at v6.12 40 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 34 * control pages, vmcoreinfo) 35 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 36 * not marked PG_reserved (as they might be in use by somebody else who does 37 * not respect the caching strategy). 38 * - MCA pages on ia64 39 * - Pages holding CPU notes for POWER Firmware Assisted Dump 40 * - Device memory (e.g. PMEM, DAX, HMM) 41 * Some PG_reserved pages will be excluded from the hibernation image. 42 * PG_reserved does in general not hinder anybody from dumping or swapping 43 * and is no longer required for remap_pfn_range(). ioremap might require it. 44 * Consequently, PG_reserved for a page mapped into user space can indicate 45 * the zero page, the vDSO, MMIO pages or device memory. 46 * 47 * The PG_private bitflag is set on pagecache pages if they contain filesystem 48 * specific data (which is normally at page->private). It can be used by 49 * private allocations for its own usage. 50 * 51 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 52 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 53 * is set before writeback starts and cleared when it finishes. 54 * 55 * PG_locked also pins a page in pagecache, and blocks truncation of the file 56 * while it is held. 57 * 58 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 59 * to become unlocked. 60 * 61 * PG_swapbacked is set when a page uses swap as a backing storage. This are 62 * usually PageAnon or shmem pages but please note that even anonymous pages 63 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 64 * a result of MADV_FREE). 65 * 66 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 67 * file-backed pagecache (see mm/vmscan.c). 68 * 69 * PG_arch_1 is an architecture specific page state bit. The generic code 70 * guarantees that this bit is cleared for a page when it first is entered into 71 * the page cache. 72 * 73 * PG_hwpoison indicates that a page got corrupted in hardware and contains 74 * data with incorrect ECC bits that triggered a machine check. Accessing is 75 * not safe since it may cause another machine check. Don't touch! 76 */ 77 78/* 79 * Don't use the pageflags directly. Use the PageFoo macros. 80 * 81 * The page flags field is split into two parts, the main flags area 82 * which extends from the low bits upwards, and the fields area which 83 * extends from the high bits downwards. 84 * 85 * | FIELD | ... | FLAGS | 86 * N-1 ^ 0 87 * (NR_PAGEFLAGS) 88 * 89 * The fields area is reserved for fields mapping zone, node (for NUMA) and 90 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 91 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 92 */ 93enum pageflags { 94 PG_locked, /* Page is locked. Don't touch. */ 95 PG_writeback, /* Page is under writeback */ 96 PG_referenced, 97 PG_uptodate, 98 PG_dirty, 99 PG_lru, 100 PG_head, /* Must be in bit 6 */ 101 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 102 PG_active, 103 PG_workingset, 104 PG_owner_priv_1, /* Owner use. If pagecache, fs may use */ 105 PG_owner_2, /* Owner use. If pagecache, fs may use */ 106 PG_arch_1, 107 PG_reserved, 108 PG_private, /* If pagecache, has fs-private data */ 109 PG_private_2, /* If pagecache, has fs aux data */ 110 PG_reclaim, /* To be reclaimed asap */ 111 PG_swapbacked, /* Page is backed by RAM/swap */ 112 PG_unevictable, /* Page is "unevictable" */ 113#ifdef CONFIG_MMU 114 PG_mlocked, /* Page is vma mlocked */ 115#endif 116#ifdef CONFIG_MEMORY_FAILURE 117 PG_hwpoison, /* hardware poisoned page. Don't touch */ 118#endif 119#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 120 PG_young, 121 PG_idle, 122#endif 123#ifdef CONFIG_ARCH_USES_PG_ARCH_2 124 PG_arch_2, 125#endif 126#ifdef CONFIG_ARCH_USES_PG_ARCH_3 127 PG_arch_3, 128#endif 129 __NR_PAGEFLAGS, 130 131 PG_readahead = PG_reclaim, 132 133 /* Anonymous memory (and shmem) */ 134 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 135 /* Some filesystems */ 136 PG_checked = PG_owner_priv_1, 137 138 /* 139 * Depending on the way an anonymous folio can be mapped into a page 140 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped 141 * THP), PG_anon_exclusive may be set only for the head page or for 142 * tail pages of an anonymous folio. For now, we only expect it to be 143 * set on tail pages for PTE-mapped THP. 144 */ 145 PG_anon_exclusive = PG_owner_2, 146 147 /* 148 * Set if all buffer heads in the folio are mapped. 149 * Filesystems which do not use BHs can use it for their own purpose. 150 */ 151 PG_mappedtodisk = PG_owner_2, 152 153 /* Two page bits are conscripted by FS-Cache to maintain local caching 154 * state. These bits are set on pages belonging to the netfs's inodes 155 * when those inodes are being locally cached. 156 */ 157 PG_fscache = PG_private_2, /* page backed by cache */ 158 159 /* XEN */ 160 /* Pinned in Xen as a read-only pagetable page. */ 161 PG_pinned = PG_owner_priv_1, 162 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 163 PG_savepinned = PG_dirty, 164 /* Has a grant mapping of another (foreign) domain's page. */ 165 PG_foreign = PG_owner_priv_1, 166 /* Remapped by swiotlb-xen. */ 167 PG_xen_remapped = PG_owner_priv_1, 168 169 /* non-lru isolated movable page */ 170 PG_isolated = PG_reclaim, 171 172 /* Only valid for buddy pages. Used to track pages that are reported */ 173 PG_reported = PG_uptodate, 174 175#ifdef CONFIG_MEMORY_HOTPLUG 176 /* For self-hosted memmap pages */ 177 PG_vmemmap_self_hosted = PG_owner_priv_1, 178#endif 179 180 /* 181 * Flags only valid for compound pages. Stored in first tail page's 182 * flags word. Cannot use the first 8 flags or any flag marked as 183 * PF_ANY. 184 */ 185 186 /* At least one page in this folio has the hwpoison flag set */ 187 PG_has_hwpoisoned = PG_active, 188 PG_large_rmappable = PG_workingset, /* anon or file-backed */ 189 PG_partially_mapped = PG_reclaim, /* was identified to be partially mapped */ 190}; 191 192#define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) 193 194#ifndef __GENERATING_BOUNDS_H 195 196#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 197DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 198 199/* 200 * Return the real head page struct iff the @page is a fake head page, otherwise 201 * return the @page itself. See Documentation/mm/vmemmap_dedup.rst. 202 */ 203static __always_inline const struct page *page_fixed_fake_head(const struct page *page) 204{ 205 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key)) 206 return page; 207 208 /* 209 * Only addresses aligned with PAGE_SIZE of struct page may be fake head 210 * struct page. The alignment check aims to avoid access the fields ( 211 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly) 212 * cold cacheline in some cases. 213 */ 214 if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) && 215 test_bit(PG_head, &page->flags)) { 216 /* 217 * We can safely access the field of the @page[1] with PG_head 218 * because the @page is a compound page composed with at least 219 * two contiguous pages. 220 */ 221 unsigned long head = READ_ONCE(page[1].compound_head); 222 223 if (likely(head & 1)) 224 return (const struct page *)(head - 1); 225 } 226 return page; 227} 228#else 229static inline const struct page *page_fixed_fake_head(const struct page *page) 230{ 231 return page; 232} 233#endif 234 235static __always_inline int page_is_fake_head(const struct page *page) 236{ 237 return page_fixed_fake_head(page) != page; 238} 239 240static __always_inline unsigned long _compound_head(const struct page *page) 241{ 242 unsigned long head = READ_ONCE(page->compound_head); 243 244 if (unlikely(head & 1)) 245 return head - 1; 246 return (unsigned long)page_fixed_fake_head(page); 247} 248 249#define compound_head(page) ((typeof(page))_compound_head(page)) 250 251/** 252 * page_folio - Converts from page to folio. 253 * @p: The page. 254 * 255 * Every page is part of a folio. This function cannot be called on a 256 * NULL pointer. 257 * 258 * Context: No reference, nor lock is required on @page. If the caller 259 * does not hold a reference, this call may race with a folio split, so 260 * it should re-check the folio still contains this page after gaining 261 * a reference on the folio. 262 * Return: The folio which contains this page. 263 */ 264#define page_folio(p) (_Generic((p), \ 265 const struct page *: (const struct folio *)_compound_head(p), \ 266 struct page *: (struct folio *)_compound_head(p))) 267 268/** 269 * folio_page - Return a page from a folio. 270 * @folio: The folio. 271 * @n: The page number to return. 272 * 273 * @n is relative to the start of the folio. This function does not 274 * check that the page number lies within @folio; the caller is presumed 275 * to have a reference to the page. 276 */ 277#define folio_page(folio, n) nth_page(&(folio)->page, n) 278 279static __always_inline int PageTail(const struct page *page) 280{ 281 return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page); 282} 283 284static __always_inline int PageCompound(const struct page *page) 285{ 286 return test_bit(PG_head, &page->flags) || 287 READ_ONCE(page->compound_head) & 1; 288} 289 290#define PAGE_POISON_PATTERN -1l 291static inline int PagePoisoned(const struct page *page) 292{ 293 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN; 294} 295 296#ifdef CONFIG_DEBUG_VM 297void page_init_poison(struct page *page, size_t size); 298#else 299static inline void page_init_poison(struct page *page, size_t size) 300{ 301} 302#endif 303 304static const unsigned long *const_folio_flags(const struct folio *folio, 305 unsigned n) 306{ 307 const struct page *page = &folio->page; 308 309 VM_BUG_ON_PGFLAGS(PageTail(page), page); 310 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 311 return &page[n].flags; 312} 313 314static unsigned long *folio_flags(struct folio *folio, unsigned n) 315{ 316 struct page *page = &folio->page; 317 318 VM_BUG_ON_PGFLAGS(PageTail(page), page); 319 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 320 return &page[n].flags; 321} 322 323/* 324 * Page flags policies wrt compound pages 325 * 326 * PF_POISONED_CHECK 327 * check if this struct page poisoned/uninitialized 328 * 329 * PF_ANY: 330 * the page flag is relevant for small, head and tail pages. 331 * 332 * PF_HEAD: 333 * for compound page all operations related to the page flag applied to 334 * head page. 335 * 336 * PF_NO_TAIL: 337 * modifications of the page flag must be done on small or head pages, 338 * checks can be done on tail pages too. 339 * 340 * PF_NO_COMPOUND: 341 * the page flag is not relevant for compound pages. 342 * 343 * PF_SECOND: 344 * the page flag is stored in the first tail page. 345 */ 346#define PF_POISONED_CHECK(page) ({ \ 347 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 348 page; }) 349#define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 350#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 351#define PF_NO_TAIL(page, enforce) ({ \ 352 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 353 PF_POISONED_CHECK(compound_head(page)); }) 354#define PF_NO_COMPOUND(page, enforce) ({ \ 355 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 356 PF_POISONED_CHECK(page); }) 357#define PF_SECOND(page, enforce) ({ \ 358 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 359 PF_POISONED_CHECK(&page[1]); }) 360 361/* Which page is the flag stored in */ 362#define FOLIO_PF_ANY 0 363#define FOLIO_PF_HEAD 0 364#define FOLIO_PF_NO_TAIL 0 365#define FOLIO_PF_NO_COMPOUND 0 366#define FOLIO_PF_SECOND 1 367 368#define FOLIO_HEAD_PAGE 0 369#define FOLIO_SECOND_PAGE 1 370 371/* 372 * Macros to create function definitions for page flags 373 */ 374#define FOLIO_TEST_FLAG(name, page) \ 375static __always_inline bool folio_test_##name(const struct folio *folio) \ 376{ return test_bit(PG_##name, const_folio_flags(folio, page)); } 377 378#define FOLIO_SET_FLAG(name, page) \ 379static __always_inline void folio_set_##name(struct folio *folio) \ 380{ set_bit(PG_##name, folio_flags(folio, page)); } 381 382#define FOLIO_CLEAR_FLAG(name, page) \ 383static __always_inline void folio_clear_##name(struct folio *folio) \ 384{ clear_bit(PG_##name, folio_flags(folio, page)); } 385 386#define __FOLIO_SET_FLAG(name, page) \ 387static __always_inline void __folio_set_##name(struct folio *folio) \ 388{ __set_bit(PG_##name, folio_flags(folio, page)); } 389 390#define __FOLIO_CLEAR_FLAG(name, page) \ 391static __always_inline void __folio_clear_##name(struct folio *folio) \ 392{ __clear_bit(PG_##name, folio_flags(folio, page)); } 393 394#define FOLIO_TEST_SET_FLAG(name, page) \ 395static __always_inline bool folio_test_set_##name(struct folio *folio) \ 396{ return test_and_set_bit(PG_##name, folio_flags(folio, page)); } 397 398#define FOLIO_TEST_CLEAR_FLAG(name, page) \ 399static __always_inline bool folio_test_clear_##name(struct folio *folio) \ 400{ return test_and_clear_bit(PG_##name, folio_flags(folio, page)); } 401 402#define FOLIO_FLAG(name, page) \ 403FOLIO_TEST_FLAG(name, page) \ 404FOLIO_SET_FLAG(name, page) \ 405FOLIO_CLEAR_FLAG(name, page) 406 407#define TESTPAGEFLAG(uname, lname, policy) \ 408FOLIO_TEST_FLAG(lname, FOLIO_##policy) \ 409static __always_inline int Page##uname(const struct page *page) \ 410{ return test_bit(PG_##lname, &policy(page, 0)->flags); } 411 412#define SETPAGEFLAG(uname, lname, policy) \ 413FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 414static __always_inline void SetPage##uname(struct page *page) \ 415{ set_bit(PG_##lname, &policy(page, 1)->flags); } 416 417#define CLEARPAGEFLAG(uname, lname, policy) \ 418FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 419static __always_inline void ClearPage##uname(struct page *page) \ 420{ clear_bit(PG_##lname, &policy(page, 1)->flags); } 421 422#define __SETPAGEFLAG(uname, lname, policy) \ 423__FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 424static __always_inline void __SetPage##uname(struct page *page) \ 425{ __set_bit(PG_##lname, &policy(page, 1)->flags); } 426 427#define __CLEARPAGEFLAG(uname, lname, policy) \ 428__FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 429static __always_inline void __ClearPage##uname(struct page *page) \ 430{ __clear_bit(PG_##lname, &policy(page, 1)->flags); } 431 432#define TESTSETFLAG(uname, lname, policy) \ 433FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy) \ 434static __always_inline int TestSetPage##uname(struct page *page) \ 435{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 436 437#define TESTCLEARFLAG(uname, lname, policy) \ 438FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy) \ 439static __always_inline int TestClearPage##uname(struct page *page) \ 440{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 441 442#define PAGEFLAG(uname, lname, policy) \ 443 TESTPAGEFLAG(uname, lname, policy) \ 444 SETPAGEFLAG(uname, lname, policy) \ 445 CLEARPAGEFLAG(uname, lname, policy) 446 447#define __PAGEFLAG(uname, lname, policy) \ 448 TESTPAGEFLAG(uname, lname, policy) \ 449 __SETPAGEFLAG(uname, lname, policy) \ 450 __CLEARPAGEFLAG(uname, lname, policy) 451 452#define TESTSCFLAG(uname, lname, policy) \ 453 TESTSETFLAG(uname, lname, policy) \ 454 TESTCLEARFLAG(uname, lname, policy) 455 456#define FOLIO_TEST_FLAG_FALSE(name) \ 457static inline bool folio_test_##name(const struct folio *folio) \ 458{ return false; } 459#define FOLIO_SET_FLAG_NOOP(name) \ 460static inline void folio_set_##name(struct folio *folio) { } 461#define FOLIO_CLEAR_FLAG_NOOP(name) \ 462static inline void folio_clear_##name(struct folio *folio) { } 463#define __FOLIO_SET_FLAG_NOOP(name) \ 464static inline void __folio_set_##name(struct folio *folio) { } 465#define __FOLIO_CLEAR_FLAG_NOOP(name) \ 466static inline void __folio_clear_##name(struct folio *folio) { } 467#define FOLIO_TEST_SET_FLAG_FALSE(name) \ 468static inline bool folio_test_set_##name(struct folio *folio) \ 469{ return false; } 470#define FOLIO_TEST_CLEAR_FLAG_FALSE(name) \ 471static inline bool folio_test_clear_##name(struct folio *folio) \ 472{ return false; } 473 474#define FOLIO_FLAG_FALSE(name) \ 475FOLIO_TEST_FLAG_FALSE(name) \ 476FOLIO_SET_FLAG_NOOP(name) \ 477FOLIO_CLEAR_FLAG_NOOP(name) 478 479#define TESTPAGEFLAG_FALSE(uname, lname) \ 480FOLIO_TEST_FLAG_FALSE(lname) \ 481static inline int Page##uname(const struct page *page) { return 0; } 482 483#define SETPAGEFLAG_NOOP(uname, lname) \ 484FOLIO_SET_FLAG_NOOP(lname) \ 485static inline void SetPage##uname(struct page *page) { } 486 487#define CLEARPAGEFLAG_NOOP(uname, lname) \ 488FOLIO_CLEAR_FLAG_NOOP(lname) \ 489static inline void ClearPage##uname(struct page *page) { } 490 491#define __CLEARPAGEFLAG_NOOP(uname, lname) \ 492__FOLIO_CLEAR_FLAG_NOOP(lname) \ 493static inline void __ClearPage##uname(struct page *page) { } 494 495#define TESTSETFLAG_FALSE(uname, lname) \ 496FOLIO_TEST_SET_FLAG_FALSE(lname) \ 497static inline int TestSetPage##uname(struct page *page) { return 0; } 498 499#define TESTCLEARFLAG_FALSE(uname, lname) \ 500FOLIO_TEST_CLEAR_FLAG_FALSE(lname) \ 501static inline int TestClearPage##uname(struct page *page) { return 0; } 502 503#define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \ 504 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname) 505 506#define TESTSCFLAG_FALSE(uname, lname) \ 507 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname) 508 509__PAGEFLAG(Locked, locked, PF_NO_TAIL) 510FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE) 511FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE) 512 FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE) 513 __FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE) 514PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 515 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 516PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 517 TESTCLEARFLAG(LRU, lru, PF_HEAD) 518FOLIO_FLAG(active, FOLIO_HEAD_PAGE) 519 __FOLIO_CLEAR_FLAG(active, FOLIO_HEAD_PAGE) 520 FOLIO_TEST_CLEAR_FLAG(active, FOLIO_HEAD_PAGE) 521PAGEFLAG(Workingset, workingset, PF_HEAD) 522 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 523PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 524 525/* Xen */ 526PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 527 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 528PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 529PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 530PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 531 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 532 533PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 534 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 535 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 536FOLIO_FLAG(swapbacked, FOLIO_HEAD_PAGE) 537 __FOLIO_CLEAR_FLAG(swapbacked, FOLIO_HEAD_PAGE) 538 __FOLIO_SET_FLAG(swapbacked, FOLIO_HEAD_PAGE) 539 540/* 541 * Private page markings that may be used by the filesystem that owns the page 542 * for its own purposes. 543 * - PG_private and PG_private_2 cause release_folio() and co to be invoked 544 */ 545PAGEFLAG(Private, private, PF_ANY) 546PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 547 548/* owner_2 can be set on tail pages for anon memory */ 549FOLIO_FLAG(owner_2, FOLIO_HEAD_PAGE) 550 551/* 552 * Only test-and-set exist for PG_writeback. The unconditional operators are 553 * risky: they bypass page accounting. 554 */ 555TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 556 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 557PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 558 559/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 560PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 561 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 562FOLIO_FLAG(readahead, FOLIO_HEAD_PAGE) 563 FOLIO_TEST_CLEAR_FLAG(readahead, FOLIO_HEAD_PAGE) 564 565#ifdef CONFIG_HIGHMEM 566/* 567 * Must use a macro here due to header dependency issues. page_zone() is not 568 * available at this point. 569 */ 570#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 571#define folio_test_highmem(__f) is_highmem_idx(folio_zonenum(__f)) 572#else 573PAGEFLAG_FALSE(HighMem, highmem) 574#endif 575 576#ifdef CONFIG_SWAP 577static __always_inline bool folio_test_swapcache(const struct folio *folio) 578{ 579 return folio_test_swapbacked(folio) && 580 test_bit(PG_swapcache, const_folio_flags(folio, 0)); 581} 582 583FOLIO_SET_FLAG(swapcache, FOLIO_HEAD_PAGE) 584FOLIO_CLEAR_FLAG(swapcache, FOLIO_HEAD_PAGE) 585#else 586FOLIO_FLAG_FALSE(swapcache) 587#endif 588 589FOLIO_FLAG(unevictable, FOLIO_HEAD_PAGE) 590 __FOLIO_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE) 591 FOLIO_TEST_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE) 592 593#ifdef CONFIG_MMU 594FOLIO_FLAG(mlocked, FOLIO_HEAD_PAGE) 595 __FOLIO_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE) 596 FOLIO_TEST_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE) 597 FOLIO_TEST_SET_FLAG(mlocked, FOLIO_HEAD_PAGE) 598#else 599FOLIO_FLAG_FALSE(mlocked) 600 __FOLIO_CLEAR_FLAG_NOOP(mlocked) 601 FOLIO_TEST_CLEAR_FLAG_FALSE(mlocked) 602 FOLIO_TEST_SET_FLAG_FALSE(mlocked) 603#endif 604 605#ifdef CONFIG_MEMORY_FAILURE 606PAGEFLAG(HWPoison, hwpoison, PF_ANY) 607TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 608#define __PG_HWPOISON (1UL << PG_hwpoison) 609#else 610PAGEFLAG_FALSE(HWPoison, hwpoison) 611#define __PG_HWPOISON 0 612#endif 613 614#ifdef CONFIG_PAGE_IDLE_FLAG 615#ifdef CONFIG_64BIT 616FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE) 617FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE) 618FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE) 619FOLIO_FLAG(idle, FOLIO_HEAD_PAGE) 620#endif 621/* See page_idle.h for !64BIT workaround */ 622#else /* !CONFIG_PAGE_IDLE_FLAG */ 623FOLIO_FLAG_FALSE(young) 624FOLIO_TEST_CLEAR_FLAG_FALSE(young) 625FOLIO_FLAG_FALSE(idle) 626#endif 627 628/* 629 * PageReported() is used to track reported free pages within the Buddy 630 * allocator. We can use the non-atomic version of the test and set 631 * operations as both should be shielded with the zone lock to prevent 632 * any possible races on the setting or clearing of the bit. 633 */ 634__PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 635 636#ifdef CONFIG_MEMORY_HOTPLUG 637PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY) 638#else 639PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted) 640#endif 641 642/* 643 * On an anonymous folio mapped into a user virtual memory area, 644 * folio->mapping points to its anon_vma, not to a struct address_space; 645 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 646 * 647 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 648 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 649 * bit; and then folio->mapping points, not to an anon_vma, but to a private 650 * structure which KSM associates with that merged page. See ksm.h. 651 * 652 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 653 * page and then folio->mapping points to a struct movable_operations. 654 * 655 * Please note that, confusingly, "folio_mapping" refers to the inode 656 * address_space which maps the folio from disk; whereas "folio_mapped" 657 * refers to user virtual address space into which the folio is mapped. 658 * 659 * For slab pages, since slab reuses the bits in struct page to store its 660 * internal states, the folio->mapping does not exist as such, nor do 661 * these flags below. So in order to avoid testing non-existent bits, 662 * please make sure that folio_test_slab(folio) actually evaluates to 663 * false before calling the following functions (e.g., folio_test_anon). 664 * See mm/slab.h. 665 */ 666#define PAGE_MAPPING_ANON 0x1 667#define PAGE_MAPPING_MOVABLE 0x2 668#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 669#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 670 671/* 672 * Different with flags above, this flag is used only for fsdax mode. It 673 * indicates that this page->mapping is now under reflink case. 674 */ 675#define PAGE_MAPPING_DAX_SHARED ((void *)0x1) 676 677static __always_inline bool folio_mapping_flags(const struct folio *folio) 678{ 679 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0; 680} 681 682static __always_inline bool PageMappingFlags(const struct page *page) 683{ 684 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 685} 686 687static __always_inline bool folio_test_anon(const struct folio *folio) 688{ 689 return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0; 690} 691 692static __always_inline bool PageAnon(const struct page *page) 693{ 694 return folio_test_anon(page_folio(page)); 695} 696 697static __always_inline bool __folio_test_movable(const struct folio *folio) 698{ 699 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 700 PAGE_MAPPING_MOVABLE; 701} 702 703static __always_inline bool __PageMovable(const struct page *page) 704{ 705 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 706 PAGE_MAPPING_MOVABLE; 707} 708 709#ifdef CONFIG_KSM 710/* 711 * A KSM page is one of those write-protected "shared pages" or "merged pages" 712 * which KSM maps into multiple mms, wherever identical anonymous page content 713 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 714 * anon_vma, but to that page's node of the stable tree. 715 */ 716static __always_inline bool folio_test_ksm(const struct folio *folio) 717{ 718 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 719 PAGE_MAPPING_KSM; 720} 721 722static __always_inline bool PageKsm(const struct page *page) 723{ 724 return folio_test_ksm(page_folio(page)); 725} 726#else 727TESTPAGEFLAG_FALSE(Ksm, ksm) 728#endif 729 730u64 stable_page_flags(const struct page *page); 731 732/** 733 * folio_xor_flags_has_waiters - Change some folio flags. 734 * @folio: The folio. 735 * @mask: Bits set in this word will be changed. 736 * 737 * This must only be used for flags which are changed with the folio 738 * lock held. For example, it is unsafe to use for PG_dirty as that 739 * can be set without the folio lock held. It can also only be used 740 * on flags which are in the range 0-6 as some of the implementations 741 * only affect those bits. 742 * 743 * Return: Whether there are tasks waiting on the folio. 744 */ 745static inline bool folio_xor_flags_has_waiters(struct folio *folio, 746 unsigned long mask) 747{ 748 return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0)); 749} 750 751/** 752 * folio_test_uptodate - Is this folio up to date? 753 * @folio: The folio. 754 * 755 * The uptodate flag is set on a folio when every byte in the folio is 756 * at least as new as the corresponding bytes on storage. Anonymous 757 * and CoW folios are always uptodate. If the folio is not uptodate, 758 * some of the bytes in it may be; see the is_partially_uptodate() 759 * address_space operation. 760 */ 761static inline bool folio_test_uptodate(const struct folio *folio) 762{ 763 bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0)); 764 /* 765 * Must ensure that the data we read out of the folio is loaded 766 * _after_ we've loaded folio->flags to check the uptodate bit. 767 * We can skip the barrier if the folio is not uptodate, because 768 * we wouldn't be reading anything from it. 769 * 770 * See folio_mark_uptodate() for the other side of the story. 771 */ 772 if (ret) 773 smp_rmb(); 774 775 return ret; 776} 777 778static inline bool PageUptodate(const struct page *page) 779{ 780 return folio_test_uptodate(page_folio(page)); 781} 782 783static __always_inline void __folio_mark_uptodate(struct folio *folio) 784{ 785 smp_wmb(); 786 __set_bit(PG_uptodate, folio_flags(folio, 0)); 787} 788 789static __always_inline void folio_mark_uptodate(struct folio *folio) 790{ 791 /* 792 * Memory barrier must be issued before setting the PG_uptodate bit, 793 * so that all previous stores issued in order to bring the folio 794 * uptodate are actually visible before folio_test_uptodate becomes true. 795 */ 796 smp_wmb(); 797 set_bit(PG_uptodate, folio_flags(folio, 0)); 798} 799 800static __always_inline void __SetPageUptodate(struct page *page) 801{ 802 __folio_mark_uptodate((struct folio *)page); 803} 804 805static __always_inline void SetPageUptodate(struct page *page) 806{ 807 folio_mark_uptodate((struct folio *)page); 808} 809 810CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 811 812void __folio_start_writeback(struct folio *folio, bool keep_write); 813void set_page_writeback(struct page *page); 814 815#define folio_start_writeback(folio) \ 816 __folio_start_writeback(folio, false) 817#define folio_start_writeback_keepwrite(folio) \ 818 __folio_start_writeback(folio, true) 819 820static __always_inline bool folio_test_head(const struct folio *folio) 821{ 822 return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY)); 823} 824 825static __always_inline int PageHead(const struct page *page) 826{ 827 PF_POISONED_CHECK(page); 828 return test_bit(PG_head, &page->flags) && !page_is_fake_head(page); 829} 830 831__SETPAGEFLAG(Head, head, PF_ANY) 832__CLEARPAGEFLAG(Head, head, PF_ANY) 833CLEARPAGEFLAG(Head, head, PF_ANY) 834 835/** 836 * folio_test_large() - Does this folio contain more than one page? 837 * @folio: The folio to test. 838 * 839 * Return: True if the folio is larger than one page. 840 */ 841static inline bool folio_test_large(const struct folio *folio) 842{ 843 return folio_test_head(folio); 844} 845 846static __always_inline void set_compound_head(struct page *page, struct page *head) 847{ 848 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 849} 850 851static __always_inline void clear_compound_head(struct page *page) 852{ 853 WRITE_ONCE(page->compound_head, 0); 854} 855 856#ifdef CONFIG_TRANSPARENT_HUGEPAGE 857static inline void ClearPageCompound(struct page *page) 858{ 859 BUG_ON(!PageHead(page)); 860 ClearPageHead(page); 861} 862FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE) 863FOLIO_TEST_FLAG(partially_mapped, FOLIO_SECOND_PAGE) 864/* 865 * PG_partially_mapped is protected by deferred_split split_queue_lock, 866 * so its safe to use non-atomic set/clear. 867 */ 868__FOLIO_SET_FLAG(partially_mapped, FOLIO_SECOND_PAGE) 869__FOLIO_CLEAR_FLAG(partially_mapped, FOLIO_SECOND_PAGE) 870#else 871FOLIO_FLAG_FALSE(large_rmappable) 872FOLIO_TEST_FLAG_FALSE(partially_mapped) 873__FOLIO_SET_FLAG_NOOP(partially_mapped) 874__FOLIO_CLEAR_FLAG_NOOP(partially_mapped) 875#endif 876 877#define PG_head_mask ((1UL << PG_head)) 878 879#ifdef CONFIG_TRANSPARENT_HUGEPAGE 880/* 881 * PageHuge() only returns true for hugetlbfs pages, but not for 882 * normal or transparent huge pages. 883 * 884 * PageTransHuge() returns true for both transparent huge and 885 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 886 * called only in the core VM paths where hugetlbfs pages can't exist. 887 */ 888static inline int PageTransHuge(const struct page *page) 889{ 890 VM_BUG_ON_PAGE(PageTail(page), page); 891 return PageHead(page); 892} 893 894/* 895 * PageTransCompound returns true for both transparent huge pages 896 * and hugetlbfs pages, so it should only be called when it's known 897 * that hugetlbfs pages aren't involved. 898 */ 899static inline int PageTransCompound(const struct page *page) 900{ 901 return PageCompound(page); 902} 903 904/* 905 * PageTransTail returns true for both transparent huge pages 906 * and hugetlbfs pages, so it should only be called when it's known 907 * that hugetlbfs pages aren't involved. 908 */ 909static inline int PageTransTail(const struct page *page) 910{ 911 return PageTail(page); 912} 913#else 914TESTPAGEFLAG_FALSE(TransHuge, transhuge) 915TESTPAGEFLAG_FALSE(TransCompound, transcompound) 916TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap) 917TESTPAGEFLAG_FALSE(TransTail, transtail) 918#endif 919 920#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 921/* 922 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the 923 * compound page. 924 * 925 * This flag is set by hwpoison handler. Cleared by THP split or free page. 926 */ 927PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 928 TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 929#else 930PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 931 TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 932#endif 933 934/* 935 * For pages that do not use mapcount, page_type may be used. 936 * The low 24 bits of pagetype may be used for your own purposes, as long 937 * as you are careful to not affect the top 8 bits. The low bits of 938 * pagetype will be overwritten when you clear the page_type from the page. 939 */ 940enum pagetype { 941 /* 0x00-0x7f are positive numbers, ie mapcount */ 942 /* Reserve 0x80-0xef for mapcount overflow. */ 943 PGTY_buddy = 0xf0, 944 PGTY_offline = 0xf1, 945 PGTY_table = 0xf2, 946 PGTY_guard = 0xf3, 947 PGTY_hugetlb = 0xf4, 948 PGTY_slab = 0xf5, 949 PGTY_zsmalloc = 0xf6, 950 PGTY_unaccepted = 0xf7, 951 952 PGTY_mapcount_underflow = 0xff 953}; 954 955static inline bool page_type_has_type(int page_type) 956{ 957 return page_type < (PGTY_mapcount_underflow << 24); 958} 959 960/* This takes a mapcount which is one more than page->_mapcount */ 961static inline bool page_mapcount_is_type(unsigned int mapcount) 962{ 963 return page_type_has_type(mapcount - 1); 964} 965 966static inline bool page_has_type(const struct page *page) 967{ 968 return page_mapcount_is_type(data_race(page->page_type)); 969} 970 971#define FOLIO_TYPE_OPS(lname, fname) \ 972static __always_inline bool folio_test_##fname(const struct folio *folio) \ 973{ \ 974 return data_race(folio->page.page_type >> 24) == PGTY_##lname; \ 975} \ 976static __always_inline void __folio_set_##fname(struct folio *folio) \ 977{ \ 978 if (folio_test_##fname(folio)) \ 979 return; \ 980 VM_BUG_ON_FOLIO(data_race(folio->page.page_type) != UINT_MAX, \ 981 folio); \ 982 folio->page.page_type = (unsigned int)PGTY_##lname << 24; \ 983} \ 984static __always_inline void __folio_clear_##fname(struct folio *folio) \ 985{ \ 986 if (folio->page.page_type == UINT_MAX) \ 987 return; \ 988 VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio); \ 989 folio->page.page_type = UINT_MAX; \ 990} 991 992#define PAGE_TYPE_OPS(uname, lname, fname) \ 993FOLIO_TYPE_OPS(lname, fname) \ 994static __always_inline int Page##uname(const struct page *page) \ 995{ \ 996 return data_race(page->page_type >> 24) == PGTY_##lname; \ 997} \ 998static __always_inline void __SetPage##uname(struct page *page) \ 999{ \ 1000 if (Page##uname(page)) \ 1001 return; \ 1002 VM_BUG_ON_PAGE(data_race(page->page_type) != UINT_MAX, page); \ 1003 page->page_type = (unsigned int)PGTY_##lname << 24; \ 1004} \ 1005static __always_inline void __ClearPage##uname(struct page *page) \ 1006{ \ 1007 if (page->page_type == UINT_MAX) \ 1008 return; \ 1009 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 1010 page->page_type = UINT_MAX; \ 1011} 1012 1013/* 1014 * PageBuddy() indicates that the page is free and in the buddy system 1015 * (see mm/page_alloc.c). 1016 */ 1017PAGE_TYPE_OPS(Buddy, buddy, buddy) 1018 1019/* 1020 * PageOffline() indicates that the page is logically offline although the 1021 * containing section is online. (e.g. inflated in a balloon driver or 1022 * not onlined when onlining the section). 1023 * The content of these pages is effectively stale. Such pages should not 1024 * be touched (read/write/dump/save) except by their owner. 1025 * 1026 * When a memory block gets onlined, all pages are initialized with a 1027 * refcount of 1 and PageOffline(). generic_online_page() will 1028 * take care of clearing PageOffline(). 1029 * 1030 * If a driver wants to allow to offline unmovable PageOffline() pages without 1031 * putting them back to the buddy, it can do so via the memory notifier by 1032 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 1033 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 1034 * pages (now with a reference count of zero) are treated like free (unmanaged) 1035 * pages, allowing the containing memory block to get offlined. A driver that 1036 * relies on this feature is aware that re-onlining the memory block will 1037 * require not giving them to the buddy via generic_online_page(). 1038 * 1039 * Memory offlining code will not adjust the managed page count for any 1040 * PageOffline() pages, treating them like they were never exposed to the 1041 * buddy using generic_online_page(). 1042 * 1043 * There are drivers that mark a page PageOffline() and expect there won't be 1044 * any further access to page content. PFN walkers that read content of random 1045 * pages should check PageOffline() and synchronize with such drivers using 1046 * page_offline_freeze()/page_offline_thaw(). 1047 */ 1048PAGE_TYPE_OPS(Offline, offline, offline) 1049 1050extern void page_offline_freeze(void); 1051extern void page_offline_thaw(void); 1052extern void page_offline_begin(void); 1053extern void page_offline_end(void); 1054 1055/* 1056 * Marks pages in use as page tables. 1057 */ 1058PAGE_TYPE_OPS(Table, table, pgtable) 1059 1060/* 1061 * Marks guardpages used with debug_pagealloc. 1062 */ 1063PAGE_TYPE_OPS(Guard, guard, guard) 1064 1065FOLIO_TYPE_OPS(slab, slab) 1066 1067/** 1068 * PageSlab - Determine if the page belongs to the slab allocator 1069 * @page: The page to test. 1070 * 1071 * Context: Any context. 1072 * Return: True for slab pages, false for any other kind of page. 1073 */ 1074static inline bool PageSlab(const struct page *page) 1075{ 1076 return folio_test_slab(page_folio(page)); 1077} 1078 1079#ifdef CONFIG_HUGETLB_PAGE 1080FOLIO_TYPE_OPS(hugetlb, hugetlb) 1081#else 1082FOLIO_TEST_FLAG_FALSE(hugetlb) 1083#endif 1084 1085PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc) 1086 1087/* 1088 * Mark pages that has to be accepted before touched for the first time. 1089 * 1090 * Serialized with zone lock. 1091 */ 1092PAGE_TYPE_OPS(Unaccepted, unaccepted, unaccepted) 1093 1094/** 1095 * PageHuge - Determine if the page belongs to hugetlbfs 1096 * @page: The page to test. 1097 * 1098 * Context: Any context. 1099 * Return: True for hugetlbfs pages, false for anon pages or pages 1100 * belonging to other filesystems. 1101 */ 1102static inline bool PageHuge(const struct page *page) 1103{ 1104 return folio_test_hugetlb(page_folio(page)); 1105} 1106 1107/* 1108 * Check if a page is currently marked HWPoisoned. Note that this check is 1109 * best effort only and inherently racy: there is no way to synchronize with 1110 * failing hardware. 1111 */ 1112static inline bool is_page_hwpoison(const struct page *page) 1113{ 1114 const struct folio *folio; 1115 1116 if (PageHWPoison(page)) 1117 return true; 1118 folio = page_folio(page); 1119 return folio_test_hugetlb(folio) && PageHWPoison(&folio->page); 1120} 1121 1122bool is_free_buddy_page(const struct page *page); 1123 1124PAGEFLAG(Isolated, isolated, PF_ANY); 1125 1126static __always_inline int PageAnonExclusive(const struct page *page) 1127{ 1128 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1129 /* 1130 * HugeTLB stores this information on the head page; THP keeps it per 1131 * page 1132 */ 1133 if (PageHuge(page)) 1134 page = compound_head(page); 1135 return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1136} 1137 1138static __always_inline void SetPageAnonExclusive(struct page *page) 1139{ 1140 VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page); 1141 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1142 set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1143} 1144 1145static __always_inline void ClearPageAnonExclusive(struct page *page) 1146{ 1147 VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page); 1148 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1149 clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1150} 1151 1152static __always_inline void __ClearPageAnonExclusive(struct page *page) 1153{ 1154 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1155 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1156 __clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1157} 1158 1159#ifdef CONFIG_MMU 1160#define __PG_MLOCKED (1UL << PG_mlocked) 1161#else 1162#define __PG_MLOCKED 0 1163#endif 1164 1165/* 1166 * Flags checked when a page is freed. Pages being freed should not have 1167 * these flags set. If they are, there is a problem. 1168 */ 1169#define PAGE_FLAGS_CHECK_AT_FREE \ 1170 (1UL << PG_lru | 1UL << PG_locked | \ 1171 1UL << PG_private | 1UL << PG_private_2 | \ 1172 1UL << PG_writeback | 1UL << PG_reserved | \ 1173 1UL << PG_active | \ 1174 1UL << PG_unevictable | __PG_MLOCKED | LRU_GEN_MASK) 1175 1176/* 1177 * Flags checked when a page is prepped for return by the page allocator. 1178 * Pages being prepped should not have these flags set. If they are set, 1179 * there has been a kernel bug or struct page corruption. 1180 * 1181 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 1182 * alloc-free cycle to prevent from reusing the page. 1183 */ 1184#define PAGE_FLAGS_CHECK_AT_PREP \ 1185 ((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK) 1186 1187/* 1188 * Flags stored in the second page of a compound page. They may overlap 1189 * the CHECK_AT_FREE flags above, so need to be cleared. 1190 */ 1191#define PAGE_FLAGS_SECOND \ 1192 (0xffUL /* order */ | 1UL << PG_has_hwpoisoned | \ 1193 1UL << PG_large_rmappable | 1UL << PG_partially_mapped) 1194 1195#define PAGE_FLAGS_PRIVATE \ 1196 (1UL << PG_private | 1UL << PG_private_2) 1197/** 1198 * folio_has_private - Determine if folio has private stuff 1199 * @folio: The folio to be checked 1200 * 1201 * Determine if a folio has private stuff, indicating that release routines 1202 * should be invoked upon it. 1203 */ 1204static inline int folio_has_private(const struct folio *folio) 1205{ 1206 return !!(folio->flags & PAGE_FLAGS_PRIVATE); 1207} 1208 1209#undef PF_ANY 1210#undef PF_HEAD 1211#undef PF_NO_TAIL 1212#undef PF_NO_COMPOUND 1213#undef PF_SECOND 1214#endif /* !__GENERATING_BOUNDS_H */ 1215 1216#endif /* PAGE_FLAGS_H */