Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/blkdev.h>
9#include <linux/backing-dev.h>
10
11/* constant macro */
12#define NULL_SEGNO ((unsigned int)(~0))
13#define NULL_SECNO ((unsigned int)(~0))
14
15#define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
17
18#define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19#define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21/* L: Logical segment # in volume, R: Relative segment # in main area */
22#define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
23#define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
24
25#define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
26#define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27#define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
28
29static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 unsigned short seg_type)
31{
32 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33}
34
35#define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36#define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37#define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38
39#define IS_CURSEG(sbi, seg) \
40 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
41 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
42 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
43 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
44 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \
46 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \
47 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48
49#define IS_CURSEC(sbi, secno) \
50 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
51 SEGS_PER_SEC(sbi)) || \
52 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
53 SEGS_PER_SEC(sbi)) || \
54 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
55 SEGS_PER_SEC(sbi)) || \
56 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
57 SEGS_PER_SEC(sbi)) || \
58 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
59 SEGS_PER_SEC(sbi)) || \
60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
61 SEGS_PER_SEC(sbi)) || \
62 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \
63 SEGS_PER_SEC(sbi)) || \
64 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \
65 SEGS_PER_SEC(sbi)))
66
67#define MAIN_BLKADDR(sbi) \
68 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
69 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70#define SEG0_BLKADDR(sbi) \
71 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
72 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73
74#define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
75#define MAIN_SECS(sbi) ((sbi)->total_sections)
76
77#define TOTAL_SEGS(sbi) \
78 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
79 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80#define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
81
82#define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83#define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
84 (sbi)->log_blocks_per_seg))
85
86#define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
87 (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
88
89#define NEXT_FREE_BLKADDR(sbi, curseg) \
90 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91
92#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
93#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
94 (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
95#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
96 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
97
98#define GET_SEGNO(sbi, blk_addr) \
99 ((!__is_valid_data_blkaddr(blk_addr)) ? \
100 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
101 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102#define CAP_BLKS_PER_SEC(sbi) \
103 (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
104#define CAP_SEGS_PER_SEC(sbi) \
105 (SEGS_PER_SEC(sbi) - \
106 BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
107#define GET_SEC_FROM_SEG(sbi, segno) \
108 (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
109#define GET_SEG_FROM_SEC(sbi, secno) \
110 ((secno) * SEGS_PER_SEC(sbi))
111#define GET_ZONE_FROM_SEC(sbi, secno) \
112 (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
113#define GET_ZONE_FROM_SEG(sbi, segno) \
114 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115
116#define GET_SUM_BLOCK(sbi, segno) \
117 ((sbi)->sm_info->ssa_blkaddr + (segno))
118
119#define GET_SUM_TYPE(footer) ((footer)->entry_type)
120#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121
122#define SIT_ENTRY_OFFSET(sit_i, segno) \
123 ((segno) % (sit_i)->sents_per_block)
124#define SIT_BLOCK_OFFSET(segno) \
125 ((segno) / SIT_ENTRY_PER_BLOCK)
126#define START_SEGNO(segno) \
127 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128#define SIT_BLK_CNT(sbi) \
129 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130#define f2fs_bitmap_size(nr) \
131 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
132
133#define SECTOR_FROM_BLOCK(blk_addr) \
134 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135#define SECTOR_TO_BLOCK(sectors) \
136 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137
138/*
139 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
140 * LFS writes data sequentially with cleaning operations.
141 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
142 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
143 * fragmented segment which has similar aging degree.
144 */
145enum {
146 LFS = 0,
147 SSR,
148 AT_SSR,
149};
150
151/*
152 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
153 * GC_CB is based on cost-benefit algorithm.
154 * GC_GREEDY is based on greedy algorithm.
155 * GC_AT is based on age-threshold algorithm.
156 */
157enum {
158 GC_CB = 0,
159 GC_GREEDY,
160 GC_AT,
161 ALLOC_NEXT,
162 FLUSH_DEVICE,
163 MAX_GC_POLICY,
164};
165
166/*
167 * BG_GC means the background cleaning job.
168 * FG_GC means the on-demand cleaning job.
169 */
170enum {
171 BG_GC = 0,
172 FG_GC,
173};
174
175/* for a function parameter to select a victim segment */
176struct victim_sel_policy {
177 int alloc_mode; /* LFS or SSR */
178 int gc_mode; /* GC_CB or GC_GREEDY */
179 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
180 unsigned int max_search; /*
181 * maximum # of segments/sections
182 * to search
183 */
184 unsigned int offset; /* last scanned bitmap offset */
185 unsigned int ofs_unit; /* bitmap search unit */
186 unsigned int min_cost; /* minimum cost */
187 unsigned long long oldest_age; /* oldest age of segments having the same min cost */
188 unsigned int min_segno; /* segment # having min. cost */
189 unsigned long long age; /* mtime of GCed section*/
190 unsigned long long age_threshold;/* age threshold */
191 bool one_time_gc; /* one time GC */
192};
193
194struct seg_entry {
195 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
196 unsigned int valid_blocks:10; /* # of valid blocks */
197 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
198 unsigned int padding:6; /* padding */
199 unsigned char *cur_valid_map; /* validity bitmap of blocks */
200#ifdef CONFIG_F2FS_CHECK_FS
201 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
202#endif
203 /*
204 * # of valid blocks and the validity bitmap stored in the last
205 * checkpoint pack. This information is used by the SSR mode.
206 */
207 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
208 unsigned char *discard_map;
209 unsigned long long mtime; /* modification time of the segment */
210};
211
212struct sec_entry {
213 unsigned int valid_blocks; /* # of valid blocks in a section */
214};
215
216#define MAX_SKIP_GC_COUNT 16
217
218struct revoke_entry {
219 struct list_head list;
220 block_t old_addr; /* for revoking when fail to commit */
221 pgoff_t index;
222};
223
224struct sit_info {
225 block_t sit_base_addr; /* start block address of SIT area */
226 block_t sit_blocks; /* # of blocks used by SIT area */
227 block_t written_valid_blocks; /* # of valid blocks in main area */
228 char *bitmap; /* all bitmaps pointer */
229 char *sit_bitmap; /* SIT bitmap pointer */
230#ifdef CONFIG_F2FS_CHECK_FS
231 char *sit_bitmap_mir; /* SIT bitmap mirror */
232
233 /* bitmap of segments to be ignored by GC in case of errors */
234 unsigned long *invalid_segmap;
235#endif
236 unsigned int bitmap_size; /* SIT bitmap size */
237
238 unsigned long *tmp_map; /* bitmap for temporal use */
239 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
240 unsigned int dirty_sentries; /* # of dirty sentries */
241 unsigned int sents_per_block; /* # of SIT entries per block */
242 struct rw_semaphore sentry_lock; /* to protect SIT cache */
243 struct seg_entry *sentries; /* SIT segment-level cache */
244 struct sec_entry *sec_entries; /* SIT section-level cache */
245
246 /* for cost-benefit algorithm in cleaning procedure */
247 unsigned long long elapsed_time; /* elapsed time after mount */
248 unsigned long long mounted_time; /* mount time */
249 unsigned long long min_mtime; /* min. modification time */
250 unsigned long long max_mtime; /* max. modification time */
251 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
252 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
253
254 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
255};
256
257struct free_segmap_info {
258 unsigned int start_segno; /* start segment number logically */
259 unsigned int free_segments; /* # of free segments */
260 unsigned int free_sections; /* # of free sections */
261 spinlock_t segmap_lock; /* free segmap lock */
262 unsigned long *free_segmap; /* free segment bitmap */
263 unsigned long *free_secmap; /* free section bitmap */
264};
265
266/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
267enum dirty_type {
268 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
269 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
270 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
271 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
272 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
273 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
274 DIRTY, /* to count # of dirty segments */
275 PRE, /* to count # of entirely obsolete segments */
276 NR_DIRTY_TYPE
277};
278
279struct dirty_seglist_info {
280 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
281 unsigned long *dirty_secmap;
282 struct mutex seglist_lock; /* lock for segment bitmaps */
283 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
284 unsigned long *victim_secmap; /* background GC victims */
285 unsigned long *pinned_secmap; /* pinned victims from foreground GC */
286 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */
287 bool enable_pin_section; /* enable pinning section */
288};
289
290/* for active log information */
291struct curseg_info {
292 struct mutex curseg_mutex; /* lock for consistency */
293 struct f2fs_summary_block *sum_blk; /* cached summary block */
294 struct rw_semaphore journal_rwsem; /* protect journal area */
295 struct f2fs_journal *journal; /* cached journal info */
296 unsigned char alloc_type; /* current allocation type */
297 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
298 unsigned int segno; /* current segment number */
299 unsigned short next_blkoff; /* next block offset to write */
300 unsigned int zone; /* current zone number */
301 unsigned int next_segno; /* preallocated segment */
302 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */
303 bool inited; /* indicate inmem log is inited */
304};
305
306struct sit_entry_set {
307 struct list_head set_list; /* link with all sit sets */
308 unsigned int start_segno; /* start segno of sits in set */
309 unsigned int entry_cnt; /* the # of sit entries in set */
310};
311
312/*
313 * inline functions
314 */
315static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
316{
317 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
318}
319
320static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
321 unsigned int segno)
322{
323 struct sit_info *sit_i = SIT_I(sbi);
324 return &sit_i->sentries[segno];
325}
326
327static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
328 unsigned int segno)
329{
330 struct sit_info *sit_i = SIT_I(sbi);
331 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
332}
333
334static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
335 unsigned int segno, bool use_section)
336{
337 /*
338 * In order to get # of valid blocks in a section instantly from many
339 * segments, f2fs manages two counting structures separately.
340 */
341 if (use_section && __is_large_section(sbi))
342 return get_sec_entry(sbi, segno)->valid_blocks;
343 else
344 return get_seg_entry(sbi, segno)->valid_blocks;
345}
346
347static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
348 unsigned int segno, bool use_section)
349{
350 if (use_section && __is_large_section(sbi)) {
351 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
352 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
353 unsigned int blocks = 0;
354 int i;
355
356 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
357 struct seg_entry *se = get_seg_entry(sbi, start_segno);
358
359 blocks += se->ckpt_valid_blocks;
360 }
361 return blocks;
362 }
363 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
364}
365
366static inline void seg_info_from_raw_sit(struct seg_entry *se,
367 struct f2fs_sit_entry *rs)
368{
369 se->valid_blocks = GET_SIT_VBLOCKS(rs);
370 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
371 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
372 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
373#ifdef CONFIG_F2FS_CHECK_FS
374 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
375#endif
376 se->type = GET_SIT_TYPE(rs);
377 se->mtime = le64_to_cpu(rs->mtime);
378}
379
380static inline void __seg_info_to_raw_sit(struct seg_entry *se,
381 struct f2fs_sit_entry *rs)
382{
383 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
384 se->valid_blocks;
385 rs->vblocks = cpu_to_le16(raw_vblocks);
386 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
387 rs->mtime = cpu_to_le64(se->mtime);
388}
389
390static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
391 struct page *page, unsigned int start)
392{
393 struct f2fs_sit_block *raw_sit;
394 struct seg_entry *se;
395 struct f2fs_sit_entry *rs;
396 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
397 (unsigned long)MAIN_SEGS(sbi));
398 int i;
399
400 raw_sit = (struct f2fs_sit_block *)page_address(page);
401 memset(raw_sit, 0, PAGE_SIZE);
402 for (i = 0; i < end - start; i++) {
403 rs = &raw_sit->entries[i];
404 se = get_seg_entry(sbi, start + i);
405 __seg_info_to_raw_sit(se, rs);
406 }
407}
408
409static inline void seg_info_to_raw_sit(struct seg_entry *se,
410 struct f2fs_sit_entry *rs)
411{
412 __seg_info_to_raw_sit(se, rs);
413
414 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
415 se->ckpt_valid_blocks = se->valid_blocks;
416}
417
418static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
419 unsigned int max, unsigned int segno)
420{
421 unsigned int ret;
422 spin_lock(&free_i->segmap_lock);
423 ret = find_next_bit(free_i->free_segmap, max, segno);
424 spin_unlock(&free_i->segmap_lock);
425 return ret;
426}
427
428static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
429{
430 struct free_segmap_info *free_i = FREE_I(sbi);
431 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
432 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
433 unsigned int next;
434 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi);
435
436 spin_lock(&free_i->segmap_lock);
437 clear_bit(segno, free_i->free_segmap);
438 free_i->free_segments++;
439
440 next = find_next_bit(free_i->free_segmap,
441 start_segno + SEGS_PER_SEC(sbi), start_segno);
442 if (next >= start_segno + usable_segs) {
443 clear_bit(secno, free_i->free_secmap);
444 free_i->free_sections++;
445 }
446 spin_unlock(&free_i->segmap_lock);
447}
448
449static inline void __set_inuse(struct f2fs_sb_info *sbi,
450 unsigned int segno)
451{
452 struct free_segmap_info *free_i = FREE_I(sbi);
453 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
454
455 set_bit(segno, free_i->free_segmap);
456 free_i->free_segments--;
457 if (!test_and_set_bit(secno, free_i->free_secmap))
458 free_i->free_sections--;
459}
460
461static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
462 unsigned int segno, bool inmem)
463{
464 struct free_segmap_info *free_i = FREE_I(sbi);
465 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
466 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
467 unsigned int next;
468 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi);
469
470 spin_lock(&free_i->segmap_lock);
471 if (test_and_clear_bit(segno, free_i->free_segmap)) {
472 free_i->free_segments++;
473
474 if (!inmem && IS_CURSEC(sbi, secno))
475 goto skip_free;
476 next = find_next_bit(free_i->free_segmap,
477 start_segno + SEGS_PER_SEC(sbi), start_segno);
478 if (next >= start_segno + usable_segs) {
479 if (test_and_clear_bit(secno, free_i->free_secmap))
480 free_i->free_sections++;
481 }
482 }
483skip_free:
484 spin_unlock(&free_i->segmap_lock);
485}
486
487static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
488 unsigned int segno)
489{
490 struct free_segmap_info *free_i = FREE_I(sbi);
491 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
492
493 spin_lock(&free_i->segmap_lock);
494 if (!test_and_set_bit(segno, free_i->free_segmap)) {
495 free_i->free_segments--;
496 if (!test_and_set_bit(secno, free_i->free_secmap))
497 free_i->free_sections--;
498 }
499 spin_unlock(&free_i->segmap_lock);
500}
501
502static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
503 void *dst_addr)
504{
505 struct sit_info *sit_i = SIT_I(sbi);
506
507#ifdef CONFIG_F2FS_CHECK_FS
508 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
509 sit_i->bitmap_size))
510 f2fs_bug_on(sbi, 1);
511#endif
512 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
513}
514
515static inline block_t written_block_count(struct f2fs_sb_info *sbi)
516{
517 return SIT_I(sbi)->written_valid_blocks;
518}
519
520static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
521{
522 return FREE_I(sbi)->free_segments;
523}
524
525static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
526{
527 return SM_I(sbi)->reserved_segments +
528 SM_I(sbi)->additional_reserved_segments;
529}
530
531static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
532{
533 return FREE_I(sbi)->free_sections;
534}
535
536static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
537{
538 return DIRTY_I(sbi)->nr_dirty[PRE];
539}
540
541static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
542{
543 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
544 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
545 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
546 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
547 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
548 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
549}
550
551static inline int overprovision_segments(struct f2fs_sb_info *sbi)
552{
553 return SM_I(sbi)->ovp_segments;
554}
555
556static inline int reserved_sections(struct f2fs_sb_info *sbi)
557{
558 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
559}
560
561static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
562 unsigned int node_blocks, unsigned int dent_blocks)
563{
564
565 unsigned segno, left_blocks;
566 int i;
567
568 /* check current node sections in the worst case. */
569 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
570 segno = CURSEG_I(sbi, i)->segno;
571 left_blocks = CAP_BLKS_PER_SEC(sbi) -
572 get_ckpt_valid_blocks(sbi, segno, true);
573 if (node_blocks > left_blocks)
574 return false;
575 }
576
577 /* check current data section for dentry blocks. */
578 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
579 left_blocks = CAP_BLKS_PER_SEC(sbi) -
580 get_ckpt_valid_blocks(sbi, segno, true);
581 if (dent_blocks > left_blocks)
582 return false;
583 return true;
584}
585
586/*
587 * calculate needed sections for dirty node/dentry
588 * and call has_curseg_enough_space
589 */
590static inline void __get_secs_required(struct f2fs_sb_info *sbi,
591 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
592{
593 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
594 get_pages(sbi, F2FS_DIRTY_DENTS) +
595 get_pages(sbi, F2FS_DIRTY_IMETA);
596 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
597 unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
598 unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
599 unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
600 unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
601
602 if (lower_p)
603 *lower_p = node_secs + dent_secs;
604 if (upper_p)
605 *upper_p = node_secs + dent_secs +
606 (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
607 if (curseg_p)
608 *curseg_p = has_curseg_enough_space(sbi,
609 node_blocks, dent_blocks);
610}
611
612static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
613 int freed, int needed)
614{
615 unsigned int free_secs, lower_secs, upper_secs;
616 bool curseg_space;
617
618 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
619 return false;
620
621 __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
622
623 free_secs = free_sections(sbi) + freed;
624 lower_secs += needed + reserved_sections(sbi);
625 upper_secs += needed + reserved_sections(sbi);
626
627 if (free_secs > upper_secs)
628 return false;
629 if (free_secs <= lower_secs)
630 return true;
631 return !curseg_space;
632}
633
634static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
635 int freed, int needed)
636{
637 return !has_not_enough_free_secs(sbi, freed, needed);
638}
639
640static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
641{
642 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
643 return true;
644 if (likely(has_enough_free_secs(sbi, 0, 0)))
645 return true;
646 return false;
647}
648
649static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
650{
651 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
652}
653
654static inline int utilization(struct f2fs_sb_info *sbi)
655{
656 return div_u64((u64)valid_user_blocks(sbi) * 100,
657 sbi->user_block_count);
658}
659
660/*
661 * Sometimes f2fs may be better to drop out-of-place update policy.
662 * And, users can control the policy through sysfs entries.
663 * There are five policies with triggering conditions as follows.
664 * F2FS_IPU_FORCE - all the time,
665 * F2FS_IPU_SSR - if SSR mode is activated,
666 * F2FS_IPU_UTIL - if FS utilization is over threashold,
667 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
668 * threashold,
669 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
670 * storages. IPU will be triggered only if the # of dirty
671 * pages over min_fsync_blocks. (=default option)
672 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
673 * F2FS_IPU_NOCACHE - disable IPU bio cache.
674 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
675 * FI_OPU_WRITE flag.
676 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
677 */
678#define DEF_MIN_IPU_UTIL 70
679#define DEF_MIN_FSYNC_BLOCKS 8
680#define DEF_MIN_HOT_BLOCKS 16
681
682#define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
683
684#define F2FS_IPU_DISABLE 0
685
686/* Modification on enum should be synchronized with ipu_mode_names array */
687enum {
688 F2FS_IPU_FORCE,
689 F2FS_IPU_SSR,
690 F2FS_IPU_UTIL,
691 F2FS_IPU_SSR_UTIL,
692 F2FS_IPU_FSYNC,
693 F2FS_IPU_ASYNC,
694 F2FS_IPU_NOCACHE,
695 F2FS_IPU_HONOR_OPU_WRITE,
696 F2FS_IPU_MAX,
697};
698
699static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
700{
701 return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
702}
703
704#define F2FS_IPU_POLICY(name) \
705static inline bool IS_##name(struct f2fs_sb_info *sbi) \
706{ \
707 return SM_I(sbi)->ipu_policy & BIT(name); \
708}
709
710F2FS_IPU_POLICY(F2FS_IPU_FORCE);
711F2FS_IPU_POLICY(F2FS_IPU_SSR);
712F2FS_IPU_POLICY(F2FS_IPU_UTIL);
713F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
714F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
715F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
716F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
717F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
718
719static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
720 int type)
721{
722 struct curseg_info *curseg = CURSEG_I(sbi, type);
723 return curseg->segno;
724}
725
726static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
727 int type)
728{
729 struct curseg_info *curseg = CURSEG_I(sbi, type);
730 return curseg->alloc_type;
731}
732
733static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
734 unsigned int segno)
735{
736 return segno <= (MAIN_SEGS(sbi) - 1);
737}
738
739static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
740{
741 struct f2fs_sb_info *sbi = fio->sbi;
742
743 if (__is_valid_data_blkaddr(fio->old_blkaddr))
744 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
745 META_GENERIC : DATA_GENERIC);
746 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
747 META_GENERIC : DATA_GENERIC_ENHANCE);
748}
749
750/*
751 * Summary block is always treated as an invalid block
752 */
753static inline int check_block_count(struct f2fs_sb_info *sbi,
754 int segno, struct f2fs_sit_entry *raw_sit)
755{
756 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
757 int valid_blocks = 0;
758 int cur_pos = 0, next_pos;
759 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
760
761 /* check bitmap with valid block count */
762 do {
763 if (is_valid) {
764 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
765 usable_blks_per_seg,
766 cur_pos);
767 valid_blocks += next_pos - cur_pos;
768 } else
769 next_pos = find_next_bit_le(&raw_sit->valid_map,
770 usable_blks_per_seg,
771 cur_pos);
772 cur_pos = next_pos;
773 is_valid = !is_valid;
774 } while (cur_pos < usable_blks_per_seg);
775
776 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
777 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
778 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
779 set_sbi_flag(sbi, SBI_NEED_FSCK);
780 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
781 return -EFSCORRUPTED;
782 }
783
784 if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
785 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
786 BLKS_PER_SEG(sbi),
787 usable_blks_per_seg) != BLKS_PER_SEG(sbi));
788
789 /* check segment usage, and check boundary of a given segment number */
790 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
791 || !valid_main_segno(sbi, segno))) {
792 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
793 GET_SIT_VBLOCKS(raw_sit), segno);
794 set_sbi_flag(sbi, SBI_NEED_FSCK);
795 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
796 return -EFSCORRUPTED;
797 }
798 return 0;
799}
800
801static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
802 unsigned int start)
803{
804 struct sit_info *sit_i = SIT_I(sbi);
805 unsigned int offset = SIT_BLOCK_OFFSET(start);
806 block_t blk_addr = sit_i->sit_base_addr + offset;
807
808 f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
809
810#ifdef CONFIG_F2FS_CHECK_FS
811 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
812 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
813 f2fs_bug_on(sbi, 1);
814#endif
815
816 /* calculate sit block address */
817 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
818 blk_addr += sit_i->sit_blocks;
819
820 return blk_addr;
821}
822
823static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
824 pgoff_t block_addr)
825{
826 struct sit_info *sit_i = SIT_I(sbi);
827 block_addr -= sit_i->sit_base_addr;
828 if (block_addr < sit_i->sit_blocks)
829 block_addr += sit_i->sit_blocks;
830 else
831 block_addr -= sit_i->sit_blocks;
832
833 return block_addr + sit_i->sit_base_addr;
834}
835
836static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
837{
838 unsigned int block_off = SIT_BLOCK_OFFSET(start);
839
840 f2fs_change_bit(block_off, sit_i->sit_bitmap);
841#ifdef CONFIG_F2FS_CHECK_FS
842 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
843#endif
844}
845
846static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
847 bool base_time)
848{
849 struct sit_info *sit_i = SIT_I(sbi);
850 time64_t diff, now = ktime_get_boottime_seconds();
851
852 if (now >= sit_i->mounted_time)
853 return sit_i->elapsed_time + now - sit_i->mounted_time;
854
855 /* system time is set to the past */
856 if (!base_time) {
857 diff = sit_i->mounted_time - now;
858 if (sit_i->elapsed_time >= diff)
859 return sit_i->elapsed_time - diff;
860 return 0;
861 }
862 return sit_i->elapsed_time;
863}
864
865static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
866 unsigned int ofs_in_node, unsigned char version)
867{
868 sum->nid = cpu_to_le32(nid);
869 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
870 sum->version = version;
871}
872
873static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
874{
875 return __start_cp_addr(sbi) +
876 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
877}
878
879static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
880{
881 return __start_cp_addr(sbi) +
882 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
883 - (base + 1) + type;
884}
885
886static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
887{
888 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
889 return true;
890 return false;
891}
892
893/*
894 * It is very important to gather dirty pages and write at once, so that we can
895 * submit a big bio without interfering other data writes.
896 * By default, 512 pages for directory data,
897 * 512 pages (2MB) * 8 for nodes, and
898 * 256 pages * 8 for meta are set.
899 */
900static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
901{
902 if (sbi->sb->s_bdi->wb.dirty_exceeded)
903 return 0;
904
905 if (type == DATA)
906 return BLKS_PER_SEG(sbi);
907 else if (type == NODE)
908 return SEGS_TO_BLKS(sbi, 8);
909 else if (type == META)
910 return 8 * BIO_MAX_VECS;
911 else
912 return 0;
913}
914
915/*
916 * When writing pages, it'd better align nr_to_write for segment size.
917 */
918static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
919 struct writeback_control *wbc)
920{
921 long nr_to_write, desired;
922
923 if (wbc->sync_mode != WB_SYNC_NONE)
924 return 0;
925
926 nr_to_write = wbc->nr_to_write;
927 desired = BIO_MAX_VECS;
928 if (type == NODE)
929 desired <<= 1;
930
931 wbc->nr_to_write = desired;
932 return desired - nr_to_write;
933}
934
935static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
936{
937 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
938 bool wakeup = false;
939 int i;
940
941 if (force)
942 goto wake_up;
943
944 mutex_lock(&dcc->cmd_lock);
945 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
946 if (i + 1 < dcc->discard_granularity)
947 break;
948 if (!list_empty(&dcc->pend_list[i])) {
949 wakeup = true;
950 break;
951 }
952 }
953 mutex_unlock(&dcc->cmd_lock);
954 if (!wakeup || !is_idle(sbi, DISCARD_TIME))
955 return;
956wake_up:
957 dcc->discard_wake = true;
958 wake_up_interruptible_all(&dcc->discard_wait_queue);
959}
960
961static inline unsigned int first_zoned_segno(struct f2fs_sb_info *sbi)
962{
963 int devi;
964
965 for (devi = 0; devi < sbi->s_ndevs; devi++)
966 if (bdev_is_zoned(FDEV(devi).bdev))
967 return GET_SEGNO(sbi, FDEV(devi).start_blk);
968 return 0;
969}