at v6.12 49 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/kernel.h> 18#include <linux/page_counter.h> 19#include <linux/vmpressure.h> 20#include <linux/eventfd.h> 21#include <linux/mm.h> 22#include <linux/vmstat.h> 23#include <linux/writeback.h> 24#include <linux/page-flags.h> 25#include <linux/shrinker.h> 26 27struct mem_cgroup; 28struct obj_cgroup; 29struct page; 30struct mm_struct; 31struct kmem_cache; 32 33/* Cgroup-specific page state, on top of universal node page state */ 34enum memcg_stat_item { 35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 36 MEMCG_SOCK, 37 MEMCG_PERCPU_B, 38 MEMCG_VMALLOC, 39 MEMCG_KMEM, 40 MEMCG_ZSWAP_B, 41 MEMCG_ZSWAPPED, 42 MEMCG_NR_STAT, 43}; 44 45enum memcg_memory_event { 46 MEMCG_LOW, 47 MEMCG_HIGH, 48 MEMCG_MAX, 49 MEMCG_OOM, 50 MEMCG_OOM_KILL, 51 MEMCG_OOM_GROUP_KILL, 52 MEMCG_SWAP_HIGH, 53 MEMCG_SWAP_MAX, 54 MEMCG_SWAP_FAIL, 55 MEMCG_NR_MEMORY_EVENTS, 56}; 57 58struct mem_cgroup_reclaim_cookie { 59 pg_data_t *pgdat; 60 int generation; 61}; 62 63#ifdef CONFIG_MEMCG 64 65#define MEM_CGROUP_ID_SHIFT 16 66 67struct mem_cgroup_id { 68 int id; 69 refcount_t ref; 70}; 71 72struct memcg_vmstats_percpu; 73struct memcg1_events_percpu; 74struct memcg_vmstats; 75struct lruvec_stats_percpu; 76struct lruvec_stats; 77 78struct mem_cgroup_reclaim_iter { 79 struct mem_cgroup *position; 80 /* scan generation, increased every round-trip */ 81 atomic_t generation; 82}; 83 84/* 85 * per-node information in memory controller. 86 */ 87struct mem_cgroup_per_node { 88 /* Keep the read-only fields at the start */ 89 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 90 /* use container_of */ 91 92 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 93 struct lruvec_stats *lruvec_stats; 94 struct shrinker_info __rcu *shrinker_info; 95 96#ifdef CONFIG_MEMCG_V1 97 /* 98 * Memcg-v1 only stuff in middle as buffer between read mostly fields 99 * and update often fields to avoid false sharing. If v1 stuff is 100 * not present, an explicit padding is needed. 101 */ 102 103 struct rb_node tree_node; /* RB tree node */ 104 unsigned long usage_in_excess;/* Set to the value by which */ 105 /* the soft limit is exceeded*/ 106 bool on_tree; 107#else 108 CACHELINE_PADDING(_pad1_); 109#endif 110 111 /* Fields which get updated often at the end. */ 112 struct lruvec lruvec; 113 CACHELINE_PADDING(_pad2_); 114 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 115 struct mem_cgroup_reclaim_iter iter; 116}; 117 118struct mem_cgroup_threshold { 119 struct eventfd_ctx *eventfd; 120 unsigned long threshold; 121}; 122 123/* For threshold */ 124struct mem_cgroup_threshold_ary { 125 /* An array index points to threshold just below or equal to usage. */ 126 int current_threshold; 127 /* Size of entries[] */ 128 unsigned int size; 129 /* Array of thresholds */ 130 struct mem_cgroup_threshold entries[] __counted_by(size); 131}; 132 133struct mem_cgroup_thresholds { 134 /* Primary thresholds array */ 135 struct mem_cgroup_threshold_ary *primary; 136 /* 137 * Spare threshold array. 138 * This is needed to make mem_cgroup_unregister_event() "never fail". 139 * It must be able to store at least primary->size - 1 entries. 140 */ 141 struct mem_cgroup_threshold_ary *spare; 142}; 143 144/* 145 * Remember four most recent foreign writebacks with dirty pages in this 146 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 147 * one in a given round, we're likely to catch it later if it keeps 148 * foreign-dirtying, so a fairly low count should be enough. 149 * 150 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 151 */ 152#define MEMCG_CGWB_FRN_CNT 4 153 154struct memcg_cgwb_frn { 155 u64 bdi_id; /* bdi->id of the foreign inode */ 156 int memcg_id; /* memcg->css.id of foreign inode */ 157 u64 at; /* jiffies_64 at the time of dirtying */ 158 struct wb_completion done; /* tracks in-flight foreign writebacks */ 159}; 160 161/* 162 * Bucket for arbitrarily byte-sized objects charged to a memory 163 * cgroup. The bucket can be reparented in one piece when the cgroup 164 * is destroyed, without having to round up the individual references 165 * of all live memory objects in the wild. 166 */ 167struct obj_cgroup { 168 struct percpu_ref refcnt; 169 struct mem_cgroup *memcg; 170 atomic_t nr_charged_bytes; 171 union { 172 struct list_head list; /* protected by objcg_lock */ 173 struct rcu_head rcu; 174 }; 175}; 176 177/* 178 * The memory controller data structure. The memory controller controls both 179 * page cache and RSS per cgroup. We would eventually like to provide 180 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 181 * to help the administrator determine what knobs to tune. 182 */ 183struct mem_cgroup { 184 struct cgroup_subsys_state css; 185 186 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 187 struct mem_cgroup_id id; 188 189 /* Accounted resources */ 190 struct page_counter memory; /* Both v1 & v2 */ 191 192 union { 193 struct page_counter swap; /* v2 only */ 194 struct page_counter memsw; /* v1 only */ 195 }; 196 197 /* registered local peak watchers */ 198 struct list_head memory_peaks; 199 struct list_head swap_peaks; 200 spinlock_t peaks_lock; 201 202 /* Range enforcement for interrupt charges */ 203 struct work_struct high_work; 204 205#ifdef CONFIG_ZSWAP 206 unsigned long zswap_max; 207 208 /* 209 * Prevent pages from this memcg from being written back from zswap to 210 * swap, and from being swapped out on zswap store failures. 211 */ 212 bool zswap_writeback; 213#endif 214 215 /* vmpressure notifications */ 216 struct vmpressure vmpressure; 217 218 /* 219 * Should the OOM killer kill all belonging tasks, had it kill one? 220 */ 221 bool oom_group; 222 223 int swappiness; 224 225 /* memory.events and memory.events.local */ 226 struct cgroup_file events_file; 227 struct cgroup_file events_local_file; 228 229 /* handle for "memory.swap.events" */ 230 struct cgroup_file swap_events_file; 231 232 /* memory.stat */ 233 struct memcg_vmstats *vmstats; 234 235 /* memory.events */ 236 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 237 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 238 239 /* 240 * Hint of reclaim pressure for socket memroy management. Note 241 * that this indicator should NOT be used in legacy cgroup mode 242 * where socket memory is accounted/charged separately. 243 */ 244 unsigned long socket_pressure; 245 246 int kmemcg_id; 247 /* 248 * memcg->objcg is wiped out as a part of the objcg repaprenting 249 * process. memcg->orig_objcg preserves a pointer (and a reference) 250 * to the original objcg until the end of live of memcg. 251 */ 252 struct obj_cgroup __rcu *objcg; 253 struct obj_cgroup *orig_objcg; 254 /* list of inherited objcgs, protected by objcg_lock */ 255 struct list_head objcg_list; 256 257 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 258 259#ifdef CONFIG_CGROUP_WRITEBACK 260 struct list_head cgwb_list; 261 struct wb_domain cgwb_domain; 262 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 263#endif 264 265#ifdef CONFIG_TRANSPARENT_HUGEPAGE 266 struct deferred_split deferred_split_queue; 267#endif 268 269#ifdef CONFIG_LRU_GEN_WALKS_MMU 270 /* per-memcg mm_struct list */ 271 struct lru_gen_mm_list mm_list; 272#endif 273 274#ifdef CONFIG_MEMCG_V1 275 /* Legacy consumer-oriented counters */ 276 struct page_counter kmem; /* v1 only */ 277 struct page_counter tcpmem; /* v1 only */ 278 279 struct memcg1_events_percpu __percpu *events_percpu; 280 281 unsigned long soft_limit; 282 283 /* protected by memcg_oom_lock */ 284 bool oom_lock; 285 int under_oom; 286 287 /* OOM-Killer disable */ 288 int oom_kill_disable; 289 290 /* protect arrays of thresholds */ 291 struct mutex thresholds_lock; 292 293 /* thresholds for memory usage. RCU-protected */ 294 struct mem_cgroup_thresholds thresholds; 295 296 /* thresholds for mem+swap usage. RCU-protected */ 297 struct mem_cgroup_thresholds memsw_thresholds; 298 299 /* For oom notifier event fd */ 300 struct list_head oom_notify; 301 302 /* 303 * Should we move charges of a task when a task is moved into this 304 * mem_cgroup ? And what type of charges should we move ? 305 */ 306 unsigned long move_charge_at_immigrate; 307 /* taken only while moving_account > 0 */ 308 spinlock_t move_lock; 309 unsigned long move_lock_flags; 310 311 /* Legacy tcp memory accounting */ 312 bool tcpmem_active; 313 int tcpmem_pressure; 314 315 /* 316 * set > 0 if pages under this cgroup are moving to other cgroup. 317 */ 318 atomic_t moving_account; 319 struct task_struct *move_lock_task; 320 321 /* List of events which userspace want to receive */ 322 struct list_head event_list; 323 spinlock_t event_list_lock; 324#endif /* CONFIG_MEMCG_V1 */ 325 326 struct mem_cgroup_per_node *nodeinfo[]; 327}; 328 329/* 330 * size of first charge trial. 331 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 332 * workload. 333 */ 334#define MEMCG_CHARGE_BATCH 64U 335 336extern struct mem_cgroup *root_mem_cgroup; 337 338enum page_memcg_data_flags { 339 /* page->memcg_data is a pointer to an slabobj_ext vector */ 340 MEMCG_DATA_OBJEXTS = (1UL << 0), 341 /* page has been accounted as a non-slab kernel page */ 342 MEMCG_DATA_KMEM = (1UL << 1), 343 /* the next bit after the last actual flag */ 344 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 345}; 346 347#define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS 348 349#else /* CONFIG_MEMCG */ 350 351#define __FIRST_OBJEXT_FLAG (1UL << 0) 352 353#endif /* CONFIG_MEMCG */ 354 355enum objext_flags { 356 /* slabobj_ext vector failed to allocate */ 357 OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG, 358 /* the next bit after the last actual flag */ 359 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1), 360}; 361 362#define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1) 363 364#ifdef CONFIG_MEMCG 365 366static inline bool folio_memcg_kmem(struct folio *folio); 367 368/* 369 * After the initialization objcg->memcg is always pointing at 370 * a valid memcg, but can be atomically swapped to the parent memcg. 371 * 372 * The caller must ensure that the returned memcg won't be released. 373 */ 374static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 375{ 376 lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex)); 377 return READ_ONCE(objcg->memcg); 378} 379 380/* 381 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 382 * @folio: Pointer to the folio. 383 * 384 * Returns a pointer to the memory cgroup associated with the folio, 385 * or NULL. This function assumes that the folio is known to have a 386 * proper memory cgroup pointer. It's not safe to call this function 387 * against some type of folios, e.g. slab folios or ex-slab folios or 388 * kmem folios. 389 */ 390static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 391{ 392 unsigned long memcg_data = folio->memcg_data; 393 394 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 395 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 396 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 397 398 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 399} 400 401/* 402 * __folio_objcg - get the object cgroup associated with a kmem folio. 403 * @folio: Pointer to the folio. 404 * 405 * Returns a pointer to the object cgroup associated with the folio, 406 * or NULL. This function assumes that the folio is known to have a 407 * proper object cgroup pointer. It's not safe to call this function 408 * against some type of folios, e.g. slab folios or ex-slab folios or 409 * LRU folios. 410 */ 411static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 412{ 413 unsigned long memcg_data = folio->memcg_data; 414 415 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 416 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 417 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 418 419 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 420} 421 422/* 423 * folio_memcg - Get the memory cgroup associated with a folio. 424 * @folio: Pointer to the folio. 425 * 426 * Returns a pointer to the memory cgroup associated with the folio, 427 * or NULL. This function assumes that the folio is known to have a 428 * proper memory cgroup pointer. It's not safe to call this function 429 * against some type of folios, e.g. slab folios or ex-slab folios. 430 * 431 * For a non-kmem folio any of the following ensures folio and memcg binding 432 * stability: 433 * 434 * - the folio lock 435 * - LRU isolation 436 * - folio_memcg_lock() 437 * - exclusive reference 438 * - mem_cgroup_trylock_pages() 439 * 440 * For a kmem folio a caller should hold an rcu read lock to protect memcg 441 * associated with a kmem folio from being released. 442 */ 443static inline struct mem_cgroup *folio_memcg(struct folio *folio) 444{ 445 if (folio_memcg_kmem(folio)) 446 return obj_cgroup_memcg(__folio_objcg(folio)); 447 return __folio_memcg(folio); 448} 449 450/* 451 * folio_memcg_charged - If a folio is charged to a memory cgroup. 452 * @folio: Pointer to the folio. 453 * 454 * Returns true if folio is charged to a memory cgroup, otherwise returns false. 455 */ 456static inline bool folio_memcg_charged(struct folio *folio) 457{ 458 if (folio_memcg_kmem(folio)) 459 return __folio_objcg(folio) != NULL; 460 return __folio_memcg(folio) != NULL; 461} 462 463/** 464 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 465 * @folio: Pointer to the folio. 466 * 467 * This function assumes that the folio is known to have a 468 * proper memory cgroup pointer. It's not safe to call this function 469 * against some type of folios, e.g. slab folios or ex-slab folios. 470 * 471 * Return: A pointer to the memory cgroup associated with the folio, 472 * or NULL. 473 */ 474static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 475{ 476 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 477 478 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 479 480 if (memcg_data & MEMCG_DATA_KMEM) { 481 struct obj_cgroup *objcg; 482 483 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 484 return obj_cgroup_memcg(objcg); 485 } 486 487 WARN_ON_ONCE(!rcu_read_lock_held()); 488 489 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 490} 491 492/* 493 * folio_memcg_check - Get the memory cgroup associated with a folio. 494 * @folio: Pointer to the folio. 495 * 496 * Returns a pointer to the memory cgroup associated with the folio, 497 * or NULL. This function unlike folio_memcg() can take any folio 498 * as an argument. It has to be used in cases when it's not known if a folio 499 * has an associated memory cgroup pointer or an object cgroups vector or 500 * an object cgroup. 501 * 502 * For a non-kmem folio any of the following ensures folio and memcg binding 503 * stability: 504 * 505 * - the folio lock 506 * - LRU isolation 507 * - lock_folio_memcg() 508 * - exclusive reference 509 * - mem_cgroup_trylock_pages() 510 * 511 * For a kmem folio a caller should hold an rcu read lock to protect memcg 512 * associated with a kmem folio from being released. 513 */ 514static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 515{ 516 /* 517 * Because folio->memcg_data might be changed asynchronously 518 * for slabs, READ_ONCE() should be used here. 519 */ 520 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 521 522 if (memcg_data & MEMCG_DATA_OBJEXTS) 523 return NULL; 524 525 if (memcg_data & MEMCG_DATA_KMEM) { 526 struct obj_cgroup *objcg; 527 528 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 529 return obj_cgroup_memcg(objcg); 530 } 531 532 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 533} 534 535static inline struct mem_cgroup *page_memcg_check(struct page *page) 536{ 537 if (PageTail(page)) 538 return NULL; 539 return folio_memcg_check((struct folio *)page); 540} 541 542static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 543{ 544 struct mem_cgroup *memcg; 545 546 rcu_read_lock(); 547retry: 548 memcg = obj_cgroup_memcg(objcg); 549 if (unlikely(!css_tryget(&memcg->css))) 550 goto retry; 551 rcu_read_unlock(); 552 553 return memcg; 554} 555 556/* 557 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 558 * @folio: Pointer to the folio. 559 * 560 * Checks if the folio has MemcgKmem flag set. The caller must ensure 561 * that the folio has an associated memory cgroup. It's not safe to call 562 * this function against some types of folios, e.g. slab folios. 563 */ 564static inline bool folio_memcg_kmem(struct folio *folio) 565{ 566 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 567 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio); 568 return folio->memcg_data & MEMCG_DATA_KMEM; 569} 570 571static inline bool PageMemcgKmem(struct page *page) 572{ 573 return folio_memcg_kmem(page_folio(page)); 574} 575 576static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 577{ 578 return (memcg == root_mem_cgroup); 579} 580 581static inline bool mem_cgroup_disabled(void) 582{ 583 return !cgroup_subsys_enabled(memory_cgrp_subsys); 584} 585 586static inline void mem_cgroup_protection(struct mem_cgroup *root, 587 struct mem_cgroup *memcg, 588 unsigned long *min, 589 unsigned long *low) 590{ 591 *min = *low = 0; 592 593 if (mem_cgroup_disabled()) 594 return; 595 596 /* 597 * There is no reclaim protection applied to a targeted reclaim. 598 * We are special casing this specific case here because 599 * mem_cgroup_calculate_protection is not robust enough to keep 600 * the protection invariant for calculated effective values for 601 * parallel reclaimers with different reclaim target. This is 602 * especially a problem for tail memcgs (as they have pages on LRU) 603 * which would want to have effective values 0 for targeted reclaim 604 * but a different value for external reclaim. 605 * 606 * Example 607 * Let's have global and A's reclaim in parallel: 608 * | 609 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 610 * |\ 611 * | C (low = 1G, usage = 2.5G) 612 * B (low = 1G, usage = 0.5G) 613 * 614 * For the global reclaim 615 * A.elow = A.low 616 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 617 * C.elow = min(C.usage, C.low) 618 * 619 * With the effective values resetting we have A reclaim 620 * A.elow = 0 621 * B.elow = B.low 622 * C.elow = C.low 623 * 624 * If the global reclaim races with A's reclaim then 625 * B.elow = C.elow = 0 because children_low_usage > A.elow) 626 * is possible and reclaiming B would be violating the protection. 627 * 628 */ 629 if (root == memcg) 630 return; 631 632 *min = READ_ONCE(memcg->memory.emin); 633 *low = READ_ONCE(memcg->memory.elow); 634} 635 636void mem_cgroup_calculate_protection(struct mem_cgroup *root, 637 struct mem_cgroup *memcg); 638 639static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 640 struct mem_cgroup *memcg) 641{ 642 /* 643 * The root memcg doesn't account charges, and doesn't support 644 * protection. The target memcg's protection is ignored, see 645 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 646 */ 647 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 648 memcg == target; 649} 650 651static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 652 struct mem_cgroup *memcg) 653{ 654 if (mem_cgroup_unprotected(target, memcg)) 655 return false; 656 657 return READ_ONCE(memcg->memory.elow) >= 658 page_counter_read(&memcg->memory); 659} 660 661static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 662 struct mem_cgroup *memcg) 663{ 664 if (mem_cgroup_unprotected(target, memcg)) 665 return false; 666 667 return READ_ONCE(memcg->memory.emin) >= 668 page_counter_read(&memcg->memory); 669} 670 671void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg); 672 673int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 674 675/** 676 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 677 * @folio: Folio to charge. 678 * @mm: mm context of the allocating task. 679 * @gfp: Reclaim mode. 680 * 681 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 682 * pages according to @gfp if necessary. If @mm is NULL, try to 683 * charge to the active memcg. 684 * 685 * Do not use this for folios allocated for swapin. 686 * 687 * Return: 0 on success. Otherwise, an error code is returned. 688 */ 689static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 690 gfp_t gfp) 691{ 692 if (mem_cgroup_disabled()) 693 return 0; 694 return __mem_cgroup_charge(folio, mm, gfp); 695} 696 697int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 698 long nr_pages); 699 700int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 701 gfp_t gfp, swp_entry_t entry); 702 703void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages); 704 705void __mem_cgroup_uncharge(struct folio *folio); 706 707/** 708 * mem_cgroup_uncharge - Uncharge a folio. 709 * @folio: Folio to uncharge. 710 * 711 * Uncharge a folio previously charged with mem_cgroup_charge(). 712 */ 713static inline void mem_cgroup_uncharge(struct folio *folio) 714{ 715 if (mem_cgroup_disabled()) 716 return; 717 __mem_cgroup_uncharge(folio); 718} 719 720void __mem_cgroup_uncharge_folios(struct folio_batch *folios); 721static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 722{ 723 if (mem_cgroup_disabled()) 724 return; 725 __mem_cgroup_uncharge_folios(folios); 726} 727 728void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages); 729void mem_cgroup_replace_folio(struct folio *old, struct folio *new); 730void mem_cgroup_migrate(struct folio *old, struct folio *new); 731 732/** 733 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 734 * @memcg: memcg of the wanted lruvec 735 * @pgdat: pglist_data 736 * 737 * Returns the lru list vector holding pages for a given @memcg & 738 * @pgdat combination. This can be the node lruvec, if the memory 739 * controller is disabled. 740 */ 741static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 742 struct pglist_data *pgdat) 743{ 744 struct mem_cgroup_per_node *mz; 745 struct lruvec *lruvec; 746 747 if (mem_cgroup_disabled()) { 748 lruvec = &pgdat->__lruvec; 749 goto out; 750 } 751 752 if (!memcg) 753 memcg = root_mem_cgroup; 754 755 mz = memcg->nodeinfo[pgdat->node_id]; 756 lruvec = &mz->lruvec; 757out: 758 /* 759 * Since a node can be onlined after the mem_cgroup was created, 760 * we have to be prepared to initialize lruvec->pgdat here; 761 * and if offlined then reonlined, we need to reinitialize it. 762 */ 763 if (unlikely(lruvec->pgdat != pgdat)) 764 lruvec->pgdat = pgdat; 765 return lruvec; 766} 767 768/** 769 * folio_lruvec - return lruvec for isolating/putting an LRU folio 770 * @folio: Pointer to the folio. 771 * 772 * This function relies on folio->mem_cgroup being stable. 773 */ 774static inline struct lruvec *folio_lruvec(struct folio *folio) 775{ 776 struct mem_cgroup *memcg = folio_memcg(folio); 777 778 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 779 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 780} 781 782struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 783 784struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 785 786struct mem_cgroup *get_mem_cgroup_from_current(void); 787 788struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio); 789 790struct lruvec *folio_lruvec_lock(struct folio *folio); 791struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 792struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 793 unsigned long *flags); 794 795#ifdef CONFIG_DEBUG_VM 796void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 797#else 798static inline 799void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 800{ 801} 802#endif 803 804static inline 805struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 806 return css ? container_of(css, struct mem_cgroup, css) : NULL; 807} 808 809static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 810{ 811 return percpu_ref_tryget(&objcg->refcnt); 812} 813 814static inline void obj_cgroup_get(struct obj_cgroup *objcg) 815{ 816 percpu_ref_get(&objcg->refcnt); 817} 818 819static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 820 unsigned long nr) 821{ 822 percpu_ref_get_many(&objcg->refcnt, nr); 823} 824 825static inline void obj_cgroup_put(struct obj_cgroup *objcg) 826{ 827 if (objcg) 828 percpu_ref_put(&objcg->refcnt); 829} 830 831static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 832{ 833 return !memcg || css_tryget(&memcg->css); 834} 835 836static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 837{ 838 return !memcg || css_tryget_online(&memcg->css); 839} 840 841static inline void mem_cgroup_put(struct mem_cgroup *memcg) 842{ 843 if (memcg) 844 css_put(&memcg->css); 845} 846 847#define mem_cgroup_from_counter(counter, member) \ 848 container_of(counter, struct mem_cgroup, member) 849 850struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 851 struct mem_cgroup *, 852 struct mem_cgroup_reclaim_cookie *); 853void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 854void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 855 int (*)(struct task_struct *, void *), void *arg); 856 857static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 858{ 859 if (mem_cgroup_disabled()) 860 return 0; 861 862 return memcg->id.id; 863} 864struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 865 866#ifdef CONFIG_SHRINKER_DEBUG 867static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 868{ 869 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 870} 871 872struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 873#endif 874 875static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 876{ 877 return mem_cgroup_from_css(seq_css(m)); 878} 879 880static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 881{ 882 struct mem_cgroup_per_node *mz; 883 884 if (mem_cgroup_disabled()) 885 return NULL; 886 887 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 888 return mz->memcg; 889} 890 891/** 892 * parent_mem_cgroup - find the accounting parent of a memcg 893 * @memcg: memcg whose parent to find 894 * 895 * Returns the parent memcg, or NULL if this is the root. 896 */ 897static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 898{ 899 return mem_cgroup_from_css(memcg->css.parent); 900} 901 902static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 903 struct mem_cgroup *root) 904{ 905 if (root == memcg) 906 return true; 907 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 908} 909 910static inline bool mm_match_cgroup(struct mm_struct *mm, 911 struct mem_cgroup *memcg) 912{ 913 struct mem_cgroup *task_memcg; 914 bool match = false; 915 916 rcu_read_lock(); 917 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 918 if (task_memcg) 919 match = mem_cgroup_is_descendant(task_memcg, memcg); 920 rcu_read_unlock(); 921 return match; 922} 923 924struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 925ino_t page_cgroup_ino(struct page *page); 926 927static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 928{ 929 if (mem_cgroup_disabled()) 930 return true; 931 return !!(memcg->css.flags & CSS_ONLINE); 932} 933 934void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 935 int zid, int nr_pages); 936 937static inline 938unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 939 enum lru_list lru, int zone_idx) 940{ 941 struct mem_cgroup_per_node *mz; 942 943 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 944 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 945} 946 947void mem_cgroup_handle_over_high(gfp_t gfp_mask); 948 949unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 950 951unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 952 953void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 954 struct task_struct *p); 955 956void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 957 958struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 959 struct mem_cgroup *oom_domain); 960void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 961 962void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 963 int val); 964 965/* idx can be of type enum memcg_stat_item or node_stat_item */ 966static inline void mod_memcg_state(struct mem_cgroup *memcg, 967 enum memcg_stat_item idx, int val) 968{ 969 unsigned long flags; 970 971 local_irq_save(flags); 972 __mod_memcg_state(memcg, idx, val); 973 local_irq_restore(flags); 974} 975 976static inline void mod_memcg_page_state(struct page *page, 977 enum memcg_stat_item idx, int val) 978{ 979 struct mem_cgroup *memcg; 980 981 if (mem_cgroup_disabled()) 982 return; 983 984 rcu_read_lock(); 985 memcg = folio_memcg(page_folio(page)); 986 if (memcg) 987 mod_memcg_state(memcg, idx, val); 988 rcu_read_unlock(); 989} 990 991unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 992unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx); 993unsigned long lruvec_page_state_local(struct lruvec *lruvec, 994 enum node_stat_item idx); 995 996void mem_cgroup_flush_stats(struct mem_cgroup *memcg); 997void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg); 998 999void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 1000 1001static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1002 int val) 1003{ 1004 unsigned long flags; 1005 1006 local_irq_save(flags); 1007 __mod_lruvec_kmem_state(p, idx, val); 1008 local_irq_restore(flags); 1009} 1010 1011void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1012 unsigned long count); 1013 1014static inline void count_memcg_events(struct mem_cgroup *memcg, 1015 enum vm_event_item idx, 1016 unsigned long count) 1017{ 1018 unsigned long flags; 1019 1020 local_irq_save(flags); 1021 __count_memcg_events(memcg, idx, count); 1022 local_irq_restore(flags); 1023} 1024 1025static inline void count_memcg_folio_events(struct folio *folio, 1026 enum vm_event_item idx, unsigned long nr) 1027{ 1028 struct mem_cgroup *memcg = folio_memcg(folio); 1029 1030 if (memcg) 1031 count_memcg_events(memcg, idx, nr); 1032} 1033 1034static inline void count_memcg_events_mm(struct mm_struct *mm, 1035 enum vm_event_item idx, unsigned long count) 1036{ 1037 struct mem_cgroup *memcg; 1038 1039 if (mem_cgroup_disabled()) 1040 return; 1041 1042 rcu_read_lock(); 1043 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1044 if (likely(memcg)) 1045 count_memcg_events(memcg, idx, count); 1046 rcu_read_unlock(); 1047} 1048 1049static inline void count_memcg_event_mm(struct mm_struct *mm, 1050 enum vm_event_item idx) 1051{ 1052 count_memcg_events_mm(mm, idx, 1); 1053} 1054 1055static inline void memcg_memory_event(struct mem_cgroup *memcg, 1056 enum memcg_memory_event event) 1057{ 1058 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1059 event == MEMCG_SWAP_FAIL; 1060 1061 atomic_long_inc(&memcg->memory_events_local[event]); 1062 if (!swap_event) 1063 cgroup_file_notify(&memcg->events_local_file); 1064 1065 do { 1066 atomic_long_inc(&memcg->memory_events[event]); 1067 if (swap_event) 1068 cgroup_file_notify(&memcg->swap_events_file); 1069 else 1070 cgroup_file_notify(&memcg->events_file); 1071 1072 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1073 break; 1074 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1075 break; 1076 } while ((memcg = parent_mem_cgroup(memcg)) && 1077 !mem_cgroup_is_root(memcg)); 1078} 1079 1080static inline void memcg_memory_event_mm(struct mm_struct *mm, 1081 enum memcg_memory_event event) 1082{ 1083 struct mem_cgroup *memcg; 1084 1085 if (mem_cgroup_disabled()) 1086 return; 1087 1088 rcu_read_lock(); 1089 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1090 if (likely(memcg)) 1091 memcg_memory_event(memcg, event); 1092 rcu_read_unlock(); 1093} 1094 1095void split_page_memcg(struct page *head, int old_order, int new_order); 1096 1097#else /* CONFIG_MEMCG */ 1098 1099#define MEM_CGROUP_ID_SHIFT 0 1100 1101static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1102{ 1103 return NULL; 1104} 1105 1106static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1107{ 1108 WARN_ON_ONCE(!rcu_read_lock_held()); 1109 return NULL; 1110} 1111 1112static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1113{ 1114 return NULL; 1115} 1116 1117static inline struct mem_cgroup *page_memcg_check(struct page *page) 1118{ 1119 return NULL; 1120} 1121 1122static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 1123{ 1124 return NULL; 1125} 1126 1127static inline bool folio_memcg_kmem(struct folio *folio) 1128{ 1129 return false; 1130} 1131 1132static inline bool PageMemcgKmem(struct page *page) 1133{ 1134 return false; 1135} 1136 1137static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1138{ 1139 return true; 1140} 1141 1142static inline bool mem_cgroup_disabled(void) 1143{ 1144 return true; 1145} 1146 1147static inline void memcg_memory_event(struct mem_cgroup *memcg, 1148 enum memcg_memory_event event) 1149{ 1150} 1151 1152static inline void memcg_memory_event_mm(struct mm_struct *mm, 1153 enum memcg_memory_event event) 1154{ 1155} 1156 1157static inline void mem_cgroup_protection(struct mem_cgroup *root, 1158 struct mem_cgroup *memcg, 1159 unsigned long *min, 1160 unsigned long *low) 1161{ 1162 *min = *low = 0; 1163} 1164 1165static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1166 struct mem_cgroup *memcg) 1167{ 1168} 1169 1170static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1171 struct mem_cgroup *memcg) 1172{ 1173 return true; 1174} 1175static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1176 struct mem_cgroup *memcg) 1177{ 1178 return false; 1179} 1180 1181static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1182 struct mem_cgroup *memcg) 1183{ 1184 return false; 1185} 1186 1187static inline void mem_cgroup_commit_charge(struct folio *folio, 1188 struct mem_cgroup *memcg) 1189{ 1190} 1191 1192static inline int mem_cgroup_charge(struct folio *folio, 1193 struct mm_struct *mm, gfp_t gfp) 1194{ 1195 return 0; 1196} 1197 1198static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, 1199 gfp_t gfp, long nr_pages) 1200{ 1201 return 0; 1202} 1203 1204static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1205 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1206{ 1207 return 0; 1208} 1209 1210static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr) 1211{ 1212} 1213 1214static inline void mem_cgroup_uncharge(struct folio *folio) 1215{ 1216} 1217 1218static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 1219{ 1220} 1221 1222static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 1223 unsigned int nr_pages) 1224{ 1225} 1226 1227static inline void mem_cgroup_replace_folio(struct folio *old, 1228 struct folio *new) 1229{ 1230} 1231 1232static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1233{ 1234} 1235 1236static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1237 struct pglist_data *pgdat) 1238{ 1239 return &pgdat->__lruvec; 1240} 1241 1242static inline struct lruvec *folio_lruvec(struct folio *folio) 1243{ 1244 struct pglist_data *pgdat = folio_pgdat(folio); 1245 return &pgdat->__lruvec; 1246} 1247 1248static inline 1249void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1250{ 1251} 1252 1253static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1254{ 1255 return NULL; 1256} 1257 1258static inline bool mm_match_cgroup(struct mm_struct *mm, 1259 struct mem_cgroup *memcg) 1260{ 1261 return true; 1262} 1263 1264static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1265{ 1266 return NULL; 1267} 1268 1269static inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1270{ 1271 return NULL; 1272} 1273 1274static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 1275{ 1276 return NULL; 1277} 1278 1279static inline 1280struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1281{ 1282 return NULL; 1283} 1284 1285static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1286{ 1287} 1288 1289static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1290{ 1291 return true; 1292} 1293 1294static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 1295{ 1296 return true; 1297} 1298 1299static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1300{ 1301} 1302 1303static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1304{ 1305 struct pglist_data *pgdat = folio_pgdat(folio); 1306 1307 spin_lock(&pgdat->__lruvec.lru_lock); 1308 return &pgdat->__lruvec; 1309} 1310 1311static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1312{ 1313 struct pglist_data *pgdat = folio_pgdat(folio); 1314 1315 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1316 return &pgdat->__lruvec; 1317} 1318 1319static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1320 unsigned long *flagsp) 1321{ 1322 struct pglist_data *pgdat = folio_pgdat(folio); 1323 1324 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1325 return &pgdat->__lruvec; 1326} 1327 1328static inline struct mem_cgroup * 1329mem_cgroup_iter(struct mem_cgroup *root, 1330 struct mem_cgroup *prev, 1331 struct mem_cgroup_reclaim_cookie *reclaim) 1332{ 1333 return NULL; 1334} 1335 1336static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1337 struct mem_cgroup *prev) 1338{ 1339} 1340 1341static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1342 int (*fn)(struct task_struct *, void *), void *arg) 1343{ 1344} 1345 1346static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1347{ 1348 return 0; 1349} 1350 1351static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1352{ 1353 WARN_ON_ONCE(id); 1354 /* XXX: This should always return root_mem_cgroup */ 1355 return NULL; 1356} 1357 1358#ifdef CONFIG_SHRINKER_DEBUG 1359static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1360{ 1361 return 0; 1362} 1363 1364static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1365{ 1366 return NULL; 1367} 1368#endif 1369 1370static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1371{ 1372 return NULL; 1373} 1374 1375static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1376{ 1377 return NULL; 1378} 1379 1380static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1381{ 1382 return true; 1383} 1384 1385static inline 1386unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1387 enum lru_list lru, int zone_idx) 1388{ 1389 return 0; 1390} 1391 1392static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1393{ 1394 return 0; 1395} 1396 1397static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1398{ 1399 return 0; 1400} 1401 1402static inline void 1403mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1404{ 1405} 1406 1407static inline void 1408mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1409{ 1410} 1411 1412static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 1413{ 1414} 1415 1416static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1417 struct task_struct *victim, struct mem_cgroup *oom_domain) 1418{ 1419 return NULL; 1420} 1421 1422static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1423{ 1424} 1425 1426static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1427 enum memcg_stat_item idx, 1428 int nr) 1429{ 1430} 1431 1432static inline void mod_memcg_state(struct mem_cgroup *memcg, 1433 enum memcg_stat_item idx, 1434 int nr) 1435{ 1436} 1437 1438static inline void mod_memcg_page_state(struct page *page, 1439 enum memcg_stat_item idx, int val) 1440{ 1441} 1442 1443static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1444{ 1445 return 0; 1446} 1447 1448static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1449 enum node_stat_item idx) 1450{ 1451 return node_page_state(lruvec_pgdat(lruvec), idx); 1452} 1453 1454static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1455 enum node_stat_item idx) 1456{ 1457 return node_page_state(lruvec_pgdat(lruvec), idx); 1458} 1459 1460static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 1461{ 1462} 1463 1464static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 1465{ 1466} 1467 1468static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1469 int val) 1470{ 1471 struct page *page = virt_to_head_page(p); 1472 1473 __mod_node_page_state(page_pgdat(page), idx, val); 1474} 1475 1476static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1477 int val) 1478{ 1479 struct page *page = virt_to_head_page(p); 1480 1481 mod_node_page_state(page_pgdat(page), idx, val); 1482} 1483 1484static inline void count_memcg_events(struct mem_cgroup *memcg, 1485 enum vm_event_item idx, 1486 unsigned long count) 1487{ 1488} 1489 1490static inline void __count_memcg_events(struct mem_cgroup *memcg, 1491 enum vm_event_item idx, 1492 unsigned long count) 1493{ 1494} 1495 1496static inline void count_memcg_folio_events(struct folio *folio, 1497 enum vm_event_item idx, unsigned long nr) 1498{ 1499} 1500 1501static inline void count_memcg_events_mm(struct mm_struct *mm, 1502 enum vm_event_item idx, unsigned long count) 1503{ 1504} 1505 1506static inline 1507void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1508{ 1509} 1510 1511static inline void split_page_memcg(struct page *head, int old_order, int new_order) 1512{ 1513} 1514#endif /* CONFIG_MEMCG */ 1515 1516/* 1517 * Extended information for slab objects stored as an array in page->memcg_data 1518 * if MEMCG_DATA_OBJEXTS is set. 1519 */ 1520struct slabobj_ext { 1521#ifdef CONFIG_MEMCG 1522 struct obj_cgroup *objcg; 1523#endif 1524#ifdef CONFIG_MEM_ALLOC_PROFILING 1525 union codetag_ref ref; 1526#endif 1527} __aligned(8); 1528 1529static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1530{ 1531 __mod_lruvec_kmem_state(p, idx, 1); 1532} 1533 1534static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1535{ 1536 __mod_lruvec_kmem_state(p, idx, -1); 1537} 1538 1539static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1540{ 1541 struct mem_cgroup *memcg; 1542 1543 memcg = lruvec_memcg(lruvec); 1544 if (!memcg) 1545 return NULL; 1546 memcg = parent_mem_cgroup(memcg); 1547 if (!memcg) 1548 return NULL; 1549 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1550} 1551 1552static inline void unlock_page_lruvec(struct lruvec *lruvec) 1553{ 1554 spin_unlock(&lruvec->lru_lock); 1555} 1556 1557static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1558{ 1559 spin_unlock_irq(&lruvec->lru_lock); 1560} 1561 1562static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1563 unsigned long flags) 1564{ 1565 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1566} 1567 1568/* Test requires a stable folio->memcg binding, see folio_memcg() */ 1569static inline bool folio_matches_lruvec(struct folio *folio, 1570 struct lruvec *lruvec) 1571{ 1572 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1573 lruvec_memcg(lruvec) == folio_memcg(folio); 1574} 1575 1576/* Don't lock again iff page's lruvec locked */ 1577static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1578 struct lruvec *locked_lruvec) 1579{ 1580 if (locked_lruvec) { 1581 if (folio_matches_lruvec(folio, locked_lruvec)) 1582 return locked_lruvec; 1583 1584 unlock_page_lruvec_irq(locked_lruvec); 1585 } 1586 1587 return folio_lruvec_lock_irq(folio); 1588} 1589 1590/* Don't lock again iff folio's lruvec locked */ 1591static inline void folio_lruvec_relock_irqsave(struct folio *folio, 1592 struct lruvec **lruvecp, unsigned long *flags) 1593{ 1594 if (*lruvecp) { 1595 if (folio_matches_lruvec(folio, *lruvecp)) 1596 return; 1597 1598 unlock_page_lruvec_irqrestore(*lruvecp, *flags); 1599 } 1600 1601 *lruvecp = folio_lruvec_lock_irqsave(folio, flags); 1602} 1603 1604#ifdef CONFIG_CGROUP_WRITEBACK 1605 1606struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1607void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1608 unsigned long *pheadroom, unsigned long *pdirty, 1609 unsigned long *pwriteback); 1610 1611void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1612 struct bdi_writeback *wb); 1613 1614static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1615 struct bdi_writeback *wb) 1616{ 1617 struct mem_cgroup *memcg; 1618 1619 if (mem_cgroup_disabled()) 1620 return; 1621 1622 memcg = folio_memcg(folio); 1623 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1624 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1625} 1626 1627void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1628 1629#else /* CONFIG_CGROUP_WRITEBACK */ 1630 1631static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1632{ 1633 return NULL; 1634} 1635 1636static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1637 unsigned long *pfilepages, 1638 unsigned long *pheadroom, 1639 unsigned long *pdirty, 1640 unsigned long *pwriteback) 1641{ 1642} 1643 1644static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1645 struct bdi_writeback *wb) 1646{ 1647} 1648 1649static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1650{ 1651} 1652 1653#endif /* CONFIG_CGROUP_WRITEBACK */ 1654 1655struct sock; 1656bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1657 gfp_t gfp_mask); 1658void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1659#ifdef CONFIG_MEMCG 1660extern struct static_key_false memcg_sockets_enabled_key; 1661#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1662void mem_cgroup_sk_alloc(struct sock *sk); 1663void mem_cgroup_sk_free(struct sock *sk); 1664static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1665{ 1666#ifdef CONFIG_MEMCG_V1 1667 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1668 return !!memcg->tcpmem_pressure; 1669#endif /* CONFIG_MEMCG_V1 */ 1670 do { 1671 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1672 return true; 1673 } while ((memcg = parent_mem_cgroup(memcg))); 1674 return false; 1675} 1676 1677int alloc_shrinker_info(struct mem_cgroup *memcg); 1678void free_shrinker_info(struct mem_cgroup *memcg); 1679void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1680void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1681#else 1682#define mem_cgroup_sockets_enabled 0 1683static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1684static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1685static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1686{ 1687 return false; 1688} 1689 1690static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1691 int nid, int shrinker_id) 1692{ 1693} 1694#endif 1695 1696#ifdef CONFIG_MEMCG 1697bool mem_cgroup_kmem_disabled(void); 1698int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1699void __memcg_kmem_uncharge_page(struct page *page, int order); 1700 1701/* 1702 * The returned objcg pointer is safe to use without additional 1703 * protection within a scope. The scope is defined either by 1704 * the current task (similar to the "current" global variable) 1705 * or by set_active_memcg() pair. 1706 * Please, use obj_cgroup_get() to get a reference if the pointer 1707 * needs to be used outside of the local scope. 1708 */ 1709struct obj_cgroup *current_obj_cgroup(void); 1710struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio); 1711 1712static inline struct obj_cgroup *get_obj_cgroup_from_current(void) 1713{ 1714 struct obj_cgroup *objcg = current_obj_cgroup(); 1715 1716 if (objcg) 1717 obj_cgroup_get(objcg); 1718 1719 return objcg; 1720} 1721 1722int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1723void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1724 1725extern struct static_key_false memcg_bpf_enabled_key; 1726static inline bool memcg_bpf_enabled(void) 1727{ 1728 return static_branch_likely(&memcg_bpf_enabled_key); 1729} 1730 1731extern struct static_key_false memcg_kmem_online_key; 1732 1733static inline bool memcg_kmem_online(void) 1734{ 1735 return static_branch_likely(&memcg_kmem_online_key); 1736} 1737 1738static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1739 int order) 1740{ 1741 if (memcg_kmem_online()) 1742 return __memcg_kmem_charge_page(page, gfp, order); 1743 return 0; 1744} 1745 1746static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1747{ 1748 if (memcg_kmem_online()) 1749 __memcg_kmem_uncharge_page(page, order); 1750} 1751 1752/* 1753 * A helper for accessing memcg's kmem_id, used for getting 1754 * corresponding LRU lists. 1755 */ 1756static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1757{ 1758 return memcg ? memcg->kmemcg_id : -1; 1759} 1760 1761struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1762 1763static inline void count_objcg_events(struct obj_cgroup *objcg, 1764 enum vm_event_item idx, 1765 unsigned long count) 1766{ 1767 struct mem_cgroup *memcg; 1768 1769 if (!memcg_kmem_online()) 1770 return; 1771 1772 rcu_read_lock(); 1773 memcg = obj_cgroup_memcg(objcg); 1774 count_memcg_events(memcg, idx, count); 1775 rcu_read_unlock(); 1776} 1777 1778#else 1779static inline bool mem_cgroup_kmem_disabled(void) 1780{ 1781 return true; 1782} 1783 1784static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1785 int order) 1786{ 1787 return 0; 1788} 1789 1790static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1791{ 1792} 1793 1794static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1795 int order) 1796{ 1797 return 0; 1798} 1799 1800static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1801{ 1802} 1803 1804static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 1805{ 1806 return NULL; 1807} 1808 1809static inline bool memcg_bpf_enabled(void) 1810{ 1811 return false; 1812} 1813 1814static inline bool memcg_kmem_online(void) 1815{ 1816 return false; 1817} 1818 1819static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1820{ 1821 return -1; 1822} 1823 1824static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1825{ 1826 return NULL; 1827} 1828 1829static inline void count_objcg_events(struct obj_cgroup *objcg, 1830 enum vm_event_item idx, 1831 unsigned long count) 1832{ 1833} 1834 1835#endif /* CONFIG_MEMCG */ 1836 1837#if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP) 1838bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1839void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1840void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1841bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg); 1842#else 1843static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1844{ 1845 return true; 1846} 1847static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1848 size_t size) 1849{ 1850} 1851static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1852 size_t size) 1853{ 1854} 1855static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 1856{ 1857 /* if zswap is disabled, do not block pages going to the swapping device */ 1858 return true; 1859} 1860#endif 1861 1862 1863/* Cgroup v1-related declarations */ 1864 1865#ifdef CONFIG_MEMCG_V1 1866unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1867 gfp_t gfp_mask, 1868 unsigned long *total_scanned); 1869 1870bool mem_cgroup_oom_synchronize(bool wait); 1871 1872static inline bool task_in_memcg_oom(struct task_struct *p) 1873{ 1874 return p->memcg_in_oom; 1875} 1876 1877void folio_memcg_lock(struct folio *folio); 1878void folio_memcg_unlock(struct folio *folio); 1879 1880/* try to stablize folio_memcg() for all the pages in a memcg */ 1881static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1882{ 1883 rcu_read_lock(); 1884 1885 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 1886 return true; 1887 1888 rcu_read_unlock(); 1889 return false; 1890} 1891 1892static inline void mem_cgroup_unlock_pages(void) 1893{ 1894 rcu_read_unlock(); 1895} 1896 1897static inline void mem_cgroup_enter_user_fault(void) 1898{ 1899 WARN_ON(current->in_user_fault); 1900 current->in_user_fault = 1; 1901} 1902 1903static inline void mem_cgroup_exit_user_fault(void) 1904{ 1905 WARN_ON(!current->in_user_fault); 1906 current->in_user_fault = 0; 1907} 1908 1909#else /* CONFIG_MEMCG_V1 */ 1910static inline 1911unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1912 gfp_t gfp_mask, 1913 unsigned long *total_scanned) 1914{ 1915 return 0; 1916} 1917 1918static inline void folio_memcg_lock(struct folio *folio) 1919{ 1920} 1921 1922static inline void folio_memcg_unlock(struct folio *folio) 1923{ 1924} 1925 1926static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1927{ 1928 /* to match folio_memcg_rcu() */ 1929 rcu_read_lock(); 1930 return true; 1931} 1932 1933static inline void mem_cgroup_unlock_pages(void) 1934{ 1935 rcu_read_unlock(); 1936} 1937 1938static inline bool task_in_memcg_oom(struct task_struct *p) 1939{ 1940 return false; 1941} 1942 1943static inline bool mem_cgroup_oom_synchronize(bool wait) 1944{ 1945 return false; 1946} 1947 1948static inline void mem_cgroup_enter_user_fault(void) 1949{ 1950} 1951 1952static inline void mem_cgroup_exit_user_fault(void) 1953{ 1954} 1955 1956#endif /* CONFIG_MEMCG_V1 */ 1957 1958#endif /* _LINUX_MEMCONTROL_H */