read_mostly;
5351EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5352#endif
5353
5354/**
5355 * netdev_is_rx_handler_busy - check if receive handler is registered
5356 * @dev: device to check
5357 *
5358 * Check if a receive handler is already registered for a given device.
5359 * Return true if there one.
5360 *
5361 * The caller must hold the rtnl_mutex.
5362 */
5363bool netdev_is_rx_handler_busy(struct net_device *dev)
5364{
5365 ASSERT_RTNL();
5366 return dev && rtnl_dereference(dev->rx_handler);
5367}
5368EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5369
5370/**
5371 * netdev_rx_handler_register - register receive handler
5372 * @dev: device to register a handler for
5373 * @rx_handler: receive handler to register
5374 * @rx_handler_data: data pointer that is used by rx handler
5375 *
5376 * Register a receive handler for a device. This handler will then be
5377 * called from __netif_receive_skb. A negative errno code is returned
5378 * on a failure.
5379 *
5380 * The caller must hold the rtnl_mutex.
5381 *
5382 * For a general description of rx_handler, see enum rx_handler_result.
5383 */
5384int netdev_rx_handler_register(struct net_device *dev,
5385 rx_handler_func_t *rx_handler,
5386 void *rx_handler_data)
5387{
5388 if (netdev_is_rx_handler_busy(dev))
5389 return -EBUSY;
5390
5391 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5392 return -EINVAL;
5393
5394 /* Note: rx_handler_data must be set before rx_handler */
5395 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5396 rcu_assign_pointer(dev->rx_handler, rx_handler);
5397
5398 return 0;
5399}
5400EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5401
5402/**
5403 * netdev_rx_handler_unregister - unregister receive handler
5404 * @dev: device to unregister a handler from
5405 *
5406 * Unregister a receive handler from a device.
5407 *
5408 * The caller must hold the rtnl_mutex.
5409 */
5410void netdev_rx_handler_unregister(struct net_device *dev)
5411{
5412
5413 ASSERT_RTNL();
5414 RCU_INIT_POINTER(dev->rx_handler, NULL);
5415 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5416 * section has a guarantee to see a non NULL rx_handler_data
5417 * as well.
5418 */
5419 synchronize_net();
5420 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5421}
5422EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5423
5424/*
5425 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5426 * the special handling of PFMEMALLOC skbs.
5427 */
5428static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5429{
5430 switch (skb->protocol) {
5431 case htons(ETH_P_ARP):
5432 case htons(ETH_P_IP):
5433 case htons(ETH_P_IPV6):
5434 case htons(ETH_P_8021Q):
5435 case htons(ETH_P_8021AD):
5436 return true;
5437 default:
5438 return false;
5439 }
5440}
5441
5442static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5443 int *ret, struct net_device *orig_dev)
5444{
5445 if (nf_hook_ingress_active(skb)) {
5446 int ingress_retval;
5447
5448 if (*pt_prev) {
5449 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5450 *pt_prev = NULL;
5451 }
5452
5453 rcu_read_lock();
5454 ingress_retval = nf_hook_ingress(skb);
5455 rcu_read_unlock();
5456 return ingress_retval;
5457 }
5458 return 0;
5459}
5460
5461static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5462 struct packet_type **ppt_prev)
5463{
5464 struct packet_type *ptype, *pt_prev;
5465 rx_handler_func_t *rx_handler;
5466 struct sk_buff *skb = *pskb;
5467 struct net_device *orig_dev;
5468 bool deliver_exact = false;
5469 int ret = NET_RX_DROP;
5470 __be16 type;
5471
5472 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5473
5474 trace_netif_receive_skb(skb);
5475
5476 orig_dev = skb->dev;
5477
5478 skb_reset_network_header(skb);
5479 if (!skb_transport_header_was_set(skb))
5480 skb_reset_transport_header(skb);
5481 skb_reset_mac_len(skb);
5482
5483 pt_prev = NULL;
5484
5485another_round:
5486 skb->skb_iif = skb->dev->ifindex;
5487
5488 __this_cpu_inc(softnet_data.processed);
5489
5490 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5491 int ret2;
5492
5493 migrate_disable();
5494 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5495 &skb);
5496 migrate_enable();
5497
5498 if (ret2 != XDP_PASS) {
5499 ret = NET_RX_DROP;
5500 goto out;
5501 }
5502 }
5503
5504 if (eth_type_vlan(skb->protocol)) {
5505 skb = skb_vlan_untag(skb);
5506 if (unlikely(!skb))
5507 goto out;
5508 }
5509
5510 if (skb_skip_tc_classify(skb))
5511 goto skip_classify;
5512
5513 if (pfmemalloc)
5514 goto skip_taps;
5515
5516 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5517 if (pt_prev)
5518 ret = deliver_skb(skb, pt_prev, orig_dev);
5519 pt_prev = ptype;
5520 }
5521
5522 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5523 if (pt_prev)
5524 ret = deliver_skb(skb, pt_prev, orig_dev);
5525 pt_prev = ptype;
5526 }
5527
5528skip_taps:
5529#ifdef CONFIG_NET_INGRESS
5530 if (static_branch_unlikely(&ingress_needed_key)) {
5531 bool another = false;
5532
5533 nf_skip_egress(skb, true);
5534 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5535 &another);
5536 if (another)
5537 goto another_round;
5538 if (!skb)
5539 goto out;
5540
5541 nf_skip_egress(skb, false);
5542 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5543 goto out;
5544 }
5545#endif
5546 skb_reset_redirect(skb);
5547skip_classify:
5548 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5549 goto drop;
5550
5551 if (skb_vlan_tag_present(skb)) {
5552 if (pt_prev) {
5553 ret = deliver_skb(skb, pt_prev, orig_dev);
5554 pt_prev = NULL;
5555 }
5556 if (vlan_do_receive(&skb))
5557 goto another_round;
5558 else if (unlikely(!skb))
5559 goto out;
5560 }
5561
5562 rx_handler = rcu_dereference(skb->dev->rx_handler);
5563 if (rx_handler) {
5564 if (pt_prev) {
5565 ret = deliver_skb(skb, pt_prev, orig_dev);
5566 pt_prev = NULL;
5567 }
5568 switch (rx_handler(&skb)) {
5569 case RX_HANDLER_CONSUMED:
5570 ret = NET_RX_SUCCESS;
5571 goto out;
5572 case RX_HANDLER_ANOTHER:
5573 goto another_round;
5574 case RX_HANDLER_EXACT:
5575 deliver_exact = true;
5576 break;
5577 case RX_HANDLER_PASS:
5578 break;
5579 default:
5580 BUG();
5581 }
5582 }
5583
5584 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5585check_vlan_id:
5586 if (skb_vlan_tag_get_id(skb)) {
5587 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5588 * find vlan device.
5589 */
5590 skb->pkt_type = PACKET_OTHERHOST;
5591 } else if (eth_type_vlan(skb->protocol)) {
5592 /* Outer header is 802.1P with vlan 0, inner header is
5593 * 802.1Q or 802.1AD and vlan_do_receive() above could
5594 * not find vlan dev for vlan id 0.
5595 */
5596 __vlan_hwaccel_clear_tag(skb);
5597 skb = skb_vlan_untag(skb);
5598 if (unlikely(!skb))
5599 goto out;
5600 if (vlan_do_receive(&skb))
5601 /* After stripping off 802.1P header with vlan 0
5602 * vlan dev is found for inner header.
5603 */
5604 goto another_round;
5605 else if (unlikely(!skb))
5606 goto out;
5607 else
5608 /* We have stripped outer 802.1P vlan 0 header.
5609 * But could not find vlan dev.
5610 * check again for vlan id to set OTHERHOST.
5611 */
5612 goto check_vlan_id;
5613 }
5614 /* Note: we might in the future use prio bits
5615 * and set skb->priority like in vlan_do_receive()
5616 * For the time being, just ignore Priority Code Point
5617 */
5618 __vlan_hwaccel_clear_tag(skb);
5619 }
5620
5621 type = skb->protocol;
5622
5623 /* deliver only exact match when indicated */
5624 if (likely(!deliver_exact)) {
5625 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5626 &ptype_base[ntohs(type) &
5627 PTYPE_HASH_MASK]);
5628 }
5629
5630 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5631 &orig_dev->ptype_specific);
5632
5633 if (unlikely(skb->dev != orig_dev)) {
5634 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5635 &skb->dev->ptype_specific);
5636 }
5637
5638 if (pt_prev) {
5639 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5640 goto drop;
5641 *ppt_prev = pt_prev;
5642 } else {
5643drop:
5644 if (!deliver_exact)
5645 dev_core_stats_rx_dropped_inc(skb->dev);
5646 else
5647 dev_core_stats_rx_nohandler_inc(skb->dev);
5648 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5649 /* Jamal, now you will not able to escape explaining
5650 * me how you were going to use this. :-)
5651 */
5652 ret = NET_RX_DROP;
5653 }
5654
5655out:
5656 /* The invariant here is that if *ppt_prev is not NULL
5657 * then skb should also be non-NULL.
5658 *
5659 * Apparently *ppt_prev assignment above holds this invariant due to
5660 * skb dereferencing near it.
5661 */
5662 *pskb = skb;
5663 return ret;
5664}
5665
5666static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5667{
5668 struct net_device *orig_dev = skb->dev;
5669 struct packet_type *pt_prev = NULL;
5670 int ret;
5671
5672 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5673 if (pt_prev)
5674 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5675 skb->dev, pt_prev, orig_dev);
5676 return ret;
5677}
5678
5679/**
5680 * netif_receive_skb_core - special purpose version of netif_receive_skb
5681 * @skb: buffer to process
5682 *
5683 * More direct receive version of netif_receive_skb(). It should
5684 * only be used by callers that have a need to skip RPS and Generic XDP.
5685 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5686 *
5687 * This function may only be called from softirq context and interrupts
5688 * should be enabled.
5689 *
5690 * Return values (usually ignored):
5691 * NET_RX_SUCCESS: no congestion
5692 * NET_RX_DROP: packet was dropped
5693 */
5694int netif_receive_skb_core(struct sk_buff *skb)
5695{
5696 int ret;
5697
5698 rcu_read_lock();
5699 ret = __netif_receive_skb_one_core(skb, false);
5700 rcu_read_unlock();
5701
5702 return ret;
5703}
5704EXPORT_SYMBOL(netif_receive_skb_core);
5705
5706static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5707 struct packet_type *pt_prev,
5708 struct net_device *orig_dev)
5709{
5710 struct sk_buff *skb, *next;
5711
5712 if (!pt_prev)
5713 return;
5714 if (list_empty(head))
5715 return;
5716 if (pt_prev->list_func != NULL)
5717 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5718 ip_list_rcv, head, pt_prev, orig_dev);
5719 else
5720 list_for_each_entry_safe(skb, next, head, list) {
5721 skb_list_del_init(skb);
5722 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5723 }
5724}
5725
5726static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5727{
5728 /* Fast-path assumptions:
5729 * - There is no RX handler.
5730 * - Only one packet_type matches.
5731 * If either of these fails, we will end up doing some per-packet
5732 * processing in-line, then handling the 'last ptype' for the whole
5733 * sublist. This can't cause out-of-order delivery to any single ptype,
5734 * because the 'last ptype' must be constant across the sublist, and all
5735 * other ptypes are handled per-packet.
5736 */
5737 /* Current (common) ptype of sublist */
5738 struct packet_type *pt_curr = NULL;
5739 /* Current (common) orig_dev of sublist */
5740 struct net_device *od_curr = NULL;
5741 struct sk_buff *skb, *next;
5742 LIST_HEAD(sublist);
5743
5744 list_for_each_entry_safe(skb, next, head, list) {
5745 struct net_device *orig_dev = skb->dev;
5746 struct packet_type *pt_prev = NULL;
5747
5748 skb_list_del_init(skb);
5749 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5750 if (!pt_prev)
5751 continue;
5752 if (pt_curr != pt_prev || od_curr != orig_dev) {
5753 /* dispatch old sublist */
5754 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5755 /* start new sublist */
5756 INIT_LIST_HEAD(&sublist);
5757 pt_curr = pt_prev;
5758 od_curr = orig_dev;
5759 }
5760 list_add_tail(&skb->list, &sublist);
5761 }
5762
5763 /* dispatch final sublist */
5764 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5765}
5766
5767static int __netif_receive_skb(struct sk_buff *skb)
5768{
5769 int ret;
5770
5771 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5772 unsigned int noreclaim_flag;
5773
5774 /*
5775 * PFMEMALLOC skbs are special, they should
5776 * - be delivered to SOCK_MEMALLOC sockets only
5777 * - stay away from userspace
5778 * - have bounded memory usage
5779 *
5780 * Use PF_MEMALLOC as this saves us from propagating the allocation
5781 * context down to all allocation sites.
5782 */
5783 noreclaim_flag = memalloc_noreclaim_save();
5784 ret = __netif_receive_skb_one_core(skb, true);
5785 memalloc_noreclaim_restore(noreclaim_flag);
5786 } else
5787 ret = __netif_receive_skb_one_core(skb, false);
5788
5789 return ret;
5790}
5791
5792static void __netif_receive_skb_list(struct list_head *head)
5793{
5794 unsigned long noreclaim_flag = 0;
5795 struct sk_buff *skb, *next;
5796 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5797
5798 list_for_each_entry_safe(skb, next, head, list) {
5799 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5800 struct list_head sublist;
5801
5802 /* Handle the previous sublist */
5803 list_cut_before(&sublist, head, &skb->list);
5804 if (!list_empty(&sublist))
5805 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5806 pfmemalloc = !pfmemalloc;
5807 /* See comments in __netif_receive_skb */
5808 if (pfmemalloc)
5809 noreclaim_flag = memalloc_noreclaim_save();
5810 else
5811 memalloc_noreclaim_restore(noreclaim_flag);
5812 }
5813 }
5814 /* Handle the remaining sublist */
5815 if (!list_empty(head))
5816 __netif_receive_skb_list_core(head, pfmemalloc);
5817 /* Restore pflags */
5818 if (pfmemalloc)
5819 memalloc_noreclaim_restore(noreclaim_flag);
5820}
5821
5822static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5823{
5824 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5825 struct bpf_prog *new = xdp->prog;
5826 int ret = 0;
5827
5828 switch (xdp->command) {
5829 case XDP_SETUP_PROG:
5830 rcu_assign_pointer(dev->xdp_prog, new);
5831 if (old)
5832 bpf_prog_put(old);
5833
5834 if (old && !new) {
5835 static_branch_dec(&generic_xdp_needed_key);
5836 } else if (new && !old) {
5837 static_branch_inc(&generic_xdp_needed_key);
5838 dev_disable_lro(dev);
5839 dev_disable_gro_hw(dev);
5840 }
5841 break;
5842
5843 default:
5844 ret = -EINVAL;
5845 break;
5846 }
5847
5848 return ret;
5849}
5850
5851static int netif_receive_skb_internal(struct sk_buff *skb)
5852{
5853 int ret;
5854
5855 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5856
5857 if (skb_defer_rx_timestamp(skb))
5858 return NET_RX_SUCCESS;
5859
5860 rcu_read_lock();
5861#ifdef CONFIG_RPS
5862 if (static_branch_unlikely(&rps_needed)) {
5863 struct rps_dev_flow voidflow, *rflow = &voidflow;
5864 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5865
5866 if (cpu >= 0) {
5867 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5868 rcu_read_unlock();
5869 return ret;
5870 }
5871 }
5872#endif
5873 ret = __netif_receive_skb(skb);
5874 rcu_read_unlock();
5875 return ret;
5876}
5877
5878void netif_receive_skb_list_internal(struct list_head *head)
5879{
5880 struct sk_buff *skb, *next;
5881 LIST_HEAD(sublist);
5882
5883 list_for_each_entry_safe(skb, next, head, list) {
5884 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5885 skb);
5886 skb_list_del_init(skb);
5887 if (!skb_defer_rx_timestamp(skb))
5888 list_add_tail(&skb->list, &sublist);
5889 }
5890 list_splice_init(&sublist, head);
5891
5892 rcu_read_lock();
5893#ifdef CONFIG_RPS
5894 if (static_branch_unlikely(&rps_needed)) {
5895 list_for_each_entry_safe(skb, next, head, list) {
5896 struct rps_dev_flow voidflow, *rflow = &voidflow;
5897 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5898
5899 if (cpu >= 0) {
5900 /* Will be handled, remove from list */
5901 skb_list_del_init(skb);
5902 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5903 }
5904 }
5905 }
5906#endif
5907 __netif_receive_skb_list(head);
5908 rcu_read_unlock();
5909}
5910
5911/**
5912 * netif_receive_skb - process receive buffer from network
5913 * @skb: buffer to process
5914 *
5915 * netif_receive_skb() is the main receive data processing function.
5916 * It always succeeds. The buffer may be dropped during processing
5917 * for congestion control or by the protocol layers.
5918 *
5919 * This function may only be called from softirq context and interrupts
5920 * should be enabled.
5921 *
5922 * Return values (usually ignored):
5923 * NET_RX_SUCCESS: no congestion
5924 * NET_RX_DROP: packet was dropped
5925 */
5926int netif_receive_skb(struct sk_buff *skb)
5927{
5928 int ret;
5929
5930 trace_netif_receive_skb_entry(skb);
5931
5932 ret = netif_receive_skb_internal(skb);
5933 trace_netif_receive_skb_exit(ret);
5934
5935 return ret;
5936}
5937EXPORT_SYMBOL(netif_receive_skb);
5938
5939/**
5940 * netif_receive_skb_list - process many receive buffers from network
5941 * @head: list of skbs to process.
5942 *
5943 * Since return value of netif_receive_skb() is normally ignored, and
5944 * wouldn't be meaningful for a list, this function returns void.
5945 *
5946 * This function may only be called from softirq context and interrupts
5947 * should be enabled.
5948 */
5949void netif_receive_skb_list(struct list_head *head)
5950{
5951 struct sk_buff *skb;
5952
5953 if (list_empty(head))
5954 return;
5955 if (trace_netif_receive_skb_list_entry_enabled()) {
5956 list_for_each_entry(skb, head, list)
5957 trace_netif_receive_skb_list_entry(skb);
5958 }
5959 netif_receive_skb_list_internal(head);
5960 trace_netif_receive_skb_list_exit(0);
5961}
5962EXPORT_SYMBOL(netif_receive_skb_list);
5963
5964static DEFINE_PER_CPU(struct work_struct, flush_works);
5965
5966/* Network device is going away, flush any packets still pending */
5967static void flush_backlog(struct work_struct *work)
5968{
5969 struct sk_buff *skb, *tmp;
5970 struct softnet_data *sd;
5971
5972 local_bh_disable();
5973 sd = this_cpu_ptr(&softnet_data);
5974
5975 backlog_lock_irq_disable(sd);
5976 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5977 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5978 __skb_unlink(skb, &sd->input_pkt_queue);
5979 dev_kfree_skb_irq(skb);
5980 rps_input_queue_head_incr(sd);
5981 }
5982 }
5983 backlog_unlock_irq_enable(sd);
5984
5985 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5986 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5987 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5988 __skb_unlink(skb, &sd->process_queue);
5989 kfree_skb(skb);
5990 rps_input_queue_head_incr(sd);
5991 }
5992 }
5993 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5994 local_bh_enable();
5995}
5996
5997static bool flush_required(int cpu)
5998{
5999#if IS_ENABLED(CONFIG_RPS)
6000 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6001 bool do_flush;
6002
6003 backlog_lock_irq_disable(sd);
6004
6005 /* as insertion into process_queue happens with the rps lock held,
6006 * process_queue access may race only with dequeue
6007 */
6008 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6009 !skb_queue_empty_lockless(&sd->process_queue);
6010 backlog_unlock_irq_enable(sd);
6011
6012 return do_flush;
6013#endif
6014 /* without RPS we can't safely check input_pkt_queue: during a
6015 * concurrent remote skb_queue_splice() we can detect as empty both
6016 * input_pkt_queue and process_queue even if the latter could end-up
6017 * containing a lot of packets.
6018 */
6019 return true;
6020}
6021
6022static void flush_all_backlogs(void)
6023{
6024 static cpumask_t flush_cpus;
6025 unsigned int cpu;
6026
6027 /* since we are under rtnl lock protection we can use static data
6028 * for the cpumask and avoid allocating on stack the possibly
6029 * large mask
6030 */
6031 ASSERT_RTNL();
6032
6033 cpus_read_lock();
6034
6035 cpumask_clear(&flush_cpus);
6036 for_each_online_cpu(cpu) {
6037 if (flush_required(cpu)) {
6038 queue_work_on(cpu, system_highpri_wq,
6039 per_cpu_ptr(&flush_works, cpu));
6040 cpumask_set_cpu(cpu, &flush_cpus);
6041 }
6042 }
6043
6044 /* we can have in flight packet[s] on the cpus we are not flushing,
6045 * synchronize_net() in unregister_netdevice_many() will take care of
6046 * them
6047 */
6048 for_each_cpu(cpu, &flush_cpus)
6049 flush_work(per_cpu_ptr(&flush_works, cpu));
6050
6051 cpus_read_unlock();
6052}
6053
6054static void net_rps_send_ipi(struct softnet_data *remsd)
6055{
6056#ifdef CONFIG_RPS
6057 while (remsd) {
6058 struct softnet_data *next = remsd->rps_ipi_next;
6059
6060 if (cpu_online(remsd->cpu))
6061 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6062 remsd = next;
6063 }
6064#endif
6065}
6066
6067/*
6068 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6069 * Note: called with local irq disabled, but exits with local irq enabled.
6070 */
6071static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6072{
6073#ifdef CONFIG_RPS
6074 struct softnet_data *remsd = sd->rps_ipi_list;
6075
6076 if (!use_backlog_threads() && remsd) {
6077 sd->rps_ipi_list = NULL;
6078
6079 local_irq_enable();
6080
6081 /* Send pending IPI's to kick RPS processing on remote cpus. */
6082 net_rps_send_ipi(remsd);
6083 } else
6084#endif
6085 local_irq_enable();
6086}
6087
6088static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6089{
6090#ifdef CONFIG_RPS
6091 return !use_backlog_threads() && sd->rps_ipi_list;
6092#else
6093 return false;
6094#endif
6095}
6096
6097static int process_backlog(struct napi_struct *napi, int quota)
6098{
6099 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6100 bool again = true;
6101 int work = 0;
6102
6103 /* Check if we have pending ipi, its better to send them now,
6104 * not waiting net_rx_action() end.
6105 */
6106 if (sd_has_rps_ipi_waiting(sd)) {
6107 local_irq_disable();
6108 net_rps_action_and_irq_enable(sd);
6109 }
6110
6111 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6112 while (again) {
6113 struct sk_buff *skb;
6114
6115 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6116 while ((skb = __skb_dequeue(&sd->process_queue))) {
6117 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6118 rcu_read_lock();
6119 __netif_receive_skb(skb);
6120 rcu_read_unlock();
6121 if (++work >= quota) {
6122 rps_input_queue_head_add(sd, work);
6123 return work;
6124 }
6125
6126 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6127 }
6128 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6129
6130 backlog_lock_irq_disable(sd);
6131 if (skb_queue_empty(&sd->input_pkt_queue)) {
6132 /*
6133 * Inline a custom version of __napi_complete().
6134 * only current cpu owns and manipulates this napi,
6135 * and NAPI_STATE_SCHED is the only possible flag set
6136 * on backlog.
6137 * We can use a plain write instead of clear_bit(),
6138 * and we dont need an smp_mb() memory barrier.
6139 */
6140 napi->state &= NAPIF_STATE_THREADED;
6141 again = false;
6142 } else {
6143 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6144 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6145 &sd->process_queue);
6146 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6147 }
6148 backlog_unlock_irq_enable(sd);
6149 }
6150
6151 if (work)
6152 rps_input_queue_head_add(sd, work);
6153 return work;
6154}
6155
6156/**
6157 * __napi_schedule - schedule for receive
6158 * @n: entry to schedule
6159 *
6160 * The entry's receive function will be scheduled to run.
6161 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6162 */
6163void __napi_schedule(struct napi_struct *n)
6164{
6165 unsigned long flags;
6166
6167 local_irq_save(flags);
6168 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6169 local_irq_restore(flags);
6170}
6171EXPORT_SYMBOL(__napi_schedule);
6172
6173/**
6174 * napi_schedule_prep - check if napi can be scheduled
6175 * @n: napi context
6176 *
6177 * Test if NAPI routine is already running, and if not mark
6178 * it as running. This is used as a condition variable to
6179 * insure only one NAPI poll instance runs. We also make
6180 * sure there is no pending NAPI disable.
6181 */
6182bool napi_schedule_prep(struct napi_struct *n)
6183{
6184 unsigned long new, val = READ_ONCE(n->state);
6185
6186 do {
6187 if (unlikely(val & NAPIF_STATE_DISABLE))
6188 return false;
6189 new = val | NAPIF_STATE_SCHED;
6190
6191 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6192 * This was suggested by Alexander Duyck, as compiler
6193 * emits better code than :
6194 * if (val & NAPIF_STATE_SCHED)
6195 * new |= NAPIF_STATE_MISSED;
6196 */
6197 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6198 NAPIF_STATE_MISSED;
6199 } while (!try_cmpxchg(&n->state, &val, new));
6200
6201 return !(val & NAPIF_STATE_SCHED);
6202}
6203EXPORT_SYMBOL(napi_schedule_prep);
6204
6205/**
6206 * __napi_schedule_irqoff - schedule for receive
6207 * @n: entry to schedule
6208 *
6209 * Variant of __napi_schedule() assuming hard irqs are masked.
6210 *
6211 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6212 * because the interrupt disabled assumption might not be true
6213 * due to force-threaded interrupts and spinlock substitution.
6214 */
6215void __napi_schedule_irqoff(struct napi_struct *n)
6216{
6217 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6218 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6219 else
6220 __napi_schedule(n);
6221}
6222EXPORT_SYMBOL(__napi_schedule_irqoff);
6223
6224bool napi_complete_done(struct napi_struct *n, int work_done)
6225{
6226 unsigned long flags, val, new, timeout = 0;
6227 bool ret = true;
6228
6229 /*
6230 * 1) Don't let napi dequeue from the cpu poll list
6231 * just in case its running on a different cpu.
6232 * 2) If we are busy polling, do nothing here, we have
6233 * the guarantee we will be called later.
6234 */
6235 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6236 NAPIF_STATE_IN_BUSY_POLL)))
6237 return false;
6238
6239 if (work_done) {
6240 if (n->gro_bitmask)
6241 timeout = napi_get_gro_flush_timeout(n);
6242 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6243 }
6244 if (n->defer_hard_irqs_count > 0) {
6245 n->defer_hard_irqs_count--;
6246 timeout = napi_get_gro_flush_timeout(n);
6247 if (timeout)
6248 ret = false;
6249 }
6250 if (n->gro_bitmask) {
6251 /* When the NAPI instance uses a timeout and keeps postponing
6252 * it, we need to bound somehow the time packets are kept in
6253 * the GRO layer
6254 */
6255 napi_gro_flush(n, !!timeout);
6256 }
6257
6258 gro_normal_list(n);
6259
6260 if (unlikely(!list_empty(&n->poll_list))) {
6261 /* If n->poll_list is not empty, we need to mask irqs */
6262 local_irq_save(flags);
6263 list_del_init(&n->poll_list);
6264 local_irq_restore(flags);
6265 }
6266 WRITE_ONCE(n->list_owner, -1);
6267
6268 val = READ_ONCE(n->state);
6269 do {
6270 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6271
6272 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6273 NAPIF_STATE_SCHED_THREADED |
6274 NAPIF_STATE_PREFER_BUSY_POLL);
6275
6276 /* If STATE_MISSED was set, leave STATE_SCHED set,
6277 * because we will call napi->poll() one more time.
6278 * This C code was suggested by Alexander Duyck to help gcc.
6279 */
6280 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6281 NAPIF_STATE_SCHED;
6282 } while (!try_cmpxchg(&n->state, &val, new));
6283
6284 if (unlikely(val & NAPIF_STATE_MISSED)) {
6285 __napi_schedule(n);
6286 return false;
6287 }
6288
6289 if (timeout)
6290 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6291 HRTIMER_MODE_REL_PINNED);
6292 return ret;
6293}
6294EXPORT_SYMBOL(napi_complete_done);
6295
6296/* must be called under rcu_read_lock(), as we dont take a reference */
6297struct napi_struct *napi_by_id(unsigned int napi_id)
6298{
6299 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6300 struct napi_struct *napi;
6301
6302 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6303 if (napi->napi_id == napi_id)
6304 return napi;
6305
6306 return NULL;
6307}
6308
6309static void skb_defer_free_flush(struct softnet_data *sd)
6310{
6311 struct sk_buff *skb, *next;
6312
6313 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6314 if (!READ_ONCE(sd->defer_list))
6315 return;
6316
6317 spin_lock(&sd->defer_lock);
6318 skb = sd->defer_list;
6319 sd->defer_list = NULL;
6320 sd->defer_count = 0;
6321 spin_unlock(&sd->defer_lock);
6322
6323 while (skb != NULL) {
6324 next = skb->next;
6325 napi_consume_skb(skb, 1);
6326 skb = next;
6327 }
6328}
6329
6330#if defined(CONFIG_NET_RX_BUSY_POLL)
6331
6332static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6333{
6334 if (!skip_schedule) {
6335 gro_normal_list(napi);
6336 __napi_schedule(napi);
6337 return;
6338 }
6339
6340 if (napi->gro_bitmask) {
6341 /* flush too old packets
6342 * If HZ < 1000, flush all packets.
6343 */
6344 napi_gro_flush(napi, HZ >= 1000);
6345 }
6346
6347 gro_normal_list(napi);
6348 clear_bit(NAPI_STATE_SCHED, &napi->state);
6349}
6350
6351enum {
6352 NAPI_F_PREFER_BUSY_POLL = 1,
6353 NAPI_F_END_ON_RESCHED = 2,
6354};
6355
6356static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6357 unsigned flags, u16 budget)
6358{
6359 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6360 bool skip_schedule = false;
6361 unsigned long timeout;
6362 int rc;
6363
6364 /* Busy polling means there is a high chance device driver hard irq
6365 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6366 * set in napi_schedule_prep().
6367 * Since we are about to call napi->poll() once more, we can safely
6368 * clear NAPI_STATE_MISSED.
6369 *
6370 * Note: x86 could use a single "lock and ..." instruction
6371 * to perform these two clear_bit()
6372 */
6373 clear_bit(NAPI_STATE_MISSED, &napi->state);
6374 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6375
6376 local_bh_disable();
6377 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6378
6379 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6380 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6381 timeout = napi_get_gro_flush_timeout(napi);
6382 if (napi->defer_hard_irqs_count && timeout) {
6383 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6384 skip_schedule = true;
6385 }
6386 }
6387
6388 /* All we really want here is to re-enable device interrupts.
6389 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6390 */
6391 rc = napi->poll(napi, budget);
6392 /* We can't gro_normal_list() here, because napi->poll() might have
6393 * rearmed the napi (napi_complete_done()) in which case it could
6394 * already be running on another CPU.
6395 */
6396 trace_napi_poll(napi, rc, budget);
6397 netpoll_poll_unlock(have_poll_lock);
6398 if (rc == budget)
6399 __busy_poll_stop(napi, skip_schedule);
6400 bpf_net_ctx_clear(bpf_net_ctx);
6401 local_bh_enable();
6402}
6403
6404static void __napi_busy_loop(unsigned int napi_id,
6405 bool (*loop_end)(void *, unsigned long),
6406 void *loop_end_arg, unsigned flags, u16 budget)
6407{
6408 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6409 int (*napi_poll)(struct napi_struct *napi, int budget);
6410 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6411 void *have_poll_lock = NULL;
6412 struct napi_struct *napi;
6413
6414 WARN_ON_ONCE(!rcu_read_lock_held());
6415
6416restart:
6417 napi_poll = NULL;
6418
6419 napi = napi_by_id(napi_id);
6420 if (!napi)
6421 return;
6422
6423 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6424 preempt_disable();
6425 for (;;) {
6426 int work = 0;
6427
6428 local_bh_disable();
6429 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6430 if (!napi_poll) {
6431 unsigned long val = READ_ONCE(napi->state);
6432
6433 /* If multiple threads are competing for this napi,
6434 * we avoid dirtying napi->state as much as we can.
6435 */
6436 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6437 NAPIF_STATE_IN_BUSY_POLL)) {
6438 if (flags & NAPI_F_PREFER_BUSY_POLL)
6439 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6440 goto count;
6441 }
6442 if (cmpxchg(&napi->state, val,
6443 val | NAPIF_STATE_IN_BUSY_POLL |
6444 NAPIF_STATE_SCHED) != val) {
6445 if (flags & NAPI_F_PREFER_BUSY_POLL)
6446 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6447 goto count;
6448 }
6449 have_poll_lock = netpoll_poll_lock(napi);
6450 napi_poll = napi->poll;
6451 }
6452 work = napi_poll(napi, budget);
6453 trace_napi_poll(napi, work, budget);
6454 gro_normal_list(napi);
6455count:
6456 if (work > 0)
6457 __NET_ADD_STATS(dev_net(napi->dev),
6458 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6459 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6460 bpf_net_ctx_clear(bpf_net_ctx);
6461 local_bh_enable();
6462
6463 if (!loop_end || loop_end(loop_end_arg, start_time))
6464 break;
6465
6466 if (unlikely(need_resched())) {
6467 if (flags & NAPI_F_END_ON_RESCHED)
6468 break;
6469 if (napi_poll)
6470 busy_poll_stop(napi, have_poll_lock, flags, budget);
6471 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6472 preempt_enable();
6473 rcu_read_unlock();
6474 cond_resched();
6475 rcu_read_lock();
6476 if (loop_end(loop_end_arg, start_time))
6477 return;
6478 goto restart;
6479 }
6480 cpu_relax();
6481 }
6482 if (napi_poll)
6483 busy_poll_stop(napi, have_poll_lock, flags, budget);
6484 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6485 preempt_enable();
6486}
6487
6488void napi_busy_loop_rcu(unsigned int napi_id,
6489 bool (*loop_end)(void *, unsigned long),
6490 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6491{
6492 unsigned flags = NAPI_F_END_ON_RESCHED;
6493
6494 if (prefer_busy_poll)
6495 flags |= NAPI_F_PREFER_BUSY_POLL;
6496
6497 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6498}
6499
6500void napi_busy_loop(unsigned int napi_id,
6501 bool (*loop_end)(void *, unsigned long),
6502 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6503{
6504 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6505
6506 rcu_read_lock();
6507 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6508 rcu_read_unlock();
6509}
6510EXPORT_SYMBOL(napi_busy_loop);
6511
6512void napi_suspend_irqs(unsigned int napi_id)
6513{
6514 struct napi_struct *napi;
6515
6516 rcu_read_lock();
6517 napi = napi_by_id(napi_id);
6518 if (napi) {
6519 unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6520
6521 if (timeout)
6522 hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6523 HRTIMER_MODE_REL_PINNED);
6524 }
6525 rcu_read_unlock();
6526}
6527
6528void napi_resume_irqs(unsigned int napi_id)
6529{
6530 struct napi_struct *napi;
6531
6532 rcu_read_lock();
6533 napi = napi_by_id(napi_id);
6534 if (napi) {
6535 /* If irq_suspend_timeout is set to 0 between the call to
6536 * napi_suspend_irqs and now, the original value still
6537 * determines the safety timeout as intended and napi_watchdog
6538 * will resume irq processing.
6539 */
6540 if (napi_get_irq_suspend_timeout(napi)) {
6541 local_bh_disable();
6542 napi_schedule(napi);
6543 local_bh_enable();
6544 }
6545 }
6546 rcu_read_unlock();
6547}
6548
6549#endif /* CONFIG_NET_RX_BUSY_POLL */
6550
6551static void __napi_hash_add_with_id(struct napi_struct *napi,
6552 unsigned int napi_id)
6553{
6554 napi->napi_id = napi_id;
6555 hlist_add_head_rcu(&napi->napi_hash_node,
6556 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6557}
6558
6559static void napi_hash_add_with_id(struct napi_struct *napi,
6560 unsigned int napi_id)
6561{
6562 unsigned long flags;
6563
6564 spin_lock_irqsave(&napi_hash_lock, flags);
6565 WARN_ON_ONCE(napi_by_id(napi_id));
6566 __napi_hash_add_with_id(napi, napi_id);
6567 spin_unlock_irqrestore(&napi_hash_lock, flags);
6568}
6569
6570static void napi_hash_add(struct napi_struct *napi)
6571{
6572 unsigned long flags;
6573
6574 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6575 return;
6576
6577 spin_lock_irqsave(&napi_hash_lock, flags);
6578
6579 /* 0..NR_CPUS range is reserved for sender_cpu use */
6580 do {
6581 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6582 napi_gen_id = MIN_NAPI_ID;
6583 } while (napi_by_id(napi_gen_id));
6584
6585 __napi_hash_add_with_id(napi, napi_gen_id);
6586
6587 spin_unlock_irqrestore(&napi_hash_lock, flags);
6588}
6589
6590/* Warning : caller is responsible to make sure rcu grace period
6591 * is respected before freeing memory containing @napi
6592 */
6593static void napi_hash_del(struct napi_struct *napi)
6594{
6595 unsigned long flags;
6596
6597 spin_lock_irqsave(&napi_hash_lock, flags);
6598
6599 hlist_del_init_rcu(&napi->napi_hash_node);
6600
6601 spin_unlock_irqrestore(&napi_hash_lock, flags);
6602}
6603
6604static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6605{
6606 struct napi_struct *napi;
6607
6608 napi = container_of(timer, struct napi_struct, timer);
6609
6610 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6611 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6612 */
6613 if (!napi_disable_pending(napi) &&
6614 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6615 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6616 __napi_schedule_irqoff(napi);
6617 }
6618
6619 return HRTIMER_NORESTART;
6620}
6621
6622static void init_gro_hash(struct napi_struct *napi)
6623{
6624 int i;
6625
6626 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6627 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6628 napi->gro_hash[i].count = 0;
6629 }
6630 napi->gro_bitmask = 0;
6631}
6632
6633int dev_set_threaded(struct net_device *dev, bool threaded)
6634{
6635 struct napi_struct *napi;
6636 int err = 0;
6637
6638 if (dev->threaded == threaded)
6639 return 0;
6640
6641 if (threaded) {
6642 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6643 if (!napi->thread) {
6644 err = napi_kthread_create(napi);
6645 if (err) {
6646 threaded = false;
6647 break;
6648 }
6649 }
6650 }
6651 }
6652
6653 WRITE_ONCE(dev->threaded, threaded);
6654
6655 /* Make sure kthread is created before THREADED bit
6656 * is set.
6657 */
6658 smp_mb__before_atomic();
6659
6660 /* Setting/unsetting threaded mode on a napi might not immediately
6661 * take effect, if the current napi instance is actively being
6662 * polled. In this case, the switch between threaded mode and
6663 * softirq mode will happen in the next round of napi_schedule().
6664 * This should not cause hiccups/stalls to the live traffic.
6665 */
6666 list_for_each_entry(napi, &dev->napi_list, dev_list)
6667 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6668
6669 return err;
6670}
6671EXPORT_SYMBOL(dev_set_threaded);
6672
6673/**
6674 * netif_queue_set_napi - Associate queue with the napi
6675 * @dev: device to which NAPI and queue belong
6676 * @queue_index: Index of queue
6677 * @type: queue type as RX or TX
6678 * @napi: NAPI context, pass NULL to clear previously set NAPI
6679 *
6680 * Set queue with its corresponding napi context. This should be done after
6681 * registering the NAPI handler for the queue-vector and the queues have been
6682 * mapped to the corresponding interrupt vector.
6683 */
6684void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6685 enum netdev_queue_type type, struct napi_struct *napi)
6686{
6687 struct netdev_rx_queue *rxq;
6688 struct netdev_queue *txq;
6689
6690 if (WARN_ON_ONCE(napi && !napi->dev))
6691 return;
6692 if (dev->reg_state >= NETREG_REGISTERED)
6693 ASSERT_RTNL();
6694
6695 switch (type) {
6696 case NETDEV_QUEUE_TYPE_RX:
6697 rxq = __netif_get_rx_queue(dev, queue_index);
6698 rxq->napi = napi;
6699 return;
6700 case NETDEV_QUEUE_TYPE_TX:
6701 txq = netdev_get_tx_queue(dev, queue_index);
6702 txq->napi = napi;
6703 return;
6704 default:
6705 return;
6706 }
6707}
6708EXPORT_SYMBOL(netif_queue_set_napi);
6709
6710static void napi_restore_config(struct napi_struct *n)
6711{
6712 n->defer_hard_irqs = n->config->defer_hard_irqs;
6713 n->gro_flush_timeout = n->config->gro_flush_timeout;
6714 n->irq_suspend_timeout = n->config->irq_suspend_timeout;
6715 /* a NAPI ID might be stored in the config, if so use it. if not, use
6716 * napi_hash_add to generate one for us. It will be saved to the config
6717 * in napi_disable.
6718 */
6719 if (n->config->napi_id)
6720 napi_hash_add_with_id(n, n->config->napi_id);
6721 else
6722 napi_hash_add(n);
6723}
6724
6725static void napi_save_config(struct napi_struct *n)
6726{
6727 n->config->defer_hard_irqs = n->defer_hard_irqs;
6728 n->config->gro_flush_timeout = n->gro_flush_timeout;
6729 n->config->irq_suspend_timeout = n->irq_suspend_timeout;
6730 n->config->napi_id = n->napi_id;
6731 napi_hash_del(n);
6732}
6733
6734void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6735 int (*poll)(struct napi_struct *, int), int weight)
6736{
6737 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6738 return;
6739
6740 INIT_LIST_HEAD(&napi->poll_list);
6741 INIT_HLIST_NODE(&napi->napi_hash_node);
6742 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6743 napi->timer.function = napi_watchdog;
6744 init_gro_hash(napi);
6745 napi->skb = NULL;
6746 INIT_LIST_HEAD(&napi->rx_list);
6747 napi->rx_count = 0;
6748 napi->poll = poll;
6749 if (weight > NAPI_POLL_WEIGHT)
6750 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6751 weight);
6752 napi->weight = weight;
6753 napi->dev = dev;
6754#ifdef CONFIG_NETPOLL
6755 napi->poll_owner = -1;
6756#endif
6757 napi->list_owner = -1;
6758 set_bit(NAPI_STATE_SCHED, &napi->state);
6759 set_bit(NAPI_STATE_NPSVC, &napi->state);
6760 list_add_rcu(&napi->dev_list, &dev->napi_list);
6761
6762 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
6763 * configuration will be loaded in napi_enable
6764 */
6765 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
6766 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
6767
6768 napi_get_frags_check(napi);
6769 /* Create kthread for this napi if dev->threaded is set.
6770 * Clear dev->threaded if kthread creation failed so that
6771 * threaded mode will not be enabled in napi_enable().
6772 */
6773 if (dev->threaded && napi_kthread_create(napi))
6774 dev->threaded = false;
6775 netif_napi_set_irq(napi, -1);
6776}
6777EXPORT_SYMBOL(netif_napi_add_weight);
6778
6779void napi_disable(struct napi_struct *n)
6780{
6781 unsigned long val, new;
6782
6783 might_sleep();
6784 set_bit(NAPI_STATE_DISABLE, &n->state);
6785
6786 val = READ_ONCE(n->state);
6787 do {
6788 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6789 usleep_range(20, 200);
6790 val = READ_ONCE(n->state);
6791 }
6792
6793 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6794 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6795 } while (!try_cmpxchg(&n->state, &val, new));
6796
6797 hrtimer_cancel(&n->timer);
6798
6799 if (n->config)
6800 napi_save_config(n);
6801 else
6802 napi_hash_del(n);
6803
6804 clear_bit(NAPI_STATE_DISABLE, &n->state);
6805}
6806EXPORT_SYMBOL(napi_disable);
6807
6808/**
6809 * napi_enable - enable NAPI scheduling
6810 * @n: NAPI context
6811 *
6812 * Resume NAPI from being scheduled on this context.
6813 * Must be paired with napi_disable.
6814 */
6815void napi_enable(struct napi_struct *n)
6816{
6817 unsigned long new, val = READ_ONCE(n->state);
6818
6819 if (n->config)
6820 napi_restore_config(n);
6821 else
6822 napi_hash_add(n);
6823
6824 do {
6825 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6826
6827 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6828 if (n->dev->threaded && n->thread)
6829 new |= NAPIF_STATE_THREADED;
6830 } while (!try_cmpxchg(&n->state, &val, new));
6831}
6832EXPORT_SYMBOL(napi_enable);
6833
6834static void flush_gro_hash(struct napi_struct *napi)
6835{
6836 int i;
6837
6838 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6839 struct sk_buff *skb, *n;
6840
6841 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6842 kfree_skb(skb);
6843 napi->gro_hash[i].count = 0;
6844 }
6845}
6846
6847/* Must be called in process context */
6848void __netif_napi_del(struct napi_struct *napi)
6849{
6850 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6851 return;
6852
6853 if (napi->config) {
6854 napi->index = -1;
6855 napi->config = NULL;
6856 }
6857
6858 list_del_rcu(&napi->dev_list);
6859 napi_free_frags(napi);
6860
6861 flush_gro_hash(napi);
6862 napi->gro_bitmask = 0;
6863
6864 if (napi->thread) {
6865 kthread_stop(napi->thread);
6866 napi->thread = NULL;
6867 }
6868}
6869EXPORT_SYMBOL(__netif_napi_del);
6870
6871static int __napi_poll(struct napi_struct *n, bool *repoll)
6872{
6873 int work, weight;
6874
6875 weight = n->weight;
6876
6877 /* This NAPI_STATE_SCHED test is for avoiding a race
6878 * with netpoll's poll_napi(). Only the entity which
6879 * obtains the lock and sees NAPI_STATE_SCHED set will
6880 * actually make the ->poll() call. Therefore we avoid
6881 * accidentally calling ->poll() when NAPI is not scheduled.
6882 */
6883 work = 0;
6884 if (napi_is_scheduled(n)) {
6885 work = n->poll(n, weight);
6886 trace_napi_poll(n, work, weight);
6887
6888 xdp_do_check_flushed(n);
6889 }
6890
6891 if (unlikely(work > weight))
6892 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6893 n->poll, work, weight);
6894
6895 if (likely(work < weight))
6896 return work;
6897
6898 /* Drivers must not modify the NAPI state if they
6899 * consume the entire weight. In such cases this code
6900 * still "owns" the NAPI instance and therefore can
6901 * move the instance around on the list at-will.
6902 */
6903 if (unlikely(napi_disable_pending(n))) {
6904 napi_complete(n);
6905 return work;
6906 }
6907
6908 /* The NAPI context has more processing work, but busy-polling
6909 * is preferred. Exit early.
6910 */
6911 if (napi_prefer_busy_poll(n)) {
6912 if (napi_complete_done(n, work)) {
6913 /* If timeout is not set, we need to make sure
6914 * that the NAPI is re-scheduled.
6915 */
6916 napi_schedule(n);
6917 }
6918 return work;
6919 }
6920
6921 if (n->gro_bitmask) {
6922 /* flush too old packets
6923 * If HZ < 1000, flush all packets.
6924 */
6925 napi_gro_flush(n, HZ >= 1000);
6926 }
6927
6928 gro_normal_list(n);
6929
6930 /* Some drivers may have called napi_schedule
6931 * prior to exhausting their budget.
6932 */
6933 if (unlikely(!list_empty(&n->poll_list))) {
6934 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6935 n->dev ? n->dev->name : "backlog");
6936 return work;
6937 }
6938
6939 *repoll = true;
6940
6941 return work;
6942}
6943
6944static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6945{
6946 bool do_repoll = false;
6947 void *have;
6948 int work;
6949
6950 list_del_init(&n->poll_list);
6951
6952 have = netpoll_poll_lock(n);
6953
6954 work = __napi_poll(n, &do_repoll);
6955
6956 if (do_repoll)
6957 list_add_tail(&n->poll_list, repoll);
6958
6959 netpoll_poll_unlock(have);
6960
6961 return work;
6962}
6963
6964static int napi_thread_wait(struct napi_struct *napi)
6965{
6966 set_current_state(TASK_INTERRUPTIBLE);
6967
6968 while (!kthread_should_stop()) {
6969 /* Testing SCHED_THREADED bit here to make sure the current
6970 * kthread owns this napi and could poll on this napi.
6971 * Testing SCHED bit is not enough because SCHED bit might be
6972 * set by some other busy poll thread or by napi_disable().
6973 */
6974 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6975 WARN_ON(!list_empty(&napi->poll_list));
6976 __set_current_state(TASK_RUNNING);
6977 return 0;
6978 }
6979
6980 schedule();
6981 set_current_state(TASK_INTERRUPTIBLE);
6982 }
6983 __set_current_state(TASK_RUNNING);
6984
6985 return -1;
6986}
6987
6988static void napi_threaded_poll_loop(struct napi_struct *napi)
6989{
6990 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6991 struct softnet_data *sd;
6992 unsigned long last_qs = jiffies;
6993
6994 for (;;) {
6995 bool repoll = false;
6996 void *have;
6997
6998 local_bh_disable();
6999 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7000
7001 sd = this_cpu_ptr(&softnet_data);
7002 sd->in_napi_threaded_poll = true;
7003
7004 have = netpoll_poll_lock(napi);
7005 __napi_poll(napi, &repoll);
7006 netpoll_poll_unlock(have);
7007
7008 sd->in_napi_threaded_poll = false;
7009 barrier();
7010
7011 if (sd_has_rps_ipi_waiting(sd)) {
7012 local_irq_disable();
7013 net_rps_action_and_irq_enable(sd);
7014 }
7015 skb_defer_free_flush(sd);
7016 bpf_net_ctx_clear(bpf_net_ctx);
7017 local_bh_enable();
7018
7019 if (!repoll)
7020 break;
7021
7022 rcu_softirq_qs_periodic(last_qs);
7023 cond_resched();
7024 }
7025}
7026
7027static int napi_threaded_poll(void *data)
7028{
7029 struct napi_struct *napi = data;
7030
7031 while (!napi_thread_wait(napi))
7032 napi_threaded_poll_loop(napi);
7033
7034 return 0;
7035}
7036
7037static __latent_entropy void net_rx_action(void)
7038{
7039 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7040 unsigned long time_limit = jiffies +
7041 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7042 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7043 int budget = READ_ONCE(net_hotdata.netdev_budget);
7044 LIST_HEAD(list);
7045 LIST_HEAD(repoll);
7046
7047 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7048start:
7049 sd->in_net_rx_action = true;
7050 local_irq_disable();
7051 list_splice_init(&sd->poll_list, &list);
7052 local_irq_enable();
7053
7054 for (;;) {
7055 struct napi_struct *n;
7056
7057 skb_defer_free_flush(sd);
7058
7059 if (list_empty(&list)) {
7060 if (list_empty(&repoll)) {
7061 sd->in_net_rx_action = false;
7062 barrier();
7063 /* We need to check if ____napi_schedule()
7064 * had refilled poll_list while
7065 * sd->in_net_rx_action was true.
7066 */
7067 if (!list_empty(&sd->poll_list))
7068 goto start;
7069 if (!sd_has_rps_ipi_waiting(sd))
7070 goto end;
7071 }
7072 break;
7073 }
7074
7075 n = list_first_entry(&list, struct napi_struct, poll_list);
7076 budget -= napi_poll(n, &repoll);
7077
7078 /* If softirq window is exhausted then punt.
7079 * Allow this to run for 2 jiffies since which will allow
7080 * an average latency of 1.5/HZ.
7081 */
7082 if (unlikely(budget <= 0 ||
7083 time_after_eq(jiffies, time_limit))) {
7084 sd->time_squeeze++;
7085 break;
7086 }
7087 }
7088
7089 local_irq_disable();
7090
7091 list_splice_tail_init(&sd->poll_list, &list);
7092 list_splice_tail(&repoll, &list);
7093 list_splice(&list, &sd->poll_list);
7094 if (!list_empty(&sd->poll_list))
7095 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7096 else
7097 sd->in_net_rx_action = false;
7098
7099 net_rps_action_and_irq_enable(sd);
7100end:
7101 bpf_net_ctx_clear(bpf_net_ctx);
7102}
7103
7104struct netdev_adjacent {
7105 struct net_device *dev;
7106 netdevice_tracker dev_tracker;
7107
7108 /* upper master flag, there can only be one master device per list */
7109 bool master;
7110
7111 /* lookup ignore flag */
7112 bool ignore;
7113
7114 /* counter for the number of times this device was added to us */
7115 u16 ref_nr;
7116
7117 /* private field for the users */
7118 void *private;
7119
7120 struct list_head list;
7121 struct rcu_head rcu;
7122};
7123
7124static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7125 struct list_head *adj_list)
7126{
7127 struct netdev_adjacent *adj;
7128
7129 list_for_each_entry(adj, adj_list, list) {
7130 if (adj->dev == adj_dev)
7131 return adj;
7132 }
7133 return NULL;
7134}
7135
7136static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7137 struct netdev_nested_priv *priv)
7138{
7139 struct net_device *dev = (struct net_device *)priv->data;
7140
7141 return upper_dev == dev;
7142}
7143
7144/**
7145 * netdev_has_upper_dev - Check if device is linked to an upper device
7146 * @dev: device
7147 * @upper_dev: upper device to check
7148 *
7149 * Find out if a device is linked to specified upper device and return true
7150 * in case it is. Note that this checks only immediate upper device,
7151 * not through a complete stack of devices. The caller must hold the RTNL lock.
7152 */
7153bool netdev_has_upper_dev(struct net_device *dev,
7154 struct net_device *upper_dev)
7155{
7156 struct netdev_nested_priv priv = {
7157 .data = (void *)upper_dev,
7158 };
7159
7160 ASSERT_RTNL();
7161
7162 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7163 &priv);
7164}
7165EXPORT_SYMBOL(netdev_has_upper_dev);
7166
7167/**
7168 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7169 * @dev: device
7170 * @upper_dev: upper device to check
7171 *
7172 * Find out if a device is linked to specified upper device and return true
7173 * in case it is. Note that this checks the entire upper device chain.
7174 * The caller must hold rcu lock.
7175 */
7176
7177bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7178 struct net_device *upper_dev)
7179{
7180 struct netdev_nested_priv priv = {
7181 .data = (void *)upper_dev,
7182 };
7183
7184 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7185 &priv);
7186}
7187EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7188
7189/**
7190 * netdev_has_any_upper_dev - Check if device is linked to some device
7191 * @dev: device
7192 *
7193 * Find out if a device is linked to an upper device and return true in case
7194 * it is. The caller must hold the RTNL lock.
7195 */
7196bool netdev_has_any_upper_dev(struct net_device *dev)
7197{
7198 ASSERT_RTNL();
7199
7200 return !list_empty(&dev->adj_list.upper);
7201}
7202EXPORT_SYMBOL(netdev_has_any_upper_dev);
7203
7204/**
7205 * netdev_master_upper_dev_get - Get master upper device
7206 * @dev: device
7207 *
7208 * Find a master upper device and return pointer to it or NULL in case
7209 * it's not there. The caller must hold the RTNL lock.
7210 */
7211struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7212{
7213 struct netdev_adjacent *upper;
7214
7215 ASSERT_RTNL();
7216
7217 if (list_empty(&dev->adj_list.upper))
7218 return NULL;
7219
7220 upper = list_first_entry(&dev->adj_list.upper,
7221 struct netdev_adjacent, list);
7222 if (likely(upper->master))
7223 return upper->dev;
7224 return NULL;
7225}
7226EXPORT_SYMBOL(netdev_master_upper_dev_get);
7227
7228static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7229{
7230 struct netdev_adjacent *upper;
7231
7232 ASSERT_RTNL();
7233
7234 if (list_empty(&dev->adj_list.upper))
7235 return NULL;
7236
7237 upper = list_first_entry(&dev->adj_list.upper,
7238 struct netdev_adjacent, list);
7239 if (likely(upper->master) && !upper->ignore)
7240 return upper->dev;
7241 return NULL;
7242}
7243
7244/**
7245 * netdev_has_any_lower_dev - Check if device is linked to some device
7246 * @dev: device
7247 *
7248 * Find out if a device is linked to a lower device and return true in case
7249 * it is. The caller must hold the RTNL lock.
7250 */
7251static bool netdev_has_any_lower_dev(struct net_device *dev)
7252{
7253 ASSERT_RTNL();
7254
7255 return !list_empty(&dev->adj_list.lower);
7256}
7257
7258void *netdev_adjacent_get_private(struct list_head *adj_list)
7259{
7260 struct netdev_adjacent *adj;
7261
7262 adj = list_entry(adj_list, struct netdev_adjacent, list);
7263
7264 return adj->private;
7265}
7266EXPORT_SYMBOL(netdev_adjacent_get_private);
7267
7268/**
7269 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7270 * @dev: device
7271 * @iter: list_head ** of the current position
7272 *
7273 * Gets the next device from the dev's upper list, starting from iter
7274 * position. The caller must hold RCU read lock.
7275 */
7276struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7277 struct list_head **iter)
7278{
7279 struct netdev_adjacent *upper;
7280
7281 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7282
7283 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7284
7285 if (&upper->list == &dev->adj_list.upper)
7286 return NULL;
7287
7288 *iter = &upper->list;
7289
7290 return upper->dev;
7291}
7292EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7293
7294static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7295 struct list_head **iter,
7296 bool *ignore)
7297{
7298 struct netdev_adjacent *upper;
7299
7300 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7301
7302 if (&upper->list == &dev->adj_list.upper)
7303 return NULL;
7304
7305 *iter = &upper->list;
7306 *ignore = upper->ignore;
7307
7308 return upper->dev;
7309}
7310
7311static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7312 struct list_head **iter)
7313{
7314 struct netdev_adjacent *upper;
7315
7316 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7317
7318 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7319
7320 if (&upper->list == &dev->adj_list.upper)
7321 return NULL;
7322
7323 *iter = &upper->list;
7324
7325 return upper->dev;
7326}
7327
7328static int __netdev_walk_all_upper_dev(struct net_device *dev,
7329 int (*fn)(struct net_device *dev,
7330 struct netdev_nested_priv *priv),
7331 struct netdev_nested_priv *priv)
7332{
7333 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7334 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7335 int ret, cur = 0;
7336 bool ignore;
7337
7338 now = dev;
7339 iter = &dev->adj_list.upper;
7340
7341 while (1) {
7342 if (now != dev) {
7343 ret = fn(now, priv);
7344 if (ret)
7345 return ret;
7346 }
7347
7348 next = NULL;
7349 while (1) {
7350 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7351 if (!udev)
7352 break;
7353 if (ignore)
7354 continue;
7355
7356 next = udev;
7357 niter = &udev->adj_list.upper;
7358 dev_stack[cur] = now;
7359 iter_stack[cur++] = iter;
7360 break;
7361 }
7362
7363 if (!next) {
7364 if (!cur)
7365 return 0;
7366 next = dev_stack[--cur];
7367 niter = iter_stack[cur];
7368 }
7369
7370 now = next;
7371 iter = niter;
7372 }
7373
7374 return 0;
7375}
7376
7377int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7378 int (*fn)(struct net_device *dev,
7379 struct netdev_nested_priv *priv),
7380 struct netdev_nested_priv *priv)
7381{
7382 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7383 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7384 int ret, cur = 0;
7385
7386 now = dev;
7387 iter = &dev->adj_list.upper;
7388
7389 while (1) {
7390 if (now != dev) {
7391 ret = fn(now, priv);
7392 if (ret)
7393 return ret;
7394 }
7395
7396 next = NULL;
7397 while (1) {
7398 udev = netdev_next_upper_dev_rcu(now, &iter);
7399 if (!udev)
7400 break;
7401
7402 next = udev;
7403 niter = &udev->adj_list.upper;
7404 dev_stack[cur] = now;
7405 iter_stack[cur++] = iter;
7406 break;
7407 }
7408
7409 if (!next) {
7410 if (!cur)
7411 return 0;
7412 next = dev_stack[--cur];
7413 niter = iter_stack[cur];
7414 }
7415
7416 now = next;
7417 iter = niter;
7418 }
7419
7420 return 0;
7421}
7422EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7423
7424static bool __netdev_has_upper_dev(struct net_device *dev,
7425 struct net_device *upper_dev)
7426{
7427 struct netdev_nested_priv priv = {
7428 .flags = 0,
7429 .data = (void *)upper_dev,
7430 };
7431
7432 ASSERT_RTNL();
7433
7434 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7435 &priv);
7436}
7437
7438/**
7439 * netdev_lower_get_next_private - Get the next ->private from the
7440 * lower neighbour list
7441 * @dev: device
7442 * @iter: list_head ** of the current position
7443 *
7444 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7445 * list, starting from iter position. The caller must hold either hold the
7446 * RTNL lock or its own locking that guarantees that the neighbour lower
7447 * list will remain unchanged.
7448 */
7449void *netdev_lower_get_next_private(struct net_device *dev,
7450 struct list_head **iter)
7451{
7452 struct netdev_adjacent *lower;
7453
7454 lower = list_entry(*iter, struct netdev_adjacent, list);
7455
7456 if (&lower->list == &dev->adj_list.lower)
7457 return NULL;
7458
7459 *iter = lower->list.next;
7460
7461 return lower->private;
7462}
7463EXPORT_SYMBOL(netdev_lower_get_next_private);
7464
7465/**
7466 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7467 * lower neighbour list, RCU
7468 * variant
7469 * @dev: device
7470 * @iter: list_head ** of the current position
7471 *
7472 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7473 * list, starting from iter position. The caller must hold RCU read lock.
7474 */
7475void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7476 struct list_head **iter)
7477{
7478 struct netdev_adjacent *lower;
7479
7480 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7481
7482 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7483
7484 if (&lower->list == &dev->adj_list.lower)
7485 return NULL;
7486
7487 *iter = &lower->list;
7488
7489 return lower->private;
7490}
7491EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7492
7493/**
7494 * netdev_lower_get_next - Get the next device from the lower neighbour
7495 * list
7496 * @dev: device
7497 * @iter: list_head ** of the current position
7498 *
7499 * Gets the next netdev_adjacent from the dev's lower neighbour
7500 * list, starting from iter position. The caller must hold RTNL lock or
7501 * its own locking that guarantees that the neighbour lower
7502 * list will remain unchanged.
7503 */
7504void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7505{
7506 struct netdev_adjacent *lower;
7507
7508 lower = list_entry(*iter, struct netdev_adjacent, list);
7509
7510 if (&lower->list == &dev->adj_list.lower)
7511 return NULL;
7512
7513 *iter = lower->list.next;
7514
7515 return lower->dev;
7516}
7517EXPORT_SYMBOL(netdev_lower_get_next);
7518
7519static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7520 struct list_head **iter)
7521{
7522 struct netdev_adjacent *lower;
7523
7524 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7525
7526 if (&lower->list == &dev->adj_list.lower)
7527 return NULL;
7528
7529 *iter = &lower->list;
7530
7531 return lower->dev;
7532}
7533
7534static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7535 struct list_head **iter,
7536 bool *ignore)
7537{
7538 struct netdev_adjacent *lower;
7539
7540 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7541
7542 if (&lower->list == &dev->adj_list.lower)
7543 return NULL;
7544
7545 *iter = &lower->list;
7546 *ignore = lower->ignore;
7547
7548 return lower->dev;
7549}
7550
7551int netdev_walk_all_lower_dev(struct net_device *dev,
7552 int (*fn)(struct net_device *dev,
7553 struct netdev_nested_priv *priv),
7554 struct netdev_nested_priv *priv)
7555{
7556 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7557 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7558 int ret, cur = 0;
7559
7560 now = dev;
7561 iter = &dev->adj_list.lower;
7562
7563 while (1) {
7564 if (now != dev) {
7565 ret = fn(now, priv);
7566 if (ret)
7567 return ret;
7568 }
7569
7570 next = NULL;
7571 while (1) {
7572 ldev = netdev_next_lower_dev(now, &iter);
7573 if (!ldev)
7574 break;
7575
7576 next = ldev;
7577 niter = &ldev->adj_list.lower;
7578 dev_stack[cur] = now;
7579 iter_stack[cur++] = iter;
7580 break;
7581 }
7582
7583 if (!next) {
7584 if (!cur)
7585 return 0;
7586 next = dev_stack[--cur];
7587 niter = iter_stack[cur];
7588 }
7589
7590 now = next;
7591 iter = niter;
7592 }
7593
7594 return 0;
7595}
7596EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7597
7598static int __netdev_walk_all_lower_dev(struct net_device *dev,
7599 int (*fn)(struct net_device *dev,
7600 struct netdev_nested_priv *priv),
7601 struct netdev_nested_priv *priv)
7602{
7603 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7604 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7605 int ret, cur = 0;
7606 bool ignore;
7607
7608 now = dev;
7609 iter = &dev->adj_list.lower;
7610
7611 while (1) {
7612 if (now != dev) {
7613 ret = fn(now, priv);
7614 if (ret)
7615 return ret;
7616 }
7617
7618 next = NULL;
7619 while (1) {
7620 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7621 if (!ldev)
7622 break;
7623 if (ignore)
7624 continue;
7625
7626 next = ldev;
7627 niter = &ldev->adj_list.lower;
7628 dev_stack[cur] = now;
7629 iter_stack[cur++] = iter;
7630 break;
7631 }
7632
7633 if (!next) {
7634 if (!cur)
7635 return 0;
7636 next = dev_stack[--cur];
7637 niter = iter_stack[cur];
7638 }
7639
7640 now = next;
7641 iter = niter;
7642 }
7643
7644 return 0;
7645}
7646
7647struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7648 struct list_head **iter)
7649{
7650 struct netdev_adjacent *lower;
7651
7652 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7653 if (&lower->list == &dev->adj_list.lower)
7654 return NULL;
7655
7656 *iter = &lower->list;
7657
7658 return lower->dev;
7659}
7660EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7661
7662static u8 __netdev_upper_depth(struct net_device *dev)
7663{
7664 struct net_device *udev;
7665 struct list_head *iter;
7666 u8 max_depth = 0;
7667 bool ignore;
7668
7669 for (iter = &dev->adj_list.upper,
7670 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7671 udev;
7672 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7673 if (ignore)
7674 continue;
7675 if (max_depth < udev->upper_level)
7676 max_depth = udev->upper_level;
7677 }
7678
7679 return max_depth;
7680}
7681
7682static u8 __netdev_lower_depth(struct net_device *dev)
7683{
7684 struct net_device *ldev;
7685 struct list_head *iter;
7686 u8 max_depth = 0;
7687 bool ignore;
7688
7689 for (iter = &dev->adj_list.lower,
7690 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7691 ldev;
7692 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7693 if (ignore)
7694 continue;
7695 if (max_depth < ldev->lower_level)
7696 max_depth = ldev->lower_level;
7697 }
7698
7699 return max_depth;
7700}
7701
7702static int __netdev_update_upper_level(struct net_device *dev,
7703 struct netdev_nested_priv *__unused)
7704{
7705 dev->upper_level = __netdev_upper_depth(dev) + 1;
7706 return 0;
7707}
7708
7709#ifdef CONFIG_LOCKDEP
7710static LIST_HEAD(net_unlink_list);
7711
7712static void net_unlink_todo(struct net_device *dev)
7713{
7714 if (list_empty(&dev->unlink_list))
7715 list_add_tail(&dev->unlink_list, &net_unlink_list);
7716}
7717#endif
7718
7719static int __netdev_update_lower_level(struct net_device *dev,
7720 struct netdev_nested_priv *priv)
7721{
7722 dev->lower_level = __netdev_lower_depth(dev) + 1;
7723
7724#ifdef CONFIG_LOCKDEP
7725 if (!priv)
7726 return 0;
7727
7728 if (priv->flags & NESTED_SYNC_IMM)
7729 dev->nested_level = dev->lower_level - 1;
7730 if (priv->flags & NESTED_SYNC_TODO)
7731 net_unlink_todo(dev);
7732#endif
7733 return 0;
7734}
7735
7736int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7737 int (*fn)(struct net_device *dev,
7738 struct netdev_nested_priv *priv),
7739 struct netdev_nested_priv *priv)
7740{
7741 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7742 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7743 int ret, cur = 0;
7744
7745 now = dev;
7746 iter = &dev->adj_list.lower;
7747
7748 while (1) {
7749 if (now != dev) {
7750 ret = fn(now, priv);
7751 if (ret)
7752 return ret;
7753 }
7754
7755 next = NULL;
7756 while (1) {
7757 ldev = netdev_next_lower_dev_rcu(now, &iter);
7758 if (!ldev)
7759 break;
7760
7761 next = ldev;
7762 niter = &ldev->adj_list.lower;
7763 dev_stack[cur] = now;
7764 iter_stack[cur++] = iter;
7765 break;
7766 }
7767
7768 if (!next) {
7769 if (!cur)
7770 return 0;
7771 next = dev_stack[--cur];
7772 niter = iter_stack[cur];
7773 }
7774
7775 now = next;
7776 iter = niter;
7777 }
7778
7779 return 0;
7780}
7781EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7782
7783/**
7784 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7785 * lower neighbour list, RCU
7786 * variant
7787 * @dev: device
7788 *
7789 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7790 * list. The caller must hold RCU read lock.
7791 */
7792void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7793{
7794 struct netdev_adjacent *lower;
7795
7796 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7797 struct netdev_adjacent, list);
7798 if (lower)
7799 return lower->private;
7800 return NULL;
7801}
7802EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7803
7804/**
7805 * netdev_master_upper_dev_get_rcu - Get master upper device
7806 * @dev: device
7807 *
7808 * Find a master upper device and return pointer to it or NULL in case
7809 * it's not there. The caller must hold the RCU read lock.
7810 */
7811struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7812{
7813 struct netdev_adjacent *upper;
7814
7815 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7816 struct netdev_adjacent, list);
7817 if (upper && likely(upper->master))
7818 return upper->dev;
7819 return NULL;
7820}
7821EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7822
7823static int netdev_adjacent_sysfs_add(struct net_device *dev,
7824 struct net_device *adj_dev,
7825 struct list_head *dev_list)
7826{
7827 char linkname[IFNAMSIZ+7];
7828
7829 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7830 "upper_%s" : "lower_%s", adj_dev->name);
7831 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7832 linkname);
7833}
7834static void netdev_adjacent_sysfs_del(struct net_device *dev,
7835 char *name,
7836 struct list_head *dev_list)
7837{
7838 char linkname[IFNAMSIZ+7];
7839
7840 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7841 "upper_%s" : "lower_%s", name);
7842 sysfs_remove_link(&(dev->dev.kobj), linkname);
7843}
7844
7845static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7846 struct net_device *adj_dev,
7847 struct list_head *dev_list)
7848{
7849 return (dev_list == &dev->adj_list.upper ||
7850 dev_list == &dev->adj_list.lower) &&
7851 net_eq(dev_net(dev), dev_net(adj_dev));
7852}
7853
7854static int __netdev_adjacent_dev_insert(struct net_device *dev,
7855 struct net_device *adj_dev,
7856 struct list_head *dev_list,
7857 void *private, bool master)
7858{
7859 struct netdev_adjacent *adj;
7860 int ret;
7861
7862 adj = __netdev_find_adj(adj_dev, dev_list);
7863
7864 if (adj) {
7865 adj->ref_nr += 1;
7866 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7867 dev->name, adj_dev->name, adj->ref_nr);
7868
7869 return 0;
7870 }
7871
7872 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7873 if (!adj)
7874 return -ENOMEM;
7875
7876 adj->dev = adj_dev;
7877 adj->master = master;
7878 adj->ref_nr = 1;
7879 adj->private = private;
7880 adj->ignore = false;
7881 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7882
7883 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7884 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7885
7886 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7887 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7888 if (ret)
7889 goto free_adj;
7890 }
7891
7892 /* Ensure that master link is always the first item in list. */
7893 if (master) {
7894 ret = sysfs_create_link(&(dev->dev.kobj),
7895 &(adj_dev->dev.kobj), "master");
7896 if (ret)
7897 goto remove_symlinks;
7898
7899 list_add_rcu(&adj->list, dev_list);
7900 } else {
7901 list_add_tail_rcu(&adj->list, dev_list);
7902 }
7903
7904 return 0;
7905
7906remove_symlinks:
7907 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7908 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7909free_adj:
7910 netdev_put(adj_dev, &adj->dev_tracker);
7911 kfree(adj);
7912
7913 return ret;
7914}
7915
7916static void __netdev_adjacent_dev_remove(struct net_device *dev,
7917 struct net_device *adj_dev,
7918 u16 ref_nr,
7919 struct list_head *dev_list)
7920{
7921 struct netdev_adjacent *adj;
7922
7923 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7924 dev->name, adj_dev->name, ref_nr);
7925
7926 adj = __netdev_find_adj(adj_dev, dev_list);
7927
7928 if (!adj) {
7929 pr_err("Adjacency does not exist for device %s from %s\n",
7930 dev->name, adj_dev->name);
7931 WARN_ON(1);
7932 return;
7933 }
7934
7935 if (adj->ref_nr > ref_nr) {
7936 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7937 dev->name, adj_dev->name, ref_nr,
7938 adj->ref_nr - ref_nr);
7939 adj->ref_nr -= ref_nr;
7940 return;
7941 }
7942
7943 if (adj->master)
7944 sysfs_remove_link(&(dev->dev.kobj), "master");
7945
7946 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7947 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7948
7949 list_del_rcu(&adj->list);
7950 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7951 adj_dev->name, dev->name, adj_dev->name);
7952 netdev_put(adj_dev, &adj->dev_tracker);
7953 kfree_rcu(adj, rcu);
7954}
7955
7956static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7957 struct net_device *upper_dev,
7958 struct list_head *up_list,
7959 struct list_head *down_list,
7960 void *private, bool master)
7961{
7962 int ret;
7963
7964 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7965 private, master);
7966 if (ret)
7967 return ret;
7968
7969 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7970 private, false);
7971 if (ret) {
7972 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7973 return ret;
7974 }
7975
7976 return 0;
7977}
7978
7979static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7980 struct net_device *upper_dev,
7981 u16 ref_nr,
7982 struct list_head *up_list,
7983 struct list_head *down_list)
7984{
7985 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7986 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7987}
7988
7989static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7990 struct net_device *upper_dev,
7991 void *private, bool master)
7992{
7993 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7994 &dev->adj_list.upper,
7995 &upper_dev->adj_list.lower,
7996 private, master);
7997}
7998
7999static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8000 struct net_device *upper_dev)
8001{
8002 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8003 &dev->adj_list.upper,
8004 &upper_dev->adj_list.lower);
8005}
8006
8007static int __netdev_upper_dev_link(struct net_device *dev,
8008 struct net_device *upper_dev, bool master,
8009 void *upper_priv, void *upper_info,
8010 struct netdev_nested_priv *priv,
8011 struct netlink_ext_ack *extack)
8012{
8013 struct netdev_notifier_changeupper_info changeupper_info = {
8014 .info = {
8015 .dev = dev,
8016 .extack = extack,
8017 },
8018 .upper_dev = upper_dev,
8019 .master = master,
8020 .linking = true,
8021 .upper_info = upper_info,
8022 };
8023 struct net_device *master_dev;
8024 int ret = 0;
8025
8026 ASSERT_RTNL();
8027
8028 if (dev == upper_dev)
8029 return -EBUSY;
8030
8031 /* To prevent loops, check if dev is not upper device to upper_dev. */
8032 if (__netdev_has_upper_dev(upper_dev, dev))
8033 return -EBUSY;
8034
8035 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8036 return -EMLINK;
8037
8038 if (!master) {
8039 if (__netdev_has_upper_dev(dev, upper_dev))
8040 return -EEXIST;
8041 } else {
8042 master_dev = __netdev_master_upper_dev_get(dev);
8043 if (master_dev)
8044 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8045 }
8046
8047 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8048 &changeupper_info.info);
8049 ret = notifier_to_errno(ret);
8050 if (ret)
8051 return ret;
8052
8053 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8054 master);
8055 if (ret)
8056 return ret;
8057
8058 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8059 &changeupper_info.info);
8060 ret = notifier_to_errno(ret);
8061 if (ret)
8062 goto rollback;
8063
8064 __netdev_update_upper_level(dev, NULL);
8065 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8066
8067 __netdev_update_lower_level(upper_dev, priv);
8068 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8069 priv);
8070
8071 return 0;
8072
8073rollback:
8074 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8075
8076 return ret;
8077}
8078
8079/**
8080 * netdev_upper_dev_link - Add a link to the upper device
8081 * @dev: device
8082 * @upper_dev: new upper device
8083 * @extack: netlink extended ack
8084 *
8085 * Adds a link to device which is upper to this one. The caller must hold
8086 * the RTNL lock. On a failure a negative errno code is returned.
8087 * On success the reference counts are adjusted and the function
8088 * returns zero.
8089 */
8090int netdev_upper_dev_link(struct net_device *dev,
8091 struct net_device *upper_dev,
8092 struct netlink_ext_ack *extack)
8093{
8094 struct netdev_nested_priv priv = {
8095 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8096 .data = NULL,
8097 };
8098
8099 return __netdev_upper_dev_link(dev, upper_dev, false,
8100 NULL, NULL, &priv, extack);
8101}
8102EXPORT_SYMBOL(netdev_upper_dev_link);
8103
8104/**
8105 * netdev_master_upper_dev_link - Add a master link to the upper device
8106 * @dev: device
8107 * @upper_dev: new upper device
8108 * @upper_priv: upper device private
8109 * @upper_info: upper info to be passed down via notifier
8110 * @extack: netlink extended ack
8111 *
8112 * Adds a link to device which is upper to this one. In this case, only
8113 * one master upper device can be linked, although other non-master devices
8114 * might be linked as well. The caller must hold the RTNL lock.
8115 * On a failure a negative errno code is returned. On success the reference
8116 * counts are adjusted and the function returns zero.
8117 */
8118int netdev_master_upper_dev_link(struct net_device *dev,
8119 struct net_device *upper_dev,
8120 void *upper_priv, void *upper_info,
8121 struct netlink_ext_ack *extack)
8122{
8123 struct netdev_nested_priv priv = {
8124 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8125 .data = NULL,
8126 };
8127
8128 return __netdev_upper_dev_link(dev, upper_dev, true,
8129 upper_priv, upper_info, &priv, extack);
8130}
8131EXPORT_SYMBOL(netdev_master_upper_dev_link);
8132
8133static void __netdev_upper_dev_unlink(struct net_device *dev,
8134 struct net_device *upper_dev,
8135 struct netdev_nested_priv *priv)
8136{
8137 struct netdev_notifier_changeupper_info changeupper_info = {
8138 .info = {
8139 .dev = dev,
8140 },
8141 .upper_dev = upper_dev,
8142 .linking = false,
8143 };
8144
8145 ASSERT_RTNL();
8146
8147 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8148
8149 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8150 &changeupper_info.info);
8151
8152 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8153
8154 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8155 &changeupper_info.info);
8156
8157 __netdev_update_upper_level(dev, NULL);
8158 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8159
8160 __netdev_update_lower_level(upper_dev, priv);
8161 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8162 priv);
8163}
8164
8165/**
8166 * netdev_upper_dev_unlink - Removes a link to upper device
8167 * @dev: device
8168 * @upper_dev: new upper device
8169 *
8170 * Removes a link to device which is upper to this one. The caller must hold
8171 * the RTNL lock.
8172 */
8173void netdev_upper_dev_unlink(struct net_device *dev,
8174 struct net_device *upper_dev)
8175{
8176 struct netdev_nested_priv priv = {
8177 .flags = NESTED_SYNC_TODO,
8178 .data = NULL,
8179 };
8180
8181 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8182}
8183EXPORT_SYMBOL(netdev_upper_dev_unlink);
8184
8185static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8186 struct net_device *lower_dev,
8187 bool val)
8188{
8189 struct netdev_adjacent *adj;
8190
8191 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8192 if (adj)
8193 adj->ignore = val;
8194
8195 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8196 if (adj)
8197 adj->ignore = val;
8198}
8199
8200static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8201 struct net_device *lower_dev)
8202{
8203 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8204}
8205
8206static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8207 struct net_device *lower_dev)
8208{
8209 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8210}
8211
8212int netdev_adjacent_change_prepare(struct net_device *old_dev,
8213 struct net_device *new_dev,
8214 struct net_device *dev,
8215 struct netlink_ext_ack *extack)
8216{
8217 struct netdev_nested_priv priv = {
8218 .flags = 0,
8219 .data = NULL,
8220 };
8221 int err;
8222
8223 if (!new_dev)
8224 return 0;
8225
8226 if (old_dev && new_dev != old_dev)
8227 netdev_adjacent_dev_disable(dev, old_dev);
8228 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8229 extack);
8230 if (err) {
8231 if (old_dev && new_dev != old_dev)
8232 netdev_adjacent_dev_enable(dev, old_dev);
8233 return err;
8234 }
8235
8236 return 0;
8237}
8238EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8239
8240void netdev_adjacent_change_commit(struct net_device *old_dev,
8241 struct net_device *new_dev,
8242 struct net_device *dev)
8243{
8244 struct netdev_nested_priv priv = {
8245 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8246 .data = NULL,
8247 };
8248
8249 if (!new_dev || !old_dev)
8250 return;
8251
8252 if (new_dev == old_dev)
8253 return;
8254
8255 netdev_adjacent_dev_enable(dev, old_dev);
8256 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8257}
8258EXPORT_SYMBOL(netdev_adjacent_change_commit);
8259
8260void netdev_adjacent_change_abort(struct net_device *old_dev,
8261 struct net_device *new_dev,
8262 struct net_device *dev)
8263{
8264 struct netdev_nested_priv priv = {
8265 .flags = 0,
8266 .data = NULL,
8267 };
8268
8269 if (!new_dev)
8270 return;
8271
8272 if (old_dev && new_dev != old_dev)
8273 netdev_adjacent_dev_enable(dev, old_dev);
8274
8275 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8276}
8277EXPORT_SYMBOL(netdev_adjacent_change_abort);
8278
8279/**
8280 * netdev_bonding_info_change - Dispatch event about slave change
8281 * @dev: device
8282 * @bonding_info: info to dispatch
8283 *
8284 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8285 * The caller must hold the RTNL lock.
8286 */
8287void netdev_bonding_info_change(struct net_device *dev,
8288 struct netdev_bonding_info *bonding_info)
8289{
8290 struct netdev_notifier_bonding_info info = {
8291 .info.dev = dev,
8292 };
8293
8294 memcpy(&info.bonding_info, bonding_info,
8295 sizeof(struct netdev_bonding_info));
8296 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8297 &info.info);
8298}
8299EXPORT_SYMBOL(netdev_bonding_info_change);
8300
8301static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8302 struct netlink_ext_ack *extack)
8303{
8304 struct netdev_notifier_offload_xstats_info info = {
8305 .info.dev = dev,
8306 .info.extack = extack,
8307 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8308 };
8309 int err;
8310 int rc;
8311
8312 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8313 GFP_KERNEL);
8314 if (!dev->offload_xstats_l3)
8315 return -ENOMEM;
8316
8317 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8318 NETDEV_OFFLOAD_XSTATS_DISABLE,
8319 &info.info);
8320 err = notifier_to_errno(rc);
8321 if (err)
8322 goto free_stats;
8323
8324 return 0;
8325
8326free_stats:
8327 kfree(dev->offload_xstats_l3);
8328 dev->offload_xstats_l3 = NULL;
8329 return err;
8330}
8331
8332int netdev_offload_xstats_enable(struct net_device *dev,
8333 enum netdev_offload_xstats_type type,
8334 struct netlink_ext_ack *extack)
8335{
8336 ASSERT_RTNL();
8337
8338 if (netdev_offload_xstats_enabled(dev, type))
8339 return -EALREADY;
8340
8341 switch (type) {
8342 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8343 return netdev_offload_xstats_enable_l3(dev, extack);
8344 }
8345
8346 WARN_ON(1);
8347 return -EINVAL;
8348}
8349EXPORT_SYMBOL(netdev_offload_xstats_enable);
8350
8351static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8352{
8353 struct netdev_notifier_offload_xstats_info info = {
8354 .info.dev = dev,
8355 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8356 };
8357
8358 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8359 &info.info);
8360 kfree(dev->offload_xstats_l3);
8361 dev->offload_xstats_l3 = NULL;
8362}
8363
8364int netdev_offload_xstats_disable(struct net_device *dev,
8365 enum netdev_offload_xstats_type type)
8366{
8367 ASSERT_RTNL();
8368
8369 if (!netdev_offload_xstats_enabled(dev, type))
8370 return -EALREADY;
8371
8372 switch (type) {
8373 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8374 netdev_offload_xstats_disable_l3(dev);
8375 return 0;
8376 }
8377
8378 WARN_ON(1);
8379 return -EINVAL;
8380}
8381EXPORT_SYMBOL(netdev_offload_xstats_disable);
8382
8383static void netdev_offload_xstats_disable_all(struct net_device *dev)
8384{
8385 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8386}
8387
8388static struct rtnl_hw_stats64 *
8389netdev_offload_xstats_get_ptr(const struct net_device *dev,
8390 enum netdev_offload_xstats_type type)
8391{
8392 switch (type) {
8393 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8394 return dev->offload_xstats_l3;
8395 }
8396
8397 WARN_ON(1);
8398 return NULL;
8399}
8400
8401bool netdev_offload_xstats_enabled(const struct net_device *dev,
8402 enum netdev_offload_xstats_type type)
8403{
8404 ASSERT_RTNL();
8405
8406 return netdev_offload_xstats_get_ptr(dev, type);
8407}
8408EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8409
8410struct netdev_notifier_offload_xstats_ru {
8411 bool used;
8412};
8413
8414struct netdev_notifier_offload_xstats_rd {
8415 struct rtnl_hw_stats64 stats;
8416 bool used;
8417};
8418
8419static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8420 const struct rtnl_hw_stats64 *src)
8421{
8422 dest->rx_packets += src->rx_packets;
8423 dest->tx_packets += src->tx_packets;
8424 dest->rx_bytes += src->rx_bytes;
8425 dest->tx_bytes += src->tx_bytes;
8426 dest->rx_errors += src->rx_errors;
8427 dest->tx_errors += src->tx_errors;
8428 dest->rx_dropped += src->rx_dropped;
8429 dest->tx_dropped += src->tx_dropped;
8430 dest->multicast += src->multicast;
8431}
8432
8433static int netdev_offload_xstats_get_used(struct net_device *dev,
8434 enum netdev_offload_xstats_type type,
8435 bool *p_used,
8436 struct netlink_ext_ack *extack)
8437{
8438 struct netdev_notifier_offload_xstats_ru report_used = {};
8439 struct netdev_notifier_offload_xstats_info info = {
8440 .info.dev = dev,
8441 .info.extack = extack,
8442 .type = type,
8443 .report_used = &report_used,
8444 };
8445 int rc;
8446
8447 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8448 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8449 &info.info);
8450 *p_used = report_used.used;
8451 return notifier_to_errno(rc);
8452}
8453
8454static int netdev_offload_xstats_get_stats(struct net_device *dev,
8455 enum netdev_offload_xstats_type type,
8456 struct rtnl_hw_stats64 *p_stats,
8457 bool *p_used,
8458 struct netlink_ext_ack *extack)
8459{
8460 struct netdev_notifier_offload_xstats_rd report_delta = {};
8461 struct netdev_notifier_offload_xstats_info info = {
8462 .info.dev = dev,
8463 .info.extack = extack,
8464 .type = type,
8465 .report_delta = &report_delta,
8466 };
8467 struct rtnl_hw_stats64 *stats;
8468 int rc;
8469
8470 stats = netdev_offload_xstats_get_ptr(dev, type);
8471 if (WARN_ON(!stats))
8472 return -EINVAL;
8473
8474 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8475 &info.info);
8476
8477 /* Cache whatever we got, even if there was an error, otherwise the
8478 * successful stats retrievals would get lost.
8479 */
8480 netdev_hw_stats64_add(stats, &report_delta.stats);
8481
8482 if (p_stats)
8483 *p_stats = *stats;
8484 *p_used = report_delta.used;
8485
8486 return notifier_to_errno(rc);
8487}
8488
8489int netdev_offload_xstats_get(struct net_device *dev,
8490 enum netdev_offload_xstats_type type,
8491 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8492 struct netlink_ext_ack *extack)
8493{
8494 ASSERT_RTNL();
8495
8496 if (p_stats)
8497 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8498 p_used, extack);
8499 else
8500 return netdev_offload_xstats_get_used(dev, type, p_used,
8501 extack);
8502}
8503EXPORT_SYMBOL(netdev_offload_xstats_get);
8504
8505void
8506netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8507 const struct rtnl_hw_stats64 *stats)
8508{
8509 report_delta->used = true;
8510 netdev_hw_stats64_add(&report_delta->stats, stats);
8511}
8512EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8513
8514void
8515netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8516{
8517 report_used->used = true;
8518}
8519EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8520
8521void netdev_offload_xstats_push_delta(struct net_device *dev,
8522 enum netdev_offload_xstats_type type,
8523 const struct rtnl_hw_stats64 *p_stats)
8524{
8525 struct rtnl_hw_stats64 *stats;
8526
8527 ASSERT_RTNL();
8528
8529 stats = netdev_offload_xstats_get_ptr(dev, type);
8530 if (WARN_ON(!stats))
8531 return;
8532
8533 netdev_hw_stats64_add(stats, p_stats);
8534}
8535EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8536
8537/**
8538 * netdev_get_xmit_slave - Get the xmit slave of master device
8539 * @dev: device
8540 * @skb: The packet
8541 * @all_slaves: assume all the slaves are active
8542 *
8543 * The reference counters are not incremented so the caller must be
8544 * careful with locks. The caller must hold RCU lock.
8545 * %NULL is returned if no slave is found.
8546 */
8547
8548struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8549 struct sk_buff *skb,
8550 bool all_slaves)
8551{
8552 const struct net_device_ops *ops = dev->netdev_ops;
8553
8554 if (!ops->ndo_get_xmit_slave)
8555 return NULL;
8556 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8557}
8558EXPORT_SYMBOL(netdev_get_xmit_slave);
8559
8560static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8561 struct sock *sk)
8562{
8563 const struct net_device_ops *ops = dev->netdev_ops;
8564
8565 if (!ops->ndo_sk_get_lower_dev)
8566 return NULL;
8567 return ops->ndo_sk_get_lower_dev(dev, sk);
8568}
8569
8570/**
8571 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8572 * @dev: device
8573 * @sk: the socket
8574 *
8575 * %NULL is returned if no lower device is found.
8576 */
8577
8578struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8579 struct sock *sk)
8580{
8581 struct net_device *lower;
8582
8583 lower = netdev_sk_get_lower_dev(dev, sk);
8584 while (lower) {
8585 dev = lower;
8586 lower = netdev_sk_get_lower_dev(dev, sk);
8587 }
8588
8589 return dev;
8590}
8591EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8592
8593static void netdev_adjacent_add_links(struct net_device *dev)
8594{
8595 struct netdev_adjacent *iter;
8596
8597 struct net *net = dev_net(dev);
8598
8599 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8600 if (!net_eq(net, dev_net(iter->dev)))
8601 continue;
8602 netdev_adjacent_sysfs_add(iter->dev, dev,
8603 &iter->dev->adj_list.lower);
8604 netdev_adjacent_sysfs_add(dev, iter->dev,
8605 &dev->adj_list.upper);
8606 }
8607
8608 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8609 if (!net_eq(net, dev_net(iter->dev)))
8610 continue;
8611 netdev_adjacent_sysfs_add(iter->dev, dev,
8612 &iter->dev->adj_list.upper);
8613 netdev_adjacent_sysfs_add(dev, iter->dev,
8614 &dev->adj_list.lower);
8615 }
8616}
8617
8618static void netdev_adjacent_del_links(struct net_device *dev)
8619{
8620 struct netdev_adjacent *iter;
8621
8622 struct net *net = dev_net(dev);
8623
8624 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8625 if (!net_eq(net, dev_net(iter->dev)))
8626 continue;
8627 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8628 &iter->dev->adj_list.lower);
8629 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8630 &dev->adj_list.upper);
8631 }
8632
8633 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8634 if (!net_eq(net, dev_net(iter->dev)))
8635 continue;
8636 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8637 &iter->dev->adj_list.upper);
8638 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8639 &dev->adj_list.lower);
8640 }
8641}
8642
8643void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8644{
8645 struct netdev_adjacent *iter;
8646
8647 struct net *net = dev_net(dev);
8648
8649 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8650 if (!net_eq(net, dev_net(iter->dev)))
8651 continue;
8652 netdev_adjacent_sysfs_del(iter->dev, oldname,
8653 &iter->dev->adj_list.lower);
8654 netdev_adjacent_sysfs_add(iter->dev, dev,
8655 &iter->dev->adj_list.lower);
8656 }
8657
8658 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8659 if (!net_eq(net, dev_net(iter->dev)))
8660 continue;
8661 netdev_adjacent_sysfs_del(iter->dev, oldname,
8662 &iter->dev->adj_list.upper);
8663 netdev_adjacent_sysfs_add(iter->dev, dev,
8664 &iter->dev->adj_list.upper);
8665 }
8666}
8667
8668void *netdev_lower_dev_get_private(struct net_device *dev,
8669 struct net_device *lower_dev)
8670{
8671 struct netdev_adjacent *lower;
8672
8673 if (!lower_dev)
8674 return NULL;
8675 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8676 if (!lower)
8677 return NULL;
8678
8679 return lower->private;
8680}
8681EXPORT_SYMBOL(netdev_lower_dev_get_private);
8682
8683
8684/**
8685 * netdev_lower_state_changed - Dispatch event about lower device state change
8686 * @lower_dev: device
8687 * @lower_state_info: state to dispatch
8688 *
8689 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8690 * The caller must hold the RTNL lock.
8691 */
8692void netdev_lower_state_changed(struct net_device *lower_dev,
8693 void *lower_state_info)
8694{
8695 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8696 .info.dev = lower_dev,
8697 };
8698
8699 ASSERT_RTNL();
8700 changelowerstate_info.lower_state_info = lower_state_info;
8701 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8702 &changelowerstate_info.info);
8703}
8704EXPORT_SYMBOL(netdev_lower_state_changed);
8705
8706static void dev_change_rx_flags(struct net_device *dev, int flags)
8707{
8708 const struct net_device_ops *ops = dev->netdev_ops;
8709
8710 if (ops->ndo_change_rx_flags)
8711 ops->ndo_change_rx_flags(dev, flags);
8712}
8713
8714static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8715{
8716 unsigned int old_flags = dev->flags;
8717 unsigned int promiscuity, flags;
8718 kuid_t uid;
8719 kgid_t gid;
8720
8721 ASSERT_RTNL();
8722
8723 promiscuity = dev->promiscuity + inc;
8724 if (promiscuity == 0) {
8725 /*
8726 * Avoid overflow.
8727 * If inc causes overflow, untouch promisc and return error.
8728 */
8729 if (unlikely(inc > 0)) {
8730 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8731 return -EOVERFLOW;
8732 }
8733 flags = old_flags & ~IFF_PROMISC;
8734 } else {
8735 flags = old_flags | IFF_PROMISC;
8736 }
8737 WRITE_ONCE(dev->promiscuity, promiscuity);
8738 if (flags != old_flags) {
8739 WRITE_ONCE(dev->flags, flags);
8740 netdev_info(dev, "%s promiscuous mode\n",
8741 dev->flags & IFF_PROMISC ? "entered" : "left");
8742 if (audit_enabled) {
8743 current_uid_gid(&uid, &gid);
8744 audit_log(audit_context(), GFP_ATOMIC,
8745 AUDIT_ANOM_PROMISCUOUS,
8746 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8747 dev->name, (dev->flags & IFF_PROMISC),
8748 (old_flags & IFF_PROMISC),
8749 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8750 from_kuid(&init_user_ns, uid),
8751 from_kgid(&init_user_ns, gid),
8752 audit_get_sessionid(current));
8753 }
8754
8755 dev_change_rx_flags(dev, IFF_PROMISC);
8756 }
8757 if (notify)
8758 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8759 return 0;
8760}
8761
8762/**
8763 * dev_set_promiscuity - update promiscuity count on a device
8764 * @dev: device
8765 * @inc: modifier
8766 *
8767 * Add or remove promiscuity from a device. While the count in the device
8768 * remains above zero the interface remains promiscuous. Once it hits zero
8769 * the device reverts back to normal filtering operation. A negative inc
8770 * value is used to drop promiscuity on the device.
8771 * Return 0 if successful or a negative errno code on error.
8772 */
8773int dev_set_promiscuity(struct net_device *dev, int inc)
8774{
8775 unsigned int old_flags = dev->flags;
8776 int err;
8777
8778 err = __dev_set_promiscuity(dev, inc, true);
8779 if (err < 0)
8780 return err;
8781 if (dev->flags != old_flags)
8782 dev_set_rx_mode(dev);
8783 return err;
8784}
8785EXPORT_SYMBOL(dev_set_promiscuity);
8786
8787static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8788{
8789 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8790 unsigned int allmulti, flags;
8791
8792 ASSERT_RTNL();
8793
8794 allmulti = dev->allmulti + inc;
8795 if (allmulti == 0) {
8796 /*
8797 * Avoid overflow.
8798 * If inc causes overflow, untouch allmulti and return error.
8799 */
8800 if (unlikely(inc > 0)) {
8801 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8802 return -EOVERFLOW;
8803 }
8804 flags = old_flags & ~IFF_ALLMULTI;
8805 } else {
8806 flags = old_flags | IFF_ALLMULTI;
8807 }
8808 WRITE_ONCE(dev->allmulti, allmulti);
8809 if (flags != old_flags) {
8810 WRITE_ONCE(dev->flags, flags);
8811 netdev_info(dev, "%s allmulticast mode\n",
8812 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8813 dev_change_rx_flags(dev, IFF_ALLMULTI);
8814 dev_set_rx_mode(dev);
8815 if (notify)
8816 __dev_notify_flags(dev, old_flags,
8817 dev->gflags ^ old_gflags, 0, NULL);
8818 }
8819 return 0;
8820}
8821
8822/**
8823 * dev_set_allmulti - update allmulti count on a device
8824 * @dev: device
8825 * @inc: modifier
8826 *
8827 * Add or remove reception of all multicast frames to a device. While the
8828 * count in the device remains above zero the interface remains listening
8829 * to all interfaces. Once it hits zero the device reverts back to normal
8830 * filtering operation. A negative @inc value is used to drop the counter
8831 * when releasing a resource needing all multicasts.
8832 * Return 0 if successful or a negative errno code on error.
8833 */
8834
8835int dev_set_allmulti(struct net_device *dev, int inc)
8836{
8837 return __dev_set_allmulti(dev, inc, true);
8838}
8839EXPORT_SYMBOL(dev_set_allmulti);
8840
8841/*
8842 * Upload unicast and multicast address lists to device and
8843 * configure RX filtering. When the device doesn't support unicast
8844 * filtering it is put in promiscuous mode while unicast addresses
8845 * are present.
8846 */
8847void __dev_set_rx_mode(struct net_device *dev)
8848{
8849 const struct net_device_ops *ops = dev->netdev_ops;
8850
8851 /* dev_open will call this function so the list will stay sane. */
8852 if (!(dev->flags&IFF_UP))
8853 return;
8854
8855 if (!netif_device_present(dev))
8856 return;
8857
8858 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8859 /* Unicast addresses changes may only happen under the rtnl,
8860 * therefore calling __dev_set_promiscuity here is safe.
8861 */
8862 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8863 __dev_set_promiscuity(dev, 1, false);
8864 dev->uc_promisc = true;
8865 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8866 __dev_set_promiscuity(dev, -1, false);
8867 dev->uc_promisc = false;
8868 }
8869 }
8870
8871 if (ops->ndo_set_rx_mode)
8872 ops->ndo_set_rx_mode(dev);
8873}
8874
8875void dev_set_rx_mode(struct net_device *dev)
8876{
8877 netif_addr_lock_bh(dev);
8878 __dev_set_rx_mode(dev);
8879 netif_addr_unlock_bh(dev);
8880}
8881
8882/**
8883 * dev_get_flags - get flags reported to userspace
8884 * @dev: device
8885 *
8886 * Get the combination of flag bits exported through APIs to userspace.
8887 */
8888unsigned int dev_get_flags(const struct net_device *dev)
8889{
8890 unsigned int flags;
8891
8892 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8893 IFF_ALLMULTI |
8894 IFF_RUNNING |
8895 IFF_LOWER_UP |
8896 IFF_DORMANT)) |
8897 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
8898 IFF_ALLMULTI));
8899
8900 if (netif_running(dev)) {
8901 if (netif_oper_up(dev))
8902 flags |= IFF_RUNNING;
8903 if (netif_carrier_ok(dev))
8904 flags |= IFF_LOWER_UP;
8905 if (netif_dormant(dev))
8906 flags |= IFF_DORMANT;
8907 }
8908
8909 return flags;
8910}
8911EXPORT_SYMBOL(dev_get_flags);
8912
8913int __dev_change_flags(struct net_device *dev, unsigned int flags,
8914 struct netlink_ext_ack *extack)
8915{
8916 unsigned int old_flags = dev->flags;
8917 int ret;
8918
8919 ASSERT_RTNL();
8920
8921 /*
8922 * Set the flags on our device.
8923 */
8924
8925 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8926 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8927 IFF_AUTOMEDIA)) |
8928 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8929 IFF_ALLMULTI));
8930
8931 /*
8932 * Load in the correct multicast list now the flags have changed.
8933 */
8934
8935 if ((old_flags ^ flags) & IFF_MULTICAST)
8936 dev_change_rx_flags(dev, IFF_MULTICAST);
8937
8938 dev_set_rx_mode(dev);
8939
8940 /*
8941 * Have we downed the interface. We handle IFF_UP ourselves
8942 * according to user attempts to set it, rather than blindly
8943 * setting it.
8944 */
8945
8946 ret = 0;
8947 if ((old_flags ^ flags) & IFF_UP) {
8948 if (old_flags & IFF_UP)
8949 __dev_close(dev);
8950 else
8951 ret = __dev_open(dev, extack);
8952 }
8953
8954 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8955 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8956 unsigned int old_flags = dev->flags;
8957
8958 dev->gflags ^= IFF_PROMISC;
8959
8960 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8961 if (dev->flags != old_flags)
8962 dev_set_rx_mode(dev);
8963 }
8964
8965 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8966 * is important. Some (broken) drivers set IFF_PROMISC, when
8967 * IFF_ALLMULTI is requested not asking us and not reporting.
8968 */
8969 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8970 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8971
8972 dev->gflags ^= IFF_ALLMULTI;
8973 __dev_set_allmulti(dev, inc, false);
8974 }
8975
8976 return ret;
8977}
8978
8979void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8980 unsigned int gchanges, u32 portid,
8981 const struct nlmsghdr *nlh)
8982{
8983 unsigned int changes = dev->flags ^ old_flags;
8984
8985 if (gchanges)
8986 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8987
8988 if (changes & IFF_UP) {
8989 if (dev->flags & IFF_UP)
8990 call_netdevice_notifiers(NETDEV_UP, dev);
8991 else
8992 call_netdevice_notifiers(NETDEV_DOWN, dev);
8993 }
8994
8995 if (dev->flags & IFF_UP &&
8996 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8997 struct netdev_notifier_change_info change_info = {
8998 .info = {
8999 .dev = dev,
9000 },
9001 .flags_changed = changes,
9002 };
9003
9004 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9005 }
9006}
9007
9008/**
9009 * dev_change_flags - change device settings
9010 * @dev: device
9011 * @flags: device state flags
9012 * @extack: netlink extended ack
9013 *
9014 * Change settings on device based state flags. The flags are
9015 * in the userspace exported format.
9016 */
9017int dev_change_flags(struct net_device *dev, unsigned int flags,
9018 struct netlink_ext_ack *extack)
9019{
9020 int ret;
9021 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9022
9023 ret = __dev_change_flags(dev, flags, extack);
9024 if (ret < 0)
9025 return ret;
9026
9027 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9028 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
9029 return ret;
9030}
9031EXPORT_SYMBOL(dev_change_flags);
9032
9033int __dev_set_mtu(struct net_device *dev, int new_mtu)
9034{
9035 const struct net_device_ops *ops = dev->netdev_ops;
9036
9037 if (ops->ndo_change_mtu)
9038 return ops->ndo_change_mtu(dev, new_mtu);
9039
9040 /* Pairs with all the lockless reads of dev->mtu in the stack */
9041 WRITE_ONCE(dev->mtu, new_mtu);
9042 return 0;
9043}
9044EXPORT_SYMBOL(__dev_set_mtu);
9045
9046int dev_validate_mtu(struct net_device *dev, int new_mtu,
9047 struct netlink_ext_ack *extack)
9048{
9049 /* MTU must be positive, and in range */
9050 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9051 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9052 return -EINVAL;
9053 }
9054
9055 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9056 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9057 return -EINVAL;
9058 }
9059 return 0;
9060}
9061
9062/**
9063 * dev_set_mtu_ext - Change maximum transfer unit
9064 * @dev: device
9065 * @new_mtu: new transfer unit
9066 * @extack: netlink extended ack
9067 *
9068 * Change the maximum transfer size of the network device.
9069 */
9070int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
9071 struct netlink_ext_ack *extack)
9072{
9073 int err, orig_mtu;
9074
9075 if (new_mtu == dev->mtu)
9076 return 0;
9077
9078 err = dev_validate_mtu(dev, new_mtu, extack);
9079 if (err)
9080 return err;
9081
9082 if (!netif_device_present(dev))
9083 return -ENODEV;
9084
9085 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9086 err = notifier_to_errno(err);
9087 if (err)
9088 return err;
9089
9090 orig_mtu = dev->mtu;
9091 err = __dev_set_mtu(dev, new_mtu);
9092
9093 if (!err) {
9094 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9095 orig_mtu);
9096 err = notifier_to_errno(err);
9097 if (err) {
9098 /* setting mtu back and notifying everyone again,
9099 * so that they have a chance to revert changes.
9100 */
9101 __dev_set_mtu(dev, orig_mtu);
9102 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9103 new_mtu);
9104 }
9105 }
9106 return err;
9107}
9108
9109int dev_set_mtu(struct net_device *dev, int new_mtu)
9110{
9111 struct netlink_ext_ack extack;
9112 int err;
9113
9114 memset(&extack, 0, sizeof(extack));
9115 err = dev_set_mtu_ext(dev, new_mtu, &extack);
9116 if (err && extack._msg)
9117 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9118 return err;
9119}
9120EXPORT_SYMBOL(dev_set_mtu);
9121
9122/**
9123 * dev_change_tx_queue_len - Change TX queue length of a netdevice
9124 * @dev: device
9125 * @new_len: new tx queue length
9126 */
9127int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9128{
9129 unsigned int orig_len = dev->tx_queue_len;
9130 int res;
9131
9132 if (new_len != (unsigned int)new_len)
9133 return -ERANGE;
9134
9135 if (new_len != orig_len) {
9136 WRITE_ONCE(dev->tx_queue_len, new_len);
9137 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9138 res = notifier_to_errno(res);
9139 if (res)
9140 goto err_rollback;
9141 res = dev_qdisc_change_tx_queue_len(dev);
9142 if (res)
9143 goto err_rollback;
9144 }
9145
9146 return 0;
9147
9148err_rollback:
9149 netdev_err(dev, "refused to change device tx_queue_len\n");
9150 WRITE_ONCE(dev->tx_queue_len, orig_len);
9151 return res;
9152}
9153
9154/**
9155 * dev_set_group - Change group this device belongs to
9156 * @dev: device
9157 * @new_group: group this device should belong to
9158 */
9159void dev_set_group(struct net_device *dev, int new_group)
9160{
9161 dev->group = new_group;
9162}
9163
9164/**
9165 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9166 * @dev: device
9167 * @addr: new address
9168 * @extack: netlink extended ack
9169 */
9170int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9171 struct netlink_ext_ack *extack)
9172{
9173 struct netdev_notifier_pre_changeaddr_info info = {
9174 .info.dev = dev,
9175 .info.extack = extack,
9176 .dev_addr = addr,
9177 };
9178 int rc;
9179
9180 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9181 return notifier_to_errno(rc);
9182}
9183EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9184
9185/**
9186 * dev_set_mac_address - Change Media Access Control Address
9187 * @dev: device
9188 * @sa: new address
9189 * @extack: netlink extended ack
9190 *
9191 * Change the hardware (MAC) address of the device
9192 */
9193int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9194 struct netlink_ext_ack *extack)
9195{
9196 const struct net_device_ops *ops = dev->netdev_ops;
9197 int err;
9198
9199 if (!ops->ndo_set_mac_address)
9200 return -EOPNOTSUPP;
9201 if (sa->sa_family != dev->type)
9202 return -EINVAL;
9203 if (!netif_device_present(dev))
9204 return -ENODEV;
9205 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9206 if (err)
9207 return err;
9208 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9209 err = ops->ndo_set_mac_address(dev, sa);
9210 if (err)
9211 return err;
9212 }
9213 dev->addr_assign_type = NET_ADDR_SET;
9214 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9215 add_device_randomness(dev->dev_addr, dev->addr_len);
9216 return 0;
9217}
9218EXPORT_SYMBOL(dev_set_mac_address);
9219
9220DECLARE_RWSEM(dev_addr_sem);
9221
9222int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9223 struct netlink_ext_ack *extack)
9224{
9225 int ret;
9226
9227 down_write(&dev_addr_sem);
9228 ret = dev_set_mac_address(dev, sa, extack);
9229 up_write(&dev_addr_sem);
9230 return ret;
9231}
9232EXPORT_SYMBOL(dev_set_mac_address_user);
9233
9234int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9235{
9236 size_t size = sizeof(sa->sa_data_min);
9237 struct net_device *dev;
9238 int ret = 0;
9239
9240 down_read(&dev_addr_sem);
9241 rcu_read_lock();
9242
9243 dev = dev_get_by_name_rcu(net, dev_name);
9244 if (!dev) {
9245 ret = -ENODEV;
9246 goto unlock;
9247 }
9248 if (!dev->addr_len)
9249 memset(sa->sa_data, 0, size);
9250 else
9251 memcpy(sa->sa_data, dev->dev_addr,
9252 min_t(size_t, size, dev->addr_len));
9253 sa->sa_family = dev->type;
9254
9255unlock:
9256 rcu_read_unlock();
9257 up_read(&dev_addr_sem);
9258 return ret;
9259}
9260EXPORT_SYMBOL(dev_get_mac_address);
9261
9262/**
9263 * dev_change_carrier - Change device carrier
9264 * @dev: device
9265 * @new_carrier: new value
9266 *
9267 * Change device carrier
9268 */
9269int dev_change_carrier(struct net_device *dev, bool new_carrier)
9270{
9271 const struct net_device_ops *ops = dev->netdev_ops;
9272
9273 if (!ops->ndo_change_carrier)
9274 return -EOPNOTSUPP;
9275 if (!netif_device_present(dev))
9276 return -ENODEV;
9277 return ops->ndo_change_carrier(dev, new_carrier);
9278}
9279
9280/**
9281 * dev_get_phys_port_id - Get device physical port ID
9282 * @dev: device
9283 * @ppid: port ID
9284 *
9285 * Get device physical port ID
9286 */
9287int dev_get_phys_port_id(struct net_device *dev,
9288 struct netdev_phys_item_id *ppid)
9289{
9290 const struct net_device_ops *ops = dev->netdev_ops;
9291
9292 if (!ops->ndo_get_phys_port_id)
9293 return -EOPNOTSUPP;
9294 return ops->ndo_get_phys_port_id(dev, ppid);
9295}
9296
9297/**
9298 * dev_get_phys_port_name - Get device physical port name
9299 * @dev: device
9300 * @name: port name
9301 * @len: limit of bytes to copy to name
9302 *
9303 * Get device physical port name
9304 */
9305int dev_get_phys_port_name(struct net_device *dev,
9306 char *name, size_t len)
9307{
9308 const struct net_device_ops *ops = dev->netdev_ops;
9309 int err;
9310
9311 if (ops->ndo_get_phys_port_name) {
9312 err = ops->ndo_get_phys_port_name(dev, name, len);
9313 if (err != -EOPNOTSUPP)
9314 return err;
9315 }
9316 return devlink_compat_phys_port_name_get(dev, name, len);
9317}
9318
9319/**
9320 * dev_get_port_parent_id - Get the device's port parent identifier
9321 * @dev: network device
9322 * @ppid: pointer to a storage for the port's parent identifier
9323 * @recurse: allow/disallow recursion to lower devices
9324 *
9325 * Get the devices's port parent identifier
9326 */
9327int dev_get_port_parent_id(struct net_device *dev,
9328 struct netdev_phys_item_id *ppid,
9329 bool recurse)
9330{
9331 const struct net_device_ops *ops = dev->netdev_ops;
9332 struct netdev_phys_item_id first = { };
9333 struct net_device *lower_dev;
9334 struct list_head *iter;
9335 int err;
9336
9337 if (ops->ndo_get_port_parent_id) {
9338 err = ops->ndo_get_port_parent_id(dev, ppid);
9339 if (err != -EOPNOTSUPP)
9340 return err;
9341 }
9342
9343 err = devlink_compat_switch_id_get(dev, ppid);
9344 if (!recurse || err != -EOPNOTSUPP)
9345 return err;
9346
9347 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9348 err = dev_get_port_parent_id(lower_dev, ppid, true);
9349 if (err)
9350 break;
9351 if (!first.id_len)
9352 first = *ppid;
9353 else if (memcmp(&first, ppid, sizeof(*ppid)))
9354 return -EOPNOTSUPP;
9355 }
9356
9357 return err;
9358}
9359EXPORT_SYMBOL(dev_get_port_parent_id);
9360
9361/**
9362 * netdev_port_same_parent_id - Indicate if two network devices have
9363 * the same port parent identifier
9364 * @a: first network device
9365 * @b: second network device
9366 */
9367bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9368{
9369 struct netdev_phys_item_id a_id = { };
9370 struct netdev_phys_item_id b_id = { };
9371
9372 if (dev_get_port_parent_id(a, &a_id, true) ||
9373 dev_get_port_parent_id(b, &b_id, true))
9374 return false;
9375
9376 return netdev_phys_item_id_same(&a_id, &b_id);
9377}
9378EXPORT_SYMBOL(netdev_port_same_parent_id);
9379
9380/**
9381 * dev_change_proto_down - set carrier according to proto_down.
9382 *
9383 * @dev: device
9384 * @proto_down: new value
9385 */
9386int dev_change_proto_down(struct net_device *dev, bool proto_down)
9387{
9388 if (!dev->change_proto_down)
9389 return -EOPNOTSUPP;
9390 if (!netif_device_present(dev))
9391 return -ENODEV;
9392 if (proto_down)
9393 netif_carrier_off(dev);
9394 else
9395 netif_carrier_on(dev);
9396 WRITE_ONCE(dev->proto_down, proto_down);
9397 return 0;
9398}
9399
9400/**
9401 * dev_change_proto_down_reason - proto down reason
9402 *
9403 * @dev: device
9404 * @mask: proto down mask
9405 * @value: proto down value
9406 */
9407void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9408 u32 value)
9409{
9410 u32 proto_down_reason;
9411 int b;
9412
9413 if (!mask) {
9414 proto_down_reason = value;
9415 } else {
9416 proto_down_reason = dev->proto_down_reason;
9417 for_each_set_bit(b, &mask, 32) {
9418 if (value & (1 << b))
9419 proto_down_reason |= BIT(b);
9420 else
9421 proto_down_reason &= ~BIT(b);
9422 }
9423 }
9424 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9425}
9426
9427struct bpf_xdp_link {
9428 struct bpf_link link;
9429 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9430 int flags;
9431};
9432
9433static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9434{
9435 if (flags & XDP_FLAGS_HW_MODE)
9436 return XDP_MODE_HW;
9437 if (flags & XDP_FLAGS_DRV_MODE)
9438 return XDP_MODE_DRV;
9439 if (flags & XDP_FLAGS_SKB_MODE)
9440 return XDP_MODE_SKB;
9441 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9442}
9443
9444static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9445{
9446 switch (mode) {
9447 case XDP_MODE_SKB:
9448 return generic_xdp_install;
9449 case XDP_MODE_DRV:
9450 case XDP_MODE_HW:
9451 return dev->netdev_ops->ndo_bpf;
9452 default:
9453 return NULL;
9454 }
9455}
9456
9457static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9458 enum bpf_xdp_mode mode)
9459{
9460 return dev->xdp_state[mode].link;
9461}
9462
9463static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9464 enum bpf_xdp_mode mode)
9465{
9466 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9467
9468 if (link)
9469 return link->link.prog;
9470 return dev->xdp_state[mode].prog;
9471}
9472
9473u8 dev_xdp_prog_count(struct net_device *dev)
9474{
9475 u8 count = 0;
9476 int i;
9477
9478 for (i = 0; i < __MAX_XDP_MODE; i++)
9479 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9480 count++;
9481 return count;
9482}
9483EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9484
9485int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9486{
9487 if (!dev->netdev_ops->ndo_bpf)
9488 return -EOPNOTSUPP;
9489
9490 if (dev_get_min_mp_channel_count(dev)) {
9491 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9492 return -EBUSY;
9493 }
9494
9495 return dev->netdev_ops->ndo_bpf(dev, bpf);
9496}
9497EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9498
9499u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9500{
9501 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9502
9503 return prog ? prog->aux->id : 0;
9504}
9505
9506static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9507 struct bpf_xdp_link *link)
9508{
9509 dev->xdp_state[mode].link = link;
9510 dev->xdp_state[mode].prog = NULL;
9511}
9512
9513static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9514 struct bpf_prog *prog)
9515{
9516 dev->xdp_state[mode].link = NULL;
9517 dev->xdp_state[mode].prog = prog;
9518}
9519
9520static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9521 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9522 u32 flags, struct bpf_prog *prog)
9523{
9524 struct netdev_bpf xdp;
9525 int err;
9526
9527 if (dev_get_min_mp_channel_count(dev)) {
9528 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9529 return -EBUSY;
9530 }
9531
9532 memset(&xdp, 0, sizeof(xdp));
9533 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9534 xdp.extack = extack;
9535 xdp.flags = flags;
9536 xdp.prog = prog;
9537
9538 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9539 * "moved" into driver), so they don't increment it on their own, but
9540 * they do decrement refcnt when program is detached or replaced.
9541 * Given net_device also owns link/prog, we need to bump refcnt here
9542 * to prevent drivers from underflowing it.
9543 */
9544 if (prog)
9545 bpf_prog_inc(prog);
9546 err = bpf_op(dev, &xdp);
9547 if (err) {
9548 if (prog)
9549 bpf_prog_put(prog);
9550 return err;
9551 }
9552
9553 if (mode != XDP_MODE_HW)
9554 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9555
9556 return 0;
9557}
9558
9559static void dev_xdp_uninstall(struct net_device *dev)
9560{
9561 struct bpf_xdp_link *link;
9562 struct bpf_prog *prog;
9563 enum bpf_xdp_mode mode;
9564 bpf_op_t bpf_op;
9565
9566 ASSERT_RTNL();
9567
9568 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9569 prog = dev_xdp_prog(dev, mode);
9570 if (!prog)
9571 continue;
9572
9573 bpf_op = dev_xdp_bpf_op(dev, mode);
9574 if (!bpf_op)
9575 continue;
9576
9577 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9578
9579 /* auto-detach link from net device */
9580 link = dev_xdp_link(dev, mode);
9581 if (link)
9582 link->dev = NULL;
9583 else
9584 bpf_prog_put(prog);
9585
9586 dev_xdp_set_link(dev, mode, NULL);
9587 }
9588}
9589
9590static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9591 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9592 struct bpf_prog *old_prog, u32 flags)
9593{
9594 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9595 struct bpf_prog *cur_prog;
9596 struct net_device *upper;
9597 struct list_head *iter;
9598 enum bpf_xdp_mode mode;
9599 bpf_op_t bpf_op;
9600 int err;
9601
9602 ASSERT_RTNL();
9603
9604 /* either link or prog attachment, never both */
9605 if (link && (new_prog || old_prog))
9606 return -EINVAL;
9607 /* link supports only XDP mode flags */
9608 if (link && (flags & ~XDP_FLAGS_MODES)) {
9609 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9610 return -EINVAL;
9611 }
9612 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9613 if (num_modes > 1) {
9614 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9615 return -EINVAL;
9616 }
9617 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9618 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9619 NL_SET_ERR_MSG(extack,
9620 "More than one program loaded, unset mode is ambiguous");
9621 return -EINVAL;
9622 }
9623 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9624 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9625 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9626 return -EINVAL;
9627 }
9628
9629 mode = dev_xdp_mode(dev, flags);
9630 /* can't replace attached link */
9631 if (dev_xdp_link(dev, mode)) {
9632 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9633 return -EBUSY;
9634 }
9635
9636 /* don't allow if an upper device already has a program */
9637 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9638 if (dev_xdp_prog_count(upper) > 0) {
9639 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9640 return -EEXIST;
9641 }
9642 }
9643
9644 cur_prog = dev_xdp_prog(dev, mode);
9645 /* can't replace attached prog with link */
9646 if (link && cur_prog) {
9647 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9648 return -EBUSY;
9649 }
9650 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9651 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9652 return -EEXIST;
9653 }
9654
9655 /* put effective new program into new_prog */
9656 if (link)
9657 new_prog = link->link.prog;
9658
9659 if (new_prog) {
9660 bool offload = mode == XDP_MODE_HW;
9661 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9662 ? XDP_MODE_DRV : XDP_MODE_SKB;
9663
9664 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9665 NL_SET_ERR_MSG(extack, "XDP program already attached");
9666 return -EBUSY;
9667 }
9668 if (!offload && dev_xdp_prog(dev, other_mode)) {
9669 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9670 return -EEXIST;
9671 }
9672 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9673 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9674 return -EINVAL;
9675 }
9676 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9677 NL_SET_ERR_MSG(extack, "Program bound to different device");
9678 return -EINVAL;
9679 }
9680 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9681 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9682 return -EINVAL;
9683 }
9684 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9685 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9686 return -EINVAL;
9687 }
9688 }
9689
9690 /* don't call drivers if the effective program didn't change */
9691 if (new_prog != cur_prog) {
9692 bpf_op = dev_xdp_bpf_op(dev, mode);
9693 if (!bpf_op) {
9694 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9695 return -EOPNOTSUPP;
9696 }
9697
9698 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9699 if (err)
9700 return err;
9701 }
9702
9703 if (link)
9704 dev_xdp_set_link(dev, mode, link);
9705 else
9706 dev_xdp_set_prog(dev, mode, new_prog);
9707 if (cur_prog)
9708 bpf_prog_put(cur_prog);
9709
9710 return 0;
9711}
9712
9713static int dev_xdp_attach_link(struct net_device *dev,
9714 struct netlink_ext_ack *extack,
9715 struct bpf_xdp_link *link)
9716{
9717 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9718}
9719
9720static int dev_xdp_detach_link(struct net_device *dev,
9721 struct netlink_ext_ack *extack,
9722 struct bpf_xdp_link *link)
9723{
9724 enum bpf_xdp_mode mode;
9725 bpf_op_t bpf_op;
9726
9727 ASSERT_RTNL();
9728
9729 mode = dev_xdp_mode(dev, link->flags);
9730 if (dev_xdp_link(dev, mode) != link)
9731 return -EINVAL;
9732
9733 bpf_op = dev_xdp_bpf_op(dev, mode);
9734 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9735 dev_xdp_set_link(dev, mode, NULL);
9736 return 0;
9737}
9738
9739static void bpf_xdp_link_release(struct bpf_link *link)
9740{
9741 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9742
9743 rtnl_lock();
9744
9745 /* if racing with net_device's tear down, xdp_link->dev might be
9746 * already NULL, in which case link was already auto-detached
9747 */
9748 if (xdp_link->dev) {
9749 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9750 xdp_link->dev = NULL;
9751 }
9752
9753 rtnl_unlock();
9754}
9755
9756static int bpf_xdp_link_detach(struct bpf_link *link)
9757{
9758 bpf_xdp_link_release(link);
9759 return 0;
9760}
9761
9762static void bpf_xdp_link_dealloc(struct bpf_link *link)
9763{
9764 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9765
9766 kfree(xdp_link);
9767}
9768
9769static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9770 struct seq_file *seq)
9771{
9772 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9773 u32 ifindex = 0;
9774
9775 rtnl_lock();
9776 if (xdp_link->dev)
9777 ifindex = xdp_link->dev->ifindex;
9778 rtnl_unlock();
9779
9780 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9781}
9782
9783static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9784 struct bpf_link_info *info)
9785{
9786 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9787 u32 ifindex = 0;
9788
9789 rtnl_lock();
9790 if (xdp_link->dev)
9791 ifindex = xdp_link->dev->ifindex;
9792 rtnl_unlock();
9793
9794 info->xdp.ifindex = ifindex;
9795 return 0;
9796}
9797
9798static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9799 struct bpf_prog *old_prog)
9800{
9801 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9802 enum bpf_xdp_mode mode;
9803 bpf_op_t bpf_op;
9804 int err = 0;
9805
9806 rtnl_lock();
9807
9808 /* link might have been auto-released already, so fail */
9809 if (!xdp_link->dev) {
9810 err = -ENOLINK;
9811 goto out_unlock;
9812 }
9813
9814 if (old_prog && link->prog != old_prog) {
9815 err = -EPERM;
9816 goto out_unlock;
9817 }
9818 old_prog = link->prog;
9819 if (old_prog->type != new_prog->type ||
9820 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9821 err = -EINVAL;
9822 goto out_unlock;
9823 }
9824
9825 if (old_prog == new_prog) {
9826 /* no-op, don't disturb drivers */
9827 bpf_prog_put(new_prog);
9828 goto out_unlock;
9829 }
9830
9831 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9832 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9833 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9834 xdp_link->flags, new_prog);
9835 if (err)
9836 goto out_unlock;
9837
9838 old_prog = xchg(&link->prog, new_prog);
9839 bpf_prog_put(old_prog);
9840
9841out_unlock:
9842 rtnl_unlock();
9843 return err;
9844}
9845
9846static const struct bpf_link_ops bpf_xdp_link_lops = {
9847 .release = bpf_xdp_link_release,
9848 .dealloc = bpf_xdp_link_dealloc,
9849 .detach = bpf_xdp_link_detach,
9850 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9851 .fill_link_info = bpf_xdp_link_fill_link_info,
9852 .update_prog = bpf_xdp_link_update,
9853};
9854
9855int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9856{
9857 struct net *net = current->nsproxy->net_ns;
9858 struct bpf_link_primer link_primer;
9859 struct netlink_ext_ack extack = {};
9860 struct bpf_xdp_link *link;
9861 struct net_device *dev;
9862 int err, fd;
9863
9864 rtnl_lock();
9865 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9866 if (!dev) {
9867 rtnl_unlock();
9868 return -EINVAL;
9869 }
9870
9871 link = kzalloc(sizeof(*link), GFP_USER);
9872 if (!link) {
9873 err = -ENOMEM;
9874 goto unlock;
9875 }
9876
9877 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9878 link->dev = dev;
9879 link->flags = attr->link_create.flags;
9880
9881 err = bpf_link_prime(&link->link, &link_primer);
9882 if (err) {
9883 kfree(link);
9884 goto unlock;
9885 }
9886
9887 err = dev_xdp_attach_link(dev, &extack, link);
9888 rtnl_unlock();
9889
9890 if (err) {
9891 link->dev = NULL;
9892 bpf_link_cleanup(&link_primer);
9893 trace_bpf_xdp_link_attach_failed(extack._msg);
9894 goto out_put_dev;
9895 }
9896
9897 fd = bpf_link_settle(&link_primer);
9898 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9899 dev_put(dev);
9900 return fd;
9901
9902unlock:
9903 rtnl_unlock();
9904
9905out_put_dev:
9906 dev_put(dev);
9907 return err;
9908}
9909
9910/**
9911 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9912 * @dev: device
9913 * @extack: netlink extended ack
9914 * @fd: new program fd or negative value to clear
9915 * @expected_fd: old program fd that userspace expects to replace or clear
9916 * @flags: xdp-related flags
9917 *
9918 * Set or clear a bpf program for a device
9919 */
9920int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9921 int fd, int expected_fd, u32 flags)
9922{
9923 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9924 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9925 int err;
9926
9927 ASSERT_RTNL();
9928
9929 if (fd >= 0) {
9930 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9931 mode != XDP_MODE_SKB);
9932 if (IS_ERR(new_prog))
9933 return PTR_ERR(new_prog);
9934 }
9935
9936 if (expected_fd >= 0) {
9937 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9938 mode != XDP_MODE_SKB);
9939 if (IS_ERR(old_prog)) {
9940 err = PTR_ERR(old_prog);
9941 old_prog = NULL;
9942 goto err_out;
9943 }
9944 }
9945
9946 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9947
9948err_out:
9949 if (err && new_prog)
9950 bpf_prog_put(new_prog);
9951 if (old_prog)
9952 bpf_prog_put(old_prog);
9953 return err;
9954}
9955
9956u32 dev_get_min_mp_channel_count(const struct net_device *dev)
9957{
9958 int i;
9959
9960 ASSERT_RTNL();
9961
9962 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
9963 if (dev->_rx[i].mp_params.mp_priv)
9964 /* The channel count is the idx plus 1. */
9965 return i + 1;
9966
9967 return 0;
9968}
9969
9970/**
9971 * dev_index_reserve() - allocate an ifindex in a namespace
9972 * @net: the applicable net namespace
9973 * @ifindex: requested ifindex, pass %0 to get one allocated
9974 *
9975 * Allocate a ifindex for a new device. Caller must either use the ifindex
9976 * to store the device (via list_netdevice()) or call dev_index_release()
9977 * to give the index up.
9978 *
9979 * Return: a suitable unique value for a new device interface number or -errno.
9980 */
9981static int dev_index_reserve(struct net *net, u32 ifindex)
9982{
9983 int err;
9984
9985 if (ifindex > INT_MAX) {
9986 DEBUG_NET_WARN_ON_ONCE(1);
9987 return -EINVAL;
9988 }
9989
9990 if (!ifindex)
9991 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9992 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9993 else
9994 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9995 if (err < 0)
9996 return err;
9997
9998 return ifindex;
9999}
10000
10001static void dev_index_release(struct net *net, int ifindex)
10002{
10003 /* Expect only unused indexes, unlist_netdevice() removes the used */
10004 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10005}
10006
10007/* Delayed registration/unregisteration */
10008LIST_HEAD(net_todo_list);
10009DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10010atomic_t dev_unreg_count = ATOMIC_INIT(0);
10011
10012static void net_set_todo(struct net_device *dev)
10013{
10014 list_add_tail(&dev->todo_list, &net_todo_list);
10015}
10016
10017static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10018 struct net_device *upper, netdev_features_t features)
10019{
10020 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10021 netdev_features_t feature;
10022 int feature_bit;
10023
10024 for_each_netdev_feature(upper_disables, feature_bit) {
10025 feature = __NETIF_F_BIT(feature_bit);
10026 if (!(upper->wanted_features & feature)
10027 && (features & feature)) {
10028 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10029 &feature, upper->name);
10030 features &= ~feature;
10031 }
10032 }
10033
10034 return features;
10035}
10036
10037static void netdev_sync_lower_features(struct net_device *upper,
10038 struct net_device *lower, netdev_features_t features)
10039{
10040 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10041 netdev_features_t feature;
10042 int feature_bit;
10043
10044 for_each_netdev_feature(upper_disables, feature_bit) {
10045 feature = __NETIF_F_BIT(feature_bit);
10046 if (!(features & feature) && (lower->features & feature)) {
10047 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10048 &feature, lower->name);
10049 lower->wanted_features &= ~feature;
10050 __netdev_update_features(lower);
10051
10052 if (unlikely(lower->features & feature))
10053 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10054 &feature, lower->name);
10055 else
10056 netdev_features_change(lower);
10057 }
10058 }
10059}
10060
10061static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10062{
10063 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10064 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10065 bool hw_csum = features & NETIF_F_HW_CSUM;
10066
10067 return ip_csum || hw_csum;
10068}
10069
10070static netdev_features_t netdev_fix_features(struct net_device *dev,
10071 netdev_features_t features)
10072{
10073 /* Fix illegal checksum combinations */
10074 if ((features & NETIF_F_HW_CSUM) &&
10075 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10076 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10077 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10078 }
10079
10080 /* TSO requires that SG is present as well. */
10081 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10082 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10083 features &= ~NETIF_F_ALL_TSO;
10084 }
10085
10086 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10087 !(features & NETIF_F_IP_CSUM)) {
10088 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10089 features &= ~NETIF_F_TSO;
10090 features &= ~NETIF_F_TSO_ECN;
10091 }
10092
10093 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10094 !(features & NETIF_F_IPV6_CSUM)) {
10095 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10096 features &= ~NETIF_F_TSO6;
10097 }
10098
10099 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10100 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10101 features &= ~NETIF_F_TSO_MANGLEID;
10102
10103 /* TSO ECN requires that TSO is present as well. */
10104 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10105 features &= ~NETIF_F_TSO_ECN;
10106
10107 /* Software GSO depends on SG. */
10108 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10109 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10110 features &= ~NETIF_F_GSO;
10111 }
10112
10113 /* GSO partial features require GSO partial be set */
10114 if ((features & dev->gso_partial_features) &&
10115 !(features & NETIF_F_GSO_PARTIAL)) {
10116 netdev_dbg(dev,
10117 "Dropping partially supported GSO features since no GSO partial.\n");
10118 features &= ~dev->gso_partial_features;
10119 }
10120
10121 if (!(features & NETIF_F_RXCSUM)) {
10122 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10123 * successfully merged by hardware must also have the
10124 * checksum verified by hardware. If the user does not
10125 * want to enable RXCSUM, logically, we should disable GRO_HW.
10126 */
10127 if (features & NETIF_F_GRO_HW) {
10128 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10129 features &= ~NETIF_F_GRO_HW;
10130 }
10131 }
10132
10133 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10134 if (features & NETIF_F_RXFCS) {
10135 if (features & NETIF_F_LRO) {
10136 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10137 features &= ~NETIF_F_LRO;
10138 }
10139
10140 if (features & NETIF_F_GRO_HW) {
10141 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10142 features &= ~NETIF_F_GRO_HW;
10143 }
10144 }
10145
10146 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10147 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10148 features &= ~NETIF_F_LRO;
10149 }
10150
10151 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10152 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10153 features &= ~NETIF_F_HW_TLS_TX;
10154 }
10155
10156 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10157 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10158 features &= ~NETIF_F_HW_TLS_RX;
10159 }
10160
10161 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10162 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10163 features &= ~NETIF_F_GSO_UDP_L4;
10164 }
10165
10166 return features;
10167}
10168
10169int __netdev_update_features(struct net_device *dev)
10170{
10171 struct net_device *upper, *lower;
10172 netdev_features_t features;
10173 struct list_head *iter;
10174 int err = -1;
10175
10176 ASSERT_RTNL();
10177
10178 features = netdev_get_wanted_features(dev);
10179
10180 if (dev->netdev_ops->ndo_fix_features)
10181 features = dev->netdev_ops->ndo_fix_features(dev, features);
10182
10183 /* driver might be less strict about feature dependencies */
10184 features = netdev_fix_features(dev, features);
10185
10186 /* some features can't be enabled if they're off on an upper device */
10187 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10188 features = netdev_sync_upper_features(dev, upper, features);
10189
10190 if (dev->features == features)
10191 goto sync_lower;
10192
10193 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10194 &dev->features, &features);
10195
10196 if (dev->netdev_ops->ndo_set_features)
10197 err = dev->netdev_ops->ndo_set_features(dev, features);
10198 else
10199 err = 0;
10200
10201 if (unlikely(err < 0)) {
10202 netdev_err(dev,
10203 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10204 err, &features, &dev->features);
10205 /* return non-0 since some features might have changed and
10206 * it's better to fire a spurious notification than miss it
10207 */
10208 return -1;
10209 }
10210
10211sync_lower:
10212 /* some features must be disabled on lower devices when disabled
10213 * on an upper device (think: bonding master or bridge)
10214 */
10215 netdev_for_each_lower_dev(dev, lower, iter)
10216 netdev_sync_lower_features(dev, lower, features);
10217
10218 if (!err) {
10219 netdev_features_t diff = features ^ dev->features;
10220
10221 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10222 /* udp_tunnel_{get,drop}_rx_info both need
10223 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10224 * device, or they won't do anything.
10225 * Thus we need to update dev->features
10226 * *before* calling udp_tunnel_get_rx_info,
10227 * but *after* calling udp_tunnel_drop_rx_info.
10228 */
10229 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10230 dev->features = features;
10231 udp_tunnel_get_rx_info(dev);
10232 } else {
10233 udp_tunnel_drop_rx_info(dev);
10234 }
10235 }
10236
10237 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10238 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10239 dev->features = features;
10240 err |= vlan_get_rx_ctag_filter_info(dev);
10241 } else {
10242 vlan_drop_rx_ctag_filter_info(dev);
10243 }
10244 }
10245
10246 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10247 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10248 dev->features = features;
10249 err |= vlan_get_rx_stag_filter_info(dev);
10250 } else {
10251 vlan_drop_rx_stag_filter_info(dev);
10252 }
10253 }
10254
10255 dev->features = features;
10256 }
10257
10258 return err < 0 ? 0 : 1;
10259}
10260
10261/**
10262 * netdev_update_features - recalculate device features
10263 * @dev: the device to check
10264 *
10265 * Recalculate dev->features set and send notifications if it
10266 * has changed. Should be called after driver or hardware dependent
10267 * conditions might have changed that influence the features.
10268 */
10269void netdev_update_features(struct net_device *dev)
10270{
10271 if (__netdev_update_features(dev))
10272 netdev_features_change(dev);
10273}
10274EXPORT_SYMBOL(netdev_update_features);
10275
10276/**
10277 * netdev_change_features - recalculate device features
10278 * @dev: the device to check
10279 *
10280 * Recalculate dev->features set and send notifications even
10281 * if they have not changed. Should be called instead of
10282 * netdev_update_features() if also dev->vlan_features might
10283 * have changed to allow the changes to be propagated to stacked
10284 * VLAN devices.
10285 */
10286void netdev_change_features(struct net_device *dev)
10287{
10288 __netdev_update_features(dev);
10289 netdev_features_change(dev);
10290}
10291EXPORT_SYMBOL(netdev_change_features);
10292
10293/**
10294 * netif_stacked_transfer_operstate - transfer operstate
10295 * @rootdev: the root or lower level device to transfer state from
10296 * @dev: the device to transfer operstate to
10297 *
10298 * Transfer operational state from root to device. This is normally
10299 * called when a stacking relationship exists between the root
10300 * device and the device(a leaf device).
10301 */
10302void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10303 struct net_device *dev)
10304{
10305 if (rootdev->operstate == IF_OPER_DORMANT)
10306 netif_dormant_on(dev);
10307 else
10308 netif_dormant_off(dev);
10309
10310 if (rootdev->operstate == IF_OPER_TESTING)
10311 netif_testing_on(dev);
10312 else
10313 netif_testing_off(dev);
10314
10315 if (netif_carrier_ok(rootdev))
10316 netif_carrier_on(dev);
10317 else
10318 netif_carrier_off(dev);
10319}
10320EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10321
10322static int netif_alloc_rx_queues(struct net_device *dev)
10323{
10324 unsigned int i, count = dev->num_rx_queues;
10325 struct netdev_rx_queue *rx;
10326 size_t sz = count * sizeof(*rx);
10327 int err = 0;
10328
10329 BUG_ON(count < 1);
10330
10331 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10332 if (!rx)
10333 return -ENOMEM;
10334
10335 dev->_rx = rx;
10336
10337 for (i = 0; i < count; i++) {
10338 rx[i].dev = dev;
10339
10340 /* XDP RX-queue setup */
10341 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10342 if (err < 0)
10343 goto err_rxq_info;
10344 }
10345 return 0;
10346
10347err_rxq_info:
10348 /* Rollback successful reg's and free other resources */
10349 while (i--)
10350 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10351 kvfree(dev->_rx);
10352 dev->_rx = NULL;
10353 return err;
10354}
10355
10356static void netif_free_rx_queues(struct net_device *dev)
10357{
10358 unsigned int i, count = dev->num_rx_queues;
10359
10360 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10361 if (!dev->_rx)
10362 return;
10363
10364 for (i = 0; i < count; i++)
10365 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10366
10367 kvfree(dev->_rx);
10368}
10369
10370static void netdev_init_one_queue(struct net_device *dev,
10371 struct netdev_queue *queue, void *_unused)
10372{
10373 /* Initialize queue lock */
10374 spin_lock_init(&queue->_xmit_lock);
10375 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10376 queue->xmit_lock_owner = -1;
10377 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10378 queue->dev = dev;
10379#ifdef CONFIG_BQL
10380 dql_init(&queue->dql, HZ);
10381#endif
10382}
10383
10384static void netif_free_tx_queues(struct net_device *dev)
10385{
10386 kvfree(dev->_tx);
10387}
10388
10389static int netif_alloc_netdev_queues(struct net_device *dev)
10390{
10391 unsigned int count = dev->num_tx_queues;
10392 struct netdev_queue *tx;
10393 size_t sz = count * sizeof(*tx);
10394
10395 if (count < 1 || count > 0xffff)
10396 return -EINVAL;
10397
10398 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10399 if (!tx)
10400 return -ENOMEM;
10401
10402 dev->_tx = tx;
10403
10404 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10405 spin_lock_init(&dev->tx_global_lock);
10406
10407 return 0;
10408}
10409
10410void netif_tx_stop_all_queues(struct net_device *dev)
10411{
10412 unsigned int i;
10413
10414 for (i = 0; i < dev->num_tx_queues; i++) {
10415 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10416
10417 netif_tx_stop_queue(txq);
10418 }
10419}
10420EXPORT_SYMBOL(netif_tx_stop_all_queues);
10421
10422static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10423{
10424 void __percpu *v;
10425
10426 /* Drivers implementing ndo_get_peer_dev must support tstat
10427 * accounting, so that skb_do_redirect() can bump the dev's
10428 * RX stats upon network namespace switch.
10429 */
10430 if (dev->netdev_ops->ndo_get_peer_dev &&
10431 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10432 return -EOPNOTSUPP;
10433
10434 switch (dev->pcpu_stat_type) {
10435 case NETDEV_PCPU_STAT_NONE:
10436 return 0;
10437 case NETDEV_PCPU_STAT_LSTATS:
10438 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10439 break;
10440 case NETDEV_PCPU_STAT_TSTATS:
10441 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10442 break;
10443 case NETDEV_PCPU_STAT_DSTATS:
10444 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10445 break;
10446 default:
10447 return -EINVAL;
10448 }
10449
10450 return v ? 0 : -ENOMEM;
10451}
10452
10453static void netdev_do_free_pcpu_stats(struct net_device *dev)
10454{
10455 switch (dev->pcpu_stat_type) {
10456 case NETDEV_PCPU_STAT_NONE:
10457 return;
10458 case NETDEV_PCPU_STAT_LSTATS:
10459 free_percpu(dev->lstats);
10460 break;
10461 case NETDEV_PCPU_STAT_TSTATS:
10462 free_percpu(dev->tstats);
10463 break;
10464 case NETDEV_PCPU_STAT_DSTATS:
10465 free_percpu(dev->dstats);
10466 break;
10467 }
10468}
10469
10470static void netdev_free_phy_link_topology(struct net_device *dev)
10471{
10472 struct phy_link_topology *topo = dev->link_topo;
10473
10474 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10475 xa_destroy(&topo->phys);
10476 kfree(topo);
10477 dev->link_topo = NULL;
10478 }
10479}
10480
10481/**
10482 * register_netdevice() - register a network device
10483 * @dev: device to register
10484 *
10485 * Take a prepared network device structure and make it externally accessible.
10486 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10487 * Callers must hold the rtnl lock - you may want register_netdev()
10488 * instead of this.
10489 */
10490int register_netdevice(struct net_device *dev)
10491{
10492 int ret;
10493 struct net *net = dev_net(dev);
10494
10495 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10496 NETDEV_FEATURE_COUNT);
10497 BUG_ON(dev_boot_phase);
10498 ASSERT_RTNL();
10499
10500 might_sleep();
10501
10502 /* When net_device's are persistent, this will be fatal. */
10503 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10504 BUG_ON(!net);
10505
10506 ret = ethtool_check_ops(dev->ethtool_ops);
10507 if (ret)
10508 return ret;
10509
10510 /* rss ctx ID 0 is reserved for the default context, start from 1 */
10511 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10512 mutex_init(&dev->ethtool->rss_lock);
10513
10514 spin_lock_init(&dev->addr_list_lock);
10515 netdev_set_addr_lockdep_class(dev);
10516
10517 ret = dev_get_valid_name(net, dev, dev->name);
10518 if (ret < 0)
10519 goto out;
10520
10521 ret = -ENOMEM;
10522 dev->name_node = netdev_name_node_head_alloc(dev);
10523 if (!dev->name_node)
10524 goto out;
10525
10526 /* Init, if this function is available */
10527 if (dev->netdev_ops->ndo_init) {
10528 ret = dev->netdev_ops->ndo_init(dev);
10529 if (ret) {
10530 if (ret > 0)
10531 ret = -EIO;
10532 goto err_free_name;
10533 }
10534 }
10535
10536 if (((dev->hw_features | dev->features) &
10537 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10538 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10539 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10540 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10541 ret = -EINVAL;
10542 goto err_uninit;
10543 }
10544
10545 ret = netdev_do_alloc_pcpu_stats(dev);
10546 if (ret)
10547 goto err_uninit;
10548
10549 ret = dev_index_reserve(net, dev->ifindex);
10550 if (ret < 0)
10551 goto err_free_pcpu;
10552 dev->ifindex = ret;
10553
10554 /* Transfer changeable features to wanted_features and enable
10555 * software offloads (GSO and GRO).
10556 */
10557 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10558 dev->features |= NETIF_F_SOFT_FEATURES;
10559
10560 if (dev->udp_tunnel_nic_info) {
10561 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10562 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10563 }
10564
10565 dev->wanted_features = dev->features & dev->hw_features;
10566
10567 if (!(dev->flags & IFF_LOOPBACK))
10568 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10569
10570 /* If IPv4 TCP segmentation offload is supported we should also
10571 * allow the device to enable segmenting the frame with the option
10572 * of ignoring a static IP ID value. This doesn't enable the
10573 * feature itself but allows the user to enable it later.
10574 */
10575 if (dev->hw_features & NETIF_F_TSO)
10576 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10577 if (dev->vlan_features & NETIF_F_TSO)
10578 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10579 if (dev->mpls_features & NETIF_F_TSO)
10580 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10581 if (dev->hw_enc_features & NETIF_F_TSO)
10582 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10583
10584 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10585 */
10586 dev->vlan_features |= NETIF_F_HIGHDMA;
10587
10588 /* Make NETIF_F_SG inheritable to tunnel devices.
10589 */
10590 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10591
10592 /* Make NETIF_F_SG inheritable to MPLS.
10593 */
10594 dev->mpls_features |= NETIF_F_SG;
10595
10596 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10597 ret = notifier_to_errno(ret);
10598 if (ret)
10599 goto err_ifindex_release;
10600
10601 ret = netdev_register_kobject(dev);
10602
10603 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10604
10605 if (ret)
10606 goto err_uninit_notify;
10607
10608 __netdev_update_features(dev);
10609
10610 /*
10611 * Default initial state at registry is that the
10612 * device is present.
10613 */
10614
10615 set_bit(__LINK_STATE_PRESENT, &dev->state);
10616
10617 linkwatch_init_dev(dev);
10618
10619 dev_init_scheduler(dev);
10620
10621 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10622 list_netdevice(dev);
10623
10624 add_device_randomness(dev->dev_addr, dev->addr_len);
10625
10626 /* If the device has permanent device address, driver should
10627 * set dev_addr and also addr_assign_type should be set to
10628 * NET_ADDR_PERM (default value).
10629 */
10630 if (dev->addr_assign_type == NET_ADDR_PERM)
10631 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10632
10633 /* Notify protocols, that a new device appeared. */
10634 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10635 ret = notifier_to_errno(ret);
10636 if (ret) {
10637 /* Expect explicit free_netdev() on failure */
10638 dev->needs_free_netdev = false;
10639 unregister_netdevice_queue(dev, NULL);
10640 goto out;
10641 }
10642 /*
10643 * Prevent userspace races by waiting until the network
10644 * device is fully setup before sending notifications.
10645 */
10646 if (!dev->rtnl_link_ops ||
10647 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10648 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10649
10650out:
10651 return ret;
10652
10653err_uninit_notify:
10654 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10655err_ifindex_release:
10656 dev_index_release(net, dev->ifindex);
10657err_free_pcpu:
10658 netdev_do_free_pcpu_stats(dev);
10659err_uninit:
10660 if (dev->netdev_ops->ndo_uninit)
10661 dev->netdev_ops->ndo_uninit(dev);
10662 if (dev->priv_destructor)
10663 dev->priv_destructor(dev);
10664err_free_name:
10665 netdev_name_node_free(dev->name_node);
10666 goto out;
10667}
10668EXPORT_SYMBOL(register_netdevice);
10669
10670/* Initialize the core of a dummy net device.
10671 * This is useful if you are calling this function after alloc_netdev(),
10672 * since it does not memset the net_device fields.
10673 */
10674static void init_dummy_netdev_core(struct net_device *dev)
10675{
10676 /* make sure we BUG if trying to hit standard
10677 * register/unregister code path
10678 */
10679 dev->reg_state = NETREG_DUMMY;
10680
10681 /* NAPI wants this */
10682 INIT_LIST_HEAD(&dev->napi_list);
10683
10684 /* a dummy interface is started by default */
10685 set_bit(__LINK_STATE_PRESENT, &dev->state);
10686 set_bit(__LINK_STATE_START, &dev->state);
10687
10688 /* napi_busy_loop stats accounting wants this */
10689 dev_net_set(dev, &init_net);
10690
10691 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10692 * because users of this 'device' dont need to change
10693 * its refcount.
10694 */
10695}
10696
10697/**
10698 * init_dummy_netdev - init a dummy network device for NAPI
10699 * @dev: device to init
10700 *
10701 * This takes a network device structure and initializes the minimum
10702 * amount of fields so it can be used to schedule NAPI polls without
10703 * registering a full blown interface. This is to be used by drivers
10704 * that need to tie several hardware interfaces to a single NAPI
10705 * poll scheduler due to HW limitations.
10706 */
10707void init_dummy_netdev(struct net_device *dev)
10708{
10709 /* Clear everything. Note we don't initialize spinlocks
10710 * as they aren't supposed to be taken by any of the
10711 * NAPI code and this dummy netdev is supposed to be
10712 * only ever used for NAPI polls
10713 */
10714 memset(dev, 0, sizeof(struct net_device));
10715 init_dummy_netdev_core(dev);
10716}
10717EXPORT_SYMBOL_GPL(init_dummy_netdev);
10718
10719/**
10720 * register_netdev - register a network device
10721 * @dev: device to register
10722 *
10723 * Take a completed network device structure and add it to the kernel
10724 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10725 * chain. 0 is returned on success. A negative errno code is returned
10726 * on a failure to set up the device, or if the name is a duplicate.
10727 *
10728 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10729 * and expands the device name if you passed a format string to
10730 * alloc_netdev.
10731 */
10732int register_netdev(struct net_device *dev)
10733{
10734 int err;
10735
10736 if (rtnl_lock_killable())
10737 return -EINTR;
10738 err = register_netdevice(dev);
10739 rtnl_unlock();
10740 return err;
10741}
10742EXPORT_SYMBOL(register_netdev);
10743
10744int netdev_refcnt_read(const struct net_device *dev)
10745{
10746#ifdef CONFIG_PCPU_DEV_REFCNT
10747 int i, refcnt = 0;
10748
10749 for_each_possible_cpu(i)
10750 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10751 return refcnt;
10752#else
10753 return refcount_read(&dev->dev_refcnt);
10754#endif
10755}
10756EXPORT_SYMBOL(netdev_refcnt_read);
10757
10758int netdev_unregister_timeout_secs __read_mostly = 10;
10759
10760#define WAIT_REFS_MIN_MSECS 1
10761#define WAIT_REFS_MAX_MSECS 250
10762/**
10763 * netdev_wait_allrefs_any - wait until all references are gone.
10764 * @list: list of net_devices to wait on
10765 *
10766 * This is called when unregistering network devices.
10767 *
10768 * Any protocol or device that holds a reference should register
10769 * for netdevice notification, and cleanup and put back the
10770 * reference if they receive an UNREGISTER event.
10771 * We can get stuck here if buggy protocols don't correctly
10772 * call dev_put.
10773 */
10774static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10775{
10776 unsigned long rebroadcast_time, warning_time;
10777 struct net_device *dev;
10778 int wait = 0;
10779
10780 rebroadcast_time = warning_time = jiffies;
10781
10782 list_for_each_entry(dev, list, todo_list)
10783 if (netdev_refcnt_read(dev) == 1)
10784 return dev;
10785
10786 while (true) {
10787 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10788 rtnl_lock();
10789
10790 /* Rebroadcast unregister notification */
10791 list_for_each_entry(dev, list, todo_list)
10792 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10793
10794 __rtnl_unlock();
10795 rcu_barrier();
10796 rtnl_lock();
10797
10798 list_for_each_entry(dev, list, todo_list)
10799 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10800 &dev->state)) {
10801 /* We must not have linkwatch events
10802 * pending on unregister. If this
10803 * happens, we simply run the queue
10804 * unscheduled, resulting in a noop
10805 * for this device.
10806 */
10807 linkwatch_run_queue();
10808 break;
10809 }
10810
10811 __rtnl_unlock();
10812
10813 rebroadcast_time = jiffies;
10814 }
10815
10816 rcu_barrier();
10817
10818 if (!wait) {
10819 wait = WAIT_REFS_MIN_MSECS;
10820 } else {
10821 msleep(wait);
10822 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10823 }
10824
10825 list_for_each_entry(dev, list, todo_list)
10826 if (netdev_refcnt_read(dev) == 1)
10827 return dev;
10828
10829 if (time_after(jiffies, warning_time +
10830 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10831 list_for_each_entry(dev, list, todo_list) {
10832 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10833 dev->name, netdev_refcnt_read(dev));
10834 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10835 }
10836
10837 warning_time = jiffies;
10838 }
10839 }
10840}
10841
10842/* The sequence is:
10843 *
10844 * rtnl_lock();
10845 * ...
10846 * register_netdevice(x1);
10847 * register_netdevice(x2);
10848 * ...
10849 * unregister_netdevice(y1);
10850 * unregister_netdevice(y2);
10851 * ...
10852 * rtnl_unlock();
10853 * free_netdev(y1);
10854 * free_netdev(y2);
10855 *
10856 * We are invoked by rtnl_unlock().
10857 * This allows us to deal with problems:
10858 * 1) We can delete sysfs objects which invoke hotplug
10859 * without deadlocking with linkwatch via keventd.
10860 * 2) Since we run with the RTNL semaphore not held, we can sleep
10861 * safely in order to wait for the netdev refcnt to drop to zero.
10862 *
10863 * We must not return until all unregister events added during
10864 * the interval the lock was held have been completed.
10865 */
10866void netdev_run_todo(void)
10867{
10868 struct net_device *dev, *tmp;
10869 struct list_head list;
10870 int cnt;
10871#ifdef CONFIG_LOCKDEP
10872 struct list_head unlink_list;
10873
10874 list_replace_init(&net_unlink_list, &unlink_list);
10875
10876 while (!list_empty(&unlink_list)) {
10877 struct net_device *dev = list_first_entry(&unlink_list,
10878 struct net_device,
10879 unlink_list);
10880 list_del_init(&dev->unlink_list);
10881 dev->nested_level = dev->lower_level - 1;
10882 }
10883#endif
10884
10885 /* Snapshot list, allow later requests */
10886 list_replace_init(&net_todo_list, &list);
10887
10888 __rtnl_unlock();
10889
10890 /* Wait for rcu callbacks to finish before next phase */
10891 if (!list_empty(&list))
10892 rcu_barrier();
10893
10894 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10895 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10896 netdev_WARN(dev, "run_todo but not unregistering\n");
10897 list_del(&dev->todo_list);
10898 continue;
10899 }
10900
10901 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10902 linkwatch_sync_dev(dev);
10903 }
10904
10905 cnt = 0;
10906 while (!list_empty(&list)) {
10907 dev = netdev_wait_allrefs_any(&list);
10908 list_del(&dev->todo_list);
10909
10910 /* paranoia */
10911 BUG_ON(netdev_refcnt_read(dev) != 1);
10912 BUG_ON(!list_empty(&dev->ptype_all));
10913 BUG_ON(!list_empty(&dev->ptype_specific));
10914 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10915 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10916
10917 netdev_do_free_pcpu_stats(dev);
10918 if (dev->priv_destructor)
10919 dev->priv_destructor(dev);
10920 if (dev->needs_free_netdev)
10921 free_netdev(dev);
10922
10923 cnt++;
10924
10925 /* Free network device */
10926 kobject_put(&dev->dev.kobj);
10927 }
10928 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10929 wake_up(&netdev_unregistering_wq);
10930}
10931
10932/* Collate per-cpu network dstats statistics
10933 *
10934 * Read per-cpu network statistics from dev->dstats and populate the related
10935 * fields in @s.
10936 */
10937static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10938 const struct pcpu_dstats __percpu *dstats)
10939{
10940 int cpu;
10941
10942 for_each_possible_cpu(cpu) {
10943 u64 rx_packets, rx_bytes, rx_drops;
10944 u64 tx_packets, tx_bytes, tx_drops;
10945 const struct pcpu_dstats *stats;
10946 unsigned int start;
10947
10948 stats = per_cpu_ptr(dstats, cpu);
10949 do {
10950 start = u64_stats_fetch_begin(&stats->syncp);
10951 rx_packets = u64_stats_read(&stats->rx_packets);
10952 rx_bytes = u64_stats_read(&stats->rx_bytes);
10953 rx_drops = u64_stats_read(&stats->rx_drops);
10954 tx_packets = u64_stats_read(&stats->tx_packets);
10955 tx_bytes = u64_stats_read(&stats->tx_bytes);
10956 tx_drops = u64_stats_read(&stats->tx_drops);
10957 } while (u64_stats_fetch_retry(&stats->syncp, start));
10958
10959 s->rx_packets += rx_packets;
10960 s->rx_bytes += rx_bytes;
10961 s->rx_dropped += rx_drops;
10962 s->tx_packets += tx_packets;
10963 s->tx_bytes += tx_bytes;
10964 s->tx_dropped += tx_drops;
10965 }
10966}
10967
10968/* ndo_get_stats64 implementation for dtstats-based accounting.
10969 *
10970 * Populate @s from dev->stats and dev->dstats. This is used internally by the
10971 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10972 */
10973static void dev_get_dstats64(const struct net_device *dev,
10974 struct rtnl_link_stats64 *s)
10975{
10976 netdev_stats_to_stats64(s, &dev->stats);
10977 dev_fetch_dstats(s, dev->dstats);
10978}
10979
10980/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10981 * all the same fields in the same order as net_device_stats, with only
10982 * the type differing, but rtnl_link_stats64 may have additional fields
10983 * at the end for newer counters.
10984 */
10985void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10986 const struct net_device_stats *netdev_stats)
10987{
10988 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10989 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10990 u64 *dst = (u64 *)stats64;
10991
10992 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10993 for (i = 0; i < n; i++)
10994 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10995 /* zero out counters that only exist in rtnl_link_stats64 */
10996 memset((char *)stats64 + n * sizeof(u64), 0,
10997 sizeof(*stats64) - n * sizeof(u64));
10998}
10999EXPORT_SYMBOL(netdev_stats_to_stats64);
11000
11001static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11002 struct net_device *dev)
11003{
11004 struct net_device_core_stats __percpu *p;
11005
11006 p = alloc_percpu_gfp(struct net_device_core_stats,
11007 GFP_ATOMIC | __GFP_NOWARN);
11008
11009 if (p && cmpxchg(&dev->core_stats, NULL, p))
11010 free_percpu(p);
11011
11012 /* This READ_ONCE() pairs with the cmpxchg() above */
11013 return READ_ONCE(dev->core_stats);
11014}
11015
11016noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11017{
11018 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11019 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11020 unsigned long __percpu *field;
11021
11022 if (unlikely(!p)) {
11023 p = netdev_core_stats_alloc(dev);
11024 if (!p)
11025 return;
11026 }
11027
11028 field = (unsigned long __percpu *)((void __percpu *)p + offset);
11029 this_cpu_inc(*field);
11030}
11031EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11032
11033/**
11034 * dev_get_stats - get network device statistics
11035 * @dev: device to get statistics from
11036 * @storage: place to store stats
11037 *
11038 * Get network statistics from device. Return @storage.
11039 * The device driver may provide its own method by setting
11040 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11041 * otherwise the internal statistics structure is used.
11042 */
11043struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11044 struct rtnl_link_stats64 *storage)
11045{
11046 const struct net_device_ops *ops = dev->netdev_ops;
11047 const struct net_device_core_stats __percpu *p;
11048
11049 if (ops->ndo_get_stats64) {
11050 memset(storage, 0, sizeof(*storage));
11051 ops->ndo_get_stats64(dev, storage);
11052 } else if (ops->ndo_get_stats) {
11053 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11054 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11055 dev_get_tstats64(dev, storage);
11056 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11057 dev_get_dstats64(dev, storage);
11058 } else {
11059 netdev_stats_to_stats64(storage, &dev->stats);
11060 }
11061
11062 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11063 p = READ_ONCE(dev->core_stats);
11064 if (p) {
11065 const struct net_device_core_stats *core_stats;
11066 int i;
11067
11068 for_each_possible_cpu(i) {
11069 core_stats = per_cpu_ptr(p, i);
11070 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11071 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11072 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11073 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11074 }
11075 }
11076 return storage;
11077}
11078EXPORT_SYMBOL(dev_get_stats);
11079
11080/**
11081 * dev_fetch_sw_netstats - get per-cpu network device statistics
11082 * @s: place to store stats
11083 * @netstats: per-cpu network stats to read from
11084 *
11085 * Read per-cpu network statistics and populate the related fields in @s.
11086 */
11087void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11088 const struct pcpu_sw_netstats __percpu *netstats)
11089{
11090 int cpu;
11091
11092 for_each_possible_cpu(cpu) {
11093 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11094 const struct pcpu_sw_netstats *stats;
11095 unsigned int start;
11096
11097 stats = per_cpu_ptr(netstats, cpu);
11098 do {
11099 start = u64_stats_fetch_begin(&stats->syncp);
11100 rx_packets = u64_stats_read(&stats->rx_packets);
11101 rx_bytes = u64_stats_read(&stats->rx_bytes);
11102 tx_packets = u64_stats_read(&stats->tx_packets);
11103 tx_bytes = u64_stats_read(&stats->tx_bytes);
11104 } while (u64_stats_fetch_retry(&stats->syncp, start));
11105
11106 s->rx_packets += rx_packets;
11107 s->rx_bytes += rx_bytes;
11108 s->tx_packets += tx_packets;
11109 s->tx_bytes += tx_bytes;
11110 }
11111}
11112EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11113
11114/**
11115 * dev_get_tstats64 - ndo_get_stats64 implementation
11116 * @dev: device to get statistics from
11117 * @s: place to store stats
11118 *
11119 * Populate @s from dev->stats and dev->tstats. Can be used as
11120 * ndo_get_stats64() callback.
11121 */
11122void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11123{
11124 netdev_stats_to_stats64(s, &dev->stats);
11125 dev_fetch_sw_netstats(s, dev->tstats);
11126}
11127EXPORT_SYMBOL_GPL(dev_get_tstats64);
11128
11129struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11130{
11131 struct netdev_queue *queue = dev_ingress_queue(dev);
11132
11133#ifdef CONFIG_NET_CLS_ACT
11134 if (queue)
11135 return queue;
11136 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11137 if (!queue)
11138 return NULL;
11139 netdev_init_one_queue(dev, queue, NULL);
11140 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11141 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11142 rcu_assign_pointer(dev->ingress_queue, queue);
11143#endif
11144 return queue;
11145}
11146
11147static const struct ethtool_ops default_ethtool_ops;
11148
11149void netdev_set_default_ethtool_ops(struct net_device *dev,
11150 const struct ethtool_ops *ops)
11151{
11152 if (dev->ethtool_ops == &default_ethtool_ops)
11153 dev->ethtool_ops = ops;
11154}
11155EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11156
11157/**
11158 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11159 * @dev: netdev to enable the IRQ coalescing on
11160 *
11161 * Sets a conservative default for SW IRQ coalescing. Users can use
11162 * sysfs attributes to override the default values.
11163 */
11164void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11165{
11166 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11167
11168 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11169 netdev_set_gro_flush_timeout(dev, 20000);
11170 netdev_set_defer_hard_irqs(dev, 1);
11171 }
11172}
11173EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11174
11175/**
11176 * alloc_netdev_mqs - allocate network device
11177 * @sizeof_priv: size of private data to allocate space for
11178 * @name: device name format string
11179 * @name_assign_type: origin of device name
11180 * @setup: callback to initialize device
11181 * @txqs: the number of TX subqueues to allocate
11182 * @rxqs: the number of RX subqueues to allocate
11183 *
11184 * Allocates a struct net_device with private data area for driver use
11185 * and performs basic initialization. Also allocates subqueue structs
11186 * for each queue on the device.
11187 */
11188struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11189 unsigned char name_assign_type,
11190 void (*setup)(struct net_device *),
11191 unsigned int txqs, unsigned int rxqs)
11192{
11193 struct net_device *dev;
11194 size_t napi_config_sz;
11195 unsigned int maxqs;
11196
11197 BUG_ON(strlen(name) >= sizeof(dev->name));
11198
11199 if (txqs < 1) {
11200 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11201 return NULL;
11202 }
11203
11204 if (rxqs < 1) {
11205 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11206 return NULL;
11207 }
11208
11209 maxqs = max(txqs, rxqs);
11210
11211 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11212 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11213 if (!dev)
11214 return NULL;
11215
11216 dev->priv_len = sizeof_priv;
11217
11218 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11219#ifdef CONFIG_PCPU_DEV_REFCNT
11220 dev->pcpu_refcnt = alloc_percpu(int);
11221 if (!dev->pcpu_refcnt)
11222 goto free_dev;
11223 __dev_hold(dev);
11224#else
11225 refcount_set(&dev->dev_refcnt, 1);
11226#endif
11227
11228 if (dev_addr_init(dev))
11229 goto free_pcpu;
11230
11231 dev_mc_init(dev);
11232 dev_uc_init(dev);
11233
11234 dev_net_set(dev, &init_net);
11235
11236 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11237 dev->xdp_zc_max_segs = 1;
11238 dev->gso_max_segs = GSO_MAX_SEGS;
11239 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11240 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11241 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11242 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11243 dev->tso_max_segs = TSO_MAX_SEGS;
11244 dev->upper_level = 1;
11245 dev->lower_level = 1;
11246#ifdef CONFIG_LOCKDEP
11247 dev->nested_level = 0;
11248 INIT_LIST_HEAD(&dev->unlink_list);
11249#endif
11250
11251 INIT_LIST_HEAD(&dev->napi_list);
11252 INIT_LIST_HEAD(&dev->unreg_list);
11253 INIT_LIST_HEAD(&dev->close_list);
11254 INIT_LIST_HEAD(&dev->link_watch_list);
11255 INIT_LIST_HEAD(&dev->adj_list.upper);
11256 INIT_LIST_HEAD(&dev->adj_list.lower);
11257 INIT_LIST_HEAD(&dev->ptype_all);
11258 INIT_LIST_HEAD(&dev->ptype_specific);
11259 INIT_LIST_HEAD(&dev->net_notifier_list);
11260#ifdef CONFIG_NET_SCHED
11261 hash_init(dev->qdisc_hash);
11262#endif
11263
11264 mutex_init(&dev->lock);
11265
11266 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11267 setup(dev);
11268
11269 if (!dev->tx_queue_len) {
11270 dev->priv_flags |= IFF_NO_QUEUE;
11271 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11272 }
11273
11274 dev->num_tx_queues = txqs;
11275 dev->real_num_tx_queues = txqs;
11276 if (netif_alloc_netdev_queues(dev))
11277 goto free_all;
11278
11279 dev->num_rx_queues = rxqs;
11280 dev->real_num_rx_queues = rxqs;
11281 if (netif_alloc_rx_queues(dev))
11282 goto free_all;
11283 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11284 if (!dev->ethtool)
11285 goto free_all;
11286
11287 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11288 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11289 if (!dev->napi_config)
11290 goto free_all;
11291
11292 strscpy(dev->name, name);
11293 dev->name_assign_type = name_assign_type;
11294 dev->group = INIT_NETDEV_GROUP;
11295 if (!dev->ethtool_ops)
11296 dev->ethtool_ops = &default_ethtool_ops;
11297
11298 nf_hook_netdev_init(dev);
11299
11300 return dev;
11301
11302free_all:
11303 free_netdev(dev);
11304 return NULL;
11305
11306free_pcpu:
11307#ifdef CONFIG_PCPU_DEV_REFCNT
11308 free_percpu(dev->pcpu_refcnt);
11309free_dev:
11310#endif
11311 kvfree(dev);
11312 return NULL;
11313}
11314EXPORT_SYMBOL(alloc_netdev_mqs);
11315
11316/**
11317 * free_netdev - free network device
11318 * @dev: device
11319 *
11320 * This function does the last stage of destroying an allocated device
11321 * interface. The reference to the device object is released. If this
11322 * is the last reference then it will be freed.Must be called in process
11323 * context.
11324 */
11325void free_netdev(struct net_device *dev)
11326{
11327 struct napi_struct *p, *n;
11328
11329 might_sleep();
11330
11331 /* When called immediately after register_netdevice() failed the unwind
11332 * handling may still be dismantling the device. Handle that case by
11333 * deferring the free.
11334 */
11335 if (dev->reg_state == NETREG_UNREGISTERING) {
11336 ASSERT_RTNL();
11337 dev->needs_free_netdev = true;
11338 return;
11339 }
11340
11341 mutex_destroy(&dev->lock);
11342
11343 kfree(dev->ethtool);
11344 netif_free_tx_queues(dev);
11345 netif_free_rx_queues(dev);
11346
11347 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11348
11349 /* Flush device addresses */
11350 dev_addr_flush(dev);
11351
11352 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11353 netif_napi_del(p);
11354
11355 kvfree(dev->napi_config);
11356
11357 ref_tracker_dir_exit(&dev->refcnt_tracker);
11358#ifdef CONFIG_PCPU_DEV_REFCNT
11359 free_percpu(dev->pcpu_refcnt);
11360 dev->pcpu_refcnt = NULL;
11361#endif
11362 free_percpu(dev->core_stats);
11363 dev->core_stats = NULL;
11364 free_percpu(dev->xdp_bulkq);
11365 dev->xdp_bulkq = NULL;
11366
11367 netdev_free_phy_link_topology(dev);
11368
11369 /* Compatibility with error handling in drivers */
11370 if (dev->reg_state == NETREG_UNINITIALIZED ||
11371 dev->reg_state == NETREG_DUMMY) {
11372 kvfree(dev);
11373 return;
11374 }
11375
11376 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11377 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11378
11379 /* will free via device release */
11380 put_device(&dev->dev);
11381}
11382EXPORT_SYMBOL(free_netdev);
11383
11384/**
11385 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11386 * @sizeof_priv: size of private data to allocate space for
11387 *
11388 * Return: the allocated net_device on success, NULL otherwise
11389 */
11390struct net_device *alloc_netdev_dummy(int sizeof_priv)
11391{
11392 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11393 init_dummy_netdev_core);
11394}
11395EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11396
11397/**
11398 * synchronize_net - Synchronize with packet receive processing
11399 *
11400 * Wait for packets currently being received to be done.
11401 * Does not block later packets from starting.
11402 */
11403void synchronize_net(void)
11404{
11405 might_sleep();
11406 if (rtnl_is_locked())
11407 synchronize_rcu_expedited();
11408 else
11409 synchronize_rcu();
11410}
11411EXPORT_SYMBOL(synchronize_net);
11412
11413static void netdev_rss_contexts_free(struct net_device *dev)
11414{
11415 struct ethtool_rxfh_context *ctx;
11416 unsigned long context;
11417
11418 mutex_lock(&dev->ethtool->rss_lock);
11419 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11420 struct ethtool_rxfh_param rxfh;
11421
11422 rxfh.indir = ethtool_rxfh_context_indir(ctx);
11423 rxfh.key = ethtool_rxfh_context_key(ctx);
11424 rxfh.hfunc = ctx->hfunc;
11425 rxfh.input_xfrm = ctx->input_xfrm;
11426 rxfh.rss_context = context;
11427 rxfh.rss_delete = true;
11428
11429 xa_erase(&dev->ethtool->rss_ctx, context);
11430 if (dev->ethtool_ops->create_rxfh_context)
11431 dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11432 context, NULL);
11433 else
11434 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11435 kfree(ctx);
11436 }
11437 xa_destroy(&dev->ethtool->rss_ctx);
11438 mutex_unlock(&dev->ethtool->rss_lock);
11439}
11440
11441/**
11442 * unregister_netdevice_queue - remove device from the kernel
11443 * @dev: device
11444 * @head: list
11445 *
11446 * This function shuts down a device interface and removes it
11447 * from the kernel tables.
11448 * If head not NULL, device is queued to be unregistered later.
11449 *
11450 * Callers must hold the rtnl semaphore. You may want
11451 * unregister_netdev() instead of this.
11452 */
11453
11454void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11455{
11456 ASSERT_RTNL();
11457
11458 if (head) {
11459 list_move_tail(&dev->unreg_list, head);
11460 } else {
11461 LIST_HEAD(single);
11462
11463 list_add(&dev->unreg_list, &single);
11464 unregister_netdevice_many(&single);
11465 }
11466}
11467EXPORT_SYMBOL(unregister_netdevice_queue);
11468
11469void unregister_netdevice_many_notify(struct list_head *head,
11470 u32 portid, const struct nlmsghdr *nlh)
11471{
11472 struct net_device *dev, *tmp;
11473 LIST_HEAD(close_head);
11474 int cnt = 0;
11475
11476 BUG_ON(dev_boot_phase);
11477 ASSERT_RTNL();
11478
11479 if (list_empty(head))
11480 return;
11481
11482 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11483 /* Some devices call without registering
11484 * for initialization unwind. Remove those
11485 * devices and proceed with the remaining.
11486 */
11487 if (dev->reg_state == NETREG_UNINITIALIZED) {
11488 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11489 dev->name, dev);
11490
11491 WARN_ON(1);
11492 list_del(&dev->unreg_list);
11493 continue;
11494 }
11495 dev->dismantle = true;
11496 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11497 }
11498
11499 /* If device is running, close it first. */
11500 list_for_each_entry(dev, head, unreg_list)
11501 list_add_tail(&dev->close_list, &close_head);
11502 dev_close_many(&close_head, true);
11503
11504 list_for_each_entry(dev, head, unreg_list) {
11505 /* And unlink it from device chain. */
11506 unlist_netdevice(dev);
11507 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11508 }
11509 flush_all_backlogs();
11510
11511 synchronize_net();
11512
11513 list_for_each_entry(dev, head, unreg_list) {
11514 struct sk_buff *skb = NULL;
11515
11516 /* Shutdown queueing discipline. */
11517 dev_shutdown(dev);
11518 dev_tcx_uninstall(dev);
11519 dev_xdp_uninstall(dev);
11520 bpf_dev_bound_netdev_unregister(dev);
11521 dev_dmabuf_uninstall(dev);
11522
11523 netdev_offload_xstats_disable_all(dev);
11524
11525 /* Notify protocols, that we are about to destroy
11526 * this device. They should clean all the things.
11527 */
11528 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11529
11530 if (!dev->rtnl_link_ops ||
11531 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11532 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11533 GFP_KERNEL, NULL, 0,
11534 portid, nlh);
11535
11536 /*
11537 * Flush the unicast and multicast chains
11538 */
11539 dev_uc_flush(dev);
11540 dev_mc_flush(dev);
11541
11542 netdev_name_node_alt_flush(dev);
11543 netdev_name_node_free(dev->name_node);
11544
11545 netdev_rss_contexts_free(dev);
11546
11547 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11548
11549 if (dev->netdev_ops->ndo_uninit)
11550 dev->netdev_ops->ndo_uninit(dev);
11551
11552 mutex_destroy(&dev->ethtool->rss_lock);
11553
11554 net_shaper_flush_netdev(dev);
11555
11556 if (skb)
11557 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11558
11559 /* Notifier chain MUST detach us all upper devices. */
11560 WARN_ON(netdev_has_any_upper_dev(dev));
11561 WARN_ON(netdev_has_any_lower_dev(dev));
11562
11563 /* Remove entries from kobject tree */
11564 netdev_unregister_kobject(dev);
11565#ifdef CONFIG_XPS
11566 /* Remove XPS queueing entries */
11567 netif_reset_xps_queues_gt(dev, 0);
11568#endif
11569 }
11570
11571 synchronize_net();
11572
11573 list_for_each_entry(dev, head, unreg_list) {
11574 netdev_put(dev, &dev->dev_registered_tracker);
11575 net_set_todo(dev);
11576 cnt++;
11577 }
11578 atomic_add(cnt, &dev_unreg_count);
11579
11580 list_del(head);
11581}
11582
11583/**
11584 * unregister_netdevice_many - unregister many devices
11585 * @head: list of devices
11586 *
11587 * Note: As most callers use a stack allocated list_head,
11588 * we force a list_del() to make sure stack won't be corrupted later.
11589 */
11590void unregister_netdevice_many(struct list_head *head)
11591{
11592 unregister_netdevice_many_notify(head, 0, NULL);
11593}
11594EXPORT_SYMBOL(unregister_netdevice_many);
11595
11596/**
11597 * unregister_netdev - remove device from the kernel
11598 * @dev: device
11599 *
11600 * This function shuts down a device interface and removes it
11601 * from the kernel tables.
11602 *
11603 * This is just a wrapper for unregister_netdevice that takes
11604 * the rtnl semaphore. In general you want to use this and not
11605 * unregister_netdevice.
11606 */
11607void unregister_netdev(struct net_device *dev)
11608{
11609 rtnl_lock();
11610 unregister_netdevice(dev);
11611 rtnl_unlock();
11612}
11613EXPORT_SYMBOL(unregister_netdev);
11614
11615/**
11616 * __dev_change_net_namespace - move device to different nethost namespace
11617 * @dev: device
11618 * @net: network namespace
11619 * @pat: If not NULL name pattern to try if the current device name
11620 * is already taken in the destination network namespace.
11621 * @new_ifindex: If not zero, specifies device index in the target
11622 * namespace.
11623 *
11624 * This function shuts down a device interface and moves it
11625 * to a new network namespace. On success 0 is returned, on
11626 * a failure a netagive errno code is returned.
11627 *
11628 * Callers must hold the rtnl semaphore.
11629 */
11630
11631int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11632 const char *pat, int new_ifindex)
11633{
11634 struct netdev_name_node *name_node;
11635 struct net *net_old = dev_net(dev);
11636 char new_name[IFNAMSIZ] = {};
11637 int err, new_nsid;
11638
11639 ASSERT_RTNL();
11640
11641 /* Don't allow namespace local devices to be moved. */
11642 err = -EINVAL;
11643 if (dev->netns_local)
11644 goto out;
11645
11646 /* Ensure the device has been registered */
11647 if (dev->reg_state != NETREG_REGISTERED)
11648 goto out;
11649
11650 /* Get out if there is nothing todo */
11651 err = 0;
11652 if (net_eq(net_old, net))
11653 goto out;
11654
11655 /* Pick the destination device name, and ensure
11656 * we can use it in the destination network namespace.
11657 */
11658 err = -EEXIST;
11659 if (netdev_name_in_use(net, dev->name)) {
11660 /* We get here if we can't use the current device name */
11661 if (!pat)
11662 goto out;
11663 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11664 if (err < 0)
11665 goto out;
11666 }
11667 /* Check that none of the altnames conflicts. */
11668 err = -EEXIST;
11669 netdev_for_each_altname(dev, name_node)
11670 if (netdev_name_in_use(net, name_node->name))
11671 goto out;
11672
11673 /* Check that new_ifindex isn't used yet. */
11674 if (new_ifindex) {
11675 err = dev_index_reserve(net, new_ifindex);
11676 if (err < 0)
11677 goto out;
11678 } else {
11679 /* If there is an ifindex conflict assign a new one */
11680 err = dev_index_reserve(net, dev->ifindex);
11681 if (err == -EBUSY)
11682 err = dev_index_reserve(net, 0);
11683 if (err < 0)
11684 goto out;
11685 new_ifindex = err;
11686 }
11687
11688 /*
11689 * And now a mini version of register_netdevice unregister_netdevice.
11690 */
11691
11692 /* If device is running close it first. */
11693 dev_close(dev);
11694
11695 /* And unlink it from device chain */
11696 unlist_netdevice(dev);
11697
11698 synchronize_net();
11699
11700 /* Shutdown queueing discipline. */
11701 dev_shutdown(dev);
11702
11703 /* Notify protocols, that we are about to destroy
11704 * this device. They should clean all the things.
11705 *
11706 * Note that dev->reg_state stays at NETREG_REGISTERED.
11707 * This is wanted because this way 8021q and macvlan know
11708 * the device is just moving and can keep their slaves up.
11709 */
11710 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11711 rcu_barrier();
11712
11713 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11714
11715 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11716 new_ifindex);
11717
11718 /*
11719 * Flush the unicast and multicast chains
11720 */
11721 dev_uc_flush(dev);
11722 dev_mc_flush(dev);
11723
11724 /* Send a netdev-removed uevent to the old namespace */
11725 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11726 netdev_adjacent_del_links(dev);
11727
11728 /* Move per-net netdevice notifiers that are following the netdevice */
11729 move_netdevice_notifiers_dev_net(dev, net);
11730
11731 /* Actually switch the network namespace */
11732 dev_net_set(dev, net);
11733 dev->ifindex = new_ifindex;
11734
11735 if (new_name[0]) {
11736 /* Rename the netdev to prepared name */
11737 write_seqlock_bh(&netdev_rename_lock);
11738 strscpy(dev->name, new_name, IFNAMSIZ);
11739 write_sequnlock_bh(&netdev_rename_lock);
11740 }
11741
11742 /* Fixup kobjects */
11743 dev_set_uevent_suppress(&dev->dev, 1);
11744 err = device_rename(&dev->dev, dev->name);
11745 dev_set_uevent_suppress(&dev->dev, 0);
11746 WARN_ON(err);
11747
11748 /* Send a netdev-add uevent to the new namespace */
11749 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11750 netdev_adjacent_add_links(dev);
11751
11752 /* Adapt owner in case owning user namespace of target network
11753 * namespace is different from the original one.
11754 */
11755 err = netdev_change_owner(dev, net_old, net);
11756 WARN_ON(err);
11757
11758 /* Add the device back in the hashes */
11759 list_netdevice(dev);
11760
11761 /* Notify protocols, that a new device appeared. */
11762 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11763
11764 /*
11765 * Prevent userspace races by waiting until the network
11766 * device is fully setup before sending notifications.
11767 */
11768 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11769
11770 synchronize_net();
11771 err = 0;
11772out:
11773 return err;
11774}
11775EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11776
11777static int dev_cpu_dead(unsigned int oldcpu)
11778{
11779 struct sk_buff **list_skb;
11780 struct sk_buff *skb;
11781 unsigned int cpu;
11782 struct softnet_data *sd, *oldsd, *remsd = NULL;
11783
11784 local_irq_disable();
11785 cpu = smp_processor_id();
11786 sd = &per_cpu(softnet_data, cpu);
11787 oldsd = &per_cpu(softnet_data, oldcpu);
11788
11789 /* Find end of our completion_queue. */
11790 list_skb = &sd->completion_queue;
11791 while (*list_skb)
11792 list_skb = &(*list_skb)->next;
11793 /* Append completion queue from offline CPU. */
11794 *list_skb = oldsd->completion_queue;
11795 oldsd->completion_queue = NULL;
11796
11797 /* Append output queue from offline CPU. */
11798 if (oldsd->output_queue) {
11799 *sd->output_queue_tailp = oldsd->output_queue;
11800 sd->output_queue_tailp = oldsd->output_queue_tailp;
11801 oldsd->output_queue = NULL;
11802 oldsd->output_queue_tailp = &oldsd->output_queue;
11803 }
11804 /* Append NAPI poll list from offline CPU, with one exception :
11805 * process_backlog() must be called by cpu owning percpu backlog.
11806 * We properly handle process_queue & input_pkt_queue later.
11807 */
11808 while (!list_empty(&oldsd->poll_list)) {
11809 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11810 struct napi_struct,
11811 poll_list);
11812
11813 list_del_init(&napi->poll_list);
11814 if (napi->poll == process_backlog)
11815 napi->state &= NAPIF_STATE_THREADED;
11816 else
11817 ____napi_schedule(sd, napi);
11818 }
11819
11820 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11821 local_irq_enable();
11822
11823 if (!use_backlog_threads()) {
11824#ifdef CONFIG_RPS
11825 remsd = oldsd->rps_ipi_list;
11826 oldsd->rps_ipi_list = NULL;
11827#endif
11828 /* send out pending IPI's on offline CPU */
11829 net_rps_send_ipi(remsd);
11830 }
11831
11832 /* Process offline CPU's input_pkt_queue */
11833 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11834 netif_rx(skb);
11835 rps_input_queue_head_incr(oldsd);
11836 }
11837 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11838 netif_rx(skb);
11839 rps_input_queue_head_incr(oldsd);
11840 }
11841
11842 return 0;
11843}
11844
11845/**
11846 * netdev_increment_features - increment feature set by one
11847 * @all: current feature set
11848 * @one: new feature set
11849 * @mask: mask feature set
11850 *
11851 * Computes a new feature set after adding a device with feature set
11852 * @one to the master device with current feature set @all. Will not
11853 * enable anything that is off in @mask. Returns the new feature set.
11854 */
11855netdev_features_t netdev_increment_features(netdev_features_t all,
11856 netdev_features_t one, netdev_features_t mask)
11857{
11858 if (mask & NETIF_F_HW_CSUM)
11859 mask |= NETIF_F_CSUM_MASK;
11860 mask |= NETIF_F_VLAN_CHALLENGED;
11861
11862 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11863 all &= one | ~NETIF_F_ALL_FOR_ALL;
11864
11865 /* If one device supports hw checksumming, set for all. */
11866 if (all & NETIF_F_HW_CSUM)
11867 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11868
11869 return all;
11870}
11871EXPORT_SYMBOL(netdev_increment_features);
11872
11873static struct hlist_head * __net_init netdev_create_hash(void)
11874{
11875 int i;
11876 struct hlist_head *hash;
11877
11878 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11879 if (hash != NULL)
11880 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11881 INIT_HLIST_HEAD(&hash[i]);
11882
11883 return hash;
11884}
11885
11886/* Initialize per network namespace state */
11887static int __net_init netdev_init(struct net *net)
11888{
11889 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11890 8 * sizeof_field(struct napi_struct, gro_bitmask));
11891
11892 INIT_LIST_HEAD(&net->dev_base_head);
11893
11894 net->dev_name_head = netdev_create_hash();
11895 if (net->dev_name_head == NULL)
11896 goto err_name;
11897
11898 net->dev_index_head = netdev_create_hash();
11899 if (net->dev_index_head == NULL)
11900 goto err_idx;
11901
11902 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11903
11904 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11905
11906 return 0;
11907
11908err_idx:
11909 kfree(net->dev_name_head);
11910err_name:
11911 return -ENOMEM;
11912}
11913
11914/**
11915 * netdev_drivername - network driver for the device
11916 * @dev: network device
11917 *
11918 * Determine network driver for device.
11919 */
11920const char *netdev_drivername(const struct net_device *dev)
11921{
11922 const struct device_driver *driver;
11923 const struct device *parent;
11924 const char *empty = "";
11925
11926 parent = dev->dev.parent;
11927 if (!parent)
11928 return empty;
11929
11930 driver = parent->driver;
11931 if (driver && driver->name)
11932 return driver->name;
11933 return empty;
11934}
11935
11936static void __netdev_printk(const char *level, const struct net_device *dev,
11937 struct va_format *vaf)
11938{
11939 if (dev && dev->dev.parent) {
11940 dev_printk_emit(level[1] - '0',
11941 dev->dev.parent,
11942 "%s %s %s%s: %pV",
11943 dev_driver_string(dev->dev.parent),
11944 dev_name(dev->dev.parent),
11945 netdev_name(dev), netdev_reg_state(dev),
11946 vaf);
11947 } else if (dev) {
11948 printk("%s%s%s: %pV",
11949 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11950 } else {
11951 printk("%s(NULL net_device): %pV", level, vaf);
11952 }
11953}
11954
11955void netdev_printk(const char *level, const struct net_device *dev,
11956 const char *format, ...)
11957{
11958 struct va_format vaf;
11959 va_list args;
11960
11961 va_start(args, format);
11962
11963 vaf.fmt = format;
11964 vaf.va = &args;
11965
11966 __netdev_printk(level, dev, &vaf);
11967
11968 va_end(args);
11969}
11970EXPORT_SYMBOL(netdev_printk);
11971
11972#define define_netdev_printk_level(func, level) \
11973void func(const struct net_device *dev, const char *fmt, ...) \
11974{ \
11975 struct va_format vaf; \
11976 va_list args; \
11977 \
11978 va_start(args, fmt); \
11979 \
11980 vaf.fmt = fmt; \
11981 vaf.va = &args; \
11982 \
11983 __netdev_printk(level, dev, &vaf); \
11984 \
11985 va_end(args); \
11986} \
11987EXPORT_SYMBOL(func);
11988
11989define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11990define_netdev_printk_level(netdev_alert, KERN_ALERT);
11991define_netdev_printk_level(netdev_crit, KERN_CRIT);
11992define_netdev_printk_level(netdev_err, KERN_ERR);
11993define_netdev_printk_level(netdev_warn, KERN_WARNING);
11994define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11995define_netdev_printk_level(netdev_info, KERN_INFO);
11996
11997static void __net_exit netdev_exit(struct net *net)
11998{
11999 kfree(net->dev_name_head);
12000 kfree(net->dev_index_head);
12001 xa_destroy(&net->dev_by_index);
12002 if (net != &init_net)
12003 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12004}
12005
12006static struct pernet_operations __net_initdata netdev_net_ops = {
12007 .init = netdev_init,
12008 .exit = netdev_exit,
12009};
12010
12011static void __net_exit default_device_exit_net(struct net *net)
12012{
12013 struct netdev_name_node *name_node, *tmp;
12014 struct net_device *dev, *aux;
12015 /*
12016 * Push all migratable network devices back to the
12017 * initial network namespace
12018 */
12019 ASSERT_RTNL();
12020 for_each_netdev_safe(net, dev, aux) {
12021 int err;
12022 char fb_name[IFNAMSIZ];
12023
12024 /* Ignore unmoveable devices (i.e. loopback) */
12025 if (dev->netns_local)
12026 continue;
12027
12028 /* Leave virtual devices for the generic cleanup */
12029 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12030 continue;
12031
12032 /* Push remaining network devices to init_net */
12033 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12034 if (netdev_name_in_use(&init_net, fb_name))
12035 snprintf(fb_name, IFNAMSIZ, "dev%%d");
12036
12037 netdev_for_each_altname_safe(dev, name_node, tmp)
12038 if (netdev_name_in_use(&init_net, name_node->name))
12039 __netdev_name_node_alt_destroy(name_node);
12040
12041 err = dev_change_net_namespace(dev, &init_net, fb_name);
12042 if (err) {
12043 pr_emerg("%s: failed to move %s to init_net: %d\n",
12044 __func__, dev->name, err);
12045 BUG();
12046 }
12047 }
12048}
12049
12050static void __net_exit default_device_exit_batch(struct list_head *net_list)
12051{
12052 /* At exit all network devices most be removed from a network
12053 * namespace. Do this in the reverse order of registration.
12054 * Do this across as many network namespaces as possible to
12055 * improve batching efficiency.
12056 */
12057 struct net_device *dev;
12058 struct net *net;
12059 LIST_HEAD(dev_kill_list);
12060
12061 rtnl_lock();
12062 list_for_each_entry(net, net_list, exit_list) {
12063 default_device_exit_net(net);
12064 cond_resched();
12065 }
12066
12067 list_for_each_entry(net, net_list, exit_list) {
12068 for_each_netdev_reverse(net, dev) {
12069 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12070 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12071 else
12072 unregister_netdevice_queue(dev, &dev_kill_list);
12073 }
12074 }
12075 unregister_netdevice_many(&dev_kill_list);
12076 rtnl_unlock();
12077}
12078
12079static struct pernet_operations __net_initdata default_device_ops = {
12080 .exit_batch = default_device_exit_batch,
12081};
12082
12083static void __init net_dev_struct_check(void)
12084{
12085 /* TX read-mostly hotpath */
12086 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12087 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12088 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12089 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12090 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12091 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12092 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12093 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12094 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12095 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12096 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12097 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12098 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12099#ifdef CONFIG_XPS
12100 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12101#endif
12102#ifdef CONFIG_NETFILTER_EGRESS
12103 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12104#endif
12105#ifdef CONFIG_NET_XGRESS
12106 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12107#endif
12108 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12109
12110 /* TXRX read-mostly hotpath */
12111 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12112 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12113 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12114 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12115 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12116 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12117 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12118
12119 /* RX read-mostly hotpath */
12120 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12121 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12122 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12123 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12124 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12125 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12126 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12127 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12128 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12129#ifdef CONFIG_NETPOLL
12130 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12131#endif
12132#ifdef CONFIG_NET_XGRESS
12133 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12134#endif
12135 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12136}
12137
12138/*
12139 * Initialize the DEV module. At boot time this walks the device list and
12140 * unhooks any devices that fail to initialise (normally hardware not
12141 * present) and leaves us with a valid list of present and active devices.
12142 *
12143 */
12144
12145/* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12146#define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12147
12148static int net_page_pool_create(int cpuid)
12149{
12150#if IS_ENABLED(CONFIG_PAGE_POOL)
12151 struct page_pool_params page_pool_params = {
12152 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12153 .flags = PP_FLAG_SYSTEM_POOL,
12154 .nid = cpu_to_mem(cpuid),
12155 };
12156 struct page_pool *pp_ptr;
12157
12158 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12159 if (IS_ERR(pp_ptr))
12160 return -ENOMEM;
12161
12162 per_cpu(system_page_pool, cpuid) = pp_ptr;
12163#endif
12164 return 0;
12165}
12166
12167static int backlog_napi_should_run(unsigned int cpu)
12168{
12169 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12170 struct napi_struct *napi = &sd->backlog;
12171
12172 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12173}
12174
12175static void run_backlog_napi(unsigned int cpu)
12176{
12177 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12178
12179 napi_threaded_poll_loop(&sd->backlog);
12180}
12181
12182static void backlog_napi_setup(unsigned int cpu)
12183{
12184 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12185 struct napi_struct *napi = &sd->backlog;
12186
12187 napi->thread = this_cpu_read(backlog_napi);
12188 set_bit(NAPI_STATE_THREADED, &napi->state);
12189}
12190
12191static struct smp_hotplug_thread backlog_threads = {
12192 .store = &backlog_napi,
12193 .thread_should_run = backlog_napi_should_run,
12194 .thread_fn = run_backlog_napi,
12195 .thread_comm = "backlog_napi/%u",
12196 .setup = backlog_napi_setup,
12197};
12198
12199/*
12200 * This is called single threaded during boot, so no need
12201 * to take the rtnl semaphore.
12202 */
12203static int __init net_dev_init(void)
12204{
12205 int i, rc = -ENOMEM;
12206
12207 BUG_ON(!dev_boot_phase);
12208
12209 net_dev_struct_check();
12210
12211 if (dev_proc_init())
12212 goto out;
12213
12214 if (netdev_kobject_init())
12215 goto out;
12216
12217 for (i = 0; i < PTYPE_HASH_SIZE; i++)
12218 INIT_LIST_HEAD(&ptype_base[i]);
12219
12220 if (register_pernet_subsys(&netdev_net_ops))
12221 goto out;
12222
12223 /*
12224 * Initialise the packet receive queues.
12225 */
12226
12227 for_each_possible_cpu(i) {
12228 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12229 struct softnet_data *sd = &per_cpu(softnet_data, i);
12230
12231 INIT_WORK(flush, flush_backlog);
12232
12233 skb_queue_head_init(&sd->input_pkt_queue);
12234 skb_queue_head_init(&sd->process_queue);
12235#ifdef CONFIG_XFRM_OFFLOAD
12236 skb_queue_head_init(&sd->xfrm_backlog);
12237#endif
12238 INIT_LIST_HEAD(&sd->poll_list);
12239 sd->output_queue_tailp = &sd->output_queue;
12240#ifdef CONFIG_RPS
12241 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12242 sd->cpu = i;
12243#endif
12244 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12245 spin_lock_init(&sd->defer_lock);
12246
12247 init_gro_hash(&sd->backlog);
12248 sd->backlog.poll = process_backlog;
12249 sd->backlog.weight = weight_p;
12250 INIT_LIST_HEAD(&sd->backlog.poll_list);
12251
12252 if (net_page_pool_create(i))
12253 goto out;
12254 }
12255 if (use_backlog_threads())
12256 smpboot_register_percpu_thread(&backlog_threads);
12257
12258 dev_boot_phase = 0;
12259
12260 /* The loopback device is special if any other network devices
12261 * is present in a network namespace the loopback device must
12262 * be present. Since we now dynamically allocate and free the
12263 * loopback device ensure this invariant is maintained by
12264 * keeping the loopback device as the first device on the
12265 * list of network devices. Ensuring the loopback devices
12266 * is the first device that appears and the last network device
12267 * that disappears.
12268 */
12269 if (register_pernet_device(&loopback_net_ops))
12270 goto out;
12271
12272 if (register_pernet_device(&default_device_ops))
12273 goto out;
12274
12275 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12276 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12277
12278 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12279 NULL, dev_cpu_dead);
12280 WARN_ON(rc < 0);
12281 rc = 0;
12282
12283 /* avoid static key IPIs to isolated CPUs */
12284 if (housekeeping_enabled(HK_TYPE_MISC))
12285 net_enable_timestamp();
12286out:
12287 if (rc < 0) {
12288 for_each_possible_cpu(i) {
12289 struct page_pool *pp_ptr;
12290
12291 pp_ptr = per_cpu(system_page_pool, i);
12292 if (!pp_ptr)
12293 continue;
12294
12295 page_pool_destroy(pp_ptr);
12296 per_cpu(system_page_pool, i) = NULL;
12297 }
12298 }
12299
12300 return rc;
12301}
12302
12303subsys_initcall(net_dev_init);