at v6.13-rc2 4182 lines 128 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/pgalloc_tag.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/atomic.h> 14#include <linux/debug_locks.h> 15#include <linux/mm_types.h> 16#include <linux/mmap_lock.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/percpu-refcount.h> 20#include <linux/bit_spinlock.h> 21#include <linux/shrinker.h> 22#include <linux/resource.h> 23#include <linux/page_ext.h> 24#include <linux/err.h> 25#include <linux/page-flags.h> 26#include <linux/page_ref.h> 27#include <linux/overflow.h> 28#include <linux/sizes.h> 29#include <linux/sched.h> 30#include <linux/pgtable.h> 31#include <linux/kasan.h> 32#include <linux/memremap.h> 33#include <linux/slab.h> 34 35struct mempolicy; 36struct anon_vma; 37struct anon_vma_chain; 38struct user_struct; 39struct pt_regs; 40struct folio_batch; 41 42extern int sysctl_page_lock_unfairness; 43 44void mm_core_init(void); 45void init_mm_internals(void); 46 47#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 48extern unsigned long max_mapnr; 49 50static inline void set_max_mapnr(unsigned long limit) 51{ 52 max_mapnr = limit; 53} 54#else 55static inline void set_max_mapnr(unsigned long limit) { } 56#endif 57 58extern atomic_long_t _totalram_pages; 59static inline unsigned long totalram_pages(void) 60{ 61 return (unsigned long)atomic_long_read(&_totalram_pages); 62} 63 64static inline void totalram_pages_inc(void) 65{ 66 atomic_long_inc(&_totalram_pages); 67} 68 69static inline void totalram_pages_dec(void) 70{ 71 atomic_long_dec(&_totalram_pages); 72} 73 74static inline void totalram_pages_add(long count) 75{ 76 atomic_long_add(count, &_totalram_pages); 77} 78 79extern void * high_memory; 80extern int page_cluster; 81extern const int page_cluster_max; 82 83#ifdef CONFIG_SYSCTL 84extern int sysctl_legacy_va_layout; 85#else 86#define sysctl_legacy_va_layout 0 87#endif 88 89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90extern const int mmap_rnd_bits_min; 91extern int mmap_rnd_bits_max __ro_after_init; 92extern int mmap_rnd_bits __read_mostly; 93#endif 94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95extern const int mmap_rnd_compat_bits_min; 96extern const int mmap_rnd_compat_bits_max; 97extern int mmap_rnd_compat_bits __read_mostly; 98#endif 99 100#ifndef DIRECT_MAP_PHYSMEM_END 101# ifdef MAX_PHYSMEM_BITS 102# define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 103# else 104# define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 105# endif 106#endif 107 108#include <asm/page.h> 109#include <asm/processor.h> 110 111#ifndef __pa_symbol 112#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 113#endif 114 115#ifndef page_to_virt 116#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 117#endif 118 119#ifndef lm_alias 120#define lm_alias(x) __va(__pa_symbol(x)) 121#endif 122 123/* 124 * To prevent common memory management code establishing 125 * a zero page mapping on a read fault. 126 * This macro should be defined within <asm/pgtable.h>. 127 * s390 does this to prevent multiplexing of hardware bits 128 * related to the physical page in case of virtualization. 129 */ 130#ifndef mm_forbids_zeropage 131#define mm_forbids_zeropage(X) (0) 132#endif 133 134/* 135 * On some architectures it is expensive to call memset() for small sizes. 136 * If an architecture decides to implement their own version of 137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 138 * define their own version of this macro in <asm/pgtable.h> 139 */ 140#if BITS_PER_LONG == 64 141/* This function must be updated when the size of struct page grows above 96 142 * or reduces below 56. The idea that compiler optimizes out switch() 143 * statement, and only leaves move/store instructions. Also the compiler can 144 * combine write statements if they are both assignments and can be reordered, 145 * this can result in several of the writes here being dropped. 146 */ 147#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 148static inline void __mm_zero_struct_page(struct page *page) 149{ 150 unsigned long *_pp = (void *)page; 151 152 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 153 BUILD_BUG_ON(sizeof(struct page) & 7); 154 BUILD_BUG_ON(sizeof(struct page) < 56); 155 BUILD_BUG_ON(sizeof(struct page) > 96); 156 157 switch (sizeof(struct page)) { 158 case 96: 159 _pp[11] = 0; 160 fallthrough; 161 case 88: 162 _pp[10] = 0; 163 fallthrough; 164 case 80: 165 _pp[9] = 0; 166 fallthrough; 167 case 72: 168 _pp[8] = 0; 169 fallthrough; 170 case 64: 171 _pp[7] = 0; 172 fallthrough; 173 case 56: 174 _pp[6] = 0; 175 _pp[5] = 0; 176 _pp[4] = 0; 177 _pp[3] = 0; 178 _pp[2] = 0; 179 _pp[1] = 0; 180 _pp[0] = 0; 181 } 182} 183#else 184#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 185#endif 186 187/* 188 * Default maximum number of active map areas, this limits the number of vmas 189 * per mm struct. Users can overwrite this number by sysctl but there is a 190 * problem. 191 * 192 * When a program's coredump is generated as ELF format, a section is created 193 * per a vma. In ELF, the number of sections is represented in unsigned short. 194 * This means the number of sections should be smaller than 65535 at coredump. 195 * Because the kernel adds some informative sections to a image of program at 196 * generating coredump, we need some margin. The number of extra sections is 197 * 1-3 now and depends on arch. We use "5" as safe margin, here. 198 * 199 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 200 * not a hard limit any more. Although some userspace tools can be surprised by 201 * that. 202 */ 203#define MAPCOUNT_ELF_CORE_MARGIN (5) 204#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 205 206extern int sysctl_max_map_count; 207 208extern unsigned long sysctl_user_reserve_kbytes; 209extern unsigned long sysctl_admin_reserve_kbytes; 210 211extern int sysctl_overcommit_memory; 212extern int sysctl_overcommit_ratio; 213extern unsigned long sysctl_overcommit_kbytes; 214 215int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 216 loff_t *); 217int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 218 loff_t *); 219int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 220 loff_t *); 221 222#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 223#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 224#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 225#else 226#define nth_page(page,n) ((page) + (n)) 227#define folio_page_idx(folio, p) ((p) - &(folio)->page) 228#endif 229 230/* to align the pointer to the (next) page boundary */ 231#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 232 233/* to align the pointer to the (prev) page boundary */ 234#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 235 236/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 237#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 238 239static inline struct folio *lru_to_folio(struct list_head *head) 240{ 241 return list_entry((head)->prev, struct folio, lru); 242} 243 244void setup_initial_init_mm(void *start_code, void *end_code, 245 void *end_data, void *brk); 246 247/* 248 * Linux kernel virtual memory manager primitives. 249 * The idea being to have a "virtual" mm in the same way 250 * we have a virtual fs - giving a cleaner interface to the 251 * mm details, and allowing different kinds of memory mappings 252 * (from shared memory to executable loading to arbitrary 253 * mmap() functions). 254 */ 255 256struct vm_area_struct *vm_area_alloc(struct mm_struct *); 257struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 258void vm_area_free(struct vm_area_struct *); 259/* Use only if VMA has no other users */ 260void __vm_area_free(struct vm_area_struct *vma); 261 262#ifndef CONFIG_MMU 263extern struct rb_root nommu_region_tree; 264extern struct rw_semaphore nommu_region_sem; 265 266extern unsigned int kobjsize(const void *objp); 267#endif 268 269/* 270 * vm_flags in vm_area_struct, see mm_types.h. 271 * When changing, update also include/trace/events/mmflags.h 272 */ 273#define VM_NONE 0x00000000 274 275#define VM_READ 0x00000001 /* currently active flags */ 276#define VM_WRITE 0x00000002 277#define VM_EXEC 0x00000004 278#define VM_SHARED 0x00000008 279 280/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 281#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 282#define VM_MAYWRITE 0x00000020 283#define VM_MAYEXEC 0x00000040 284#define VM_MAYSHARE 0x00000080 285 286#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 287#ifdef CONFIG_MMU 288#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 289#else /* CONFIG_MMU */ 290#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 291#define VM_UFFD_MISSING 0 292#endif /* CONFIG_MMU */ 293#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 294#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 295 296#define VM_LOCKED 0x00002000 297#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 298 299 /* Used by sys_madvise() */ 300#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 301#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 302 303#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 304#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 305#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 306#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 307#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 308#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 309#define VM_SYNC 0x00800000 /* Synchronous page faults */ 310#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 311#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 312#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 313 314#ifdef CONFIG_MEM_SOFT_DIRTY 315# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 316#else 317# define VM_SOFTDIRTY 0 318#endif 319 320#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 321#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 322#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 323#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 324 325#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 326#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 327#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 328#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 329#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 330#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 331#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 332#define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 333#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 334#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 335#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 336#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 337#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 338#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 339#define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 340#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 341 342#ifdef CONFIG_ARCH_HAS_PKEYS 343# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 344# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 345# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 346# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 347#if CONFIG_ARCH_PKEY_BITS > 3 348# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 349#else 350# define VM_PKEY_BIT3 0 351#endif 352#if CONFIG_ARCH_PKEY_BITS > 4 353# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 354#else 355# define VM_PKEY_BIT4 0 356#endif 357#endif /* CONFIG_ARCH_HAS_PKEYS */ 358 359#ifdef CONFIG_X86_USER_SHADOW_STACK 360/* 361 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 362 * support core mm. 363 * 364 * These VMAs will get a single end guard page. This helps userspace protect 365 * itself from attacks. A single page is enough for current shadow stack archs 366 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 367 * for more details on the guard size. 368 */ 369# define VM_SHADOW_STACK VM_HIGH_ARCH_5 370#endif 371 372#if defined(CONFIG_ARM64_GCS) 373/* 374 * arm64's Guarded Control Stack implements similar functionality and 375 * has similar constraints to shadow stacks. 376 */ 377# define VM_SHADOW_STACK VM_HIGH_ARCH_6 378#endif 379 380#ifndef VM_SHADOW_STACK 381# define VM_SHADOW_STACK VM_NONE 382#endif 383 384#if defined(CONFIG_X86) 385# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 386#elif defined(CONFIG_PPC64) 387# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 388#elif defined(CONFIG_PARISC) 389# define VM_GROWSUP VM_ARCH_1 390#elif defined(CONFIG_SPARC64) 391# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 392# define VM_ARCH_CLEAR VM_SPARC_ADI 393#elif defined(CONFIG_ARM64) 394# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 395# define VM_ARCH_CLEAR VM_ARM64_BTI 396#elif !defined(CONFIG_MMU) 397# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 398#endif 399 400#if defined(CONFIG_ARM64_MTE) 401# define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 402# define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 403#else 404# define VM_MTE VM_NONE 405# define VM_MTE_ALLOWED VM_NONE 406#endif 407 408#ifndef VM_GROWSUP 409# define VM_GROWSUP VM_NONE 410#endif 411 412#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 413# define VM_UFFD_MINOR_BIT 38 414# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 415#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 416# define VM_UFFD_MINOR VM_NONE 417#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 418 419/* 420 * This flag is used to connect VFIO to arch specific KVM code. It 421 * indicates that the memory under this VMA is safe for use with any 422 * non-cachable memory type inside KVM. Some VFIO devices, on some 423 * platforms, are thought to be unsafe and can cause machine crashes 424 * if KVM does not lock down the memory type. 425 */ 426#ifdef CONFIG_64BIT 427#define VM_ALLOW_ANY_UNCACHED_BIT 39 428#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 429#else 430#define VM_ALLOW_ANY_UNCACHED VM_NONE 431#endif 432 433#ifdef CONFIG_64BIT 434#define VM_DROPPABLE_BIT 40 435#define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 436#elif defined(CONFIG_PPC32) 437#define VM_DROPPABLE VM_ARCH_1 438#else 439#define VM_DROPPABLE VM_NONE 440#endif 441 442#ifdef CONFIG_64BIT 443/* VM is sealed, in vm_flags */ 444#define VM_SEALED _BITUL(63) 445#endif 446 447/* Bits set in the VMA until the stack is in its final location */ 448#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 449 450#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 451 452/* Common data flag combinations */ 453#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 454 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 455#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 456 VM_MAYWRITE | VM_MAYEXEC) 457#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 458 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 459 460#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 461#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 462#endif 463 464#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 465#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 466#endif 467 468#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 469 470#ifdef CONFIG_STACK_GROWSUP 471#define VM_STACK VM_GROWSUP 472#define VM_STACK_EARLY VM_GROWSDOWN 473#else 474#define VM_STACK VM_GROWSDOWN 475#define VM_STACK_EARLY 0 476#endif 477 478#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 479 480/* VMA basic access permission flags */ 481#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 482 483 484/* 485 * Special vmas that are non-mergable, non-mlock()able. 486 */ 487#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 488 489/* This mask prevents VMA from being scanned with khugepaged */ 490#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 491 492/* This mask defines which mm->def_flags a process can inherit its parent */ 493#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 494 495/* This mask represents all the VMA flag bits used by mlock */ 496#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 497 498/* Arch-specific flags to clear when updating VM flags on protection change */ 499#ifndef VM_ARCH_CLEAR 500# define VM_ARCH_CLEAR VM_NONE 501#endif 502#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 503 504/* 505 * mapping from the currently active vm_flags protection bits (the 506 * low four bits) to a page protection mask.. 507 */ 508 509/* 510 * The default fault flags that should be used by most of the 511 * arch-specific page fault handlers. 512 */ 513#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 514 FAULT_FLAG_KILLABLE | \ 515 FAULT_FLAG_INTERRUPTIBLE) 516 517/** 518 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 519 * @flags: Fault flags. 520 * 521 * This is mostly used for places where we want to try to avoid taking 522 * the mmap_lock for too long a time when waiting for another condition 523 * to change, in which case we can try to be polite to release the 524 * mmap_lock in the first round to avoid potential starvation of other 525 * processes that would also want the mmap_lock. 526 * 527 * Return: true if the page fault allows retry and this is the first 528 * attempt of the fault handling; false otherwise. 529 */ 530static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 531{ 532 return (flags & FAULT_FLAG_ALLOW_RETRY) && 533 (!(flags & FAULT_FLAG_TRIED)); 534} 535 536#define FAULT_FLAG_TRACE \ 537 { FAULT_FLAG_WRITE, "WRITE" }, \ 538 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 539 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 540 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 541 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 542 { FAULT_FLAG_TRIED, "TRIED" }, \ 543 { FAULT_FLAG_USER, "USER" }, \ 544 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 545 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 546 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 547 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 548 549/* 550 * vm_fault is filled by the pagefault handler and passed to the vma's 551 * ->fault function. The vma's ->fault is responsible for returning a bitmask 552 * of VM_FAULT_xxx flags that give details about how the fault was handled. 553 * 554 * MM layer fills up gfp_mask for page allocations but fault handler might 555 * alter it if its implementation requires a different allocation context. 556 * 557 * pgoff should be used in favour of virtual_address, if possible. 558 */ 559struct vm_fault { 560 const struct { 561 struct vm_area_struct *vma; /* Target VMA */ 562 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 563 pgoff_t pgoff; /* Logical page offset based on vma */ 564 unsigned long address; /* Faulting virtual address - masked */ 565 unsigned long real_address; /* Faulting virtual address - unmasked */ 566 }; 567 enum fault_flag flags; /* FAULT_FLAG_xxx flags 568 * XXX: should really be 'const' */ 569 pmd_t *pmd; /* Pointer to pmd entry matching 570 * the 'address' */ 571 pud_t *pud; /* Pointer to pud entry matching 572 * the 'address' 573 */ 574 union { 575 pte_t orig_pte; /* Value of PTE at the time of fault */ 576 pmd_t orig_pmd; /* Value of PMD at the time of fault, 577 * used by PMD fault only. 578 */ 579 }; 580 581 struct page *cow_page; /* Page handler may use for COW fault */ 582 struct page *page; /* ->fault handlers should return a 583 * page here, unless VM_FAULT_NOPAGE 584 * is set (which is also implied by 585 * VM_FAULT_ERROR). 586 */ 587 /* These three entries are valid only while holding ptl lock */ 588 pte_t *pte; /* Pointer to pte entry matching 589 * the 'address'. NULL if the page 590 * table hasn't been allocated. 591 */ 592 spinlock_t *ptl; /* Page table lock. 593 * Protects pte page table if 'pte' 594 * is not NULL, otherwise pmd. 595 */ 596 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 597 * vm_ops->map_pages() sets up a page 598 * table from atomic context. 599 * do_fault_around() pre-allocates 600 * page table to avoid allocation from 601 * atomic context. 602 */ 603}; 604 605/* 606 * These are the virtual MM functions - opening of an area, closing and 607 * unmapping it (needed to keep files on disk up-to-date etc), pointer 608 * to the functions called when a no-page or a wp-page exception occurs. 609 */ 610struct vm_operations_struct { 611 void (*open)(struct vm_area_struct * area); 612 /** 613 * @close: Called when the VMA is being removed from the MM. 614 * Context: User context. May sleep. Caller holds mmap_lock. 615 */ 616 void (*close)(struct vm_area_struct * area); 617 /* Called any time before splitting to check if it's allowed */ 618 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 619 int (*mremap)(struct vm_area_struct *area); 620 /* 621 * Called by mprotect() to make driver-specific permission 622 * checks before mprotect() is finalised. The VMA must not 623 * be modified. Returns 0 if mprotect() can proceed. 624 */ 625 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 626 unsigned long end, unsigned long newflags); 627 vm_fault_t (*fault)(struct vm_fault *vmf); 628 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 629 vm_fault_t (*map_pages)(struct vm_fault *vmf, 630 pgoff_t start_pgoff, pgoff_t end_pgoff); 631 unsigned long (*pagesize)(struct vm_area_struct * area); 632 633 /* notification that a previously read-only page is about to become 634 * writable, if an error is returned it will cause a SIGBUS */ 635 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 636 637 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 638 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 639 640 /* called by access_process_vm when get_user_pages() fails, typically 641 * for use by special VMAs. See also generic_access_phys() for a generic 642 * implementation useful for any iomem mapping. 643 */ 644 int (*access)(struct vm_area_struct *vma, unsigned long addr, 645 void *buf, int len, int write); 646 647 /* Called by the /proc/PID/maps code to ask the vma whether it 648 * has a special name. Returning non-NULL will also cause this 649 * vma to be dumped unconditionally. */ 650 const char *(*name)(struct vm_area_struct *vma); 651 652#ifdef CONFIG_NUMA 653 /* 654 * set_policy() op must add a reference to any non-NULL @new mempolicy 655 * to hold the policy upon return. Caller should pass NULL @new to 656 * remove a policy and fall back to surrounding context--i.e. do not 657 * install a MPOL_DEFAULT policy, nor the task or system default 658 * mempolicy. 659 */ 660 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 661 662 /* 663 * get_policy() op must add reference [mpol_get()] to any policy at 664 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 665 * in mm/mempolicy.c will do this automatically. 666 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 667 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 668 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 669 * must return NULL--i.e., do not "fallback" to task or system default 670 * policy. 671 */ 672 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 673 unsigned long addr, pgoff_t *ilx); 674#endif 675 /* 676 * Called by vm_normal_page() for special PTEs to find the 677 * page for @addr. This is useful if the default behavior 678 * (using pte_page()) would not find the correct page. 679 */ 680 struct page *(*find_special_page)(struct vm_area_struct *vma, 681 unsigned long addr); 682}; 683 684#ifdef CONFIG_NUMA_BALANCING 685static inline void vma_numab_state_init(struct vm_area_struct *vma) 686{ 687 vma->numab_state = NULL; 688} 689static inline void vma_numab_state_free(struct vm_area_struct *vma) 690{ 691 kfree(vma->numab_state); 692} 693#else 694static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 695static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 696#endif /* CONFIG_NUMA_BALANCING */ 697 698#ifdef CONFIG_PER_VMA_LOCK 699/* 700 * Try to read-lock a vma. The function is allowed to occasionally yield false 701 * locked result to avoid performance overhead, in which case we fall back to 702 * using mmap_lock. The function should never yield false unlocked result. 703 */ 704static inline bool vma_start_read(struct vm_area_struct *vma) 705{ 706 /* 707 * Check before locking. A race might cause false locked result. 708 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 709 * ACQUIRE semantics, because this is just a lockless check whose result 710 * we don't rely on for anything - the mm_lock_seq read against which we 711 * need ordering is below. 712 */ 713 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 714 return false; 715 716 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 717 return false; 718 719 /* 720 * Overflow might produce false locked result. 721 * False unlocked result is impossible because we modify and check 722 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 723 * modification invalidates all existing locks. 724 * 725 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 726 * racing with vma_end_write_all(), we only start reading from the VMA 727 * after it has been unlocked. 728 * This pairs with RELEASE semantics in vma_end_write_all(). 729 */ 730 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 731 up_read(&vma->vm_lock->lock); 732 return false; 733 } 734 return true; 735} 736 737static inline void vma_end_read(struct vm_area_struct *vma) 738{ 739 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 740 up_read(&vma->vm_lock->lock); 741 rcu_read_unlock(); 742} 743 744/* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 745static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 746{ 747 mmap_assert_write_locked(vma->vm_mm); 748 749 /* 750 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 751 * mm->mm_lock_seq can't be concurrently modified. 752 */ 753 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 754 return (vma->vm_lock_seq == *mm_lock_seq); 755} 756 757/* 758 * Begin writing to a VMA. 759 * Exclude concurrent readers under the per-VMA lock until the currently 760 * write-locked mmap_lock is dropped or downgraded. 761 */ 762static inline void vma_start_write(struct vm_area_struct *vma) 763{ 764 int mm_lock_seq; 765 766 if (__is_vma_write_locked(vma, &mm_lock_seq)) 767 return; 768 769 down_write(&vma->vm_lock->lock); 770 /* 771 * We should use WRITE_ONCE() here because we can have concurrent reads 772 * from the early lockless pessimistic check in vma_start_read(). 773 * We don't really care about the correctness of that early check, but 774 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 775 */ 776 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 777 up_write(&vma->vm_lock->lock); 778} 779 780static inline void vma_assert_write_locked(struct vm_area_struct *vma) 781{ 782 int mm_lock_seq; 783 784 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 785} 786 787static inline void vma_assert_locked(struct vm_area_struct *vma) 788{ 789 if (!rwsem_is_locked(&vma->vm_lock->lock)) 790 vma_assert_write_locked(vma); 791} 792 793static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 794{ 795 /* When detaching vma should be write-locked */ 796 if (detached) 797 vma_assert_write_locked(vma); 798 vma->detached = detached; 799} 800 801static inline void release_fault_lock(struct vm_fault *vmf) 802{ 803 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 804 vma_end_read(vmf->vma); 805 else 806 mmap_read_unlock(vmf->vma->vm_mm); 807} 808 809static inline void assert_fault_locked(struct vm_fault *vmf) 810{ 811 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 812 vma_assert_locked(vmf->vma); 813 else 814 mmap_assert_locked(vmf->vma->vm_mm); 815} 816 817struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 818 unsigned long address); 819 820#else /* CONFIG_PER_VMA_LOCK */ 821 822static inline bool vma_start_read(struct vm_area_struct *vma) 823 { return false; } 824static inline void vma_end_read(struct vm_area_struct *vma) {} 825static inline void vma_start_write(struct vm_area_struct *vma) {} 826static inline void vma_assert_write_locked(struct vm_area_struct *vma) 827 { mmap_assert_write_locked(vma->vm_mm); } 828static inline void vma_mark_detached(struct vm_area_struct *vma, 829 bool detached) {} 830 831static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 832 unsigned long address) 833{ 834 return NULL; 835} 836 837static inline void vma_assert_locked(struct vm_area_struct *vma) 838{ 839 mmap_assert_locked(vma->vm_mm); 840} 841 842static inline void release_fault_lock(struct vm_fault *vmf) 843{ 844 mmap_read_unlock(vmf->vma->vm_mm); 845} 846 847static inline void assert_fault_locked(struct vm_fault *vmf) 848{ 849 mmap_assert_locked(vmf->vma->vm_mm); 850} 851 852#endif /* CONFIG_PER_VMA_LOCK */ 853 854extern const struct vm_operations_struct vma_dummy_vm_ops; 855 856/* 857 * WARNING: vma_init does not initialize vma->vm_lock. 858 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 859 */ 860static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 861{ 862 memset(vma, 0, sizeof(*vma)); 863 vma->vm_mm = mm; 864 vma->vm_ops = &vma_dummy_vm_ops; 865 INIT_LIST_HEAD(&vma->anon_vma_chain); 866 vma_mark_detached(vma, false); 867 vma_numab_state_init(vma); 868} 869 870/* Use when VMA is not part of the VMA tree and needs no locking */ 871static inline void vm_flags_init(struct vm_area_struct *vma, 872 vm_flags_t flags) 873{ 874 ACCESS_PRIVATE(vma, __vm_flags) = flags; 875} 876 877/* 878 * Use when VMA is part of the VMA tree and modifications need coordination 879 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 880 * it should be locked explicitly beforehand. 881 */ 882static inline void vm_flags_reset(struct vm_area_struct *vma, 883 vm_flags_t flags) 884{ 885 vma_assert_write_locked(vma); 886 vm_flags_init(vma, flags); 887} 888 889static inline void vm_flags_reset_once(struct vm_area_struct *vma, 890 vm_flags_t flags) 891{ 892 vma_assert_write_locked(vma); 893 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 894} 895 896static inline void vm_flags_set(struct vm_area_struct *vma, 897 vm_flags_t flags) 898{ 899 vma_start_write(vma); 900 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 901} 902 903static inline void vm_flags_clear(struct vm_area_struct *vma, 904 vm_flags_t flags) 905{ 906 vma_start_write(vma); 907 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 908} 909 910/* 911 * Use only if VMA is not part of the VMA tree or has no other users and 912 * therefore needs no locking. 913 */ 914static inline void __vm_flags_mod(struct vm_area_struct *vma, 915 vm_flags_t set, vm_flags_t clear) 916{ 917 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 918} 919 920/* 921 * Use only when the order of set/clear operations is unimportant, otherwise 922 * use vm_flags_{set|clear} explicitly. 923 */ 924static inline void vm_flags_mod(struct vm_area_struct *vma, 925 vm_flags_t set, vm_flags_t clear) 926{ 927 vma_start_write(vma); 928 __vm_flags_mod(vma, set, clear); 929} 930 931static inline void vma_set_anonymous(struct vm_area_struct *vma) 932{ 933 vma->vm_ops = NULL; 934} 935 936static inline bool vma_is_anonymous(struct vm_area_struct *vma) 937{ 938 return !vma->vm_ops; 939} 940 941/* 942 * Indicate if the VMA is a heap for the given task; for 943 * /proc/PID/maps that is the heap of the main task. 944 */ 945static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 946{ 947 return vma->vm_start < vma->vm_mm->brk && 948 vma->vm_end > vma->vm_mm->start_brk; 949} 950 951/* 952 * Indicate if the VMA is a stack for the given task; for 953 * /proc/PID/maps that is the stack of the main task. 954 */ 955static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 956{ 957 /* 958 * We make no effort to guess what a given thread considers to be 959 * its "stack". It's not even well-defined for programs written 960 * languages like Go. 961 */ 962 return vma->vm_start <= vma->vm_mm->start_stack && 963 vma->vm_end >= vma->vm_mm->start_stack; 964} 965 966static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 967{ 968 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 969 970 if (!maybe_stack) 971 return false; 972 973 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 974 VM_STACK_INCOMPLETE_SETUP) 975 return true; 976 977 return false; 978} 979 980static inline bool vma_is_foreign(struct vm_area_struct *vma) 981{ 982 if (!current->mm) 983 return true; 984 985 if (current->mm != vma->vm_mm) 986 return true; 987 988 return false; 989} 990 991static inline bool vma_is_accessible(struct vm_area_struct *vma) 992{ 993 return vma->vm_flags & VM_ACCESS_FLAGS; 994} 995 996static inline bool is_shared_maywrite(vm_flags_t vm_flags) 997{ 998 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 999 (VM_SHARED | VM_MAYWRITE); 1000} 1001 1002static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 1003{ 1004 return is_shared_maywrite(vma->vm_flags); 1005} 1006 1007static inline 1008struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1009{ 1010 return mas_find(&vmi->mas, max - 1); 1011} 1012 1013static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1014{ 1015 /* 1016 * Uses mas_find() to get the first VMA when the iterator starts. 1017 * Calling mas_next() could skip the first entry. 1018 */ 1019 return mas_find(&vmi->mas, ULONG_MAX); 1020} 1021 1022static inline 1023struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1024{ 1025 return mas_next_range(&vmi->mas, ULONG_MAX); 1026} 1027 1028 1029static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1030{ 1031 return mas_prev(&vmi->mas, 0); 1032} 1033 1034static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1035 unsigned long start, unsigned long end, gfp_t gfp) 1036{ 1037 __mas_set_range(&vmi->mas, start, end - 1); 1038 mas_store_gfp(&vmi->mas, NULL, gfp); 1039 if (unlikely(mas_is_err(&vmi->mas))) 1040 return -ENOMEM; 1041 1042 return 0; 1043} 1044 1045/* Free any unused preallocations */ 1046static inline void vma_iter_free(struct vma_iterator *vmi) 1047{ 1048 mas_destroy(&vmi->mas); 1049} 1050 1051static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1052 struct vm_area_struct *vma) 1053{ 1054 vmi->mas.index = vma->vm_start; 1055 vmi->mas.last = vma->vm_end - 1; 1056 mas_store(&vmi->mas, vma); 1057 if (unlikely(mas_is_err(&vmi->mas))) 1058 return -ENOMEM; 1059 1060 return 0; 1061} 1062 1063static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1064{ 1065 mas_pause(&vmi->mas); 1066} 1067 1068static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1069{ 1070 mas_set(&vmi->mas, addr); 1071} 1072 1073#define for_each_vma(__vmi, __vma) \ 1074 while (((__vma) = vma_next(&(__vmi))) != NULL) 1075 1076/* The MM code likes to work with exclusive end addresses */ 1077#define for_each_vma_range(__vmi, __vma, __end) \ 1078 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1079 1080#ifdef CONFIG_SHMEM 1081/* 1082 * The vma_is_shmem is not inline because it is used only by slow 1083 * paths in userfault. 1084 */ 1085bool vma_is_shmem(struct vm_area_struct *vma); 1086bool vma_is_anon_shmem(struct vm_area_struct *vma); 1087#else 1088static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1089static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1090#endif 1091 1092int vma_is_stack_for_current(struct vm_area_struct *vma); 1093 1094/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1095#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1096 1097struct mmu_gather; 1098struct inode; 1099 1100/* 1101 * compound_order() can be called without holding a reference, which means 1102 * that niceties like page_folio() don't work. These callers should be 1103 * prepared to handle wild return values. For example, PG_head may be 1104 * set before the order is initialised, or this may be a tail page. 1105 * See compaction.c for some good examples. 1106 */ 1107static inline unsigned int compound_order(struct page *page) 1108{ 1109 struct folio *folio = (struct folio *)page; 1110 1111 if (!test_bit(PG_head, &folio->flags)) 1112 return 0; 1113 return folio->_flags_1 & 0xff; 1114} 1115 1116/** 1117 * folio_order - The allocation order of a folio. 1118 * @folio: The folio. 1119 * 1120 * A folio is composed of 2^order pages. See get_order() for the definition 1121 * of order. 1122 * 1123 * Return: The order of the folio. 1124 */ 1125static inline unsigned int folio_order(const struct folio *folio) 1126{ 1127 if (!folio_test_large(folio)) 1128 return 0; 1129 return folio->_flags_1 & 0xff; 1130} 1131 1132#include <linux/huge_mm.h> 1133 1134/* 1135 * Methods to modify the page usage count. 1136 * 1137 * What counts for a page usage: 1138 * - cache mapping (page->mapping) 1139 * - private data (page->private) 1140 * - page mapped in a task's page tables, each mapping 1141 * is counted separately 1142 * 1143 * Also, many kernel routines increase the page count before a critical 1144 * routine so they can be sure the page doesn't go away from under them. 1145 */ 1146 1147/* 1148 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1149 */ 1150static inline int put_page_testzero(struct page *page) 1151{ 1152 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1153 return page_ref_dec_and_test(page); 1154} 1155 1156static inline int folio_put_testzero(struct folio *folio) 1157{ 1158 return put_page_testzero(&folio->page); 1159} 1160 1161/* 1162 * Try to grab a ref unless the page has a refcount of zero, return false if 1163 * that is the case. 1164 * This can be called when MMU is off so it must not access 1165 * any of the virtual mappings. 1166 */ 1167static inline bool get_page_unless_zero(struct page *page) 1168{ 1169 return page_ref_add_unless(page, 1, 0); 1170} 1171 1172static inline struct folio *folio_get_nontail_page(struct page *page) 1173{ 1174 if (unlikely(!get_page_unless_zero(page))) 1175 return NULL; 1176 return (struct folio *)page; 1177} 1178 1179extern int page_is_ram(unsigned long pfn); 1180 1181enum { 1182 REGION_INTERSECTS, 1183 REGION_DISJOINT, 1184 REGION_MIXED, 1185}; 1186 1187int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1188 unsigned long desc); 1189 1190/* Support for virtually mapped pages */ 1191struct page *vmalloc_to_page(const void *addr); 1192unsigned long vmalloc_to_pfn(const void *addr); 1193 1194/* 1195 * Determine if an address is within the vmalloc range 1196 * 1197 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1198 * is no special casing required. 1199 */ 1200#ifdef CONFIG_MMU 1201extern bool is_vmalloc_addr(const void *x); 1202extern int is_vmalloc_or_module_addr(const void *x); 1203#else 1204static inline bool is_vmalloc_addr(const void *x) 1205{ 1206 return false; 1207} 1208static inline int is_vmalloc_or_module_addr(const void *x) 1209{ 1210 return 0; 1211} 1212#endif 1213 1214/* 1215 * How many times the entire folio is mapped as a single unit (eg by a 1216 * PMD or PUD entry). This is probably not what you want, except for 1217 * debugging purposes or implementation of other core folio_*() primitives. 1218 */ 1219static inline int folio_entire_mapcount(const struct folio *folio) 1220{ 1221 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1222 return atomic_read(&folio->_entire_mapcount) + 1; 1223} 1224 1225static inline int folio_large_mapcount(const struct folio *folio) 1226{ 1227 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1228 return atomic_read(&folio->_large_mapcount) + 1; 1229} 1230 1231/** 1232 * folio_mapcount() - Number of mappings of this folio. 1233 * @folio: The folio. 1234 * 1235 * The folio mapcount corresponds to the number of present user page table 1236 * entries that reference any part of a folio. Each such present user page 1237 * table entry must be paired with exactly on folio reference. 1238 * 1239 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1240 * exactly once. 1241 * 1242 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1243 * references the entire folio counts exactly once, even when such special 1244 * page table entries are comprised of multiple ordinary page table entries. 1245 * 1246 * Will report 0 for pages which cannot be mapped into userspace, such as 1247 * slab, page tables and similar. 1248 * 1249 * Return: The number of times this folio is mapped. 1250 */ 1251static inline int folio_mapcount(const struct folio *folio) 1252{ 1253 int mapcount; 1254 1255 if (likely(!folio_test_large(folio))) { 1256 mapcount = atomic_read(&folio->_mapcount) + 1; 1257 if (page_mapcount_is_type(mapcount)) 1258 mapcount = 0; 1259 return mapcount; 1260 } 1261 return folio_large_mapcount(folio); 1262} 1263 1264/** 1265 * folio_mapped - Is this folio mapped into userspace? 1266 * @folio: The folio. 1267 * 1268 * Return: True if any page in this folio is referenced by user page tables. 1269 */ 1270static inline bool folio_mapped(const struct folio *folio) 1271{ 1272 return folio_mapcount(folio) >= 1; 1273} 1274 1275/* 1276 * Return true if this page is mapped into pagetables. 1277 * For compound page it returns true if any sub-page of compound page is mapped, 1278 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1279 */ 1280static inline bool page_mapped(const struct page *page) 1281{ 1282 return folio_mapped(page_folio(page)); 1283} 1284 1285static inline struct page *virt_to_head_page(const void *x) 1286{ 1287 struct page *page = virt_to_page(x); 1288 1289 return compound_head(page); 1290} 1291 1292static inline struct folio *virt_to_folio(const void *x) 1293{ 1294 struct page *page = virt_to_page(x); 1295 1296 return page_folio(page); 1297} 1298 1299void __folio_put(struct folio *folio); 1300 1301void split_page(struct page *page, unsigned int order); 1302void folio_copy(struct folio *dst, struct folio *src); 1303int folio_mc_copy(struct folio *dst, struct folio *src); 1304 1305unsigned long nr_free_buffer_pages(void); 1306 1307/* Returns the number of bytes in this potentially compound page. */ 1308static inline unsigned long page_size(struct page *page) 1309{ 1310 return PAGE_SIZE << compound_order(page); 1311} 1312 1313/* Returns the number of bits needed for the number of bytes in a page */ 1314static inline unsigned int page_shift(struct page *page) 1315{ 1316 return PAGE_SHIFT + compound_order(page); 1317} 1318 1319/** 1320 * thp_order - Order of a transparent huge page. 1321 * @page: Head page of a transparent huge page. 1322 */ 1323static inline unsigned int thp_order(struct page *page) 1324{ 1325 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1326 return compound_order(page); 1327} 1328 1329/** 1330 * thp_size - Size of a transparent huge page. 1331 * @page: Head page of a transparent huge page. 1332 * 1333 * Return: Number of bytes in this page. 1334 */ 1335static inline unsigned long thp_size(struct page *page) 1336{ 1337 return PAGE_SIZE << thp_order(page); 1338} 1339 1340#ifdef CONFIG_MMU 1341/* 1342 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1343 * servicing faults for write access. In the normal case, do always want 1344 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1345 * that do not have writing enabled, when used by access_process_vm. 1346 */ 1347static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1348{ 1349 if (likely(vma->vm_flags & VM_WRITE)) 1350 pte = pte_mkwrite(pte, vma); 1351 return pte; 1352} 1353 1354vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1355void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1356 struct page *page, unsigned int nr, unsigned long addr); 1357 1358vm_fault_t finish_fault(struct vm_fault *vmf); 1359#endif 1360 1361/* 1362 * Multiple processes may "see" the same page. E.g. for untouched 1363 * mappings of /dev/null, all processes see the same page full of 1364 * zeroes, and text pages of executables and shared libraries have 1365 * only one copy in memory, at most, normally. 1366 * 1367 * For the non-reserved pages, page_count(page) denotes a reference count. 1368 * page_count() == 0 means the page is free. page->lru is then used for 1369 * freelist management in the buddy allocator. 1370 * page_count() > 0 means the page has been allocated. 1371 * 1372 * Pages are allocated by the slab allocator in order to provide memory 1373 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1374 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1375 * unless a particular usage is carefully commented. (the responsibility of 1376 * freeing the kmalloc memory is the caller's, of course). 1377 * 1378 * A page may be used by anyone else who does a __get_free_page(). 1379 * In this case, page_count still tracks the references, and should only 1380 * be used through the normal accessor functions. The top bits of page->flags 1381 * and page->virtual store page management information, but all other fields 1382 * are unused and could be used privately, carefully. The management of this 1383 * page is the responsibility of the one who allocated it, and those who have 1384 * subsequently been given references to it. 1385 * 1386 * The other pages (we may call them "pagecache pages") are completely 1387 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1388 * The following discussion applies only to them. 1389 * 1390 * A pagecache page contains an opaque `private' member, which belongs to the 1391 * page's address_space. Usually, this is the address of a circular list of 1392 * the page's disk buffers. PG_private must be set to tell the VM to call 1393 * into the filesystem to release these pages. 1394 * 1395 * A page may belong to an inode's memory mapping. In this case, page->mapping 1396 * is the pointer to the inode, and page->index is the file offset of the page, 1397 * in units of PAGE_SIZE. 1398 * 1399 * If pagecache pages are not associated with an inode, they are said to be 1400 * anonymous pages. These may become associated with the swapcache, and in that 1401 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1402 * 1403 * In either case (swapcache or inode backed), the pagecache itself holds one 1404 * reference to the page. Setting PG_private should also increment the 1405 * refcount. The each user mapping also has a reference to the page. 1406 * 1407 * The pagecache pages are stored in a per-mapping radix tree, which is 1408 * rooted at mapping->i_pages, and indexed by offset. 1409 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1410 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1411 * 1412 * All pagecache pages may be subject to I/O: 1413 * - inode pages may need to be read from disk, 1414 * - inode pages which have been modified and are MAP_SHARED may need 1415 * to be written back to the inode on disk, 1416 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1417 * modified may need to be swapped out to swap space and (later) to be read 1418 * back into memory. 1419 */ 1420 1421#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1422DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1423 1424bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1425static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1426{ 1427 if (!static_branch_unlikely(&devmap_managed_key)) 1428 return false; 1429 if (!folio_is_zone_device(folio)) 1430 return false; 1431 return __put_devmap_managed_folio_refs(folio, refs); 1432} 1433#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1434static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1435{ 1436 return false; 1437} 1438#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1439 1440/* 127: arbitrary random number, small enough to assemble well */ 1441#define folio_ref_zero_or_close_to_overflow(folio) \ 1442 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1443 1444/** 1445 * folio_get - Increment the reference count on a folio. 1446 * @folio: The folio. 1447 * 1448 * Context: May be called in any context, as long as you know that 1449 * you have a refcount on the folio. If you do not already have one, 1450 * folio_try_get() may be the right interface for you to use. 1451 */ 1452static inline void folio_get(struct folio *folio) 1453{ 1454 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1455 folio_ref_inc(folio); 1456} 1457 1458static inline void get_page(struct page *page) 1459{ 1460 folio_get(page_folio(page)); 1461} 1462 1463static inline __must_check bool try_get_page(struct page *page) 1464{ 1465 page = compound_head(page); 1466 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1467 return false; 1468 page_ref_inc(page); 1469 return true; 1470} 1471 1472/** 1473 * folio_put - Decrement the reference count on a folio. 1474 * @folio: The folio. 1475 * 1476 * If the folio's reference count reaches zero, the memory will be 1477 * released back to the page allocator and may be used by another 1478 * allocation immediately. Do not access the memory or the struct folio 1479 * after calling folio_put() unless you can be sure that it wasn't the 1480 * last reference. 1481 * 1482 * Context: May be called in process or interrupt context, but not in NMI 1483 * context. May be called while holding a spinlock. 1484 */ 1485static inline void folio_put(struct folio *folio) 1486{ 1487 if (folio_put_testzero(folio)) 1488 __folio_put(folio); 1489} 1490 1491/** 1492 * folio_put_refs - Reduce the reference count on a folio. 1493 * @folio: The folio. 1494 * @refs: The amount to subtract from the folio's reference count. 1495 * 1496 * If the folio's reference count reaches zero, the memory will be 1497 * released back to the page allocator and may be used by another 1498 * allocation immediately. Do not access the memory or the struct folio 1499 * after calling folio_put_refs() unless you can be sure that these weren't 1500 * the last references. 1501 * 1502 * Context: May be called in process or interrupt context, but not in NMI 1503 * context. May be called while holding a spinlock. 1504 */ 1505static inline void folio_put_refs(struct folio *folio, int refs) 1506{ 1507 if (folio_ref_sub_and_test(folio, refs)) 1508 __folio_put(folio); 1509} 1510 1511void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1512 1513/* 1514 * union release_pages_arg - an array of pages or folios 1515 * 1516 * release_pages() releases a simple array of multiple pages, and 1517 * accepts various different forms of said page array: either 1518 * a regular old boring array of pages, an array of folios, or 1519 * an array of encoded page pointers. 1520 * 1521 * The transparent union syntax for this kind of "any of these 1522 * argument types" is all kinds of ugly, so look away. 1523 */ 1524typedef union { 1525 struct page **pages; 1526 struct folio **folios; 1527 struct encoded_page **encoded_pages; 1528} release_pages_arg __attribute__ ((__transparent_union__)); 1529 1530void release_pages(release_pages_arg, int nr); 1531 1532/** 1533 * folios_put - Decrement the reference count on an array of folios. 1534 * @folios: The folios. 1535 * 1536 * Like folio_put(), but for a batch of folios. This is more efficient 1537 * than writing the loop yourself as it will optimise the locks which need 1538 * to be taken if the folios are freed. The folios batch is returned 1539 * empty and ready to be reused for another batch; there is no need to 1540 * reinitialise it. 1541 * 1542 * Context: May be called in process or interrupt context, but not in NMI 1543 * context. May be called while holding a spinlock. 1544 */ 1545static inline void folios_put(struct folio_batch *folios) 1546{ 1547 folios_put_refs(folios, NULL); 1548} 1549 1550static inline void put_page(struct page *page) 1551{ 1552 struct folio *folio = page_folio(page); 1553 1554 /* 1555 * For some devmap managed pages we need to catch refcount transition 1556 * from 2 to 1: 1557 */ 1558 if (put_devmap_managed_folio_refs(folio, 1)) 1559 return; 1560 folio_put(folio); 1561} 1562 1563/* 1564 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1565 * the page's refcount so that two separate items are tracked: the original page 1566 * reference count, and also a new count of how many pin_user_pages() calls were 1567 * made against the page. ("gup-pinned" is another term for the latter). 1568 * 1569 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1570 * distinct from normal pages. As such, the unpin_user_page() call (and its 1571 * variants) must be used in order to release gup-pinned pages. 1572 * 1573 * Choice of value: 1574 * 1575 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1576 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1577 * simpler, due to the fact that adding an even power of two to the page 1578 * refcount has the effect of using only the upper N bits, for the code that 1579 * counts up using the bias value. This means that the lower bits are left for 1580 * the exclusive use of the original code that increments and decrements by one 1581 * (or at least, by much smaller values than the bias value). 1582 * 1583 * Of course, once the lower bits overflow into the upper bits (and this is 1584 * OK, because subtraction recovers the original values), then visual inspection 1585 * no longer suffices to directly view the separate counts. However, for normal 1586 * applications that don't have huge page reference counts, this won't be an 1587 * issue. 1588 * 1589 * Locking: the lockless algorithm described in folio_try_get_rcu() 1590 * provides safe operation for get_user_pages(), folio_mkclean() and 1591 * other calls that race to set up page table entries. 1592 */ 1593#define GUP_PIN_COUNTING_BIAS (1U << 10) 1594 1595void unpin_user_page(struct page *page); 1596void unpin_folio(struct folio *folio); 1597void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1598 bool make_dirty); 1599void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1600 bool make_dirty); 1601void unpin_user_pages(struct page **pages, unsigned long npages); 1602void unpin_user_folio(struct folio *folio, unsigned long npages); 1603void unpin_folios(struct folio **folios, unsigned long nfolios); 1604 1605static inline bool is_cow_mapping(vm_flags_t flags) 1606{ 1607 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1608} 1609 1610#ifndef CONFIG_MMU 1611static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1612{ 1613 /* 1614 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1615 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1616 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1617 * underlying memory if ptrace is active, so this is only possible if 1618 * ptrace does not apply. Note that there is no mprotect() to upgrade 1619 * write permissions later. 1620 */ 1621 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1622} 1623#endif 1624 1625#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1626#define SECTION_IN_PAGE_FLAGS 1627#endif 1628 1629/* 1630 * The identification function is mainly used by the buddy allocator for 1631 * determining if two pages could be buddies. We are not really identifying 1632 * the zone since we could be using the section number id if we do not have 1633 * node id available in page flags. 1634 * We only guarantee that it will return the same value for two combinable 1635 * pages in a zone. 1636 */ 1637static inline int page_zone_id(struct page *page) 1638{ 1639 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1640} 1641 1642#ifdef NODE_NOT_IN_PAGE_FLAGS 1643int page_to_nid(const struct page *page); 1644#else 1645static inline int page_to_nid(const struct page *page) 1646{ 1647 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1648} 1649#endif 1650 1651static inline int folio_nid(const struct folio *folio) 1652{ 1653 return page_to_nid(&folio->page); 1654} 1655 1656#ifdef CONFIG_NUMA_BALANCING 1657/* page access time bits needs to hold at least 4 seconds */ 1658#define PAGE_ACCESS_TIME_MIN_BITS 12 1659#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1660#define PAGE_ACCESS_TIME_BUCKETS \ 1661 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1662#else 1663#define PAGE_ACCESS_TIME_BUCKETS 0 1664#endif 1665 1666#define PAGE_ACCESS_TIME_MASK \ 1667 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1668 1669static inline int cpu_pid_to_cpupid(int cpu, int pid) 1670{ 1671 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1672} 1673 1674static inline int cpupid_to_pid(int cpupid) 1675{ 1676 return cpupid & LAST__PID_MASK; 1677} 1678 1679static inline int cpupid_to_cpu(int cpupid) 1680{ 1681 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1682} 1683 1684static inline int cpupid_to_nid(int cpupid) 1685{ 1686 return cpu_to_node(cpupid_to_cpu(cpupid)); 1687} 1688 1689static inline bool cpupid_pid_unset(int cpupid) 1690{ 1691 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1692} 1693 1694static inline bool cpupid_cpu_unset(int cpupid) 1695{ 1696 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1697} 1698 1699static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1700{ 1701 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1702} 1703 1704#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1705#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1706static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1707{ 1708 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1709} 1710 1711static inline int folio_last_cpupid(struct folio *folio) 1712{ 1713 return folio->_last_cpupid; 1714} 1715static inline void page_cpupid_reset_last(struct page *page) 1716{ 1717 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1718} 1719#else 1720static inline int folio_last_cpupid(struct folio *folio) 1721{ 1722 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1723} 1724 1725int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1726 1727static inline void page_cpupid_reset_last(struct page *page) 1728{ 1729 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1730} 1731#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1732 1733static inline int folio_xchg_access_time(struct folio *folio, int time) 1734{ 1735 int last_time; 1736 1737 last_time = folio_xchg_last_cpupid(folio, 1738 time >> PAGE_ACCESS_TIME_BUCKETS); 1739 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1740} 1741 1742static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1743{ 1744 unsigned int pid_bit; 1745 1746 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1747 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1748 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1749 } 1750} 1751 1752bool folio_use_access_time(struct folio *folio); 1753#else /* !CONFIG_NUMA_BALANCING */ 1754static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1755{ 1756 return folio_nid(folio); /* XXX */ 1757} 1758 1759static inline int folio_xchg_access_time(struct folio *folio, int time) 1760{ 1761 return 0; 1762} 1763 1764static inline int folio_last_cpupid(struct folio *folio) 1765{ 1766 return folio_nid(folio); /* XXX */ 1767} 1768 1769static inline int cpupid_to_nid(int cpupid) 1770{ 1771 return -1; 1772} 1773 1774static inline int cpupid_to_pid(int cpupid) 1775{ 1776 return -1; 1777} 1778 1779static inline int cpupid_to_cpu(int cpupid) 1780{ 1781 return -1; 1782} 1783 1784static inline int cpu_pid_to_cpupid(int nid, int pid) 1785{ 1786 return -1; 1787} 1788 1789static inline bool cpupid_pid_unset(int cpupid) 1790{ 1791 return true; 1792} 1793 1794static inline void page_cpupid_reset_last(struct page *page) 1795{ 1796} 1797 1798static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1799{ 1800 return false; 1801} 1802 1803static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1804{ 1805} 1806static inline bool folio_use_access_time(struct folio *folio) 1807{ 1808 return false; 1809} 1810#endif /* CONFIG_NUMA_BALANCING */ 1811 1812#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1813 1814/* 1815 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1816 * setting tags for all pages to native kernel tag value 0xff, as the default 1817 * value 0x00 maps to 0xff. 1818 */ 1819 1820static inline u8 page_kasan_tag(const struct page *page) 1821{ 1822 u8 tag = KASAN_TAG_KERNEL; 1823 1824 if (kasan_enabled()) { 1825 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1826 tag ^= 0xff; 1827 } 1828 1829 return tag; 1830} 1831 1832static inline void page_kasan_tag_set(struct page *page, u8 tag) 1833{ 1834 unsigned long old_flags, flags; 1835 1836 if (!kasan_enabled()) 1837 return; 1838 1839 tag ^= 0xff; 1840 old_flags = READ_ONCE(page->flags); 1841 do { 1842 flags = old_flags; 1843 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1844 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1845 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1846} 1847 1848static inline void page_kasan_tag_reset(struct page *page) 1849{ 1850 if (kasan_enabled()) 1851 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1852} 1853 1854#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1855 1856static inline u8 page_kasan_tag(const struct page *page) 1857{ 1858 return 0xff; 1859} 1860 1861static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1862static inline void page_kasan_tag_reset(struct page *page) { } 1863 1864#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1865 1866static inline struct zone *page_zone(const struct page *page) 1867{ 1868 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1869} 1870 1871static inline pg_data_t *page_pgdat(const struct page *page) 1872{ 1873 return NODE_DATA(page_to_nid(page)); 1874} 1875 1876static inline struct zone *folio_zone(const struct folio *folio) 1877{ 1878 return page_zone(&folio->page); 1879} 1880 1881static inline pg_data_t *folio_pgdat(const struct folio *folio) 1882{ 1883 return page_pgdat(&folio->page); 1884} 1885 1886#ifdef SECTION_IN_PAGE_FLAGS 1887static inline void set_page_section(struct page *page, unsigned long section) 1888{ 1889 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1890 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1891} 1892 1893static inline unsigned long page_to_section(const struct page *page) 1894{ 1895 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1896} 1897#endif 1898 1899/** 1900 * folio_pfn - Return the Page Frame Number of a folio. 1901 * @folio: The folio. 1902 * 1903 * A folio may contain multiple pages. The pages have consecutive 1904 * Page Frame Numbers. 1905 * 1906 * Return: The Page Frame Number of the first page in the folio. 1907 */ 1908static inline unsigned long folio_pfn(const struct folio *folio) 1909{ 1910 return page_to_pfn(&folio->page); 1911} 1912 1913static inline struct folio *pfn_folio(unsigned long pfn) 1914{ 1915 return page_folio(pfn_to_page(pfn)); 1916} 1917 1918/** 1919 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1920 * @folio: The folio. 1921 * 1922 * This function checks if a folio has been pinned via a call to 1923 * a function in the pin_user_pages() family. 1924 * 1925 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1926 * because it means "definitely not pinned for DMA", but true means "probably 1927 * pinned for DMA, but possibly a false positive due to having at least 1928 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1929 * 1930 * False positives are OK, because: a) it's unlikely for a folio to 1931 * get that many refcounts, and b) all the callers of this routine are 1932 * expected to be able to deal gracefully with a false positive. 1933 * 1934 * For large folios, the result will be exactly correct. That's because 1935 * we have more tracking data available: the _pincount field is used 1936 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1937 * 1938 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1939 * 1940 * Return: True, if it is likely that the folio has been "dma-pinned". 1941 * False, if the folio is definitely not dma-pinned. 1942 */ 1943static inline bool folio_maybe_dma_pinned(struct folio *folio) 1944{ 1945 if (folio_test_large(folio)) 1946 return atomic_read(&folio->_pincount) > 0; 1947 1948 /* 1949 * folio_ref_count() is signed. If that refcount overflows, then 1950 * folio_ref_count() returns a negative value, and callers will avoid 1951 * further incrementing the refcount. 1952 * 1953 * Here, for that overflow case, use the sign bit to count a little 1954 * bit higher via unsigned math, and thus still get an accurate result. 1955 */ 1956 return ((unsigned int)folio_ref_count(folio)) >= 1957 GUP_PIN_COUNTING_BIAS; 1958} 1959 1960/* 1961 * This should most likely only be called during fork() to see whether we 1962 * should break the cow immediately for an anon page on the src mm. 1963 * 1964 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1965 */ 1966static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1967 struct folio *folio) 1968{ 1969 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1970 1971 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1972 return false; 1973 1974 return folio_maybe_dma_pinned(folio); 1975} 1976 1977/** 1978 * is_zero_page - Query if a page is a zero page 1979 * @page: The page to query 1980 * 1981 * This returns true if @page is one of the permanent zero pages. 1982 */ 1983static inline bool is_zero_page(const struct page *page) 1984{ 1985 return is_zero_pfn(page_to_pfn(page)); 1986} 1987 1988/** 1989 * is_zero_folio - Query if a folio is a zero page 1990 * @folio: The folio to query 1991 * 1992 * This returns true if @folio is one of the permanent zero pages. 1993 */ 1994static inline bool is_zero_folio(const struct folio *folio) 1995{ 1996 return is_zero_page(&folio->page); 1997} 1998 1999/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2000#ifdef CONFIG_MIGRATION 2001static inline bool folio_is_longterm_pinnable(struct folio *folio) 2002{ 2003#ifdef CONFIG_CMA 2004 int mt = folio_migratetype(folio); 2005 2006 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2007 return false; 2008#endif 2009 /* The zero page can be "pinned" but gets special handling. */ 2010 if (is_zero_folio(folio)) 2011 return true; 2012 2013 /* Coherent device memory must always allow eviction. */ 2014 if (folio_is_device_coherent(folio)) 2015 return false; 2016 2017 /* Otherwise, non-movable zone folios can be pinned. */ 2018 return !folio_is_zone_movable(folio); 2019 2020} 2021#else 2022static inline bool folio_is_longterm_pinnable(struct folio *folio) 2023{ 2024 return true; 2025} 2026#endif 2027 2028static inline void set_page_zone(struct page *page, enum zone_type zone) 2029{ 2030 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2031 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2032} 2033 2034static inline void set_page_node(struct page *page, unsigned long node) 2035{ 2036 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2037 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2038} 2039 2040static inline void set_page_links(struct page *page, enum zone_type zone, 2041 unsigned long node, unsigned long pfn) 2042{ 2043 set_page_zone(page, zone); 2044 set_page_node(page, node); 2045#ifdef SECTION_IN_PAGE_FLAGS 2046 set_page_section(page, pfn_to_section_nr(pfn)); 2047#endif 2048} 2049 2050/** 2051 * folio_nr_pages - The number of pages in the folio. 2052 * @folio: The folio. 2053 * 2054 * Return: A positive power of two. 2055 */ 2056static inline long folio_nr_pages(const struct folio *folio) 2057{ 2058 if (!folio_test_large(folio)) 2059 return 1; 2060#ifdef CONFIG_64BIT 2061 return folio->_folio_nr_pages; 2062#else 2063 return 1L << (folio->_flags_1 & 0xff); 2064#endif 2065} 2066 2067/* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2068#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2069#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2070#else 2071#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2072#endif 2073 2074/* 2075 * compound_nr() returns the number of pages in this potentially compound 2076 * page. compound_nr() can be called on a tail page, and is defined to 2077 * return 1 in that case. 2078 */ 2079static inline unsigned long compound_nr(struct page *page) 2080{ 2081 struct folio *folio = (struct folio *)page; 2082 2083 if (!test_bit(PG_head, &folio->flags)) 2084 return 1; 2085#ifdef CONFIG_64BIT 2086 return folio->_folio_nr_pages; 2087#else 2088 return 1L << (folio->_flags_1 & 0xff); 2089#endif 2090} 2091 2092/** 2093 * thp_nr_pages - The number of regular pages in this huge page. 2094 * @page: The head page of a huge page. 2095 */ 2096static inline int thp_nr_pages(struct page *page) 2097{ 2098 return folio_nr_pages((struct folio *)page); 2099} 2100 2101/** 2102 * folio_next - Move to the next physical folio. 2103 * @folio: The folio we're currently operating on. 2104 * 2105 * If you have physically contiguous memory which may span more than 2106 * one folio (eg a &struct bio_vec), use this function to move from one 2107 * folio to the next. Do not use it if the memory is only virtually 2108 * contiguous as the folios are almost certainly not adjacent to each 2109 * other. This is the folio equivalent to writing ``page++``. 2110 * 2111 * Context: We assume that the folios are refcounted and/or locked at a 2112 * higher level and do not adjust the reference counts. 2113 * Return: The next struct folio. 2114 */ 2115static inline struct folio *folio_next(struct folio *folio) 2116{ 2117 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2118} 2119 2120/** 2121 * folio_shift - The size of the memory described by this folio. 2122 * @folio: The folio. 2123 * 2124 * A folio represents a number of bytes which is a power-of-two in size. 2125 * This function tells you which power-of-two the folio is. See also 2126 * folio_size() and folio_order(). 2127 * 2128 * Context: The caller should have a reference on the folio to prevent 2129 * it from being split. It is not necessary for the folio to be locked. 2130 * Return: The base-2 logarithm of the size of this folio. 2131 */ 2132static inline unsigned int folio_shift(const struct folio *folio) 2133{ 2134 return PAGE_SHIFT + folio_order(folio); 2135} 2136 2137/** 2138 * folio_size - The number of bytes in a folio. 2139 * @folio: The folio. 2140 * 2141 * Context: The caller should have a reference on the folio to prevent 2142 * it from being split. It is not necessary for the folio to be locked. 2143 * Return: The number of bytes in this folio. 2144 */ 2145static inline size_t folio_size(const struct folio *folio) 2146{ 2147 return PAGE_SIZE << folio_order(folio); 2148} 2149 2150/** 2151 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2152 * tables of more than one MM 2153 * @folio: The folio. 2154 * 2155 * This function checks if the folio is currently mapped into more than one 2156 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2157 * ("mapped exclusively"). 2158 * 2159 * For KSM folios, this function also returns "mapped shared" when a folio is 2160 * mapped multiple times into the same MM, because the individual page mappings 2161 * are independent. 2162 * 2163 * As precise information is not easily available for all folios, this function 2164 * estimates the number of MMs ("sharers") that are currently mapping a folio 2165 * using the number of times the first page of the folio is currently mapped 2166 * into page tables. 2167 * 2168 * For small anonymous folios and anonymous hugetlb folios, the return 2169 * value will be exactly correct: non-KSM folios can only be mapped at most once 2170 * into an MM, and they cannot be partially mapped. KSM folios are 2171 * considered shared even if mapped multiple times into the same MM. 2172 * 2173 * For other folios, the result can be fuzzy: 2174 * #. For partially-mappable large folios (THP), the return value can wrongly 2175 * indicate "mapped exclusively" (false negative) when the folio is 2176 * only partially mapped into at least one MM. 2177 * #. For pagecache folios (including hugetlb), the return value can wrongly 2178 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2179 * cover the same file range. 2180 * 2181 * Further, this function only considers current page table mappings that 2182 * are tracked using the folio mapcount(s). 2183 * 2184 * This function does not consider: 2185 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2186 * pagecache, temporary unmapping for migration). 2187 * #. If the folio is mapped differently (VM_PFNMAP). 2188 * #. If hugetlb page table sharing applies. Callers might want to check 2189 * hugetlb_pmd_shared(). 2190 * 2191 * Return: Whether the folio is estimated to be mapped into more than one MM. 2192 */ 2193static inline bool folio_likely_mapped_shared(struct folio *folio) 2194{ 2195 int mapcount = folio_mapcount(folio); 2196 2197 /* Only partially-mappable folios require more care. */ 2198 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2199 return mapcount > 1; 2200 2201 /* A single mapping implies "mapped exclusively". */ 2202 if (mapcount <= 1) 2203 return false; 2204 2205 /* If any page is mapped more than once we treat it "mapped shared". */ 2206 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2207 return true; 2208 2209 /* Let's guess based on the first subpage. */ 2210 return atomic_read(&folio->_mapcount) > 0; 2211} 2212 2213#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2214static inline int arch_make_folio_accessible(struct folio *folio) 2215{ 2216 return 0; 2217} 2218#endif 2219 2220/* 2221 * Some inline functions in vmstat.h depend on page_zone() 2222 */ 2223#include <linux/vmstat.h> 2224 2225#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2226#define HASHED_PAGE_VIRTUAL 2227#endif 2228 2229#if defined(WANT_PAGE_VIRTUAL) 2230static inline void *page_address(const struct page *page) 2231{ 2232 return page->virtual; 2233} 2234static inline void set_page_address(struct page *page, void *address) 2235{ 2236 page->virtual = address; 2237} 2238#define page_address_init() do { } while(0) 2239#endif 2240 2241#if defined(HASHED_PAGE_VIRTUAL) 2242void *page_address(const struct page *page); 2243void set_page_address(struct page *page, void *virtual); 2244void page_address_init(void); 2245#endif 2246 2247static __always_inline void *lowmem_page_address(const struct page *page) 2248{ 2249 return page_to_virt(page); 2250} 2251 2252#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2253#define page_address(page) lowmem_page_address(page) 2254#define set_page_address(page, address) do { } while(0) 2255#define page_address_init() do { } while(0) 2256#endif 2257 2258static inline void *folio_address(const struct folio *folio) 2259{ 2260 return page_address(&folio->page); 2261} 2262 2263/* 2264 * Return true only if the page has been allocated with 2265 * ALLOC_NO_WATERMARKS and the low watermark was not 2266 * met implying that the system is under some pressure. 2267 */ 2268static inline bool page_is_pfmemalloc(const struct page *page) 2269{ 2270 /* 2271 * lru.next has bit 1 set if the page is allocated from the 2272 * pfmemalloc reserves. Callers may simply overwrite it if 2273 * they do not need to preserve that information. 2274 */ 2275 return (uintptr_t)page->lru.next & BIT(1); 2276} 2277 2278/* 2279 * Return true only if the folio has been allocated with 2280 * ALLOC_NO_WATERMARKS and the low watermark was not 2281 * met implying that the system is under some pressure. 2282 */ 2283static inline bool folio_is_pfmemalloc(const struct folio *folio) 2284{ 2285 /* 2286 * lru.next has bit 1 set if the page is allocated from the 2287 * pfmemalloc reserves. Callers may simply overwrite it if 2288 * they do not need to preserve that information. 2289 */ 2290 return (uintptr_t)folio->lru.next & BIT(1); 2291} 2292 2293/* 2294 * Only to be called by the page allocator on a freshly allocated 2295 * page. 2296 */ 2297static inline void set_page_pfmemalloc(struct page *page) 2298{ 2299 page->lru.next = (void *)BIT(1); 2300} 2301 2302static inline void clear_page_pfmemalloc(struct page *page) 2303{ 2304 page->lru.next = NULL; 2305} 2306 2307/* 2308 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2309 */ 2310extern void pagefault_out_of_memory(void); 2311 2312#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2313#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2314#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2315 2316/* 2317 * Parameter block passed down to zap_pte_range in exceptional cases. 2318 */ 2319struct zap_details { 2320 struct folio *single_folio; /* Locked folio to be unmapped */ 2321 bool even_cows; /* Zap COWed private pages too? */ 2322 zap_flags_t zap_flags; /* Extra flags for zapping */ 2323}; 2324 2325/* 2326 * Whether to drop the pte markers, for example, the uffd-wp information for 2327 * file-backed memory. This should only be specified when we will completely 2328 * drop the page in the mm, either by truncation or unmapping of the vma. By 2329 * default, the flag is not set. 2330 */ 2331#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2332/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2333#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2334 2335#ifdef CONFIG_SCHED_MM_CID 2336void sched_mm_cid_before_execve(struct task_struct *t); 2337void sched_mm_cid_after_execve(struct task_struct *t); 2338void sched_mm_cid_fork(struct task_struct *t); 2339void sched_mm_cid_exit_signals(struct task_struct *t); 2340static inline int task_mm_cid(struct task_struct *t) 2341{ 2342 return t->mm_cid; 2343} 2344#else 2345static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2346static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2347static inline void sched_mm_cid_fork(struct task_struct *t) { } 2348static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2349static inline int task_mm_cid(struct task_struct *t) 2350{ 2351 /* 2352 * Use the processor id as a fall-back when the mm cid feature is 2353 * disabled. This provides functional per-cpu data structure accesses 2354 * in user-space, althrough it won't provide the memory usage benefits. 2355 */ 2356 return raw_smp_processor_id(); 2357} 2358#endif 2359 2360#ifdef CONFIG_MMU 2361extern bool can_do_mlock(void); 2362#else 2363static inline bool can_do_mlock(void) { return false; } 2364#endif 2365extern int user_shm_lock(size_t, struct ucounts *); 2366extern void user_shm_unlock(size_t, struct ucounts *); 2367 2368struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2369 pte_t pte); 2370struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2371 pte_t pte); 2372struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2373 unsigned long addr, pmd_t pmd); 2374struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2375 pmd_t pmd); 2376 2377void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2378 unsigned long size); 2379void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2380 unsigned long size, struct zap_details *details); 2381static inline void zap_vma_pages(struct vm_area_struct *vma) 2382{ 2383 zap_page_range_single(vma, vma->vm_start, 2384 vma->vm_end - vma->vm_start, NULL); 2385} 2386void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2387 struct vm_area_struct *start_vma, unsigned long start, 2388 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2389 2390struct mmu_notifier_range; 2391 2392void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2393 unsigned long end, unsigned long floor, unsigned long ceiling); 2394int 2395copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2396int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2397 void *buf, int len, int write); 2398 2399struct follow_pfnmap_args { 2400 /** 2401 * Inputs: 2402 * @vma: Pointer to @vm_area_struct struct 2403 * @address: the virtual address to walk 2404 */ 2405 struct vm_area_struct *vma; 2406 unsigned long address; 2407 /** 2408 * Internals: 2409 * 2410 * The caller shouldn't touch any of these. 2411 */ 2412 spinlock_t *lock; 2413 pte_t *ptep; 2414 /** 2415 * Outputs: 2416 * 2417 * @pfn: the PFN of the address 2418 * @pgprot: the pgprot_t of the mapping 2419 * @writable: whether the mapping is writable 2420 * @special: whether the mapping is a special mapping (real PFN maps) 2421 */ 2422 unsigned long pfn; 2423 pgprot_t pgprot; 2424 bool writable; 2425 bool special; 2426}; 2427int follow_pfnmap_start(struct follow_pfnmap_args *args); 2428void follow_pfnmap_end(struct follow_pfnmap_args *args); 2429 2430extern void truncate_pagecache(struct inode *inode, loff_t new); 2431extern void truncate_setsize(struct inode *inode, loff_t newsize); 2432void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2433void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2434int generic_error_remove_folio(struct address_space *mapping, 2435 struct folio *folio); 2436 2437struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2438 unsigned long address, struct pt_regs *regs); 2439 2440#ifdef CONFIG_MMU 2441extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2442 unsigned long address, unsigned int flags, 2443 struct pt_regs *regs); 2444extern int fixup_user_fault(struct mm_struct *mm, 2445 unsigned long address, unsigned int fault_flags, 2446 bool *unlocked); 2447void unmap_mapping_pages(struct address_space *mapping, 2448 pgoff_t start, pgoff_t nr, bool even_cows); 2449void unmap_mapping_range(struct address_space *mapping, 2450 loff_t const holebegin, loff_t const holelen, int even_cows); 2451#else 2452static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2453 unsigned long address, unsigned int flags, 2454 struct pt_regs *regs) 2455{ 2456 /* should never happen if there's no MMU */ 2457 BUG(); 2458 return VM_FAULT_SIGBUS; 2459} 2460static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2461 unsigned int fault_flags, bool *unlocked) 2462{ 2463 /* should never happen if there's no MMU */ 2464 BUG(); 2465 return -EFAULT; 2466} 2467static inline void unmap_mapping_pages(struct address_space *mapping, 2468 pgoff_t start, pgoff_t nr, bool even_cows) { } 2469static inline void unmap_mapping_range(struct address_space *mapping, 2470 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2471#endif 2472 2473static inline void unmap_shared_mapping_range(struct address_space *mapping, 2474 loff_t const holebegin, loff_t const holelen) 2475{ 2476 unmap_mapping_range(mapping, holebegin, holelen, 0); 2477} 2478 2479static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2480 unsigned long addr); 2481 2482extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2483 void *buf, int len, unsigned int gup_flags); 2484extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2485 void *buf, int len, unsigned int gup_flags); 2486 2487long get_user_pages_remote(struct mm_struct *mm, 2488 unsigned long start, unsigned long nr_pages, 2489 unsigned int gup_flags, struct page **pages, 2490 int *locked); 2491long pin_user_pages_remote(struct mm_struct *mm, 2492 unsigned long start, unsigned long nr_pages, 2493 unsigned int gup_flags, struct page **pages, 2494 int *locked); 2495 2496/* 2497 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2498 */ 2499static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2500 unsigned long addr, 2501 int gup_flags, 2502 struct vm_area_struct **vmap) 2503{ 2504 struct page *page; 2505 struct vm_area_struct *vma; 2506 int got; 2507 2508 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2509 return ERR_PTR(-EINVAL); 2510 2511 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2512 2513 if (got < 0) 2514 return ERR_PTR(got); 2515 2516 vma = vma_lookup(mm, addr); 2517 if (WARN_ON_ONCE(!vma)) { 2518 put_page(page); 2519 return ERR_PTR(-EINVAL); 2520 } 2521 2522 *vmap = vma; 2523 return page; 2524} 2525 2526long get_user_pages(unsigned long start, unsigned long nr_pages, 2527 unsigned int gup_flags, struct page **pages); 2528long pin_user_pages(unsigned long start, unsigned long nr_pages, 2529 unsigned int gup_flags, struct page **pages); 2530long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2531 struct page **pages, unsigned int gup_flags); 2532long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2533 struct page **pages, unsigned int gup_flags); 2534long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2535 struct folio **folios, unsigned int max_folios, 2536 pgoff_t *offset); 2537int folio_add_pins(struct folio *folio, unsigned int pins); 2538 2539int get_user_pages_fast(unsigned long start, int nr_pages, 2540 unsigned int gup_flags, struct page **pages); 2541int pin_user_pages_fast(unsigned long start, int nr_pages, 2542 unsigned int gup_flags, struct page **pages); 2543void folio_add_pin(struct folio *folio); 2544 2545int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2546int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2547 struct task_struct *task, bool bypass_rlim); 2548 2549struct kvec; 2550struct page *get_dump_page(unsigned long addr); 2551 2552bool folio_mark_dirty(struct folio *folio); 2553bool folio_mark_dirty_lock(struct folio *folio); 2554bool set_page_dirty(struct page *page); 2555int set_page_dirty_lock(struct page *page); 2556 2557int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2558 2559/* 2560 * Flags used by change_protection(). For now we make it a bitmap so 2561 * that we can pass in multiple flags just like parameters. However 2562 * for now all the callers are only use one of the flags at the same 2563 * time. 2564 */ 2565/* 2566 * Whether we should manually check if we can map individual PTEs writable, 2567 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2568 * PTEs automatically in a writable mapping. 2569 */ 2570#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2571/* Whether this protection change is for NUMA hints */ 2572#define MM_CP_PROT_NUMA (1UL << 1) 2573/* Whether this change is for write protecting */ 2574#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2575#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2576#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2577 MM_CP_UFFD_WP_RESOLVE) 2578 2579bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2580 pte_t pte); 2581extern long change_protection(struct mmu_gather *tlb, 2582 struct vm_area_struct *vma, unsigned long start, 2583 unsigned long end, unsigned long cp_flags); 2584extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2585 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2586 unsigned long start, unsigned long end, unsigned long newflags); 2587 2588/* 2589 * doesn't attempt to fault and will return short. 2590 */ 2591int get_user_pages_fast_only(unsigned long start, int nr_pages, 2592 unsigned int gup_flags, struct page **pages); 2593 2594static inline bool get_user_page_fast_only(unsigned long addr, 2595 unsigned int gup_flags, struct page **pagep) 2596{ 2597 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2598} 2599/* 2600 * per-process(per-mm_struct) statistics. 2601 */ 2602static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2603{ 2604 return percpu_counter_read_positive(&mm->rss_stat[member]); 2605} 2606 2607void mm_trace_rss_stat(struct mm_struct *mm, int member); 2608 2609static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2610{ 2611 percpu_counter_add(&mm->rss_stat[member], value); 2612 2613 mm_trace_rss_stat(mm, member); 2614} 2615 2616static inline void inc_mm_counter(struct mm_struct *mm, int member) 2617{ 2618 percpu_counter_inc(&mm->rss_stat[member]); 2619 2620 mm_trace_rss_stat(mm, member); 2621} 2622 2623static inline void dec_mm_counter(struct mm_struct *mm, int member) 2624{ 2625 percpu_counter_dec(&mm->rss_stat[member]); 2626 2627 mm_trace_rss_stat(mm, member); 2628} 2629 2630/* Optimized variant when folio is already known not to be anon */ 2631static inline int mm_counter_file(struct folio *folio) 2632{ 2633 if (folio_test_swapbacked(folio)) 2634 return MM_SHMEMPAGES; 2635 return MM_FILEPAGES; 2636} 2637 2638static inline int mm_counter(struct folio *folio) 2639{ 2640 if (folio_test_anon(folio)) 2641 return MM_ANONPAGES; 2642 return mm_counter_file(folio); 2643} 2644 2645static inline unsigned long get_mm_rss(struct mm_struct *mm) 2646{ 2647 return get_mm_counter(mm, MM_FILEPAGES) + 2648 get_mm_counter(mm, MM_ANONPAGES) + 2649 get_mm_counter(mm, MM_SHMEMPAGES); 2650} 2651 2652static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2653{ 2654 return max(mm->hiwater_rss, get_mm_rss(mm)); 2655} 2656 2657static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2658{ 2659 return max(mm->hiwater_vm, mm->total_vm); 2660} 2661 2662static inline void update_hiwater_rss(struct mm_struct *mm) 2663{ 2664 unsigned long _rss = get_mm_rss(mm); 2665 2666 if ((mm)->hiwater_rss < _rss) 2667 (mm)->hiwater_rss = _rss; 2668} 2669 2670static inline void update_hiwater_vm(struct mm_struct *mm) 2671{ 2672 if (mm->hiwater_vm < mm->total_vm) 2673 mm->hiwater_vm = mm->total_vm; 2674} 2675 2676static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2677{ 2678 mm->hiwater_rss = get_mm_rss(mm); 2679} 2680 2681static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2682 struct mm_struct *mm) 2683{ 2684 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2685 2686 if (*maxrss < hiwater_rss) 2687 *maxrss = hiwater_rss; 2688} 2689 2690#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2691static inline int pte_special(pte_t pte) 2692{ 2693 return 0; 2694} 2695 2696static inline pte_t pte_mkspecial(pte_t pte) 2697{ 2698 return pte; 2699} 2700#endif 2701 2702#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2703static inline bool pmd_special(pmd_t pmd) 2704{ 2705 return false; 2706} 2707 2708static inline pmd_t pmd_mkspecial(pmd_t pmd) 2709{ 2710 return pmd; 2711} 2712#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2713 2714#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2715static inline bool pud_special(pud_t pud) 2716{ 2717 return false; 2718} 2719 2720static inline pud_t pud_mkspecial(pud_t pud) 2721{ 2722 return pud; 2723} 2724#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2725 2726#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2727static inline int pte_devmap(pte_t pte) 2728{ 2729 return 0; 2730} 2731#endif 2732 2733extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2734 spinlock_t **ptl); 2735static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2736 spinlock_t **ptl) 2737{ 2738 pte_t *ptep; 2739 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2740 return ptep; 2741} 2742 2743#ifdef __PAGETABLE_P4D_FOLDED 2744static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2745 unsigned long address) 2746{ 2747 return 0; 2748} 2749#else 2750int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2751#endif 2752 2753#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2754static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2755 unsigned long address) 2756{ 2757 return 0; 2758} 2759static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2760static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2761 2762#else 2763int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2764 2765static inline void mm_inc_nr_puds(struct mm_struct *mm) 2766{ 2767 if (mm_pud_folded(mm)) 2768 return; 2769 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2770} 2771 2772static inline void mm_dec_nr_puds(struct mm_struct *mm) 2773{ 2774 if (mm_pud_folded(mm)) 2775 return; 2776 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2777} 2778#endif 2779 2780#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2781static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2782 unsigned long address) 2783{ 2784 return 0; 2785} 2786 2787static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2788static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2789 2790#else 2791int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2792 2793static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2794{ 2795 if (mm_pmd_folded(mm)) 2796 return; 2797 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2798} 2799 2800static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2801{ 2802 if (mm_pmd_folded(mm)) 2803 return; 2804 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2805} 2806#endif 2807 2808#ifdef CONFIG_MMU 2809static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2810{ 2811 atomic_long_set(&mm->pgtables_bytes, 0); 2812} 2813 2814static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2815{ 2816 return atomic_long_read(&mm->pgtables_bytes); 2817} 2818 2819static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2820{ 2821 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2822} 2823 2824static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2825{ 2826 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2827} 2828#else 2829 2830static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2831static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2832{ 2833 return 0; 2834} 2835 2836static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2837static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2838#endif 2839 2840int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2841int __pte_alloc_kernel(pmd_t *pmd); 2842 2843#if defined(CONFIG_MMU) 2844 2845static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2846 unsigned long address) 2847{ 2848 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2849 NULL : p4d_offset(pgd, address); 2850} 2851 2852static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2853 unsigned long address) 2854{ 2855 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2856 NULL : pud_offset(p4d, address); 2857} 2858 2859static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2860{ 2861 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2862 NULL: pmd_offset(pud, address); 2863} 2864#endif /* CONFIG_MMU */ 2865 2866static inline struct ptdesc *virt_to_ptdesc(const void *x) 2867{ 2868 return page_ptdesc(virt_to_page(x)); 2869} 2870 2871static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2872{ 2873 return page_to_virt(ptdesc_page(pt)); 2874} 2875 2876static inline void *ptdesc_address(const struct ptdesc *pt) 2877{ 2878 return folio_address(ptdesc_folio(pt)); 2879} 2880 2881static inline bool pagetable_is_reserved(struct ptdesc *pt) 2882{ 2883 return folio_test_reserved(ptdesc_folio(pt)); 2884} 2885 2886/** 2887 * pagetable_alloc - Allocate pagetables 2888 * @gfp: GFP flags 2889 * @order: desired pagetable order 2890 * 2891 * pagetable_alloc allocates memory for page tables as well as a page table 2892 * descriptor to describe that memory. 2893 * 2894 * Return: The ptdesc describing the allocated page tables. 2895 */ 2896static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2897{ 2898 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2899 2900 return page_ptdesc(page); 2901} 2902#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2903 2904/** 2905 * pagetable_free - Free pagetables 2906 * @pt: The page table descriptor 2907 * 2908 * pagetable_free frees the memory of all page tables described by a page 2909 * table descriptor and the memory for the descriptor itself. 2910 */ 2911static inline void pagetable_free(struct ptdesc *pt) 2912{ 2913 struct page *page = ptdesc_page(pt); 2914 2915 __free_pages(page, compound_order(page)); 2916} 2917 2918#if defined(CONFIG_SPLIT_PTE_PTLOCKS) 2919#if ALLOC_SPLIT_PTLOCKS 2920void __init ptlock_cache_init(void); 2921bool ptlock_alloc(struct ptdesc *ptdesc); 2922void ptlock_free(struct ptdesc *ptdesc); 2923 2924static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2925{ 2926 return ptdesc->ptl; 2927} 2928#else /* ALLOC_SPLIT_PTLOCKS */ 2929static inline void ptlock_cache_init(void) 2930{ 2931} 2932 2933static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2934{ 2935 return true; 2936} 2937 2938static inline void ptlock_free(struct ptdesc *ptdesc) 2939{ 2940} 2941 2942static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2943{ 2944 return &ptdesc->ptl; 2945} 2946#endif /* ALLOC_SPLIT_PTLOCKS */ 2947 2948static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2949{ 2950 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2951} 2952 2953static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2954{ 2955 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2956 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2957 return ptlock_ptr(virt_to_ptdesc(pte)); 2958} 2959 2960static inline bool ptlock_init(struct ptdesc *ptdesc) 2961{ 2962 /* 2963 * prep_new_page() initialize page->private (and therefore page->ptl) 2964 * with 0. Make sure nobody took it in use in between. 2965 * 2966 * It can happen if arch try to use slab for page table allocation: 2967 * slab code uses page->slab_cache, which share storage with page->ptl. 2968 */ 2969 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2970 if (!ptlock_alloc(ptdesc)) 2971 return false; 2972 spin_lock_init(ptlock_ptr(ptdesc)); 2973 return true; 2974} 2975 2976#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2977/* 2978 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2979 */ 2980static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2981{ 2982 return &mm->page_table_lock; 2983} 2984static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2985{ 2986 return &mm->page_table_lock; 2987} 2988static inline void ptlock_cache_init(void) {} 2989static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2990static inline void ptlock_free(struct ptdesc *ptdesc) {} 2991#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2992 2993static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2994{ 2995 struct folio *folio = ptdesc_folio(ptdesc); 2996 2997 if (!ptlock_init(ptdesc)) 2998 return false; 2999 __folio_set_pgtable(folio); 3000 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3001 return true; 3002} 3003 3004static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 3005{ 3006 struct folio *folio = ptdesc_folio(ptdesc); 3007 3008 ptlock_free(ptdesc); 3009 __folio_clear_pgtable(folio); 3010 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3011} 3012 3013pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3014static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3015{ 3016 return __pte_offset_map(pmd, addr, NULL); 3017} 3018 3019pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3020 unsigned long addr, spinlock_t **ptlp); 3021static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3022 unsigned long addr, spinlock_t **ptlp) 3023{ 3024 pte_t *pte; 3025 3026 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 3027 return pte; 3028} 3029 3030pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3031 unsigned long addr, spinlock_t **ptlp); 3032pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3033 unsigned long addr, pmd_t *pmdvalp, 3034 spinlock_t **ptlp); 3035 3036#define pte_unmap_unlock(pte, ptl) do { \ 3037 spin_unlock(ptl); \ 3038 pte_unmap(pte); \ 3039} while (0) 3040 3041#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3042 3043#define pte_alloc_map(mm, pmd, address) \ 3044 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3045 3046#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3047 (pte_alloc(mm, pmd) ? \ 3048 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3049 3050#define pte_alloc_kernel(pmd, address) \ 3051 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3052 NULL: pte_offset_kernel(pmd, address)) 3053 3054#if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3055 3056static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3057{ 3058 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3059 return virt_to_page((void *)((unsigned long) pmd & mask)); 3060} 3061 3062static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3063{ 3064 return page_ptdesc(pmd_pgtable_page(pmd)); 3065} 3066 3067static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3068{ 3069 return ptlock_ptr(pmd_ptdesc(pmd)); 3070} 3071 3072static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3073{ 3074#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3075 ptdesc->pmd_huge_pte = NULL; 3076#endif 3077 return ptlock_init(ptdesc); 3078} 3079 3080static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3081{ 3082#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3083 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3084#endif 3085 ptlock_free(ptdesc); 3086} 3087 3088#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3089 3090#else 3091 3092static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3093{ 3094 return &mm->page_table_lock; 3095} 3096 3097static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3098static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3099 3100#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3101 3102#endif 3103 3104static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3105{ 3106 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3107 spin_lock(ptl); 3108 return ptl; 3109} 3110 3111static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3112{ 3113 struct folio *folio = ptdesc_folio(ptdesc); 3114 3115 if (!pmd_ptlock_init(ptdesc)) 3116 return false; 3117 __folio_set_pgtable(folio); 3118 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3119 return true; 3120} 3121 3122static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3123{ 3124 struct folio *folio = ptdesc_folio(ptdesc); 3125 3126 pmd_ptlock_free(ptdesc); 3127 __folio_clear_pgtable(folio); 3128 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3129} 3130 3131/* 3132 * No scalability reason to split PUD locks yet, but follow the same pattern 3133 * as the PMD locks to make it easier if we decide to. The VM should not be 3134 * considered ready to switch to split PUD locks yet; there may be places 3135 * which need to be converted from page_table_lock. 3136 */ 3137static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3138{ 3139 return &mm->page_table_lock; 3140} 3141 3142static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3143{ 3144 spinlock_t *ptl = pud_lockptr(mm, pud); 3145 3146 spin_lock(ptl); 3147 return ptl; 3148} 3149 3150static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3151{ 3152 struct folio *folio = ptdesc_folio(ptdesc); 3153 3154 __folio_set_pgtable(folio); 3155 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3156} 3157 3158static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3159{ 3160 struct folio *folio = ptdesc_folio(ptdesc); 3161 3162 __folio_clear_pgtable(folio); 3163 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3164} 3165 3166extern void __init pagecache_init(void); 3167extern void free_initmem(void); 3168 3169/* 3170 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3171 * into the buddy system. The freed pages will be poisoned with pattern 3172 * "poison" if it's within range [0, UCHAR_MAX]. 3173 * Return pages freed into the buddy system. 3174 */ 3175extern unsigned long free_reserved_area(void *start, void *end, 3176 int poison, const char *s); 3177 3178extern void adjust_managed_page_count(struct page *page, long count); 3179 3180extern void reserve_bootmem_region(phys_addr_t start, 3181 phys_addr_t end, int nid); 3182 3183/* Free the reserved page into the buddy system, so it gets managed. */ 3184void free_reserved_page(struct page *page); 3185#define free_highmem_page(page) free_reserved_page(page) 3186 3187static inline void mark_page_reserved(struct page *page) 3188{ 3189 SetPageReserved(page); 3190 adjust_managed_page_count(page, -1); 3191} 3192 3193static inline void free_reserved_ptdesc(struct ptdesc *pt) 3194{ 3195 free_reserved_page(ptdesc_page(pt)); 3196} 3197 3198/* 3199 * Default method to free all the __init memory into the buddy system. 3200 * The freed pages will be poisoned with pattern "poison" if it's within 3201 * range [0, UCHAR_MAX]. 3202 * Return pages freed into the buddy system. 3203 */ 3204static inline unsigned long free_initmem_default(int poison) 3205{ 3206 extern char __init_begin[], __init_end[]; 3207 3208 return free_reserved_area(&__init_begin, &__init_end, 3209 poison, "unused kernel image (initmem)"); 3210} 3211 3212static inline unsigned long get_num_physpages(void) 3213{ 3214 int nid; 3215 unsigned long phys_pages = 0; 3216 3217 for_each_online_node(nid) 3218 phys_pages += node_present_pages(nid); 3219 3220 return phys_pages; 3221} 3222 3223/* 3224 * Using memblock node mappings, an architecture may initialise its 3225 * zones, allocate the backing mem_map and account for memory holes in an 3226 * architecture independent manner. 3227 * 3228 * An architecture is expected to register range of page frames backed by 3229 * physical memory with memblock_add[_node]() before calling 3230 * free_area_init() passing in the PFN each zone ends at. At a basic 3231 * usage, an architecture is expected to do something like 3232 * 3233 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3234 * max_highmem_pfn}; 3235 * for_each_valid_physical_page_range() 3236 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3237 * free_area_init(max_zone_pfns); 3238 */ 3239void free_area_init(unsigned long *max_zone_pfn); 3240unsigned long node_map_pfn_alignment(void); 3241extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3242 unsigned long end_pfn); 3243extern void get_pfn_range_for_nid(unsigned int nid, 3244 unsigned long *start_pfn, unsigned long *end_pfn); 3245 3246#ifndef CONFIG_NUMA 3247static inline int early_pfn_to_nid(unsigned long pfn) 3248{ 3249 return 0; 3250} 3251#else 3252/* please see mm/page_alloc.c */ 3253extern int __meminit early_pfn_to_nid(unsigned long pfn); 3254#endif 3255 3256extern void mem_init(void); 3257extern void __init mmap_init(void); 3258 3259extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3260static inline void show_mem(void) 3261{ 3262 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3263} 3264extern long si_mem_available(void); 3265extern void si_meminfo(struct sysinfo * val); 3266extern void si_meminfo_node(struct sysinfo *val, int nid); 3267 3268extern __printf(3, 4) 3269void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3270 3271extern void setup_per_cpu_pageset(void); 3272 3273/* nommu.c */ 3274extern atomic_long_t mmap_pages_allocated; 3275extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3276 3277/* interval_tree.c */ 3278void vma_interval_tree_insert(struct vm_area_struct *node, 3279 struct rb_root_cached *root); 3280void vma_interval_tree_insert_after(struct vm_area_struct *node, 3281 struct vm_area_struct *prev, 3282 struct rb_root_cached *root); 3283void vma_interval_tree_remove(struct vm_area_struct *node, 3284 struct rb_root_cached *root); 3285struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3286 unsigned long start, unsigned long last); 3287struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3288 unsigned long start, unsigned long last); 3289 3290#define vma_interval_tree_foreach(vma, root, start, last) \ 3291 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3292 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3293 3294void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3295 struct rb_root_cached *root); 3296void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3297 struct rb_root_cached *root); 3298struct anon_vma_chain * 3299anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3300 unsigned long start, unsigned long last); 3301struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3302 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3303#ifdef CONFIG_DEBUG_VM_RB 3304void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3305#endif 3306 3307#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3308 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3309 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3310 3311/* mmap.c */ 3312extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3313extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3314extern void exit_mmap(struct mm_struct *); 3315int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3316 3317static inline int check_data_rlimit(unsigned long rlim, 3318 unsigned long new, 3319 unsigned long start, 3320 unsigned long end_data, 3321 unsigned long start_data) 3322{ 3323 if (rlim < RLIM_INFINITY) { 3324 if (((new - start) + (end_data - start_data)) > rlim) 3325 return -ENOSPC; 3326 } 3327 3328 return 0; 3329} 3330 3331extern int mm_take_all_locks(struct mm_struct *mm); 3332extern void mm_drop_all_locks(struct mm_struct *mm); 3333 3334extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3335extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3336extern struct file *get_mm_exe_file(struct mm_struct *mm); 3337extern struct file *get_task_exe_file(struct task_struct *task); 3338 3339extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3340extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3341 3342extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3343 const struct vm_special_mapping *sm); 3344extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3345 unsigned long addr, unsigned long len, 3346 unsigned long flags, 3347 const struct vm_special_mapping *spec); 3348 3349unsigned long randomize_stack_top(unsigned long stack_top); 3350unsigned long randomize_page(unsigned long start, unsigned long range); 3351 3352unsigned long 3353__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3354 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3355 3356static inline unsigned long 3357get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3358 unsigned long pgoff, unsigned long flags) 3359{ 3360 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3361} 3362 3363extern unsigned long mmap_region(struct file *file, unsigned long addr, 3364 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3365 struct list_head *uf); 3366extern unsigned long do_mmap(struct file *file, unsigned long addr, 3367 unsigned long len, unsigned long prot, unsigned long flags, 3368 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3369 struct list_head *uf); 3370extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3371 unsigned long start, size_t len, struct list_head *uf, 3372 bool unlock); 3373int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3374 struct mm_struct *mm, unsigned long start, 3375 unsigned long end, struct list_head *uf, bool unlock); 3376extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3377 struct list_head *uf); 3378extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3379 3380#ifdef CONFIG_MMU 3381extern int __mm_populate(unsigned long addr, unsigned long len, 3382 int ignore_errors); 3383static inline void mm_populate(unsigned long addr, unsigned long len) 3384{ 3385 /* Ignore errors */ 3386 (void) __mm_populate(addr, len, 1); 3387} 3388#else 3389static inline void mm_populate(unsigned long addr, unsigned long len) {} 3390#endif 3391 3392/* This takes the mm semaphore itself */ 3393extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3394extern int vm_munmap(unsigned long, size_t); 3395extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3396 unsigned long, unsigned long, 3397 unsigned long, unsigned long); 3398 3399struct vm_unmapped_area_info { 3400#define VM_UNMAPPED_AREA_TOPDOWN 1 3401 unsigned long flags; 3402 unsigned long length; 3403 unsigned long low_limit; 3404 unsigned long high_limit; 3405 unsigned long align_mask; 3406 unsigned long align_offset; 3407 unsigned long start_gap; 3408}; 3409 3410extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3411 3412/* truncate.c */ 3413extern void truncate_inode_pages(struct address_space *, loff_t); 3414extern void truncate_inode_pages_range(struct address_space *, 3415 loff_t lstart, loff_t lend); 3416extern void truncate_inode_pages_final(struct address_space *); 3417 3418/* generic vm_area_ops exported for stackable file systems */ 3419extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3420extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3421 pgoff_t start_pgoff, pgoff_t end_pgoff); 3422extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3423 3424extern unsigned long stack_guard_gap; 3425/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3426int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3427struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3428 3429/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3430int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3431 3432/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3433extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3434extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3435 struct vm_area_struct **pprev); 3436 3437/* 3438 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3439 * NULL if none. Assume start_addr < end_addr. 3440 */ 3441struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3442 unsigned long start_addr, unsigned long end_addr); 3443 3444/** 3445 * vma_lookup() - Find a VMA at a specific address 3446 * @mm: The process address space. 3447 * @addr: The user address. 3448 * 3449 * Return: The vm_area_struct at the given address, %NULL otherwise. 3450 */ 3451static inline 3452struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3453{ 3454 return mtree_load(&mm->mm_mt, addr); 3455} 3456 3457static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3458{ 3459 if (vma->vm_flags & VM_GROWSDOWN) 3460 return stack_guard_gap; 3461 3462 /* See reasoning around the VM_SHADOW_STACK definition */ 3463 if (vma->vm_flags & VM_SHADOW_STACK) 3464 return PAGE_SIZE; 3465 3466 return 0; 3467} 3468 3469static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3470{ 3471 unsigned long gap = stack_guard_start_gap(vma); 3472 unsigned long vm_start = vma->vm_start; 3473 3474 vm_start -= gap; 3475 if (vm_start > vma->vm_start) 3476 vm_start = 0; 3477 return vm_start; 3478} 3479 3480static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3481{ 3482 unsigned long vm_end = vma->vm_end; 3483 3484 if (vma->vm_flags & VM_GROWSUP) { 3485 vm_end += stack_guard_gap; 3486 if (vm_end < vma->vm_end) 3487 vm_end = -PAGE_SIZE; 3488 } 3489 return vm_end; 3490} 3491 3492static inline unsigned long vma_pages(struct vm_area_struct *vma) 3493{ 3494 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3495} 3496 3497/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3498static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3499 unsigned long vm_start, unsigned long vm_end) 3500{ 3501 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3502 3503 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3504 vma = NULL; 3505 3506 return vma; 3507} 3508 3509static inline bool range_in_vma(struct vm_area_struct *vma, 3510 unsigned long start, unsigned long end) 3511{ 3512 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3513} 3514 3515#ifdef CONFIG_MMU 3516pgprot_t vm_get_page_prot(unsigned long vm_flags); 3517void vma_set_page_prot(struct vm_area_struct *vma); 3518#else 3519static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3520{ 3521 return __pgprot(0); 3522} 3523static inline void vma_set_page_prot(struct vm_area_struct *vma) 3524{ 3525 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3526} 3527#endif 3528 3529void vma_set_file(struct vm_area_struct *vma, struct file *file); 3530 3531#ifdef CONFIG_NUMA_BALANCING 3532unsigned long change_prot_numa(struct vm_area_struct *vma, 3533 unsigned long start, unsigned long end); 3534#endif 3535 3536struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3537 unsigned long addr); 3538int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3539 unsigned long pfn, unsigned long size, pgprot_t); 3540int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3541 unsigned long pfn, unsigned long size, pgprot_t prot); 3542int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3543int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3544 struct page **pages, unsigned long *num); 3545int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3546 unsigned long num); 3547int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3548 unsigned long num); 3549vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3550 unsigned long pfn); 3551vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3552 unsigned long pfn, pgprot_t pgprot); 3553vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3554 pfn_t pfn); 3555vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3556 unsigned long addr, pfn_t pfn); 3557int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3558 3559static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3560 unsigned long addr, struct page *page) 3561{ 3562 int err = vm_insert_page(vma, addr, page); 3563 3564 if (err == -ENOMEM) 3565 return VM_FAULT_OOM; 3566 if (err < 0 && err != -EBUSY) 3567 return VM_FAULT_SIGBUS; 3568 3569 return VM_FAULT_NOPAGE; 3570} 3571 3572#ifndef io_remap_pfn_range 3573static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3574 unsigned long addr, unsigned long pfn, 3575 unsigned long size, pgprot_t prot) 3576{ 3577 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3578} 3579#endif 3580 3581static inline vm_fault_t vmf_error(int err) 3582{ 3583 if (err == -ENOMEM) 3584 return VM_FAULT_OOM; 3585 else if (err == -EHWPOISON) 3586 return VM_FAULT_HWPOISON; 3587 return VM_FAULT_SIGBUS; 3588} 3589 3590/* 3591 * Convert errno to return value for ->page_mkwrite() calls. 3592 * 3593 * This should eventually be merged with vmf_error() above, but will need a 3594 * careful audit of all vmf_error() callers. 3595 */ 3596static inline vm_fault_t vmf_fs_error(int err) 3597{ 3598 if (err == 0) 3599 return VM_FAULT_LOCKED; 3600 if (err == -EFAULT || err == -EAGAIN) 3601 return VM_FAULT_NOPAGE; 3602 if (err == -ENOMEM) 3603 return VM_FAULT_OOM; 3604 /* -ENOSPC, -EDQUOT, -EIO ... */ 3605 return VM_FAULT_SIGBUS; 3606} 3607 3608static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3609{ 3610 if (vm_fault & VM_FAULT_OOM) 3611 return -ENOMEM; 3612 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3613 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3614 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3615 return -EFAULT; 3616 return 0; 3617} 3618 3619/* 3620 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3621 * a (NUMA hinting) fault is required. 3622 */ 3623static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3624 unsigned int flags) 3625{ 3626 /* 3627 * If callers don't want to honor NUMA hinting faults, no need to 3628 * determine if we would actually have to trigger a NUMA hinting fault. 3629 */ 3630 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3631 return true; 3632 3633 /* 3634 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3635 * 3636 * Requiring a fault here even for inaccessible VMAs would mean that 3637 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3638 * refuses to process NUMA hinting faults in inaccessible VMAs. 3639 */ 3640 return !vma_is_accessible(vma); 3641} 3642 3643typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3644extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3645 unsigned long size, pte_fn_t fn, void *data); 3646extern int apply_to_existing_page_range(struct mm_struct *mm, 3647 unsigned long address, unsigned long size, 3648 pte_fn_t fn, void *data); 3649 3650#ifdef CONFIG_PAGE_POISONING 3651extern void __kernel_poison_pages(struct page *page, int numpages); 3652extern void __kernel_unpoison_pages(struct page *page, int numpages); 3653extern bool _page_poisoning_enabled_early; 3654DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3655static inline bool page_poisoning_enabled(void) 3656{ 3657 return _page_poisoning_enabled_early; 3658} 3659/* 3660 * For use in fast paths after init_mem_debugging() has run, or when a 3661 * false negative result is not harmful when called too early. 3662 */ 3663static inline bool page_poisoning_enabled_static(void) 3664{ 3665 return static_branch_unlikely(&_page_poisoning_enabled); 3666} 3667static inline void kernel_poison_pages(struct page *page, int numpages) 3668{ 3669 if (page_poisoning_enabled_static()) 3670 __kernel_poison_pages(page, numpages); 3671} 3672static inline void kernel_unpoison_pages(struct page *page, int numpages) 3673{ 3674 if (page_poisoning_enabled_static()) 3675 __kernel_unpoison_pages(page, numpages); 3676} 3677#else 3678static inline bool page_poisoning_enabled(void) { return false; } 3679static inline bool page_poisoning_enabled_static(void) { return false; } 3680static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3681static inline void kernel_poison_pages(struct page *page, int numpages) { } 3682static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3683#endif 3684 3685DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3686static inline bool want_init_on_alloc(gfp_t flags) 3687{ 3688 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3689 &init_on_alloc)) 3690 return true; 3691 return flags & __GFP_ZERO; 3692} 3693 3694DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3695static inline bool want_init_on_free(void) 3696{ 3697 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3698 &init_on_free); 3699} 3700 3701extern bool _debug_pagealloc_enabled_early; 3702DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3703 3704static inline bool debug_pagealloc_enabled(void) 3705{ 3706 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3707 _debug_pagealloc_enabled_early; 3708} 3709 3710/* 3711 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3712 * or when a false negative result is not harmful when called too early. 3713 */ 3714static inline bool debug_pagealloc_enabled_static(void) 3715{ 3716 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3717 return false; 3718 3719 return static_branch_unlikely(&_debug_pagealloc_enabled); 3720} 3721 3722/* 3723 * To support DEBUG_PAGEALLOC architecture must ensure that 3724 * __kernel_map_pages() never fails 3725 */ 3726extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3727#ifdef CONFIG_DEBUG_PAGEALLOC 3728static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3729{ 3730 if (debug_pagealloc_enabled_static()) 3731 __kernel_map_pages(page, numpages, 1); 3732} 3733 3734static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3735{ 3736 if (debug_pagealloc_enabled_static()) 3737 __kernel_map_pages(page, numpages, 0); 3738} 3739 3740extern unsigned int _debug_guardpage_minorder; 3741DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3742 3743static inline unsigned int debug_guardpage_minorder(void) 3744{ 3745 return _debug_guardpage_minorder; 3746} 3747 3748static inline bool debug_guardpage_enabled(void) 3749{ 3750 return static_branch_unlikely(&_debug_guardpage_enabled); 3751} 3752 3753static inline bool page_is_guard(struct page *page) 3754{ 3755 if (!debug_guardpage_enabled()) 3756 return false; 3757 3758 return PageGuard(page); 3759} 3760 3761bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3762static inline bool set_page_guard(struct zone *zone, struct page *page, 3763 unsigned int order) 3764{ 3765 if (!debug_guardpage_enabled()) 3766 return false; 3767 return __set_page_guard(zone, page, order); 3768} 3769 3770void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3771static inline void clear_page_guard(struct zone *zone, struct page *page, 3772 unsigned int order) 3773{ 3774 if (!debug_guardpage_enabled()) 3775 return; 3776 __clear_page_guard(zone, page, order); 3777} 3778 3779#else /* CONFIG_DEBUG_PAGEALLOC */ 3780static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3781static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3782static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3783static inline bool debug_guardpage_enabled(void) { return false; } 3784static inline bool page_is_guard(struct page *page) { return false; } 3785static inline bool set_page_guard(struct zone *zone, struct page *page, 3786 unsigned int order) { return false; } 3787static inline void clear_page_guard(struct zone *zone, struct page *page, 3788 unsigned int order) {} 3789#endif /* CONFIG_DEBUG_PAGEALLOC */ 3790 3791#ifdef __HAVE_ARCH_GATE_AREA 3792extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3793extern int in_gate_area_no_mm(unsigned long addr); 3794extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3795#else 3796static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3797{ 3798 return NULL; 3799} 3800static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3801static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3802{ 3803 return 0; 3804} 3805#endif /* __HAVE_ARCH_GATE_AREA */ 3806 3807extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3808 3809#ifdef CONFIG_SYSCTL 3810extern int sysctl_drop_caches; 3811int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3812 loff_t *); 3813#endif 3814 3815void drop_slab(void); 3816 3817#ifndef CONFIG_MMU 3818#define randomize_va_space 0 3819#else 3820extern int randomize_va_space; 3821#endif 3822 3823const char * arch_vma_name(struct vm_area_struct *vma); 3824#ifdef CONFIG_MMU 3825void print_vma_addr(char *prefix, unsigned long rip); 3826#else 3827static inline void print_vma_addr(char *prefix, unsigned long rip) 3828{ 3829} 3830#endif 3831 3832void *sparse_buffer_alloc(unsigned long size); 3833struct page * __populate_section_memmap(unsigned long pfn, 3834 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3835 struct dev_pagemap *pgmap); 3836pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3837p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3838pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3839pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3840pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3841 struct vmem_altmap *altmap, struct page *reuse); 3842void *vmemmap_alloc_block(unsigned long size, int node); 3843struct vmem_altmap; 3844void *vmemmap_alloc_block_buf(unsigned long size, int node, 3845 struct vmem_altmap *altmap); 3846void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3847void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3848 unsigned long addr, unsigned long next); 3849int vmemmap_check_pmd(pmd_t *pmd, int node, 3850 unsigned long addr, unsigned long next); 3851int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3852 int node, struct vmem_altmap *altmap); 3853int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3854 int node, struct vmem_altmap *altmap); 3855int vmemmap_populate(unsigned long start, unsigned long end, int node, 3856 struct vmem_altmap *altmap); 3857void vmemmap_populate_print_last(void); 3858#ifdef CONFIG_MEMORY_HOTPLUG 3859void vmemmap_free(unsigned long start, unsigned long end, 3860 struct vmem_altmap *altmap); 3861#endif 3862 3863#ifdef CONFIG_SPARSEMEM_VMEMMAP 3864static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3865{ 3866 /* number of pfns from base where pfn_to_page() is valid */ 3867 if (altmap) 3868 return altmap->reserve + altmap->free; 3869 return 0; 3870} 3871 3872static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3873 unsigned long nr_pfns) 3874{ 3875 altmap->alloc -= nr_pfns; 3876} 3877#else 3878static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3879{ 3880 return 0; 3881} 3882 3883static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3884 unsigned long nr_pfns) 3885{ 3886} 3887#endif 3888 3889#define VMEMMAP_RESERVE_NR 2 3890#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3891static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3892 struct dev_pagemap *pgmap) 3893{ 3894 unsigned long nr_pages; 3895 unsigned long nr_vmemmap_pages; 3896 3897 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3898 return false; 3899 3900 nr_pages = pgmap_vmemmap_nr(pgmap); 3901 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3902 /* 3903 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3904 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3905 */ 3906 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3907} 3908/* 3909 * If we don't have an architecture override, use the generic rule 3910 */ 3911#ifndef vmemmap_can_optimize 3912#define vmemmap_can_optimize __vmemmap_can_optimize 3913#endif 3914 3915#else 3916static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3917 struct dev_pagemap *pgmap) 3918{ 3919 return false; 3920} 3921#endif 3922 3923void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3924 unsigned long nr_pages); 3925 3926enum mf_flags { 3927 MF_COUNT_INCREASED = 1 << 0, 3928 MF_ACTION_REQUIRED = 1 << 1, 3929 MF_MUST_KILL = 1 << 2, 3930 MF_SOFT_OFFLINE = 1 << 3, 3931 MF_UNPOISON = 1 << 4, 3932 MF_SW_SIMULATED = 1 << 5, 3933 MF_NO_RETRY = 1 << 6, 3934 MF_MEM_PRE_REMOVE = 1 << 7, 3935}; 3936int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3937 unsigned long count, int mf_flags); 3938extern int memory_failure(unsigned long pfn, int flags); 3939extern void memory_failure_queue_kick(int cpu); 3940extern int unpoison_memory(unsigned long pfn); 3941extern atomic_long_t num_poisoned_pages __read_mostly; 3942extern int soft_offline_page(unsigned long pfn, int flags); 3943#ifdef CONFIG_MEMORY_FAILURE 3944/* 3945 * Sysfs entries for memory failure handling statistics. 3946 */ 3947extern const struct attribute_group memory_failure_attr_group; 3948extern void memory_failure_queue(unsigned long pfn, int flags); 3949extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3950 bool *migratable_cleared); 3951void num_poisoned_pages_inc(unsigned long pfn); 3952void num_poisoned_pages_sub(unsigned long pfn, long i); 3953#else 3954static inline void memory_failure_queue(unsigned long pfn, int flags) 3955{ 3956} 3957 3958static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3959 bool *migratable_cleared) 3960{ 3961 return 0; 3962} 3963 3964static inline void num_poisoned_pages_inc(unsigned long pfn) 3965{ 3966} 3967 3968static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3969{ 3970} 3971#endif 3972 3973#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3974extern void memblk_nr_poison_inc(unsigned long pfn); 3975extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3976#else 3977static inline void memblk_nr_poison_inc(unsigned long pfn) 3978{ 3979} 3980 3981static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3982{ 3983} 3984#endif 3985 3986#ifndef arch_memory_failure 3987static inline int arch_memory_failure(unsigned long pfn, int flags) 3988{ 3989 return -ENXIO; 3990} 3991#endif 3992 3993#ifndef arch_is_platform_page 3994static inline bool arch_is_platform_page(u64 paddr) 3995{ 3996 return false; 3997} 3998#endif 3999 4000/* 4001 * Error handlers for various types of pages. 4002 */ 4003enum mf_result { 4004 MF_IGNORED, /* Error: cannot be handled */ 4005 MF_FAILED, /* Error: handling failed */ 4006 MF_DELAYED, /* Will be handled later */ 4007 MF_RECOVERED, /* Successfully recovered */ 4008}; 4009 4010enum mf_action_page_type { 4011 MF_MSG_KERNEL, 4012 MF_MSG_KERNEL_HIGH_ORDER, 4013 MF_MSG_DIFFERENT_COMPOUND, 4014 MF_MSG_HUGE, 4015 MF_MSG_FREE_HUGE, 4016 MF_MSG_GET_HWPOISON, 4017 MF_MSG_UNMAP_FAILED, 4018 MF_MSG_DIRTY_SWAPCACHE, 4019 MF_MSG_CLEAN_SWAPCACHE, 4020 MF_MSG_DIRTY_MLOCKED_LRU, 4021 MF_MSG_CLEAN_MLOCKED_LRU, 4022 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4023 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4024 MF_MSG_DIRTY_LRU, 4025 MF_MSG_CLEAN_LRU, 4026 MF_MSG_TRUNCATED_LRU, 4027 MF_MSG_BUDDY, 4028 MF_MSG_DAX, 4029 MF_MSG_UNSPLIT_THP, 4030 MF_MSG_ALREADY_POISONED, 4031 MF_MSG_UNKNOWN, 4032}; 4033 4034#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4035void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4036int copy_user_large_folio(struct folio *dst, struct folio *src, 4037 unsigned long addr_hint, 4038 struct vm_area_struct *vma); 4039long copy_folio_from_user(struct folio *dst_folio, 4040 const void __user *usr_src, 4041 bool allow_pagefault); 4042 4043/** 4044 * vma_is_special_huge - Are transhuge page-table entries considered special? 4045 * @vma: Pointer to the struct vm_area_struct to consider 4046 * 4047 * Whether transhuge page-table entries are considered "special" following 4048 * the definition in vm_normal_page(). 4049 * 4050 * Return: true if transhuge page-table entries should be considered special, 4051 * false otherwise. 4052 */ 4053static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4054{ 4055 return vma_is_dax(vma) || (vma->vm_file && 4056 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4057} 4058 4059#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4060 4061#if MAX_NUMNODES > 1 4062void __init setup_nr_node_ids(void); 4063#else 4064static inline void setup_nr_node_ids(void) {} 4065#endif 4066 4067extern int memcmp_pages(struct page *page1, struct page *page2); 4068 4069static inline int pages_identical(struct page *page1, struct page *page2) 4070{ 4071 return !memcmp_pages(page1, page2); 4072} 4073 4074#ifdef CONFIG_MAPPING_DIRTY_HELPERS 4075unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4076 pgoff_t first_index, pgoff_t nr, 4077 pgoff_t bitmap_pgoff, 4078 unsigned long *bitmap, 4079 pgoff_t *start, 4080 pgoff_t *end); 4081 4082unsigned long wp_shared_mapping_range(struct address_space *mapping, 4083 pgoff_t first_index, pgoff_t nr); 4084#endif 4085 4086extern int sysctl_nr_trim_pages; 4087 4088#ifdef CONFIG_PRINTK 4089void mem_dump_obj(void *object); 4090#else 4091static inline void mem_dump_obj(void *object) {} 4092#endif 4093 4094/** 4095 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4096 * handle them. 4097 * @seals: the seals to check 4098 * @vma: the vma to operate on 4099 * 4100 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4101 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4102 */ 4103static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4104{ 4105 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4106 /* 4107 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4108 * write seals are active. 4109 */ 4110 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4111 return -EPERM; 4112 4113 /* 4114 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4115 * MAP_SHARED and read-only, take care to not allow mprotect to 4116 * revert protections on such mappings. Do this only for shared 4117 * mappings. For private mappings, don't need to mask 4118 * VM_MAYWRITE as we still want them to be COW-writable. 4119 */ 4120 if (vma->vm_flags & VM_SHARED) 4121 vm_flags_clear(vma, VM_MAYWRITE); 4122 } 4123 4124 return 0; 4125} 4126 4127#ifdef CONFIG_ANON_VMA_NAME 4128int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4129 unsigned long len_in, 4130 struct anon_vma_name *anon_name); 4131#else 4132static inline int 4133madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4134 unsigned long len_in, struct anon_vma_name *anon_name) { 4135 return 0; 4136} 4137#endif 4138 4139#ifdef CONFIG_UNACCEPTED_MEMORY 4140 4141bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4142void accept_memory(phys_addr_t start, unsigned long size); 4143 4144#else 4145 4146static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4147 unsigned long size) 4148{ 4149 return false; 4150} 4151 4152static inline void accept_memory(phys_addr_t start, unsigned long size) 4153{ 4154} 4155 4156#endif 4157 4158static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4159{ 4160 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4161} 4162 4163void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4164void vma_pgtable_walk_end(struct vm_area_struct *vma); 4165 4166int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4167 4168#ifdef CONFIG_64BIT 4169int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4170#else 4171static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4172{ 4173 /* noop on 32 bit */ 4174 return 0; 4175} 4176#endif 4177 4178int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4179int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4180int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4181 4182#endif /* _LINUX_MM_H */