Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/pgalloc_tag.h>
9#include <linux/bug.h>
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/atomic.h>
14#include <linux/debug_locks.h>
15#include <linux/mm_types.h>
16#include <linux/mmap_lock.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/percpu-refcount.h>
20#include <linux/bit_spinlock.h>
21#include <linux/shrinker.h>
22#include <linux/resource.h>
23#include <linux/page_ext.h>
24#include <linux/err.h>
25#include <linux/page-flags.h>
26#include <linux/page_ref.h>
27#include <linux/overflow.h>
28#include <linux/sizes.h>
29#include <linux/sched.h>
30#include <linux/pgtable.h>
31#include <linux/kasan.h>
32#include <linux/memremap.h>
33#include <linux/slab.h>
34
35struct mempolicy;
36struct anon_vma;
37struct anon_vma_chain;
38struct user_struct;
39struct pt_regs;
40struct folio_batch;
41
42extern int sysctl_page_lock_unfairness;
43
44void mm_core_init(void);
45void init_mm_internals(void);
46
47#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
48extern unsigned long max_mapnr;
49
50static inline void set_max_mapnr(unsigned long limit)
51{
52 max_mapnr = limit;
53}
54#else
55static inline void set_max_mapnr(unsigned long limit) { }
56#endif
57
58extern atomic_long_t _totalram_pages;
59static inline unsigned long totalram_pages(void)
60{
61 return (unsigned long)atomic_long_read(&_totalram_pages);
62}
63
64static inline void totalram_pages_inc(void)
65{
66 atomic_long_inc(&_totalram_pages);
67}
68
69static inline void totalram_pages_dec(void)
70{
71 atomic_long_dec(&_totalram_pages);
72}
73
74static inline void totalram_pages_add(long count)
75{
76 atomic_long_add(count, &_totalram_pages);
77}
78
79extern void * high_memory;
80extern int page_cluster;
81extern const int page_cluster_max;
82
83#ifdef CONFIG_SYSCTL
84extern int sysctl_legacy_va_layout;
85#else
86#define sysctl_legacy_va_layout 0
87#endif
88
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90extern const int mmap_rnd_bits_min;
91extern int mmap_rnd_bits_max __ro_after_init;
92extern int mmap_rnd_bits __read_mostly;
93#endif
94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95extern const int mmap_rnd_compat_bits_min;
96extern const int mmap_rnd_compat_bits_max;
97extern int mmap_rnd_compat_bits __read_mostly;
98#endif
99
100#ifndef PHYSMEM_END
101# ifdef MAX_PHYSMEM_BITS
102# define PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
103# else
104# define PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
105# endif
106#endif
107
108#include <asm/page.h>
109#include <asm/processor.h>
110
111#ifndef __pa_symbol
112#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
113#endif
114
115#ifndef page_to_virt
116#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
117#endif
118
119#ifndef lm_alias
120#define lm_alias(x) __va(__pa_symbol(x))
121#endif
122
123/*
124 * To prevent common memory management code establishing
125 * a zero page mapping on a read fault.
126 * This macro should be defined within <asm/pgtable.h>.
127 * s390 does this to prevent multiplexing of hardware bits
128 * related to the physical page in case of virtualization.
129 */
130#ifndef mm_forbids_zeropage
131#define mm_forbids_zeropage(X) (0)
132#endif
133
134/*
135 * On some architectures it is expensive to call memset() for small sizes.
136 * If an architecture decides to implement their own version of
137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138 * define their own version of this macro in <asm/pgtable.h>
139 */
140#if BITS_PER_LONG == 64
141/* This function must be updated when the size of struct page grows above 96
142 * or reduces below 56. The idea that compiler optimizes out switch()
143 * statement, and only leaves move/store instructions. Also the compiler can
144 * combine write statements if they are both assignments and can be reordered,
145 * this can result in several of the writes here being dropped.
146 */
147#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
148static inline void __mm_zero_struct_page(struct page *page)
149{
150 unsigned long *_pp = (void *)page;
151
152 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
153 BUILD_BUG_ON(sizeof(struct page) & 7);
154 BUILD_BUG_ON(sizeof(struct page) < 56);
155 BUILD_BUG_ON(sizeof(struct page) > 96);
156
157 switch (sizeof(struct page)) {
158 case 96:
159 _pp[11] = 0;
160 fallthrough;
161 case 88:
162 _pp[10] = 0;
163 fallthrough;
164 case 80:
165 _pp[9] = 0;
166 fallthrough;
167 case 72:
168 _pp[8] = 0;
169 fallthrough;
170 case 64:
171 _pp[7] = 0;
172 fallthrough;
173 case 56:
174 _pp[6] = 0;
175 _pp[5] = 0;
176 _pp[4] = 0;
177 _pp[3] = 0;
178 _pp[2] = 0;
179 _pp[1] = 0;
180 _pp[0] = 0;
181 }
182}
183#else
184#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
185#endif
186
187/*
188 * Default maximum number of active map areas, this limits the number of vmas
189 * per mm struct. Users can overwrite this number by sysctl but there is a
190 * problem.
191 *
192 * When a program's coredump is generated as ELF format, a section is created
193 * per a vma. In ELF, the number of sections is represented in unsigned short.
194 * This means the number of sections should be smaller than 65535 at coredump.
195 * Because the kernel adds some informative sections to a image of program at
196 * generating coredump, we need some margin. The number of extra sections is
197 * 1-3 now and depends on arch. We use "5" as safe margin, here.
198 *
199 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
200 * not a hard limit any more. Although some userspace tools can be surprised by
201 * that.
202 */
203#define MAPCOUNT_ELF_CORE_MARGIN (5)
204#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
205
206extern int sysctl_max_map_count;
207
208extern unsigned long sysctl_user_reserve_kbytes;
209extern unsigned long sysctl_admin_reserve_kbytes;
210
211extern int sysctl_overcommit_memory;
212extern int sysctl_overcommit_ratio;
213extern unsigned long sysctl_overcommit_kbytes;
214
215int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
216 loff_t *);
217int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
218 loff_t *);
219int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
220 loff_t *);
221
222#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
223#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
224#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
225#else
226#define nth_page(page,n) ((page) + (n))
227#define folio_page_idx(folio, p) ((p) - &(folio)->page)
228#endif
229
230/* to align the pointer to the (next) page boundary */
231#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
232
233/* to align the pointer to the (prev) page boundary */
234#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
235
236/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
237#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
238
239static inline struct folio *lru_to_folio(struct list_head *head)
240{
241 return list_entry((head)->prev, struct folio, lru);
242}
243
244void setup_initial_init_mm(void *start_code, void *end_code,
245 void *end_data, void *brk);
246
247/*
248 * Linux kernel virtual memory manager primitives.
249 * The idea being to have a "virtual" mm in the same way
250 * we have a virtual fs - giving a cleaner interface to the
251 * mm details, and allowing different kinds of memory mappings
252 * (from shared memory to executable loading to arbitrary
253 * mmap() functions).
254 */
255
256struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258void vm_area_free(struct vm_area_struct *);
259/* Use only if VMA has no other users */
260void __vm_area_free(struct vm_area_struct *vma);
261
262#ifndef CONFIG_MMU
263extern struct rb_root nommu_region_tree;
264extern struct rw_semaphore nommu_region_sem;
265
266extern unsigned int kobjsize(const void *objp);
267#endif
268
269/*
270 * vm_flags in vm_area_struct, see mm_types.h.
271 * When changing, update also include/trace/events/mmflags.h
272 */
273#define VM_NONE 0x00000000
274
275#define VM_READ 0x00000001 /* currently active flags */
276#define VM_WRITE 0x00000002
277#define VM_EXEC 0x00000004
278#define VM_SHARED 0x00000008
279
280/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
281#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
282#define VM_MAYWRITE 0x00000020
283#define VM_MAYEXEC 0x00000040
284#define VM_MAYSHARE 0x00000080
285
286#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
287#ifdef CONFIG_MMU
288#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
289#else /* CONFIG_MMU */
290#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
291#define VM_UFFD_MISSING 0
292#endif /* CONFIG_MMU */
293#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
294#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
295
296#define VM_LOCKED 0x00002000
297#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
298
299 /* Used by sys_madvise() */
300#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
301#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
302
303#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
304#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
305#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
306#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
307#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
308#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
309#define VM_SYNC 0x00800000 /* Synchronous page faults */
310#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
311#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
312#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
313
314#ifdef CONFIG_MEM_SOFT_DIRTY
315# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
316#else
317# define VM_SOFTDIRTY 0
318#endif
319
320#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
321#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
322#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
323#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
324
325#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
326#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
327#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
328#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
329#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
330#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
331#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
332#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
333#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
334#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
335#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
336#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
337#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
338#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
339
340#ifdef CONFIG_ARCH_HAS_PKEYS
341# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
342# define VM_PKEY_BIT0 VM_HIGH_ARCH_0
343# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
344# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
345#if CONFIG_ARCH_PKEY_BITS > 3
346# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
347#else
348# define VM_PKEY_BIT3 0
349#endif
350#if CONFIG_ARCH_PKEY_BITS > 4
351# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
352#else
353# define VM_PKEY_BIT4 0
354#endif
355#endif /* CONFIG_ARCH_HAS_PKEYS */
356
357#ifdef CONFIG_X86_USER_SHADOW_STACK
358/*
359 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
360 * support core mm.
361 *
362 * These VMAs will get a single end guard page. This helps userspace protect
363 * itself from attacks. A single page is enough for current shadow stack archs
364 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
365 * for more details on the guard size.
366 */
367# define VM_SHADOW_STACK VM_HIGH_ARCH_5
368#else
369# define VM_SHADOW_STACK VM_NONE
370#endif
371
372#if defined(CONFIG_X86)
373# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
374#elif defined(CONFIG_PPC64)
375# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
376#elif defined(CONFIG_PARISC)
377# define VM_GROWSUP VM_ARCH_1
378#elif defined(CONFIG_SPARC64)
379# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
380# define VM_ARCH_CLEAR VM_SPARC_ADI
381#elif defined(CONFIG_ARM64)
382# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
383# define VM_ARCH_CLEAR VM_ARM64_BTI
384#elif !defined(CONFIG_MMU)
385# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
386#endif
387
388#if defined(CONFIG_ARM64_MTE)
389# define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
390# define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
391#else
392# define VM_MTE VM_NONE
393# define VM_MTE_ALLOWED VM_NONE
394#endif
395
396#ifndef VM_GROWSUP
397# define VM_GROWSUP VM_NONE
398#endif
399
400#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
401# define VM_UFFD_MINOR_BIT 38
402# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
403#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
404# define VM_UFFD_MINOR VM_NONE
405#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
406
407/*
408 * This flag is used to connect VFIO to arch specific KVM code. It
409 * indicates that the memory under this VMA is safe for use with any
410 * non-cachable memory type inside KVM. Some VFIO devices, on some
411 * platforms, are thought to be unsafe and can cause machine crashes
412 * if KVM does not lock down the memory type.
413 */
414#ifdef CONFIG_64BIT
415#define VM_ALLOW_ANY_UNCACHED_BIT 39
416#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
417#else
418#define VM_ALLOW_ANY_UNCACHED VM_NONE
419#endif
420
421#ifdef CONFIG_64BIT
422#define VM_DROPPABLE_BIT 40
423#define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
424#elif defined(CONFIG_PPC32)
425#define VM_DROPPABLE VM_ARCH_1
426#else
427#define VM_DROPPABLE VM_NONE
428#endif
429
430#ifdef CONFIG_64BIT
431/* VM is sealed, in vm_flags */
432#define VM_SEALED _BITUL(63)
433#endif
434
435/* Bits set in the VMA until the stack is in its final location */
436#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
437
438#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
439
440/* Common data flag combinations */
441#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
442 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
443#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
444 VM_MAYWRITE | VM_MAYEXEC)
445#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
446 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
447
448#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
449#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
450#endif
451
452#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
453#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
454#endif
455
456#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
457
458#ifdef CONFIG_STACK_GROWSUP
459#define VM_STACK VM_GROWSUP
460#define VM_STACK_EARLY VM_GROWSDOWN
461#else
462#define VM_STACK VM_GROWSDOWN
463#define VM_STACK_EARLY 0
464#endif
465
466#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
467
468/* VMA basic access permission flags */
469#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
470
471
472/*
473 * Special vmas that are non-mergable, non-mlock()able.
474 */
475#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
476
477/* This mask prevents VMA from being scanned with khugepaged */
478#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
479
480/* This mask defines which mm->def_flags a process can inherit its parent */
481#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
482
483/* This mask represents all the VMA flag bits used by mlock */
484#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
485
486/* Arch-specific flags to clear when updating VM flags on protection change */
487#ifndef VM_ARCH_CLEAR
488# define VM_ARCH_CLEAR VM_NONE
489#endif
490#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
491
492/*
493 * mapping from the currently active vm_flags protection bits (the
494 * low four bits) to a page protection mask..
495 */
496
497/*
498 * The default fault flags that should be used by most of the
499 * arch-specific page fault handlers.
500 */
501#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
502 FAULT_FLAG_KILLABLE | \
503 FAULT_FLAG_INTERRUPTIBLE)
504
505/**
506 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
507 * @flags: Fault flags.
508 *
509 * This is mostly used for places where we want to try to avoid taking
510 * the mmap_lock for too long a time when waiting for another condition
511 * to change, in which case we can try to be polite to release the
512 * mmap_lock in the first round to avoid potential starvation of other
513 * processes that would also want the mmap_lock.
514 *
515 * Return: true if the page fault allows retry and this is the first
516 * attempt of the fault handling; false otherwise.
517 */
518static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
519{
520 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
521 (!(flags & FAULT_FLAG_TRIED));
522}
523
524#define FAULT_FLAG_TRACE \
525 { FAULT_FLAG_WRITE, "WRITE" }, \
526 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
527 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
528 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
529 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
530 { FAULT_FLAG_TRIED, "TRIED" }, \
531 { FAULT_FLAG_USER, "USER" }, \
532 { FAULT_FLAG_REMOTE, "REMOTE" }, \
533 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
534 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
535 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
536
537/*
538 * vm_fault is filled by the pagefault handler and passed to the vma's
539 * ->fault function. The vma's ->fault is responsible for returning a bitmask
540 * of VM_FAULT_xxx flags that give details about how the fault was handled.
541 *
542 * MM layer fills up gfp_mask for page allocations but fault handler might
543 * alter it if its implementation requires a different allocation context.
544 *
545 * pgoff should be used in favour of virtual_address, if possible.
546 */
547struct vm_fault {
548 const struct {
549 struct vm_area_struct *vma; /* Target VMA */
550 gfp_t gfp_mask; /* gfp mask to be used for allocations */
551 pgoff_t pgoff; /* Logical page offset based on vma */
552 unsigned long address; /* Faulting virtual address - masked */
553 unsigned long real_address; /* Faulting virtual address - unmasked */
554 };
555 enum fault_flag flags; /* FAULT_FLAG_xxx flags
556 * XXX: should really be 'const' */
557 pmd_t *pmd; /* Pointer to pmd entry matching
558 * the 'address' */
559 pud_t *pud; /* Pointer to pud entry matching
560 * the 'address'
561 */
562 union {
563 pte_t orig_pte; /* Value of PTE at the time of fault */
564 pmd_t orig_pmd; /* Value of PMD at the time of fault,
565 * used by PMD fault only.
566 */
567 };
568
569 struct page *cow_page; /* Page handler may use for COW fault */
570 struct page *page; /* ->fault handlers should return a
571 * page here, unless VM_FAULT_NOPAGE
572 * is set (which is also implied by
573 * VM_FAULT_ERROR).
574 */
575 /* These three entries are valid only while holding ptl lock */
576 pte_t *pte; /* Pointer to pte entry matching
577 * the 'address'. NULL if the page
578 * table hasn't been allocated.
579 */
580 spinlock_t *ptl; /* Page table lock.
581 * Protects pte page table if 'pte'
582 * is not NULL, otherwise pmd.
583 */
584 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
585 * vm_ops->map_pages() sets up a page
586 * table from atomic context.
587 * do_fault_around() pre-allocates
588 * page table to avoid allocation from
589 * atomic context.
590 */
591};
592
593/*
594 * These are the virtual MM functions - opening of an area, closing and
595 * unmapping it (needed to keep files on disk up-to-date etc), pointer
596 * to the functions called when a no-page or a wp-page exception occurs.
597 */
598struct vm_operations_struct {
599 void (*open)(struct vm_area_struct * area);
600 /**
601 * @close: Called when the VMA is being removed from the MM.
602 * Context: User context. May sleep. Caller holds mmap_lock.
603 */
604 void (*close)(struct vm_area_struct * area);
605 /* Called any time before splitting to check if it's allowed */
606 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
607 int (*mremap)(struct vm_area_struct *area);
608 /*
609 * Called by mprotect() to make driver-specific permission
610 * checks before mprotect() is finalised. The VMA must not
611 * be modified. Returns 0 if mprotect() can proceed.
612 */
613 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
614 unsigned long end, unsigned long newflags);
615 vm_fault_t (*fault)(struct vm_fault *vmf);
616 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
617 vm_fault_t (*map_pages)(struct vm_fault *vmf,
618 pgoff_t start_pgoff, pgoff_t end_pgoff);
619 unsigned long (*pagesize)(struct vm_area_struct * area);
620
621 /* notification that a previously read-only page is about to become
622 * writable, if an error is returned it will cause a SIGBUS */
623 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
624
625 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
626 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
627
628 /* called by access_process_vm when get_user_pages() fails, typically
629 * for use by special VMAs. See also generic_access_phys() for a generic
630 * implementation useful for any iomem mapping.
631 */
632 int (*access)(struct vm_area_struct *vma, unsigned long addr,
633 void *buf, int len, int write);
634
635 /* Called by the /proc/PID/maps code to ask the vma whether it
636 * has a special name. Returning non-NULL will also cause this
637 * vma to be dumped unconditionally. */
638 const char *(*name)(struct vm_area_struct *vma);
639
640#ifdef CONFIG_NUMA
641 /*
642 * set_policy() op must add a reference to any non-NULL @new mempolicy
643 * to hold the policy upon return. Caller should pass NULL @new to
644 * remove a policy and fall back to surrounding context--i.e. do not
645 * install a MPOL_DEFAULT policy, nor the task or system default
646 * mempolicy.
647 */
648 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
649
650 /*
651 * get_policy() op must add reference [mpol_get()] to any policy at
652 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
653 * in mm/mempolicy.c will do this automatically.
654 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
655 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
656 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
657 * must return NULL--i.e., do not "fallback" to task or system default
658 * policy.
659 */
660 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
661 unsigned long addr, pgoff_t *ilx);
662#endif
663 /*
664 * Called by vm_normal_page() for special PTEs to find the
665 * page for @addr. This is useful if the default behavior
666 * (using pte_page()) would not find the correct page.
667 */
668 struct page *(*find_special_page)(struct vm_area_struct *vma,
669 unsigned long addr);
670};
671
672#ifdef CONFIG_NUMA_BALANCING
673static inline void vma_numab_state_init(struct vm_area_struct *vma)
674{
675 vma->numab_state = NULL;
676}
677static inline void vma_numab_state_free(struct vm_area_struct *vma)
678{
679 kfree(vma->numab_state);
680}
681#else
682static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
683static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
684#endif /* CONFIG_NUMA_BALANCING */
685
686#ifdef CONFIG_PER_VMA_LOCK
687/*
688 * Try to read-lock a vma. The function is allowed to occasionally yield false
689 * locked result to avoid performance overhead, in which case we fall back to
690 * using mmap_lock. The function should never yield false unlocked result.
691 */
692static inline bool vma_start_read(struct vm_area_struct *vma)
693{
694 /*
695 * Check before locking. A race might cause false locked result.
696 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
697 * ACQUIRE semantics, because this is just a lockless check whose result
698 * we don't rely on for anything - the mm_lock_seq read against which we
699 * need ordering is below.
700 */
701 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
702 return false;
703
704 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
705 return false;
706
707 /*
708 * Overflow might produce false locked result.
709 * False unlocked result is impossible because we modify and check
710 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
711 * modification invalidates all existing locks.
712 *
713 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
714 * racing with vma_end_write_all(), we only start reading from the VMA
715 * after it has been unlocked.
716 * This pairs with RELEASE semantics in vma_end_write_all().
717 */
718 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
719 up_read(&vma->vm_lock->lock);
720 return false;
721 }
722 return true;
723}
724
725static inline void vma_end_read(struct vm_area_struct *vma)
726{
727 rcu_read_lock(); /* keeps vma alive till the end of up_read */
728 up_read(&vma->vm_lock->lock);
729 rcu_read_unlock();
730}
731
732/* WARNING! Can only be used if mmap_lock is expected to be write-locked */
733static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
734{
735 mmap_assert_write_locked(vma->vm_mm);
736
737 /*
738 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
739 * mm->mm_lock_seq can't be concurrently modified.
740 */
741 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
742 return (vma->vm_lock_seq == *mm_lock_seq);
743}
744
745/*
746 * Begin writing to a VMA.
747 * Exclude concurrent readers under the per-VMA lock until the currently
748 * write-locked mmap_lock is dropped or downgraded.
749 */
750static inline void vma_start_write(struct vm_area_struct *vma)
751{
752 int mm_lock_seq;
753
754 if (__is_vma_write_locked(vma, &mm_lock_seq))
755 return;
756
757 down_write(&vma->vm_lock->lock);
758 /*
759 * We should use WRITE_ONCE() here because we can have concurrent reads
760 * from the early lockless pessimistic check in vma_start_read().
761 * We don't really care about the correctness of that early check, but
762 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
763 */
764 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
765 up_write(&vma->vm_lock->lock);
766}
767
768static inline void vma_assert_write_locked(struct vm_area_struct *vma)
769{
770 int mm_lock_seq;
771
772 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
773}
774
775static inline void vma_assert_locked(struct vm_area_struct *vma)
776{
777 if (!rwsem_is_locked(&vma->vm_lock->lock))
778 vma_assert_write_locked(vma);
779}
780
781static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
782{
783 /* When detaching vma should be write-locked */
784 if (detached)
785 vma_assert_write_locked(vma);
786 vma->detached = detached;
787}
788
789static inline void release_fault_lock(struct vm_fault *vmf)
790{
791 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
792 vma_end_read(vmf->vma);
793 else
794 mmap_read_unlock(vmf->vma->vm_mm);
795}
796
797static inline void assert_fault_locked(struct vm_fault *vmf)
798{
799 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
800 vma_assert_locked(vmf->vma);
801 else
802 mmap_assert_locked(vmf->vma->vm_mm);
803}
804
805struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
806 unsigned long address);
807
808#else /* CONFIG_PER_VMA_LOCK */
809
810static inline bool vma_start_read(struct vm_area_struct *vma)
811 { return false; }
812static inline void vma_end_read(struct vm_area_struct *vma) {}
813static inline void vma_start_write(struct vm_area_struct *vma) {}
814static inline void vma_assert_write_locked(struct vm_area_struct *vma)
815 { mmap_assert_write_locked(vma->vm_mm); }
816static inline void vma_mark_detached(struct vm_area_struct *vma,
817 bool detached) {}
818
819static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
820 unsigned long address)
821{
822 return NULL;
823}
824
825static inline void vma_assert_locked(struct vm_area_struct *vma)
826{
827 mmap_assert_locked(vma->vm_mm);
828}
829
830static inline void release_fault_lock(struct vm_fault *vmf)
831{
832 mmap_read_unlock(vmf->vma->vm_mm);
833}
834
835static inline void assert_fault_locked(struct vm_fault *vmf)
836{
837 mmap_assert_locked(vmf->vma->vm_mm);
838}
839
840#endif /* CONFIG_PER_VMA_LOCK */
841
842extern const struct vm_operations_struct vma_dummy_vm_ops;
843
844/*
845 * WARNING: vma_init does not initialize vma->vm_lock.
846 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
847 */
848static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
849{
850 memset(vma, 0, sizeof(*vma));
851 vma->vm_mm = mm;
852 vma->vm_ops = &vma_dummy_vm_ops;
853 INIT_LIST_HEAD(&vma->anon_vma_chain);
854 vma_mark_detached(vma, false);
855 vma_numab_state_init(vma);
856}
857
858/* Use when VMA is not part of the VMA tree and needs no locking */
859static inline void vm_flags_init(struct vm_area_struct *vma,
860 vm_flags_t flags)
861{
862 ACCESS_PRIVATE(vma, __vm_flags) = flags;
863}
864
865/*
866 * Use when VMA is part of the VMA tree and modifications need coordination
867 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
868 * it should be locked explicitly beforehand.
869 */
870static inline void vm_flags_reset(struct vm_area_struct *vma,
871 vm_flags_t flags)
872{
873 vma_assert_write_locked(vma);
874 vm_flags_init(vma, flags);
875}
876
877static inline void vm_flags_reset_once(struct vm_area_struct *vma,
878 vm_flags_t flags)
879{
880 vma_assert_write_locked(vma);
881 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
882}
883
884static inline void vm_flags_set(struct vm_area_struct *vma,
885 vm_flags_t flags)
886{
887 vma_start_write(vma);
888 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
889}
890
891static inline void vm_flags_clear(struct vm_area_struct *vma,
892 vm_flags_t flags)
893{
894 vma_start_write(vma);
895 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
896}
897
898/*
899 * Use only if VMA is not part of the VMA tree or has no other users and
900 * therefore needs no locking.
901 */
902static inline void __vm_flags_mod(struct vm_area_struct *vma,
903 vm_flags_t set, vm_flags_t clear)
904{
905 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
906}
907
908/*
909 * Use only when the order of set/clear operations is unimportant, otherwise
910 * use vm_flags_{set|clear} explicitly.
911 */
912static inline void vm_flags_mod(struct vm_area_struct *vma,
913 vm_flags_t set, vm_flags_t clear)
914{
915 vma_start_write(vma);
916 __vm_flags_mod(vma, set, clear);
917}
918
919static inline void vma_set_anonymous(struct vm_area_struct *vma)
920{
921 vma->vm_ops = NULL;
922}
923
924static inline bool vma_is_anonymous(struct vm_area_struct *vma)
925{
926 return !vma->vm_ops;
927}
928
929/*
930 * Indicate if the VMA is a heap for the given task; for
931 * /proc/PID/maps that is the heap of the main task.
932 */
933static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
934{
935 return vma->vm_start < vma->vm_mm->brk &&
936 vma->vm_end > vma->vm_mm->start_brk;
937}
938
939/*
940 * Indicate if the VMA is a stack for the given task; for
941 * /proc/PID/maps that is the stack of the main task.
942 */
943static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
944{
945 /*
946 * We make no effort to guess what a given thread considers to be
947 * its "stack". It's not even well-defined for programs written
948 * languages like Go.
949 */
950 return vma->vm_start <= vma->vm_mm->start_stack &&
951 vma->vm_end >= vma->vm_mm->start_stack;
952}
953
954static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
955{
956 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
957
958 if (!maybe_stack)
959 return false;
960
961 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
962 VM_STACK_INCOMPLETE_SETUP)
963 return true;
964
965 return false;
966}
967
968static inline bool vma_is_foreign(struct vm_area_struct *vma)
969{
970 if (!current->mm)
971 return true;
972
973 if (current->mm != vma->vm_mm)
974 return true;
975
976 return false;
977}
978
979static inline bool vma_is_accessible(struct vm_area_struct *vma)
980{
981 return vma->vm_flags & VM_ACCESS_FLAGS;
982}
983
984static inline bool is_shared_maywrite(vm_flags_t vm_flags)
985{
986 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
987 (VM_SHARED | VM_MAYWRITE);
988}
989
990static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
991{
992 return is_shared_maywrite(vma->vm_flags);
993}
994
995static inline
996struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
997{
998 return mas_find(&vmi->mas, max - 1);
999}
1000
1001static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1002{
1003 /*
1004 * Uses mas_find() to get the first VMA when the iterator starts.
1005 * Calling mas_next() could skip the first entry.
1006 */
1007 return mas_find(&vmi->mas, ULONG_MAX);
1008}
1009
1010static inline
1011struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1012{
1013 return mas_next_range(&vmi->mas, ULONG_MAX);
1014}
1015
1016
1017static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1018{
1019 return mas_prev(&vmi->mas, 0);
1020}
1021
1022static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1023 unsigned long start, unsigned long end, gfp_t gfp)
1024{
1025 __mas_set_range(&vmi->mas, start, end - 1);
1026 mas_store_gfp(&vmi->mas, NULL, gfp);
1027 if (unlikely(mas_is_err(&vmi->mas)))
1028 return -ENOMEM;
1029
1030 return 0;
1031}
1032
1033/* Free any unused preallocations */
1034static inline void vma_iter_free(struct vma_iterator *vmi)
1035{
1036 mas_destroy(&vmi->mas);
1037}
1038
1039static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1040 struct vm_area_struct *vma)
1041{
1042 vmi->mas.index = vma->vm_start;
1043 vmi->mas.last = vma->vm_end - 1;
1044 mas_store(&vmi->mas, vma);
1045 if (unlikely(mas_is_err(&vmi->mas)))
1046 return -ENOMEM;
1047
1048 return 0;
1049}
1050
1051static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1052{
1053 mas_pause(&vmi->mas);
1054}
1055
1056static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1057{
1058 mas_set(&vmi->mas, addr);
1059}
1060
1061#define for_each_vma(__vmi, __vma) \
1062 while (((__vma) = vma_next(&(__vmi))) != NULL)
1063
1064/* The MM code likes to work with exclusive end addresses */
1065#define for_each_vma_range(__vmi, __vma, __end) \
1066 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1067
1068#ifdef CONFIG_SHMEM
1069/*
1070 * The vma_is_shmem is not inline because it is used only by slow
1071 * paths in userfault.
1072 */
1073bool vma_is_shmem(struct vm_area_struct *vma);
1074bool vma_is_anon_shmem(struct vm_area_struct *vma);
1075#else
1076static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1077static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1078#endif
1079
1080int vma_is_stack_for_current(struct vm_area_struct *vma);
1081
1082/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1083#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1084
1085struct mmu_gather;
1086struct inode;
1087
1088/*
1089 * compound_order() can be called without holding a reference, which means
1090 * that niceties like page_folio() don't work. These callers should be
1091 * prepared to handle wild return values. For example, PG_head may be
1092 * set before the order is initialised, or this may be a tail page.
1093 * See compaction.c for some good examples.
1094 */
1095static inline unsigned int compound_order(struct page *page)
1096{
1097 struct folio *folio = (struct folio *)page;
1098
1099 if (!test_bit(PG_head, &folio->flags))
1100 return 0;
1101 return folio->_flags_1 & 0xff;
1102}
1103
1104/**
1105 * folio_order - The allocation order of a folio.
1106 * @folio: The folio.
1107 *
1108 * A folio is composed of 2^order pages. See get_order() for the definition
1109 * of order.
1110 *
1111 * Return: The order of the folio.
1112 */
1113static inline unsigned int folio_order(const struct folio *folio)
1114{
1115 if (!folio_test_large(folio))
1116 return 0;
1117 return folio->_flags_1 & 0xff;
1118}
1119
1120#include <linux/huge_mm.h>
1121
1122/*
1123 * Methods to modify the page usage count.
1124 *
1125 * What counts for a page usage:
1126 * - cache mapping (page->mapping)
1127 * - private data (page->private)
1128 * - page mapped in a task's page tables, each mapping
1129 * is counted separately
1130 *
1131 * Also, many kernel routines increase the page count before a critical
1132 * routine so they can be sure the page doesn't go away from under them.
1133 */
1134
1135/*
1136 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1137 */
1138static inline int put_page_testzero(struct page *page)
1139{
1140 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1141 return page_ref_dec_and_test(page);
1142}
1143
1144static inline int folio_put_testzero(struct folio *folio)
1145{
1146 return put_page_testzero(&folio->page);
1147}
1148
1149/*
1150 * Try to grab a ref unless the page has a refcount of zero, return false if
1151 * that is the case.
1152 * This can be called when MMU is off so it must not access
1153 * any of the virtual mappings.
1154 */
1155static inline bool get_page_unless_zero(struct page *page)
1156{
1157 return page_ref_add_unless(page, 1, 0);
1158}
1159
1160static inline struct folio *folio_get_nontail_page(struct page *page)
1161{
1162 if (unlikely(!get_page_unless_zero(page)))
1163 return NULL;
1164 return (struct folio *)page;
1165}
1166
1167extern int page_is_ram(unsigned long pfn);
1168
1169enum {
1170 REGION_INTERSECTS,
1171 REGION_DISJOINT,
1172 REGION_MIXED,
1173};
1174
1175int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1176 unsigned long desc);
1177
1178/* Support for virtually mapped pages */
1179struct page *vmalloc_to_page(const void *addr);
1180unsigned long vmalloc_to_pfn(const void *addr);
1181
1182/*
1183 * Determine if an address is within the vmalloc range
1184 *
1185 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1186 * is no special casing required.
1187 */
1188#ifdef CONFIG_MMU
1189extern bool is_vmalloc_addr(const void *x);
1190extern int is_vmalloc_or_module_addr(const void *x);
1191#else
1192static inline bool is_vmalloc_addr(const void *x)
1193{
1194 return false;
1195}
1196static inline int is_vmalloc_or_module_addr(const void *x)
1197{
1198 return 0;
1199}
1200#endif
1201
1202/*
1203 * How many times the entire folio is mapped as a single unit (eg by a
1204 * PMD or PUD entry). This is probably not what you want, except for
1205 * debugging purposes or implementation of other core folio_*() primitives.
1206 */
1207static inline int folio_entire_mapcount(const struct folio *folio)
1208{
1209 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1210 return atomic_read(&folio->_entire_mapcount) + 1;
1211}
1212
1213static inline int folio_large_mapcount(const struct folio *folio)
1214{
1215 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1216 return atomic_read(&folio->_large_mapcount) + 1;
1217}
1218
1219/**
1220 * folio_mapcount() - Number of mappings of this folio.
1221 * @folio: The folio.
1222 *
1223 * The folio mapcount corresponds to the number of present user page table
1224 * entries that reference any part of a folio. Each such present user page
1225 * table entry must be paired with exactly on folio reference.
1226 *
1227 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1228 * exactly once.
1229 *
1230 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1231 * references the entire folio counts exactly once, even when such special
1232 * page table entries are comprised of multiple ordinary page table entries.
1233 *
1234 * Will report 0 for pages which cannot be mapped into userspace, such as
1235 * slab, page tables and similar.
1236 *
1237 * Return: The number of times this folio is mapped.
1238 */
1239static inline int folio_mapcount(const struct folio *folio)
1240{
1241 int mapcount;
1242
1243 if (likely(!folio_test_large(folio))) {
1244 mapcount = atomic_read(&folio->_mapcount) + 1;
1245 if (page_mapcount_is_type(mapcount))
1246 mapcount = 0;
1247 return mapcount;
1248 }
1249 return folio_large_mapcount(folio);
1250}
1251
1252/**
1253 * folio_mapped - Is this folio mapped into userspace?
1254 * @folio: The folio.
1255 *
1256 * Return: True if any page in this folio is referenced by user page tables.
1257 */
1258static inline bool folio_mapped(const struct folio *folio)
1259{
1260 return folio_mapcount(folio) >= 1;
1261}
1262
1263/*
1264 * Return true if this page is mapped into pagetables.
1265 * For compound page it returns true if any sub-page of compound page is mapped,
1266 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1267 */
1268static inline bool page_mapped(const struct page *page)
1269{
1270 return folio_mapped(page_folio(page));
1271}
1272
1273static inline struct page *virt_to_head_page(const void *x)
1274{
1275 struct page *page = virt_to_page(x);
1276
1277 return compound_head(page);
1278}
1279
1280static inline struct folio *virt_to_folio(const void *x)
1281{
1282 struct page *page = virt_to_page(x);
1283
1284 return page_folio(page);
1285}
1286
1287void __folio_put(struct folio *folio);
1288
1289void put_pages_list(struct list_head *pages);
1290
1291void split_page(struct page *page, unsigned int order);
1292void folio_copy(struct folio *dst, struct folio *src);
1293int folio_mc_copy(struct folio *dst, struct folio *src);
1294
1295unsigned long nr_free_buffer_pages(void);
1296
1297/* Returns the number of bytes in this potentially compound page. */
1298static inline unsigned long page_size(struct page *page)
1299{
1300 return PAGE_SIZE << compound_order(page);
1301}
1302
1303/* Returns the number of bits needed for the number of bytes in a page */
1304static inline unsigned int page_shift(struct page *page)
1305{
1306 return PAGE_SHIFT + compound_order(page);
1307}
1308
1309/**
1310 * thp_order - Order of a transparent huge page.
1311 * @page: Head page of a transparent huge page.
1312 */
1313static inline unsigned int thp_order(struct page *page)
1314{
1315 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1316 return compound_order(page);
1317}
1318
1319/**
1320 * thp_size - Size of a transparent huge page.
1321 * @page: Head page of a transparent huge page.
1322 *
1323 * Return: Number of bytes in this page.
1324 */
1325static inline unsigned long thp_size(struct page *page)
1326{
1327 return PAGE_SIZE << thp_order(page);
1328}
1329
1330#ifdef CONFIG_MMU
1331/*
1332 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1333 * servicing faults for write access. In the normal case, do always want
1334 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1335 * that do not have writing enabled, when used by access_process_vm.
1336 */
1337static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1338{
1339 if (likely(vma->vm_flags & VM_WRITE))
1340 pte = pte_mkwrite(pte, vma);
1341 return pte;
1342}
1343
1344vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1345void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1346 struct page *page, unsigned int nr, unsigned long addr);
1347
1348vm_fault_t finish_fault(struct vm_fault *vmf);
1349#endif
1350
1351/*
1352 * Multiple processes may "see" the same page. E.g. for untouched
1353 * mappings of /dev/null, all processes see the same page full of
1354 * zeroes, and text pages of executables and shared libraries have
1355 * only one copy in memory, at most, normally.
1356 *
1357 * For the non-reserved pages, page_count(page) denotes a reference count.
1358 * page_count() == 0 means the page is free. page->lru is then used for
1359 * freelist management in the buddy allocator.
1360 * page_count() > 0 means the page has been allocated.
1361 *
1362 * Pages are allocated by the slab allocator in order to provide memory
1363 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1364 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1365 * unless a particular usage is carefully commented. (the responsibility of
1366 * freeing the kmalloc memory is the caller's, of course).
1367 *
1368 * A page may be used by anyone else who does a __get_free_page().
1369 * In this case, page_count still tracks the references, and should only
1370 * be used through the normal accessor functions. The top bits of page->flags
1371 * and page->virtual store page management information, but all other fields
1372 * are unused and could be used privately, carefully. The management of this
1373 * page is the responsibility of the one who allocated it, and those who have
1374 * subsequently been given references to it.
1375 *
1376 * The other pages (we may call them "pagecache pages") are completely
1377 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1378 * The following discussion applies only to them.
1379 *
1380 * A pagecache page contains an opaque `private' member, which belongs to the
1381 * page's address_space. Usually, this is the address of a circular list of
1382 * the page's disk buffers. PG_private must be set to tell the VM to call
1383 * into the filesystem to release these pages.
1384 *
1385 * A page may belong to an inode's memory mapping. In this case, page->mapping
1386 * is the pointer to the inode, and page->index is the file offset of the page,
1387 * in units of PAGE_SIZE.
1388 *
1389 * If pagecache pages are not associated with an inode, they are said to be
1390 * anonymous pages. These may become associated with the swapcache, and in that
1391 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1392 *
1393 * In either case (swapcache or inode backed), the pagecache itself holds one
1394 * reference to the page. Setting PG_private should also increment the
1395 * refcount. The each user mapping also has a reference to the page.
1396 *
1397 * The pagecache pages are stored in a per-mapping radix tree, which is
1398 * rooted at mapping->i_pages, and indexed by offset.
1399 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1400 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1401 *
1402 * All pagecache pages may be subject to I/O:
1403 * - inode pages may need to be read from disk,
1404 * - inode pages which have been modified and are MAP_SHARED may need
1405 * to be written back to the inode on disk,
1406 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1407 * modified may need to be swapped out to swap space and (later) to be read
1408 * back into memory.
1409 */
1410
1411#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1412DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1413
1414bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1415static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1416{
1417 if (!static_branch_unlikely(&devmap_managed_key))
1418 return false;
1419 if (!folio_is_zone_device(folio))
1420 return false;
1421 return __put_devmap_managed_folio_refs(folio, refs);
1422}
1423#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1424static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1425{
1426 return false;
1427}
1428#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1429
1430/* 127: arbitrary random number, small enough to assemble well */
1431#define folio_ref_zero_or_close_to_overflow(folio) \
1432 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1433
1434/**
1435 * folio_get - Increment the reference count on a folio.
1436 * @folio: The folio.
1437 *
1438 * Context: May be called in any context, as long as you know that
1439 * you have a refcount on the folio. If you do not already have one,
1440 * folio_try_get() may be the right interface for you to use.
1441 */
1442static inline void folio_get(struct folio *folio)
1443{
1444 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1445 folio_ref_inc(folio);
1446}
1447
1448static inline void get_page(struct page *page)
1449{
1450 folio_get(page_folio(page));
1451}
1452
1453static inline __must_check bool try_get_page(struct page *page)
1454{
1455 page = compound_head(page);
1456 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1457 return false;
1458 page_ref_inc(page);
1459 return true;
1460}
1461
1462/**
1463 * folio_put - Decrement the reference count on a folio.
1464 * @folio: The folio.
1465 *
1466 * If the folio's reference count reaches zero, the memory will be
1467 * released back to the page allocator and may be used by another
1468 * allocation immediately. Do not access the memory or the struct folio
1469 * after calling folio_put() unless you can be sure that it wasn't the
1470 * last reference.
1471 *
1472 * Context: May be called in process or interrupt context, but not in NMI
1473 * context. May be called while holding a spinlock.
1474 */
1475static inline void folio_put(struct folio *folio)
1476{
1477 if (folio_put_testzero(folio))
1478 __folio_put(folio);
1479}
1480
1481/**
1482 * folio_put_refs - Reduce the reference count on a folio.
1483 * @folio: The folio.
1484 * @refs: The amount to subtract from the folio's reference count.
1485 *
1486 * If the folio's reference count reaches zero, the memory will be
1487 * released back to the page allocator and may be used by another
1488 * allocation immediately. Do not access the memory or the struct folio
1489 * after calling folio_put_refs() unless you can be sure that these weren't
1490 * the last references.
1491 *
1492 * Context: May be called in process or interrupt context, but not in NMI
1493 * context. May be called while holding a spinlock.
1494 */
1495static inline void folio_put_refs(struct folio *folio, int refs)
1496{
1497 if (folio_ref_sub_and_test(folio, refs))
1498 __folio_put(folio);
1499}
1500
1501void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1502
1503/*
1504 * union release_pages_arg - an array of pages or folios
1505 *
1506 * release_pages() releases a simple array of multiple pages, and
1507 * accepts various different forms of said page array: either
1508 * a regular old boring array of pages, an array of folios, or
1509 * an array of encoded page pointers.
1510 *
1511 * The transparent union syntax for this kind of "any of these
1512 * argument types" is all kinds of ugly, so look away.
1513 */
1514typedef union {
1515 struct page **pages;
1516 struct folio **folios;
1517 struct encoded_page **encoded_pages;
1518} release_pages_arg __attribute__ ((__transparent_union__));
1519
1520void release_pages(release_pages_arg, int nr);
1521
1522/**
1523 * folios_put - Decrement the reference count on an array of folios.
1524 * @folios: The folios.
1525 *
1526 * Like folio_put(), but for a batch of folios. This is more efficient
1527 * than writing the loop yourself as it will optimise the locks which need
1528 * to be taken if the folios are freed. The folios batch is returned
1529 * empty and ready to be reused for another batch; there is no need to
1530 * reinitialise it.
1531 *
1532 * Context: May be called in process or interrupt context, but not in NMI
1533 * context. May be called while holding a spinlock.
1534 */
1535static inline void folios_put(struct folio_batch *folios)
1536{
1537 folios_put_refs(folios, NULL);
1538}
1539
1540static inline void put_page(struct page *page)
1541{
1542 struct folio *folio = page_folio(page);
1543
1544 /*
1545 * For some devmap managed pages we need to catch refcount transition
1546 * from 2 to 1:
1547 */
1548 if (put_devmap_managed_folio_refs(folio, 1))
1549 return;
1550 folio_put(folio);
1551}
1552
1553/*
1554 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1555 * the page's refcount so that two separate items are tracked: the original page
1556 * reference count, and also a new count of how many pin_user_pages() calls were
1557 * made against the page. ("gup-pinned" is another term for the latter).
1558 *
1559 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1560 * distinct from normal pages. As such, the unpin_user_page() call (and its
1561 * variants) must be used in order to release gup-pinned pages.
1562 *
1563 * Choice of value:
1564 *
1565 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1566 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1567 * simpler, due to the fact that adding an even power of two to the page
1568 * refcount has the effect of using only the upper N bits, for the code that
1569 * counts up using the bias value. This means that the lower bits are left for
1570 * the exclusive use of the original code that increments and decrements by one
1571 * (or at least, by much smaller values than the bias value).
1572 *
1573 * Of course, once the lower bits overflow into the upper bits (and this is
1574 * OK, because subtraction recovers the original values), then visual inspection
1575 * no longer suffices to directly view the separate counts. However, for normal
1576 * applications that don't have huge page reference counts, this won't be an
1577 * issue.
1578 *
1579 * Locking: the lockless algorithm described in folio_try_get_rcu()
1580 * provides safe operation for get_user_pages(), folio_mkclean() and
1581 * other calls that race to set up page table entries.
1582 */
1583#define GUP_PIN_COUNTING_BIAS (1U << 10)
1584
1585void unpin_user_page(struct page *page);
1586void unpin_folio(struct folio *folio);
1587void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1588 bool make_dirty);
1589void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1590 bool make_dirty);
1591void unpin_user_pages(struct page **pages, unsigned long npages);
1592void unpin_user_folio(struct folio *folio, unsigned long npages);
1593void unpin_folios(struct folio **folios, unsigned long nfolios);
1594
1595static inline bool is_cow_mapping(vm_flags_t flags)
1596{
1597 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1598}
1599
1600#ifndef CONFIG_MMU
1601static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1602{
1603 /*
1604 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1605 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1606 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1607 * underlying memory if ptrace is active, so this is only possible if
1608 * ptrace does not apply. Note that there is no mprotect() to upgrade
1609 * write permissions later.
1610 */
1611 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1612}
1613#endif
1614
1615#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1616#define SECTION_IN_PAGE_FLAGS
1617#endif
1618
1619/*
1620 * The identification function is mainly used by the buddy allocator for
1621 * determining if two pages could be buddies. We are not really identifying
1622 * the zone since we could be using the section number id if we do not have
1623 * node id available in page flags.
1624 * We only guarantee that it will return the same value for two combinable
1625 * pages in a zone.
1626 */
1627static inline int page_zone_id(struct page *page)
1628{
1629 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1630}
1631
1632#ifdef NODE_NOT_IN_PAGE_FLAGS
1633int page_to_nid(const struct page *page);
1634#else
1635static inline int page_to_nid(const struct page *page)
1636{
1637 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1638}
1639#endif
1640
1641static inline int folio_nid(const struct folio *folio)
1642{
1643 return page_to_nid(&folio->page);
1644}
1645
1646#ifdef CONFIG_NUMA_BALANCING
1647/* page access time bits needs to hold at least 4 seconds */
1648#define PAGE_ACCESS_TIME_MIN_BITS 12
1649#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1650#define PAGE_ACCESS_TIME_BUCKETS \
1651 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1652#else
1653#define PAGE_ACCESS_TIME_BUCKETS 0
1654#endif
1655
1656#define PAGE_ACCESS_TIME_MASK \
1657 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1658
1659static inline int cpu_pid_to_cpupid(int cpu, int pid)
1660{
1661 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1662}
1663
1664static inline int cpupid_to_pid(int cpupid)
1665{
1666 return cpupid & LAST__PID_MASK;
1667}
1668
1669static inline int cpupid_to_cpu(int cpupid)
1670{
1671 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1672}
1673
1674static inline int cpupid_to_nid(int cpupid)
1675{
1676 return cpu_to_node(cpupid_to_cpu(cpupid));
1677}
1678
1679static inline bool cpupid_pid_unset(int cpupid)
1680{
1681 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1682}
1683
1684static inline bool cpupid_cpu_unset(int cpupid)
1685{
1686 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1687}
1688
1689static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1690{
1691 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1692}
1693
1694#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1695#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1696static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1697{
1698 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1699}
1700
1701static inline int folio_last_cpupid(struct folio *folio)
1702{
1703 return folio->_last_cpupid;
1704}
1705static inline void page_cpupid_reset_last(struct page *page)
1706{
1707 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1708}
1709#else
1710static inline int folio_last_cpupid(struct folio *folio)
1711{
1712 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1713}
1714
1715int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1716
1717static inline void page_cpupid_reset_last(struct page *page)
1718{
1719 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1720}
1721#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1722
1723static inline int folio_xchg_access_time(struct folio *folio, int time)
1724{
1725 int last_time;
1726
1727 last_time = folio_xchg_last_cpupid(folio,
1728 time >> PAGE_ACCESS_TIME_BUCKETS);
1729 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1730}
1731
1732static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1733{
1734 unsigned int pid_bit;
1735
1736 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1737 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1738 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1739 }
1740}
1741
1742bool folio_use_access_time(struct folio *folio);
1743#else /* !CONFIG_NUMA_BALANCING */
1744static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1745{
1746 return folio_nid(folio); /* XXX */
1747}
1748
1749static inline int folio_xchg_access_time(struct folio *folio, int time)
1750{
1751 return 0;
1752}
1753
1754static inline int folio_last_cpupid(struct folio *folio)
1755{
1756 return folio_nid(folio); /* XXX */
1757}
1758
1759static inline int cpupid_to_nid(int cpupid)
1760{
1761 return -1;
1762}
1763
1764static inline int cpupid_to_pid(int cpupid)
1765{
1766 return -1;
1767}
1768
1769static inline int cpupid_to_cpu(int cpupid)
1770{
1771 return -1;
1772}
1773
1774static inline int cpu_pid_to_cpupid(int nid, int pid)
1775{
1776 return -1;
1777}
1778
1779static inline bool cpupid_pid_unset(int cpupid)
1780{
1781 return true;
1782}
1783
1784static inline void page_cpupid_reset_last(struct page *page)
1785{
1786}
1787
1788static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1789{
1790 return false;
1791}
1792
1793static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1794{
1795}
1796static inline bool folio_use_access_time(struct folio *folio)
1797{
1798 return false;
1799}
1800#endif /* CONFIG_NUMA_BALANCING */
1801
1802#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1803
1804/*
1805 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1806 * setting tags for all pages to native kernel tag value 0xff, as the default
1807 * value 0x00 maps to 0xff.
1808 */
1809
1810static inline u8 page_kasan_tag(const struct page *page)
1811{
1812 u8 tag = KASAN_TAG_KERNEL;
1813
1814 if (kasan_enabled()) {
1815 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1816 tag ^= 0xff;
1817 }
1818
1819 return tag;
1820}
1821
1822static inline void page_kasan_tag_set(struct page *page, u8 tag)
1823{
1824 unsigned long old_flags, flags;
1825
1826 if (!kasan_enabled())
1827 return;
1828
1829 tag ^= 0xff;
1830 old_flags = READ_ONCE(page->flags);
1831 do {
1832 flags = old_flags;
1833 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1834 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1835 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1836}
1837
1838static inline void page_kasan_tag_reset(struct page *page)
1839{
1840 if (kasan_enabled())
1841 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1842}
1843
1844#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1845
1846static inline u8 page_kasan_tag(const struct page *page)
1847{
1848 return 0xff;
1849}
1850
1851static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1852static inline void page_kasan_tag_reset(struct page *page) { }
1853
1854#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1855
1856static inline struct zone *page_zone(const struct page *page)
1857{
1858 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1859}
1860
1861static inline pg_data_t *page_pgdat(const struct page *page)
1862{
1863 return NODE_DATA(page_to_nid(page));
1864}
1865
1866static inline struct zone *folio_zone(const struct folio *folio)
1867{
1868 return page_zone(&folio->page);
1869}
1870
1871static inline pg_data_t *folio_pgdat(const struct folio *folio)
1872{
1873 return page_pgdat(&folio->page);
1874}
1875
1876#ifdef SECTION_IN_PAGE_FLAGS
1877static inline void set_page_section(struct page *page, unsigned long section)
1878{
1879 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1880 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1881}
1882
1883static inline unsigned long page_to_section(const struct page *page)
1884{
1885 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1886}
1887#endif
1888
1889/**
1890 * folio_pfn - Return the Page Frame Number of a folio.
1891 * @folio: The folio.
1892 *
1893 * A folio may contain multiple pages. The pages have consecutive
1894 * Page Frame Numbers.
1895 *
1896 * Return: The Page Frame Number of the first page in the folio.
1897 */
1898static inline unsigned long folio_pfn(struct folio *folio)
1899{
1900 return page_to_pfn(&folio->page);
1901}
1902
1903static inline struct folio *pfn_folio(unsigned long pfn)
1904{
1905 return page_folio(pfn_to_page(pfn));
1906}
1907
1908/**
1909 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1910 * @folio: The folio.
1911 *
1912 * This function checks if a folio has been pinned via a call to
1913 * a function in the pin_user_pages() family.
1914 *
1915 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1916 * because it means "definitely not pinned for DMA", but true means "probably
1917 * pinned for DMA, but possibly a false positive due to having at least
1918 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1919 *
1920 * False positives are OK, because: a) it's unlikely for a folio to
1921 * get that many refcounts, and b) all the callers of this routine are
1922 * expected to be able to deal gracefully with a false positive.
1923 *
1924 * For large folios, the result will be exactly correct. That's because
1925 * we have more tracking data available: the _pincount field is used
1926 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1927 *
1928 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1929 *
1930 * Return: True, if it is likely that the folio has been "dma-pinned".
1931 * False, if the folio is definitely not dma-pinned.
1932 */
1933static inline bool folio_maybe_dma_pinned(struct folio *folio)
1934{
1935 if (folio_test_large(folio))
1936 return atomic_read(&folio->_pincount) > 0;
1937
1938 /*
1939 * folio_ref_count() is signed. If that refcount overflows, then
1940 * folio_ref_count() returns a negative value, and callers will avoid
1941 * further incrementing the refcount.
1942 *
1943 * Here, for that overflow case, use the sign bit to count a little
1944 * bit higher via unsigned math, and thus still get an accurate result.
1945 */
1946 return ((unsigned int)folio_ref_count(folio)) >=
1947 GUP_PIN_COUNTING_BIAS;
1948}
1949
1950/*
1951 * This should most likely only be called during fork() to see whether we
1952 * should break the cow immediately for an anon page on the src mm.
1953 *
1954 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1955 */
1956static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1957 struct folio *folio)
1958{
1959 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1960
1961 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1962 return false;
1963
1964 return folio_maybe_dma_pinned(folio);
1965}
1966
1967/**
1968 * is_zero_page - Query if a page is a zero page
1969 * @page: The page to query
1970 *
1971 * This returns true if @page is one of the permanent zero pages.
1972 */
1973static inline bool is_zero_page(const struct page *page)
1974{
1975 return is_zero_pfn(page_to_pfn(page));
1976}
1977
1978/**
1979 * is_zero_folio - Query if a folio is a zero page
1980 * @folio: The folio to query
1981 *
1982 * This returns true if @folio is one of the permanent zero pages.
1983 */
1984static inline bool is_zero_folio(const struct folio *folio)
1985{
1986 return is_zero_page(&folio->page);
1987}
1988
1989/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1990#ifdef CONFIG_MIGRATION
1991static inline bool folio_is_longterm_pinnable(struct folio *folio)
1992{
1993#ifdef CONFIG_CMA
1994 int mt = folio_migratetype(folio);
1995
1996 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1997 return false;
1998#endif
1999 /* The zero page can be "pinned" but gets special handling. */
2000 if (is_zero_folio(folio))
2001 return true;
2002
2003 /* Coherent device memory must always allow eviction. */
2004 if (folio_is_device_coherent(folio))
2005 return false;
2006
2007 /* Otherwise, non-movable zone folios can be pinned. */
2008 return !folio_is_zone_movable(folio);
2009
2010}
2011#else
2012static inline bool folio_is_longterm_pinnable(struct folio *folio)
2013{
2014 return true;
2015}
2016#endif
2017
2018static inline void set_page_zone(struct page *page, enum zone_type zone)
2019{
2020 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2021 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2022}
2023
2024static inline void set_page_node(struct page *page, unsigned long node)
2025{
2026 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2027 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2028}
2029
2030static inline void set_page_links(struct page *page, enum zone_type zone,
2031 unsigned long node, unsigned long pfn)
2032{
2033 set_page_zone(page, zone);
2034 set_page_node(page, node);
2035#ifdef SECTION_IN_PAGE_FLAGS
2036 set_page_section(page, pfn_to_section_nr(pfn));
2037#endif
2038}
2039
2040/**
2041 * folio_nr_pages - The number of pages in the folio.
2042 * @folio: The folio.
2043 *
2044 * Return: A positive power of two.
2045 */
2046static inline long folio_nr_pages(const struct folio *folio)
2047{
2048 if (!folio_test_large(folio))
2049 return 1;
2050#ifdef CONFIG_64BIT
2051 return folio->_folio_nr_pages;
2052#else
2053 return 1L << (folio->_flags_1 & 0xff);
2054#endif
2055}
2056
2057/* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2058#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2059#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2060#else
2061#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2062#endif
2063
2064/*
2065 * compound_nr() returns the number of pages in this potentially compound
2066 * page. compound_nr() can be called on a tail page, and is defined to
2067 * return 1 in that case.
2068 */
2069static inline unsigned long compound_nr(struct page *page)
2070{
2071 struct folio *folio = (struct folio *)page;
2072
2073 if (!test_bit(PG_head, &folio->flags))
2074 return 1;
2075#ifdef CONFIG_64BIT
2076 return folio->_folio_nr_pages;
2077#else
2078 return 1L << (folio->_flags_1 & 0xff);
2079#endif
2080}
2081
2082/**
2083 * thp_nr_pages - The number of regular pages in this huge page.
2084 * @page: The head page of a huge page.
2085 */
2086static inline int thp_nr_pages(struct page *page)
2087{
2088 return folio_nr_pages((struct folio *)page);
2089}
2090
2091/**
2092 * folio_next - Move to the next physical folio.
2093 * @folio: The folio we're currently operating on.
2094 *
2095 * If you have physically contiguous memory which may span more than
2096 * one folio (eg a &struct bio_vec), use this function to move from one
2097 * folio to the next. Do not use it if the memory is only virtually
2098 * contiguous as the folios are almost certainly not adjacent to each
2099 * other. This is the folio equivalent to writing ``page++``.
2100 *
2101 * Context: We assume that the folios are refcounted and/or locked at a
2102 * higher level and do not adjust the reference counts.
2103 * Return: The next struct folio.
2104 */
2105static inline struct folio *folio_next(struct folio *folio)
2106{
2107 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2108}
2109
2110/**
2111 * folio_shift - The size of the memory described by this folio.
2112 * @folio: The folio.
2113 *
2114 * A folio represents a number of bytes which is a power-of-two in size.
2115 * This function tells you which power-of-two the folio is. See also
2116 * folio_size() and folio_order().
2117 *
2118 * Context: The caller should have a reference on the folio to prevent
2119 * it from being split. It is not necessary for the folio to be locked.
2120 * Return: The base-2 logarithm of the size of this folio.
2121 */
2122static inline unsigned int folio_shift(const struct folio *folio)
2123{
2124 return PAGE_SHIFT + folio_order(folio);
2125}
2126
2127/**
2128 * folio_size - The number of bytes in a folio.
2129 * @folio: The folio.
2130 *
2131 * Context: The caller should have a reference on the folio to prevent
2132 * it from being split. It is not necessary for the folio to be locked.
2133 * Return: The number of bytes in this folio.
2134 */
2135static inline size_t folio_size(const struct folio *folio)
2136{
2137 return PAGE_SIZE << folio_order(folio);
2138}
2139
2140/**
2141 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2142 * tables of more than one MM
2143 * @folio: The folio.
2144 *
2145 * This function checks if the folio is currently mapped into more than one
2146 * MM ("mapped shared"), or if the folio is only mapped into a single MM
2147 * ("mapped exclusively").
2148 *
2149 * For KSM folios, this function also returns "mapped shared" when a folio is
2150 * mapped multiple times into the same MM, because the individual page mappings
2151 * are independent.
2152 *
2153 * As precise information is not easily available for all folios, this function
2154 * estimates the number of MMs ("sharers") that are currently mapping a folio
2155 * using the number of times the first page of the folio is currently mapped
2156 * into page tables.
2157 *
2158 * For small anonymous folios and anonymous hugetlb folios, the return
2159 * value will be exactly correct: non-KSM folios can only be mapped at most once
2160 * into an MM, and they cannot be partially mapped. KSM folios are
2161 * considered shared even if mapped multiple times into the same MM.
2162 *
2163 * For other folios, the result can be fuzzy:
2164 * #. For partially-mappable large folios (THP), the return value can wrongly
2165 * indicate "mapped exclusively" (false negative) when the folio is
2166 * only partially mapped into at least one MM.
2167 * #. For pagecache folios (including hugetlb), the return value can wrongly
2168 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2169 * cover the same file range.
2170 *
2171 * Further, this function only considers current page table mappings that
2172 * are tracked using the folio mapcount(s).
2173 *
2174 * This function does not consider:
2175 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2176 * pagecache, temporary unmapping for migration).
2177 * #. If the folio is mapped differently (VM_PFNMAP).
2178 * #. If hugetlb page table sharing applies. Callers might want to check
2179 * hugetlb_pmd_shared().
2180 *
2181 * Return: Whether the folio is estimated to be mapped into more than one MM.
2182 */
2183static inline bool folio_likely_mapped_shared(struct folio *folio)
2184{
2185 int mapcount = folio_mapcount(folio);
2186
2187 /* Only partially-mappable folios require more care. */
2188 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2189 return mapcount > 1;
2190
2191 /* A single mapping implies "mapped exclusively". */
2192 if (mapcount <= 1)
2193 return false;
2194
2195 /* If any page is mapped more than once we treat it "mapped shared". */
2196 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2197 return true;
2198
2199 /* Let's guess based on the first subpage. */
2200 return atomic_read(&folio->_mapcount) > 0;
2201}
2202
2203#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2204static inline int arch_make_folio_accessible(struct folio *folio)
2205{
2206 return 0;
2207}
2208#endif
2209
2210/*
2211 * Some inline functions in vmstat.h depend on page_zone()
2212 */
2213#include <linux/vmstat.h>
2214
2215#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2216#define HASHED_PAGE_VIRTUAL
2217#endif
2218
2219#if defined(WANT_PAGE_VIRTUAL)
2220static inline void *page_address(const struct page *page)
2221{
2222 return page->virtual;
2223}
2224static inline void set_page_address(struct page *page, void *address)
2225{
2226 page->virtual = address;
2227}
2228#define page_address_init() do { } while(0)
2229#endif
2230
2231#if defined(HASHED_PAGE_VIRTUAL)
2232void *page_address(const struct page *page);
2233void set_page_address(struct page *page, void *virtual);
2234void page_address_init(void);
2235#endif
2236
2237static __always_inline void *lowmem_page_address(const struct page *page)
2238{
2239 return page_to_virt(page);
2240}
2241
2242#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2243#define page_address(page) lowmem_page_address(page)
2244#define set_page_address(page, address) do { } while(0)
2245#define page_address_init() do { } while(0)
2246#endif
2247
2248static inline void *folio_address(const struct folio *folio)
2249{
2250 return page_address(&folio->page);
2251}
2252
2253/*
2254 * Return true only if the page has been allocated with
2255 * ALLOC_NO_WATERMARKS and the low watermark was not
2256 * met implying that the system is under some pressure.
2257 */
2258static inline bool page_is_pfmemalloc(const struct page *page)
2259{
2260 /*
2261 * lru.next has bit 1 set if the page is allocated from the
2262 * pfmemalloc reserves. Callers may simply overwrite it if
2263 * they do not need to preserve that information.
2264 */
2265 return (uintptr_t)page->lru.next & BIT(1);
2266}
2267
2268/*
2269 * Return true only if the folio has been allocated with
2270 * ALLOC_NO_WATERMARKS and the low watermark was not
2271 * met implying that the system is under some pressure.
2272 */
2273static inline bool folio_is_pfmemalloc(const struct folio *folio)
2274{
2275 /*
2276 * lru.next has bit 1 set if the page is allocated from the
2277 * pfmemalloc reserves. Callers may simply overwrite it if
2278 * they do not need to preserve that information.
2279 */
2280 return (uintptr_t)folio->lru.next & BIT(1);
2281}
2282
2283/*
2284 * Only to be called by the page allocator on a freshly allocated
2285 * page.
2286 */
2287static inline void set_page_pfmemalloc(struct page *page)
2288{
2289 page->lru.next = (void *)BIT(1);
2290}
2291
2292static inline void clear_page_pfmemalloc(struct page *page)
2293{
2294 page->lru.next = NULL;
2295}
2296
2297/*
2298 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2299 */
2300extern void pagefault_out_of_memory(void);
2301
2302#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2303#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2304#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2305
2306/*
2307 * Parameter block passed down to zap_pte_range in exceptional cases.
2308 */
2309struct zap_details {
2310 struct folio *single_folio; /* Locked folio to be unmapped */
2311 bool even_cows; /* Zap COWed private pages too? */
2312 zap_flags_t zap_flags; /* Extra flags for zapping */
2313};
2314
2315/*
2316 * Whether to drop the pte markers, for example, the uffd-wp information for
2317 * file-backed memory. This should only be specified when we will completely
2318 * drop the page in the mm, either by truncation or unmapping of the vma. By
2319 * default, the flag is not set.
2320 */
2321#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2322/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2323#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2324
2325#ifdef CONFIG_SCHED_MM_CID
2326void sched_mm_cid_before_execve(struct task_struct *t);
2327void sched_mm_cid_after_execve(struct task_struct *t);
2328void sched_mm_cid_fork(struct task_struct *t);
2329void sched_mm_cid_exit_signals(struct task_struct *t);
2330static inline int task_mm_cid(struct task_struct *t)
2331{
2332 return t->mm_cid;
2333}
2334#else
2335static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2336static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2337static inline void sched_mm_cid_fork(struct task_struct *t) { }
2338static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2339static inline int task_mm_cid(struct task_struct *t)
2340{
2341 /*
2342 * Use the processor id as a fall-back when the mm cid feature is
2343 * disabled. This provides functional per-cpu data structure accesses
2344 * in user-space, althrough it won't provide the memory usage benefits.
2345 */
2346 return raw_smp_processor_id();
2347}
2348#endif
2349
2350#ifdef CONFIG_MMU
2351extern bool can_do_mlock(void);
2352#else
2353static inline bool can_do_mlock(void) { return false; }
2354#endif
2355extern int user_shm_lock(size_t, struct ucounts *);
2356extern void user_shm_unlock(size_t, struct ucounts *);
2357
2358struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2359 pte_t pte);
2360struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2361 pte_t pte);
2362struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2363 unsigned long addr, pmd_t pmd);
2364struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2365 pmd_t pmd);
2366
2367void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2368 unsigned long size);
2369void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2370 unsigned long size, struct zap_details *details);
2371static inline void zap_vma_pages(struct vm_area_struct *vma)
2372{
2373 zap_page_range_single(vma, vma->vm_start,
2374 vma->vm_end - vma->vm_start, NULL);
2375}
2376void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2377 struct vm_area_struct *start_vma, unsigned long start,
2378 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2379
2380struct mmu_notifier_range;
2381
2382void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2383 unsigned long end, unsigned long floor, unsigned long ceiling);
2384int
2385copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2386int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2387 void *buf, int len, int write);
2388
2389struct follow_pfnmap_args {
2390 /**
2391 * Inputs:
2392 * @vma: Pointer to @vm_area_struct struct
2393 * @address: the virtual address to walk
2394 */
2395 struct vm_area_struct *vma;
2396 unsigned long address;
2397 /**
2398 * Internals:
2399 *
2400 * The caller shouldn't touch any of these.
2401 */
2402 spinlock_t *lock;
2403 pte_t *ptep;
2404 /**
2405 * Outputs:
2406 *
2407 * @pfn: the PFN of the address
2408 * @pgprot: the pgprot_t of the mapping
2409 * @writable: whether the mapping is writable
2410 * @special: whether the mapping is a special mapping (real PFN maps)
2411 */
2412 unsigned long pfn;
2413 pgprot_t pgprot;
2414 bool writable;
2415 bool special;
2416};
2417int follow_pfnmap_start(struct follow_pfnmap_args *args);
2418void follow_pfnmap_end(struct follow_pfnmap_args *args);
2419
2420extern void truncate_pagecache(struct inode *inode, loff_t new);
2421extern void truncate_setsize(struct inode *inode, loff_t newsize);
2422void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2423void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2424int generic_error_remove_folio(struct address_space *mapping,
2425 struct folio *folio);
2426
2427struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2428 unsigned long address, struct pt_regs *regs);
2429
2430#ifdef CONFIG_MMU
2431extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2432 unsigned long address, unsigned int flags,
2433 struct pt_regs *regs);
2434extern int fixup_user_fault(struct mm_struct *mm,
2435 unsigned long address, unsigned int fault_flags,
2436 bool *unlocked);
2437void unmap_mapping_pages(struct address_space *mapping,
2438 pgoff_t start, pgoff_t nr, bool even_cows);
2439void unmap_mapping_range(struct address_space *mapping,
2440 loff_t const holebegin, loff_t const holelen, int even_cows);
2441#else
2442static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2443 unsigned long address, unsigned int flags,
2444 struct pt_regs *regs)
2445{
2446 /* should never happen if there's no MMU */
2447 BUG();
2448 return VM_FAULT_SIGBUS;
2449}
2450static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2451 unsigned int fault_flags, bool *unlocked)
2452{
2453 /* should never happen if there's no MMU */
2454 BUG();
2455 return -EFAULT;
2456}
2457static inline void unmap_mapping_pages(struct address_space *mapping,
2458 pgoff_t start, pgoff_t nr, bool even_cows) { }
2459static inline void unmap_mapping_range(struct address_space *mapping,
2460 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2461#endif
2462
2463static inline void unmap_shared_mapping_range(struct address_space *mapping,
2464 loff_t const holebegin, loff_t const holelen)
2465{
2466 unmap_mapping_range(mapping, holebegin, holelen, 0);
2467}
2468
2469static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2470 unsigned long addr);
2471
2472extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2473 void *buf, int len, unsigned int gup_flags);
2474extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2475 void *buf, int len, unsigned int gup_flags);
2476
2477long get_user_pages_remote(struct mm_struct *mm,
2478 unsigned long start, unsigned long nr_pages,
2479 unsigned int gup_flags, struct page **pages,
2480 int *locked);
2481long pin_user_pages_remote(struct mm_struct *mm,
2482 unsigned long start, unsigned long nr_pages,
2483 unsigned int gup_flags, struct page **pages,
2484 int *locked);
2485
2486/*
2487 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2488 */
2489static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2490 unsigned long addr,
2491 int gup_flags,
2492 struct vm_area_struct **vmap)
2493{
2494 struct page *page;
2495 struct vm_area_struct *vma;
2496 int got;
2497
2498 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2499 return ERR_PTR(-EINVAL);
2500
2501 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2502
2503 if (got < 0)
2504 return ERR_PTR(got);
2505
2506 vma = vma_lookup(mm, addr);
2507 if (WARN_ON_ONCE(!vma)) {
2508 put_page(page);
2509 return ERR_PTR(-EINVAL);
2510 }
2511
2512 *vmap = vma;
2513 return page;
2514}
2515
2516long get_user_pages(unsigned long start, unsigned long nr_pages,
2517 unsigned int gup_flags, struct page **pages);
2518long pin_user_pages(unsigned long start, unsigned long nr_pages,
2519 unsigned int gup_flags, struct page **pages);
2520long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2521 struct page **pages, unsigned int gup_flags);
2522long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2523 struct page **pages, unsigned int gup_flags);
2524long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2525 struct folio **folios, unsigned int max_folios,
2526 pgoff_t *offset);
2527
2528int get_user_pages_fast(unsigned long start, int nr_pages,
2529 unsigned int gup_flags, struct page **pages);
2530int pin_user_pages_fast(unsigned long start, int nr_pages,
2531 unsigned int gup_flags, struct page **pages);
2532void folio_add_pin(struct folio *folio);
2533
2534int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2535int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2536 struct task_struct *task, bool bypass_rlim);
2537
2538struct kvec;
2539struct page *get_dump_page(unsigned long addr);
2540
2541bool folio_mark_dirty(struct folio *folio);
2542bool set_page_dirty(struct page *page);
2543int set_page_dirty_lock(struct page *page);
2544
2545int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2546
2547/*
2548 * Flags used by change_protection(). For now we make it a bitmap so
2549 * that we can pass in multiple flags just like parameters. However
2550 * for now all the callers are only use one of the flags at the same
2551 * time.
2552 */
2553/*
2554 * Whether we should manually check if we can map individual PTEs writable,
2555 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2556 * PTEs automatically in a writable mapping.
2557 */
2558#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2559/* Whether this protection change is for NUMA hints */
2560#define MM_CP_PROT_NUMA (1UL << 1)
2561/* Whether this change is for write protecting */
2562#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2563#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2564#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2565 MM_CP_UFFD_WP_RESOLVE)
2566
2567bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2568 pte_t pte);
2569extern long change_protection(struct mmu_gather *tlb,
2570 struct vm_area_struct *vma, unsigned long start,
2571 unsigned long end, unsigned long cp_flags);
2572extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2573 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2574 unsigned long start, unsigned long end, unsigned long newflags);
2575
2576/*
2577 * doesn't attempt to fault and will return short.
2578 */
2579int get_user_pages_fast_only(unsigned long start, int nr_pages,
2580 unsigned int gup_flags, struct page **pages);
2581
2582static inline bool get_user_page_fast_only(unsigned long addr,
2583 unsigned int gup_flags, struct page **pagep)
2584{
2585 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2586}
2587/*
2588 * per-process(per-mm_struct) statistics.
2589 */
2590static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2591{
2592 return percpu_counter_read_positive(&mm->rss_stat[member]);
2593}
2594
2595void mm_trace_rss_stat(struct mm_struct *mm, int member);
2596
2597static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2598{
2599 percpu_counter_add(&mm->rss_stat[member], value);
2600
2601 mm_trace_rss_stat(mm, member);
2602}
2603
2604static inline void inc_mm_counter(struct mm_struct *mm, int member)
2605{
2606 percpu_counter_inc(&mm->rss_stat[member]);
2607
2608 mm_trace_rss_stat(mm, member);
2609}
2610
2611static inline void dec_mm_counter(struct mm_struct *mm, int member)
2612{
2613 percpu_counter_dec(&mm->rss_stat[member]);
2614
2615 mm_trace_rss_stat(mm, member);
2616}
2617
2618/* Optimized variant when folio is already known not to be anon */
2619static inline int mm_counter_file(struct folio *folio)
2620{
2621 if (folio_test_swapbacked(folio))
2622 return MM_SHMEMPAGES;
2623 return MM_FILEPAGES;
2624}
2625
2626static inline int mm_counter(struct folio *folio)
2627{
2628 if (folio_test_anon(folio))
2629 return MM_ANONPAGES;
2630 return mm_counter_file(folio);
2631}
2632
2633static inline unsigned long get_mm_rss(struct mm_struct *mm)
2634{
2635 return get_mm_counter(mm, MM_FILEPAGES) +
2636 get_mm_counter(mm, MM_ANONPAGES) +
2637 get_mm_counter(mm, MM_SHMEMPAGES);
2638}
2639
2640static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2641{
2642 return max(mm->hiwater_rss, get_mm_rss(mm));
2643}
2644
2645static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2646{
2647 return max(mm->hiwater_vm, mm->total_vm);
2648}
2649
2650static inline void update_hiwater_rss(struct mm_struct *mm)
2651{
2652 unsigned long _rss = get_mm_rss(mm);
2653
2654 if ((mm)->hiwater_rss < _rss)
2655 (mm)->hiwater_rss = _rss;
2656}
2657
2658static inline void update_hiwater_vm(struct mm_struct *mm)
2659{
2660 if (mm->hiwater_vm < mm->total_vm)
2661 mm->hiwater_vm = mm->total_vm;
2662}
2663
2664static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2665{
2666 mm->hiwater_rss = get_mm_rss(mm);
2667}
2668
2669static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2670 struct mm_struct *mm)
2671{
2672 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2673
2674 if (*maxrss < hiwater_rss)
2675 *maxrss = hiwater_rss;
2676}
2677
2678#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2679static inline int pte_special(pte_t pte)
2680{
2681 return 0;
2682}
2683
2684static inline pte_t pte_mkspecial(pte_t pte)
2685{
2686 return pte;
2687}
2688#endif
2689
2690#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2691static inline bool pmd_special(pmd_t pmd)
2692{
2693 return false;
2694}
2695
2696static inline pmd_t pmd_mkspecial(pmd_t pmd)
2697{
2698 return pmd;
2699}
2700#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2701
2702#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2703static inline bool pud_special(pud_t pud)
2704{
2705 return false;
2706}
2707
2708static inline pud_t pud_mkspecial(pud_t pud)
2709{
2710 return pud;
2711}
2712#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2713
2714#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2715static inline int pte_devmap(pte_t pte)
2716{
2717 return 0;
2718}
2719#endif
2720
2721extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2722 spinlock_t **ptl);
2723static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2724 spinlock_t **ptl)
2725{
2726 pte_t *ptep;
2727 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2728 return ptep;
2729}
2730
2731#ifdef __PAGETABLE_P4D_FOLDED
2732static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2733 unsigned long address)
2734{
2735 return 0;
2736}
2737#else
2738int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2739#endif
2740
2741#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2742static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2743 unsigned long address)
2744{
2745 return 0;
2746}
2747static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2748static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2749
2750#else
2751int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2752
2753static inline void mm_inc_nr_puds(struct mm_struct *mm)
2754{
2755 if (mm_pud_folded(mm))
2756 return;
2757 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2758}
2759
2760static inline void mm_dec_nr_puds(struct mm_struct *mm)
2761{
2762 if (mm_pud_folded(mm))
2763 return;
2764 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2765}
2766#endif
2767
2768#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2769static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2770 unsigned long address)
2771{
2772 return 0;
2773}
2774
2775static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2776static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2777
2778#else
2779int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2780
2781static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2782{
2783 if (mm_pmd_folded(mm))
2784 return;
2785 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2786}
2787
2788static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2789{
2790 if (mm_pmd_folded(mm))
2791 return;
2792 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2793}
2794#endif
2795
2796#ifdef CONFIG_MMU
2797static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2798{
2799 atomic_long_set(&mm->pgtables_bytes, 0);
2800}
2801
2802static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2803{
2804 return atomic_long_read(&mm->pgtables_bytes);
2805}
2806
2807static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2808{
2809 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2810}
2811
2812static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2813{
2814 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2815}
2816#else
2817
2818static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2819static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2820{
2821 return 0;
2822}
2823
2824static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2825static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2826#endif
2827
2828int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2829int __pte_alloc_kernel(pmd_t *pmd);
2830
2831#if defined(CONFIG_MMU)
2832
2833static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2834 unsigned long address)
2835{
2836 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2837 NULL : p4d_offset(pgd, address);
2838}
2839
2840static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2841 unsigned long address)
2842{
2843 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2844 NULL : pud_offset(p4d, address);
2845}
2846
2847static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2848{
2849 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2850 NULL: pmd_offset(pud, address);
2851}
2852#endif /* CONFIG_MMU */
2853
2854static inline struct ptdesc *virt_to_ptdesc(const void *x)
2855{
2856 return page_ptdesc(virt_to_page(x));
2857}
2858
2859static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2860{
2861 return page_to_virt(ptdesc_page(pt));
2862}
2863
2864static inline void *ptdesc_address(const struct ptdesc *pt)
2865{
2866 return folio_address(ptdesc_folio(pt));
2867}
2868
2869static inline bool pagetable_is_reserved(struct ptdesc *pt)
2870{
2871 return folio_test_reserved(ptdesc_folio(pt));
2872}
2873
2874/**
2875 * pagetable_alloc - Allocate pagetables
2876 * @gfp: GFP flags
2877 * @order: desired pagetable order
2878 *
2879 * pagetable_alloc allocates memory for page tables as well as a page table
2880 * descriptor to describe that memory.
2881 *
2882 * Return: The ptdesc describing the allocated page tables.
2883 */
2884static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2885{
2886 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2887
2888 return page_ptdesc(page);
2889}
2890#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2891
2892/**
2893 * pagetable_free - Free pagetables
2894 * @pt: The page table descriptor
2895 *
2896 * pagetable_free frees the memory of all page tables described by a page
2897 * table descriptor and the memory for the descriptor itself.
2898 */
2899static inline void pagetable_free(struct ptdesc *pt)
2900{
2901 struct page *page = ptdesc_page(pt);
2902
2903 __free_pages(page, compound_order(page));
2904}
2905
2906#if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2907#if ALLOC_SPLIT_PTLOCKS
2908void __init ptlock_cache_init(void);
2909bool ptlock_alloc(struct ptdesc *ptdesc);
2910void ptlock_free(struct ptdesc *ptdesc);
2911
2912static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2913{
2914 return ptdesc->ptl;
2915}
2916#else /* ALLOC_SPLIT_PTLOCKS */
2917static inline void ptlock_cache_init(void)
2918{
2919}
2920
2921static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2922{
2923 return true;
2924}
2925
2926static inline void ptlock_free(struct ptdesc *ptdesc)
2927{
2928}
2929
2930static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2931{
2932 return &ptdesc->ptl;
2933}
2934#endif /* ALLOC_SPLIT_PTLOCKS */
2935
2936static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2937{
2938 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2939}
2940
2941static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2942{
2943 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2944 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2945 return ptlock_ptr(virt_to_ptdesc(pte));
2946}
2947
2948static inline bool ptlock_init(struct ptdesc *ptdesc)
2949{
2950 /*
2951 * prep_new_page() initialize page->private (and therefore page->ptl)
2952 * with 0. Make sure nobody took it in use in between.
2953 *
2954 * It can happen if arch try to use slab for page table allocation:
2955 * slab code uses page->slab_cache, which share storage with page->ptl.
2956 */
2957 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2958 if (!ptlock_alloc(ptdesc))
2959 return false;
2960 spin_lock_init(ptlock_ptr(ptdesc));
2961 return true;
2962}
2963
2964#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2965/*
2966 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2967 */
2968static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2969{
2970 return &mm->page_table_lock;
2971}
2972static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2973{
2974 return &mm->page_table_lock;
2975}
2976static inline void ptlock_cache_init(void) {}
2977static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2978static inline void ptlock_free(struct ptdesc *ptdesc) {}
2979#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2980
2981static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2982{
2983 struct folio *folio = ptdesc_folio(ptdesc);
2984
2985 if (!ptlock_init(ptdesc))
2986 return false;
2987 __folio_set_pgtable(folio);
2988 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2989 return true;
2990}
2991
2992static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2993{
2994 struct folio *folio = ptdesc_folio(ptdesc);
2995
2996 ptlock_free(ptdesc);
2997 __folio_clear_pgtable(folio);
2998 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2999}
3000
3001pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3002static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3003{
3004 return __pte_offset_map(pmd, addr, NULL);
3005}
3006
3007pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3008 unsigned long addr, spinlock_t **ptlp);
3009static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3010 unsigned long addr, spinlock_t **ptlp)
3011{
3012 pte_t *pte;
3013
3014 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3015 return pte;
3016}
3017
3018pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3019 unsigned long addr, spinlock_t **ptlp);
3020
3021#define pte_unmap_unlock(pte, ptl) do { \
3022 spin_unlock(ptl); \
3023 pte_unmap(pte); \
3024} while (0)
3025
3026#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3027
3028#define pte_alloc_map(mm, pmd, address) \
3029 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3030
3031#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3032 (pte_alloc(mm, pmd) ? \
3033 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3034
3035#define pte_alloc_kernel(pmd, address) \
3036 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3037 NULL: pte_offset_kernel(pmd, address))
3038
3039#if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3040
3041static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3042{
3043 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3044 return virt_to_page((void *)((unsigned long) pmd & mask));
3045}
3046
3047static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3048{
3049 return page_ptdesc(pmd_pgtable_page(pmd));
3050}
3051
3052static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3053{
3054 return ptlock_ptr(pmd_ptdesc(pmd));
3055}
3056
3057static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3058{
3059#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3060 ptdesc->pmd_huge_pte = NULL;
3061#endif
3062 return ptlock_init(ptdesc);
3063}
3064
3065static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3066{
3067#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3068 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3069#endif
3070 ptlock_free(ptdesc);
3071}
3072
3073#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3074
3075#else
3076
3077static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3078{
3079 return &mm->page_table_lock;
3080}
3081
3082static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3083static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3084
3085#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3086
3087#endif
3088
3089static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3090{
3091 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3092 spin_lock(ptl);
3093 return ptl;
3094}
3095
3096static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3097{
3098 struct folio *folio = ptdesc_folio(ptdesc);
3099
3100 if (!pmd_ptlock_init(ptdesc))
3101 return false;
3102 __folio_set_pgtable(folio);
3103 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3104 return true;
3105}
3106
3107static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3108{
3109 struct folio *folio = ptdesc_folio(ptdesc);
3110
3111 pmd_ptlock_free(ptdesc);
3112 __folio_clear_pgtable(folio);
3113 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3114}
3115
3116/*
3117 * No scalability reason to split PUD locks yet, but follow the same pattern
3118 * as the PMD locks to make it easier if we decide to. The VM should not be
3119 * considered ready to switch to split PUD locks yet; there may be places
3120 * which need to be converted from page_table_lock.
3121 */
3122static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3123{
3124 return &mm->page_table_lock;
3125}
3126
3127static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3128{
3129 spinlock_t *ptl = pud_lockptr(mm, pud);
3130
3131 spin_lock(ptl);
3132 return ptl;
3133}
3134
3135static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3136{
3137 struct folio *folio = ptdesc_folio(ptdesc);
3138
3139 __folio_set_pgtable(folio);
3140 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3141}
3142
3143static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3144{
3145 struct folio *folio = ptdesc_folio(ptdesc);
3146
3147 __folio_clear_pgtable(folio);
3148 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3149}
3150
3151extern void __init pagecache_init(void);
3152extern void free_initmem(void);
3153
3154/*
3155 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3156 * into the buddy system. The freed pages will be poisoned with pattern
3157 * "poison" if it's within range [0, UCHAR_MAX].
3158 * Return pages freed into the buddy system.
3159 */
3160extern unsigned long free_reserved_area(void *start, void *end,
3161 int poison, const char *s);
3162
3163extern void adjust_managed_page_count(struct page *page, long count);
3164
3165extern void reserve_bootmem_region(phys_addr_t start,
3166 phys_addr_t end, int nid);
3167
3168/* Free the reserved page into the buddy system, so it gets managed. */
3169void free_reserved_page(struct page *page);
3170#define free_highmem_page(page) free_reserved_page(page)
3171
3172static inline void mark_page_reserved(struct page *page)
3173{
3174 SetPageReserved(page);
3175 adjust_managed_page_count(page, -1);
3176}
3177
3178static inline void free_reserved_ptdesc(struct ptdesc *pt)
3179{
3180 free_reserved_page(ptdesc_page(pt));
3181}
3182
3183/*
3184 * Default method to free all the __init memory into the buddy system.
3185 * The freed pages will be poisoned with pattern "poison" if it's within
3186 * range [0, UCHAR_MAX].
3187 * Return pages freed into the buddy system.
3188 */
3189static inline unsigned long free_initmem_default(int poison)
3190{
3191 extern char __init_begin[], __init_end[];
3192
3193 return free_reserved_area(&__init_begin, &__init_end,
3194 poison, "unused kernel image (initmem)");
3195}
3196
3197static inline unsigned long get_num_physpages(void)
3198{
3199 int nid;
3200 unsigned long phys_pages = 0;
3201
3202 for_each_online_node(nid)
3203 phys_pages += node_present_pages(nid);
3204
3205 return phys_pages;
3206}
3207
3208/*
3209 * Using memblock node mappings, an architecture may initialise its
3210 * zones, allocate the backing mem_map and account for memory holes in an
3211 * architecture independent manner.
3212 *
3213 * An architecture is expected to register range of page frames backed by
3214 * physical memory with memblock_add[_node]() before calling
3215 * free_area_init() passing in the PFN each zone ends at. At a basic
3216 * usage, an architecture is expected to do something like
3217 *
3218 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3219 * max_highmem_pfn};
3220 * for_each_valid_physical_page_range()
3221 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3222 * free_area_init(max_zone_pfns);
3223 */
3224void free_area_init(unsigned long *max_zone_pfn);
3225unsigned long node_map_pfn_alignment(void);
3226extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3227 unsigned long end_pfn);
3228extern void get_pfn_range_for_nid(unsigned int nid,
3229 unsigned long *start_pfn, unsigned long *end_pfn);
3230
3231#ifndef CONFIG_NUMA
3232static inline int early_pfn_to_nid(unsigned long pfn)
3233{
3234 return 0;
3235}
3236#else
3237/* please see mm/page_alloc.c */
3238extern int __meminit early_pfn_to_nid(unsigned long pfn);
3239#endif
3240
3241extern void mem_init(void);
3242extern void __init mmap_init(void);
3243
3244extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3245static inline void show_mem(void)
3246{
3247 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3248}
3249extern long si_mem_available(void);
3250extern void si_meminfo(struct sysinfo * val);
3251extern void si_meminfo_node(struct sysinfo *val, int nid);
3252
3253extern __printf(3, 4)
3254void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3255
3256extern void setup_per_cpu_pageset(void);
3257
3258/* nommu.c */
3259extern atomic_long_t mmap_pages_allocated;
3260extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3261
3262/* interval_tree.c */
3263void vma_interval_tree_insert(struct vm_area_struct *node,
3264 struct rb_root_cached *root);
3265void vma_interval_tree_insert_after(struct vm_area_struct *node,
3266 struct vm_area_struct *prev,
3267 struct rb_root_cached *root);
3268void vma_interval_tree_remove(struct vm_area_struct *node,
3269 struct rb_root_cached *root);
3270struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3271 unsigned long start, unsigned long last);
3272struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3273 unsigned long start, unsigned long last);
3274
3275#define vma_interval_tree_foreach(vma, root, start, last) \
3276 for (vma = vma_interval_tree_iter_first(root, start, last); \
3277 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3278
3279void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3280 struct rb_root_cached *root);
3281void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3282 struct rb_root_cached *root);
3283struct anon_vma_chain *
3284anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3285 unsigned long start, unsigned long last);
3286struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3287 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3288#ifdef CONFIG_DEBUG_VM_RB
3289void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3290#endif
3291
3292#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3293 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3294 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3295
3296/* mmap.c */
3297extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3298extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3299extern void exit_mmap(struct mm_struct *);
3300int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3301
3302static inline int check_data_rlimit(unsigned long rlim,
3303 unsigned long new,
3304 unsigned long start,
3305 unsigned long end_data,
3306 unsigned long start_data)
3307{
3308 if (rlim < RLIM_INFINITY) {
3309 if (((new - start) + (end_data - start_data)) > rlim)
3310 return -ENOSPC;
3311 }
3312
3313 return 0;
3314}
3315
3316extern int mm_take_all_locks(struct mm_struct *mm);
3317extern void mm_drop_all_locks(struct mm_struct *mm);
3318
3319extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3320extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3321extern struct file *get_mm_exe_file(struct mm_struct *mm);
3322extern struct file *get_task_exe_file(struct task_struct *task);
3323
3324extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3325extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3326
3327extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3328 const struct vm_special_mapping *sm);
3329extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3330 unsigned long addr, unsigned long len,
3331 unsigned long flags,
3332 const struct vm_special_mapping *spec);
3333
3334unsigned long randomize_stack_top(unsigned long stack_top);
3335unsigned long randomize_page(unsigned long start, unsigned long range);
3336
3337unsigned long
3338__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3339 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3340
3341static inline unsigned long
3342get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3343 unsigned long pgoff, unsigned long flags)
3344{
3345 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3346}
3347
3348extern unsigned long mmap_region(struct file *file, unsigned long addr,
3349 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3350 struct list_head *uf);
3351extern unsigned long do_mmap(struct file *file, unsigned long addr,
3352 unsigned long len, unsigned long prot, unsigned long flags,
3353 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3354 struct list_head *uf);
3355extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3356 unsigned long start, size_t len, struct list_head *uf,
3357 bool unlock);
3358int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3359 struct mm_struct *mm, unsigned long start,
3360 unsigned long end, struct list_head *uf, bool unlock);
3361extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3362 struct list_head *uf);
3363extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3364
3365#ifdef CONFIG_MMU
3366extern int __mm_populate(unsigned long addr, unsigned long len,
3367 int ignore_errors);
3368static inline void mm_populate(unsigned long addr, unsigned long len)
3369{
3370 /* Ignore errors */
3371 (void) __mm_populate(addr, len, 1);
3372}
3373#else
3374static inline void mm_populate(unsigned long addr, unsigned long len) {}
3375#endif
3376
3377/* This takes the mm semaphore itself */
3378extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3379extern int vm_munmap(unsigned long, size_t);
3380extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3381 unsigned long, unsigned long,
3382 unsigned long, unsigned long);
3383
3384struct vm_unmapped_area_info {
3385#define VM_UNMAPPED_AREA_TOPDOWN 1
3386 unsigned long flags;
3387 unsigned long length;
3388 unsigned long low_limit;
3389 unsigned long high_limit;
3390 unsigned long align_mask;
3391 unsigned long align_offset;
3392 unsigned long start_gap;
3393};
3394
3395extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3396
3397/* truncate.c */
3398extern void truncate_inode_pages(struct address_space *, loff_t);
3399extern void truncate_inode_pages_range(struct address_space *,
3400 loff_t lstart, loff_t lend);
3401extern void truncate_inode_pages_final(struct address_space *);
3402
3403/* generic vm_area_ops exported for stackable file systems */
3404extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3405extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3406 pgoff_t start_pgoff, pgoff_t end_pgoff);
3407extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3408
3409extern unsigned long stack_guard_gap;
3410/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3411int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3412struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3413
3414/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3415int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3416
3417/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3418extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3419extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3420 struct vm_area_struct **pprev);
3421
3422/*
3423 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3424 * NULL if none. Assume start_addr < end_addr.
3425 */
3426struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3427 unsigned long start_addr, unsigned long end_addr);
3428
3429/**
3430 * vma_lookup() - Find a VMA at a specific address
3431 * @mm: The process address space.
3432 * @addr: The user address.
3433 *
3434 * Return: The vm_area_struct at the given address, %NULL otherwise.
3435 */
3436static inline
3437struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3438{
3439 return mtree_load(&mm->mm_mt, addr);
3440}
3441
3442static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3443{
3444 if (vma->vm_flags & VM_GROWSDOWN)
3445 return stack_guard_gap;
3446
3447 /* See reasoning around the VM_SHADOW_STACK definition */
3448 if (vma->vm_flags & VM_SHADOW_STACK)
3449 return PAGE_SIZE;
3450
3451 return 0;
3452}
3453
3454static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3455{
3456 unsigned long gap = stack_guard_start_gap(vma);
3457 unsigned long vm_start = vma->vm_start;
3458
3459 vm_start -= gap;
3460 if (vm_start > vma->vm_start)
3461 vm_start = 0;
3462 return vm_start;
3463}
3464
3465static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3466{
3467 unsigned long vm_end = vma->vm_end;
3468
3469 if (vma->vm_flags & VM_GROWSUP) {
3470 vm_end += stack_guard_gap;
3471 if (vm_end < vma->vm_end)
3472 vm_end = -PAGE_SIZE;
3473 }
3474 return vm_end;
3475}
3476
3477static inline unsigned long vma_pages(struct vm_area_struct *vma)
3478{
3479 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3480}
3481
3482/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3483static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3484 unsigned long vm_start, unsigned long vm_end)
3485{
3486 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3487
3488 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3489 vma = NULL;
3490
3491 return vma;
3492}
3493
3494static inline bool range_in_vma(struct vm_area_struct *vma,
3495 unsigned long start, unsigned long end)
3496{
3497 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3498}
3499
3500#ifdef CONFIG_MMU
3501pgprot_t vm_get_page_prot(unsigned long vm_flags);
3502void vma_set_page_prot(struct vm_area_struct *vma);
3503#else
3504static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3505{
3506 return __pgprot(0);
3507}
3508static inline void vma_set_page_prot(struct vm_area_struct *vma)
3509{
3510 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3511}
3512#endif
3513
3514void vma_set_file(struct vm_area_struct *vma, struct file *file);
3515
3516#ifdef CONFIG_NUMA_BALANCING
3517unsigned long change_prot_numa(struct vm_area_struct *vma,
3518 unsigned long start, unsigned long end);
3519#endif
3520
3521struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3522 unsigned long addr);
3523int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3524 unsigned long pfn, unsigned long size, pgprot_t);
3525int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3526 unsigned long pfn, unsigned long size, pgprot_t prot);
3527int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3528int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3529 struct page **pages, unsigned long *num);
3530int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3531 unsigned long num);
3532int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3533 unsigned long num);
3534vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3535 unsigned long pfn);
3536vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3537 unsigned long pfn, pgprot_t pgprot);
3538vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3539 pfn_t pfn);
3540vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3541 unsigned long addr, pfn_t pfn);
3542int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3543
3544static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3545 unsigned long addr, struct page *page)
3546{
3547 int err = vm_insert_page(vma, addr, page);
3548
3549 if (err == -ENOMEM)
3550 return VM_FAULT_OOM;
3551 if (err < 0 && err != -EBUSY)
3552 return VM_FAULT_SIGBUS;
3553
3554 return VM_FAULT_NOPAGE;
3555}
3556
3557#ifndef io_remap_pfn_range
3558static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3559 unsigned long addr, unsigned long pfn,
3560 unsigned long size, pgprot_t prot)
3561{
3562 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3563}
3564#endif
3565
3566static inline vm_fault_t vmf_error(int err)
3567{
3568 if (err == -ENOMEM)
3569 return VM_FAULT_OOM;
3570 else if (err == -EHWPOISON)
3571 return VM_FAULT_HWPOISON;
3572 return VM_FAULT_SIGBUS;
3573}
3574
3575/*
3576 * Convert errno to return value for ->page_mkwrite() calls.
3577 *
3578 * This should eventually be merged with vmf_error() above, but will need a
3579 * careful audit of all vmf_error() callers.
3580 */
3581static inline vm_fault_t vmf_fs_error(int err)
3582{
3583 if (err == 0)
3584 return VM_FAULT_LOCKED;
3585 if (err == -EFAULT || err == -EAGAIN)
3586 return VM_FAULT_NOPAGE;
3587 if (err == -ENOMEM)
3588 return VM_FAULT_OOM;
3589 /* -ENOSPC, -EDQUOT, -EIO ... */
3590 return VM_FAULT_SIGBUS;
3591}
3592
3593static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3594{
3595 if (vm_fault & VM_FAULT_OOM)
3596 return -ENOMEM;
3597 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3598 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3599 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3600 return -EFAULT;
3601 return 0;
3602}
3603
3604/*
3605 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3606 * a (NUMA hinting) fault is required.
3607 */
3608static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3609 unsigned int flags)
3610{
3611 /*
3612 * If callers don't want to honor NUMA hinting faults, no need to
3613 * determine if we would actually have to trigger a NUMA hinting fault.
3614 */
3615 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3616 return true;
3617
3618 /*
3619 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3620 *
3621 * Requiring a fault here even for inaccessible VMAs would mean that
3622 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3623 * refuses to process NUMA hinting faults in inaccessible VMAs.
3624 */
3625 return !vma_is_accessible(vma);
3626}
3627
3628typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3629extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3630 unsigned long size, pte_fn_t fn, void *data);
3631extern int apply_to_existing_page_range(struct mm_struct *mm,
3632 unsigned long address, unsigned long size,
3633 pte_fn_t fn, void *data);
3634
3635#ifdef CONFIG_PAGE_POISONING
3636extern void __kernel_poison_pages(struct page *page, int numpages);
3637extern void __kernel_unpoison_pages(struct page *page, int numpages);
3638extern bool _page_poisoning_enabled_early;
3639DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3640static inline bool page_poisoning_enabled(void)
3641{
3642 return _page_poisoning_enabled_early;
3643}
3644/*
3645 * For use in fast paths after init_mem_debugging() has run, or when a
3646 * false negative result is not harmful when called too early.
3647 */
3648static inline bool page_poisoning_enabled_static(void)
3649{
3650 return static_branch_unlikely(&_page_poisoning_enabled);
3651}
3652static inline void kernel_poison_pages(struct page *page, int numpages)
3653{
3654 if (page_poisoning_enabled_static())
3655 __kernel_poison_pages(page, numpages);
3656}
3657static inline void kernel_unpoison_pages(struct page *page, int numpages)
3658{
3659 if (page_poisoning_enabled_static())
3660 __kernel_unpoison_pages(page, numpages);
3661}
3662#else
3663static inline bool page_poisoning_enabled(void) { return false; }
3664static inline bool page_poisoning_enabled_static(void) { return false; }
3665static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3666static inline void kernel_poison_pages(struct page *page, int numpages) { }
3667static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3668#endif
3669
3670DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3671static inline bool want_init_on_alloc(gfp_t flags)
3672{
3673 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3674 &init_on_alloc))
3675 return true;
3676 return flags & __GFP_ZERO;
3677}
3678
3679DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3680static inline bool want_init_on_free(void)
3681{
3682 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3683 &init_on_free);
3684}
3685
3686extern bool _debug_pagealloc_enabled_early;
3687DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3688
3689static inline bool debug_pagealloc_enabled(void)
3690{
3691 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3692 _debug_pagealloc_enabled_early;
3693}
3694
3695/*
3696 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3697 * or when a false negative result is not harmful when called too early.
3698 */
3699static inline bool debug_pagealloc_enabled_static(void)
3700{
3701 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3702 return false;
3703
3704 return static_branch_unlikely(&_debug_pagealloc_enabled);
3705}
3706
3707/*
3708 * To support DEBUG_PAGEALLOC architecture must ensure that
3709 * __kernel_map_pages() never fails
3710 */
3711extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3712#ifdef CONFIG_DEBUG_PAGEALLOC
3713static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3714{
3715 if (debug_pagealloc_enabled_static())
3716 __kernel_map_pages(page, numpages, 1);
3717}
3718
3719static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3720{
3721 if (debug_pagealloc_enabled_static())
3722 __kernel_map_pages(page, numpages, 0);
3723}
3724
3725extern unsigned int _debug_guardpage_minorder;
3726DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3727
3728static inline unsigned int debug_guardpage_minorder(void)
3729{
3730 return _debug_guardpage_minorder;
3731}
3732
3733static inline bool debug_guardpage_enabled(void)
3734{
3735 return static_branch_unlikely(&_debug_guardpage_enabled);
3736}
3737
3738static inline bool page_is_guard(struct page *page)
3739{
3740 if (!debug_guardpage_enabled())
3741 return false;
3742
3743 return PageGuard(page);
3744}
3745
3746bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3747static inline bool set_page_guard(struct zone *zone, struct page *page,
3748 unsigned int order)
3749{
3750 if (!debug_guardpage_enabled())
3751 return false;
3752 return __set_page_guard(zone, page, order);
3753}
3754
3755void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3756static inline void clear_page_guard(struct zone *zone, struct page *page,
3757 unsigned int order)
3758{
3759 if (!debug_guardpage_enabled())
3760 return;
3761 __clear_page_guard(zone, page, order);
3762}
3763
3764#else /* CONFIG_DEBUG_PAGEALLOC */
3765static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3766static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3767static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3768static inline bool debug_guardpage_enabled(void) { return false; }
3769static inline bool page_is_guard(struct page *page) { return false; }
3770static inline bool set_page_guard(struct zone *zone, struct page *page,
3771 unsigned int order) { return false; }
3772static inline void clear_page_guard(struct zone *zone, struct page *page,
3773 unsigned int order) {}
3774#endif /* CONFIG_DEBUG_PAGEALLOC */
3775
3776#ifdef __HAVE_ARCH_GATE_AREA
3777extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3778extern int in_gate_area_no_mm(unsigned long addr);
3779extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3780#else
3781static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3782{
3783 return NULL;
3784}
3785static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3786static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3787{
3788 return 0;
3789}
3790#endif /* __HAVE_ARCH_GATE_AREA */
3791
3792extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3793
3794#ifdef CONFIG_SYSCTL
3795extern int sysctl_drop_caches;
3796int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3797 loff_t *);
3798#endif
3799
3800void drop_slab(void);
3801
3802#ifndef CONFIG_MMU
3803#define randomize_va_space 0
3804#else
3805extern int randomize_va_space;
3806#endif
3807
3808const char * arch_vma_name(struct vm_area_struct *vma);
3809#ifdef CONFIG_MMU
3810void print_vma_addr(char *prefix, unsigned long rip);
3811#else
3812static inline void print_vma_addr(char *prefix, unsigned long rip)
3813{
3814}
3815#endif
3816
3817void *sparse_buffer_alloc(unsigned long size);
3818struct page * __populate_section_memmap(unsigned long pfn,
3819 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3820 struct dev_pagemap *pgmap);
3821void pud_init(void *addr);
3822void pmd_init(void *addr);
3823void kernel_pte_init(void *addr);
3824pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3825p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3826pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3827pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3828pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3829 struct vmem_altmap *altmap, struct page *reuse);
3830void *vmemmap_alloc_block(unsigned long size, int node);
3831struct vmem_altmap;
3832void *vmemmap_alloc_block_buf(unsigned long size, int node,
3833 struct vmem_altmap *altmap);
3834void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3835void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3836 unsigned long addr, unsigned long next);
3837int vmemmap_check_pmd(pmd_t *pmd, int node,
3838 unsigned long addr, unsigned long next);
3839int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3840 int node, struct vmem_altmap *altmap);
3841int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3842 int node, struct vmem_altmap *altmap);
3843int vmemmap_populate(unsigned long start, unsigned long end, int node,
3844 struct vmem_altmap *altmap);
3845void vmemmap_populate_print_last(void);
3846#ifdef CONFIG_MEMORY_HOTPLUG
3847void vmemmap_free(unsigned long start, unsigned long end,
3848 struct vmem_altmap *altmap);
3849#endif
3850
3851#ifdef CONFIG_SPARSEMEM_VMEMMAP
3852static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3853{
3854 /* number of pfns from base where pfn_to_page() is valid */
3855 if (altmap)
3856 return altmap->reserve + altmap->free;
3857 return 0;
3858}
3859
3860static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3861 unsigned long nr_pfns)
3862{
3863 altmap->alloc -= nr_pfns;
3864}
3865#else
3866static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3867{
3868 return 0;
3869}
3870
3871static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3872 unsigned long nr_pfns)
3873{
3874}
3875#endif
3876
3877#define VMEMMAP_RESERVE_NR 2
3878#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3879static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3880 struct dev_pagemap *pgmap)
3881{
3882 unsigned long nr_pages;
3883 unsigned long nr_vmemmap_pages;
3884
3885 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3886 return false;
3887
3888 nr_pages = pgmap_vmemmap_nr(pgmap);
3889 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3890 /*
3891 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3892 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3893 */
3894 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3895}
3896/*
3897 * If we don't have an architecture override, use the generic rule
3898 */
3899#ifndef vmemmap_can_optimize
3900#define vmemmap_can_optimize __vmemmap_can_optimize
3901#endif
3902
3903#else
3904static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3905 struct dev_pagemap *pgmap)
3906{
3907 return false;
3908}
3909#endif
3910
3911void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3912 unsigned long nr_pages);
3913
3914enum mf_flags {
3915 MF_COUNT_INCREASED = 1 << 0,
3916 MF_ACTION_REQUIRED = 1 << 1,
3917 MF_MUST_KILL = 1 << 2,
3918 MF_SOFT_OFFLINE = 1 << 3,
3919 MF_UNPOISON = 1 << 4,
3920 MF_SW_SIMULATED = 1 << 5,
3921 MF_NO_RETRY = 1 << 6,
3922 MF_MEM_PRE_REMOVE = 1 << 7,
3923};
3924int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3925 unsigned long count, int mf_flags);
3926extern int memory_failure(unsigned long pfn, int flags);
3927extern void memory_failure_queue_kick(int cpu);
3928extern int unpoison_memory(unsigned long pfn);
3929extern atomic_long_t num_poisoned_pages __read_mostly;
3930extern int soft_offline_page(unsigned long pfn, int flags);
3931#ifdef CONFIG_MEMORY_FAILURE
3932/*
3933 * Sysfs entries for memory failure handling statistics.
3934 */
3935extern const struct attribute_group memory_failure_attr_group;
3936extern void memory_failure_queue(unsigned long pfn, int flags);
3937extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3938 bool *migratable_cleared);
3939void num_poisoned_pages_inc(unsigned long pfn);
3940void num_poisoned_pages_sub(unsigned long pfn, long i);
3941#else
3942static inline void memory_failure_queue(unsigned long pfn, int flags)
3943{
3944}
3945
3946static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3947 bool *migratable_cleared)
3948{
3949 return 0;
3950}
3951
3952static inline void num_poisoned_pages_inc(unsigned long pfn)
3953{
3954}
3955
3956static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3957{
3958}
3959#endif
3960
3961#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3962extern void memblk_nr_poison_inc(unsigned long pfn);
3963extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3964#else
3965static inline void memblk_nr_poison_inc(unsigned long pfn)
3966{
3967}
3968
3969static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3970{
3971}
3972#endif
3973
3974#ifndef arch_memory_failure
3975static inline int arch_memory_failure(unsigned long pfn, int flags)
3976{
3977 return -ENXIO;
3978}
3979#endif
3980
3981#ifndef arch_is_platform_page
3982static inline bool arch_is_platform_page(u64 paddr)
3983{
3984 return false;
3985}
3986#endif
3987
3988/*
3989 * Error handlers for various types of pages.
3990 */
3991enum mf_result {
3992 MF_IGNORED, /* Error: cannot be handled */
3993 MF_FAILED, /* Error: handling failed */
3994 MF_DELAYED, /* Will be handled later */
3995 MF_RECOVERED, /* Successfully recovered */
3996};
3997
3998enum mf_action_page_type {
3999 MF_MSG_KERNEL,
4000 MF_MSG_KERNEL_HIGH_ORDER,
4001 MF_MSG_DIFFERENT_COMPOUND,
4002 MF_MSG_HUGE,
4003 MF_MSG_FREE_HUGE,
4004 MF_MSG_GET_HWPOISON,
4005 MF_MSG_UNMAP_FAILED,
4006 MF_MSG_DIRTY_SWAPCACHE,
4007 MF_MSG_CLEAN_SWAPCACHE,
4008 MF_MSG_DIRTY_MLOCKED_LRU,
4009 MF_MSG_CLEAN_MLOCKED_LRU,
4010 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4011 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4012 MF_MSG_DIRTY_LRU,
4013 MF_MSG_CLEAN_LRU,
4014 MF_MSG_TRUNCATED_LRU,
4015 MF_MSG_BUDDY,
4016 MF_MSG_DAX,
4017 MF_MSG_UNSPLIT_THP,
4018 MF_MSG_ALREADY_POISONED,
4019 MF_MSG_UNKNOWN,
4020};
4021
4022#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4023void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4024int copy_user_large_folio(struct folio *dst, struct folio *src,
4025 unsigned long addr_hint,
4026 struct vm_area_struct *vma);
4027long copy_folio_from_user(struct folio *dst_folio,
4028 const void __user *usr_src,
4029 bool allow_pagefault);
4030
4031/**
4032 * vma_is_special_huge - Are transhuge page-table entries considered special?
4033 * @vma: Pointer to the struct vm_area_struct to consider
4034 *
4035 * Whether transhuge page-table entries are considered "special" following
4036 * the definition in vm_normal_page().
4037 *
4038 * Return: true if transhuge page-table entries should be considered special,
4039 * false otherwise.
4040 */
4041static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4042{
4043 return vma_is_dax(vma) || (vma->vm_file &&
4044 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4045}
4046
4047#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4048
4049#if MAX_NUMNODES > 1
4050void __init setup_nr_node_ids(void);
4051#else
4052static inline void setup_nr_node_ids(void) {}
4053#endif
4054
4055extern int memcmp_pages(struct page *page1, struct page *page2);
4056
4057static inline int pages_identical(struct page *page1, struct page *page2)
4058{
4059 return !memcmp_pages(page1, page2);
4060}
4061
4062#ifdef CONFIG_MAPPING_DIRTY_HELPERS
4063unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4064 pgoff_t first_index, pgoff_t nr,
4065 pgoff_t bitmap_pgoff,
4066 unsigned long *bitmap,
4067 pgoff_t *start,
4068 pgoff_t *end);
4069
4070unsigned long wp_shared_mapping_range(struct address_space *mapping,
4071 pgoff_t first_index, pgoff_t nr);
4072#endif
4073
4074extern int sysctl_nr_trim_pages;
4075
4076#ifdef CONFIG_PRINTK
4077void mem_dump_obj(void *object);
4078#else
4079static inline void mem_dump_obj(void *object) {}
4080#endif
4081
4082/**
4083 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4084 * handle them.
4085 * @seals: the seals to check
4086 * @vma: the vma to operate on
4087 *
4088 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4089 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
4090 */
4091static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4092{
4093 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4094 /*
4095 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4096 * write seals are active.
4097 */
4098 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4099 return -EPERM;
4100
4101 /*
4102 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4103 * MAP_SHARED and read-only, take care to not allow mprotect to
4104 * revert protections on such mappings. Do this only for shared
4105 * mappings. For private mappings, don't need to mask
4106 * VM_MAYWRITE as we still want them to be COW-writable.
4107 */
4108 if (vma->vm_flags & VM_SHARED)
4109 vm_flags_clear(vma, VM_MAYWRITE);
4110 }
4111
4112 return 0;
4113}
4114
4115#ifdef CONFIG_ANON_VMA_NAME
4116int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4117 unsigned long len_in,
4118 struct anon_vma_name *anon_name);
4119#else
4120static inline int
4121madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4122 unsigned long len_in, struct anon_vma_name *anon_name) {
4123 return 0;
4124}
4125#endif
4126
4127#ifdef CONFIG_UNACCEPTED_MEMORY
4128
4129bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4130void accept_memory(phys_addr_t start, unsigned long size);
4131
4132#else
4133
4134static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4135 unsigned long size)
4136{
4137 return false;
4138}
4139
4140static inline void accept_memory(phys_addr_t start, unsigned long size)
4141{
4142}
4143
4144#endif
4145
4146static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4147{
4148 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4149}
4150
4151void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4152void vma_pgtable_walk_end(struct vm_area_struct *vma);
4153
4154int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4155
4156#ifdef CONFIG_64BIT
4157int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4158#else
4159static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4160{
4161 /* noop on 32 bit */
4162 return 0;
4163}
4164#endif
4165
4166#ifdef CONFIG_MEM_ALLOC_PROFILING
4167static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
4168{
4169 int i;
4170 struct alloc_tag *tag;
4171 unsigned int nr_pages = 1 << new_order;
4172
4173 if (!mem_alloc_profiling_enabled())
4174 return;
4175
4176 tag = pgalloc_tag_get(&folio->page);
4177 if (!tag)
4178 return;
4179
4180 for (i = nr_pages; i < (1 << old_order); i += nr_pages) {
4181 union codetag_ref *ref = get_page_tag_ref(folio_page(folio, i));
4182
4183 if (ref) {
4184 /* Set new reference to point to the original tag */
4185 alloc_tag_ref_set(ref, tag);
4186 put_page_tag_ref(ref);
4187 }
4188 }
4189}
4190
4191static inline void pgalloc_tag_copy(struct folio *new, struct folio *old)
4192{
4193 struct alloc_tag *tag;
4194 union codetag_ref *ref;
4195
4196 tag = pgalloc_tag_get(&old->page);
4197 if (!tag)
4198 return;
4199
4200 ref = get_page_tag_ref(&new->page);
4201 if (!ref)
4202 return;
4203
4204 /* Clear the old ref to the original allocation tag. */
4205 clear_page_tag_ref(&old->page);
4206 /* Decrement the counters of the tag on get_new_folio. */
4207 alloc_tag_sub(ref, folio_nr_pages(new));
4208
4209 __alloc_tag_ref_set(ref, tag);
4210
4211 put_page_tag_ref(ref);
4212}
4213#else /* !CONFIG_MEM_ALLOC_PROFILING */
4214static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
4215{
4216}
4217
4218static inline void pgalloc_tag_copy(struct folio *new, struct folio *old)
4219{
4220}
4221#endif /* CONFIG_MEM_ALLOC_PROFILING */
4222
4223#endif /* _LINUX_MM_H */