at v6.12 128 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/pgalloc_tag.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/atomic.h> 14#include <linux/debug_locks.h> 15#include <linux/mm_types.h> 16#include <linux/mmap_lock.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/percpu-refcount.h> 20#include <linux/bit_spinlock.h> 21#include <linux/shrinker.h> 22#include <linux/resource.h> 23#include <linux/page_ext.h> 24#include <linux/err.h> 25#include <linux/page-flags.h> 26#include <linux/page_ref.h> 27#include <linux/overflow.h> 28#include <linux/sizes.h> 29#include <linux/sched.h> 30#include <linux/pgtable.h> 31#include <linux/kasan.h> 32#include <linux/memremap.h> 33#include <linux/slab.h> 34 35struct mempolicy; 36struct anon_vma; 37struct anon_vma_chain; 38struct user_struct; 39struct pt_regs; 40struct folio_batch; 41 42extern int sysctl_page_lock_unfairness; 43 44void mm_core_init(void); 45void init_mm_internals(void); 46 47#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 48extern unsigned long max_mapnr; 49 50static inline void set_max_mapnr(unsigned long limit) 51{ 52 max_mapnr = limit; 53} 54#else 55static inline void set_max_mapnr(unsigned long limit) { } 56#endif 57 58extern atomic_long_t _totalram_pages; 59static inline unsigned long totalram_pages(void) 60{ 61 return (unsigned long)atomic_long_read(&_totalram_pages); 62} 63 64static inline void totalram_pages_inc(void) 65{ 66 atomic_long_inc(&_totalram_pages); 67} 68 69static inline void totalram_pages_dec(void) 70{ 71 atomic_long_dec(&_totalram_pages); 72} 73 74static inline void totalram_pages_add(long count) 75{ 76 atomic_long_add(count, &_totalram_pages); 77} 78 79extern void * high_memory; 80extern int page_cluster; 81extern const int page_cluster_max; 82 83#ifdef CONFIG_SYSCTL 84extern int sysctl_legacy_va_layout; 85#else 86#define sysctl_legacy_va_layout 0 87#endif 88 89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90extern const int mmap_rnd_bits_min; 91extern int mmap_rnd_bits_max __ro_after_init; 92extern int mmap_rnd_bits __read_mostly; 93#endif 94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95extern const int mmap_rnd_compat_bits_min; 96extern const int mmap_rnd_compat_bits_max; 97extern int mmap_rnd_compat_bits __read_mostly; 98#endif 99 100#ifndef PHYSMEM_END 101# ifdef MAX_PHYSMEM_BITS 102# define PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 103# else 104# define PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 105# endif 106#endif 107 108#include <asm/page.h> 109#include <asm/processor.h> 110 111#ifndef __pa_symbol 112#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 113#endif 114 115#ifndef page_to_virt 116#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 117#endif 118 119#ifndef lm_alias 120#define lm_alias(x) __va(__pa_symbol(x)) 121#endif 122 123/* 124 * To prevent common memory management code establishing 125 * a zero page mapping on a read fault. 126 * This macro should be defined within <asm/pgtable.h>. 127 * s390 does this to prevent multiplexing of hardware bits 128 * related to the physical page in case of virtualization. 129 */ 130#ifndef mm_forbids_zeropage 131#define mm_forbids_zeropage(X) (0) 132#endif 133 134/* 135 * On some architectures it is expensive to call memset() for small sizes. 136 * If an architecture decides to implement their own version of 137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 138 * define their own version of this macro in <asm/pgtable.h> 139 */ 140#if BITS_PER_LONG == 64 141/* This function must be updated when the size of struct page grows above 96 142 * or reduces below 56. The idea that compiler optimizes out switch() 143 * statement, and only leaves move/store instructions. Also the compiler can 144 * combine write statements if they are both assignments and can be reordered, 145 * this can result in several of the writes here being dropped. 146 */ 147#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 148static inline void __mm_zero_struct_page(struct page *page) 149{ 150 unsigned long *_pp = (void *)page; 151 152 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 153 BUILD_BUG_ON(sizeof(struct page) & 7); 154 BUILD_BUG_ON(sizeof(struct page) < 56); 155 BUILD_BUG_ON(sizeof(struct page) > 96); 156 157 switch (sizeof(struct page)) { 158 case 96: 159 _pp[11] = 0; 160 fallthrough; 161 case 88: 162 _pp[10] = 0; 163 fallthrough; 164 case 80: 165 _pp[9] = 0; 166 fallthrough; 167 case 72: 168 _pp[8] = 0; 169 fallthrough; 170 case 64: 171 _pp[7] = 0; 172 fallthrough; 173 case 56: 174 _pp[6] = 0; 175 _pp[5] = 0; 176 _pp[4] = 0; 177 _pp[3] = 0; 178 _pp[2] = 0; 179 _pp[1] = 0; 180 _pp[0] = 0; 181 } 182} 183#else 184#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 185#endif 186 187/* 188 * Default maximum number of active map areas, this limits the number of vmas 189 * per mm struct. Users can overwrite this number by sysctl but there is a 190 * problem. 191 * 192 * When a program's coredump is generated as ELF format, a section is created 193 * per a vma. In ELF, the number of sections is represented in unsigned short. 194 * This means the number of sections should be smaller than 65535 at coredump. 195 * Because the kernel adds some informative sections to a image of program at 196 * generating coredump, we need some margin. The number of extra sections is 197 * 1-3 now and depends on arch. We use "5" as safe margin, here. 198 * 199 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 200 * not a hard limit any more. Although some userspace tools can be surprised by 201 * that. 202 */ 203#define MAPCOUNT_ELF_CORE_MARGIN (5) 204#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 205 206extern int sysctl_max_map_count; 207 208extern unsigned long sysctl_user_reserve_kbytes; 209extern unsigned long sysctl_admin_reserve_kbytes; 210 211extern int sysctl_overcommit_memory; 212extern int sysctl_overcommit_ratio; 213extern unsigned long sysctl_overcommit_kbytes; 214 215int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 216 loff_t *); 217int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 218 loff_t *); 219int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 220 loff_t *); 221 222#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 223#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 224#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 225#else 226#define nth_page(page,n) ((page) + (n)) 227#define folio_page_idx(folio, p) ((p) - &(folio)->page) 228#endif 229 230/* to align the pointer to the (next) page boundary */ 231#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 232 233/* to align the pointer to the (prev) page boundary */ 234#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 235 236/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 237#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 238 239static inline struct folio *lru_to_folio(struct list_head *head) 240{ 241 return list_entry((head)->prev, struct folio, lru); 242} 243 244void setup_initial_init_mm(void *start_code, void *end_code, 245 void *end_data, void *brk); 246 247/* 248 * Linux kernel virtual memory manager primitives. 249 * The idea being to have a "virtual" mm in the same way 250 * we have a virtual fs - giving a cleaner interface to the 251 * mm details, and allowing different kinds of memory mappings 252 * (from shared memory to executable loading to arbitrary 253 * mmap() functions). 254 */ 255 256struct vm_area_struct *vm_area_alloc(struct mm_struct *); 257struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 258void vm_area_free(struct vm_area_struct *); 259/* Use only if VMA has no other users */ 260void __vm_area_free(struct vm_area_struct *vma); 261 262#ifndef CONFIG_MMU 263extern struct rb_root nommu_region_tree; 264extern struct rw_semaphore nommu_region_sem; 265 266extern unsigned int kobjsize(const void *objp); 267#endif 268 269/* 270 * vm_flags in vm_area_struct, see mm_types.h. 271 * When changing, update also include/trace/events/mmflags.h 272 */ 273#define VM_NONE 0x00000000 274 275#define VM_READ 0x00000001 /* currently active flags */ 276#define VM_WRITE 0x00000002 277#define VM_EXEC 0x00000004 278#define VM_SHARED 0x00000008 279 280/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 281#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 282#define VM_MAYWRITE 0x00000020 283#define VM_MAYEXEC 0x00000040 284#define VM_MAYSHARE 0x00000080 285 286#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 287#ifdef CONFIG_MMU 288#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 289#else /* CONFIG_MMU */ 290#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 291#define VM_UFFD_MISSING 0 292#endif /* CONFIG_MMU */ 293#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 294#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 295 296#define VM_LOCKED 0x00002000 297#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 298 299 /* Used by sys_madvise() */ 300#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 301#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 302 303#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 304#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 305#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 306#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 307#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 308#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 309#define VM_SYNC 0x00800000 /* Synchronous page faults */ 310#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 311#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 312#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 313 314#ifdef CONFIG_MEM_SOFT_DIRTY 315# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 316#else 317# define VM_SOFTDIRTY 0 318#endif 319 320#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 321#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 322#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 323#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 324 325#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 326#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 327#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 328#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 329#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 330#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 331#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 332#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 333#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 334#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 335#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 336#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 337#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 338#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 339 340#ifdef CONFIG_ARCH_HAS_PKEYS 341# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 342# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 343# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 344# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 345#if CONFIG_ARCH_PKEY_BITS > 3 346# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 347#else 348# define VM_PKEY_BIT3 0 349#endif 350#if CONFIG_ARCH_PKEY_BITS > 4 351# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 352#else 353# define VM_PKEY_BIT4 0 354#endif 355#endif /* CONFIG_ARCH_HAS_PKEYS */ 356 357#ifdef CONFIG_X86_USER_SHADOW_STACK 358/* 359 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 360 * support core mm. 361 * 362 * These VMAs will get a single end guard page. This helps userspace protect 363 * itself from attacks. A single page is enough for current shadow stack archs 364 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 365 * for more details on the guard size. 366 */ 367# define VM_SHADOW_STACK VM_HIGH_ARCH_5 368#else 369# define VM_SHADOW_STACK VM_NONE 370#endif 371 372#if defined(CONFIG_X86) 373# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 374#elif defined(CONFIG_PPC64) 375# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 376#elif defined(CONFIG_PARISC) 377# define VM_GROWSUP VM_ARCH_1 378#elif defined(CONFIG_SPARC64) 379# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 380# define VM_ARCH_CLEAR VM_SPARC_ADI 381#elif defined(CONFIG_ARM64) 382# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 383# define VM_ARCH_CLEAR VM_ARM64_BTI 384#elif !defined(CONFIG_MMU) 385# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 386#endif 387 388#if defined(CONFIG_ARM64_MTE) 389# define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 390# define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 391#else 392# define VM_MTE VM_NONE 393# define VM_MTE_ALLOWED VM_NONE 394#endif 395 396#ifndef VM_GROWSUP 397# define VM_GROWSUP VM_NONE 398#endif 399 400#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 401# define VM_UFFD_MINOR_BIT 38 402# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 403#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 404# define VM_UFFD_MINOR VM_NONE 405#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 406 407/* 408 * This flag is used to connect VFIO to arch specific KVM code. It 409 * indicates that the memory under this VMA is safe for use with any 410 * non-cachable memory type inside KVM. Some VFIO devices, on some 411 * platforms, are thought to be unsafe and can cause machine crashes 412 * if KVM does not lock down the memory type. 413 */ 414#ifdef CONFIG_64BIT 415#define VM_ALLOW_ANY_UNCACHED_BIT 39 416#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 417#else 418#define VM_ALLOW_ANY_UNCACHED VM_NONE 419#endif 420 421#ifdef CONFIG_64BIT 422#define VM_DROPPABLE_BIT 40 423#define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 424#elif defined(CONFIG_PPC32) 425#define VM_DROPPABLE VM_ARCH_1 426#else 427#define VM_DROPPABLE VM_NONE 428#endif 429 430#ifdef CONFIG_64BIT 431/* VM is sealed, in vm_flags */ 432#define VM_SEALED _BITUL(63) 433#endif 434 435/* Bits set in the VMA until the stack is in its final location */ 436#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 437 438#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 439 440/* Common data flag combinations */ 441#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 442 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 443#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 444 VM_MAYWRITE | VM_MAYEXEC) 445#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 446 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 447 448#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 449#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 450#endif 451 452#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 453#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 454#endif 455 456#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 457 458#ifdef CONFIG_STACK_GROWSUP 459#define VM_STACK VM_GROWSUP 460#define VM_STACK_EARLY VM_GROWSDOWN 461#else 462#define VM_STACK VM_GROWSDOWN 463#define VM_STACK_EARLY 0 464#endif 465 466#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 467 468/* VMA basic access permission flags */ 469#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 470 471 472/* 473 * Special vmas that are non-mergable, non-mlock()able. 474 */ 475#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 476 477/* This mask prevents VMA from being scanned with khugepaged */ 478#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 479 480/* This mask defines which mm->def_flags a process can inherit its parent */ 481#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 482 483/* This mask represents all the VMA flag bits used by mlock */ 484#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 485 486/* Arch-specific flags to clear when updating VM flags on protection change */ 487#ifndef VM_ARCH_CLEAR 488# define VM_ARCH_CLEAR VM_NONE 489#endif 490#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 491 492/* 493 * mapping from the currently active vm_flags protection bits (the 494 * low four bits) to a page protection mask.. 495 */ 496 497/* 498 * The default fault flags that should be used by most of the 499 * arch-specific page fault handlers. 500 */ 501#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 502 FAULT_FLAG_KILLABLE | \ 503 FAULT_FLAG_INTERRUPTIBLE) 504 505/** 506 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 507 * @flags: Fault flags. 508 * 509 * This is mostly used for places where we want to try to avoid taking 510 * the mmap_lock for too long a time when waiting for another condition 511 * to change, in which case we can try to be polite to release the 512 * mmap_lock in the first round to avoid potential starvation of other 513 * processes that would also want the mmap_lock. 514 * 515 * Return: true if the page fault allows retry and this is the first 516 * attempt of the fault handling; false otherwise. 517 */ 518static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 519{ 520 return (flags & FAULT_FLAG_ALLOW_RETRY) && 521 (!(flags & FAULT_FLAG_TRIED)); 522} 523 524#define FAULT_FLAG_TRACE \ 525 { FAULT_FLAG_WRITE, "WRITE" }, \ 526 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 527 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 528 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 529 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 530 { FAULT_FLAG_TRIED, "TRIED" }, \ 531 { FAULT_FLAG_USER, "USER" }, \ 532 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 533 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 534 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 535 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 536 537/* 538 * vm_fault is filled by the pagefault handler and passed to the vma's 539 * ->fault function. The vma's ->fault is responsible for returning a bitmask 540 * of VM_FAULT_xxx flags that give details about how the fault was handled. 541 * 542 * MM layer fills up gfp_mask for page allocations but fault handler might 543 * alter it if its implementation requires a different allocation context. 544 * 545 * pgoff should be used in favour of virtual_address, if possible. 546 */ 547struct vm_fault { 548 const struct { 549 struct vm_area_struct *vma; /* Target VMA */ 550 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 551 pgoff_t pgoff; /* Logical page offset based on vma */ 552 unsigned long address; /* Faulting virtual address - masked */ 553 unsigned long real_address; /* Faulting virtual address - unmasked */ 554 }; 555 enum fault_flag flags; /* FAULT_FLAG_xxx flags 556 * XXX: should really be 'const' */ 557 pmd_t *pmd; /* Pointer to pmd entry matching 558 * the 'address' */ 559 pud_t *pud; /* Pointer to pud entry matching 560 * the 'address' 561 */ 562 union { 563 pte_t orig_pte; /* Value of PTE at the time of fault */ 564 pmd_t orig_pmd; /* Value of PMD at the time of fault, 565 * used by PMD fault only. 566 */ 567 }; 568 569 struct page *cow_page; /* Page handler may use for COW fault */ 570 struct page *page; /* ->fault handlers should return a 571 * page here, unless VM_FAULT_NOPAGE 572 * is set (which is also implied by 573 * VM_FAULT_ERROR). 574 */ 575 /* These three entries are valid only while holding ptl lock */ 576 pte_t *pte; /* Pointer to pte entry matching 577 * the 'address'. NULL if the page 578 * table hasn't been allocated. 579 */ 580 spinlock_t *ptl; /* Page table lock. 581 * Protects pte page table if 'pte' 582 * is not NULL, otherwise pmd. 583 */ 584 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 585 * vm_ops->map_pages() sets up a page 586 * table from atomic context. 587 * do_fault_around() pre-allocates 588 * page table to avoid allocation from 589 * atomic context. 590 */ 591}; 592 593/* 594 * These are the virtual MM functions - opening of an area, closing and 595 * unmapping it (needed to keep files on disk up-to-date etc), pointer 596 * to the functions called when a no-page or a wp-page exception occurs. 597 */ 598struct vm_operations_struct { 599 void (*open)(struct vm_area_struct * area); 600 /** 601 * @close: Called when the VMA is being removed from the MM. 602 * Context: User context. May sleep. Caller holds mmap_lock. 603 */ 604 void (*close)(struct vm_area_struct * area); 605 /* Called any time before splitting to check if it's allowed */ 606 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 607 int (*mremap)(struct vm_area_struct *area); 608 /* 609 * Called by mprotect() to make driver-specific permission 610 * checks before mprotect() is finalised. The VMA must not 611 * be modified. Returns 0 if mprotect() can proceed. 612 */ 613 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 614 unsigned long end, unsigned long newflags); 615 vm_fault_t (*fault)(struct vm_fault *vmf); 616 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 617 vm_fault_t (*map_pages)(struct vm_fault *vmf, 618 pgoff_t start_pgoff, pgoff_t end_pgoff); 619 unsigned long (*pagesize)(struct vm_area_struct * area); 620 621 /* notification that a previously read-only page is about to become 622 * writable, if an error is returned it will cause a SIGBUS */ 623 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 624 625 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 626 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 627 628 /* called by access_process_vm when get_user_pages() fails, typically 629 * for use by special VMAs. See also generic_access_phys() for a generic 630 * implementation useful for any iomem mapping. 631 */ 632 int (*access)(struct vm_area_struct *vma, unsigned long addr, 633 void *buf, int len, int write); 634 635 /* Called by the /proc/PID/maps code to ask the vma whether it 636 * has a special name. Returning non-NULL will also cause this 637 * vma to be dumped unconditionally. */ 638 const char *(*name)(struct vm_area_struct *vma); 639 640#ifdef CONFIG_NUMA 641 /* 642 * set_policy() op must add a reference to any non-NULL @new mempolicy 643 * to hold the policy upon return. Caller should pass NULL @new to 644 * remove a policy and fall back to surrounding context--i.e. do not 645 * install a MPOL_DEFAULT policy, nor the task or system default 646 * mempolicy. 647 */ 648 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 649 650 /* 651 * get_policy() op must add reference [mpol_get()] to any policy at 652 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 653 * in mm/mempolicy.c will do this automatically. 654 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 655 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 656 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 657 * must return NULL--i.e., do not "fallback" to task or system default 658 * policy. 659 */ 660 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 661 unsigned long addr, pgoff_t *ilx); 662#endif 663 /* 664 * Called by vm_normal_page() for special PTEs to find the 665 * page for @addr. This is useful if the default behavior 666 * (using pte_page()) would not find the correct page. 667 */ 668 struct page *(*find_special_page)(struct vm_area_struct *vma, 669 unsigned long addr); 670}; 671 672#ifdef CONFIG_NUMA_BALANCING 673static inline void vma_numab_state_init(struct vm_area_struct *vma) 674{ 675 vma->numab_state = NULL; 676} 677static inline void vma_numab_state_free(struct vm_area_struct *vma) 678{ 679 kfree(vma->numab_state); 680} 681#else 682static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 683static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 684#endif /* CONFIG_NUMA_BALANCING */ 685 686#ifdef CONFIG_PER_VMA_LOCK 687/* 688 * Try to read-lock a vma. The function is allowed to occasionally yield false 689 * locked result to avoid performance overhead, in which case we fall back to 690 * using mmap_lock. The function should never yield false unlocked result. 691 */ 692static inline bool vma_start_read(struct vm_area_struct *vma) 693{ 694 /* 695 * Check before locking. A race might cause false locked result. 696 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 697 * ACQUIRE semantics, because this is just a lockless check whose result 698 * we don't rely on for anything - the mm_lock_seq read against which we 699 * need ordering is below. 700 */ 701 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 702 return false; 703 704 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 705 return false; 706 707 /* 708 * Overflow might produce false locked result. 709 * False unlocked result is impossible because we modify and check 710 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 711 * modification invalidates all existing locks. 712 * 713 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 714 * racing with vma_end_write_all(), we only start reading from the VMA 715 * after it has been unlocked. 716 * This pairs with RELEASE semantics in vma_end_write_all(). 717 */ 718 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 719 up_read(&vma->vm_lock->lock); 720 return false; 721 } 722 return true; 723} 724 725static inline void vma_end_read(struct vm_area_struct *vma) 726{ 727 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 728 up_read(&vma->vm_lock->lock); 729 rcu_read_unlock(); 730} 731 732/* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 733static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 734{ 735 mmap_assert_write_locked(vma->vm_mm); 736 737 /* 738 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 739 * mm->mm_lock_seq can't be concurrently modified. 740 */ 741 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 742 return (vma->vm_lock_seq == *mm_lock_seq); 743} 744 745/* 746 * Begin writing to a VMA. 747 * Exclude concurrent readers under the per-VMA lock until the currently 748 * write-locked mmap_lock is dropped or downgraded. 749 */ 750static inline void vma_start_write(struct vm_area_struct *vma) 751{ 752 int mm_lock_seq; 753 754 if (__is_vma_write_locked(vma, &mm_lock_seq)) 755 return; 756 757 down_write(&vma->vm_lock->lock); 758 /* 759 * We should use WRITE_ONCE() here because we can have concurrent reads 760 * from the early lockless pessimistic check in vma_start_read(). 761 * We don't really care about the correctness of that early check, but 762 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 763 */ 764 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 765 up_write(&vma->vm_lock->lock); 766} 767 768static inline void vma_assert_write_locked(struct vm_area_struct *vma) 769{ 770 int mm_lock_seq; 771 772 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 773} 774 775static inline void vma_assert_locked(struct vm_area_struct *vma) 776{ 777 if (!rwsem_is_locked(&vma->vm_lock->lock)) 778 vma_assert_write_locked(vma); 779} 780 781static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 782{ 783 /* When detaching vma should be write-locked */ 784 if (detached) 785 vma_assert_write_locked(vma); 786 vma->detached = detached; 787} 788 789static inline void release_fault_lock(struct vm_fault *vmf) 790{ 791 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 792 vma_end_read(vmf->vma); 793 else 794 mmap_read_unlock(vmf->vma->vm_mm); 795} 796 797static inline void assert_fault_locked(struct vm_fault *vmf) 798{ 799 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 800 vma_assert_locked(vmf->vma); 801 else 802 mmap_assert_locked(vmf->vma->vm_mm); 803} 804 805struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 806 unsigned long address); 807 808#else /* CONFIG_PER_VMA_LOCK */ 809 810static inline bool vma_start_read(struct vm_area_struct *vma) 811 { return false; } 812static inline void vma_end_read(struct vm_area_struct *vma) {} 813static inline void vma_start_write(struct vm_area_struct *vma) {} 814static inline void vma_assert_write_locked(struct vm_area_struct *vma) 815 { mmap_assert_write_locked(vma->vm_mm); } 816static inline void vma_mark_detached(struct vm_area_struct *vma, 817 bool detached) {} 818 819static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 820 unsigned long address) 821{ 822 return NULL; 823} 824 825static inline void vma_assert_locked(struct vm_area_struct *vma) 826{ 827 mmap_assert_locked(vma->vm_mm); 828} 829 830static inline void release_fault_lock(struct vm_fault *vmf) 831{ 832 mmap_read_unlock(vmf->vma->vm_mm); 833} 834 835static inline void assert_fault_locked(struct vm_fault *vmf) 836{ 837 mmap_assert_locked(vmf->vma->vm_mm); 838} 839 840#endif /* CONFIG_PER_VMA_LOCK */ 841 842extern const struct vm_operations_struct vma_dummy_vm_ops; 843 844/* 845 * WARNING: vma_init does not initialize vma->vm_lock. 846 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 847 */ 848static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 849{ 850 memset(vma, 0, sizeof(*vma)); 851 vma->vm_mm = mm; 852 vma->vm_ops = &vma_dummy_vm_ops; 853 INIT_LIST_HEAD(&vma->anon_vma_chain); 854 vma_mark_detached(vma, false); 855 vma_numab_state_init(vma); 856} 857 858/* Use when VMA is not part of the VMA tree and needs no locking */ 859static inline void vm_flags_init(struct vm_area_struct *vma, 860 vm_flags_t flags) 861{ 862 ACCESS_PRIVATE(vma, __vm_flags) = flags; 863} 864 865/* 866 * Use when VMA is part of the VMA tree and modifications need coordination 867 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 868 * it should be locked explicitly beforehand. 869 */ 870static inline void vm_flags_reset(struct vm_area_struct *vma, 871 vm_flags_t flags) 872{ 873 vma_assert_write_locked(vma); 874 vm_flags_init(vma, flags); 875} 876 877static inline void vm_flags_reset_once(struct vm_area_struct *vma, 878 vm_flags_t flags) 879{ 880 vma_assert_write_locked(vma); 881 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 882} 883 884static inline void vm_flags_set(struct vm_area_struct *vma, 885 vm_flags_t flags) 886{ 887 vma_start_write(vma); 888 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 889} 890 891static inline void vm_flags_clear(struct vm_area_struct *vma, 892 vm_flags_t flags) 893{ 894 vma_start_write(vma); 895 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 896} 897 898/* 899 * Use only if VMA is not part of the VMA tree or has no other users and 900 * therefore needs no locking. 901 */ 902static inline void __vm_flags_mod(struct vm_area_struct *vma, 903 vm_flags_t set, vm_flags_t clear) 904{ 905 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 906} 907 908/* 909 * Use only when the order of set/clear operations is unimportant, otherwise 910 * use vm_flags_{set|clear} explicitly. 911 */ 912static inline void vm_flags_mod(struct vm_area_struct *vma, 913 vm_flags_t set, vm_flags_t clear) 914{ 915 vma_start_write(vma); 916 __vm_flags_mod(vma, set, clear); 917} 918 919static inline void vma_set_anonymous(struct vm_area_struct *vma) 920{ 921 vma->vm_ops = NULL; 922} 923 924static inline bool vma_is_anonymous(struct vm_area_struct *vma) 925{ 926 return !vma->vm_ops; 927} 928 929/* 930 * Indicate if the VMA is a heap for the given task; for 931 * /proc/PID/maps that is the heap of the main task. 932 */ 933static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 934{ 935 return vma->vm_start < vma->vm_mm->brk && 936 vma->vm_end > vma->vm_mm->start_brk; 937} 938 939/* 940 * Indicate if the VMA is a stack for the given task; for 941 * /proc/PID/maps that is the stack of the main task. 942 */ 943static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 944{ 945 /* 946 * We make no effort to guess what a given thread considers to be 947 * its "stack". It's not even well-defined for programs written 948 * languages like Go. 949 */ 950 return vma->vm_start <= vma->vm_mm->start_stack && 951 vma->vm_end >= vma->vm_mm->start_stack; 952} 953 954static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 955{ 956 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 957 958 if (!maybe_stack) 959 return false; 960 961 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 962 VM_STACK_INCOMPLETE_SETUP) 963 return true; 964 965 return false; 966} 967 968static inline bool vma_is_foreign(struct vm_area_struct *vma) 969{ 970 if (!current->mm) 971 return true; 972 973 if (current->mm != vma->vm_mm) 974 return true; 975 976 return false; 977} 978 979static inline bool vma_is_accessible(struct vm_area_struct *vma) 980{ 981 return vma->vm_flags & VM_ACCESS_FLAGS; 982} 983 984static inline bool is_shared_maywrite(vm_flags_t vm_flags) 985{ 986 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 987 (VM_SHARED | VM_MAYWRITE); 988} 989 990static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 991{ 992 return is_shared_maywrite(vma->vm_flags); 993} 994 995static inline 996struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 997{ 998 return mas_find(&vmi->mas, max - 1); 999} 1000 1001static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1002{ 1003 /* 1004 * Uses mas_find() to get the first VMA when the iterator starts. 1005 * Calling mas_next() could skip the first entry. 1006 */ 1007 return mas_find(&vmi->mas, ULONG_MAX); 1008} 1009 1010static inline 1011struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1012{ 1013 return mas_next_range(&vmi->mas, ULONG_MAX); 1014} 1015 1016 1017static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1018{ 1019 return mas_prev(&vmi->mas, 0); 1020} 1021 1022static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1023 unsigned long start, unsigned long end, gfp_t gfp) 1024{ 1025 __mas_set_range(&vmi->mas, start, end - 1); 1026 mas_store_gfp(&vmi->mas, NULL, gfp); 1027 if (unlikely(mas_is_err(&vmi->mas))) 1028 return -ENOMEM; 1029 1030 return 0; 1031} 1032 1033/* Free any unused preallocations */ 1034static inline void vma_iter_free(struct vma_iterator *vmi) 1035{ 1036 mas_destroy(&vmi->mas); 1037} 1038 1039static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1040 struct vm_area_struct *vma) 1041{ 1042 vmi->mas.index = vma->vm_start; 1043 vmi->mas.last = vma->vm_end - 1; 1044 mas_store(&vmi->mas, vma); 1045 if (unlikely(mas_is_err(&vmi->mas))) 1046 return -ENOMEM; 1047 1048 return 0; 1049} 1050 1051static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1052{ 1053 mas_pause(&vmi->mas); 1054} 1055 1056static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1057{ 1058 mas_set(&vmi->mas, addr); 1059} 1060 1061#define for_each_vma(__vmi, __vma) \ 1062 while (((__vma) = vma_next(&(__vmi))) != NULL) 1063 1064/* The MM code likes to work with exclusive end addresses */ 1065#define for_each_vma_range(__vmi, __vma, __end) \ 1066 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1067 1068#ifdef CONFIG_SHMEM 1069/* 1070 * The vma_is_shmem is not inline because it is used only by slow 1071 * paths in userfault. 1072 */ 1073bool vma_is_shmem(struct vm_area_struct *vma); 1074bool vma_is_anon_shmem(struct vm_area_struct *vma); 1075#else 1076static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1077static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1078#endif 1079 1080int vma_is_stack_for_current(struct vm_area_struct *vma); 1081 1082/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1083#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1084 1085struct mmu_gather; 1086struct inode; 1087 1088/* 1089 * compound_order() can be called without holding a reference, which means 1090 * that niceties like page_folio() don't work. These callers should be 1091 * prepared to handle wild return values. For example, PG_head may be 1092 * set before the order is initialised, or this may be a tail page. 1093 * See compaction.c for some good examples. 1094 */ 1095static inline unsigned int compound_order(struct page *page) 1096{ 1097 struct folio *folio = (struct folio *)page; 1098 1099 if (!test_bit(PG_head, &folio->flags)) 1100 return 0; 1101 return folio->_flags_1 & 0xff; 1102} 1103 1104/** 1105 * folio_order - The allocation order of a folio. 1106 * @folio: The folio. 1107 * 1108 * A folio is composed of 2^order pages. See get_order() for the definition 1109 * of order. 1110 * 1111 * Return: The order of the folio. 1112 */ 1113static inline unsigned int folio_order(const struct folio *folio) 1114{ 1115 if (!folio_test_large(folio)) 1116 return 0; 1117 return folio->_flags_1 & 0xff; 1118} 1119 1120#include <linux/huge_mm.h> 1121 1122/* 1123 * Methods to modify the page usage count. 1124 * 1125 * What counts for a page usage: 1126 * - cache mapping (page->mapping) 1127 * - private data (page->private) 1128 * - page mapped in a task's page tables, each mapping 1129 * is counted separately 1130 * 1131 * Also, many kernel routines increase the page count before a critical 1132 * routine so they can be sure the page doesn't go away from under them. 1133 */ 1134 1135/* 1136 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1137 */ 1138static inline int put_page_testzero(struct page *page) 1139{ 1140 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1141 return page_ref_dec_and_test(page); 1142} 1143 1144static inline int folio_put_testzero(struct folio *folio) 1145{ 1146 return put_page_testzero(&folio->page); 1147} 1148 1149/* 1150 * Try to grab a ref unless the page has a refcount of zero, return false if 1151 * that is the case. 1152 * This can be called when MMU is off so it must not access 1153 * any of the virtual mappings. 1154 */ 1155static inline bool get_page_unless_zero(struct page *page) 1156{ 1157 return page_ref_add_unless(page, 1, 0); 1158} 1159 1160static inline struct folio *folio_get_nontail_page(struct page *page) 1161{ 1162 if (unlikely(!get_page_unless_zero(page))) 1163 return NULL; 1164 return (struct folio *)page; 1165} 1166 1167extern int page_is_ram(unsigned long pfn); 1168 1169enum { 1170 REGION_INTERSECTS, 1171 REGION_DISJOINT, 1172 REGION_MIXED, 1173}; 1174 1175int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1176 unsigned long desc); 1177 1178/* Support for virtually mapped pages */ 1179struct page *vmalloc_to_page(const void *addr); 1180unsigned long vmalloc_to_pfn(const void *addr); 1181 1182/* 1183 * Determine if an address is within the vmalloc range 1184 * 1185 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1186 * is no special casing required. 1187 */ 1188#ifdef CONFIG_MMU 1189extern bool is_vmalloc_addr(const void *x); 1190extern int is_vmalloc_or_module_addr(const void *x); 1191#else 1192static inline bool is_vmalloc_addr(const void *x) 1193{ 1194 return false; 1195} 1196static inline int is_vmalloc_or_module_addr(const void *x) 1197{ 1198 return 0; 1199} 1200#endif 1201 1202/* 1203 * How many times the entire folio is mapped as a single unit (eg by a 1204 * PMD or PUD entry). This is probably not what you want, except for 1205 * debugging purposes or implementation of other core folio_*() primitives. 1206 */ 1207static inline int folio_entire_mapcount(const struct folio *folio) 1208{ 1209 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1210 return atomic_read(&folio->_entire_mapcount) + 1; 1211} 1212 1213static inline int folio_large_mapcount(const struct folio *folio) 1214{ 1215 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1216 return atomic_read(&folio->_large_mapcount) + 1; 1217} 1218 1219/** 1220 * folio_mapcount() - Number of mappings of this folio. 1221 * @folio: The folio. 1222 * 1223 * The folio mapcount corresponds to the number of present user page table 1224 * entries that reference any part of a folio. Each such present user page 1225 * table entry must be paired with exactly on folio reference. 1226 * 1227 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1228 * exactly once. 1229 * 1230 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1231 * references the entire folio counts exactly once, even when such special 1232 * page table entries are comprised of multiple ordinary page table entries. 1233 * 1234 * Will report 0 for pages which cannot be mapped into userspace, such as 1235 * slab, page tables and similar. 1236 * 1237 * Return: The number of times this folio is mapped. 1238 */ 1239static inline int folio_mapcount(const struct folio *folio) 1240{ 1241 int mapcount; 1242 1243 if (likely(!folio_test_large(folio))) { 1244 mapcount = atomic_read(&folio->_mapcount) + 1; 1245 if (page_mapcount_is_type(mapcount)) 1246 mapcount = 0; 1247 return mapcount; 1248 } 1249 return folio_large_mapcount(folio); 1250} 1251 1252/** 1253 * folio_mapped - Is this folio mapped into userspace? 1254 * @folio: The folio. 1255 * 1256 * Return: True if any page in this folio is referenced by user page tables. 1257 */ 1258static inline bool folio_mapped(const struct folio *folio) 1259{ 1260 return folio_mapcount(folio) >= 1; 1261} 1262 1263/* 1264 * Return true if this page is mapped into pagetables. 1265 * For compound page it returns true if any sub-page of compound page is mapped, 1266 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1267 */ 1268static inline bool page_mapped(const struct page *page) 1269{ 1270 return folio_mapped(page_folio(page)); 1271} 1272 1273static inline struct page *virt_to_head_page(const void *x) 1274{ 1275 struct page *page = virt_to_page(x); 1276 1277 return compound_head(page); 1278} 1279 1280static inline struct folio *virt_to_folio(const void *x) 1281{ 1282 struct page *page = virt_to_page(x); 1283 1284 return page_folio(page); 1285} 1286 1287void __folio_put(struct folio *folio); 1288 1289void put_pages_list(struct list_head *pages); 1290 1291void split_page(struct page *page, unsigned int order); 1292void folio_copy(struct folio *dst, struct folio *src); 1293int folio_mc_copy(struct folio *dst, struct folio *src); 1294 1295unsigned long nr_free_buffer_pages(void); 1296 1297/* Returns the number of bytes in this potentially compound page. */ 1298static inline unsigned long page_size(struct page *page) 1299{ 1300 return PAGE_SIZE << compound_order(page); 1301} 1302 1303/* Returns the number of bits needed for the number of bytes in a page */ 1304static inline unsigned int page_shift(struct page *page) 1305{ 1306 return PAGE_SHIFT + compound_order(page); 1307} 1308 1309/** 1310 * thp_order - Order of a transparent huge page. 1311 * @page: Head page of a transparent huge page. 1312 */ 1313static inline unsigned int thp_order(struct page *page) 1314{ 1315 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1316 return compound_order(page); 1317} 1318 1319/** 1320 * thp_size - Size of a transparent huge page. 1321 * @page: Head page of a transparent huge page. 1322 * 1323 * Return: Number of bytes in this page. 1324 */ 1325static inline unsigned long thp_size(struct page *page) 1326{ 1327 return PAGE_SIZE << thp_order(page); 1328} 1329 1330#ifdef CONFIG_MMU 1331/* 1332 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1333 * servicing faults for write access. In the normal case, do always want 1334 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1335 * that do not have writing enabled, when used by access_process_vm. 1336 */ 1337static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1338{ 1339 if (likely(vma->vm_flags & VM_WRITE)) 1340 pte = pte_mkwrite(pte, vma); 1341 return pte; 1342} 1343 1344vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1345void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1346 struct page *page, unsigned int nr, unsigned long addr); 1347 1348vm_fault_t finish_fault(struct vm_fault *vmf); 1349#endif 1350 1351/* 1352 * Multiple processes may "see" the same page. E.g. for untouched 1353 * mappings of /dev/null, all processes see the same page full of 1354 * zeroes, and text pages of executables and shared libraries have 1355 * only one copy in memory, at most, normally. 1356 * 1357 * For the non-reserved pages, page_count(page) denotes a reference count. 1358 * page_count() == 0 means the page is free. page->lru is then used for 1359 * freelist management in the buddy allocator. 1360 * page_count() > 0 means the page has been allocated. 1361 * 1362 * Pages are allocated by the slab allocator in order to provide memory 1363 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1364 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1365 * unless a particular usage is carefully commented. (the responsibility of 1366 * freeing the kmalloc memory is the caller's, of course). 1367 * 1368 * A page may be used by anyone else who does a __get_free_page(). 1369 * In this case, page_count still tracks the references, and should only 1370 * be used through the normal accessor functions. The top bits of page->flags 1371 * and page->virtual store page management information, but all other fields 1372 * are unused and could be used privately, carefully. The management of this 1373 * page is the responsibility of the one who allocated it, and those who have 1374 * subsequently been given references to it. 1375 * 1376 * The other pages (we may call them "pagecache pages") are completely 1377 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1378 * The following discussion applies only to them. 1379 * 1380 * A pagecache page contains an opaque `private' member, which belongs to the 1381 * page's address_space. Usually, this is the address of a circular list of 1382 * the page's disk buffers. PG_private must be set to tell the VM to call 1383 * into the filesystem to release these pages. 1384 * 1385 * A page may belong to an inode's memory mapping. In this case, page->mapping 1386 * is the pointer to the inode, and page->index is the file offset of the page, 1387 * in units of PAGE_SIZE. 1388 * 1389 * If pagecache pages are not associated with an inode, they are said to be 1390 * anonymous pages. These may become associated with the swapcache, and in that 1391 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1392 * 1393 * In either case (swapcache or inode backed), the pagecache itself holds one 1394 * reference to the page. Setting PG_private should also increment the 1395 * refcount. The each user mapping also has a reference to the page. 1396 * 1397 * The pagecache pages are stored in a per-mapping radix tree, which is 1398 * rooted at mapping->i_pages, and indexed by offset. 1399 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1400 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1401 * 1402 * All pagecache pages may be subject to I/O: 1403 * - inode pages may need to be read from disk, 1404 * - inode pages which have been modified and are MAP_SHARED may need 1405 * to be written back to the inode on disk, 1406 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1407 * modified may need to be swapped out to swap space and (later) to be read 1408 * back into memory. 1409 */ 1410 1411#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1412DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1413 1414bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1415static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1416{ 1417 if (!static_branch_unlikely(&devmap_managed_key)) 1418 return false; 1419 if (!folio_is_zone_device(folio)) 1420 return false; 1421 return __put_devmap_managed_folio_refs(folio, refs); 1422} 1423#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1424static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1425{ 1426 return false; 1427} 1428#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1429 1430/* 127: arbitrary random number, small enough to assemble well */ 1431#define folio_ref_zero_or_close_to_overflow(folio) \ 1432 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1433 1434/** 1435 * folio_get - Increment the reference count on a folio. 1436 * @folio: The folio. 1437 * 1438 * Context: May be called in any context, as long as you know that 1439 * you have a refcount on the folio. If you do not already have one, 1440 * folio_try_get() may be the right interface for you to use. 1441 */ 1442static inline void folio_get(struct folio *folio) 1443{ 1444 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1445 folio_ref_inc(folio); 1446} 1447 1448static inline void get_page(struct page *page) 1449{ 1450 folio_get(page_folio(page)); 1451} 1452 1453static inline __must_check bool try_get_page(struct page *page) 1454{ 1455 page = compound_head(page); 1456 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1457 return false; 1458 page_ref_inc(page); 1459 return true; 1460} 1461 1462/** 1463 * folio_put - Decrement the reference count on a folio. 1464 * @folio: The folio. 1465 * 1466 * If the folio's reference count reaches zero, the memory will be 1467 * released back to the page allocator and may be used by another 1468 * allocation immediately. Do not access the memory or the struct folio 1469 * after calling folio_put() unless you can be sure that it wasn't the 1470 * last reference. 1471 * 1472 * Context: May be called in process or interrupt context, but not in NMI 1473 * context. May be called while holding a spinlock. 1474 */ 1475static inline void folio_put(struct folio *folio) 1476{ 1477 if (folio_put_testzero(folio)) 1478 __folio_put(folio); 1479} 1480 1481/** 1482 * folio_put_refs - Reduce the reference count on a folio. 1483 * @folio: The folio. 1484 * @refs: The amount to subtract from the folio's reference count. 1485 * 1486 * If the folio's reference count reaches zero, the memory will be 1487 * released back to the page allocator and may be used by another 1488 * allocation immediately. Do not access the memory or the struct folio 1489 * after calling folio_put_refs() unless you can be sure that these weren't 1490 * the last references. 1491 * 1492 * Context: May be called in process or interrupt context, but not in NMI 1493 * context. May be called while holding a spinlock. 1494 */ 1495static inline void folio_put_refs(struct folio *folio, int refs) 1496{ 1497 if (folio_ref_sub_and_test(folio, refs)) 1498 __folio_put(folio); 1499} 1500 1501void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1502 1503/* 1504 * union release_pages_arg - an array of pages or folios 1505 * 1506 * release_pages() releases a simple array of multiple pages, and 1507 * accepts various different forms of said page array: either 1508 * a regular old boring array of pages, an array of folios, or 1509 * an array of encoded page pointers. 1510 * 1511 * The transparent union syntax for this kind of "any of these 1512 * argument types" is all kinds of ugly, so look away. 1513 */ 1514typedef union { 1515 struct page **pages; 1516 struct folio **folios; 1517 struct encoded_page **encoded_pages; 1518} release_pages_arg __attribute__ ((__transparent_union__)); 1519 1520void release_pages(release_pages_arg, int nr); 1521 1522/** 1523 * folios_put - Decrement the reference count on an array of folios. 1524 * @folios: The folios. 1525 * 1526 * Like folio_put(), but for a batch of folios. This is more efficient 1527 * than writing the loop yourself as it will optimise the locks which need 1528 * to be taken if the folios are freed. The folios batch is returned 1529 * empty and ready to be reused for another batch; there is no need to 1530 * reinitialise it. 1531 * 1532 * Context: May be called in process or interrupt context, but not in NMI 1533 * context. May be called while holding a spinlock. 1534 */ 1535static inline void folios_put(struct folio_batch *folios) 1536{ 1537 folios_put_refs(folios, NULL); 1538} 1539 1540static inline void put_page(struct page *page) 1541{ 1542 struct folio *folio = page_folio(page); 1543 1544 /* 1545 * For some devmap managed pages we need to catch refcount transition 1546 * from 2 to 1: 1547 */ 1548 if (put_devmap_managed_folio_refs(folio, 1)) 1549 return; 1550 folio_put(folio); 1551} 1552 1553/* 1554 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1555 * the page's refcount so that two separate items are tracked: the original page 1556 * reference count, and also a new count of how many pin_user_pages() calls were 1557 * made against the page. ("gup-pinned" is another term for the latter). 1558 * 1559 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1560 * distinct from normal pages. As such, the unpin_user_page() call (and its 1561 * variants) must be used in order to release gup-pinned pages. 1562 * 1563 * Choice of value: 1564 * 1565 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1566 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1567 * simpler, due to the fact that adding an even power of two to the page 1568 * refcount has the effect of using only the upper N bits, for the code that 1569 * counts up using the bias value. This means that the lower bits are left for 1570 * the exclusive use of the original code that increments and decrements by one 1571 * (or at least, by much smaller values than the bias value). 1572 * 1573 * Of course, once the lower bits overflow into the upper bits (and this is 1574 * OK, because subtraction recovers the original values), then visual inspection 1575 * no longer suffices to directly view the separate counts. However, for normal 1576 * applications that don't have huge page reference counts, this won't be an 1577 * issue. 1578 * 1579 * Locking: the lockless algorithm described in folio_try_get_rcu() 1580 * provides safe operation for get_user_pages(), folio_mkclean() and 1581 * other calls that race to set up page table entries. 1582 */ 1583#define GUP_PIN_COUNTING_BIAS (1U << 10) 1584 1585void unpin_user_page(struct page *page); 1586void unpin_folio(struct folio *folio); 1587void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1588 bool make_dirty); 1589void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1590 bool make_dirty); 1591void unpin_user_pages(struct page **pages, unsigned long npages); 1592void unpin_user_folio(struct folio *folio, unsigned long npages); 1593void unpin_folios(struct folio **folios, unsigned long nfolios); 1594 1595static inline bool is_cow_mapping(vm_flags_t flags) 1596{ 1597 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1598} 1599 1600#ifndef CONFIG_MMU 1601static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1602{ 1603 /* 1604 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1605 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1606 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1607 * underlying memory if ptrace is active, so this is only possible if 1608 * ptrace does not apply. Note that there is no mprotect() to upgrade 1609 * write permissions later. 1610 */ 1611 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1612} 1613#endif 1614 1615#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1616#define SECTION_IN_PAGE_FLAGS 1617#endif 1618 1619/* 1620 * The identification function is mainly used by the buddy allocator for 1621 * determining if two pages could be buddies. We are not really identifying 1622 * the zone since we could be using the section number id if we do not have 1623 * node id available in page flags. 1624 * We only guarantee that it will return the same value for two combinable 1625 * pages in a zone. 1626 */ 1627static inline int page_zone_id(struct page *page) 1628{ 1629 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1630} 1631 1632#ifdef NODE_NOT_IN_PAGE_FLAGS 1633int page_to_nid(const struct page *page); 1634#else 1635static inline int page_to_nid(const struct page *page) 1636{ 1637 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1638} 1639#endif 1640 1641static inline int folio_nid(const struct folio *folio) 1642{ 1643 return page_to_nid(&folio->page); 1644} 1645 1646#ifdef CONFIG_NUMA_BALANCING 1647/* page access time bits needs to hold at least 4 seconds */ 1648#define PAGE_ACCESS_TIME_MIN_BITS 12 1649#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1650#define PAGE_ACCESS_TIME_BUCKETS \ 1651 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1652#else 1653#define PAGE_ACCESS_TIME_BUCKETS 0 1654#endif 1655 1656#define PAGE_ACCESS_TIME_MASK \ 1657 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1658 1659static inline int cpu_pid_to_cpupid(int cpu, int pid) 1660{ 1661 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1662} 1663 1664static inline int cpupid_to_pid(int cpupid) 1665{ 1666 return cpupid & LAST__PID_MASK; 1667} 1668 1669static inline int cpupid_to_cpu(int cpupid) 1670{ 1671 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1672} 1673 1674static inline int cpupid_to_nid(int cpupid) 1675{ 1676 return cpu_to_node(cpupid_to_cpu(cpupid)); 1677} 1678 1679static inline bool cpupid_pid_unset(int cpupid) 1680{ 1681 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1682} 1683 1684static inline bool cpupid_cpu_unset(int cpupid) 1685{ 1686 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1687} 1688 1689static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1690{ 1691 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1692} 1693 1694#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1695#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1696static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1697{ 1698 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1699} 1700 1701static inline int folio_last_cpupid(struct folio *folio) 1702{ 1703 return folio->_last_cpupid; 1704} 1705static inline void page_cpupid_reset_last(struct page *page) 1706{ 1707 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1708} 1709#else 1710static inline int folio_last_cpupid(struct folio *folio) 1711{ 1712 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1713} 1714 1715int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1716 1717static inline void page_cpupid_reset_last(struct page *page) 1718{ 1719 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1720} 1721#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1722 1723static inline int folio_xchg_access_time(struct folio *folio, int time) 1724{ 1725 int last_time; 1726 1727 last_time = folio_xchg_last_cpupid(folio, 1728 time >> PAGE_ACCESS_TIME_BUCKETS); 1729 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1730} 1731 1732static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1733{ 1734 unsigned int pid_bit; 1735 1736 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1737 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1738 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1739 } 1740} 1741 1742bool folio_use_access_time(struct folio *folio); 1743#else /* !CONFIG_NUMA_BALANCING */ 1744static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1745{ 1746 return folio_nid(folio); /* XXX */ 1747} 1748 1749static inline int folio_xchg_access_time(struct folio *folio, int time) 1750{ 1751 return 0; 1752} 1753 1754static inline int folio_last_cpupid(struct folio *folio) 1755{ 1756 return folio_nid(folio); /* XXX */ 1757} 1758 1759static inline int cpupid_to_nid(int cpupid) 1760{ 1761 return -1; 1762} 1763 1764static inline int cpupid_to_pid(int cpupid) 1765{ 1766 return -1; 1767} 1768 1769static inline int cpupid_to_cpu(int cpupid) 1770{ 1771 return -1; 1772} 1773 1774static inline int cpu_pid_to_cpupid(int nid, int pid) 1775{ 1776 return -1; 1777} 1778 1779static inline bool cpupid_pid_unset(int cpupid) 1780{ 1781 return true; 1782} 1783 1784static inline void page_cpupid_reset_last(struct page *page) 1785{ 1786} 1787 1788static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1789{ 1790 return false; 1791} 1792 1793static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1794{ 1795} 1796static inline bool folio_use_access_time(struct folio *folio) 1797{ 1798 return false; 1799} 1800#endif /* CONFIG_NUMA_BALANCING */ 1801 1802#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1803 1804/* 1805 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1806 * setting tags for all pages to native kernel tag value 0xff, as the default 1807 * value 0x00 maps to 0xff. 1808 */ 1809 1810static inline u8 page_kasan_tag(const struct page *page) 1811{ 1812 u8 tag = KASAN_TAG_KERNEL; 1813 1814 if (kasan_enabled()) { 1815 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1816 tag ^= 0xff; 1817 } 1818 1819 return tag; 1820} 1821 1822static inline void page_kasan_tag_set(struct page *page, u8 tag) 1823{ 1824 unsigned long old_flags, flags; 1825 1826 if (!kasan_enabled()) 1827 return; 1828 1829 tag ^= 0xff; 1830 old_flags = READ_ONCE(page->flags); 1831 do { 1832 flags = old_flags; 1833 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1834 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1835 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1836} 1837 1838static inline void page_kasan_tag_reset(struct page *page) 1839{ 1840 if (kasan_enabled()) 1841 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1842} 1843 1844#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1845 1846static inline u8 page_kasan_tag(const struct page *page) 1847{ 1848 return 0xff; 1849} 1850 1851static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1852static inline void page_kasan_tag_reset(struct page *page) { } 1853 1854#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1855 1856static inline struct zone *page_zone(const struct page *page) 1857{ 1858 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1859} 1860 1861static inline pg_data_t *page_pgdat(const struct page *page) 1862{ 1863 return NODE_DATA(page_to_nid(page)); 1864} 1865 1866static inline struct zone *folio_zone(const struct folio *folio) 1867{ 1868 return page_zone(&folio->page); 1869} 1870 1871static inline pg_data_t *folio_pgdat(const struct folio *folio) 1872{ 1873 return page_pgdat(&folio->page); 1874} 1875 1876#ifdef SECTION_IN_PAGE_FLAGS 1877static inline void set_page_section(struct page *page, unsigned long section) 1878{ 1879 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1880 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1881} 1882 1883static inline unsigned long page_to_section(const struct page *page) 1884{ 1885 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1886} 1887#endif 1888 1889/** 1890 * folio_pfn - Return the Page Frame Number of a folio. 1891 * @folio: The folio. 1892 * 1893 * A folio may contain multiple pages. The pages have consecutive 1894 * Page Frame Numbers. 1895 * 1896 * Return: The Page Frame Number of the first page in the folio. 1897 */ 1898static inline unsigned long folio_pfn(struct folio *folio) 1899{ 1900 return page_to_pfn(&folio->page); 1901} 1902 1903static inline struct folio *pfn_folio(unsigned long pfn) 1904{ 1905 return page_folio(pfn_to_page(pfn)); 1906} 1907 1908/** 1909 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1910 * @folio: The folio. 1911 * 1912 * This function checks if a folio has been pinned via a call to 1913 * a function in the pin_user_pages() family. 1914 * 1915 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1916 * because it means "definitely not pinned for DMA", but true means "probably 1917 * pinned for DMA, but possibly a false positive due to having at least 1918 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1919 * 1920 * False positives are OK, because: a) it's unlikely for a folio to 1921 * get that many refcounts, and b) all the callers of this routine are 1922 * expected to be able to deal gracefully with a false positive. 1923 * 1924 * For large folios, the result will be exactly correct. That's because 1925 * we have more tracking data available: the _pincount field is used 1926 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1927 * 1928 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1929 * 1930 * Return: True, if it is likely that the folio has been "dma-pinned". 1931 * False, if the folio is definitely not dma-pinned. 1932 */ 1933static inline bool folio_maybe_dma_pinned(struct folio *folio) 1934{ 1935 if (folio_test_large(folio)) 1936 return atomic_read(&folio->_pincount) > 0; 1937 1938 /* 1939 * folio_ref_count() is signed. If that refcount overflows, then 1940 * folio_ref_count() returns a negative value, and callers will avoid 1941 * further incrementing the refcount. 1942 * 1943 * Here, for that overflow case, use the sign bit to count a little 1944 * bit higher via unsigned math, and thus still get an accurate result. 1945 */ 1946 return ((unsigned int)folio_ref_count(folio)) >= 1947 GUP_PIN_COUNTING_BIAS; 1948} 1949 1950/* 1951 * This should most likely only be called during fork() to see whether we 1952 * should break the cow immediately for an anon page on the src mm. 1953 * 1954 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1955 */ 1956static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1957 struct folio *folio) 1958{ 1959 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1960 1961 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1962 return false; 1963 1964 return folio_maybe_dma_pinned(folio); 1965} 1966 1967/** 1968 * is_zero_page - Query if a page is a zero page 1969 * @page: The page to query 1970 * 1971 * This returns true if @page is one of the permanent zero pages. 1972 */ 1973static inline bool is_zero_page(const struct page *page) 1974{ 1975 return is_zero_pfn(page_to_pfn(page)); 1976} 1977 1978/** 1979 * is_zero_folio - Query if a folio is a zero page 1980 * @folio: The folio to query 1981 * 1982 * This returns true if @folio is one of the permanent zero pages. 1983 */ 1984static inline bool is_zero_folio(const struct folio *folio) 1985{ 1986 return is_zero_page(&folio->page); 1987} 1988 1989/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1990#ifdef CONFIG_MIGRATION 1991static inline bool folio_is_longterm_pinnable(struct folio *folio) 1992{ 1993#ifdef CONFIG_CMA 1994 int mt = folio_migratetype(folio); 1995 1996 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1997 return false; 1998#endif 1999 /* The zero page can be "pinned" but gets special handling. */ 2000 if (is_zero_folio(folio)) 2001 return true; 2002 2003 /* Coherent device memory must always allow eviction. */ 2004 if (folio_is_device_coherent(folio)) 2005 return false; 2006 2007 /* Otherwise, non-movable zone folios can be pinned. */ 2008 return !folio_is_zone_movable(folio); 2009 2010} 2011#else 2012static inline bool folio_is_longterm_pinnable(struct folio *folio) 2013{ 2014 return true; 2015} 2016#endif 2017 2018static inline void set_page_zone(struct page *page, enum zone_type zone) 2019{ 2020 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2021 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2022} 2023 2024static inline void set_page_node(struct page *page, unsigned long node) 2025{ 2026 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2027 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2028} 2029 2030static inline void set_page_links(struct page *page, enum zone_type zone, 2031 unsigned long node, unsigned long pfn) 2032{ 2033 set_page_zone(page, zone); 2034 set_page_node(page, node); 2035#ifdef SECTION_IN_PAGE_FLAGS 2036 set_page_section(page, pfn_to_section_nr(pfn)); 2037#endif 2038} 2039 2040/** 2041 * folio_nr_pages - The number of pages in the folio. 2042 * @folio: The folio. 2043 * 2044 * Return: A positive power of two. 2045 */ 2046static inline long folio_nr_pages(const struct folio *folio) 2047{ 2048 if (!folio_test_large(folio)) 2049 return 1; 2050#ifdef CONFIG_64BIT 2051 return folio->_folio_nr_pages; 2052#else 2053 return 1L << (folio->_flags_1 & 0xff); 2054#endif 2055} 2056 2057/* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2058#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2059#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2060#else 2061#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2062#endif 2063 2064/* 2065 * compound_nr() returns the number of pages in this potentially compound 2066 * page. compound_nr() can be called on a tail page, and is defined to 2067 * return 1 in that case. 2068 */ 2069static inline unsigned long compound_nr(struct page *page) 2070{ 2071 struct folio *folio = (struct folio *)page; 2072 2073 if (!test_bit(PG_head, &folio->flags)) 2074 return 1; 2075#ifdef CONFIG_64BIT 2076 return folio->_folio_nr_pages; 2077#else 2078 return 1L << (folio->_flags_1 & 0xff); 2079#endif 2080} 2081 2082/** 2083 * thp_nr_pages - The number of regular pages in this huge page. 2084 * @page: The head page of a huge page. 2085 */ 2086static inline int thp_nr_pages(struct page *page) 2087{ 2088 return folio_nr_pages((struct folio *)page); 2089} 2090 2091/** 2092 * folio_next - Move to the next physical folio. 2093 * @folio: The folio we're currently operating on. 2094 * 2095 * If you have physically contiguous memory which may span more than 2096 * one folio (eg a &struct bio_vec), use this function to move from one 2097 * folio to the next. Do not use it if the memory is only virtually 2098 * contiguous as the folios are almost certainly not adjacent to each 2099 * other. This is the folio equivalent to writing ``page++``. 2100 * 2101 * Context: We assume that the folios are refcounted and/or locked at a 2102 * higher level and do not adjust the reference counts. 2103 * Return: The next struct folio. 2104 */ 2105static inline struct folio *folio_next(struct folio *folio) 2106{ 2107 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2108} 2109 2110/** 2111 * folio_shift - The size of the memory described by this folio. 2112 * @folio: The folio. 2113 * 2114 * A folio represents a number of bytes which is a power-of-two in size. 2115 * This function tells you which power-of-two the folio is. See also 2116 * folio_size() and folio_order(). 2117 * 2118 * Context: The caller should have a reference on the folio to prevent 2119 * it from being split. It is not necessary for the folio to be locked. 2120 * Return: The base-2 logarithm of the size of this folio. 2121 */ 2122static inline unsigned int folio_shift(const struct folio *folio) 2123{ 2124 return PAGE_SHIFT + folio_order(folio); 2125} 2126 2127/** 2128 * folio_size - The number of bytes in a folio. 2129 * @folio: The folio. 2130 * 2131 * Context: The caller should have a reference on the folio to prevent 2132 * it from being split. It is not necessary for the folio to be locked. 2133 * Return: The number of bytes in this folio. 2134 */ 2135static inline size_t folio_size(const struct folio *folio) 2136{ 2137 return PAGE_SIZE << folio_order(folio); 2138} 2139 2140/** 2141 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2142 * tables of more than one MM 2143 * @folio: The folio. 2144 * 2145 * This function checks if the folio is currently mapped into more than one 2146 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2147 * ("mapped exclusively"). 2148 * 2149 * For KSM folios, this function also returns "mapped shared" when a folio is 2150 * mapped multiple times into the same MM, because the individual page mappings 2151 * are independent. 2152 * 2153 * As precise information is not easily available for all folios, this function 2154 * estimates the number of MMs ("sharers") that are currently mapping a folio 2155 * using the number of times the first page of the folio is currently mapped 2156 * into page tables. 2157 * 2158 * For small anonymous folios and anonymous hugetlb folios, the return 2159 * value will be exactly correct: non-KSM folios can only be mapped at most once 2160 * into an MM, and they cannot be partially mapped. KSM folios are 2161 * considered shared even if mapped multiple times into the same MM. 2162 * 2163 * For other folios, the result can be fuzzy: 2164 * #. For partially-mappable large folios (THP), the return value can wrongly 2165 * indicate "mapped exclusively" (false negative) when the folio is 2166 * only partially mapped into at least one MM. 2167 * #. For pagecache folios (including hugetlb), the return value can wrongly 2168 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2169 * cover the same file range. 2170 * 2171 * Further, this function only considers current page table mappings that 2172 * are tracked using the folio mapcount(s). 2173 * 2174 * This function does not consider: 2175 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2176 * pagecache, temporary unmapping for migration). 2177 * #. If the folio is mapped differently (VM_PFNMAP). 2178 * #. If hugetlb page table sharing applies. Callers might want to check 2179 * hugetlb_pmd_shared(). 2180 * 2181 * Return: Whether the folio is estimated to be mapped into more than one MM. 2182 */ 2183static inline bool folio_likely_mapped_shared(struct folio *folio) 2184{ 2185 int mapcount = folio_mapcount(folio); 2186 2187 /* Only partially-mappable folios require more care. */ 2188 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2189 return mapcount > 1; 2190 2191 /* A single mapping implies "mapped exclusively". */ 2192 if (mapcount <= 1) 2193 return false; 2194 2195 /* If any page is mapped more than once we treat it "mapped shared". */ 2196 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2197 return true; 2198 2199 /* Let's guess based on the first subpage. */ 2200 return atomic_read(&folio->_mapcount) > 0; 2201} 2202 2203#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2204static inline int arch_make_folio_accessible(struct folio *folio) 2205{ 2206 return 0; 2207} 2208#endif 2209 2210/* 2211 * Some inline functions in vmstat.h depend on page_zone() 2212 */ 2213#include <linux/vmstat.h> 2214 2215#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2216#define HASHED_PAGE_VIRTUAL 2217#endif 2218 2219#if defined(WANT_PAGE_VIRTUAL) 2220static inline void *page_address(const struct page *page) 2221{ 2222 return page->virtual; 2223} 2224static inline void set_page_address(struct page *page, void *address) 2225{ 2226 page->virtual = address; 2227} 2228#define page_address_init() do { } while(0) 2229#endif 2230 2231#if defined(HASHED_PAGE_VIRTUAL) 2232void *page_address(const struct page *page); 2233void set_page_address(struct page *page, void *virtual); 2234void page_address_init(void); 2235#endif 2236 2237static __always_inline void *lowmem_page_address(const struct page *page) 2238{ 2239 return page_to_virt(page); 2240} 2241 2242#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2243#define page_address(page) lowmem_page_address(page) 2244#define set_page_address(page, address) do { } while(0) 2245#define page_address_init() do { } while(0) 2246#endif 2247 2248static inline void *folio_address(const struct folio *folio) 2249{ 2250 return page_address(&folio->page); 2251} 2252 2253/* 2254 * Return true only if the page has been allocated with 2255 * ALLOC_NO_WATERMARKS and the low watermark was not 2256 * met implying that the system is under some pressure. 2257 */ 2258static inline bool page_is_pfmemalloc(const struct page *page) 2259{ 2260 /* 2261 * lru.next has bit 1 set if the page is allocated from the 2262 * pfmemalloc reserves. Callers may simply overwrite it if 2263 * they do not need to preserve that information. 2264 */ 2265 return (uintptr_t)page->lru.next & BIT(1); 2266} 2267 2268/* 2269 * Return true only if the folio has been allocated with 2270 * ALLOC_NO_WATERMARKS and the low watermark was not 2271 * met implying that the system is under some pressure. 2272 */ 2273static inline bool folio_is_pfmemalloc(const struct folio *folio) 2274{ 2275 /* 2276 * lru.next has bit 1 set if the page is allocated from the 2277 * pfmemalloc reserves. Callers may simply overwrite it if 2278 * they do not need to preserve that information. 2279 */ 2280 return (uintptr_t)folio->lru.next & BIT(1); 2281} 2282 2283/* 2284 * Only to be called by the page allocator on a freshly allocated 2285 * page. 2286 */ 2287static inline void set_page_pfmemalloc(struct page *page) 2288{ 2289 page->lru.next = (void *)BIT(1); 2290} 2291 2292static inline void clear_page_pfmemalloc(struct page *page) 2293{ 2294 page->lru.next = NULL; 2295} 2296 2297/* 2298 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2299 */ 2300extern void pagefault_out_of_memory(void); 2301 2302#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2303#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2304#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2305 2306/* 2307 * Parameter block passed down to zap_pte_range in exceptional cases. 2308 */ 2309struct zap_details { 2310 struct folio *single_folio; /* Locked folio to be unmapped */ 2311 bool even_cows; /* Zap COWed private pages too? */ 2312 zap_flags_t zap_flags; /* Extra flags for zapping */ 2313}; 2314 2315/* 2316 * Whether to drop the pte markers, for example, the uffd-wp information for 2317 * file-backed memory. This should only be specified when we will completely 2318 * drop the page in the mm, either by truncation or unmapping of the vma. By 2319 * default, the flag is not set. 2320 */ 2321#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2322/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2323#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2324 2325#ifdef CONFIG_SCHED_MM_CID 2326void sched_mm_cid_before_execve(struct task_struct *t); 2327void sched_mm_cid_after_execve(struct task_struct *t); 2328void sched_mm_cid_fork(struct task_struct *t); 2329void sched_mm_cid_exit_signals(struct task_struct *t); 2330static inline int task_mm_cid(struct task_struct *t) 2331{ 2332 return t->mm_cid; 2333} 2334#else 2335static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2336static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2337static inline void sched_mm_cid_fork(struct task_struct *t) { } 2338static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2339static inline int task_mm_cid(struct task_struct *t) 2340{ 2341 /* 2342 * Use the processor id as a fall-back when the mm cid feature is 2343 * disabled. This provides functional per-cpu data structure accesses 2344 * in user-space, althrough it won't provide the memory usage benefits. 2345 */ 2346 return raw_smp_processor_id(); 2347} 2348#endif 2349 2350#ifdef CONFIG_MMU 2351extern bool can_do_mlock(void); 2352#else 2353static inline bool can_do_mlock(void) { return false; } 2354#endif 2355extern int user_shm_lock(size_t, struct ucounts *); 2356extern void user_shm_unlock(size_t, struct ucounts *); 2357 2358struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2359 pte_t pte); 2360struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2361 pte_t pte); 2362struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2363 unsigned long addr, pmd_t pmd); 2364struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2365 pmd_t pmd); 2366 2367void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2368 unsigned long size); 2369void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2370 unsigned long size, struct zap_details *details); 2371static inline void zap_vma_pages(struct vm_area_struct *vma) 2372{ 2373 zap_page_range_single(vma, vma->vm_start, 2374 vma->vm_end - vma->vm_start, NULL); 2375} 2376void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2377 struct vm_area_struct *start_vma, unsigned long start, 2378 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2379 2380struct mmu_notifier_range; 2381 2382void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2383 unsigned long end, unsigned long floor, unsigned long ceiling); 2384int 2385copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2386int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2387 void *buf, int len, int write); 2388 2389struct follow_pfnmap_args { 2390 /** 2391 * Inputs: 2392 * @vma: Pointer to @vm_area_struct struct 2393 * @address: the virtual address to walk 2394 */ 2395 struct vm_area_struct *vma; 2396 unsigned long address; 2397 /** 2398 * Internals: 2399 * 2400 * The caller shouldn't touch any of these. 2401 */ 2402 spinlock_t *lock; 2403 pte_t *ptep; 2404 /** 2405 * Outputs: 2406 * 2407 * @pfn: the PFN of the address 2408 * @pgprot: the pgprot_t of the mapping 2409 * @writable: whether the mapping is writable 2410 * @special: whether the mapping is a special mapping (real PFN maps) 2411 */ 2412 unsigned long pfn; 2413 pgprot_t pgprot; 2414 bool writable; 2415 bool special; 2416}; 2417int follow_pfnmap_start(struct follow_pfnmap_args *args); 2418void follow_pfnmap_end(struct follow_pfnmap_args *args); 2419 2420extern void truncate_pagecache(struct inode *inode, loff_t new); 2421extern void truncate_setsize(struct inode *inode, loff_t newsize); 2422void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2423void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2424int generic_error_remove_folio(struct address_space *mapping, 2425 struct folio *folio); 2426 2427struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2428 unsigned long address, struct pt_regs *regs); 2429 2430#ifdef CONFIG_MMU 2431extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2432 unsigned long address, unsigned int flags, 2433 struct pt_regs *regs); 2434extern int fixup_user_fault(struct mm_struct *mm, 2435 unsigned long address, unsigned int fault_flags, 2436 bool *unlocked); 2437void unmap_mapping_pages(struct address_space *mapping, 2438 pgoff_t start, pgoff_t nr, bool even_cows); 2439void unmap_mapping_range(struct address_space *mapping, 2440 loff_t const holebegin, loff_t const holelen, int even_cows); 2441#else 2442static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2443 unsigned long address, unsigned int flags, 2444 struct pt_regs *regs) 2445{ 2446 /* should never happen if there's no MMU */ 2447 BUG(); 2448 return VM_FAULT_SIGBUS; 2449} 2450static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2451 unsigned int fault_flags, bool *unlocked) 2452{ 2453 /* should never happen if there's no MMU */ 2454 BUG(); 2455 return -EFAULT; 2456} 2457static inline void unmap_mapping_pages(struct address_space *mapping, 2458 pgoff_t start, pgoff_t nr, bool even_cows) { } 2459static inline void unmap_mapping_range(struct address_space *mapping, 2460 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2461#endif 2462 2463static inline void unmap_shared_mapping_range(struct address_space *mapping, 2464 loff_t const holebegin, loff_t const holelen) 2465{ 2466 unmap_mapping_range(mapping, holebegin, holelen, 0); 2467} 2468 2469static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2470 unsigned long addr); 2471 2472extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2473 void *buf, int len, unsigned int gup_flags); 2474extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2475 void *buf, int len, unsigned int gup_flags); 2476 2477long get_user_pages_remote(struct mm_struct *mm, 2478 unsigned long start, unsigned long nr_pages, 2479 unsigned int gup_flags, struct page **pages, 2480 int *locked); 2481long pin_user_pages_remote(struct mm_struct *mm, 2482 unsigned long start, unsigned long nr_pages, 2483 unsigned int gup_flags, struct page **pages, 2484 int *locked); 2485 2486/* 2487 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2488 */ 2489static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2490 unsigned long addr, 2491 int gup_flags, 2492 struct vm_area_struct **vmap) 2493{ 2494 struct page *page; 2495 struct vm_area_struct *vma; 2496 int got; 2497 2498 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2499 return ERR_PTR(-EINVAL); 2500 2501 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2502 2503 if (got < 0) 2504 return ERR_PTR(got); 2505 2506 vma = vma_lookup(mm, addr); 2507 if (WARN_ON_ONCE(!vma)) { 2508 put_page(page); 2509 return ERR_PTR(-EINVAL); 2510 } 2511 2512 *vmap = vma; 2513 return page; 2514} 2515 2516long get_user_pages(unsigned long start, unsigned long nr_pages, 2517 unsigned int gup_flags, struct page **pages); 2518long pin_user_pages(unsigned long start, unsigned long nr_pages, 2519 unsigned int gup_flags, struct page **pages); 2520long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2521 struct page **pages, unsigned int gup_flags); 2522long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2523 struct page **pages, unsigned int gup_flags); 2524long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2525 struct folio **folios, unsigned int max_folios, 2526 pgoff_t *offset); 2527 2528int get_user_pages_fast(unsigned long start, int nr_pages, 2529 unsigned int gup_flags, struct page **pages); 2530int pin_user_pages_fast(unsigned long start, int nr_pages, 2531 unsigned int gup_flags, struct page **pages); 2532void folio_add_pin(struct folio *folio); 2533 2534int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2535int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2536 struct task_struct *task, bool bypass_rlim); 2537 2538struct kvec; 2539struct page *get_dump_page(unsigned long addr); 2540 2541bool folio_mark_dirty(struct folio *folio); 2542bool set_page_dirty(struct page *page); 2543int set_page_dirty_lock(struct page *page); 2544 2545int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2546 2547/* 2548 * Flags used by change_protection(). For now we make it a bitmap so 2549 * that we can pass in multiple flags just like parameters. However 2550 * for now all the callers are only use one of the flags at the same 2551 * time. 2552 */ 2553/* 2554 * Whether we should manually check if we can map individual PTEs writable, 2555 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2556 * PTEs automatically in a writable mapping. 2557 */ 2558#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2559/* Whether this protection change is for NUMA hints */ 2560#define MM_CP_PROT_NUMA (1UL << 1) 2561/* Whether this change is for write protecting */ 2562#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2563#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2564#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2565 MM_CP_UFFD_WP_RESOLVE) 2566 2567bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2568 pte_t pte); 2569extern long change_protection(struct mmu_gather *tlb, 2570 struct vm_area_struct *vma, unsigned long start, 2571 unsigned long end, unsigned long cp_flags); 2572extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2573 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2574 unsigned long start, unsigned long end, unsigned long newflags); 2575 2576/* 2577 * doesn't attempt to fault and will return short. 2578 */ 2579int get_user_pages_fast_only(unsigned long start, int nr_pages, 2580 unsigned int gup_flags, struct page **pages); 2581 2582static inline bool get_user_page_fast_only(unsigned long addr, 2583 unsigned int gup_flags, struct page **pagep) 2584{ 2585 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2586} 2587/* 2588 * per-process(per-mm_struct) statistics. 2589 */ 2590static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2591{ 2592 return percpu_counter_read_positive(&mm->rss_stat[member]); 2593} 2594 2595void mm_trace_rss_stat(struct mm_struct *mm, int member); 2596 2597static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2598{ 2599 percpu_counter_add(&mm->rss_stat[member], value); 2600 2601 mm_trace_rss_stat(mm, member); 2602} 2603 2604static inline void inc_mm_counter(struct mm_struct *mm, int member) 2605{ 2606 percpu_counter_inc(&mm->rss_stat[member]); 2607 2608 mm_trace_rss_stat(mm, member); 2609} 2610 2611static inline void dec_mm_counter(struct mm_struct *mm, int member) 2612{ 2613 percpu_counter_dec(&mm->rss_stat[member]); 2614 2615 mm_trace_rss_stat(mm, member); 2616} 2617 2618/* Optimized variant when folio is already known not to be anon */ 2619static inline int mm_counter_file(struct folio *folio) 2620{ 2621 if (folio_test_swapbacked(folio)) 2622 return MM_SHMEMPAGES; 2623 return MM_FILEPAGES; 2624} 2625 2626static inline int mm_counter(struct folio *folio) 2627{ 2628 if (folio_test_anon(folio)) 2629 return MM_ANONPAGES; 2630 return mm_counter_file(folio); 2631} 2632 2633static inline unsigned long get_mm_rss(struct mm_struct *mm) 2634{ 2635 return get_mm_counter(mm, MM_FILEPAGES) + 2636 get_mm_counter(mm, MM_ANONPAGES) + 2637 get_mm_counter(mm, MM_SHMEMPAGES); 2638} 2639 2640static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2641{ 2642 return max(mm->hiwater_rss, get_mm_rss(mm)); 2643} 2644 2645static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2646{ 2647 return max(mm->hiwater_vm, mm->total_vm); 2648} 2649 2650static inline void update_hiwater_rss(struct mm_struct *mm) 2651{ 2652 unsigned long _rss = get_mm_rss(mm); 2653 2654 if ((mm)->hiwater_rss < _rss) 2655 (mm)->hiwater_rss = _rss; 2656} 2657 2658static inline void update_hiwater_vm(struct mm_struct *mm) 2659{ 2660 if (mm->hiwater_vm < mm->total_vm) 2661 mm->hiwater_vm = mm->total_vm; 2662} 2663 2664static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2665{ 2666 mm->hiwater_rss = get_mm_rss(mm); 2667} 2668 2669static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2670 struct mm_struct *mm) 2671{ 2672 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2673 2674 if (*maxrss < hiwater_rss) 2675 *maxrss = hiwater_rss; 2676} 2677 2678#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2679static inline int pte_special(pte_t pte) 2680{ 2681 return 0; 2682} 2683 2684static inline pte_t pte_mkspecial(pte_t pte) 2685{ 2686 return pte; 2687} 2688#endif 2689 2690#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2691static inline bool pmd_special(pmd_t pmd) 2692{ 2693 return false; 2694} 2695 2696static inline pmd_t pmd_mkspecial(pmd_t pmd) 2697{ 2698 return pmd; 2699} 2700#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2701 2702#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2703static inline bool pud_special(pud_t pud) 2704{ 2705 return false; 2706} 2707 2708static inline pud_t pud_mkspecial(pud_t pud) 2709{ 2710 return pud; 2711} 2712#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2713 2714#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2715static inline int pte_devmap(pte_t pte) 2716{ 2717 return 0; 2718} 2719#endif 2720 2721extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2722 spinlock_t **ptl); 2723static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2724 spinlock_t **ptl) 2725{ 2726 pte_t *ptep; 2727 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2728 return ptep; 2729} 2730 2731#ifdef __PAGETABLE_P4D_FOLDED 2732static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2733 unsigned long address) 2734{ 2735 return 0; 2736} 2737#else 2738int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2739#endif 2740 2741#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2742static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2743 unsigned long address) 2744{ 2745 return 0; 2746} 2747static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2748static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2749 2750#else 2751int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2752 2753static inline void mm_inc_nr_puds(struct mm_struct *mm) 2754{ 2755 if (mm_pud_folded(mm)) 2756 return; 2757 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2758} 2759 2760static inline void mm_dec_nr_puds(struct mm_struct *mm) 2761{ 2762 if (mm_pud_folded(mm)) 2763 return; 2764 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2765} 2766#endif 2767 2768#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2769static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2770 unsigned long address) 2771{ 2772 return 0; 2773} 2774 2775static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2776static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2777 2778#else 2779int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2780 2781static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2782{ 2783 if (mm_pmd_folded(mm)) 2784 return; 2785 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2786} 2787 2788static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2789{ 2790 if (mm_pmd_folded(mm)) 2791 return; 2792 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2793} 2794#endif 2795 2796#ifdef CONFIG_MMU 2797static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2798{ 2799 atomic_long_set(&mm->pgtables_bytes, 0); 2800} 2801 2802static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2803{ 2804 return atomic_long_read(&mm->pgtables_bytes); 2805} 2806 2807static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2808{ 2809 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2810} 2811 2812static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2813{ 2814 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2815} 2816#else 2817 2818static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2819static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2820{ 2821 return 0; 2822} 2823 2824static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2825static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2826#endif 2827 2828int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2829int __pte_alloc_kernel(pmd_t *pmd); 2830 2831#if defined(CONFIG_MMU) 2832 2833static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2834 unsigned long address) 2835{ 2836 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2837 NULL : p4d_offset(pgd, address); 2838} 2839 2840static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2841 unsigned long address) 2842{ 2843 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2844 NULL : pud_offset(p4d, address); 2845} 2846 2847static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2848{ 2849 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2850 NULL: pmd_offset(pud, address); 2851} 2852#endif /* CONFIG_MMU */ 2853 2854static inline struct ptdesc *virt_to_ptdesc(const void *x) 2855{ 2856 return page_ptdesc(virt_to_page(x)); 2857} 2858 2859static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2860{ 2861 return page_to_virt(ptdesc_page(pt)); 2862} 2863 2864static inline void *ptdesc_address(const struct ptdesc *pt) 2865{ 2866 return folio_address(ptdesc_folio(pt)); 2867} 2868 2869static inline bool pagetable_is_reserved(struct ptdesc *pt) 2870{ 2871 return folio_test_reserved(ptdesc_folio(pt)); 2872} 2873 2874/** 2875 * pagetable_alloc - Allocate pagetables 2876 * @gfp: GFP flags 2877 * @order: desired pagetable order 2878 * 2879 * pagetable_alloc allocates memory for page tables as well as a page table 2880 * descriptor to describe that memory. 2881 * 2882 * Return: The ptdesc describing the allocated page tables. 2883 */ 2884static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2885{ 2886 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2887 2888 return page_ptdesc(page); 2889} 2890#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2891 2892/** 2893 * pagetable_free - Free pagetables 2894 * @pt: The page table descriptor 2895 * 2896 * pagetable_free frees the memory of all page tables described by a page 2897 * table descriptor and the memory for the descriptor itself. 2898 */ 2899static inline void pagetable_free(struct ptdesc *pt) 2900{ 2901 struct page *page = ptdesc_page(pt); 2902 2903 __free_pages(page, compound_order(page)); 2904} 2905 2906#if defined(CONFIG_SPLIT_PTE_PTLOCKS) 2907#if ALLOC_SPLIT_PTLOCKS 2908void __init ptlock_cache_init(void); 2909bool ptlock_alloc(struct ptdesc *ptdesc); 2910void ptlock_free(struct ptdesc *ptdesc); 2911 2912static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2913{ 2914 return ptdesc->ptl; 2915} 2916#else /* ALLOC_SPLIT_PTLOCKS */ 2917static inline void ptlock_cache_init(void) 2918{ 2919} 2920 2921static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2922{ 2923 return true; 2924} 2925 2926static inline void ptlock_free(struct ptdesc *ptdesc) 2927{ 2928} 2929 2930static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2931{ 2932 return &ptdesc->ptl; 2933} 2934#endif /* ALLOC_SPLIT_PTLOCKS */ 2935 2936static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2937{ 2938 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2939} 2940 2941static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2942{ 2943 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2944 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2945 return ptlock_ptr(virt_to_ptdesc(pte)); 2946} 2947 2948static inline bool ptlock_init(struct ptdesc *ptdesc) 2949{ 2950 /* 2951 * prep_new_page() initialize page->private (and therefore page->ptl) 2952 * with 0. Make sure nobody took it in use in between. 2953 * 2954 * It can happen if arch try to use slab for page table allocation: 2955 * slab code uses page->slab_cache, which share storage with page->ptl. 2956 */ 2957 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2958 if (!ptlock_alloc(ptdesc)) 2959 return false; 2960 spin_lock_init(ptlock_ptr(ptdesc)); 2961 return true; 2962} 2963 2964#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2965/* 2966 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2967 */ 2968static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2969{ 2970 return &mm->page_table_lock; 2971} 2972static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2973{ 2974 return &mm->page_table_lock; 2975} 2976static inline void ptlock_cache_init(void) {} 2977static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2978static inline void ptlock_free(struct ptdesc *ptdesc) {} 2979#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2980 2981static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2982{ 2983 struct folio *folio = ptdesc_folio(ptdesc); 2984 2985 if (!ptlock_init(ptdesc)) 2986 return false; 2987 __folio_set_pgtable(folio); 2988 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2989 return true; 2990} 2991 2992static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2993{ 2994 struct folio *folio = ptdesc_folio(ptdesc); 2995 2996 ptlock_free(ptdesc); 2997 __folio_clear_pgtable(folio); 2998 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2999} 3000 3001pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3002static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3003{ 3004 return __pte_offset_map(pmd, addr, NULL); 3005} 3006 3007pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3008 unsigned long addr, spinlock_t **ptlp); 3009static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3010 unsigned long addr, spinlock_t **ptlp) 3011{ 3012 pte_t *pte; 3013 3014 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 3015 return pte; 3016} 3017 3018pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 3019 unsigned long addr, spinlock_t **ptlp); 3020 3021#define pte_unmap_unlock(pte, ptl) do { \ 3022 spin_unlock(ptl); \ 3023 pte_unmap(pte); \ 3024} while (0) 3025 3026#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3027 3028#define pte_alloc_map(mm, pmd, address) \ 3029 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3030 3031#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3032 (pte_alloc(mm, pmd) ? \ 3033 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3034 3035#define pte_alloc_kernel(pmd, address) \ 3036 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3037 NULL: pte_offset_kernel(pmd, address)) 3038 3039#if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3040 3041static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3042{ 3043 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3044 return virt_to_page((void *)((unsigned long) pmd & mask)); 3045} 3046 3047static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3048{ 3049 return page_ptdesc(pmd_pgtable_page(pmd)); 3050} 3051 3052static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3053{ 3054 return ptlock_ptr(pmd_ptdesc(pmd)); 3055} 3056 3057static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3058{ 3059#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3060 ptdesc->pmd_huge_pte = NULL; 3061#endif 3062 return ptlock_init(ptdesc); 3063} 3064 3065static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3066{ 3067#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3068 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3069#endif 3070 ptlock_free(ptdesc); 3071} 3072 3073#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3074 3075#else 3076 3077static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3078{ 3079 return &mm->page_table_lock; 3080} 3081 3082static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3083static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3084 3085#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3086 3087#endif 3088 3089static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3090{ 3091 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3092 spin_lock(ptl); 3093 return ptl; 3094} 3095 3096static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3097{ 3098 struct folio *folio = ptdesc_folio(ptdesc); 3099 3100 if (!pmd_ptlock_init(ptdesc)) 3101 return false; 3102 __folio_set_pgtable(folio); 3103 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3104 return true; 3105} 3106 3107static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3108{ 3109 struct folio *folio = ptdesc_folio(ptdesc); 3110 3111 pmd_ptlock_free(ptdesc); 3112 __folio_clear_pgtable(folio); 3113 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3114} 3115 3116/* 3117 * No scalability reason to split PUD locks yet, but follow the same pattern 3118 * as the PMD locks to make it easier if we decide to. The VM should not be 3119 * considered ready to switch to split PUD locks yet; there may be places 3120 * which need to be converted from page_table_lock. 3121 */ 3122static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3123{ 3124 return &mm->page_table_lock; 3125} 3126 3127static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3128{ 3129 spinlock_t *ptl = pud_lockptr(mm, pud); 3130 3131 spin_lock(ptl); 3132 return ptl; 3133} 3134 3135static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3136{ 3137 struct folio *folio = ptdesc_folio(ptdesc); 3138 3139 __folio_set_pgtable(folio); 3140 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3141} 3142 3143static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3144{ 3145 struct folio *folio = ptdesc_folio(ptdesc); 3146 3147 __folio_clear_pgtable(folio); 3148 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3149} 3150 3151extern void __init pagecache_init(void); 3152extern void free_initmem(void); 3153 3154/* 3155 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3156 * into the buddy system. The freed pages will be poisoned with pattern 3157 * "poison" if it's within range [0, UCHAR_MAX]. 3158 * Return pages freed into the buddy system. 3159 */ 3160extern unsigned long free_reserved_area(void *start, void *end, 3161 int poison, const char *s); 3162 3163extern void adjust_managed_page_count(struct page *page, long count); 3164 3165extern void reserve_bootmem_region(phys_addr_t start, 3166 phys_addr_t end, int nid); 3167 3168/* Free the reserved page into the buddy system, so it gets managed. */ 3169void free_reserved_page(struct page *page); 3170#define free_highmem_page(page) free_reserved_page(page) 3171 3172static inline void mark_page_reserved(struct page *page) 3173{ 3174 SetPageReserved(page); 3175 adjust_managed_page_count(page, -1); 3176} 3177 3178static inline void free_reserved_ptdesc(struct ptdesc *pt) 3179{ 3180 free_reserved_page(ptdesc_page(pt)); 3181} 3182 3183/* 3184 * Default method to free all the __init memory into the buddy system. 3185 * The freed pages will be poisoned with pattern "poison" if it's within 3186 * range [0, UCHAR_MAX]. 3187 * Return pages freed into the buddy system. 3188 */ 3189static inline unsigned long free_initmem_default(int poison) 3190{ 3191 extern char __init_begin[], __init_end[]; 3192 3193 return free_reserved_area(&__init_begin, &__init_end, 3194 poison, "unused kernel image (initmem)"); 3195} 3196 3197static inline unsigned long get_num_physpages(void) 3198{ 3199 int nid; 3200 unsigned long phys_pages = 0; 3201 3202 for_each_online_node(nid) 3203 phys_pages += node_present_pages(nid); 3204 3205 return phys_pages; 3206} 3207 3208/* 3209 * Using memblock node mappings, an architecture may initialise its 3210 * zones, allocate the backing mem_map and account for memory holes in an 3211 * architecture independent manner. 3212 * 3213 * An architecture is expected to register range of page frames backed by 3214 * physical memory with memblock_add[_node]() before calling 3215 * free_area_init() passing in the PFN each zone ends at. At a basic 3216 * usage, an architecture is expected to do something like 3217 * 3218 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3219 * max_highmem_pfn}; 3220 * for_each_valid_physical_page_range() 3221 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3222 * free_area_init(max_zone_pfns); 3223 */ 3224void free_area_init(unsigned long *max_zone_pfn); 3225unsigned long node_map_pfn_alignment(void); 3226extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3227 unsigned long end_pfn); 3228extern void get_pfn_range_for_nid(unsigned int nid, 3229 unsigned long *start_pfn, unsigned long *end_pfn); 3230 3231#ifndef CONFIG_NUMA 3232static inline int early_pfn_to_nid(unsigned long pfn) 3233{ 3234 return 0; 3235} 3236#else 3237/* please see mm/page_alloc.c */ 3238extern int __meminit early_pfn_to_nid(unsigned long pfn); 3239#endif 3240 3241extern void mem_init(void); 3242extern void __init mmap_init(void); 3243 3244extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3245static inline void show_mem(void) 3246{ 3247 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3248} 3249extern long si_mem_available(void); 3250extern void si_meminfo(struct sysinfo * val); 3251extern void si_meminfo_node(struct sysinfo *val, int nid); 3252 3253extern __printf(3, 4) 3254void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3255 3256extern void setup_per_cpu_pageset(void); 3257 3258/* nommu.c */ 3259extern atomic_long_t mmap_pages_allocated; 3260extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3261 3262/* interval_tree.c */ 3263void vma_interval_tree_insert(struct vm_area_struct *node, 3264 struct rb_root_cached *root); 3265void vma_interval_tree_insert_after(struct vm_area_struct *node, 3266 struct vm_area_struct *prev, 3267 struct rb_root_cached *root); 3268void vma_interval_tree_remove(struct vm_area_struct *node, 3269 struct rb_root_cached *root); 3270struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3271 unsigned long start, unsigned long last); 3272struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3273 unsigned long start, unsigned long last); 3274 3275#define vma_interval_tree_foreach(vma, root, start, last) \ 3276 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3277 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3278 3279void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3280 struct rb_root_cached *root); 3281void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3282 struct rb_root_cached *root); 3283struct anon_vma_chain * 3284anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3285 unsigned long start, unsigned long last); 3286struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3287 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3288#ifdef CONFIG_DEBUG_VM_RB 3289void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3290#endif 3291 3292#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3293 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3294 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3295 3296/* mmap.c */ 3297extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3298extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3299extern void exit_mmap(struct mm_struct *); 3300int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3301 3302static inline int check_data_rlimit(unsigned long rlim, 3303 unsigned long new, 3304 unsigned long start, 3305 unsigned long end_data, 3306 unsigned long start_data) 3307{ 3308 if (rlim < RLIM_INFINITY) { 3309 if (((new - start) + (end_data - start_data)) > rlim) 3310 return -ENOSPC; 3311 } 3312 3313 return 0; 3314} 3315 3316extern int mm_take_all_locks(struct mm_struct *mm); 3317extern void mm_drop_all_locks(struct mm_struct *mm); 3318 3319extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3320extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3321extern struct file *get_mm_exe_file(struct mm_struct *mm); 3322extern struct file *get_task_exe_file(struct task_struct *task); 3323 3324extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3325extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3326 3327extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3328 const struct vm_special_mapping *sm); 3329extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3330 unsigned long addr, unsigned long len, 3331 unsigned long flags, 3332 const struct vm_special_mapping *spec); 3333 3334unsigned long randomize_stack_top(unsigned long stack_top); 3335unsigned long randomize_page(unsigned long start, unsigned long range); 3336 3337unsigned long 3338__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3339 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3340 3341static inline unsigned long 3342get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3343 unsigned long pgoff, unsigned long flags) 3344{ 3345 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3346} 3347 3348extern unsigned long mmap_region(struct file *file, unsigned long addr, 3349 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3350 struct list_head *uf); 3351extern unsigned long do_mmap(struct file *file, unsigned long addr, 3352 unsigned long len, unsigned long prot, unsigned long flags, 3353 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3354 struct list_head *uf); 3355extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3356 unsigned long start, size_t len, struct list_head *uf, 3357 bool unlock); 3358int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3359 struct mm_struct *mm, unsigned long start, 3360 unsigned long end, struct list_head *uf, bool unlock); 3361extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3362 struct list_head *uf); 3363extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3364 3365#ifdef CONFIG_MMU 3366extern int __mm_populate(unsigned long addr, unsigned long len, 3367 int ignore_errors); 3368static inline void mm_populate(unsigned long addr, unsigned long len) 3369{ 3370 /* Ignore errors */ 3371 (void) __mm_populate(addr, len, 1); 3372} 3373#else 3374static inline void mm_populate(unsigned long addr, unsigned long len) {} 3375#endif 3376 3377/* This takes the mm semaphore itself */ 3378extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3379extern int vm_munmap(unsigned long, size_t); 3380extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3381 unsigned long, unsigned long, 3382 unsigned long, unsigned long); 3383 3384struct vm_unmapped_area_info { 3385#define VM_UNMAPPED_AREA_TOPDOWN 1 3386 unsigned long flags; 3387 unsigned long length; 3388 unsigned long low_limit; 3389 unsigned long high_limit; 3390 unsigned long align_mask; 3391 unsigned long align_offset; 3392 unsigned long start_gap; 3393}; 3394 3395extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3396 3397/* truncate.c */ 3398extern void truncate_inode_pages(struct address_space *, loff_t); 3399extern void truncate_inode_pages_range(struct address_space *, 3400 loff_t lstart, loff_t lend); 3401extern void truncate_inode_pages_final(struct address_space *); 3402 3403/* generic vm_area_ops exported for stackable file systems */ 3404extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3405extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3406 pgoff_t start_pgoff, pgoff_t end_pgoff); 3407extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3408 3409extern unsigned long stack_guard_gap; 3410/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3411int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3412struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3413 3414/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3415int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3416 3417/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3418extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3419extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3420 struct vm_area_struct **pprev); 3421 3422/* 3423 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3424 * NULL if none. Assume start_addr < end_addr. 3425 */ 3426struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3427 unsigned long start_addr, unsigned long end_addr); 3428 3429/** 3430 * vma_lookup() - Find a VMA at a specific address 3431 * @mm: The process address space. 3432 * @addr: The user address. 3433 * 3434 * Return: The vm_area_struct at the given address, %NULL otherwise. 3435 */ 3436static inline 3437struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3438{ 3439 return mtree_load(&mm->mm_mt, addr); 3440} 3441 3442static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3443{ 3444 if (vma->vm_flags & VM_GROWSDOWN) 3445 return stack_guard_gap; 3446 3447 /* See reasoning around the VM_SHADOW_STACK definition */ 3448 if (vma->vm_flags & VM_SHADOW_STACK) 3449 return PAGE_SIZE; 3450 3451 return 0; 3452} 3453 3454static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3455{ 3456 unsigned long gap = stack_guard_start_gap(vma); 3457 unsigned long vm_start = vma->vm_start; 3458 3459 vm_start -= gap; 3460 if (vm_start > vma->vm_start) 3461 vm_start = 0; 3462 return vm_start; 3463} 3464 3465static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3466{ 3467 unsigned long vm_end = vma->vm_end; 3468 3469 if (vma->vm_flags & VM_GROWSUP) { 3470 vm_end += stack_guard_gap; 3471 if (vm_end < vma->vm_end) 3472 vm_end = -PAGE_SIZE; 3473 } 3474 return vm_end; 3475} 3476 3477static inline unsigned long vma_pages(struct vm_area_struct *vma) 3478{ 3479 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3480} 3481 3482/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3483static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3484 unsigned long vm_start, unsigned long vm_end) 3485{ 3486 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3487 3488 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3489 vma = NULL; 3490 3491 return vma; 3492} 3493 3494static inline bool range_in_vma(struct vm_area_struct *vma, 3495 unsigned long start, unsigned long end) 3496{ 3497 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3498} 3499 3500#ifdef CONFIG_MMU 3501pgprot_t vm_get_page_prot(unsigned long vm_flags); 3502void vma_set_page_prot(struct vm_area_struct *vma); 3503#else 3504static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3505{ 3506 return __pgprot(0); 3507} 3508static inline void vma_set_page_prot(struct vm_area_struct *vma) 3509{ 3510 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3511} 3512#endif 3513 3514void vma_set_file(struct vm_area_struct *vma, struct file *file); 3515 3516#ifdef CONFIG_NUMA_BALANCING 3517unsigned long change_prot_numa(struct vm_area_struct *vma, 3518 unsigned long start, unsigned long end); 3519#endif 3520 3521struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3522 unsigned long addr); 3523int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3524 unsigned long pfn, unsigned long size, pgprot_t); 3525int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3526 unsigned long pfn, unsigned long size, pgprot_t prot); 3527int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3528int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3529 struct page **pages, unsigned long *num); 3530int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3531 unsigned long num); 3532int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3533 unsigned long num); 3534vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3535 unsigned long pfn); 3536vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3537 unsigned long pfn, pgprot_t pgprot); 3538vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3539 pfn_t pfn); 3540vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3541 unsigned long addr, pfn_t pfn); 3542int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3543 3544static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3545 unsigned long addr, struct page *page) 3546{ 3547 int err = vm_insert_page(vma, addr, page); 3548 3549 if (err == -ENOMEM) 3550 return VM_FAULT_OOM; 3551 if (err < 0 && err != -EBUSY) 3552 return VM_FAULT_SIGBUS; 3553 3554 return VM_FAULT_NOPAGE; 3555} 3556 3557#ifndef io_remap_pfn_range 3558static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3559 unsigned long addr, unsigned long pfn, 3560 unsigned long size, pgprot_t prot) 3561{ 3562 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3563} 3564#endif 3565 3566static inline vm_fault_t vmf_error(int err) 3567{ 3568 if (err == -ENOMEM) 3569 return VM_FAULT_OOM; 3570 else if (err == -EHWPOISON) 3571 return VM_FAULT_HWPOISON; 3572 return VM_FAULT_SIGBUS; 3573} 3574 3575/* 3576 * Convert errno to return value for ->page_mkwrite() calls. 3577 * 3578 * This should eventually be merged with vmf_error() above, but will need a 3579 * careful audit of all vmf_error() callers. 3580 */ 3581static inline vm_fault_t vmf_fs_error(int err) 3582{ 3583 if (err == 0) 3584 return VM_FAULT_LOCKED; 3585 if (err == -EFAULT || err == -EAGAIN) 3586 return VM_FAULT_NOPAGE; 3587 if (err == -ENOMEM) 3588 return VM_FAULT_OOM; 3589 /* -ENOSPC, -EDQUOT, -EIO ... */ 3590 return VM_FAULT_SIGBUS; 3591} 3592 3593static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3594{ 3595 if (vm_fault & VM_FAULT_OOM) 3596 return -ENOMEM; 3597 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3598 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3599 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3600 return -EFAULT; 3601 return 0; 3602} 3603 3604/* 3605 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3606 * a (NUMA hinting) fault is required. 3607 */ 3608static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3609 unsigned int flags) 3610{ 3611 /* 3612 * If callers don't want to honor NUMA hinting faults, no need to 3613 * determine if we would actually have to trigger a NUMA hinting fault. 3614 */ 3615 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3616 return true; 3617 3618 /* 3619 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3620 * 3621 * Requiring a fault here even for inaccessible VMAs would mean that 3622 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3623 * refuses to process NUMA hinting faults in inaccessible VMAs. 3624 */ 3625 return !vma_is_accessible(vma); 3626} 3627 3628typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3629extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3630 unsigned long size, pte_fn_t fn, void *data); 3631extern int apply_to_existing_page_range(struct mm_struct *mm, 3632 unsigned long address, unsigned long size, 3633 pte_fn_t fn, void *data); 3634 3635#ifdef CONFIG_PAGE_POISONING 3636extern void __kernel_poison_pages(struct page *page, int numpages); 3637extern void __kernel_unpoison_pages(struct page *page, int numpages); 3638extern bool _page_poisoning_enabled_early; 3639DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3640static inline bool page_poisoning_enabled(void) 3641{ 3642 return _page_poisoning_enabled_early; 3643} 3644/* 3645 * For use in fast paths after init_mem_debugging() has run, or when a 3646 * false negative result is not harmful when called too early. 3647 */ 3648static inline bool page_poisoning_enabled_static(void) 3649{ 3650 return static_branch_unlikely(&_page_poisoning_enabled); 3651} 3652static inline void kernel_poison_pages(struct page *page, int numpages) 3653{ 3654 if (page_poisoning_enabled_static()) 3655 __kernel_poison_pages(page, numpages); 3656} 3657static inline void kernel_unpoison_pages(struct page *page, int numpages) 3658{ 3659 if (page_poisoning_enabled_static()) 3660 __kernel_unpoison_pages(page, numpages); 3661} 3662#else 3663static inline bool page_poisoning_enabled(void) { return false; } 3664static inline bool page_poisoning_enabled_static(void) { return false; } 3665static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3666static inline void kernel_poison_pages(struct page *page, int numpages) { } 3667static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3668#endif 3669 3670DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3671static inline bool want_init_on_alloc(gfp_t flags) 3672{ 3673 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3674 &init_on_alloc)) 3675 return true; 3676 return flags & __GFP_ZERO; 3677} 3678 3679DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3680static inline bool want_init_on_free(void) 3681{ 3682 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3683 &init_on_free); 3684} 3685 3686extern bool _debug_pagealloc_enabled_early; 3687DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3688 3689static inline bool debug_pagealloc_enabled(void) 3690{ 3691 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3692 _debug_pagealloc_enabled_early; 3693} 3694 3695/* 3696 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3697 * or when a false negative result is not harmful when called too early. 3698 */ 3699static inline bool debug_pagealloc_enabled_static(void) 3700{ 3701 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3702 return false; 3703 3704 return static_branch_unlikely(&_debug_pagealloc_enabled); 3705} 3706 3707/* 3708 * To support DEBUG_PAGEALLOC architecture must ensure that 3709 * __kernel_map_pages() never fails 3710 */ 3711extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3712#ifdef CONFIG_DEBUG_PAGEALLOC 3713static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3714{ 3715 if (debug_pagealloc_enabled_static()) 3716 __kernel_map_pages(page, numpages, 1); 3717} 3718 3719static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3720{ 3721 if (debug_pagealloc_enabled_static()) 3722 __kernel_map_pages(page, numpages, 0); 3723} 3724 3725extern unsigned int _debug_guardpage_minorder; 3726DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3727 3728static inline unsigned int debug_guardpage_minorder(void) 3729{ 3730 return _debug_guardpage_minorder; 3731} 3732 3733static inline bool debug_guardpage_enabled(void) 3734{ 3735 return static_branch_unlikely(&_debug_guardpage_enabled); 3736} 3737 3738static inline bool page_is_guard(struct page *page) 3739{ 3740 if (!debug_guardpage_enabled()) 3741 return false; 3742 3743 return PageGuard(page); 3744} 3745 3746bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3747static inline bool set_page_guard(struct zone *zone, struct page *page, 3748 unsigned int order) 3749{ 3750 if (!debug_guardpage_enabled()) 3751 return false; 3752 return __set_page_guard(zone, page, order); 3753} 3754 3755void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3756static inline void clear_page_guard(struct zone *zone, struct page *page, 3757 unsigned int order) 3758{ 3759 if (!debug_guardpage_enabled()) 3760 return; 3761 __clear_page_guard(zone, page, order); 3762} 3763 3764#else /* CONFIG_DEBUG_PAGEALLOC */ 3765static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3766static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3767static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3768static inline bool debug_guardpage_enabled(void) { return false; } 3769static inline bool page_is_guard(struct page *page) { return false; } 3770static inline bool set_page_guard(struct zone *zone, struct page *page, 3771 unsigned int order) { return false; } 3772static inline void clear_page_guard(struct zone *zone, struct page *page, 3773 unsigned int order) {} 3774#endif /* CONFIG_DEBUG_PAGEALLOC */ 3775 3776#ifdef __HAVE_ARCH_GATE_AREA 3777extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3778extern int in_gate_area_no_mm(unsigned long addr); 3779extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3780#else 3781static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3782{ 3783 return NULL; 3784} 3785static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3786static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3787{ 3788 return 0; 3789} 3790#endif /* __HAVE_ARCH_GATE_AREA */ 3791 3792extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3793 3794#ifdef CONFIG_SYSCTL 3795extern int sysctl_drop_caches; 3796int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3797 loff_t *); 3798#endif 3799 3800void drop_slab(void); 3801 3802#ifndef CONFIG_MMU 3803#define randomize_va_space 0 3804#else 3805extern int randomize_va_space; 3806#endif 3807 3808const char * arch_vma_name(struct vm_area_struct *vma); 3809#ifdef CONFIG_MMU 3810void print_vma_addr(char *prefix, unsigned long rip); 3811#else 3812static inline void print_vma_addr(char *prefix, unsigned long rip) 3813{ 3814} 3815#endif 3816 3817void *sparse_buffer_alloc(unsigned long size); 3818struct page * __populate_section_memmap(unsigned long pfn, 3819 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3820 struct dev_pagemap *pgmap); 3821void pud_init(void *addr); 3822void pmd_init(void *addr); 3823void kernel_pte_init(void *addr); 3824pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3825p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3826pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3827pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3828pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3829 struct vmem_altmap *altmap, struct page *reuse); 3830void *vmemmap_alloc_block(unsigned long size, int node); 3831struct vmem_altmap; 3832void *vmemmap_alloc_block_buf(unsigned long size, int node, 3833 struct vmem_altmap *altmap); 3834void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3835void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3836 unsigned long addr, unsigned long next); 3837int vmemmap_check_pmd(pmd_t *pmd, int node, 3838 unsigned long addr, unsigned long next); 3839int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3840 int node, struct vmem_altmap *altmap); 3841int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3842 int node, struct vmem_altmap *altmap); 3843int vmemmap_populate(unsigned long start, unsigned long end, int node, 3844 struct vmem_altmap *altmap); 3845void vmemmap_populate_print_last(void); 3846#ifdef CONFIG_MEMORY_HOTPLUG 3847void vmemmap_free(unsigned long start, unsigned long end, 3848 struct vmem_altmap *altmap); 3849#endif 3850 3851#ifdef CONFIG_SPARSEMEM_VMEMMAP 3852static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3853{ 3854 /* number of pfns from base where pfn_to_page() is valid */ 3855 if (altmap) 3856 return altmap->reserve + altmap->free; 3857 return 0; 3858} 3859 3860static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3861 unsigned long nr_pfns) 3862{ 3863 altmap->alloc -= nr_pfns; 3864} 3865#else 3866static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3867{ 3868 return 0; 3869} 3870 3871static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3872 unsigned long nr_pfns) 3873{ 3874} 3875#endif 3876 3877#define VMEMMAP_RESERVE_NR 2 3878#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3879static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3880 struct dev_pagemap *pgmap) 3881{ 3882 unsigned long nr_pages; 3883 unsigned long nr_vmemmap_pages; 3884 3885 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3886 return false; 3887 3888 nr_pages = pgmap_vmemmap_nr(pgmap); 3889 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3890 /* 3891 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3892 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3893 */ 3894 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3895} 3896/* 3897 * If we don't have an architecture override, use the generic rule 3898 */ 3899#ifndef vmemmap_can_optimize 3900#define vmemmap_can_optimize __vmemmap_can_optimize 3901#endif 3902 3903#else 3904static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3905 struct dev_pagemap *pgmap) 3906{ 3907 return false; 3908} 3909#endif 3910 3911void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3912 unsigned long nr_pages); 3913 3914enum mf_flags { 3915 MF_COUNT_INCREASED = 1 << 0, 3916 MF_ACTION_REQUIRED = 1 << 1, 3917 MF_MUST_KILL = 1 << 2, 3918 MF_SOFT_OFFLINE = 1 << 3, 3919 MF_UNPOISON = 1 << 4, 3920 MF_SW_SIMULATED = 1 << 5, 3921 MF_NO_RETRY = 1 << 6, 3922 MF_MEM_PRE_REMOVE = 1 << 7, 3923}; 3924int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3925 unsigned long count, int mf_flags); 3926extern int memory_failure(unsigned long pfn, int flags); 3927extern void memory_failure_queue_kick(int cpu); 3928extern int unpoison_memory(unsigned long pfn); 3929extern atomic_long_t num_poisoned_pages __read_mostly; 3930extern int soft_offline_page(unsigned long pfn, int flags); 3931#ifdef CONFIG_MEMORY_FAILURE 3932/* 3933 * Sysfs entries for memory failure handling statistics. 3934 */ 3935extern const struct attribute_group memory_failure_attr_group; 3936extern void memory_failure_queue(unsigned long pfn, int flags); 3937extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3938 bool *migratable_cleared); 3939void num_poisoned_pages_inc(unsigned long pfn); 3940void num_poisoned_pages_sub(unsigned long pfn, long i); 3941#else 3942static inline void memory_failure_queue(unsigned long pfn, int flags) 3943{ 3944} 3945 3946static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3947 bool *migratable_cleared) 3948{ 3949 return 0; 3950} 3951 3952static inline void num_poisoned_pages_inc(unsigned long pfn) 3953{ 3954} 3955 3956static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3957{ 3958} 3959#endif 3960 3961#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3962extern void memblk_nr_poison_inc(unsigned long pfn); 3963extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3964#else 3965static inline void memblk_nr_poison_inc(unsigned long pfn) 3966{ 3967} 3968 3969static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3970{ 3971} 3972#endif 3973 3974#ifndef arch_memory_failure 3975static inline int arch_memory_failure(unsigned long pfn, int flags) 3976{ 3977 return -ENXIO; 3978} 3979#endif 3980 3981#ifndef arch_is_platform_page 3982static inline bool arch_is_platform_page(u64 paddr) 3983{ 3984 return false; 3985} 3986#endif 3987 3988/* 3989 * Error handlers for various types of pages. 3990 */ 3991enum mf_result { 3992 MF_IGNORED, /* Error: cannot be handled */ 3993 MF_FAILED, /* Error: handling failed */ 3994 MF_DELAYED, /* Will be handled later */ 3995 MF_RECOVERED, /* Successfully recovered */ 3996}; 3997 3998enum mf_action_page_type { 3999 MF_MSG_KERNEL, 4000 MF_MSG_KERNEL_HIGH_ORDER, 4001 MF_MSG_DIFFERENT_COMPOUND, 4002 MF_MSG_HUGE, 4003 MF_MSG_FREE_HUGE, 4004 MF_MSG_GET_HWPOISON, 4005 MF_MSG_UNMAP_FAILED, 4006 MF_MSG_DIRTY_SWAPCACHE, 4007 MF_MSG_CLEAN_SWAPCACHE, 4008 MF_MSG_DIRTY_MLOCKED_LRU, 4009 MF_MSG_CLEAN_MLOCKED_LRU, 4010 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4011 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4012 MF_MSG_DIRTY_LRU, 4013 MF_MSG_CLEAN_LRU, 4014 MF_MSG_TRUNCATED_LRU, 4015 MF_MSG_BUDDY, 4016 MF_MSG_DAX, 4017 MF_MSG_UNSPLIT_THP, 4018 MF_MSG_ALREADY_POISONED, 4019 MF_MSG_UNKNOWN, 4020}; 4021 4022#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4023void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4024int copy_user_large_folio(struct folio *dst, struct folio *src, 4025 unsigned long addr_hint, 4026 struct vm_area_struct *vma); 4027long copy_folio_from_user(struct folio *dst_folio, 4028 const void __user *usr_src, 4029 bool allow_pagefault); 4030 4031/** 4032 * vma_is_special_huge - Are transhuge page-table entries considered special? 4033 * @vma: Pointer to the struct vm_area_struct to consider 4034 * 4035 * Whether transhuge page-table entries are considered "special" following 4036 * the definition in vm_normal_page(). 4037 * 4038 * Return: true if transhuge page-table entries should be considered special, 4039 * false otherwise. 4040 */ 4041static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4042{ 4043 return vma_is_dax(vma) || (vma->vm_file && 4044 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4045} 4046 4047#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4048 4049#if MAX_NUMNODES > 1 4050void __init setup_nr_node_ids(void); 4051#else 4052static inline void setup_nr_node_ids(void) {} 4053#endif 4054 4055extern int memcmp_pages(struct page *page1, struct page *page2); 4056 4057static inline int pages_identical(struct page *page1, struct page *page2) 4058{ 4059 return !memcmp_pages(page1, page2); 4060} 4061 4062#ifdef CONFIG_MAPPING_DIRTY_HELPERS 4063unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4064 pgoff_t first_index, pgoff_t nr, 4065 pgoff_t bitmap_pgoff, 4066 unsigned long *bitmap, 4067 pgoff_t *start, 4068 pgoff_t *end); 4069 4070unsigned long wp_shared_mapping_range(struct address_space *mapping, 4071 pgoff_t first_index, pgoff_t nr); 4072#endif 4073 4074extern int sysctl_nr_trim_pages; 4075 4076#ifdef CONFIG_PRINTK 4077void mem_dump_obj(void *object); 4078#else 4079static inline void mem_dump_obj(void *object) {} 4080#endif 4081 4082/** 4083 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4084 * handle them. 4085 * @seals: the seals to check 4086 * @vma: the vma to operate on 4087 * 4088 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4089 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4090 */ 4091static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4092{ 4093 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4094 /* 4095 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4096 * write seals are active. 4097 */ 4098 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4099 return -EPERM; 4100 4101 /* 4102 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4103 * MAP_SHARED and read-only, take care to not allow mprotect to 4104 * revert protections on such mappings. Do this only for shared 4105 * mappings. For private mappings, don't need to mask 4106 * VM_MAYWRITE as we still want them to be COW-writable. 4107 */ 4108 if (vma->vm_flags & VM_SHARED) 4109 vm_flags_clear(vma, VM_MAYWRITE); 4110 } 4111 4112 return 0; 4113} 4114 4115#ifdef CONFIG_ANON_VMA_NAME 4116int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4117 unsigned long len_in, 4118 struct anon_vma_name *anon_name); 4119#else 4120static inline int 4121madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4122 unsigned long len_in, struct anon_vma_name *anon_name) { 4123 return 0; 4124} 4125#endif 4126 4127#ifdef CONFIG_UNACCEPTED_MEMORY 4128 4129bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4130void accept_memory(phys_addr_t start, unsigned long size); 4131 4132#else 4133 4134static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4135 unsigned long size) 4136{ 4137 return false; 4138} 4139 4140static inline void accept_memory(phys_addr_t start, unsigned long size) 4141{ 4142} 4143 4144#endif 4145 4146static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4147{ 4148 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4149} 4150 4151void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4152void vma_pgtable_walk_end(struct vm_area_struct *vma); 4153 4154int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4155 4156#ifdef CONFIG_64BIT 4157int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4158#else 4159static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4160{ 4161 /* noop on 32 bit */ 4162 return 0; 4163} 4164#endif 4165 4166#ifdef CONFIG_MEM_ALLOC_PROFILING 4167static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order) 4168{ 4169 int i; 4170 struct alloc_tag *tag; 4171 unsigned int nr_pages = 1 << new_order; 4172 4173 if (!mem_alloc_profiling_enabled()) 4174 return; 4175 4176 tag = pgalloc_tag_get(&folio->page); 4177 if (!tag) 4178 return; 4179 4180 for (i = nr_pages; i < (1 << old_order); i += nr_pages) { 4181 union codetag_ref *ref = get_page_tag_ref(folio_page(folio, i)); 4182 4183 if (ref) { 4184 /* Set new reference to point to the original tag */ 4185 alloc_tag_ref_set(ref, tag); 4186 put_page_tag_ref(ref); 4187 } 4188 } 4189} 4190 4191static inline void pgalloc_tag_copy(struct folio *new, struct folio *old) 4192{ 4193 struct alloc_tag *tag; 4194 union codetag_ref *ref; 4195 4196 tag = pgalloc_tag_get(&old->page); 4197 if (!tag) 4198 return; 4199 4200 ref = get_page_tag_ref(&new->page); 4201 if (!ref) 4202 return; 4203 4204 /* Clear the old ref to the original allocation tag. */ 4205 clear_page_tag_ref(&old->page); 4206 /* Decrement the counters of the tag on get_new_folio. */ 4207 alloc_tag_sub(ref, folio_nr_pages(new)); 4208 4209 __alloc_tag_ref_set(ref, tag); 4210 4211 put_page_tag_ref(ref); 4212} 4213#else /* !CONFIG_MEM_ALLOC_PROFILING */ 4214static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order) 4215{ 4216} 4217 4218static inline void pgalloc_tag_copy(struct folio *new, struct folio *old) 4219{ 4220} 4221#endif /* CONFIG_MEM_ALLOC_PROFILING */ 4222 4223#endif /* _LINUX_MM_H */