at v6.12 55 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT) 10 11#ifndef __ASSEMBLY__ 12#ifdef CONFIG_MMU 13 14#include <linux/mm_types.h> 15#include <linux/bug.h> 16#include <linux/errno.h> 17#include <asm-generic/pgtable_uffd.h> 18#include <linux/page_table_check.h> 19 20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 23#endif 24 25/* 26 * On almost all architectures and configurations, 0 can be used as the 27 * upper ceiling to free_pgtables(): on many architectures it has the same 28 * effect as using TASK_SIZE. However, there is one configuration which 29 * must impose a more careful limit, to avoid freeing kernel pgtables. 30 */ 31#ifndef USER_PGTABLES_CEILING 32#define USER_PGTABLES_CEILING 0UL 33#endif 34 35/* 36 * This defines the first usable user address. Platforms 37 * can override its value with custom FIRST_USER_ADDRESS 38 * defined in their respective <asm/pgtable.h>. 39 */ 40#ifndef FIRST_USER_ADDRESS 41#define FIRST_USER_ADDRESS 0UL 42#endif 43 44/* 45 * This defines the generic helper for accessing PMD page 46 * table page. Although platforms can still override this 47 * via their respective <asm/pgtable.h>. 48 */ 49#ifndef pmd_pgtable 50#define pmd_pgtable(pmd) pmd_page(pmd) 51#endif 52 53#define pmd_folio(pmd) page_folio(pmd_page(pmd)) 54 55/* 56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 57 * 58 * The pXx_index() functions return the index of the entry in the page 59 * table page which would control the given virtual address 60 * 61 * As these functions may be used by the same code for different levels of 62 * the page table folding, they are always available, regardless of 63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 64 * because in such cases PTRS_PER_PxD equals 1. 65 */ 66 67static inline unsigned long pte_index(unsigned long address) 68{ 69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 70} 71 72#ifndef pmd_index 73static inline unsigned long pmd_index(unsigned long address) 74{ 75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 76} 77#define pmd_index pmd_index 78#endif 79 80#ifndef pud_index 81static inline unsigned long pud_index(unsigned long address) 82{ 83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 84} 85#define pud_index pud_index 86#endif 87 88#ifndef pgd_index 89/* Must be a compile-time constant, so implement it as a macro */ 90#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 91#endif 92 93#ifndef pte_offset_kernel 94static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 95{ 96 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 97} 98#define pte_offset_kernel pte_offset_kernel 99#endif 100 101#ifdef CONFIG_HIGHPTE 102#define __pte_map(pmd, address) \ 103 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address))) 104#define pte_unmap(pte) do { \ 105 kunmap_local((pte)); \ 106 rcu_read_unlock(); \ 107} while (0) 108#else 109static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address) 110{ 111 return pte_offset_kernel(pmd, address); 112} 113static inline void pte_unmap(pte_t *pte) 114{ 115 rcu_read_unlock(); 116} 117#endif 118 119void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable); 120 121/* Find an entry in the second-level page table.. */ 122#ifndef pmd_offset 123static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 124{ 125 return pud_pgtable(*pud) + pmd_index(address); 126} 127#define pmd_offset pmd_offset 128#endif 129 130#ifndef pud_offset 131static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 132{ 133 return p4d_pgtable(*p4d) + pud_index(address); 134} 135#define pud_offset pud_offset 136#endif 137 138static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 139{ 140 return (pgd + pgd_index(address)); 141}; 142 143/* 144 * a shortcut to get a pgd_t in a given mm 145 */ 146#ifndef pgd_offset 147#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 148#endif 149 150/* 151 * a shortcut which implies the use of the kernel's pgd, instead 152 * of a process's 153 */ 154#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 155 156/* 157 * In many cases it is known that a virtual address is mapped at PMD or PTE 158 * level, so instead of traversing all the page table levels, we can get a 159 * pointer to the PMD entry in user or kernel page table or translate a virtual 160 * address to the pointer in the PTE in the kernel page tables with simple 161 * helpers. 162 */ 163static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 164{ 165 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 166} 167 168static inline pmd_t *pmd_off_k(unsigned long va) 169{ 170 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 171} 172 173static inline pte_t *virt_to_kpte(unsigned long vaddr) 174{ 175 pmd_t *pmd = pmd_off_k(vaddr); 176 177 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 178} 179 180#ifndef pmd_young 181static inline int pmd_young(pmd_t pmd) 182{ 183 return 0; 184} 185#endif 186 187#ifndef pmd_dirty 188static inline int pmd_dirty(pmd_t pmd) 189{ 190 return 0; 191} 192#endif 193 194/* 195 * A facility to provide lazy MMU batching. This allows PTE updates and 196 * page invalidations to be delayed until a call to leave lazy MMU mode 197 * is issued. Some architectures may benefit from doing this, and it is 198 * beneficial for both shadow and direct mode hypervisors, which may batch 199 * the PTE updates which happen during this window. Note that using this 200 * interface requires that read hazards be removed from the code. A read 201 * hazard could result in the direct mode hypervisor case, since the actual 202 * write to the page tables may not yet have taken place, so reads though 203 * a raw PTE pointer after it has been modified are not guaranteed to be 204 * up to date. This mode can only be entered and left under the protection of 205 * the page table locks for all page tables which may be modified. In the UP 206 * case, this is required so that preemption is disabled, and in the SMP case, 207 * it must synchronize the delayed page table writes properly on other CPUs. 208 */ 209#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 210#define arch_enter_lazy_mmu_mode() do {} while (0) 211#define arch_leave_lazy_mmu_mode() do {} while (0) 212#define arch_flush_lazy_mmu_mode() do {} while (0) 213#endif 214 215#ifndef pte_batch_hint 216/** 217 * pte_batch_hint - Number of pages that can be added to batch without scanning. 218 * @ptep: Page table pointer for the entry. 219 * @pte: Page table entry. 220 * 221 * Some architectures know that a set of contiguous ptes all map the same 222 * contiguous memory with the same permissions. In this case, it can provide a 223 * hint to aid pte batching without the core code needing to scan every pte. 224 * 225 * An architecture implementation may ignore the PTE accessed state. Further, 226 * the dirty state must apply atomically to all the PTEs described by the hint. 227 * 228 * May be overridden by the architecture, else pte_batch_hint is always 1. 229 */ 230static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) 231{ 232 return 1; 233} 234#endif 235 236#ifndef pte_advance_pfn 237static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) 238{ 239 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); 240} 241#endif 242 243#define pte_next_pfn(pte) pte_advance_pfn(pte, 1) 244 245#ifndef set_ptes 246/** 247 * set_ptes - Map consecutive pages to a contiguous range of addresses. 248 * @mm: Address space to map the pages into. 249 * @addr: Address to map the first page at. 250 * @ptep: Page table pointer for the first entry. 251 * @pte: Page table entry for the first page. 252 * @nr: Number of pages to map. 253 * 254 * When nr==1, initial state of pte may be present or not present, and new state 255 * may be present or not present. When nr>1, initial state of all ptes must be 256 * not present, and new state must be present. 257 * 258 * May be overridden by the architecture, or the architecture can define 259 * set_pte() and PFN_PTE_SHIFT. 260 * 261 * Context: The caller holds the page table lock. The pages all belong 262 * to the same folio. The PTEs are all in the same PMD. 263 */ 264static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 265 pte_t *ptep, pte_t pte, unsigned int nr) 266{ 267 page_table_check_ptes_set(mm, ptep, pte, nr); 268 269 arch_enter_lazy_mmu_mode(); 270 for (;;) { 271 set_pte(ptep, pte); 272 if (--nr == 0) 273 break; 274 ptep++; 275 pte = pte_next_pfn(pte); 276 } 277 arch_leave_lazy_mmu_mode(); 278} 279#endif 280#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1) 281 282#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 283extern int ptep_set_access_flags(struct vm_area_struct *vma, 284 unsigned long address, pte_t *ptep, 285 pte_t entry, int dirty); 286#endif 287 288#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 289#ifdef CONFIG_TRANSPARENT_HUGEPAGE 290extern int pmdp_set_access_flags(struct vm_area_struct *vma, 291 unsigned long address, pmd_t *pmdp, 292 pmd_t entry, int dirty); 293extern int pudp_set_access_flags(struct vm_area_struct *vma, 294 unsigned long address, pud_t *pudp, 295 pud_t entry, int dirty); 296#else 297static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 298 unsigned long address, pmd_t *pmdp, 299 pmd_t entry, int dirty) 300{ 301 BUILD_BUG(); 302 return 0; 303} 304static inline int pudp_set_access_flags(struct vm_area_struct *vma, 305 unsigned long address, pud_t *pudp, 306 pud_t entry, int dirty) 307{ 308 BUILD_BUG(); 309 return 0; 310} 311#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 312#endif 313 314#ifndef ptep_get 315static inline pte_t ptep_get(pte_t *ptep) 316{ 317 return READ_ONCE(*ptep); 318} 319#endif 320 321#ifndef pmdp_get 322static inline pmd_t pmdp_get(pmd_t *pmdp) 323{ 324 return READ_ONCE(*pmdp); 325} 326#endif 327 328#ifndef pudp_get 329static inline pud_t pudp_get(pud_t *pudp) 330{ 331 return READ_ONCE(*pudp); 332} 333#endif 334 335#ifndef p4dp_get 336static inline p4d_t p4dp_get(p4d_t *p4dp) 337{ 338 return READ_ONCE(*p4dp); 339} 340#endif 341 342#ifndef pgdp_get 343static inline pgd_t pgdp_get(pgd_t *pgdp) 344{ 345 return READ_ONCE(*pgdp); 346} 347#endif 348 349#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 350static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 351 unsigned long address, 352 pte_t *ptep) 353{ 354 pte_t pte = ptep_get(ptep); 355 int r = 1; 356 if (!pte_young(pte)) 357 r = 0; 358 else 359 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 360 return r; 361} 362#endif 363 364#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 365#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 366static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 367 unsigned long address, 368 pmd_t *pmdp) 369{ 370 pmd_t pmd = *pmdp; 371 int r = 1; 372 if (!pmd_young(pmd)) 373 r = 0; 374 else 375 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 376 return r; 377} 378#else 379static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 380 unsigned long address, 381 pmd_t *pmdp) 382{ 383 BUILD_BUG(); 384 return 0; 385} 386#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ 387#endif 388 389#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 390int ptep_clear_flush_young(struct vm_area_struct *vma, 391 unsigned long address, pte_t *ptep); 392#endif 393 394#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 395#ifdef CONFIG_TRANSPARENT_HUGEPAGE 396extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 397 unsigned long address, pmd_t *pmdp); 398#else 399/* 400 * Despite relevant to THP only, this API is called from generic rmap code 401 * under PageTransHuge(), hence needs a dummy implementation for !THP 402 */ 403static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 404 unsigned long address, pmd_t *pmdp) 405{ 406 BUILD_BUG(); 407 return 0; 408} 409#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 410#endif 411 412#ifndef arch_has_hw_nonleaf_pmd_young 413/* 414 * Return whether the accessed bit in non-leaf PMD entries is supported on the 415 * local CPU. 416 */ 417static inline bool arch_has_hw_nonleaf_pmd_young(void) 418{ 419 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); 420} 421#endif 422 423#ifndef arch_has_hw_pte_young 424/* 425 * Return whether the accessed bit is supported on the local CPU. 426 * 427 * This stub assumes accessing through an old PTE triggers a page fault. 428 * Architectures that automatically set the access bit should overwrite it. 429 */ 430static inline bool arch_has_hw_pte_young(void) 431{ 432 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG); 433} 434#endif 435 436#ifndef arch_check_zapped_pte 437static inline void arch_check_zapped_pte(struct vm_area_struct *vma, 438 pte_t pte) 439{ 440} 441#endif 442 443#ifndef arch_check_zapped_pmd 444static inline void arch_check_zapped_pmd(struct vm_area_struct *vma, 445 pmd_t pmd) 446{ 447} 448#endif 449 450#ifndef arch_check_zapped_pud 451static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud) 452{ 453} 454#endif 455 456#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 457static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 458 unsigned long address, 459 pte_t *ptep) 460{ 461 pte_t pte = ptep_get(ptep); 462 pte_clear(mm, address, ptep); 463 page_table_check_pte_clear(mm, pte); 464 return pte; 465} 466#endif 467 468#ifndef clear_young_dirty_ptes 469/** 470 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the 471 * same folio as old/clean. 472 * @mm: Address space the pages are mapped into. 473 * @addr: Address the first page is mapped at. 474 * @ptep: Page table pointer for the first entry. 475 * @nr: Number of entries to mark old/clean. 476 * @flags: Flags to modify the PTE batch semantics. 477 * 478 * May be overridden by the architecture; otherwise, implemented by 479 * get_and_clear/modify/set for each pte in the range. 480 * 481 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 482 * some PTEs might be write-protected. 483 * 484 * Context: The caller holds the page table lock. The PTEs map consecutive 485 * pages that belong to the same folio. The PTEs are all in the same PMD. 486 */ 487static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, 488 unsigned long addr, pte_t *ptep, 489 unsigned int nr, cydp_t flags) 490{ 491 pte_t pte; 492 493 for (;;) { 494 if (flags == CYDP_CLEAR_YOUNG) 495 ptep_test_and_clear_young(vma, addr, ptep); 496 else { 497 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep); 498 if (flags & CYDP_CLEAR_YOUNG) 499 pte = pte_mkold(pte); 500 if (flags & CYDP_CLEAR_DIRTY) 501 pte = pte_mkclean(pte); 502 set_pte_at(vma->vm_mm, addr, ptep, pte); 503 } 504 if (--nr == 0) 505 break; 506 ptep++; 507 addr += PAGE_SIZE; 508 } 509} 510#endif 511 512static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, 513 pte_t *ptep) 514{ 515 ptep_get_and_clear(mm, addr, ptep); 516} 517 518#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH 519/* 520 * For walking the pagetables without holding any locks. Some architectures 521 * (eg x86-32 PAE) cannot load the entries atomically without using expensive 522 * instructions. We are guaranteed that a PTE will only either go from not 523 * present to present, or present to not present -- it will not switch to a 524 * completely different present page without a TLB flush inbetween; which we 525 * are blocking by holding interrupts off. 526 * 527 * Setting ptes from not present to present goes: 528 * 529 * ptep->pte_high = h; 530 * smp_wmb(); 531 * ptep->pte_low = l; 532 * 533 * And present to not present goes: 534 * 535 * ptep->pte_low = 0; 536 * smp_wmb(); 537 * ptep->pte_high = 0; 538 * 539 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 540 * We load pte_high *after* loading pte_low, which ensures we don't see an older 541 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 542 * picked up a changed pte high. We might have gotten rubbish values from 543 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 544 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 545 * operates on present ptes we're safe. 546 */ 547static inline pte_t ptep_get_lockless(pte_t *ptep) 548{ 549 pte_t pte; 550 551 do { 552 pte.pte_low = ptep->pte_low; 553 smp_rmb(); 554 pte.pte_high = ptep->pte_high; 555 smp_rmb(); 556 } while (unlikely(pte.pte_low != ptep->pte_low)); 557 558 return pte; 559} 560#define ptep_get_lockless ptep_get_lockless 561 562#if CONFIG_PGTABLE_LEVELS > 2 563static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 564{ 565 pmd_t pmd; 566 567 do { 568 pmd.pmd_low = pmdp->pmd_low; 569 smp_rmb(); 570 pmd.pmd_high = pmdp->pmd_high; 571 smp_rmb(); 572 } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); 573 574 return pmd; 575} 576#define pmdp_get_lockless pmdp_get_lockless 577#define pmdp_get_lockless_sync() tlb_remove_table_sync_one() 578#endif /* CONFIG_PGTABLE_LEVELS > 2 */ 579#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ 580 581/* 582 * We require that the PTE can be read atomically. 583 */ 584#ifndef ptep_get_lockless 585static inline pte_t ptep_get_lockless(pte_t *ptep) 586{ 587 return ptep_get(ptep); 588} 589#endif 590 591#ifndef pmdp_get_lockless 592static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 593{ 594 return pmdp_get(pmdp); 595} 596static inline void pmdp_get_lockless_sync(void) 597{ 598} 599#endif 600 601#ifdef CONFIG_TRANSPARENT_HUGEPAGE 602#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 603static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 604 unsigned long address, 605 pmd_t *pmdp) 606{ 607 pmd_t pmd = *pmdp; 608 609 pmd_clear(pmdp); 610 page_table_check_pmd_clear(mm, pmd); 611 612 return pmd; 613} 614#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 615#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 616static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 617 unsigned long address, 618 pud_t *pudp) 619{ 620 pud_t pud = *pudp; 621 622 pud_clear(pudp); 623 page_table_check_pud_clear(mm, pud); 624 625 return pud; 626} 627#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 628#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 629 630#ifdef CONFIG_TRANSPARENT_HUGEPAGE 631#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 632static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 633 unsigned long address, pmd_t *pmdp, 634 int full) 635{ 636 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 637} 638#endif 639 640#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 641static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 642 unsigned long address, pud_t *pudp, 643 int full) 644{ 645 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp); 646} 647#endif 648#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 649 650#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 651static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 652 unsigned long address, pte_t *ptep, 653 int full) 654{ 655 return ptep_get_and_clear(mm, address, ptep); 656} 657#endif 658 659#ifndef get_and_clear_full_ptes 660/** 661 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of 662 * the same folio, collecting dirty/accessed bits. 663 * @mm: Address space the pages are mapped into. 664 * @addr: Address the first page is mapped at. 665 * @ptep: Page table pointer for the first entry. 666 * @nr: Number of entries to clear. 667 * @full: Whether we are clearing a full mm. 668 * 669 * May be overridden by the architecture; otherwise, implemented as a simple 670 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the 671 * returned PTE. 672 * 673 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 674 * some PTEs might be write-protected. 675 * 676 * Context: The caller holds the page table lock. The PTEs map consecutive 677 * pages that belong to the same folio. The PTEs are all in the same PMD. 678 */ 679static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, 680 unsigned long addr, pte_t *ptep, unsigned int nr, int full) 681{ 682 pte_t pte, tmp_pte; 683 684 pte = ptep_get_and_clear_full(mm, addr, ptep, full); 685 while (--nr) { 686 ptep++; 687 addr += PAGE_SIZE; 688 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full); 689 if (pte_dirty(tmp_pte)) 690 pte = pte_mkdirty(pte); 691 if (pte_young(tmp_pte)) 692 pte = pte_mkyoung(pte); 693 } 694 return pte; 695} 696#endif 697 698#ifndef clear_full_ptes 699/** 700 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same 701 * folio. 702 * @mm: Address space the pages are mapped into. 703 * @addr: Address the first page is mapped at. 704 * @ptep: Page table pointer for the first entry. 705 * @nr: Number of entries to clear. 706 * @full: Whether we are clearing a full mm. 707 * 708 * May be overridden by the architecture; otherwise, implemented as a simple 709 * loop over ptep_get_and_clear_full(). 710 * 711 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 712 * some PTEs might be write-protected. 713 * 714 * Context: The caller holds the page table lock. The PTEs map consecutive 715 * pages that belong to the same folio. The PTEs are all in the same PMD. 716 */ 717static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, 718 pte_t *ptep, unsigned int nr, int full) 719{ 720 for (;;) { 721 ptep_get_and_clear_full(mm, addr, ptep, full); 722 if (--nr == 0) 723 break; 724 ptep++; 725 addr += PAGE_SIZE; 726 } 727} 728#endif 729 730/* 731 * If two threads concurrently fault at the same page, the thread that 732 * won the race updates the PTE and its local TLB/Cache. The other thread 733 * gives up, simply does nothing, and continues; on architectures where 734 * software can update TLB, local TLB can be updated here to avoid next page 735 * fault. This function updates TLB only, do nothing with cache or others. 736 * It is the difference with function update_mmu_cache. 737 */ 738#ifndef update_mmu_tlb_range 739static inline void update_mmu_tlb_range(struct vm_area_struct *vma, 740 unsigned long address, pte_t *ptep, unsigned int nr) 741{ 742} 743#endif 744 745static inline void update_mmu_tlb(struct vm_area_struct *vma, 746 unsigned long address, pte_t *ptep) 747{ 748 update_mmu_tlb_range(vma, address, ptep, 1); 749} 750 751/* 752 * Some architectures may be able to avoid expensive synchronization 753 * primitives when modifications are made to PTE's which are already 754 * not present, or in the process of an address space destruction. 755 */ 756#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 757static inline void pte_clear_not_present_full(struct mm_struct *mm, 758 unsigned long address, 759 pte_t *ptep, 760 int full) 761{ 762 pte_clear(mm, address, ptep); 763} 764#endif 765 766#ifndef clear_not_present_full_ptes 767/** 768 * clear_not_present_full_ptes - Clear multiple not present PTEs which are 769 * consecutive in the pgtable. 770 * @mm: Address space the ptes represent. 771 * @addr: Address of the first pte. 772 * @ptep: Page table pointer for the first entry. 773 * @nr: Number of entries to clear. 774 * @full: Whether we are clearing a full mm. 775 * 776 * May be overridden by the architecture; otherwise, implemented as a simple 777 * loop over pte_clear_not_present_full(). 778 * 779 * Context: The caller holds the page table lock. The PTEs are all not present. 780 * The PTEs are all in the same PMD. 781 */ 782static inline void clear_not_present_full_ptes(struct mm_struct *mm, 783 unsigned long addr, pte_t *ptep, unsigned int nr, int full) 784{ 785 for (;;) { 786 pte_clear_not_present_full(mm, addr, ptep, full); 787 if (--nr == 0) 788 break; 789 ptep++; 790 addr += PAGE_SIZE; 791 } 792} 793#endif 794 795#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 796extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 797 unsigned long address, 798 pte_t *ptep); 799#endif 800 801#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 802extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 803 unsigned long address, 804 pmd_t *pmdp); 805extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 806 unsigned long address, 807 pud_t *pudp); 808#endif 809 810#ifndef pte_mkwrite 811static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma) 812{ 813 return pte_mkwrite_novma(pte); 814} 815#endif 816 817#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite) 818static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 819{ 820 return pmd_mkwrite_novma(pmd); 821} 822#endif 823 824#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 825struct mm_struct; 826static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 827{ 828 pte_t old_pte = ptep_get(ptep); 829 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 830} 831#endif 832 833#ifndef wrprotect_ptes 834/** 835 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same 836 * folio. 837 * @mm: Address space the pages are mapped into. 838 * @addr: Address the first page is mapped at. 839 * @ptep: Page table pointer for the first entry. 840 * @nr: Number of entries to write-protect. 841 * 842 * May be overridden by the architecture; otherwise, implemented as a simple 843 * loop over ptep_set_wrprotect(). 844 * 845 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 846 * some PTEs might be write-protected. 847 * 848 * Context: The caller holds the page table lock. The PTEs map consecutive 849 * pages that belong to the same folio. The PTEs are all in the same PMD. 850 */ 851static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr, 852 pte_t *ptep, unsigned int nr) 853{ 854 for (;;) { 855 ptep_set_wrprotect(mm, addr, ptep); 856 if (--nr == 0) 857 break; 858 ptep++; 859 addr += PAGE_SIZE; 860 } 861} 862#endif 863 864/* 865 * On some architectures hardware does not set page access bit when accessing 866 * memory page, it is responsibility of software setting this bit. It brings 867 * out extra page fault penalty to track page access bit. For optimization page 868 * access bit can be set during all page fault flow on these arches. 869 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 870 * where software maintains page access bit. 871 */ 872#ifndef pte_sw_mkyoung 873static inline pte_t pte_sw_mkyoung(pte_t pte) 874{ 875 return pte; 876} 877#define pte_sw_mkyoung pte_sw_mkyoung 878#endif 879 880#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 881#ifdef CONFIG_TRANSPARENT_HUGEPAGE 882static inline void pmdp_set_wrprotect(struct mm_struct *mm, 883 unsigned long address, pmd_t *pmdp) 884{ 885 pmd_t old_pmd = *pmdp; 886 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 887} 888#else 889static inline void pmdp_set_wrprotect(struct mm_struct *mm, 890 unsigned long address, pmd_t *pmdp) 891{ 892 BUILD_BUG(); 893} 894#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 895#endif 896#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 897#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 898#ifdef CONFIG_TRANSPARENT_HUGEPAGE 899static inline void pudp_set_wrprotect(struct mm_struct *mm, 900 unsigned long address, pud_t *pudp) 901{ 902 pud_t old_pud = *pudp; 903 904 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 905} 906#else 907static inline void pudp_set_wrprotect(struct mm_struct *mm, 908 unsigned long address, pud_t *pudp) 909{ 910 BUILD_BUG(); 911} 912#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 913#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 914#endif 915 916#ifndef pmdp_collapse_flush 917#ifdef CONFIG_TRANSPARENT_HUGEPAGE 918extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 919 unsigned long address, pmd_t *pmdp); 920#else 921static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 922 unsigned long address, 923 pmd_t *pmdp) 924{ 925 BUILD_BUG(); 926 return *pmdp; 927} 928#define pmdp_collapse_flush pmdp_collapse_flush 929#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 930#endif 931 932#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 933extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 934 pgtable_t pgtable); 935#endif 936 937#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 938extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 939#endif 940 941#ifndef arch_needs_pgtable_deposit 942#define arch_needs_pgtable_deposit() (false) 943#endif 944 945#ifdef CONFIG_TRANSPARENT_HUGEPAGE 946/* 947 * This is an implementation of pmdp_establish() that is only suitable for an 948 * architecture that doesn't have hardware dirty/accessed bits. In this case we 949 * can't race with CPU which sets these bits and non-atomic approach is fine. 950 */ 951static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 952 unsigned long address, pmd_t *pmdp, pmd_t pmd) 953{ 954 pmd_t old_pmd = *pmdp; 955 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 956 return old_pmd; 957} 958#endif 959 960#ifndef __HAVE_ARCH_PMDP_INVALIDATE 961extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 962 pmd_t *pmdp); 963#endif 964 965#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD 966 967/* 968 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent 969 * hugepage mapping in the page tables. This function is similar to 970 * pmdp_invalidate(), but should only be used if the access and dirty bits would 971 * not be cleared by the software in the new PMD value. The function ensures 972 * that hardware changes of the access and dirty bits updates would not be lost. 973 * 974 * Doing so can allow in certain architectures to avoid a TLB flush in most 975 * cases. Yet, another TLB flush might be necessary later if the PMD update 976 * itself requires such flush (e.g., if protection was set to be stricter). Yet, 977 * even when a TLB flush is needed because of the update, the caller may be able 978 * to batch these TLB flushing operations, so fewer TLB flush operations are 979 * needed. 980 */ 981extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, 982 unsigned long address, pmd_t *pmdp); 983#endif 984 985#ifndef __HAVE_ARCH_PTE_SAME 986static inline int pte_same(pte_t pte_a, pte_t pte_b) 987{ 988 return pte_val(pte_a) == pte_val(pte_b); 989} 990#endif 991 992#ifndef __HAVE_ARCH_PTE_UNUSED 993/* 994 * Some architectures provide facilities to virtualization guests 995 * so that they can flag allocated pages as unused. This allows the 996 * host to transparently reclaim unused pages. This function returns 997 * whether the pte's page is unused. 998 */ 999static inline int pte_unused(pte_t pte) 1000{ 1001 return 0; 1002} 1003#endif 1004 1005#ifndef pte_access_permitted 1006#define pte_access_permitted(pte, write) \ 1007 (pte_present(pte) && (!(write) || pte_write(pte))) 1008#endif 1009 1010#ifndef pmd_access_permitted 1011#define pmd_access_permitted(pmd, write) \ 1012 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 1013#endif 1014 1015#ifndef pud_access_permitted 1016#define pud_access_permitted(pud, write) \ 1017 (pud_present(pud) && (!(write) || pud_write(pud))) 1018#endif 1019 1020#ifndef p4d_access_permitted 1021#define p4d_access_permitted(p4d, write) \ 1022 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 1023#endif 1024 1025#ifndef pgd_access_permitted 1026#define pgd_access_permitted(pgd, write) \ 1027 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 1028#endif 1029 1030#ifndef __HAVE_ARCH_PMD_SAME 1031static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 1032{ 1033 return pmd_val(pmd_a) == pmd_val(pmd_b); 1034} 1035#endif 1036 1037#ifndef pud_same 1038static inline int pud_same(pud_t pud_a, pud_t pud_b) 1039{ 1040 return pud_val(pud_a) == pud_val(pud_b); 1041} 1042#define pud_same pud_same 1043#endif 1044 1045#ifndef __HAVE_ARCH_P4D_SAME 1046static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 1047{ 1048 return p4d_val(p4d_a) == p4d_val(p4d_b); 1049} 1050#endif 1051 1052#ifndef __HAVE_ARCH_PGD_SAME 1053static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 1054{ 1055 return pgd_val(pgd_a) == pgd_val(pgd_b); 1056} 1057#endif 1058 1059/* 1060 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 1061 * TLB flush will be required as a result of the "set". For example, use 1062 * in scenarios where it is known ahead of time that the routine is 1063 * setting non-present entries, or re-setting an existing entry to the 1064 * same value. Otherwise, use the typical "set" helpers and flush the 1065 * TLB. 1066 */ 1067#define set_pte_safe(ptep, pte) \ 1068({ \ 1069 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 1070 set_pte(ptep, pte); \ 1071}) 1072 1073#define set_pmd_safe(pmdp, pmd) \ 1074({ \ 1075 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 1076 set_pmd(pmdp, pmd); \ 1077}) 1078 1079#define set_pud_safe(pudp, pud) \ 1080({ \ 1081 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 1082 set_pud(pudp, pud); \ 1083}) 1084 1085#define set_p4d_safe(p4dp, p4d) \ 1086({ \ 1087 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 1088 set_p4d(p4dp, p4d); \ 1089}) 1090 1091#define set_pgd_safe(pgdp, pgd) \ 1092({ \ 1093 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 1094 set_pgd(pgdp, pgd); \ 1095}) 1096 1097#ifndef __HAVE_ARCH_DO_SWAP_PAGE 1098static inline void arch_do_swap_page_nr(struct mm_struct *mm, 1099 struct vm_area_struct *vma, 1100 unsigned long addr, 1101 pte_t pte, pte_t oldpte, 1102 int nr) 1103{ 1104 1105} 1106#else 1107/* 1108 * Some architectures support metadata associated with a page. When a 1109 * page is being swapped out, this metadata must be saved so it can be 1110 * restored when the page is swapped back in. SPARC M7 and newer 1111 * processors support an ADI (Application Data Integrity) tag for the 1112 * page as metadata for the page. arch_do_swap_page() can restore this 1113 * metadata when a page is swapped back in. 1114 */ 1115static inline void arch_do_swap_page_nr(struct mm_struct *mm, 1116 struct vm_area_struct *vma, 1117 unsigned long addr, 1118 pte_t pte, pte_t oldpte, 1119 int nr) 1120{ 1121 for (int i = 0; i < nr; i++) { 1122 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE, 1123 pte_advance_pfn(pte, i), 1124 pte_advance_pfn(oldpte, i)); 1125 } 1126} 1127#endif 1128 1129#ifndef __HAVE_ARCH_UNMAP_ONE 1130/* 1131 * Some architectures support metadata associated with a page. When a 1132 * page is being swapped out, this metadata must be saved so it can be 1133 * restored when the page is swapped back in. SPARC M7 and newer 1134 * processors support an ADI (Application Data Integrity) tag for the 1135 * page as metadata for the page. arch_unmap_one() can save this 1136 * metadata on a swap-out of a page. 1137 */ 1138static inline int arch_unmap_one(struct mm_struct *mm, 1139 struct vm_area_struct *vma, 1140 unsigned long addr, 1141 pte_t orig_pte) 1142{ 1143 return 0; 1144} 1145#endif 1146 1147/* 1148 * Allow architectures to preserve additional metadata associated with 1149 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 1150 * prototypes must be defined in the arch-specific asm/pgtable.h file. 1151 */ 1152#ifndef __HAVE_ARCH_PREPARE_TO_SWAP 1153static inline int arch_prepare_to_swap(struct folio *folio) 1154{ 1155 return 0; 1156} 1157#endif 1158 1159#ifndef __HAVE_ARCH_SWAP_INVALIDATE 1160static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 1161{ 1162} 1163 1164static inline void arch_swap_invalidate_area(int type) 1165{ 1166} 1167#endif 1168 1169#ifndef __HAVE_ARCH_SWAP_RESTORE 1170static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) 1171{ 1172} 1173#endif 1174 1175#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 1176#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 1177#endif 1178 1179#ifndef __HAVE_ARCH_MOVE_PTE 1180#define move_pte(pte, old_addr, new_addr) (pte) 1181#endif 1182 1183#ifndef pte_accessible 1184# define pte_accessible(mm, pte) ((void)(pte), 1) 1185#endif 1186 1187#ifndef flush_tlb_fix_spurious_fault 1188#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address) 1189#endif 1190 1191/* 1192 * When walking page tables, get the address of the next boundary, 1193 * or the end address of the range if that comes earlier. Although no 1194 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 1195 */ 1196 1197#define pgd_addr_end(addr, end) \ 1198({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 1199 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1200}) 1201 1202#ifndef p4d_addr_end 1203#define p4d_addr_end(addr, end) \ 1204({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 1205 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1206}) 1207#endif 1208 1209#ifndef pud_addr_end 1210#define pud_addr_end(addr, end) \ 1211({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 1212 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1213}) 1214#endif 1215 1216#ifndef pmd_addr_end 1217#define pmd_addr_end(addr, end) \ 1218({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 1219 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1220}) 1221#endif 1222 1223/* 1224 * When walking page tables, we usually want to skip any p?d_none entries; 1225 * and any p?d_bad entries - reporting the error before resetting to none. 1226 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 1227 */ 1228void pgd_clear_bad(pgd_t *); 1229 1230#ifndef __PAGETABLE_P4D_FOLDED 1231void p4d_clear_bad(p4d_t *); 1232#else 1233#define p4d_clear_bad(p4d) do { } while (0) 1234#endif 1235 1236#ifndef __PAGETABLE_PUD_FOLDED 1237void pud_clear_bad(pud_t *); 1238#else 1239#define pud_clear_bad(p4d) do { } while (0) 1240#endif 1241 1242void pmd_clear_bad(pmd_t *); 1243 1244static inline int pgd_none_or_clear_bad(pgd_t *pgd) 1245{ 1246 if (pgd_none(*pgd)) 1247 return 1; 1248 if (unlikely(pgd_bad(*pgd))) { 1249 pgd_clear_bad(pgd); 1250 return 1; 1251 } 1252 return 0; 1253} 1254 1255static inline int p4d_none_or_clear_bad(p4d_t *p4d) 1256{ 1257 if (p4d_none(*p4d)) 1258 return 1; 1259 if (unlikely(p4d_bad(*p4d))) { 1260 p4d_clear_bad(p4d); 1261 return 1; 1262 } 1263 return 0; 1264} 1265 1266static inline int pud_none_or_clear_bad(pud_t *pud) 1267{ 1268 if (pud_none(*pud)) 1269 return 1; 1270 if (unlikely(pud_bad(*pud))) { 1271 pud_clear_bad(pud); 1272 return 1; 1273 } 1274 return 0; 1275} 1276 1277static inline int pmd_none_or_clear_bad(pmd_t *pmd) 1278{ 1279 if (pmd_none(*pmd)) 1280 return 1; 1281 if (unlikely(pmd_bad(*pmd))) { 1282 pmd_clear_bad(pmd); 1283 return 1; 1284 } 1285 return 0; 1286} 1287 1288static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 1289 unsigned long addr, 1290 pte_t *ptep) 1291{ 1292 /* 1293 * Get the current pte state, but zero it out to make it 1294 * non-present, preventing the hardware from asynchronously 1295 * updating it. 1296 */ 1297 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 1298} 1299 1300static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 1301 unsigned long addr, 1302 pte_t *ptep, pte_t pte) 1303{ 1304 /* 1305 * The pte is non-present, so there's no hardware state to 1306 * preserve. 1307 */ 1308 set_pte_at(vma->vm_mm, addr, ptep, pte); 1309} 1310 1311#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1312/* 1313 * Start a pte protection read-modify-write transaction, which 1314 * protects against asynchronous hardware modifications to the pte. 1315 * The intention is not to prevent the hardware from making pte 1316 * updates, but to prevent any updates it may make from being lost. 1317 * 1318 * This does not protect against other software modifications of the 1319 * pte; the appropriate pte lock must be held over the transaction. 1320 * 1321 * Note that this interface is intended to be batchable, meaning that 1322 * ptep_modify_prot_commit may not actually update the pte, but merely 1323 * queue the update to be done at some later time. The update must be 1324 * actually committed before the pte lock is released, however. 1325 */ 1326static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 1327 unsigned long addr, 1328 pte_t *ptep) 1329{ 1330 return __ptep_modify_prot_start(vma, addr, ptep); 1331} 1332 1333/* 1334 * Commit an update to a pte, leaving any hardware-controlled bits in 1335 * the PTE unmodified. 1336 */ 1337static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 1338 unsigned long addr, 1339 pte_t *ptep, pte_t old_pte, pte_t pte) 1340{ 1341 __ptep_modify_prot_commit(vma, addr, ptep, pte); 1342} 1343#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 1344#endif /* CONFIG_MMU */ 1345 1346/* 1347 * No-op macros that just return the current protection value. Defined here 1348 * because these macros can be used even if CONFIG_MMU is not defined. 1349 */ 1350 1351#ifndef pgprot_nx 1352#define pgprot_nx(prot) (prot) 1353#endif 1354 1355#ifndef pgprot_noncached 1356#define pgprot_noncached(prot) (prot) 1357#endif 1358 1359#ifndef pgprot_writecombine 1360#define pgprot_writecombine pgprot_noncached 1361#endif 1362 1363#ifndef pgprot_writethrough 1364#define pgprot_writethrough pgprot_noncached 1365#endif 1366 1367#ifndef pgprot_device 1368#define pgprot_device pgprot_noncached 1369#endif 1370 1371#ifndef pgprot_mhp 1372#define pgprot_mhp(prot) (prot) 1373#endif 1374 1375#ifdef CONFIG_MMU 1376#ifndef pgprot_modify 1377#define pgprot_modify pgprot_modify 1378static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 1379{ 1380 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 1381 newprot = pgprot_noncached(newprot); 1382 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 1383 newprot = pgprot_writecombine(newprot); 1384 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 1385 newprot = pgprot_device(newprot); 1386 return newprot; 1387} 1388#endif 1389#endif /* CONFIG_MMU */ 1390 1391#ifndef pgprot_encrypted 1392#define pgprot_encrypted(prot) (prot) 1393#endif 1394 1395#ifndef pgprot_decrypted 1396#define pgprot_decrypted(prot) (prot) 1397#endif 1398 1399/* 1400 * A facility to provide batching of the reload of page tables and 1401 * other process state with the actual context switch code for 1402 * paravirtualized guests. By convention, only one of the batched 1403 * update (lazy) modes (CPU, MMU) should be active at any given time, 1404 * entry should never be nested, and entry and exits should always be 1405 * paired. This is for sanity of maintaining and reasoning about the 1406 * kernel code. In this case, the exit (end of the context switch) is 1407 * in architecture-specific code, and so doesn't need a generic 1408 * definition. 1409 */ 1410#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 1411#define arch_start_context_switch(prev) do {} while (0) 1412#endif 1413 1414#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1415#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 1416static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1417{ 1418 return pmd; 1419} 1420 1421static inline int pmd_swp_soft_dirty(pmd_t pmd) 1422{ 1423 return 0; 1424} 1425 1426static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1427{ 1428 return pmd; 1429} 1430#endif 1431#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1432static inline int pte_soft_dirty(pte_t pte) 1433{ 1434 return 0; 1435} 1436 1437static inline int pmd_soft_dirty(pmd_t pmd) 1438{ 1439 return 0; 1440} 1441 1442static inline pte_t pte_mksoft_dirty(pte_t pte) 1443{ 1444 return pte; 1445} 1446 1447static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 1448{ 1449 return pmd; 1450} 1451 1452static inline pte_t pte_clear_soft_dirty(pte_t pte) 1453{ 1454 return pte; 1455} 1456 1457static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 1458{ 1459 return pmd; 1460} 1461 1462static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1463{ 1464 return pte; 1465} 1466 1467static inline int pte_swp_soft_dirty(pte_t pte) 1468{ 1469 return 0; 1470} 1471 1472static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1473{ 1474 return pte; 1475} 1476 1477static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1478{ 1479 return pmd; 1480} 1481 1482static inline int pmd_swp_soft_dirty(pmd_t pmd) 1483{ 1484 return 0; 1485} 1486 1487static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1488{ 1489 return pmd; 1490} 1491#endif 1492 1493#ifndef __HAVE_PFNMAP_TRACKING 1494/* 1495 * Interfaces that can be used by architecture code to keep track of 1496 * memory type of pfn mappings specified by the remap_pfn_range, 1497 * vmf_insert_pfn. 1498 */ 1499 1500/* 1501 * track_pfn_remap is called when a _new_ pfn mapping is being established 1502 * by remap_pfn_range() for physical range indicated by pfn and size. 1503 */ 1504static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1505 unsigned long pfn, unsigned long addr, 1506 unsigned long size) 1507{ 1508 return 0; 1509} 1510 1511/* 1512 * track_pfn_insert is called when a _new_ single pfn is established 1513 * by vmf_insert_pfn(). 1514 */ 1515static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1516 pfn_t pfn) 1517{ 1518} 1519 1520/* 1521 * track_pfn_copy is called when vma that is covering the pfnmap gets 1522 * copied through copy_page_range(). 1523 */ 1524static inline int track_pfn_copy(struct vm_area_struct *vma) 1525{ 1526 return 0; 1527} 1528 1529/* 1530 * untrack_pfn is called while unmapping a pfnmap for a region. 1531 * untrack can be called for a specific region indicated by pfn and size or 1532 * can be for the entire vma (in which case pfn, size are zero). 1533 */ 1534static inline void untrack_pfn(struct vm_area_struct *vma, 1535 unsigned long pfn, unsigned long size, 1536 bool mm_wr_locked) 1537{ 1538} 1539 1540/* 1541 * untrack_pfn_clear is called while mremapping a pfnmap for a new region 1542 * or fails to copy pgtable during duplicate vm area. 1543 */ 1544static inline void untrack_pfn_clear(struct vm_area_struct *vma) 1545{ 1546} 1547#else 1548extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1549 unsigned long pfn, unsigned long addr, 1550 unsigned long size); 1551extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1552 pfn_t pfn); 1553extern int track_pfn_copy(struct vm_area_struct *vma); 1554extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1555 unsigned long size, bool mm_wr_locked); 1556extern void untrack_pfn_clear(struct vm_area_struct *vma); 1557#endif 1558 1559#ifdef CONFIG_MMU 1560#ifdef __HAVE_COLOR_ZERO_PAGE 1561static inline int is_zero_pfn(unsigned long pfn) 1562{ 1563 extern unsigned long zero_pfn; 1564 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1565 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1566} 1567 1568#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1569 1570#else 1571static inline int is_zero_pfn(unsigned long pfn) 1572{ 1573 extern unsigned long zero_pfn; 1574 return pfn == zero_pfn; 1575} 1576 1577static inline unsigned long my_zero_pfn(unsigned long addr) 1578{ 1579 extern unsigned long zero_pfn; 1580 return zero_pfn; 1581} 1582#endif 1583#else 1584static inline int is_zero_pfn(unsigned long pfn) 1585{ 1586 return 0; 1587} 1588 1589static inline unsigned long my_zero_pfn(unsigned long addr) 1590{ 1591 return 0; 1592} 1593#endif /* CONFIG_MMU */ 1594 1595#ifdef CONFIG_MMU 1596 1597#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1598static inline int pmd_trans_huge(pmd_t pmd) 1599{ 1600 return 0; 1601} 1602#ifndef pmd_write 1603static inline int pmd_write(pmd_t pmd) 1604{ 1605 BUG(); 1606 return 0; 1607} 1608#endif /* pmd_write */ 1609#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1610 1611#ifndef pud_write 1612static inline int pud_write(pud_t pud) 1613{ 1614 BUG(); 1615 return 0; 1616} 1617#endif /* pud_write */ 1618 1619#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1620static inline int pmd_devmap(pmd_t pmd) 1621{ 1622 return 0; 1623} 1624static inline int pud_devmap(pud_t pud) 1625{ 1626 return 0; 1627} 1628static inline int pgd_devmap(pgd_t pgd) 1629{ 1630 return 0; 1631} 1632#endif 1633 1634#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1635 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1636static inline int pud_trans_huge(pud_t pud) 1637{ 1638 return 0; 1639} 1640#endif 1641 1642static inline int pud_trans_unstable(pud_t *pud) 1643{ 1644#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1645 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1646 pud_t pudval = READ_ONCE(*pud); 1647 1648 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1649 return 1; 1650 if (unlikely(pud_bad(pudval))) { 1651 pud_clear_bad(pud); 1652 return 1; 1653 } 1654#endif 1655 return 0; 1656} 1657 1658#ifndef CONFIG_NUMA_BALANCING 1659/* 1660 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is 1661 * perfectly valid to indicate "no" in that case, which is why our default 1662 * implementation defaults to "always no". 1663 * 1664 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE 1665 * page protection due to NUMA hinting. NUMA hinting faults only apply in 1666 * accessible VMAs. 1667 * 1668 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault, 1669 * looking at the VMA accessibility is sufficient. 1670 */ 1671static inline int pte_protnone(pte_t pte) 1672{ 1673 return 0; 1674} 1675 1676static inline int pmd_protnone(pmd_t pmd) 1677{ 1678 return 0; 1679} 1680#endif /* CONFIG_NUMA_BALANCING */ 1681 1682#endif /* CONFIG_MMU */ 1683 1684#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1685 1686#ifndef __PAGETABLE_P4D_FOLDED 1687int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1688void p4d_clear_huge(p4d_t *p4d); 1689#else 1690static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1691{ 1692 return 0; 1693} 1694static inline void p4d_clear_huge(p4d_t *p4d) { } 1695#endif /* !__PAGETABLE_P4D_FOLDED */ 1696 1697int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1698int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1699int pud_clear_huge(pud_t *pud); 1700int pmd_clear_huge(pmd_t *pmd); 1701int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1702int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1703int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1704#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1705static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1706{ 1707 return 0; 1708} 1709static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1710{ 1711 return 0; 1712} 1713static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1714{ 1715 return 0; 1716} 1717static inline void p4d_clear_huge(p4d_t *p4d) { } 1718static inline int pud_clear_huge(pud_t *pud) 1719{ 1720 return 0; 1721} 1722static inline int pmd_clear_huge(pmd_t *pmd) 1723{ 1724 return 0; 1725} 1726static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1727{ 1728 return 0; 1729} 1730static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1731{ 1732 return 0; 1733} 1734static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1735{ 1736 return 0; 1737} 1738#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1739 1740#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1741#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1742/* 1743 * ARCHes with special requirements for evicting THP backing TLB entries can 1744 * implement this. Otherwise also, it can help optimize normal TLB flush in 1745 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1746 * entire TLB if flush span is greater than a threshold, which will 1747 * likely be true for a single huge page. Thus a single THP flush will 1748 * invalidate the entire TLB which is not desirable. 1749 * e.g. see arch/arc: flush_pmd_tlb_range 1750 */ 1751#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1752#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1753#else 1754#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1755#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1756#endif 1757#endif 1758 1759struct file; 1760int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1761 unsigned long size, pgprot_t *vma_prot); 1762 1763#ifndef CONFIG_X86_ESPFIX64 1764static inline void init_espfix_bsp(void) { } 1765#endif 1766 1767extern void __init pgtable_cache_init(void); 1768 1769#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1770static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1771{ 1772 return true; 1773} 1774 1775static inline bool arch_has_pfn_modify_check(void) 1776{ 1777 return false; 1778} 1779#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1780 1781/* 1782 * Architecture PAGE_KERNEL_* fallbacks 1783 * 1784 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1785 * because they really don't support them, or the port needs to be updated to 1786 * reflect the required functionality. Below are a set of relatively safe 1787 * fallbacks, as best effort, which we can count on in lieu of the architectures 1788 * not defining them on their own yet. 1789 */ 1790 1791#ifndef PAGE_KERNEL_RO 1792# define PAGE_KERNEL_RO PAGE_KERNEL 1793#endif 1794 1795#ifndef PAGE_KERNEL_EXEC 1796# define PAGE_KERNEL_EXEC PAGE_KERNEL 1797#endif 1798 1799/* 1800 * Page Table Modification bits for pgtbl_mod_mask. 1801 * 1802 * These are used by the p?d_alloc_track*() set of functions an in the generic 1803 * vmalloc/ioremap code to track at which page-table levels entries have been 1804 * modified. Based on that the code can better decide when vmalloc and ioremap 1805 * mapping changes need to be synchronized to other page-tables in the system. 1806 */ 1807#define __PGTBL_PGD_MODIFIED 0 1808#define __PGTBL_P4D_MODIFIED 1 1809#define __PGTBL_PUD_MODIFIED 2 1810#define __PGTBL_PMD_MODIFIED 3 1811#define __PGTBL_PTE_MODIFIED 4 1812 1813#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1814#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1815#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1816#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1817#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1818 1819/* Page-Table Modification Mask */ 1820typedef unsigned int pgtbl_mod_mask; 1821 1822#endif /* !__ASSEMBLY__ */ 1823 1824#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1825#ifdef CONFIG_PHYS_ADDR_T_64BIT 1826/* 1827 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1828 * with physical address space extension, but falls back to 1829 * BITS_PER_LONG otherwise. 1830 */ 1831#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1832#else 1833#define MAX_POSSIBLE_PHYSMEM_BITS 32 1834#endif 1835#endif 1836 1837#ifndef has_transparent_hugepage 1838#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) 1839#endif 1840 1841#ifndef has_transparent_pud_hugepage 1842#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1843#endif 1844/* 1845 * On some architectures it depends on the mm if the p4d/pud or pmd 1846 * layer of the page table hierarchy is folded or not. 1847 */ 1848#ifndef mm_p4d_folded 1849#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1850#endif 1851 1852#ifndef mm_pud_folded 1853#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1854#endif 1855 1856#ifndef mm_pmd_folded 1857#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1858#endif 1859 1860#ifndef p4d_offset_lockless 1861#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 1862#endif 1863#ifndef pud_offset_lockless 1864#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 1865#endif 1866#ifndef pmd_offset_lockless 1867#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 1868#endif 1869 1870/* 1871 * pXd_leaf() is the API to check whether a pgtable entry is a huge page 1872 * mapping. It should work globally across all archs, without any 1873 * dependency on CONFIG_* options. For architectures that do not support 1874 * huge mappings on specific levels, below fallbacks will be used. 1875 * 1876 * A leaf pgtable entry should always imply the following: 1877 * 1878 * - It is a "present" entry. IOW, before using this API, please check it 1879 * with pXd_present() first. NOTE: it may not always mean the "present 1880 * bit" is set. For example, PROT_NONE entries are always "present". 1881 * 1882 * - It should _never_ be a swap entry of any type. Above "present" check 1883 * should have guarded this, but let's be crystal clear on this. 1884 * 1885 * - It should contain a huge PFN, which points to a huge page larger than 1886 * PAGE_SIZE of the platform. The PFN format isn't important here. 1887 * 1888 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(), 1889 * pXd_devmap(), or hugetlb mappings). 1890 */ 1891#ifndef pgd_leaf 1892#define pgd_leaf(x) false 1893#endif 1894#ifndef p4d_leaf 1895#define p4d_leaf(x) false 1896#endif 1897#ifndef pud_leaf 1898#define pud_leaf(x) false 1899#endif 1900#ifndef pmd_leaf 1901#define pmd_leaf(x) false 1902#endif 1903 1904#ifndef pgd_leaf_size 1905#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) 1906#endif 1907#ifndef p4d_leaf_size 1908#define p4d_leaf_size(x) P4D_SIZE 1909#endif 1910#ifndef pud_leaf_size 1911#define pud_leaf_size(x) PUD_SIZE 1912#endif 1913#ifndef pmd_leaf_size 1914#define pmd_leaf_size(x) PMD_SIZE 1915#endif 1916#ifndef __pte_leaf_size 1917#ifndef pte_leaf_size 1918#define pte_leaf_size(x) PAGE_SIZE 1919#endif 1920#define __pte_leaf_size(x,y) pte_leaf_size(y) 1921#endif 1922 1923/* 1924 * We always define pmd_pfn for all archs as it's used in lots of generic 1925 * code. Now it happens too for pud_pfn (and can happen for larger 1926 * mappings too in the future; we're not there yet). Instead of defining 1927 * it for all archs (like pmd_pfn), provide a fallback. 1928 * 1929 * Note that returning 0 here means any arch that didn't define this can 1930 * get severely wrong when it hits a real pud leaf. It's arch's 1931 * responsibility to properly define it when a huge pud is possible. 1932 */ 1933#ifndef pud_pfn 1934#define pud_pfn(x) 0 1935#endif 1936 1937/* 1938 * Some architectures have MMUs that are configurable or selectable at boot 1939 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it 1940 * helps to have a static maximum value. 1941 */ 1942 1943#ifndef MAX_PTRS_PER_PTE 1944#define MAX_PTRS_PER_PTE PTRS_PER_PTE 1945#endif 1946 1947#ifndef MAX_PTRS_PER_PMD 1948#define MAX_PTRS_PER_PMD PTRS_PER_PMD 1949#endif 1950 1951#ifndef MAX_PTRS_PER_PUD 1952#define MAX_PTRS_PER_PUD PTRS_PER_PUD 1953#endif 1954 1955#ifndef MAX_PTRS_PER_P4D 1956#define MAX_PTRS_PER_P4D PTRS_PER_P4D 1957#endif 1958 1959#ifndef pte_pgprot 1960#define pte_pgprot(x) ((pgprot_t) {0}) 1961#endif 1962 1963#ifndef pmd_pgprot 1964#define pmd_pgprot(x) ((pgprot_t) {0}) 1965#endif 1966 1967#ifndef pud_pgprot 1968#define pud_pgprot(x) ((pgprot_t) {0}) 1969#endif 1970 1971/* description of effects of mapping type and prot in current implementation. 1972 * this is due to the limited x86 page protection hardware. The expected 1973 * behavior is in parens: 1974 * 1975 * map_type prot 1976 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 1977 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1978 * w: (no) no w: (no) no w: (yes) yes w: (no) no 1979 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1980 * 1981 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1982 * w: (no) no w: (no) no w: (copy) copy w: (no) no 1983 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1984 * 1985 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 1986 * MAP_PRIVATE (with Enhanced PAN supported): 1987 * r: (no) no 1988 * w: (no) no 1989 * x: (yes) yes 1990 */ 1991#define DECLARE_VM_GET_PAGE_PROT \ 1992pgprot_t vm_get_page_prot(unsigned long vm_flags) \ 1993{ \ 1994 return protection_map[vm_flags & \ 1995 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ 1996} \ 1997EXPORT_SYMBOL(vm_get_page_prot); 1998 1999#endif /* _LINUX_PGTABLE_H */