Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/pgalloc_tag.h>
9#include <linux/bug.h>
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/atomic.h>
14#include <linux/debug_locks.h>
15#include <linux/mm_types.h>
16#include <linux/mmap_lock.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/percpu-refcount.h>
20#include <linux/bit_spinlock.h>
21#include <linux/shrinker.h>
22#include <linux/resource.h>
23#include <linux/page_ext.h>
24#include <linux/err.h>
25#include <linux/page-flags.h>
26#include <linux/page_ref.h>
27#include <linux/overflow.h>
28#include <linux/sizes.h>
29#include <linux/sched.h>
30#include <linux/pgtable.h>
31#include <linux/kasan.h>
32#include <linux/memremap.h>
33#include <linux/slab.h>
34
35struct mempolicy;
36struct anon_vma;
37struct anon_vma_chain;
38struct user_struct;
39struct pt_regs;
40struct folio_batch;
41
42extern int sysctl_page_lock_unfairness;
43
44void mm_core_init(void);
45void init_mm_internals(void);
46
47#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
48extern unsigned long max_mapnr;
49
50static inline void set_max_mapnr(unsigned long limit)
51{
52 max_mapnr = limit;
53}
54#else
55static inline void set_max_mapnr(unsigned long limit) { }
56#endif
57
58extern atomic_long_t _totalram_pages;
59static inline unsigned long totalram_pages(void)
60{
61 return (unsigned long)atomic_long_read(&_totalram_pages);
62}
63
64static inline void totalram_pages_inc(void)
65{
66 atomic_long_inc(&_totalram_pages);
67}
68
69static inline void totalram_pages_dec(void)
70{
71 atomic_long_dec(&_totalram_pages);
72}
73
74static inline void totalram_pages_add(long count)
75{
76 atomic_long_add(count, &_totalram_pages);
77}
78
79extern void * high_memory;
80extern int page_cluster;
81extern const int page_cluster_max;
82
83#ifdef CONFIG_SYSCTL
84extern int sysctl_legacy_va_layout;
85#else
86#define sysctl_legacy_va_layout 0
87#endif
88
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90extern const int mmap_rnd_bits_min;
91extern int mmap_rnd_bits_max __ro_after_init;
92extern int mmap_rnd_bits __read_mostly;
93#endif
94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95extern const int mmap_rnd_compat_bits_min;
96extern const int mmap_rnd_compat_bits_max;
97extern int mmap_rnd_compat_bits __read_mostly;
98#endif
99
100#ifndef DIRECT_MAP_PHYSMEM_END
101# ifdef MAX_PHYSMEM_BITS
102# define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
103# else
104# define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
105# endif
106#endif
107
108#include <asm/page.h>
109#include <asm/processor.h>
110
111#ifndef __pa_symbol
112#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
113#endif
114
115#ifndef page_to_virt
116#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
117#endif
118
119#ifndef lm_alias
120#define lm_alias(x) __va(__pa_symbol(x))
121#endif
122
123/*
124 * To prevent common memory management code establishing
125 * a zero page mapping on a read fault.
126 * This macro should be defined within <asm/pgtable.h>.
127 * s390 does this to prevent multiplexing of hardware bits
128 * related to the physical page in case of virtualization.
129 */
130#ifndef mm_forbids_zeropage
131#define mm_forbids_zeropage(X) (0)
132#endif
133
134/*
135 * On some architectures it is expensive to call memset() for small sizes.
136 * If an architecture decides to implement their own version of
137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138 * define their own version of this macro in <asm/pgtable.h>
139 */
140#if BITS_PER_LONG == 64
141/* This function must be updated when the size of struct page grows above 96
142 * or reduces below 56. The idea that compiler optimizes out switch()
143 * statement, and only leaves move/store instructions. Also the compiler can
144 * combine write statements if they are both assignments and can be reordered,
145 * this can result in several of the writes here being dropped.
146 */
147#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
148static inline void __mm_zero_struct_page(struct page *page)
149{
150 unsigned long *_pp = (void *)page;
151
152 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
153 BUILD_BUG_ON(sizeof(struct page) & 7);
154 BUILD_BUG_ON(sizeof(struct page) < 56);
155 BUILD_BUG_ON(sizeof(struct page) > 96);
156
157 switch (sizeof(struct page)) {
158 case 96:
159 _pp[11] = 0;
160 fallthrough;
161 case 88:
162 _pp[10] = 0;
163 fallthrough;
164 case 80:
165 _pp[9] = 0;
166 fallthrough;
167 case 72:
168 _pp[8] = 0;
169 fallthrough;
170 case 64:
171 _pp[7] = 0;
172 fallthrough;
173 case 56:
174 _pp[6] = 0;
175 _pp[5] = 0;
176 _pp[4] = 0;
177 _pp[3] = 0;
178 _pp[2] = 0;
179 _pp[1] = 0;
180 _pp[0] = 0;
181 }
182}
183#else
184#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
185#endif
186
187/*
188 * Default maximum number of active map areas, this limits the number of vmas
189 * per mm struct. Users can overwrite this number by sysctl but there is a
190 * problem.
191 *
192 * When a program's coredump is generated as ELF format, a section is created
193 * per a vma. In ELF, the number of sections is represented in unsigned short.
194 * This means the number of sections should be smaller than 65535 at coredump.
195 * Because the kernel adds some informative sections to a image of program at
196 * generating coredump, we need some margin. The number of extra sections is
197 * 1-3 now and depends on arch. We use "5" as safe margin, here.
198 *
199 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
200 * not a hard limit any more. Although some userspace tools can be surprised by
201 * that.
202 */
203#define MAPCOUNT_ELF_CORE_MARGIN (5)
204#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
205
206extern int sysctl_max_map_count;
207
208extern unsigned long sysctl_user_reserve_kbytes;
209extern unsigned long sysctl_admin_reserve_kbytes;
210
211extern int sysctl_overcommit_memory;
212extern int sysctl_overcommit_ratio;
213extern unsigned long sysctl_overcommit_kbytes;
214
215int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
216 loff_t *);
217int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
218 loff_t *);
219int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
220 loff_t *);
221
222#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
223#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
224#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
225#else
226#define nth_page(page,n) ((page) + (n))
227#define folio_page_idx(folio, p) ((p) - &(folio)->page)
228#endif
229
230/* to align the pointer to the (next) page boundary */
231#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
232
233/* to align the pointer to the (prev) page boundary */
234#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
235
236/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
237#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
238
239static inline struct folio *lru_to_folio(struct list_head *head)
240{
241 return list_entry((head)->prev, struct folio, lru);
242}
243
244void setup_initial_init_mm(void *start_code, void *end_code,
245 void *end_data, void *brk);
246
247/*
248 * Linux kernel virtual memory manager primitives.
249 * The idea being to have a "virtual" mm in the same way
250 * we have a virtual fs - giving a cleaner interface to the
251 * mm details, and allowing different kinds of memory mappings
252 * (from shared memory to executable loading to arbitrary
253 * mmap() functions).
254 */
255
256struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258void vm_area_free(struct vm_area_struct *);
259/* Use only if VMA has no other users */
260void __vm_area_free(struct vm_area_struct *vma);
261
262#ifndef CONFIG_MMU
263extern struct rb_root nommu_region_tree;
264extern struct rw_semaphore nommu_region_sem;
265
266extern unsigned int kobjsize(const void *objp);
267#endif
268
269/*
270 * vm_flags in vm_area_struct, see mm_types.h.
271 * When changing, update also include/trace/events/mmflags.h
272 */
273#define VM_NONE 0x00000000
274
275#define VM_READ 0x00000001 /* currently active flags */
276#define VM_WRITE 0x00000002
277#define VM_EXEC 0x00000004
278#define VM_SHARED 0x00000008
279
280/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
281#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
282#define VM_MAYWRITE 0x00000020
283#define VM_MAYEXEC 0x00000040
284#define VM_MAYSHARE 0x00000080
285
286#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
287#ifdef CONFIG_MMU
288#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
289#else /* CONFIG_MMU */
290#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
291#define VM_UFFD_MISSING 0
292#endif /* CONFIG_MMU */
293#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
294#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
295
296#define VM_LOCKED 0x00002000
297#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
298
299 /* Used by sys_madvise() */
300#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
301#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
302
303#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
304#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
305#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
306#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
307#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
308#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
309#define VM_SYNC 0x00800000 /* Synchronous page faults */
310#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
311#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
312#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
313
314#ifdef CONFIG_MEM_SOFT_DIRTY
315# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
316#else
317# define VM_SOFTDIRTY 0
318#endif
319
320#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
321#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
322#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
323#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
324
325#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
326#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
327#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
328#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
329#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
330#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
331#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
332#define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
333#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
334#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
335#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
336#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
337#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
338#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
339#define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
340#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
341
342#ifdef CONFIG_ARCH_HAS_PKEYS
343# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
344# define VM_PKEY_BIT0 VM_HIGH_ARCH_0
345# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
346# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
347#if CONFIG_ARCH_PKEY_BITS > 3
348# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
349#else
350# define VM_PKEY_BIT3 0
351#endif
352#if CONFIG_ARCH_PKEY_BITS > 4
353# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
354#else
355# define VM_PKEY_BIT4 0
356#endif
357#endif /* CONFIG_ARCH_HAS_PKEYS */
358
359#ifdef CONFIG_X86_USER_SHADOW_STACK
360/*
361 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
362 * support core mm.
363 *
364 * These VMAs will get a single end guard page. This helps userspace protect
365 * itself from attacks. A single page is enough for current shadow stack archs
366 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
367 * for more details on the guard size.
368 */
369# define VM_SHADOW_STACK VM_HIGH_ARCH_5
370#endif
371
372#if defined(CONFIG_ARM64_GCS)
373/*
374 * arm64's Guarded Control Stack implements similar functionality and
375 * has similar constraints to shadow stacks.
376 */
377# define VM_SHADOW_STACK VM_HIGH_ARCH_6
378#endif
379
380#ifndef VM_SHADOW_STACK
381# define VM_SHADOW_STACK VM_NONE
382#endif
383
384#if defined(CONFIG_X86)
385# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
386#elif defined(CONFIG_PPC64)
387# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
388#elif defined(CONFIG_PARISC)
389# define VM_GROWSUP VM_ARCH_1
390#elif defined(CONFIG_SPARC64)
391# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
392# define VM_ARCH_CLEAR VM_SPARC_ADI
393#elif defined(CONFIG_ARM64)
394# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
395# define VM_ARCH_CLEAR VM_ARM64_BTI
396#elif !defined(CONFIG_MMU)
397# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
398#endif
399
400#if defined(CONFIG_ARM64_MTE)
401# define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
402# define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
403#else
404# define VM_MTE VM_NONE
405# define VM_MTE_ALLOWED VM_NONE
406#endif
407
408#ifndef VM_GROWSUP
409# define VM_GROWSUP VM_NONE
410#endif
411
412#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
413# define VM_UFFD_MINOR_BIT 38
414# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
415#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
416# define VM_UFFD_MINOR VM_NONE
417#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
418
419/*
420 * This flag is used to connect VFIO to arch specific KVM code. It
421 * indicates that the memory under this VMA is safe for use with any
422 * non-cachable memory type inside KVM. Some VFIO devices, on some
423 * platforms, are thought to be unsafe and can cause machine crashes
424 * if KVM does not lock down the memory type.
425 */
426#ifdef CONFIG_64BIT
427#define VM_ALLOW_ANY_UNCACHED_BIT 39
428#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
429#else
430#define VM_ALLOW_ANY_UNCACHED VM_NONE
431#endif
432
433#ifdef CONFIG_64BIT
434#define VM_DROPPABLE_BIT 40
435#define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
436#elif defined(CONFIG_PPC32)
437#define VM_DROPPABLE VM_ARCH_1
438#else
439#define VM_DROPPABLE VM_NONE
440#endif
441
442#ifdef CONFIG_64BIT
443/* VM is sealed, in vm_flags */
444#define VM_SEALED _BITUL(63)
445#endif
446
447/* Bits set in the VMA until the stack is in its final location */
448#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
449
450#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
451
452/* Common data flag combinations */
453#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
454 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
455#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
456 VM_MAYWRITE | VM_MAYEXEC)
457#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
458 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
459
460#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
461#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
462#endif
463
464#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
465#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
466#endif
467
468#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
469
470#ifdef CONFIG_STACK_GROWSUP
471#define VM_STACK VM_GROWSUP
472#define VM_STACK_EARLY VM_GROWSDOWN
473#else
474#define VM_STACK VM_GROWSDOWN
475#define VM_STACK_EARLY 0
476#endif
477
478#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
479
480/* VMA basic access permission flags */
481#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
482
483
484/*
485 * Special vmas that are non-mergable, non-mlock()able.
486 */
487#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
488
489/* This mask prevents VMA from being scanned with khugepaged */
490#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
491
492/* This mask defines which mm->def_flags a process can inherit its parent */
493#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
494
495/* This mask represents all the VMA flag bits used by mlock */
496#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
497
498/* Arch-specific flags to clear when updating VM flags on protection change */
499#ifndef VM_ARCH_CLEAR
500# define VM_ARCH_CLEAR VM_NONE
501#endif
502#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
503
504/*
505 * mapping from the currently active vm_flags protection bits (the
506 * low four bits) to a page protection mask..
507 */
508
509/*
510 * The default fault flags that should be used by most of the
511 * arch-specific page fault handlers.
512 */
513#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
514 FAULT_FLAG_KILLABLE | \
515 FAULT_FLAG_INTERRUPTIBLE)
516
517/**
518 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
519 * @flags: Fault flags.
520 *
521 * This is mostly used for places where we want to try to avoid taking
522 * the mmap_lock for too long a time when waiting for another condition
523 * to change, in which case we can try to be polite to release the
524 * mmap_lock in the first round to avoid potential starvation of other
525 * processes that would also want the mmap_lock.
526 *
527 * Return: true if the page fault allows retry and this is the first
528 * attempt of the fault handling; false otherwise.
529 */
530static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
531{
532 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
533 (!(flags & FAULT_FLAG_TRIED));
534}
535
536#define FAULT_FLAG_TRACE \
537 { FAULT_FLAG_WRITE, "WRITE" }, \
538 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
539 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
540 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
541 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
542 { FAULT_FLAG_TRIED, "TRIED" }, \
543 { FAULT_FLAG_USER, "USER" }, \
544 { FAULT_FLAG_REMOTE, "REMOTE" }, \
545 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
546 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
547 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
548
549/*
550 * vm_fault is filled by the pagefault handler and passed to the vma's
551 * ->fault function. The vma's ->fault is responsible for returning a bitmask
552 * of VM_FAULT_xxx flags that give details about how the fault was handled.
553 *
554 * MM layer fills up gfp_mask for page allocations but fault handler might
555 * alter it if its implementation requires a different allocation context.
556 *
557 * pgoff should be used in favour of virtual_address, if possible.
558 */
559struct vm_fault {
560 const struct {
561 struct vm_area_struct *vma; /* Target VMA */
562 gfp_t gfp_mask; /* gfp mask to be used for allocations */
563 pgoff_t pgoff; /* Logical page offset based on vma */
564 unsigned long address; /* Faulting virtual address - masked */
565 unsigned long real_address; /* Faulting virtual address - unmasked */
566 };
567 enum fault_flag flags; /* FAULT_FLAG_xxx flags
568 * XXX: should really be 'const' */
569 pmd_t *pmd; /* Pointer to pmd entry matching
570 * the 'address' */
571 pud_t *pud; /* Pointer to pud entry matching
572 * the 'address'
573 */
574 union {
575 pte_t orig_pte; /* Value of PTE at the time of fault */
576 pmd_t orig_pmd; /* Value of PMD at the time of fault,
577 * used by PMD fault only.
578 */
579 };
580
581 struct page *cow_page; /* Page handler may use for COW fault */
582 struct page *page; /* ->fault handlers should return a
583 * page here, unless VM_FAULT_NOPAGE
584 * is set (which is also implied by
585 * VM_FAULT_ERROR).
586 */
587 /* These three entries are valid only while holding ptl lock */
588 pte_t *pte; /* Pointer to pte entry matching
589 * the 'address'. NULL if the page
590 * table hasn't been allocated.
591 */
592 spinlock_t *ptl; /* Page table lock.
593 * Protects pte page table if 'pte'
594 * is not NULL, otherwise pmd.
595 */
596 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
597 * vm_ops->map_pages() sets up a page
598 * table from atomic context.
599 * do_fault_around() pre-allocates
600 * page table to avoid allocation from
601 * atomic context.
602 */
603};
604
605/*
606 * These are the virtual MM functions - opening of an area, closing and
607 * unmapping it (needed to keep files on disk up-to-date etc), pointer
608 * to the functions called when a no-page or a wp-page exception occurs.
609 */
610struct vm_operations_struct {
611 void (*open)(struct vm_area_struct * area);
612 /**
613 * @close: Called when the VMA is being removed from the MM.
614 * Context: User context. May sleep. Caller holds mmap_lock.
615 */
616 void (*close)(struct vm_area_struct * area);
617 /* Called any time before splitting to check if it's allowed */
618 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
619 int (*mremap)(struct vm_area_struct *area);
620 /*
621 * Called by mprotect() to make driver-specific permission
622 * checks before mprotect() is finalised. The VMA must not
623 * be modified. Returns 0 if mprotect() can proceed.
624 */
625 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
626 unsigned long end, unsigned long newflags);
627 vm_fault_t (*fault)(struct vm_fault *vmf);
628 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
629 vm_fault_t (*map_pages)(struct vm_fault *vmf,
630 pgoff_t start_pgoff, pgoff_t end_pgoff);
631 unsigned long (*pagesize)(struct vm_area_struct * area);
632
633 /* notification that a previously read-only page is about to become
634 * writable, if an error is returned it will cause a SIGBUS */
635 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
636
637 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
638 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
639
640 /* called by access_process_vm when get_user_pages() fails, typically
641 * for use by special VMAs. See also generic_access_phys() for a generic
642 * implementation useful for any iomem mapping.
643 */
644 int (*access)(struct vm_area_struct *vma, unsigned long addr,
645 void *buf, int len, int write);
646
647 /* Called by the /proc/PID/maps code to ask the vma whether it
648 * has a special name. Returning non-NULL will also cause this
649 * vma to be dumped unconditionally. */
650 const char *(*name)(struct vm_area_struct *vma);
651
652#ifdef CONFIG_NUMA
653 /*
654 * set_policy() op must add a reference to any non-NULL @new mempolicy
655 * to hold the policy upon return. Caller should pass NULL @new to
656 * remove a policy and fall back to surrounding context--i.e. do not
657 * install a MPOL_DEFAULT policy, nor the task or system default
658 * mempolicy.
659 */
660 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
661
662 /*
663 * get_policy() op must add reference [mpol_get()] to any policy at
664 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
665 * in mm/mempolicy.c will do this automatically.
666 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
667 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
668 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
669 * must return NULL--i.e., do not "fallback" to task or system default
670 * policy.
671 */
672 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
673 unsigned long addr, pgoff_t *ilx);
674#endif
675 /*
676 * Called by vm_normal_page() for special PTEs to find the
677 * page for @addr. This is useful if the default behavior
678 * (using pte_page()) would not find the correct page.
679 */
680 struct page *(*find_special_page)(struct vm_area_struct *vma,
681 unsigned long addr);
682};
683
684#ifdef CONFIG_NUMA_BALANCING
685static inline void vma_numab_state_init(struct vm_area_struct *vma)
686{
687 vma->numab_state = NULL;
688}
689static inline void vma_numab_state_free(struct vm_area_struct *vma)
690{
691 kfree(vma->numab_state);
692}
693#else
694static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
695static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
696#endif /* CONFIG_NUMA_BALANCING */
697
698#ifdef CONFIG_PER_VMA_LOCK
699/*
700 * Try to read-lock a vma. The function is allowed to occasionally yield false
701 * locked result to avoid performance overhead, in which case we fall back to
702 * using mmap_lock. The function should never yield false unlocked result.
703 */
704static inline bool vma_start_read(struct vm_area_struct *vma)
705{
706 /*
707 * Check before locking. A race might cause false locked result.
708 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
709 * ACQUIRE semantics, because this is just a lockless check whose result
710 * we don't rely on for anything - the mm_lock_seq read against which we
711 * need ordering is below.
712 */
713 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
714 return false;
715
716 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
717 return false;
718
719 /*
720 * Overflow might produce false locked result.
721 * False unlocked result is impossible because we modify and check
722 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
723 * modification invalidates all existing locks.
724 *
725 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
726 * racing with vma_end_write_all(), we only start reading from the VMA
727 * after it has been unlocked.
728 * This pairs with RELEASE semantics in vma_end_write_all().
729 */
730 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
731 up_read(&vma->vm_lock->lock);
732 return false;
733 }
734 return true;
735}
736
737static inline void vma_end_read(struct vm_area_struct *vma)
738{
739 rcu_read_lock(); /* keeps vma alive till the end of up_read */
740 up_read(&vma->vm_lock->lock);
741 rcu_read_unlock();
742}
743
744/* WARNING! Can only be used if mmap_lock is expected to be write-locked */
745static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
746{
747 mmap_assert_write_locked(vma->vm_mm);
748
749 /*
750 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
751 * mm->mm_lock_seq can't be concurrently modified.
752 */
753 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
754 return (vma->vm_lock_seq == *mm_lock_seq);
755}
756
757/*
758 * Begin writing to a VMA.
759 * Exclude concurrent readers under the per-VMA lock until the currently
760 * write-locked mmap_lock is dropped or downgraded.
761 */
762static inline void vma_start_write(struct vm_area_struct *vma)
763{
764 int mm_lock_seq;
765
766 if (__is_vma_write_locked(vma, &mm_lock_seq))
767 return;
768
769 down_write(&vma->vm_lock->lock);
770 /*
771 * We should use WRITE_ONCE() here because we can have concurrent reads
772 * from the early lockless pessimistic check in vma_start_read().
773 * We don't really care about the correctness of that early check, but
774 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
775 */
776 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
777 up_write(&vma->vm_lock->lock);
778}
779
780static inline void vma_assert_write_locked(struct vm_area_struct *vma)
781{
782 int mm_lock_seq;
783
784 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
785}
786
787static inline void vma_assert_locked(struct vm_area_struct *vma)
788{
789 if (!rwsem_is_locked(&vma->vm_lock->lock))
790 vma_assert_write_locked(vma);
791}
792
793static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
794{
795 /* When detaching vma should be write-locked */
796 if (detached)
797 vma_assert_write_locked(vma);
798 vma->detached = detached;
799}
800
801static inline void release_fault_lock(struct vm_fault *vmf)
802{
803 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
804 vma_end_read(vmf->vma);
805 else
806 mmap_read_unlock(vmf->vma->vm_mm);
807}
808
809static inline void assert_fault_locked(struct vm_fault *vmf)
810{
811 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
812 vma_assert_locked(vmf->vma);
813 else
814 mmap_assert_locked(vmf->vma->vm_mm);
815}
816
817struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
818 unsigned long address);
819
820#else /* CONFIG_PER_VMA_LOCK */
821
822static inline bool vma_start_read(struct vm_area_struct *vma)
823 { return false; }
824static inline void vma_end_read(struct vm_area_struct *vma) {}
825static inline void vma_start_write(struct vm_area_struct *vma) {}
826static inline void vma_assert_write_locked(struct vm_area_struct *vma)
827 { mmap_assert_write_locked(vma->vm_mm); }
828static inline void vma_mark_detached(struct vm_area_struct *vma,
829 bool detached) {}
830
831static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
832 unsigned long address)
833{
834 return NULL;
835}
836
837static inline void vma_assert_locked(struct vm_area_struct *vma)
838{
839 mmap_assert_locked(vma->vm_mm);
840}
841
842static inline void release_fault_lock(struct vm_fault *vmf)
843{
844 mmap_read_unlock(vmf->vma->vm_mm);
845}
846
847static inline void assert_fault_locked(struct vm_fault *vmf)
848{
849 mmap_assert_locked(vmf->vma->vm_mm);
850}
851
852#endif /* CONFIG_PER_VMA_LOCK */
853
854extern const struct vm_operations_struct vma_dummy_vm_ops;
855
856/*
857 * WARNING: vma_init does not initialize vma->vm_lock.
858 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
859 */
860static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
861{
862 memset(vma, 0, sizeof(*vma));
863 vma->vm_mm = mm;
864 vma->vm_ops = &vma_dummy_vm_ops;
865 INIT_LIST_HEAD(&vma->anon_vma_chain);
866 vma_mark_detached(vma, false);
867 vma_numab_state_init(vma);
868}
869
870/* Use when VMA is not part of the VMA tree and needs no locking */
871static inline void vm_flags_init(struct vm_area_struct *vma,
872 vm_flags_t flags)
873{
874 ACCESS_PRIVATE(vma, __vm_flags) = flags;
875}
876
877/*
878 * Use when VMA is part of the VMA tree and modifications need coordination
879 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
880 * it should be locked explicitly beforehand.
881 */
882static inline void vm_flags_reset(struct vm_area_struct *vma,
883 vm_flags_t flags)
884{
885 vma_assert_write_locked(vma);
886 vm_flags_init(vma, flags);
887}
888
889static inline void vm_flags_reset_once(struct vm_area_struct *vma,
890 vm_flags_t flags)
891{
892 vma_assert_write_locked(vma);
893 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
894}
895
896static inline void vm_flags_set(struct vm_area_struct *vma,
897 vm_flags_t flags)
898{
899 vma_start_write(vma);
900 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
901}
902
903static inline void vm_flags_clear(struct vm_area_struct *vma,
904 vm_flags_t flags)
905{
906 vma_start_write(vma);
907 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
908}
909
910/*
911 * Use only if VMA is not part of the VMA tree or has no other users and
912 * therefore needs no locking.
913 */
914static inline void __vm_flags_mod(struct vm_area_struct *vma,
915 vm_flags_t set, vm_flags_t clear)
916{
917 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
918}
919
920/*
921 * Use only when the order of set/clear operations is unimportant, otherwise
922 * use vm_flags_{set|clear} explicitly.
923 */
924static inline void vm_flags_mod(struct vm_area_struct *vma,
925 vm_flags_t set, vm_flags_t clear)
926{
927 vma_start_write(vma);
928 __vm_flags_mod(vma, set, clear);
929}
930
931static inline void vma_set_anonymous(struct vm_area_struct *vma)
932{
933 vma->vm_ops = NULL;
934}
935
936static inline bool vma_is_anonymous(struct vm_area_struct *vma)
937{
938 return !vma->vm_ops;
939}
940
941/*
942 * Indicate if the VMA is a heap for the given task; for
943 * /proc/PID/maps that is the heap of the main task.
944 */
945static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
946{
947 return vma->vm_start < vma->vm_mm->brk &&
948 vma->vm_end > vma->vm_mm->start_brk;
949}
950
951/*
952 * Indicate if the VMA is a stack for the given task; for
953 * /proc/PID/maps that is the stack of the main task.
954 */
955static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
956{
957 /*
958 * We make no effort to guess what a given thread considers to be
959 * its "stack". It's not even well-defined for programs written
960 * languages like Go.
961 */
962 return vma->vm_start <= vma->vm_mm->start_stack &&
963 vma->vm_end >= vma->vm_mm->start_stack;
964}
965
966static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
967{
968 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
969
970 if (!maybe_stack)
971 return false;
972
973 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
974 VM_STACK_INCOMPLETE_SETUP)
975 return true;
976
977 return false;
978}
979
980static inline bool vma_is_foreign(struct vm_area_struct *vma)
981{
982 if (!current->mm)
983 return true;
984
985 if (current->mm != vma->vm_mm)
986 return true;
987
988 return false;
989}
990
991static inline bool vma_is_accessible(struct vm_area_struct *vma)
992{
993 return vma->vm_flags & VM_ACCESS_FLAGS;
994}
995
996static inline bool is_shared_maywrite(vm_flags_t vm_flags)
997{
998 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
999 (VM_SHARED | VM_MAYWRITE);
1000}
1001
1002static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1003{
1004 return is_shared_maywrite(vma->vm_flags);
1005}
1006
1007static inline
1008struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1009{
1010 return mas_find(&vmi->mas, max - 1);
1011}
1012
1013static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1014{
1015 /*
1016 * Uses mas_find() to get the first VMA when the iterator starts.
1017 * Calling mas_next() could skip the first entry.
1018 */
1019 return mas_find(&vmi->mas, ULONG_MAX);
1020}
1021
1022static inline
1023struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1024{
1025 return mas_next_range(&vmi->mas, ULONG_MAX);
1026}
1027
1028
1029static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1030{
1031 return mas_prev(&vmi->mas, 0);
1032}
1033
1034static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1035 unsigned long start, unsigned long end, gfp_t gfp)
1036{
1037 __mas_set_range(&vmi->mas, start, end - 1);
1038 mas_store_gfp(&vmi->mas, NULL, gfp);
1039 if (unlikely(mas_is_err(&vmi->mas)))
1040 return -ENOMEM;
1041
1042 return 0;
1043}
1044
1045/* Free any unused preallocations */
1046static inline void vma_iter_free(struct vma_iterator *vmi)
1047{
1048 mas_destroy(&vmi->mas);
1049}
1050
1051static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1052 struct vm_area_struct *vma)
1053{
1054 vmi->mas.index = vma->vm_start;
1055 vmi->mas.last = vma->vm_end - 1;
1056 mas_store(&vmi->mas, vma);
1057 if (unlikely(mas_is_err(&vmi->mas)))
1058 return -ENOMEM;
1059
1060 return 0;
1061}
1062
1063static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1064{
1065 mas_pause(&vmi->mas);
1066}
1067
1068static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1069{
1070 mas_set(&vmi->mas, addr);
1071}
1072
1073#define for_each_vma(__vmi, __vma) \
1074 while (((__vma) = vma_next(&(__vmi))) != NULL)
1075
1076/* The MM code likes to work with exclusive end addresses */
1077#define for_each_vma_range(__vmi, __vma, __end) \
1078 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1079
1080#ifdef CONFIG_SHMEM
1081/*
1082 * The vma_is_shmem is not inline because it is used only by slow
1083 * paths in userfault.
1084 */
1085bool vma_is_shmem(struct vm_area_struct *vma);
1086bool vma_is_anon_shmem(struct vm_area_struct *vma);
1087#else
1088static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1089static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1090#endif
1091
1092int vma_is_stack_for_current(struct vm_area_struct *vma);
1093
1094/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1095#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1096
1097struct mmu_gather;
1098struct inode;
1099
1100/*
1101 * compound_order() can be called without holding a reference, which means
1102 * that niceties like page_folio() don't work. These callers should be
1103 * prepared to handle wild return values. For example, PG_head may be
1104 * set before the order is initialised, or this may be a tail page.
1105 * See compaction.c for some good examples.
1106 */
1107static inline unsigned int compound_order(struct page *page)
1108{
1109 struct folio *folio = (struct folio *)page;
1110
1111 if (!test_bit(PG_head, &folio->flags))
1112 return 0;
1113 return folio->_flags_1 & 0xff;
1114}
1115
1116/**
1117 * folio_order - The allocation order of a folio.
1118 * @folio: The folio.
1119 *
1120 * A folio is composed of 2^order pages. See get_order() for the definition
1121 * of order.
1122 *
1123 * Return: The order of the folio.
1124 */
1125static inline unsigned int folio_order(const struct folio *folio)
1126{
1127 if (!folio_test_large(folio))
1128 return 0;
1129 return folio->_flags_1 & 0xff;
1130}
1131
1132#include <linux/huge_mm.h>
1133
1134/*
1135 * Methods to modify the page usage count.
1136 *
1137 * What counts for a page usage:
1138 * - cache mapping (page->mapping)
1139 * - private data (page->private)
1140 * - page mapped in a task's page tables, each mapping
1141 * is counted separately
1142 *
1143 * Also, many kernel routines increase the page count before a critical
1144 * routine so they can be sure the page doesn't go away from under them.
1145 */
1146
1147/*
1148 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1149 */
1150static inline int put_page_testzero(struct page *page)
1151{
1152 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1153 return page_ref_dec_and_test(page);
1154}
1155
1156static inline int folio_put_testzero(struct folio *folio)
1157{
1158 return put_page_testzero(&folio->page);
1159}
1160
1161/*
1162 * Try to grab a ref unless the page has a refcount of zero, return false if
1163 * that is the case.
1164 * This can be called when MMU is off so it must not access
1165 * any of the virtual mappings.
1166 */
1167static inline bool get_page_unless_zero(struct page *page)
1168{
1169 return page_ref_add_unless(page, 1, 0);
1170}
1171
1172static inline struct folio *folio_get_nontail_page(struct page *page)
1173{
1174 if (unlikely(!get_page_unless_zero(page)))
1175 return NULL;
1176 return (struct folio *)page;
1177}
1178
1179extern int page_is_ram(unsigned long pfn);
1180
1181enum {
1182 REGION_INTERSECTS,
1183 REGION_DISJOINT,
1184 REGION_MIXED,
1185};
1186
1187int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1188 unsigned long desc);
1189
1190/* Support for virtually mapped pages */
1191struct page *vmalloc_to_page(const void *addr);
1192unsigned long vmalloc_to_pfn(const void *addr);
1193
1194/*
1195 * Determine if an address is within the vmalloc range
1196 *
1197 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1198 * is no special casing required.
1199 */
1200#ifdef CONFIG_MMU
1201extern bool is_vmalloc_addr(const void *x);
1202extern int is_vmalloc_or_module_addr(const void *x);
1203#else
1204static inline bool is_vmalloc_addr(const void *x)
1205{
1206 return false;
1207}
1208static inline int is_vmalloc_or_module_addr(const void *x)
1209{
1210 return 0;
1211}
1212#endif
1213
1214/*
1215 * How many times the entire folio is mapped as a single unit (eg by a
1216 * PMD or PUD entry). This is probably not what you want, except for
1217 * debugging purposes or implementation of other core folio_*() primitives.
1218 */
1219static inline int folio_entire_mapcount(const struct folio *folio)
1220{
1221 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1222 return atomic_read(&folio->_entire_mapcount) + 1;
1223}
1224
1225static inline int folio_large_mapcount(const struct folio *folio)
1226{
1227 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1228 return atomic_read(&folio->_large_mapcount) + 1;
1229}
1230
1231/**
1232 * folio_mapcount() - Number of mappings of this folio.
1233 * @folio: The folio.
1234 *
1235 * The folio mapcount corresponds to the number of present user page table
1236 * entries that reference any part of a folio. Each such present user page
1237 * table entry must be paired with exactly on folio reference.
1238 *
1239 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1240 * exactly once.
1241 *
1242 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1243 * references the entire folio counts exactly once, even when such special
1244 * page table entries are comprised of multiple ordinary page table entries.
1245 *
1246 * Will report 0 for pages which cannot be mapped into userspace, such as
1247 * slab, page tables and similar.
1248 *
1249 * Return: The number of times this folio is mapped.
1250 */
1251static inline int folio_mapcount(const struct folio *folio)
1252{
1253 int mapcount;
1254
1255 if (likely(!folio_test_large(folio))) {
1256 mapcount = atomic_read(&folio->_mapcount) + 1;
1257 if (page_mapcount_is_type(mapcount))
1258 mapcount = 0;
1259 return mapcount;
1260 }
1261 return folio_large_mapcount(folio);
1262}
1263
1264/**
1265 * folio_mapped - Is this folio mapped into userspace?
1266 * @folio: The folio.
1267 *
1268 * Return: True if any page in this folio is referenced by user page tables.
1269 */
1270static inline bool folio_mapped(const struct folio *folio)
1271{
1272 return folio_mapcount(folio) >= 1;
1273}
1274
1275/*
1276 * Return true if this page is mapped into pagetables.
1277 * For compound page it returns true if any sub-page of compound page is mapped,
1278 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1279 */
1280static inline bool page_mapped(const struct page *page)
1281{
1282 return folio_mapped(page_folio(page));
1283}
1284
1285static inline struct page *virt_to_head_page(const void *x)
1286{
1287 struct page *page = virt_to_page(x);
1288
1289 return compound_head(page);
1290}
1291
1292static inline struct folio *virt_to_folio(const void *x)
1293{
1294 struct page *page = virt_to_page(x);
1295
1296 return page_folio(page);
1297}
1298
1299void __folio_put(struct folio *folio);
1300
1301void split_page(struct page *page, unsigned int order);
1302void folio_copy(struct folio *dst, struct folio *src);
1303int folio_mc_copy(struct folio *dst, struct folio *src);
1304
1305unsigned long nr_free_buffer_pages(void);
1306
1307/* Returns the number of bytes in this potentially compound page. */
1308static inline unsigned long page_size(struct page *page)
1309{
1310 return PAGE_SIZE << compound_order(page);
1311}
1312
1313/* Returns the number of bits needed for the number of bytes in a page */
1314static inline unsigned int page_shift(struct page *page)
1315{
1316 return PAGE_SHIFT + compound_order(page);
1317}
1318
1319/**
1320 * thp_order - Order of a transparent huge page.
1321 * @page: Head page of a transparent huge page.
1322 */
1323static inline unsigned int thp_order(struct page *page)
1324{
1325 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1326 return compound_order(page);
1327}
1328
1329/**
1330 * thp_size - Size of a transparent huge page.
1331 * @page: Head page of a transparent huge page.
1332 *
1333 * Return: Number of bytes in this page.
1334 */
1335static inline unsigned long thp_size(struct page *page)
1336{
1337 return PAGE_SIZE << thp_order(page);
1338}
1339
1340#ifdef CONFIG_MMU
1341/*
1342 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1343 * servicing faults for write access. In the normal case, do always want
1344 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1345 * that do not have writing enabled, when used by access_process_vm.
1346 */
1347static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1348{
1349 if (likely(vma->vm_flags & VM_WRITE))
1350 pte = pte_mkwrite(pte, vma);
1351 return pte;
1352}
1353
1354vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1355void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1356 struct page *page, unsigned int nr, unsigned long addr);
1357
1358vm_fault_t finish_fault(struct vm_fault *vmf);
1359#endif
1360
1361/*
1362 * Multiple processes may "see" the same page. E.g. for untouched
1363 * mappings of /dev/null, all processes see the same page full of
1364 * zeroes, and text pages of executables and shared libraries have
1365 * only one copy in memory, at most, normally.
1366 *
1367 * For the non-reserved pages, page_count(page) denotes a reference count.
1368 * page_count() == 0 means the page is free. page->lru is then used for
1369 * freelist management in the buddy allocator.
1370 * page_count() > 0 means the page has been allocated.
1371 *
1372 * Pages are allocated by the slab allocator in order to provide memory
1373 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1374 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1375 * unless a particular usage is carefully commented. (the responsibility of
1376 * freeing the kmalloc memory is the caller's, of course).
1377 *
1378 * A page may be used by anyone else who does a __get_free_page().
1379 * In this case, page_count still tracks the references, and should only
1380 * be used through the normal accessor functions. The top bits of page->flags
1381 * and page->virtual store page management information, but all other fields
1382 * are unused and could be used privately, carefully. The management of this
1383 * page is the responsibility of the one who allocated it, and those who have
1384 * subsequently been given references to it.
1385 *
1386 * The other pages (we may call them "pagecache pages") are completely
1387 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1388 * The following discussion applies only to them.
1389 *
1390 * A pagecache page contains an opaque `private' member, which belongs to the
1391 * page's address_space. Usually, this is the address of a circular list of
1392 * the page's disk buffers. PG_private must be set to tell the VM to call
1393 * into the filesystem to release these pages.
1394 *
1395 * A page may belong to an inode's memory mapping. In this case, page->mapping
1396 * is the pointer to the inode, and page->index is the file offset of the page,
1397 * in units of PAGE_SIZE.
1398 *
1399 * If pagecache pages are not associated with an inode, they are said to be
1400 * anonymous pages. These may become associated with the swapcache, and in that
1401 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1402 *
1403 * In either case (swapcache or inode backed), the pagecache itself holds one
1404 * reference to the page. Setting PG_private should also increment the
1405 * refcount. The each user mapping also has a reference to the page.
1406 *
1407 * The pagecache pages are stored in a per-mapping radix tree, which is
1408 * rooted at mapping->i_pages, and indexed by offset.
1409 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1410 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1411 *
1412 * All pagecache pages may be subject to I/O:
1413 * - inode pages may need to be read from disk,
1414 * - inode pages which have been modified and are MAP_SHARED may need
1415 * to be written back to the inode on disk,
1416 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1417 * modified may need to be swapped out to swap space and (later) to be read
1418 * back into memory.
1419 */
1420
1421#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1422DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1423
1424bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1425static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1426{
1427 if (!static_branch_unlikely(&devmap_managed_key))
1428 return false;
1429 if (!folio_is_zone_device(folio))
1430 return false;
1431 return __put_devmap_managed_folio_refs(folio, refs);
1432}
1433#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1434static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1435{
1436 return false;
1437}
1438#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1439
1440/* 127: arbitrary random number, small enough to assemble well */
1441#define folio_ref_zero_or_close_to_overflow(folio) \
1442 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1443
1444/**
1445 * folio_get - Increment the reference count on a folio.
1446 * @folio: The folio.
1447 *
1448 * Context: May be called in any context, as long as you know that
1449 * you have a refcount on the folio. If you do not already have one,
1450 * folio_try_get() may be the right interface for you to use.
1451 */
1452static inline void folio_get(struct folio *folio)
1453{
1454 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1455 folio_ref_inc(folio);
1456}
1457
1458static inline void get_page(struct page *page)
1459{
1460 folio_get(page_folio(page));
1461}
1462
1463static inline __must_check bool try_get_page(struct page *page)
1464{
1465 page = compound_head(page);
1466 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1467 return false;
1468 page_ref_inc(page);
1469 return true;
1470}
1471
1472/**
1473 * folio_put - Decrement the reference count on a folio.
1474 * @folio: The folio.
1475 *
1476 * If the folio's reference count reaches zero, the memory will be
1477 * released back to the page allocator and may be used by another
1478 * allocation immediately. Do not access the memory or the struct folio
1479 * after calling folio_put() unless you can be sure that it wasn't the
1480 * last reference.
1481 *
1482 * Context: May be called in process or interrupt context, but not in NMI
1483 * context. May be called while holding a spinlock.
1484 */
1485static inline void folio_put(struct folio *folio)
1486{
1487 if (folio_put_testzero(folio))
1488 __folio_put(folio);
1489}
1490
1491/**
1492 * folio_put_refs - Reduce the reference count on a folio.
1493 * @folio: The folio.
1494 * @refs: The amount to subtract from the folio's reference count.
1495 *
1496 * If the folio's reference count reaches zero, the memory will be
1497 * released back to the page allocator and may be used by another
1498 * allocation immediately. Do not access the memory or the struct folio
1499 * after calling folio_put_refs() unless you can be sure that these weren't
1500 * the last references.
1501 *
1502 * Context: May be called in process or interrupt context, but not in NMI
1503 * context. May be called while holding a spinlock.
1504 */
1505static inline void folio_put_refs(struct folio *folio, int refs)
1506{
1507 if (folio_ref_sub_and_test(folio, refs))
1508 __folio_put(folio);
1509}
1510
1511void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1512
1513/*
1514 * union release_pages_arg - an array of pages or folios
1515 *
1516 * release_pages() releases a simple array of multiple pages, and
1517 * accepts various different forms of said page array: either
1518 * a regular old boring array of pages, an array of folios, or
1519 * an array of encoded page pointers.
1520 *
1521 * The transparent union syntax for this kind of "any of these
1522 * argument types" is all kinds of ugly, so look away.
1523 */
1524typedef union {
1525 struct page **pages;
1526 struct folio **folios;
1527 struct encoded_page **encoded_pages;
1528} release_pages_arg __attribute__ ((__transparent_union__));
1529
1530void release_pages(release_pages_arg, int nr);
1531
1532/**
1533 * folios_put - Decrement the reference count on an array of folios.
1534 * @folios: The folios.
1535 *
1536 * Like folio_put(), but for a batch of folios. This is more efficient
1537 * than writing the loop yourself as it will optimise the locks which need
1538 * to be taken if the folios are freed. The folios batch is returned
1539 * empty and ready to be reused for another batch; there is no need to
1540 * reinitialise it.
1541 *
1542 * Context: May be called in process or interrupt context, but not in NMI
1543 * context. May be called while holding a spinlock.
1544 */
1545static inline void folios_put(struct folio_batch *folios)
1546{
1547 folios_put_refs(folios, NULL);
1548}
1549
1550static inline void put_page(struct page *page)
1551{
1552 struct folio *folio = page_folio(page);
1553
1554 /*
1555 * For some devmap managed pages we need to catch refcount transition
1556 * from 2 to 1:
1557 */
1558 if (put_devmap_managed_folio_refs(folio, 1))
1559 return;
1560 folio_put(folio);
1561}
1562
1563/*
1564 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1565 * the page's refcount so that two separate items are tracked: the original page
1566 * reference count, and also a new count of how many pin_user_pages() calls were
1567 * made against the page. ("gup-pinned" is another term for the latter).
1568 *
1569 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1570 * distinct from normal pages. As such, the unpin_user_page() call (and its
1571 * variants) must be used in order to release gup-pinned pages.
1572 *
1573 * Choice of value:
1574 *
1575 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1576 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1577 * simpler, due to the fact that adding an even power of two to the page
1578 * refcount has the effect of using only the upper N bits, for the code that
1579 * counts up using the bias value. This means that the lower bits are left for
1580 * the exclusive use of the original code that increments and decrements by one
1581 * (or at least, by much smaller values than the bias value).
1582 *
1583 * Of course, once the lower bits overflow into the upper bits (and this is
1584 * OK, because subtraction recovers the original values), then visual inspection
1585 * no longer suffices to directly view the separate counts. However, for normal
1586 * applications that don't have huge page reference counts, this won't be an
1587 * issue.
1588 *
1589 * Locking: the lockless algorithm described in folio_try_get_rcu()
1590 * provides safe operation for get_user_pages(), folio_mkclean() and
1591 * other calls that race to set up page table entries.
1592 */
1593#define GUP_PIN_COUNTING_BIAS (1U << 10)
1594
1595void unpin_user_page(struct page *page);
1596void unpin_folio(struct folio *folio);
1597void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1598 bool make_dirty);
1599void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1600 bool make_dirty);
1601void unpin_user_pages(struct page **pages, unsigned long npages);
1602void unpin_user_folio(struct folio *folio, unsigned long npages);
1603void unpin_folios(struct folio **folios, unsigned long nfolios);
1604
1605static inline bool is_cow_mapping(vm_flags_t flags)
1606{
1607 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1608}
1609
1610#ifndef CONFIG_MMU
1611static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1612{
1613 /*
1614 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1615 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1616 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1617 * underlying memory if ptrace is active, so this is only possible if
1618 * ptrace does not apply. Note that there is no mprotect() to upgrade
1619 * write permissions later.
1620 */
1621 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1622}
1623#endif
1624
1625#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1626#define SECTION_IN_PAGE_FLAGS
1627#endif
1628
1629/*
1630 * The identification function is mainly used by the buddy allocator for
1631 * determining if two pages could be buddies. We are not really identifying
1632 * the zone since we could be using the section number id if we do not have
1633 * node id available in page flags.
1634 * We only guarantee that it will return the same value for two combinable
1635 * pages in a zone.
1636 */
1637static inline int page_zone_id(struct page *page)
1638{
1639 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1640}
1641
1642#ifdef NODE_NOT_IN_PAGE_FLAGS
1643int page_to_nid(const struct page *page);
1644#else
1645static inline int page_to_nid(const struct page *page)
1646{
1647 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1648}
1649#endif
1650
1651static inline int folio_nid(const struct folio *folio)
1652{
1653 return page_to_nid(&folio->page);
1654}
1655
1656#ifdef CONFIG_NUMA_BALANCING
1657/* page access time bits needs to hold at least 4 seconds */
1658#define PAGE_ACCESS_TIME_MIN_BITS 12
1659#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1660#define PAGE_ACCESS_TIME_BUCKETS \
1661 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1662#else
1663#define PAGE_ACCESS_TIME_BUCKETS 0
1664#endif
1665
1666#define PAGE_ACCESS_TIME_MASK \
1667 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1668
1669static inline int cpu_pid_to_cpupid(int cpu, int pid)
1670{
1671 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1672}
1673
1674static inline int cpupid_to_pid(int cpupid)
1675{
1676 return cpupid & LAST__PID_MASK;
1677}
1678
1679static inline int cpupid_to_cpu(int cpupid)
1680{
1681 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1682}
1683
1684static inline int cpupid_to_nid(int cpupid)
1685{
1686 return cpu_to_node(cpupid_to_cpu(cpupid));
1687}
1688
1689static inline bool cpupid_pid_unset(int cpupid)
1690{
1691 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1692}
1693
1694static inline bool cpupid_cpu_unset(int cpupid)
1695{
1696 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1697}
1698
1699static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1700{
1701 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1702}
1703
1704#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1705#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1706static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1707{
1708 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1709}
1710
1711static inline int folio_last_cpupid(struct folio *folio)
1712{
1713 return folio->_last_cpupid;
1714}
1715static inline void page_cpupid_reset_last(struct page *page)
1716{
1717 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1718}
1719#else
1720static inline int folio_last_cpupid(struct folio *folio)
1721{
1722 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1723}
1724
1725int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1726
1727static inline void page_cpupid_reset_last(struct page *page)
1728{
1729 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1730}
1731#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1732
1733static inline int folio_xchg_access_time(struct folio *folio, int time)
1734{
1735 int last_time;
1736
1737 last_time = folio_xchg_last_cpupid(folio,
1738 time >> PAGE_ACCESS_TIME_BUCKETS);
1739 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1740}
1741
1742static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1743{
1744 unsigned int pid_bit;
1745
1746 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1747 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1748 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1749 }
1750}
1751
1752bool folio_use_access_time(struct folio *folio);
1753#else /* !CONFIG_NUMA_BALANCING */
1754static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1755{
1756 return folio_nid(folio); /* XXX */
1757}
1758
1759static inline int folio_xchg_access_time(struct folio *folio, int time)
1760{
1761 return 0;
1762}
1763
1764static inline int folio_last_cpupid(struct folio *folio)
1765{
1766 return folio_nid(folio); /* XXX */
1767}
1768
1769static inline int cpupid_to_nid(int cpupid)
1770{
1771 return -1;
1772}
1773
1774static inline int cpupid_to_pid(int cpupid)
1775{
1776 return -1;
1777}
1778
1779static inline int cpupid_to_cpu(int cpupid)
1780{
1781 return -1;
1782}
1783
1784static inline int cpu_pid_to_cpupid(int nid, int pid)
1785{
1786 return -1;
1787}
1788
1789static inline bool cpupid_pid_unset(int cpupid)
1790{
1791 return true;
1792}
1793
1794static inline void page_cpupid_reset_last(struct page *page)
1795{
1796}
1797
1798static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1799{
1800 return false;
1801}
1802
1803static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1804{
1805}
1806static inline bool folio_use_access_time(struct folio *folio)
1807{
1808 return false;
1809}
1810#endif /* CONFIG_NUMA_BALANCING */
1811
1812#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1813
1814/*
1815 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1816 * setting tags for all pages to native kernel tag value 0xff, as the default
1817 * value 0x00 maps to 0xff.
1818 */
1819
1820static inline u8 page_kasan_tag(const struct page *page)
1821{
1822 u8 tag = KASAN_TAG_KERNEL;
1823
1824 if (kasan_enabled()) {
1825 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1826 tag ^= 0xff;
1827 }
1828
1829 return tag;
1830}
1831
1832static inline void page_kasan_tag_set(struct page *page, u8 tag)
1833{
1834 unsigned long old_flags, flags;
1835
1836 if (!kasan_enabled())
1837 return;
1838
1839 tag ^= 0xff;
1840 old_flags = READ_ONCE(page->flags);
1841 do {
1842 flags = old_flags;
1843 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1844 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1845 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1846}
1847
1848static inline void page_kasan_tag_reset(struct page *page)
1849{
1850 if (kasan_enabled())
1851 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1852}
1853
1854#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1855
1856static inline u8 page_kasan_tag(const struct page *page)
1857{
1858 return 0xff;
1859}
1860
1861static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1862static inline void page_kasan_tag_reset(struct page *page) { }
1863
1864#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1865
1866static inline struct zone *page_zone(const struct page *page)
1867{
1868 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1869}
1870
1871static inline pg_data_t *page_pgdat(const struct page *page)
1872{
1873 return NODE_DATA(page_to_nid(page));
1874}
1875
1876static inline struct zone *folio_zone(const struct folio *folio)
1877{
1878 return page_zone(&folio->page);
1879}
1880
1881static inline pg_data_t *folio_pgdat(const struct folio *folio)
1882{
1883 return page_pgdat(&folio->page);
1884}
1885
1886#ifdef SECTION_IN_PAGE_FLAGS
1887static inline void set_page_section(struct page *page, unsigned long section)
1888{
1889 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1890 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1891}
1892
1893static inline unsigned long page_to_section(const struct page *page)
1894{
1895 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1896}
1897#endif
1898
1899/**
1900 * folio_pfn - Return the Page Frame Number of a folio.
1901 * @folio: The folio.
1902 *
1903 * A folio may contain multiple pages. The pages have consecutive
1904 * Page Frame Numbers.
1905 *
1906 * Return: The Page Frame Number of the first page in the folio.
1907 */
1908static inline unsigned long folio_pfn(const struct folio *folio)
1909{
1910 return page_to_pfn(&folio->page);
1911}
1912
1913static inline struct folio *pfn_folio(unsigned long pfn)
1914{
1915 return page_folio(pfn_to_page(pfn));
1916}
1917
1918/**
1919 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1920 * @folio: The folio.
1921 *
1922 * This function checks if a folio has been pinned via a call to
1923 * a function in the pin_user_pages() family.
1924 *
1925 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1926 * because it means "definitely not pinned for DMA", but true means "probably
1927 * pinned for DMA, but possibly a false positive due to having at least
1928 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1929 *
1930 * False positives are OK, because: a) it's unlikely for a folio to
1931 * get that many refcounts, and b) all the callers of this routine are
1932 * expected to be able to deal gracefully with a false positive.
1933 *
1934 * For large folios, the result will be exactly correct. That's because
1935 * we have more tracking data available: the _pincount field is used
1936 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1937 *
1938 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1939 *
1940 * Return: True, if it is likely that the folio has been "dma-pinned".
1941 * False, if the folio is definitely not dma-pinned.
1942 */
1943static inline bool folio_maybe_dma_pinned(struct folio *folio)
1944{
1945 if (folio_test_large(folio))
1946 return atomic_read(&folio->_pincount) > 0;
1947
1948 /*
1949 * folio_ref_count() is signed. If that refcount overflows, then
1950 * folio_ref_count() returns a negative value, and callers will avoid
1951 * further incrementing the refcount.
1952 *
1953 * Here, for that overflow case, use the sign bit to count a little
1954 * bit higher via unsigned math, and thus still get an accurate result.
1955 */
1956 return ((unsigned int)folio_ref_count(folio)) >=
1957 GUP_PIN_COUNTING_BIAS;
1958}
1959
1960/*
1961 * This should most likely only be called during fork() to see whether we
1962 * should break the cow immediately for an anon page on the src mm.
1963 *
1964 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1965 */
1966static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1967 struct folio *folio)
1968{
1969 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1970
1971 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1972 return false;
1973
1974 return folio_maybe_dma_pinned(folio);
1975}
1976
1977/**
1978 * is_zero_page - Query if a page is a zero page
1979 * @page: The page to query
1980 *
1981 * This returns true if @page is one of the permanent zero pages.
1982 */
1983static inline bool is_zero_page(const struct page *page)
1984{
1985 return is_zero_pfn(page_to_pfn(page));
1986}
1987
1988/**
1989 * is_zero_folio - Query if a folio is a zero page
1990 * @folio: The folio to query
1991 *
1992 * This returns true if @folio is one of the permanent zero pages.
1993 */
1994static inline bool is_zero_folio(const struct folio *folio)
1995{
1996 return is_zero_page(&folio->page);
1997}
1998
1999/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2000#ifdef CONFIG_MIGRATION
2001static inline bool folio_is_longterm_pinnable(struct folio *folio)
2002{
2003#ifdef CONFIG_CMA
2004 int mt = folio_migratetype(folio);
2005
2006 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2007 return false;
2008#endif
2009 /* The zero page can be "pinned" but gets special handling. */
2010 if (is_zero_folio(folio))
2011 return true;
2012
2013 /* Coherent device memory must always allow eviction. */
2014 if (folio_is_device_coherent(folio))
2015 return false;
2016
2017 /* Otherwise, non-movable zone folios can be pinned. */
2018 return !folio_is_zone_movable(folio);
2019
2020}
2021#else
2022static inline bool folio_is_longterm_pinnable(struct folio *folio)
2023{
2024 return true;
2025}
2026#endif
2027
2028static inline void set_page_zone(struct page *page, enum zone_type zone)
2029{
2030 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2031 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2032}
2033
2034static inline void set_page_node(struct page *page, unsigned long node)
2035{
2036 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2037 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2038}
2039
2040static inline void set_page_links(struct page *page, enum zone_type zone,
2041 unsigned long node, unsigned long pfn)
2042{
2043 set_page_zone(page, zone);
2044 set_page_node(page, node);
2045#ifdef SECTION_IN_PAGE_FLAGS
2046 set_page_section(page, pfn_to_section_nr(pfn));
2047#endif
2048}
2049
2050/**
2051 * folio_nr_pages - The number of pages in the folio.
2052 * @folio: The folio.
2053 *
2054 * Return: A positive power of two.
2055 */
2056static inline long folio_nr_pages(const struct folio *folio)
2057{
2058 if (!folio_test_large(folio))
2059 return 1;
2060#ifdef CONFIG_64BIT
2061 return folio->_folio_nr_pages;
2062#else
2063 return 1L << (folio->_flags_1 & 0xff);
2064#endif
2065}
2066
2067/* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2068#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2069#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2070#else
2071#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2072#endif
2073
2074/*
2075 * compound_nr() returns the number of pages in this potentially compound
2076 * page. compound_nr() can be called on a tail page, and is defined to
2077 * return 1 in that case.
2078 */
2079static inline unsigned long compound_nr(struct page *page)
2080{
2081 struct folio *folio = (struct folio *)page;
2082
2083 if (!test_bit(PG_head, &folio->flags))
2084 return 1;
2085#ifdef CONFIG_64BIT
2086 return folio->_folio_nr_pages;
2087#else
2088 return 1L << (folio->_flags_1 & 0xff);
2089#endif
2090}
2091
2092/**
2093 * thp_nr_pages - The number of regular pages in this huge page.
2094 * @page: The head page of a huge page.
2095 */
2096static inline int thp_nr_pages(struct page *page)
2097{
2098 return folio_nr_pages((struct folio *)page);
2099}
2100
2101/**
2102 * folio_next - Move to the next physical folio.
2103 * @folio: The folio we're currently operating on.
2104 *
2105 * If you have physically contiguous memory which may span more than
2106 * one folio (eg a &struct bio_vec), use this function to move from one
2107 * folio to the next. Do not use it if the memory is only virtually
2108 * contiguous as the folios are almost certainly not adjacent to each
2109 * other. This is the folio equivalent to writing ``page++``.
2110 *
2111 * Context: We assume that the folios are refcounted and/or locked at a
2112 * higher level and do not adjust the reference counts.
2113 * Return: The next struct folio.
2114 */
2115static inline struct folio *folio_next(struct folio *folio)
2116{
2117 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2118}
2119
2120/**
2121 * folio_shift - The size of the memory described by this folio.
2122 * @folio: The folio.
2123 *
2124 * A folio represents a number of bytes which is a power-of-two in size.
2125 * This function tells you which power-of-two the folio is. See also
2126 * folio_size() and folio_order().
2127 *
2128 * Context: The caller should have a reference on the folio to prevent
2129 * it from being split. It is not necessary for the folio to be locked.
2130 * Return: The base-2 logarithm of the size of this folio.
2131 */
2132static inline unsigned int folio_shift(const struct folio *folio)
2133{
2134 return PAGE_SHIFT + folio_order(folio);
2135}
2136
2137/**
2138 * folio_size - The number of bytes in a folio.
2139 * @folio: The folio.
2140 *
2141 * Context: The caller should have a reference on the folio to prevent
2142 * it from being split. It is not necessary for the folio to be locked.
2143 * Return: The number of bytes in this folio.
2144 */
2145static inline size_t folio_size(const struct folio *folio)
2146{
2147 return PAGE_SIZE << folio_order(folio);
2148}
2149
2150/**
2151 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2152 * tables of more than one MM
2153 * @folio: The folio.
2154 *
2155 * This function checks if the folio is currently mapped into more than one
2156 * MM ("mapped shared"), or if the folio is only mapped into a single MM
2157 * ("mapped exclusively").
2158 *
2159 * For KSM folios, this function also returns "mapped shared" when a folio is
2160 * mapped multiple times into the same MM, because the individual page mappings
2161 * are independent.
2162 *
2163 * As precise information is not easily available for all folios, this function
2164 * estimates the number of MMs ("sharers") that are currently mapping a folio
2165 * using the number of times the first page of the folio is currently mapped
2166 * into page tables.
2167 *
2168 * For small anonymous folios and anonymous hugetlb folios, the return
2169 * value will be exactly correct: non-KSM folios can only be mapped at most once
2170 * into an MM, and they cannot be partially mapped. KSM folios are
2171 * considered shared even if mapped multiple times into the same MM.
2172 *
2173 * For other folios, the result can be fuzzy:
2174 * #. For partially-mappable large folios (THP), the return value can wrongly
2175 * indicate "mapped exclusively" (false negative) when the folio is
2176 * only partially mapped into at least one MM.
2177 * #. For pagecache folios (including hugetlb), the return value can wrongly
2178 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2179 * cover the same file range.
2180 *
2181 * Further, this function only considers current page table mappings that
2182 * are tracked using the folio mapcount(s).
2183 *
2184 * This function does not consider:
2185 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2186 * pagecache, temporary unmapping for migration).
2187 * #. If the folio is mapped differently (VM_PFNMAP).
2188 * #. If hugetlb page table sharing applies. Callers might want to check
2189 * hugetlb_pmd_shared().
2190 *
2191 * Return: Whether the folio is estimated to be mapped into more than one MM.
2192 */
2193static inline bool folio_likely_mapped_shared(struct folio *folio)
2194{
2195 int mapcount = folio_mapcount(folio);
2196
2197 /* Only partially-mappable folios require more care. */
2198 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2199 return mapcount > 1;
2200
2201 /* A single mapping implies "mapped exclusively". */
2202 if (mapcount <= 1)
2203 return false;
2204
2205 /* If any page is mapped more than once we treat it "mapped shared". */
2206 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2207 return true;
2208
2209 /* Let's guess based on the first subpage. */
2210 return atomic_read(&folio->_mapcount) > 0;
2211}
2212
2213#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2214static inline int arch_make_folio_accessible(struct folio *folio)
2215{
2216 return 0;
2217}
2218#endif
2219
2220/*
2221 * Some inline functions in vmstat.h depend on page_zone()
2222 */
2223#include <linux/vmstat.h>
2224
2225#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2226#define HASHED_PAGE_VIRTUAL
2227#endif
2228
2229#if defined(WANT_PAGE_VIRTUAL)
2230static inline void *page_address(const struct page *page)
2231{
2232 return page->virtual;
2233}
2234static inline void set_page_address(struct page *page, void *address)
2235{
2236 page->virtual = address;
2237}
2238#define page_address_init() do { } while(0)
2239#endif
2240
2241#if defined(HASHED_PAGE_VIRTUAL)
2242void *page_address(const struct page *page);
2243void set_page_address(struct page *page, void *virtual);
2244void page_address_init(void);
2245#endif
2246
2247static __always_inline void *lowmem_page_address(const struct page *page)
2248{
2249 return page_to_virt(page);
2250}
2251
2252#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2253#define page_address(page) lowmem_page_address(page)
2254#define set_page_address(page, address) do { } while(0)
2255#define page_address_init() do { } while(0)
2256#endif
2257
2258static inline void *folio_address(const struct folio *folio)
2259{
2260 return page_address(&folio->page);
2261}
2262
2263/*
2264 * Return true only if the page has been allocated with
2265 * ALLOC_NO_WATERMARKS and the low watermark was not
2266 * met implying that the system is under some pressure.
2267 */
2268static inline bool page_is_pfmemalloc(const struct page *page)
2269{
2270 /*
2271 * lru.next has bit 1 set if the page is allocated from the
2272 * pfmemalloc reserves. Callers may simply overwrite it if
2273 * they do not need to preserve that information.
2274 */
2275 return (uintptr_t)page->lru.next & BIT(1);
2276}
2277
2278/*
2279 * Return true only if the folio has been allocated with
2280 * ALLOC_NO_WATERMARKS and the low watermark was not
2281 * met implying that the system is under some pressure.
2282 */
2283static inline bool folio_is_pfmemalloc(const struct folio *folio)
2284{
2285 /*
2286 * lru.next has bit 1 set if the page is allocated from the
2287 * pfmemalloc reserves. Callers may simply overwrite it if
2288 * they do not need to preserve that information.
2289 */
2290 return (uintptr_t)folio->lru.next & BIT(1);
2291}
2292
2293/*
2294 * Only to be called by the page allocator on a freshly allocated
2295 * page.
2296 */
2297static inline void set_page_pfmemalloc(struct page *page)
2298{
2299 page->lru.next = (void *)BIT(1);
2300}
2301
2302static inline void clear_page_pfmemalloc(struct page *page)
2303{
2304 page->lru.next = NULL;
2305}
2306
2307/*
2308 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2309 */
2310extern void pagefault_out_of_memory(void);
2311
2312#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2313#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2314#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2315
2316/*
2317 * Parameter block passed down to zap_pte_range in exceptional cases.
2318 */
2319struct zap_details {
2320 struct folio *single_folio; /* Locked folio to be unmapped */
2321 bool even_cows; /* Zap COWed private pages too? */
2322 zap_flags_t zap_flags; /* Extra flags for zapping */
2323};
2324
2325/*
2326 * Whether to drop the pte markers, for example, the uffd-wp information for
2327 * file-backed memory. This should only be specified when we will completely
2328 * drop the page in the mm, either by truncation or unmapping of the vma. By
2329 * default, the flag is not set.
2330 */
2331#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2332/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2333#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2334
2335#ifdef CONFIG_SCHED_MM_CID
2336void sched_mm_cid_before_execve(struct task_struct *t);
2337void sched_mm_cid_after_execve(struct task_struct *t);
2338void sched_mm_cid_fork(struct task_struct *t);
2339void sched_mm_cid_exit_signals(struct task_struct *t);
2340static inline int task_mm_cid(struct task_struct *t)
2341{
2342 return t->mm_cid;
2343}
2344#else
2345static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2346static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2347static inline void sched_mm_cid_fork(struct task_struct *t) { }
2348static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2349static inline int task_mm_cid(struct task_struct *t)
2350{
2351 /*
2352 * Use the processor id as a fall-back when the mm cid feature is
2353 * disabled. This provides functional per-cpu data structure accesses
2354 * in user-space, althrough it won't provide the memory usage benefits.
2355 */
2356 return raw_smp_processor_id();
2357}
2358#endif
2359
2360#ifdef CONFIG_MMU
2361extern bool can_do_mlock(void);
2362#else
2363static inline bool can_do_mlock(void) { return false; }
2364#endif
2365extern int user_shm_lock(size_t, struct ucounts *);
2366extern void user_shm_unlock(size_t, struct ucounts *);
2367
2368struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2369 pte_t pte);
2370struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2371 pte_t pte);
2372struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2373 unsigned long addr, pmd_t pmd);
2374struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2375 pmd_t pmd);
2376
2377void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2378 unsigned long size);
2379void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2380 unsigned long size, struct zap_details *details);
2381static inline void zap_vma_pages(struct vm_area_struct *vma)
2382{
2383 zap_page_range_single(vma, vma->vm_start,
2384 vma->vm_end - vma->vm_start, NULL);
2385}
2386void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2387 struct vm_area_struct *start_vma, unsigned long start,
2388 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2389
2390struct mmu_notifier_range;
2391
2392void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2393 unsigned long end, unsigned long floor, unsigned long ceiling);
2394int
2395copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2396int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2397 void *buf, int len, int write);
2398
2399struct follow_pfnmap_args {
2400 /**
2401 * Inputs:
2402 * @vma: Pointer to @vm_area_struct struct
2403 * @address: the virtual address to walk
2404 */
2405 struct vm_area_struct *vma;
2406 unsigned long address;
2407 /**
2408 * Internals:
2409 *
2410 * The caller shouldn't touch any of these.
2411 */
2412 spinlock_t *lock;
2413 pte_t *ptep;
2414 /**
2415 * Outputs:
2416 *
2417 * @pfn: the PFN of the address
2418 * @pgprot: the pgprot_t of the mapping
2419 * @writable: whether the mapping is writable
2420 * @special: whether the mapping is a special mapping (real PFN maps)
2421 */
2422 unsigned long pfn;
2423 pgprot_t pgprot;
2424 bool writable;
2425 bool special;
2426};
2427int follow_pfnmap_start(struct follow_pfnmap_args *args);
2428void follow_pfnmap_end(struct follow_pfnmap_args *args);
2429
2430extern void truncate_pagecache(struct inode *inode, loff_t new);
2431extern void truncate_setsize(struct inode *inode, loff_t newsize);
2432void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2433void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2434int generic_error_remove_folio(struct address_space *mapping,
2435 struct folio *folio);
2436
2437struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2438 unsigned long address, struct pt_regs *regs);
2439
2440#ifdef CONFIG_MMU
2441extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2442 unsigned long address, unsigned int flags,
2443 struct pt_regs *regs);
2444extern int fixup_user_fault(struct mm_struct *mm,
2445 unsigned long address, unsigned int fault_flags,
2446 bool *unlocked);
2447void unmap_mapping_pages(struct address_space *mapping,
2448 pgoff_t start, pgoff_t nr, bool even_cows);
2449void unmap_mapping_range(struct address_space *mapping,
2450 loff_t const holebegin, loff_t const holelen, int even_cows);
2451#else
2452static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2453 unsigned long address, unsigned int flags,
2454 struct pt_regs *regs)
2455{
2456 /* should never happen if there's no MMU */
2457 BUG();
2458 return VM_FAULT_SIGBUS;
2459}
2460static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2461 unsigned int fault_flags, bool *unlocked)
2462{
2463 /* should never happen if there's no MMU */
2464 BUG();
2465 return -EFAULT;
2466}
2467static inline void unmap_mapping_pages(struct address_space *mapping,
2468 pgoff_t start, pgoff_t nr, bool even_cows) { }
2469static inline void unmap_mapping_range(struct address_space *mapping,
2470 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2471#endif
2472
2473static inline void unmap_shared_mapping_range(struct address_space *mapping,
2474 loff_t const holebegin, loff_t const holelen)
2475{
2476 unmap_mapping_range(mapping, holebegin, holelen, 0);
2477}
2478
2479static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2480 unsigned long addr);
2481
2482extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2483 void *buf, int len, unsigned int gup_flags);
2484extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2485 void *buf, int len, unsigned int gup_flags);
2486
2487long get_user_pages_remote(struct mm_struct *mm,
2488 unsigned long start, unsigned long nr_pages,
2489 unsigned int gup_flags, struct page **pages,
2490 int *locked);
2491long pin_user_pages_remote(struct mm_struct *mm,
2492 unsigned long start, unsigned long nr_pages,
2493 unsigned int gup_flags, struct page **pages,
2494 int *locked);
2495
2496/*
2497 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2498 */
2499static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2500 unsigned long addr,
2501 int gup_flags,
2502 struct vm_area_struct **vmap)
2503{
2504 struct page *page;
2505 struct vm_area_struct *vma;
2506 int got;
2507
2508 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2509 return ERR_PTR(-EINVAL);
2510
2511 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2512
2513 if (got < 0)
2514 return ERR_PTR(got);
2515
2516 vma = vma_lookup(mm, addr);
2517 if (WARN_ON_ONCE(!vma)) {
2518 put_page(page);
2519 return ERR_PTR(-EINVAL);
2520 }
2521
2522 *vmap = vma;
2523 return page;
2524}
2525
2526long get_user_pages(unsigned long start, unsigned long nr_pages,
2527 unsigned int gup_flags, struct page **pages);
2528long pin_user_pages(unsigned long start, unsigned long nr_pages,
2529 unsigned int gup_flags, struct page **pages);
2530long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2531 struct page **pages, unsigned int gup_flags);
2532long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2533 struct page **pages, unsigned int gup_flags);
2534long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2535 struct folio **folios, unsigned int max_folios,
2536 pgoff_t *offset);
2537int folio_add_pins(struct folio *folio, unsigned int pins);
2538
2539int get_user_pages_fast(unsigned long start, int nr_pages,
2540 unsigned int gup_flags, struct page **pages);
2541int pin_user_pages_fast(unsigned long start, int nr_pages,
2542 unsigned int gup_flags, struct page **pages);
2543void folio_add_pin(struct folio *folio);
2544
2545int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2546int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2547 struct task_struct *task, bool bypass_rlim);
2548
2549struct kvec;
2550struct page *get_dump_page(unsigned long addr);
2551
2552bool folio_mark_dirty(struct folio *folio);
2553bool folio_mark_dirty_lock(struct folio *folio);
2554bool set_page_dirty(struct page *page);
2555int set_page_dirty_lock(struct page *page);
2556
2557int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2558
2559/*
2560 * Flags used by change_protection(). For now we make it a bitmap so
2561 * that we can pass in multiple flags just like parameters. However
2562 * for now all the callers are only use one of the flags at the same
2563 * time.
2564 */
2565/*
2566 * Whether we should manually check if we can map individual PTEs writable,
2567 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2568 * PTEs automatically in a writable mapping.
2569 */
2570#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2571/* Whether this protection change is for NUMA hints */
2572#define MM_CP_PROT_NUMA (1UL << 1)
2573/* Whether this change is for write protecting */
2574#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2575#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2576#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2577 MM_CP_UFFD_WP_RESOLVE)
2578
2579bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2580 pte_t pte);
2581extern long change_protection(struct mmu_gather *tlb,
2582 struct vm_area_struct *vma, unsigned long start,
2583 unsigned long end, unsigned long cp_flags);
2584extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2585 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2586 unsigned long start, unsigned long end, unsigned long newflags);
2587
2588/*
2589 * doesn't attempt to fault and will return short.
2590 */
2591int get_user_pages_fast_only(unsigned long start, int nr_pages,
2592 unsigned int gup_flags, struct page **pages);
2593
2594static inline bool get_user_page_fast_only(unsigned long addr,
2595 unsigned int gup_flags, struct page **pagep)
2596{
2597 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2598}
2599/*
2600 * per-process(per-mm_struct) statistics.
2601 */
2602static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2603{
2604 return percpu_counter_read_positive(&mm->rss_stat[member]);
2605}
2606
2607void mm_trace_rss_stat(struct mm_struct *mm, int member);
2608
2609static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2610{
2611 percpu_counter_add(&mm->rss_stat[member], value);
2612
2613 mm_trace_rss_stat(mm, member);
2614}
2615
2616static inline void inc_mm_counter(struct mm_struct *mm, int member)
2617{
2618 percpu_counter_inc(&mm->rss_stat[member]);
2619
2620 mm_trace_rss_stat(mm, member);
2621}
2622
2623static inline void dec_mm_counter(struct mm_struct *mm, int member)
2624{
2625 percpu_counter_dec(&mm->rss_stat[member]);
2626
2627 mm_trace_rss_stat(mm, member);
2628}
2629
2630/* Optimized variant when folio is already known not to be anon */
2631static inline int mm_counter_file(struct folio *folio)
2632{
2633 if (folio_test_swapbacked(folio))
2634 return MM_SHMEMPAGES;
2635 return MM_FILEPAGES;
2636}
2637
2638static inline int mm_counter(struct folio *folio)
2639{
2640 if (folio_test_anon(folio))
2641 return MM_ANONPAGES;
2642 return mm_counter_file(folio);
2643}
2644
2645static inline unsigned long get_mm_rss(struct mm_struct *mm)
2646{
2647 return get_mm_counter(mm, MM_FILEPAGES) +
2648 get_mm_counter(mm, MM_ANONPAGES) +
2649 get_mm_counter(mm, MM_SHMEMPAGES);
2650}
2651
2652static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2653{
2654 return max(mm->hiwater_rss, get_mm_rss(mm));
2655}
2656
2657static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2658{
2659 return max(mm->hiwater_vm, mm->total_vm);
2660}
2661
2662static inline void update_hiwater_rss(struct mm_struct *mm)
2663{
2664 unsigned long _rss = get_mm_rss(mm);
2665
2666 if ((mm)->hiwater_rss < _rss)
2667 (mm)->hiwater_rss = _rss;
2668}
2669
2670static inline void update_hiwater_vm(struct mm_struct *mm)
2671{
2672 if (mm->hiwater_vm < mm->total_vm)
2673 mm->hiwater_vm = mm->total_vm;
2674}
2675
2676static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2677{
2678 mm->hiwater_rss = get_mm_rss(mm);
2679}
2680
2681static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2682 struct mm_struct *mm)
2683{
2684 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2685
2686 if (*maxrss < hiwater_rss)
2687 *maxrss = hiwater_rss;
2688}
2689
2690#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2691static inline int pte_special(pte_t pte)
2692{
2693 return 0;
2694}
2695
2696static inline pte_t pte_mkspecial(pte_t pte)
2697{
2698 return pte;
2699}
2700#endif
2701
2702#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2703static inline bool pmd_special(pmd_t pmd)
2704{
2705 return false;
2706}
2707
2708static inline pmd_t pmd_mkspecial(pmd_t pmd)
2709{
2710 return pmd;
2711}
2712#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2713
2714#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2715static inline bool pud_special(pud_t pud)
2716{
2717 return false;
2718}
2719
2720static inline pud_t pud_mkspecial(pud_t pud)
2721{
2722 return pud;
2723}
2724#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2725
2726#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2727static inline int pte_devmap(pte_t pte)
2728{
2729 return 0;
2730}
2731#endif
2732
2733extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2734 spinlock_t **ptl);
2735static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2736 spinlock_t **ptl)
2737{
2738 pte_t *ptep;
2739 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2740 return ptep;
2741}
2742
2743#ifdef __PAGETABLE_P4D_FOLDED
2744static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2745 unsigned long address)
2746{
2747 return 0;
2748}
2749#else
2750int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2751#endif
2752
2753#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2754static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2755 unsigned long address)
2756{
2757 return 0;
2758}
2759static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2760static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2761
2762#else
2763int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2764
2765static inline void mm_inc_nr_puds(struct mm_struct *mm)
2766{
2767 if (mm_pud_folded(mm))
2768 return;
2769 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2770}
2771
2772static inline void mm_dec_nr_puds(struct mm_struct *mm)
2773{
2774 if (mm_pud_folded(mm))
2775 return;
2776 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2777}
2778#endif
2779
2780#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2781static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2782 unsigned long address)
2783{
2784 return 0;
2785}
2786
2787static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2788static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2789
2790#else
2791int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2792
2793static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2794{
2795 if (mm_pmd_folded(mm))
2796 return;
2797 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2798}
2799
2800static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2801{
2802 if (mm_pmd_folded(mm))
2803 return;
2804 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2805}
2806#endif
2807
2808#ifdef CONFIG_MMU
2809static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2810{
2811 atomic_long_set(&mm->pgtables_bytes, 0);
2812}
2813
2814static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2815{
2816 return atomic_long_read(&mm->pgtables_bytes);
2817}
2818
2819static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2820{
2821 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2822}
2823
2824static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2825{
2826 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2827}
2828#else
2829
2830static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2831static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2832{
2833 return 0;
2834}
2835
2836static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2837static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2838#endif
2839
2840int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2841int __pte_alloc_kernel(pmd_t *pmd);
2842
2843#if defined(CONFIG_MMU)
2844
2845static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2846 unsigned long address)
2847{
2848 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2849 NULL : p4d_offset(pgd, address);
2850}
2851
2852static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2853 unsigned long address)
2854{
2855 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2856 NULL : pud_offset(p4d, address);
2857}
2858
2859static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2860{
2861 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2862 NULL: pmd_offset(pud, address);
2863}
2864#endif /* CONFIG_MMU */
2865
2866static inline struct ptdesc *virt_to_ptdesc(const void *x)
2867{
2868 return page_ptdesc(virt_to_page(x));
2869}
2870
2871static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2872{
2873 return page_to_virt(ptdesc_page(pt));
2874}
2875
2876static inline void *ptdesc_address(const struct ptdesc *pt)
2877{
2878 return folio_address(ptdesc_folio(pt));
2879}
2880
2881static inline bool pagetable_is_reserved(struct ptdesc *pt)
2882{
2883 return folio_test_reserved(ptdesc_folio(pt));
2884}
2885
2886/**
2887 * pagetable_alloc - Allocate pagetables
2888 * @gfp: GFP flags
2889 * @order: desired pagetable order
2890 *
2891 * pagetable_alloc allocates memory for page tables as well as a page table
2892 * descriptor to describe that memory.
2893 *
2894 * Return: The ptdesc describing the allocated page tables.
2895 */
2896static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2897{
2898 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2899
2900 return page_ptdesc(page);
2901}
2902#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2903
2904/**
2905 * pagetable_free - Free pagetables
2906 * @pt: The page table descriptor
2907 *
2908 * pagetable_free frees the memory of all page tables described by a page
2909 * table descriptor and the memory for the descriptor itself.
2910 */
2911static inline void pagetable_free(struct ptdesc *pt)
2912{
2913 struct page *page = ptdesc_page(pt);
2914
2915 __free_pages(page, compound_order(page));
2916}
2917
2918#if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2919#if ALLOC_SPLIT_PTLOCKS
2920void __init ptlock_cache_init(void);
2921bool ptlock_alloc(struct ptdesc *ptdesc);
2922void ptlock_free(struct ptdesc *ptdesc);
2923
2924static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2925{
2926 return ptdesc->ptl;
2927}
2928#else /* ALLOC_SPLIT_PTLOCKS */
2929static inline void ptlock_cache_init(void)
2930{
2931}
2932
2933static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2934{
2935 return true;
2936}
2937
2938static inline void ptlock_free(struct ptdesc *ptdesc)
2939{
2940}
2941
2942static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2943{
2944 return &ptdesc->ptl;
2945}
2946#endif /* ALLOC_SPLIT_PTLOCKS */
2947
2948static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2949{
2950 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2951}
2952
2953static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2954{
2955 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2956 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2957 return ptlock_ptr(virt_to_ptdesc(pte));
2958}
2959
2960static inline bool ptlock_init(struct ptdesc *ptdesc)
2961{
2962 /*
2963 * prep_new_page() initialize page->private (and therefore page->ptl)
2964 * with 0. Make sure nobody took it in use in between.
2965 *
2966 * It can happen if arch try to use slab for page table allocation:
2967 * slab code uses page->slab_cache, which share storage with page->ptl.
2968 */
2969 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2970 if (!ptlock_alloc(ptdesc))
2971 return false;
2972 spin_lock_init(ptlock_ptr(ptdesc));
2973 return true;
2974}
2975
2976#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2977/*
2978 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2979 */
2980static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2981{
2982 return &mm->page_table_lock;
2983}
2984static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2985{
2986 return &mm->page_table_lock;
2987}
2988static inline void ptlock_cache_init(void) {}
2989static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2990static inline void ptlock_free(struct ptdesc *ptdesc) {}
2991#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2992
2993static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2994{
2995 struct folio *folio = ptdesc_folio(ptdesc);
2996
2997 if (!ptlock_init(ptdesc))
2998 return false;
2999 __folio_set_pgtable(folio);
3000 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3001 return true;
3002}
3003
3004static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
3005{
3006 struct folio *folio = ptdesc_folio(ptdesc);
3007
3008 ptlock_free(ptdesc);
3009 __folio_clear_pgtable(folio);
3010 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3011}
3012
3013pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3014static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3015{
3016 return __pte_offset_map(pmd, addr, NULL);
3017}
3018
3019pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3020 unsigned long addr, spinlock_t **ptlp);
3021static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3022 unsigned long addr, spinlock_t **ptlp)
3023{
3024 pte_t *pte;
3025
3026 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3027 return pte;
3028}
3029
3030pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3031 unsigned long addr, spinlock_t **ptlp);
3032pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3033 unsigned long addr, pmd_t *pmdvalp,
3034 spinlock_t **ptlp);
3035
3036#define pte_unmap_unlock(pte, ptl) do { \
3037 spin_unlock(ptl); \
3038 pte_unmap(pte); \
3039} while (0)
3040
3041#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3042
3043#define pte_alloc_map(mm, pmd, address) \
3044 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3045
3046#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3047 (pte_alloc(mm, pmd) ? \
3048 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3049
3050#define pte_alloc_kernel(pmd, address) \
3051 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3052 NULL: pte_offset_kernel(pmd, address))
3053
3054#if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3055
3056static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3057{
3058 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3059 return virt_to_page((void *)((unsigned long) pmd & mask));
3060}
3061
3062static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3063{
3064 return page_ptdesc(pmd_pgtable_page(pmd));
3065}
3066
3067static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3068{
3069 return ptlock_ptr(pmd_ptdesc(pmd));
3070}
3071
3072static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3073{
3074#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3075 ptdesc->pmd_huge_pte = NULL;
3076#endif
3077 return ptlock_init(ptdesc);
3078}
3079
3080static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3081{
3082#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3083 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3084#endif
3085 ptlock_free(ptdesc);
3086}
3087
3088#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3089
3090#else
3091
3092static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3093{
3094 return &mm->page_table_lock;
3095}
3096
3097static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3098static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3099
3100#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3101
3102#endif
3103
3104static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3105{
3106 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3107 spin_lock(ptl);
3108 return ptl;
3109}
3110
3111static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3112{
3113 struct folio *folio = ptdesc_folio(ptdesc);
3114
3115 if (!pmd_ptlock_init(ptdesc))
3116 return false;
3117 __folio_set_pgtable(folio);
3118 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3119 return true;
3120}
3121
3122static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3123{
3124 struct folio *folio = ptdesc_folio(ptdesc);
3125
3126 pmd_ptlock_free(ptdesc);
3127 __folio_clear_pgtable(folio);
3128 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3129}
3130
3131/*
3132 * No scalability reason to split PUD locks yet, but follow the same pattern
3133 * as the PMD locks to make it easier if we decide to. The VM should not be
3134 * considered ready to switch to split PUD locks yet; there may be places
3135 * which need to be converted from page_table_lock.
3136 */
3137static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3138{
3139 return &mm->page_table_lock;
3140}
3141
3142static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3143{
3144 spinlock_t *ptl = pud_lockptr(mm, pud);
3145
3146 spin_lock(ptl);
3147 return ptl;
3148}
3149
3150static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3151{
3152 struct folio *folio = ptdesc_folio(ptdesc);
3153
3154 __folio_set_pgtable(folio);
3155 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3156}
3157
3158static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3159{
3160 struct folio *folio = ptdesc_folio(ptdesc);
3161
3162 __folio_clear_pgtable(folio);
3163 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3164}
3165
3166extern void __init pagecache_init(void);
3167extern void free_initmem(void);
3168
3169/*
3170 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3171 * into the buddy system. The freed pages will be poisoned with pattern
3172 * "poison" if it's within range [0, UCHAR_MAX].
3173 * Return pages freed into the buddy system.
3174 */
3175extern unsigned long free_reserved_area(void *start, void *end,
3176 int poison, const char *s);
3177
3178extern void adjust_managed_page_count(struct page *page, long count);
3179
3180extern void reserve_bootmem_region(phys_addr_t start,
3181 phys_addr_t end, int nid);
3182
3183/* Free the reserved page into the buddy system, so it gets managed. */
3184void free_reserved_page(struct page *page);
3185#define free_highmem_page(page) free_reserved_page(page)
3186
3187static inline void mark_page_reserved(struct page *page)
3188{
3189 SetPageReserved(page);
3190 adjust_managed_page_count(page, -1);
3191}
3192
3193static inline void free_reserved_ptdesc(struct ptdesc *pt)
3194{
3195 free_reserved_page(ptdesc_page(pt));
3196}
3197
3198/*
3199 * Default method to free all the __init memory into the buddy system.
3200 * The freed pages will be poisoned with pattern "poison" if it's within
3201 * range [0, UCHAR_MAX].
3202 * Return pages freed into the buddy system.
3203 */
3204static inline unsigned long free_initmem_default(int poison)
3205{
3206 extern char __init_begin[], __init_end[];
3207
3208 return free_reserved_area(&__init_begin, &__init_end,
3209 poison, "unused kernel image (initmem)");
3210}
3211
3212static inline unsigned long get_num_physpages(void)
3213{
3214 int nid;
3215 unsigned long phys_pages = 0;
3216
3217 for_each_online_node(nid)
3218 phys_pages += node_present_pages(nid);
3219
3220 return phys_pages;
3221}
3222
3223/*
3224 * Using memblock node mappings, an architecture may initialise its
3225 * zones, allocate the backing mem_map and account for memory holes in an
3226 * architecture independent manner.
3227 *
3228 * An architecture is expected to register range of page frames backed by
3229 * physical memory with memblock_add[_node]() before calling
3230 * free_area_init() passing in the PFN each zone ends at. At a basic
3231 * usage, an architecture is expected to do something like
3232 *
3233 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3234 * max_highmem_pfn};
3235 * for_each_valid_physical_page_range()
3236 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3237 * free_area_init(max_zone_pfns);
3238 */
3239void free_area_init(unsigned long *max_zone_pfn);
3240unsigned long node_map_pfn_alignment(void);
3241extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3242 unsigned long end_pfn);
3243extern void get_pfn_range_for_nid(unsigned int nid,
3244 unsigned long *start_pfn, unsigned long *end_pfn);
3245
3246#ifndef CONFIG_NUMA
3247static inline int early_pfn_to_nid(unsigned long pfn)
3248{
3249 return 0;
3250}
3251#else
3252/* please see mm/page_alloc.c */
3253extern int __meminit early_pfn_to_nid(unsigned long pfn);
3254#endif
3255
3256extern void mem_init(void);
3257extern void __init mmap_init(void);
3258
3259extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3260static inline void show_mem(void)
3261{
3262 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3263}
3264extern long si_mem_available(void);
3265extern void si_meminfo(struct sysinfo * val);
3266extern void si_meminfo_node(struct sysinfo *val, int nid);
3267
3268extern __printf(3, 4)
3269void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3270
3271extern void setup_per_cpu_pageset(void);
3272
3273/* nommu.c */
3274extern atomic_long_t mmap_pages_allocated;
3275extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3276
3277/* interval_tree.c */
3278void vma_interval_tree_insert(struct vm_area_struct *node,
3279 struct rb_root_cached *root);
3280void vma_interval_tree_insert_after(struct vm_area_struct *node,
3281 struct vm_area_struct *prev,
3282 struct rb_root_cached *root);
3283void vma_interval_tree_remove(struct vm_area_struct *node,
3284 struct rb_root_cached *root);
3285struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3286 unsigned long start, unsigned long last);
3287struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3288 unsigned long start, unsigned long last);
3289
3290#define vma_interval_tree_foreach(vma, root, start, last) \
3291 for (vma = vma_interval_tree_iter_first(root, start, last); \
3292 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3293
3294void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3295 struct rb_root_cached *root);
3296void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3297 struct rb_root_cached *root);
3298struct anon_vma_chain *
3299anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3300 unsigned long start, unsigned long last);
3301struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3302 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3303#ifdef CONFIG_DEBUG_VM_RB
3304void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3305#endif
3306
3307#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3308 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3309 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3310
3311/* mmap.c */
3312extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3313extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3314extern void exit_mmap(struct mm_struct *);
3315int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3316
3317static inline int check_data_rlimit(unsigned long rlim,
3318 unsigned long new,
3319 unsigned long start,
3320 unsigned long end_data,
3321 unsigned long start_data)
3322{
3323 if (rlim < RLIM_INFINITY) {
3324 if (((new - start) + (end_data - start_data)) > rlim)
3325 return -ENOSPC;
3326 }
3327
3328 return 0;
3329}
3330
3331extern int mm_take_all_locks(struct mm_struct *mm);
3332extern void mm_drop_all_locks(struct mm_struct *mm);
3333
3334extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3335extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3336extern struct file *get_mm_exe_file(struct mm_struct *mm);
3337extern struct file *get_task_exe_file(struct task_struct *task);
3338
3339extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3340extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3341
3342extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3343 const struct vm_special_mapping *sm);
3344extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3345 unsigned long addr, unsigned long len,
3346 unsigned long flags,
3347 const struct vm_special_mapping *spec);
3348
3349unsigned long randomize_stack_top(unsigned long stack_top);
3350unsigned long randomize_page(unsigned long start, unsigned long range);
3351
3352unsigned long
3353__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3354 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3355
3356static inline unsigned long
3357get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3358 unsigned long pgoff, unsigned long flags)
3359{
3360 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3361}
3362
3363extern unsigned long mmap_region(struct file *file, unsigned long addr,
3364 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3365 struct list_head *uf);
3366extern unsigned long do_mmap(struct file *file, unsigned long addr,
3367 unsigned long len, unsigned long prot, unsigned long flags,
3368 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3369 struct list_head *uf);
3370extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3371 unsigned long start, size_t len, struct list_head *uf,
3372 bool unlock);
3373int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3374 struct mm_struct *mm, unsigned long start,
3375 unsigned long end, struct list_head *uf, bool unlock);
3376extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3377 struct list_head *uf);
3378extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3379
3380#ifdef CONFIG_MMU
3381extern int __mm_populate(unsigned long addr, unsigned long len,
3382 int ignore_errors);
3383static inline void mm_populate(unsigned long addr, unsigned long len)
3384{
3385 /* Ignore errors */
3386 (void) __mm_populate(addr, len, 1);
3387}
3388#else
3389static inline void mm_populate(unsigned long addr, unsigned long len) {}
3390#endif
3391
3392/* This takes the mm semaphore itself */
3393extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3394extern int vm_munmap(unsigned long, size_t);
3395extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3396 unsigned long, unsigned long,
3397 unsigned long, unsigned long);
3398
3399struct vm_unmapped_area_info {
3400#define VM_UNMAPPED_AREA_TOPDOWN 1
3401 unsigned long flags;
3402 unsigned long length;
3403 unsigned long low_limit;
3404 unsigned long high_limit;
3405 unsigned long align_mask;
3406 unsigned long align_offset;
3407 unsigned long start_gap;
3408};
3409
3410extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3411
3412/* truncate.c */
3413extern void truncate_inode_pages(struct address_space *, loff_t);
3414extern void truncate_inode_pages_range(struct address_space *,
3415 loff_t lstart, loff_t lend);
3416extern void truncate_inode_pages_final(struct address_space *);
3417
3418/* generic vm_area_ops exported for stackable file systems */
3419extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3420extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3421 pgoff_t start_pgoff, pgoff_t end_pgoff);
3422extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3423
3424extern unsigned long stack_guard_gap;
3425/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3426int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3427struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3428
3429/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3430int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3431
3432/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3433extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3434extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3435 struct vm_area_struct **pprev);
3436
3437/*
3438 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3439 * NULL if none. Assume start_addr < end_addr.
3440 */
3441struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3442 unsigned long start_addr, unsigned long end_addr);
3443
3444/**
3445 * vma_lookup() - Find a VMA at a specific address
3446 * @mm: The process address space.
3447 * @addr: The user address.
3448 *
3449 * Return: The vm_area_struct at the given address, %NULL otherwise.
3450 */
3451static inline
3452struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3453{
3454 return mtree_load(&mm->mm_mt, addr);
3455}
3456
3457static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3458{
3459 if (vma->vm_flags & VM_GROWSDOWN)
3460 return stack_guard_gap;
3461
3462 /* See reasoning around the VM_SHADOW_STACK definition */
3463 if (vma->vm_flags & VM_SHADOW_STACK)
3464 return PAGE_SIZE;
3465
3466 return 0;
3467}
3468
3469static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3470{
3471 unsigned long gap = stack_guard_start_gap(vma);
3472 unsigned long vm_start = vma->vm_start;
3473
3474 vm_start -= gap;
3475 if (vm_start > vma->vm_start)
3476 vm_start = 0;
3477 return vm_start;
3478}
3479
3480static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3481{
3482 unsigned long vm_end = vma->vm_end;
3483
3484 if (vma->vm_flags & VM_GROWSUP) {
3485 vm_end += stack_guard_gap;
3486 if (vm_end < vma->vm_end)
3487 vm_end = -PAGE_SIZE;
3488 }
3489 return vm_end;
3490}
3491
3492static inline unsigned long vma_pages(struct vm_area_struct *vma)
3493{
3494 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3495}
3496
3497/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3498static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3499 unsigned long vm_start, unsigned long vm_end)
3500{
3501 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3502
3503 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3504 vma = NULL;
3505
3506 return vma;
3507}
3508
3509static inline bool range_in_vma(struct vm_area_struct *vma,
3510 unsigned long start, unsigned long end)
3511{
3512 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3513}
3514
3515#ifdef CONFIG_MMU
3516pgprot_t vm_get_page_prot(unsigned long vm_flags);
3517void vma_set_page_prot(struct vm_area_struct *vma);
3518#else
3519static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3520{
3521 return __pgprot(0);
3522}
3523static inline void vma_set_page_prot(struct vm_area_struct *vma)
3524{
3525 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3526}
3527#endif
3528
3529void vma_set_file(struct vm_area_struct *vma, struct file *file);
3530
3531#ifdef CONFIG_NUMA_BALANCING
3532unsigned long change_prot_numa(struct vm_area_struct *vma,
3533 unsigned long start, unsigned long end);
3534#endif
3535
3536struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3537 unsigned long addr);
3538int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3539 unsigned long pfn, unsigned long size, pgprot_t);
3540int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3541 unsigned long pfn, unsigned long size, pgprot_t prot);
3542int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3543int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3544 struct page **pages, unsigned long *num);
3545int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3546 unsigned long num);
3547int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3548 unsigned long num);
3549vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3550 unsigned long pfn);
3551vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3552 unsigned long pfn, pgprot_t pgprot);
3553vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3554 pfn_t pfn);
3555vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3556 unsigned long addr, pfn_t pfn);
3557int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3558
3559static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3560 unsigned long addr, struct page *page)
3561{
3562 int err = vm_insert_page(vma, addr, page);
3563
3564 if (err == -ENOMEM)
3565 return VM_FAULT_OOM;
3566 if (err < 0 && err != -EBUSY)
3567 return VM_FAULT_SIGBUS;
3568
3569 return VM_FAULT_NOPAGE;
3570}
3571
3572#ifndef io_remap_pfn_range
3573static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3574 unsigned long addr, unsigned long pfn,
3575 unsigned long size, pgprot_t prot)
3576{
3577 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3578}
3579#endif
3580
3581static inline vm_fault_t vmf_error(int err)
3582{
3583 if (err == -ENOMEM)
3584 return VM_FAULT_OOM;
3585 else if (err == -EHWPOISON)
3586 return VM_FAULT_HWPOISON;
3587 return VM_FAULT_SIGBUS;
3588}
3589
3590/*
3591 * Convert errno to return value for ->page_mkwrite() calls.
3592 *
3593 * This should eventually be merged with vmf_error() above, but will need a
3594 * careful audit of all vmf_error() callers.
3595 */
3596static inline vm_fault_t vmf_fs_error(int err)
3597{
3598 if (err == 0)
3599 return VM_FAULT_LOCKED;
3600 if (err == -EFAULT || err == -EAGAIN)
3601 return VM_FAULT_NOPAGE;
3602 if (err == -ENOMEM)
3603 return VM_FAULT_OOM;
3604 /* -ENOSPC, -EDQUOT, -EIO ... */
3605 return VM_FAULT_SIGBUS;
3606}
3607
3608static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3609{
3610 if (vm_fault & VM_FAULT_OOM)
3611 return -ENOMEM;
3612 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3613 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3614 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3615 return -EFAULT;
3616 return 0;
3617}
3618
3619/*
3620 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3621 * a (NUMA hinting) fault is required.
3622 */
3623static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3624 unsigned int flags)
3625{
3626 /*
3627 * If callers don't want to honor NUMA hinting faults, no need to
3628 * determine if we would actually have to trigger a NUMA hinting fault.
3629 */
3630 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3631 return true;
3632
3633 /*
3634 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3635 *
3636 * Requiring a fault here even for inaccessible VMAs would mean that
3637 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3638 * refuses to process NUMA hinting faults in inaccessible VMAs.
3639 */
3640 return !vma_is_accessible(vma);
3641}
3642
3643typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3644extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3645 unsigned long size, pte_fn_t fn, void *data);
3646extern int apply_to_existing_page_range(struct mm_struct *mm,
3647 unsigned long address, unsigned long size,
3648 pte_fn_t fn, void *data);
3649
3650#ifdef CONFIG_PAGE_POISONING
3651extern void __kernel_poison_pages(struct page *page, int numpages);
3652extern void __kernel_unpoison_pages(struct page *page, int numpages);
3653extern bool _page_poisoning_enabled_early;
3654DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3655static inline bool page_poisoning_enabled(void)
3656{
3657 return _page_poisoning_enabled_early;
3658}
3659/*
3660 * For use in fast paths after init_mem_debugging() has run, or when a
3661 * false negative result is not harmful when called too early.
3662 */
3663static inline bool page_poisoning_enabled_static(void)
3664{
3665 return static_branch_unlikely(&_page_poisoning_enabled);
3666}
3667static inline void kernel_poison_pages(struct page *page, int numpages)
3668{
3669 if (page_poisoning_enabled_static())
3670 __kernel_poison_pages(page, numpages);
3671}
3672static inline void kernel_unpoison_pages(struct page *page, int numpages)
3673{
3674 if (page_poisoning_enabled_static())
3675 __kernel_unpoison_pages(page, numpages);
3676}
3677#else
3678static inline bool page_poisoning_enabled(void) { return false; }
3679static inline bool page_poisoning_enabled_static(void) { return false; }
3680static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3681static inline void kernel_poison_pages(struct page *page, int numpages) { }
3682static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3683#endif
3684
3685DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3686static inline bool want_init_on_alloc(gfp_t flags)
3687{
3688 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3689 &init_on_alloc))
3690 return true;
3691 return flags & __GFP_ZERO;
3692}
3693
3694DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3695static inline bool want_init_on_free(void)
3696{
3697 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3698 &init_on_free);
3699}
3700
3701extern bool _debug_pagealloc_enabled_early;
3702DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3703
3704static inline bool debug_pagealloc_enabled(void)
3705{
3706 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3707 _debug_pagealloc_enabled_early;
3708}
3709
3710/*
3711 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3712 * or when a false negative result is not harmful when called too early.
3713 */
3714static inline bool debug_pagealloc_enabled_static(void)
3715{
3716 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3717 return false;
3718
3719 return static_branch_unlikely(&_debug_pagealloc_enabled);
3720}
3721
3722/*
3723 * To support DEBUG_PAGEALLOC architecture must ensure that
3724 * __kernel_map_pages() never fails
3725 */
3726extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3727#ifdef CONFIG_DEBUG_PAGEALLOC
3728static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3729{
3730 if (debug_pagealloc_enabled_static())
3731 __kernel_map_pages(page, numpages, 1);
3732}
3733
3734static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3735{
3736 if (debug_pagealloc_enabled_static())
3737 __kernel_map_pages(page, numpages, 0);
3738}
3739
3740extern unsigned int _debug_guardpage_minorder;
3741DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3742
3743static inline unsigned int debug_guardpage_minorder(void)
3744{
3745 return _debug_guardpage_minorder;
3746}
3747
3748static inline bool debug_guardpage_enabled(void)
3749{
3750 return static_branch_unlikely(&_debug_guardpage_enabled);
3751}
3752
3753static inline bool page_is_guard(struct page *page)
3754{
3755 if (!debug_guardpage_enabled())
3756 return false;
3757
3758 return PageGuard(page);
3759}
3760
3761bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3762static inline bool set_page_guard(struct zone *zone, struct page *page,
3763 unsigned int order)
3764{
3765 if (!debug_guardpage_enabled())
3766 return false;
3767 return __set_page_guard(zone, page, order);
3768}
3769
3770void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3771static inline void clear_page_guard(struct zone *zone, struct page *page,
3772 unsigned int order)
3773{
3774 if (!debug_guardpage_enabled())
3775 return;
3776 __clear_page_guard(zone, page, order);
3777}
3778
3779#else /* CONFIG_DEBUG_PAGEALLOC */
3780static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3781static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3782static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3783static inline bool debug_guardpage_enabled(void) { return false; }
3784static inline bool page_is_guard(struct page *page) { return false; }
3785static inline bool set_page_guard(struct zone *zone, struct page *page,
3786 unsigned int order) { return false; }
3787static inline void clear_page_guard(struct zone *zone, struct page *page,
3788 unsigned int order) {}
3789#endif /* CONFIG_DEBUG_PAGEALLOC */
3790
3791#ifdef __HAVE_ARCH_GATE_AREA
3792extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3793extern int in_gate_area_no_mm(unsigned long addr);
3794extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3795#else
3796static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3797{
3798 return NULL;
3799}
3800static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3801static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3802{
3803 return 0;
3804}
3805#endif /* __HAVE_ARCH_GATE_AREA */
3806
3807extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3808
3809#ifdef CONFIG_SYSCTL
3810extern int sysctl_drop_caches;
3811int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3812 loff_t *);
3813#endif
3814
3815void drop_slab(void);
3816
3817#ifndef CONFIG_MMU
3818#define randomize_va_space 0
3819#else
3820extern int randomize_va_space;
3821#endif
3822
3823const char * arch_vma_name(struct vm_area_struct *vma);
3824#ifdef CONFIG_MMU
3825void print_vma_addr(char *prefix, unsigned long rip);
3826#else
3827static inline void print_vma_addr(char *prefix, unsigned long rip)
3828{
3829}
3830#endif
3831
3832void *sparse_buffer_alloc(unsigned long size);
3833struct page * __populate_section_memmap(unsigned long pfn,
3834 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3835 struct dev_pagemap *pgmap);
3836pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3837p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3838pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3839pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3840pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3841 struct vmem_altmap *altmap, struct page *reuse);
3842void *vmemmap_alloc_block(unsigned long size, int node);
3843struct vmem_altmap;
3844void *vmemmap_alloc_block_buf(unsigned long size, int node,
3845 struct vmem_altmap *altmap);
3846void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3847void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3848 unsigned long addr, unsigned long next);
3849int vmemmap_check_pmd(pmd_t *pmd, int node,
3850 unsigned long addr, unsigned long next);
3851int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3852 int node, struct vmem_altmap *altmap);
3853int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3854 int node, struct vmem_altmap *altmap);
3855int vmemmap_populate(unsigned long start, unsigned long end, int node,
3856 struct vmem_altmap *altmap);
3857void vmemmap_populate_print_last(void);
3858#ifdef CONFIG_MEMORY_HOTPLUG
3859void vmemmap_free(unsigned long start, unsigned long end,
3860 struct vmem_altmap *altmap);
3861#endif
3862
3863#ifdef CONFIG_SPARSEMEM_VMEMMAP
3864static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3865{
3866 /* number of pfns from base where pfn_to_page() is valid */
3867 if (altmap)
3868 return altmap->reserve + altmap->free;
3869 return 0;
3870}
3871
3872static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3873 unsigned long nr_pfns)
3874{
3875 altmap->alloc -= nr_pfns;
3876}
3877#else
3878static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3879{
3880 return 0;
3881}
3882
3883static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3884 unsigned long nr_pfns)
3885{
3886}
3887#endif
3888
3889#define VMEMMAP_RESERVE_NR 2
3890#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3891static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3892 struct dev_pagemap *pgmap)
3893{
3894 unsigned long nr_pages;
3895 unsigned long nr_vmemmap_pages;
3896
3897 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3898 return false;
3899
3900 nr_pages = pgmap_vmemmap_nr(pgmap);
3901 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3902 /*
3903 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3904 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3905 */
3906 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3907}
3908/*
3909 * If we don't have an architecture override, use the generic rule
3910 */
3911#ifndef vmemmap_can_optimize
3912#define vmemmap_can_optimize __vmemmap_can_optimize
3913#endif
3914
3915#else
3916static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3917 struct dev_pagemap *pgmap)
3918{
3919 return false;
3920}
3921#endif
3922
3923void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3924 unsigned long nr_pages);
3925
3926enum mf_flags {
3927 MF_COUNT_INCREASED = 1 << 0,
3928 MF_ACTION_REQUIRED = 1 << 1,
3929 MF_MUST_KILL = 1 << 2,
3930 MF_SOFT_OFFLINE = 1 << 3,
3931 MF_UNPOISON = 1 << 4,
3932 MF_SW_SIMULATED = 1 << 5,
3933 MF_NO_RETRY = 1 << 6,
3934 MF_MEM_PRE_REMOVE = 1 << 7,
3935};
3936int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3937 unsigned long count, int mf_flags);
3938extern int memory_failure(unsigned long pfn, int flags);
3939extern void memory_failure_queue_kick(int cpu);
3940extern int unpoison_memory(unsigned long pfn);
3941extern atomic_long_t num_poisoned_pages __read_mostly;
3942extern int soft_offline_page(unsigned long pfn, int flags);
3943#ifdef CONFIG_MEMORY_FAILURE
3944/*
3945 * Sysfs entries for memory failure handling statistics.
3946 */
3947extern const struct attribute_group memory_failure_attr_group;
3948extern void memory_failure_queue(unsigned long pfn, int flags);
3949extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3950 bool *migratable_cleared);
3951void num_poisoned_pages_inc(unsigned long pfn);
3952void num_poisoned_pages_sub(unsigned long pfn, long i);
3953#else
3954static inline void memory_failure_queue(unsigned long pfn, int flags)
3955{
3956}
3957
3958static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3959 bool *migratable_cleared)
3960{
3961 return 0;
3962}
3963
3964static inline void num_poisoned_pages_inc(unsigned long pfn)
3965{
3966}
3967
3968static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3969{
3970}
3971#endif
3972
3973#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3974extern void memblk_nr_poison_inc(unsigned long pfn);
3975extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3976#else
3977static inline void memblk_nr_poison_inc(unsigned long pfn)
3978{
3979}
3980
3981static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3982{
3983}
3984#endif
3985
3986#ifndef arch_memory_failure
3987static inline int arch_memory_failure(unsigned long pfn, int flags)
3988{
3989 return -ENXIO;
3990}
3991#endif
3992
3993#ifndef arch_is_platform_page
3994static inline bool arch_is_platform_page(u64 paddr)
3995{
3996 return false;
3997}
3998#endif
3999
4000/*
4001 * Error handlers for various types of pages.
4002 */
4003enum mf_result {
4004 MF_IGNORED, /* Error: cannot be handled */
4005 MF_FAILED, /* Error: handling failed */
4006 MF_DELAYED, /* Will be handled later */
4007 MF_RECOVERED, /* Successfully recovered */
4008};
4009
4010enum mf_action_page_type {
4011 MF_MSG_KERNEL,
4012 MF_MSG_KERNEL_HIGH_ORDER,
4013 MF_MSG_DIFFERENT_COMPOUND,
4014 MF_MSG_HUGE,
4015 MF_MSG_FREE_HUGE,
4016 MF_MSG_GET_HWPOISON,
4017 MF_MSG_UNMAP_FAILED,
4018 MF_MSG_DIRTY_SWAPCACHE,
4019 MF_MSG_CLEAN_SWAPCACHE,
4020 MF_MSG_DIRTY_MLOCKED_LRU,
4021 MF_MSG_CLEAN_MLOCKED_LRU,
4022 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4023 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4024 MF_MSG_DIRTY_LRU,
4025 MF_MSG_CLEAN_LRU,
4026 MF_MSG_TRUNCATED_LRU,
4027 MF_MSG_BUDDY,
4028 MF_MSG_DAX,
4029 MF_MSG_UNSPLIT_THP,
4030 MF_MSG_ALREADY_POISONED,
4031 MF_MSG_UNKNOWN,
4032};
4033
4034#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4035void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4036int copy_user_large_folio(struct folio *dst, struct folio *src,
4037 unsigned long addr_hint,
4038 struct vm_area_struct *vma);
4039long copy_folio_from_user(struct folio *dst_folio,
4040 const void __user *usr_src,
4041 bool allow_pagefault);
4042
4043/**
4044 * vma_is_special_huge - Are transhuge page-table entries considered special?
4045 * @vma: Pointer to the struct vm_area_struct to consider
4046 *
4047 * Whether transhuge page-table entries are considered "special" following
4048 * the definition in vm_normal_page().
4049 *
4050 * Return: true if transhuge page-table entries should be considered special,
4051 * false otherwise.
4052 */
4053static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4054{
4055 return vma_is_dax(vma) || (vma->vm_file &&
4056 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4057}
4058
4059#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4060
4061#if MAX_NUMNODES > 1
4062void __init setup_nr_node_ids(void);
4063#else
4064static inline void setup_nr_node_ids(void) {}
4065#endif
4066
4067extern int memcmp_pages(struct page *page1, struct page *page2);
4068
4069static inline int pages_identical(struct page *page1, struct page *page2)
4070{
4071 return !memcmp_pages(page1, page2);
4072}
4073
4074#ifdef CONFIG_MAPPING_DIRTY_HELPERS
4075unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4076 pgoff_t first_index, pgoff_t nr,
4077 pgoff_t bitmap_pgoff,
4078 unsigned long *bitmap,
4079 pgoff_t *start,
4080 pgoff_t *end);
4081
4082unsigned long wp_shared_mapping_range(struct address_space *mapping,
4083 pgoff_t first_index, pgoff_t nr);
4084#endif
4085
4086extern int sysctl_nr_trim_pages;
4087
4088#ifdef CONFIG_PRINTK
4089void mem_dump_obj(void *object);
4090#else
4091static inline void mem_dump_obj(void *object) {}
4092#endif
4093
4094/**
4095 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4096 * handle them.
4097 * @seals: the seals to check
4098 * @vma: the vma to operate on
4099 *
4100 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4101 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
4102 */
4103static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4104{
4105 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4106 /*
4107 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4108 * write seals are active.
4109 */
4110 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4111 return -EPERM;
4112
4113 /*
4114 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4115 * MAP_SHARED and read-only, take care to not allow mprotect to
4116 * revert protections on such mappings. Do this only for shared
4117 * mappings. For private mappings, don't need to mask
4118 * VM_MAYWRITE as we still want them to be COW-writable.
4119 */
4120 if (vma->vm_flags & VM_SHARED)
4121 vm_flags_clear(vma, VM_MAYWRITE);
4122 }
4123
4124 return 0;
4125}
4126
4127#ifdef CONFIG_ANON_VMA_NAME
4128int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4129 unsigned long len_in,
4130 struct anon_vma_name *anon_name);
4131#else
4132static inline int
4133madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4134 unsigned long len_in, struct anon_vma_name *anon_name) {
4135 return 0;
4136}
4137#endif
4138
4139#ifdef CONFIG_UNACCEPTED_MEMORY
4140
4141bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4142void accept_memory(phys_addr_t start, unsigned long size);
4143
4144#else
4145
4146static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4147 unsigned long size)
4148{
4149 return false;
4150}
4151
4152static inline void accept_memory(phys_addr_t start, unsigned long size)
4153{
4154}
4155
4156#endif
4157
4158static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4159{
4160 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4161}
4162
4163void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4164void vma_pgtable_walk_end(struct vm_area_struct *vma);
4165
4166int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4167
4168#ifdef CONFIG_64BIT
4169int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4170#else
4171static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4172{
4173 /* noop on 32 bit */
4174 return 0;
4175}
4176#endif
4177
4178int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4179int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4180int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4181
4182#endif /* _LINUX_MM_H */