at v6.12-rc7 1491 lines 47 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7#ifndef __MM_INTERNAL_H 8#define __MM_INTERNAL_H 9 10#include <linux/fs.h> 11#include <linux/khugepaged.h> 12#include <linux/mm.h> 13#include <linux/mm_inline.h> 14#include <linux/pagemap.h> 15#include <linux/rmap.h> 16#include <linux/swap.h> 17#include <linux/swapops.h> 18#include <linux/swap_cgroup.h> 19#include <linux/tracepoint-defs.h> 20 21/* Internal core VMA manipulation functions. */ 22#include "vma.h" 23 24struct folio_batch; 25 26/* 27 * The set of flags that only affect watermark checking and reclaim 28 * behaviour. This is used by the MM to obey the caller constraints 29 * about IO, FS and watermark checking while ignoring placement 30 * hints such as HIGHMEM usage. 31 */ 32#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 33 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 34 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 35 __GFP_NOLOCKDEP) 36 37/* The GFP flags allowed during early boot */ 38#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 39 40/* Control allocation cpuset and node placement constraints */ 41#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 42 43/* Do not use these with a slab allocator */ 44#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 45 46/* 47 * Different from WARN_ON_ONCE(), no warning will be issued 48 * when we specify __GFP_NOWARN. 49 */ 50#define WARN_ON_ONCE_GFP(cond, gfp) ({ \ 51 static bool __section(".data.once") __warned; \ 52 int __ret_warn_once = !!(cond); \ 53 \ 54 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ 55 __warned = true; \ 56 WARN_ON(1); \ 57 } \ 58 unlikely(__ret_warn_once); \ 59}) 60 61void page_writeback_init(void); 62 63/* 64 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages, 65 * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit 66 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently 67 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later. 68 */ 69#define ENTIRELY_MAPPED 0x800000 70#define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1) 71 72/* 73 * Flags passed to __show_mem() and show_free_areas() to suppress output in 74 * various contexts. 75 */ 76#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 77 78/* 79 * How many individual pages have an elevated _mapcount. Excludes 80 * the folio's entire_mapcount. 81 * 82 * Don't use this function outside of debugging code. 83 */ 84static inline int folio_nr_pages_mapped(const struct folio *folio) 85{ 86 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED; 87} 88 89/* 90 * Retrieve the first entry of a folio based on a provided entry within the 91 * folio. We cannot rely on folio->swap as there is no guarantee that it has 92 * been initialized. Used for calling arch_swap_restore() 93 */ 94static inline swp_entry_t folio_swap(swp_entry_t entry, 95 const struct folio *folio) 96{ 97 swp_entry_t swap = { 98 .val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)), 99 }; 100 101 return swap; 102} 103 104static inline void *folio_raw_mapping(const struct folio *folio) 105{ 106 unsigned long mapping = (unsigned long)folio->mapping; 107 108 return (void *)(mapping & ~PAGE_MAPPING_FLAGS); 109} 110 111/* 112 * This is a file-backed mapping, and is about to be memory mapped - invoke its 113 * mmap hook and safely handle error conditions. On error, VMA hooks will be 114 * mutated. 115 * 116 * @file: File which backs the mapping. 117 * @vma: VMA which we are mapping. 118 * 119 * Returns: 0 if success, error otherwise. 120 */ 121static inline int mmap_file(struct file *file, struct vm_area_struct *vma) 122{ 123 int err = call_mmap(file, vma); 124 125 if (likely(!err)) 126 return 0; 127 128 /* 129 * OK, we tried to call the file hook for mmap(), but an error 130 * arose. The mapping is in an inconsistent state and we most not invoke 131 * any further hooks on it. 132 */ 133 vma->vm_ops = &vma_dummy_vm_ops; 134 135 return err; 136} 137 138/* 139 * If the VMA has a close hook then close it, and since closing it might leave 140 * it in an inconsistent state which makes the use of any hooks suspect, clear 141 * them down by installing dummy empty hooks. 142 */ 143static inline void vma_close(struct vm_area_struct *vma) 144{ 145 if (vma->vm_ops && vma->vm_ops->close) { 146 vma->vm_ops->close(vma); 147 148 /* 149 * The mapping is in an inconsistent state, and no further hooks 150 * may be invoked upon it. 151 */ 152 vma->vm_ops = &vma_dummy_vm_ops; 153 } 154} 155 156#ifdef CONFIG_MMU 157 158/* Flags for folio_pte_batch(). */ 159typedef int __bitwise fpb_t; 160 161/* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */ 162#define FPB_IGNORE_DIRTY ((__force fpb_t)BIT(0)) 163 164/* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */ 165#define FPB_IGNORE_SOFT_DIRTY ((__force fpb_t)BIT(1)) 166 167static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags) 168{ 169 if (flags & FPB_IGNORE_DIRTY) 170 pte = pte_mkclean(pte); 171 if (likely(flags & FPB_IGNORE_SOFT_DIRTY)) 172 pte = pte_clear_soft_dirty(pte); 173 return pte_wrprotect(pte_mkold(pte)); 174} 175 176/** 177 * folio_pte_batch - detect a PTE batch for a large folio 178 * @folio: The large folio to detect a PTE batch for. 179 * @addr: The user virtual address the first page is mapped at. 180 * @start_ptep: Page table pointer for the first entry. 181 * @pte: Page table entry for the first page. 182 * @max_nr: The maximum number of table entries to consider. 183 * @flags: Flags to modify the PTE batch semantics. 184 * @any_writable: Optional pointer to indicate whether any entry except the 185 * first one is writable. 186 * @any_young: Optional pointer to indicate whether any entry except the 187 * first one is young. 188 * @any_dirty: Optional pointer to indicate whether any entry except the 189 * first one is dirty. 190 * 191 * Detect a PTE batch: consecutive (present) PTEs that map consecutive 192 * pages of the same large folio. 193 * 194 * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN, 195 * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and 196 * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY). 197 * 198 * start_ptep must map any page of the folio. max_nr must be at least one and 199 * must be limited by the caller so scanning cannot exceed a single page table. 200 * 201 * Return: the number of table entries in the batch. 202 */ 203static inline int folio_pte_batch(struct folio *folio, unsigned long addr, 204 pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags, 205 bool *any_writable, bool *any_young, bool *any_dirty) 206{ 207 unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio); 208 const pte_t *end_ptep = start_ptep + max_nr; 209 pte_t expected_pte, *ptep; 210 bool writable, young, dirty; 211 int nr; 212 213 if (any_writable) 214 *any_writable = false; 215 if (any_young) 216 *any_young = false; 217 if (any_dirty) 218 *any_dirty = false; 219 220 VM_WARN_ON_FOLIO(!pte_present(pte), folio); 221 VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio); 222 VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio); 223 224 nr = pte_batch_hint(start_ptep, pte); 225 expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags); 226 ptep = start_ptep + nr; 227 228 while (ptep < end_ptep) { 229 pte = ptep_get(ptep); 230 if (any_writable) 231 writable = !!pte_write(pte); 232 if (any_young) 233 young = !!pte_young(pte); 234 if (any_dirty) 235 dirty = !!pte_dirty(pte); 236 pte = __pte_batch_clear_ignored(pte, flags); 237 238 if (!pte_same(pte, expected_pte)) 239 break; 240 241 /* 242 * Stop immediately once we reached the end of the folio. In 243 * corner cases the next PFN might fall into a different 244 * folio. 245 */ 246 if (pte_pfn(pte) >= folio_end_pfn) 247 break; 248 249 if (any_writable) 250 *any_writable |= writable; 251 if (any_young) 252 *any_young |= young; 253 if (any_dirty) 254 *any_dirty |= dirty; 255 256 nr = pte_batch_hint(ptep, pte); 257 expected_pte = pte_advance_pfn(expected_pte, nr); 258 ptep += nr; 259 } 260 261 return min(ptep - start_ptep, max_nr); 262} 263 264/** 265 * pte_move_swp_offset - Move the swap entry offset field of a swap pte 266 * forward or backward by delta 267 * @pte: The initial pte state; is_swap_pte(pte) must be true and 268 * non_swap_entry() must be false. 269 * @delta: The direction and the offset we are moving; forward if delta 270 * is positive; backward if delta is negative 271 * 272 * Moves the swap offset, while maintaining all other fields, including 273 * swap type, and any swp pte bits. The resulting pte is returned. 274 */ 275static inline pte_t pte_move_swp_offset(pte_t pte, long delta) 276{ 277 swp_entry_t entry = pte_to_swp_entry(pte); 278 pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry), 279 (swp_offset(entry) + delta))); 280 281 if (pte_swp_soft_dirty(pte)) 282 new = pte_swp_mksoft_dirty(new); 283 if (pte_swp_exclusive(pte)) 284 new = pte_swp_mkexclusive(new); 285 if (pte_swp_uffd_wp(pte)) 286 new = pte_swp_mkuffd_wp(new); 287 288 return new; 289} 290 291 292/** 293 * pte_next_swp_offset - Increment the swap entry offset field of a swap pte. 294 * @pte: The initial pte state; is_swap_pte(pte) must be true and 295 * non_swap_entry() must be false. 296 * 297 * Increments the swap offset, while maintaining all other fields, including 298 * swap type, and any swp pte bits. The resulting pte is returned. 299 */ 300static inline pte_t pte_next_swp_offset(pte_t pte) 301{ 302 return pte_move_swp_offset(pte, 1); 303} 304 305/** 306 * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries 307 * @start_ptep: Page table pointer for the first entry. 308 * @max_nr: The maximum number of table entries to consider. 309 * @pte: Page table entry for the first entry. 310 * 311 * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs 312 * containing swap entries all with consecutive offsets and targeting the same 313 * swap type, all with matching swp pte bits. 314 * 315 * max_nr must be at least one and must be limited by the caller so scanning 316 * cannot exceed a single page table. 317 * 318 * Return: the number of table entries in the batch. 319 */ 320static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte) 321{ 322 pte_t expected_pte = pte_next_swp_offset(pte); 323 const pte_t *end_ptep = start_ptep + max_nr; 324 swp_entry_t entry = pte_to_swp_entry(pte); 325 pte_t *ptep = start_ptep + 1; 326 unsigned short cgroup_id; 327 328 VM_WARN_ON(max_nr < 1); 329 VM_WARN_ON(!is_swap_pte(pte)); 330 VM_WARN_ON(non_swap_entry(entry)); 331 332 cgroup_id = lookup_swap_cgroup_id(entry); 333 while (ptep < end_ptep) { 334 pte = ptep_get(ptep); 335 336 if (!pte_same(pte, expected_pte)) 337 break; 338 if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id) 339 break; 340 expected_pte = pte_next_swp_offset(expected_pte); 341 ptep++; 342 } 343 344 return ptep - start_ptep; 345} 346#endif /* CONFIG_MMU */ 347 348void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 349 int nr_throttled); 350static inline void acct_reclaim_writeback(struct folio *folio) 351{ 352 pg_data_t *pgdat = folio_pgdat(folio); 353 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 354 355 if (nr_throttled) 356 __acct_reclaim_writeback(pgdat, folio, nr_throttled); 357} 358 359static inline void wake_throttle_isolated(pg_data_t *pgdat) 360{ 361 wait_queue_head_t *wqh; 362 363 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 364 if (waitqueue_active(wqh)) 365 wake_up(wqh); 366} 367 368vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf); 369static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf) 370{ 371 vm_fault_t ret = __vmf_anon_prepare(vmf); 372 373 if (unlikely(ret & VM_FAULT_RETRY)) 374 vma_end_read(vmf->vma); 375 return ret; 376} 377 378vm_fault_t do_swap_page(struct vm_fault *vmf); 379void folio_rotate_reclaimable(struct folio *folio); 380bool __folio_end_writeback(struct folio *folio); 381void deactivate_file_folio(struct folio *folio); 382void folio_activate(struct folio *folio); 383 384void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 385 struct vm_area_struct *start_vma, unsigned long floor, 386 unsigned long ceiling, bool mm_wr_locked); 387void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 388 389struct zap_details; 390void unmap_page_range(struct mmu_gather *tlb, 391 struct vm_area_struct *vma, 392 unsigned long addr, unsigned long end, 393 struct zap_details *details); 394 395void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, 396 unsigned int order); 397void force_page_cache_ra(struct readahead_control *, unsigned long nr); 398static inline void force_page_cache_readahead(struct address_space *mapping, 399 struct file *file, pgoff_t index, unsigned long nr_to_read) 400{ 401 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 402 force_page_cache_ra(&ractl, nr_to_read); 403} 404 405unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 406 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 407unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 408 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 409void filemap_free_folio(struct address_space *mapping, struct folio *folio); 410int truncate_inode_folio(struct address_space *mapping, struct folio *folio); 411bool truncate_inode_partial_folio(struct folio *folio, loff_t start, 412 loff_t end); 413long mapping_evict_folio(struct address_space *mapping, struct folio *folio); 414unsigned long mapping_try_invalidate(struct address_space *mapping, 415 pgoff_t start, pgoff_t end, unsigned long *nr_failed); 416 417/** 418 * folio_evictable - Test whether a folio is evictable. 419 * @folio: The folio to test. 420 * 421 * Test whether @folio is evictable -- i.e., should be placed on 422 * active/inactive lists vs unevictable list. 423 * 424 * Reasons folio might not be evictable: 425 * 1. folio's mapping marked unevictable 426 * 2. One of the pages in the folio is part of an mlocked VMA 427 */ 428static inline bool folio_evictable(struct folio *folio) 429{ 430 bool ret; 431 432 /* Prevent address_space of inode and swap cache from being freed */ 433 rcu_read_lock(); 434 ret = !mapping_unevictable(folio_mapping(folio)) && 435 !folio_test_mlocked(folio); 436 rcu_read_unlock(); 437 return ret; 438} 439 440/* 441 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 442 * a count of one. 443 */ 444static inline void set_page_refcounted(struct page *page) 445{ 446 VM_BUG_ON_PAGE(PageTail(page), page); 447 VM_BUG_ON_PAGE(page_ref_count(page), page); 448 set_page_count(page, 1); 449} 450 451/* 452 * Return true if a folio needs ->release_folio() calling upon it. 453 */ 454static inline bool folio_needs_release(struct folio *folio) 455{ 456 struct address_space *mapping = folio_mapping(folio); 457 458 return folio_has_private(folio) || 459 (mapping && mapping_release_always(mapping)); 460} 461 462extern unsigned long highest_memmap_pfn; 463 464/* 465 * Maximum number of reclaim retries without progress before the OOM 466 * killer is consider the only way forward. 467 */ 468#define MAX_RECLAIM_RETRIES 16 469 470/* 471 * in mm/vmscan.c: 472 */ 473bool folio_isolate_lru(struct folio *folio); 474void folio_putback_lru(struct folio *folio); 475extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 476 477/* 478 * in mm/rmap.c: 479 */ 480pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 481 482/* 483 * in mm/page_alloc.c 484 */ 485#define K(x) ((x) << (PAGE_SHIFT-10)) 486 487extern char * const zone_names[MAX_NR_ZONES]; 488 489/* perform sanity checks on struct pages being allocated or freed */ 490DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 491 492extern int min_free_kbytes; 493 494void setup_per_zone_wmarks(void); 495void calculate_min_free_kbytes(void); 496int __meminit init_per_zone_wmark_min(void); 497void page_alloc_sysctl_init(void); 498 499/* 500 * Structure for holding the mostly immutable allocation parameters passed 501 * between functions involved in allocations, including the alloc_pages* 502 * family of functions. 503 * 504 * nodemask, migratetype and highest_zoneidx are initialized only once in 505 * __alloc_pages() and then never change. 506 * 507 * zonelist, preferred_zone and highest_zoneidx are set first in 508 * __alloc_pages() for the fast path, and might be later changed 509 * in __alloc_pages_slowpath(). All other functions pass the whole structure 510 * by a const pointer. 511 */ 512struct alloc_context { 513 struct zonelist *zonelist; 514 nodemask_t *nodemask; 515 struct zoneref *preferred_zoneref; 516 int migratetype; 517 518 /* 519 * highest_zoneidx represents highest usable zone index of 520 * the allocation request. Due to the nature of the zone, 521 * memory on lower zone than the highest_zoneidx will be 522 * protected by lowmem_reserve[highest_zoneidx]. 523 * 524 * highest_zoneidx is also used by reclaim/compaction to limit 525 * the target zone since higher zone than this index cannot be 526 * usable for this allocation request. 527 */ 528 enum zone_type highest_zoneidx; 529 bool spread_dirty_pages; 530}; 531 532/* 533 * This function returns the order of a free page in the buddy system. In 534 * general, page_zone(page)->lock must be held by the caller to prevent the 535 * page from being allocated in parallel and returning garbage as the order. 536 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 537 * page cannot be allocated or merged in parallel. Alternatively, it must 538 * handle invalid values gracefully, and use buddy_order_unsafe() below. 539 */ 540static inline unsigned int buddy_order(struct page *page) 541{ 542 /* PageBuddy() must be checked by the caller */ 543 return page_private(page); 544} 545 546/* 547 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 548 * PageBuddy() should be checked first by the caller to minimize race window, 549 * and invalid values must be handled gracefully. 550 * 551 * READ_ONCE is used so that if the caller assigns the result into a local 552 * variable and e.g. tests it for valid range before using, the compiler cannot 553 * decide to remove the variable and inline the page_private(page) multiple 554 * times, potentially observing different values in the tests and the actual 555 * use of the result. 556 */ 557#define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 558 559/* 560 * This function checks whether a page is free && is the buddy 561 * we can coalesce a page and its buddy if 562 * (a) the buddy is not in a hole (check before calling!) && 563 * (b) the buddy is in the buddy system && 564 * (c) a page and its buddy have the same order && 565 * (d) a page and its buddy are in the same zone. 566 * 567 * For recording whether a page is in the buddy system, we set PageBuddy. 568 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 569 * 570 * For recording page's order, we use page_private(page). 571 */ 572static inline bool page_is_buddy(struct page *page, struct page *buddy, 573 unsigned int order) 574{ 575 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 576 return false; 577 578 if (buddy_order(buddy) != order) 579 return false; 580 581 /* 582 * zone check is done late to avoid uselessly calculating 583 * zone/node ids for pages that could never merge. 584 */ 585 if (page_zone_id(page) != page_zone_id(buddy)) 586 return false; 587 588 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 589 590 return true; 591} 592 593/* 594 * Locate the struct page for both the matching buddy in our 595 * pair (buddy1) and the combined O(n+1) page they form (page). 596 * 597 * 1) Any buddy B1 will have an order O twin B2 which satisfies 598 * the following equation: 599 * B2 = B1 ^ (1 << O) 600 * For example, if the starting buddy (buddy2) is #8 its order 601 * 1 buddy is #10: 602 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 603 * 604 * 2) Any buddy B will have an order O+1 parent P which 605 * satisfies the following equation: 606 * P = B & ~(1 << O) 607 * 608 * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER 609 */ 610static inline unsigned long 611__find_buddy_pfn(unsigned long page_pfn, unsigned int order) 612{ 613 return page_pfn ^ (1 << order); 614} 615 616/* 617 * Find the buddy of @page and validate it. 618 * @page: The input page 619 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the 620 * function is used in the performance-critical __free_one_page(). 621 * @order: The order of the page 622 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to 623 * page_to_pfn(). 624 * 625 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is 626 * not the same as @page. The validation is necessary before use it. 627 * 628 * Return: the found buddy page or NULL if not found. 629 */ 630static inline struct page *find_buddy_page_pfn(struct page *page, 631 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) 632{ 633 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order); 634 struct page *buddy; 635 636 buddy = page + (__buddy_pfn - pfn); 637 if (buddy_pfn) 638 *buddy_pfn = __buddy_pfn; 639 640 if (page_is_buddy(page, buddy, order)) 641 return buddy; 642 return NULL; 643} 644 645extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 646 unsigned long end_pfn, struct zone *zone); 647 648static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 649 unsigned long end_pfn, struct zone *zone) 650{ 651 if (zone->contiguous) 652 return pfn_to_page(start_pfn); 653 654 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 655} 656 657void set_zone_contiguous(struct zone *zone); 658 659static inline void clear_zone_contiguous(struct zone *zone) 660{ 661 zone->contiguous = false; 662} 663 664extern int __isolate_free_page(struct page *page, unsigned int order); 665extern void __putback_isolated_page(struct page *page, unsigned int order, 666 int mt); 667extern void memblock_free_pages(struct page *page, unsigned long pfn, 668 unsigned int order); 669extern void __free_pages_core(struct page *page, unsigned int order, 670 enum meminit_context context); 671 672/* 673 * This will have no effect, other than possibly generating a warning, if the 674 * caller passes in a non-large folio. 675 */ 676static inline void folio_set_order(struct folio *folio, unsigned int order) 677{ 678 if (WARN_ON_ONCE(!order || !folio_test_large(folio))) 679 return; 680 681 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order; 682#ifdef CONFIG_64BIT 683 folio->_folio_nr_pages = 1U << order; 684#endif 685} 686 687bool __folio_unqueue_deferred_split(struct folio *folio); 688static inline bool folio_unqueue_deferred_split(struct folio *folio) 689{ 690 if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio)) 691 return false; 692 693 /* 694 * At this point, there is no one trying to add the folio to 695 * deferred_list. If folio is not in deferred_list, it's safe 696 * to check without acquiring the split_queue_lock. 697 */ 698 if (data_race(list_empty(&folio->_deferred_list))) 699 return false; 700 701 return __folio_unqueue_deferred_split(folio); 702} 703 704static inline struct folio *page_rmappable_folio(struct page *page) 705{ 706 struct folio *folio = (struct folio *)page; 707 708 if (folio && folio_test_large(folio)) 709 folio_set_large_rmappable(folio); 710 return folio; 711} 712 713static inline void prep_compound_head(struct page *page, unsigned int order) 714{ 715 struct folio *folio = (struct folio *)page; 716 717 folio_set_order(folio, order); 718 atomic_set(&folio->_large_mapcount, -1); 719 atomic_set(&folio->_entire_mapcount, -1); 720 atomic_set(&folio->_nr_pages_mapped, 0); 721 atomic_set(&folio->_pincount, 0); 722 if (order > 1) 723 INIT_LIST_HEAD(&folio->_deferred_list); 724} 725 726static inline void prep_compound_tail(struct page *head, int tail_idx) 727{ 728 struct page *p = head + tail_idx; 729 730 p->mapping = TAIL_MAPPING; 731 set_compound_head(p, head); 732 set_page_private(p, 0); 733} 734 735extern void prep_compound_page(struct page *page, unsigned int order); 736 737extern void post_alloc_hook(struct page *page, unsigned int order, 738 gfp_t gfp_flags); 739extern bool free_pages_prepare(struct page *page, unsigned int order); 740 741extern int user_min_free_kbytes; 742 743void free_unref_page(struct page *page, unsigned int order); 744void free_unref_folios(struct folio_batch *fbatch); 745 746extern void zone_pcp_reset(struct zone *zone); 747extern void zone_pcp_disable(struct zone *zone); 748extern void zone_pcp_enable(struct zone *zone); 749extern void zone_pcp_init(struct zone *zone); 750 751extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 752 phys_addr_t min_addr, 753 int nid, bool exact_nid); 754 755void memmap_init_range(unsigned long, int, unsigned long, unsigned long, 756 unsigned long, enum meminit_context, struct vmem_altmap *, int); 757 758#if defined CONFIG_COMPACTION || defined CONFIG_CMA 759 760/* 761 * in mm/compaction.c 762 */ 763/* 764 * compact_control is used to track pages being migrated and the free pages 765 * they are being migrated to during memory compaction. The free_pfn starts 766 * at the end of a zone and migrate_pfn begins at the start. Movable pages 767 * are moved to the end of a zone during a compaction run and the run 768 * completes when free_pfn <= migrate_pfn 769 */ 770struct compact_control { 771 struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */ 772 struct list_head migratepages; /* List of pages being migrated */ 773 unsigned int nr_freepages; /* Number of isolated free pages */ 774 unsigned int nr_migratepages; /* Number of pages to migrate */ 775 unsigned long free_pfn; /* isolate_freepages search base */ 776 /* 777 * Acts as an in/out parameter to page isolation for migration. 778 * isolate_migratepages uses it as a search base. 779 * isolate_migratepages_block will update the value to the next pfn 780 * after the last isolated one. 781 */ 782 unsigned long migrate_pfn; 783 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 784 struct zone *zone; 785 unsigned long total_migrate_scanned; 786 unsigned long total_free_scanned; 787 unsigned short fast_search_fail;/* failures to use free list searches */ 788 short search_order; /* order to start a fast search at */ 789 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 790 int order; /* order a direct compactor needs */ 791 int migratetype; /* migratetype of direct compactor */ 792 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 793 const int highest_zoneidx; /* zone index of a direct compactor */ 794 enum migrate_mode mode; /* Async or sync migration mode */ 795 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 796 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 797 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 798 bool direct_compaction; /* False from kcompactd or /proc/... */ 799 bool proactive_compaction; /* kcompactd proactive compaction */ 800 bool whole_zone; /* Whole zone should/has been scanned */ 801 bool contended; /* Signal lock contention */ 802 bool finish_pageblock; /* Scan the remainder of a pageblock. Used 803 * when there are potentially transient 804 * isolation or migration failures to 805 * ensure forward progress. 806 */ 807 bool alloc_contig; /* alloc_contig_range allocation */ 808}; 809 810/* 811 * Used in direct compaction when a page should be taken from the freelists 812 * immediately when one is created during the free path. 813 */ 814struct capture_control { 815 struct compact_control *cc; 816 struct page *page; 817}; 818 819unsigned long 820isolate_freepages_range(struct compact_control *cc, 821 unsigned long start_pfn, unsigned long end_pfn); 822int 823isolate_migratepages_range(struct compact_control *cc, 824 unsigned long low_pfn, unsigned long end_pfn); 825 826int __alloc_contig_migrate_range(struct compact_control *cc, 827 unsigned long start, unsigned long end, 828 int migratetype); 829 830/* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 831void init_cma_reserved_pageblock(struct page *page); 832 833#endif /* CONFIG_COMPACTION || CONFIG_CMA */ 834 835int find_suitable_fallback(struct free_area *area, unsigned int order, 836 int migratetype, bool only_stealable, bool *can_steal); 837 838static inline bool free_area_empty(struct free_area *area, int migratetype) 839{ 840 return list_empty(&area->free_list[migratetype]); 841} 842 843/* mm/util.c */ 844struct anon_vma *folio_anon_vma(struct folio *folio); 845 846#ifdef CONFIG_MMU 847void unmap_mapping_folio(struct folio *folio); 848extern long populate_vma_page_range(struct vm_area_struct *vma, 849 unsigned long start, unsigned long end, int *locked); 850extern long faultin_page_range(struct mm_struct *mm, unsigned long start, 851 unsigned long end, bool write, int *locked); 852extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 853 unsigned long bytes); 854 855/* 856 * NOTE: This function can't tell whether the folio is "fully mapped" in the 857 * range. 858 * "fully mapped" means all the pages of folio is associated with the page 859 * table of range while this function just check whether the folio range is 860 * within the range [start, end). Function caller needs to do page table 861 * check if it cares about the page table association. 862 * 863 * Typical usage (like mlock or madvise) is: 864 * Caller knows at least 1 page of folio is associated with page table of VMA 865 * and the range [start, end) is intersect with the VMA range. Caller wants 866 * to know whether the folio is fully associated with the range. It calls 867 * this function to check whether the folio is in the range first. Then checks 868 * the page table to know whether the folio is fully mapped to the range. 869 */ 870static inline bool 871folio_within_range(struct folio *folio, struct vm_area_struct *vma, 872 unsigned long start, unsigned long end) 873{ 874 pgoff_t pgoff, addr; 875 unsigned long vma_pglen = vma_pages(vma); 876 877 VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio); 878 if (start > end) 879 return false; 880 881 if (start < vma->vm_start) 882 start = vma->vm_start; 883 884 if (end > vma->vm_end) 885 end = vma->vm_end; 886 887 pgoff = folio_pgoff(folio); 888 889 /* if folio start address is not in vma range */ 890 if (!in_range(pgoff, vma->vm_pgoff, vma_pglen)) 891 return false; 892 893 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 894 895 return !(addr < start || end - addr < folio_size(folio)); 896} 897 898static inline bool 899folio_within_vma(struct folio *folio, struct vm_area_struct *vma) 900{ 901 return folio_within_range(folio, vma, vma->vm_start, vma->vm_end); 902} 903 904/* 905 * mlock_vma_folio() and munlock_vma_folio(): 906 * should be called with vma's mmap_lock held for read or write, 907 * under page table lock for the pte/pmd being added or removed. 908 * 909 * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at 910 * the end of folio_remove_rmap_*(); but new anon folios are managed by 911 * folio_add_lru_vma() calling mlock_new_folio(). 912 */ 913void mlock_folio(struct folio *folio); 914static inline void mlock_vma_folio(struct folio *folio, 915 struct vm_area_struct *vma) 916{ 917 /* 918 * The VM_SPECIAL check here serves two purposes. 919 * 1) VM_IO check prevents migration from double-counting during mlock. 920 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED 921 * is never left set on a VM_SPECIAL vma, there is an interval while 922 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may 923 * still be set while VM_SPECIAL bits are added: so ignore it then. 924 */ 925 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED)) 926 mlock_folio(folio); 927} 928 929void munlock_folio(struct folio *folio); 930static inline void munlock_vma_folio(struct folio *folio, 931 struct vm_area_struct *vma) 932{ 933 /* 934 * munlock if the function is called. Ideally, we should only 935 * do munlock if any page of folio is unmapped from VMA and 936 * cause folio not fully mapped to VMA. 937 * 938 * But it's not easy to confirm that's the situation. So we 939 * always munlock the folio and page reclaim will correct it 940 * if it's wrong. 941 */ 942 if (unlikely(vma->vm_flags & VM_LOCKED)) 943 munlock_folio(folio); 944} 945 946void mlock_new_folio(struct folio *folio); 947bool need_mlock_drain(int cpu); 948void mlock_drain_local(void); 949void mlock_drain_remote(int cpu); 950 951extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 952 953/** 954 * vma_address - Find the virtual address a page range is mapped at 955 * @vma: The vma which maps this object. 956 * @pgoff: The page offset within its object. 957 * @nr_pages: The number of pages to consider. 958 * 959 * If any page in this range is mapped by this VMA, return the first address 960 * where any of these pages appear. Otherwise, return -EFAULT. 961 */ 962static inline unsigned long vma_address(struct vm_area_struct *vma, 963 pgoff_t pgoff, unsigned long nr_pages) 964{ 965 unsigned long address; 966 967 if (pgoff >= vma->vm_pgoff) { 968 address = vma->vm_start + 969 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 970 /* Check for address beyond vma (or wrapped through 0?) */ 971 if (address < vma->vm_start || address >= vma->vm_end) 972 address = -EFAULT; 973 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { 974 /* Test above avoids possibility of wrap to 0 on 32-bit */ 975 address = vma->vm_start; 976 } else { 977 address = -EFAULT; 978 } 979 return address; 980} 981 982/* 983 * Then at what user virtual address will none of the range be found in vma? 984 * Assumes that vma_address() already returned a good starting address. 985 */ 986static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) 987{ 988 struct vm_area_struct *vma = pvmw->vma; 989 pgoff_t pgoff; 990 unsigned long address; 991 992 /* Common case, plus ->pgoff is invalid for KSM */ 993 if (pvmw->nr_pages == 1) 994 return pvmw->address + PAGE_SIZE; 995 996 pgoff = pvmw->pgoff + pvmw->nr_pages; 997 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 998 /* Check for address beyond vma (or wrapped through 0?) */ 999 if (address < vma->vm_start || address > vma->vm_end) 1000 address = vma->vm_end; 1001 return address; 1002} 1003 1004static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 1005 struct file *fpin) 1006{ 1007 int flags = vmf->flags; 1008 1009 if (fpin) 1010 return fpin; 1011 1012 /* 1013 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 1014 * anything, so we only pin the file and drop the mmap_lock if only 1015 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 1016 */ 1017 if (fault_flag_allow_retry_first(flags) && 1018 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 1019 fpin = get_file(vmf->vma->vm_file); 1020 release_fault_lock(vmf); 1021 } 1022 return fpin; 1023} 1024#else /* !CONFIG_MMU */ 1025static inline void unmap_mapping_folio(struct folio *folio) { } 1026static inline void mlock_new_folio(struct folio *folio) { } 1027static inline bool need_mlock_drain(int cpu) { return false; } 1028static inline void mlock_drain_local(void) { } 1029static inline void mlock_drain_remote(int cpu) { } 1030static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 1031{ 1032} 1033#endif /* !CONFIG_MMU */ 1034 1035/* Memory initialisation debug and verification */ 1036#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1037DECLARE_STATIC_KEY_TRUE(deferred_pages); 1038 1039bool __init deferred_grow_zone(struct zone *zone, unsigned int order); 1040#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1041 1042enum mminit_level { 1043 MMINIT_WARNING, 1044 MMINIT_VERIFY, 1045 MMINIT_TRACE 1046}; 1047 1048#ifdef CONFIG_DEBUG_MEMORY_INIT 1049 1050extern int mminit_loglevel; 1051 1052#define mminit_dprintk(level, prefix, fmt, arg...) \ 1053do { \ 1054 if (level < mminit_loglevel) { \ 1055 if (level <= MMINIT_WARNING) \ 1056 pr_warn("mminit::" prefix " " fmt, ##arg); \ 1057 else \ 1058 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 1059 } \ 1060} while (0) 1061 1062extern void mminit_verify_pageflags_layout(void); 1063extern void mminit_verify_zonelist(void); 1064#else 1065 1066static inline void mminit_dprintk(enum mminit_level level, 1067 const char *prefix, const char *fmt, ...) 1068{ 1069} 1070 1071static inline void mminit_verify_pageflags_layout(void) 1072{ 1073} 1074 1075static inline void mminit_verify_zonelist(void) 1076{ 1077} 1078#endif /* CONFIG_DEBUG_MEMORY_INIT */ 1079 1080#define NODE_RECLAIM_NOSCAN -2 1081#define NODE_RECLAIM_FULL -1 1082#define NODE_RECLAIM_SOME 0 1083#define NODE_RECLAIM_SUCCESS 1 1084 1085#ifdef CONFIG_NUMA 1086extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 1087extern int find_next_best_node(int node, nodemask_t *used_node_mask); 1088#else 1089static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 1090 unsigned int order) 1091{ 1092 return NODE_RECLAIM_NOSCAN; 1093} 1094static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 1095{ 1096 return NUMA_NO_NODE; 1097} 1098#endif 1099 1100/* 1101 * mm/memory-failure.c 1102 */ 1103#ifdef CONFIG_MEMORY_FAILURE 1104void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu); 1105void shake_folio(struct folio *folio); 1106extern int hwpoison_filter(struct page *p); 1107 1108extern u32 hwpoison_filter_dev_major; 1109extern u32 hwpoison_filter_dev_minor; 1110extern u64 hwpoison_filter_flags_mask; 1111extern u64 hwpoison_filter_flags_value; 1112extern u64 hwpoison_filter_memcg; 1113extern u32 hwpoison_filter_enable; 1114#define MAGIC_HWPOISON 0x48575053U /* HWPS */ 1115void SetPageHWPoisonTakenOff(struct page *page); 1116void ClearPageHWPoisonTakenOff(struct page *page); 1117bool take_page_off_buddy(struct page *page); 1118bool put_page_back_buddy(struct page *page); 1119struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 1120void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 1121 struct vm_area_struct *vma, struct list_head *to_kill, 1122 unsigned long ksm_addr); 1123unsigned long page_mapped_in_vma(struct page *page, struct vm_area_struct *vma); 1124 1125#else 1126static inline void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu) 1127{ 1128} 1129#endif 1130 1131extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 1132 unsigned long, unsigned long, 1133 unsigned long, unsigned long); 1134 1135extern void set_pageblock_order(void); 1136struct folio *alloc_migrate_folio(struct folio *src, unsigned long private); 1137unsigned long reclaim_pages(struct list_head *folio_list); 1138unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1139 struct list_head *folio_list); 1140/* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1141#define ALLOC_WMARK_MIN WMARK_MIN 1142#define ALLOC_WMARK_LOW WMARK_LOW 1143#define ALLOC_WMARK_HIGH WMARK_HIGH 1144#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1145 1146/* Mask to get the watermark bits */ 1147#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1148 1149/* 1150 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 1151 * cannot assume a reduced access to memory reserves is sufficient for 1152 * !MMU 1153 */ 1154#ifdef CONFIG_MMU 1155#define ALLOC_OOM 0x08 1156#else 1157#define ALLOC_OOM ALLOC_NO_WATERMARKS 1158#endif 1159 1160#define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access 1161 * to 25% of the min watermark or 1162 * 62.5% if __GFP_HIGH is set. 1163 */ 1164#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50% 1165 * of the min watermark. 1166 */ 1167#define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1168#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 1169#ifdef CONFIG_ZONE_DMA32 1170#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 1171#else 1172#define ALLOC_NOFRAGMENT 0x0 1173#endif 1174#define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */ 1175#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 1176 1177/* Flags that allow allocations below the min watermark. */ 1178#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM) 1179 1180enum ttu_flags; 1181struct tlbflush_unmap_batch; 1182 1183 1184/* 1185 * only for MM internal work items which do not depend on 1186 * any allocations or locks which might depend on allocations 1187 */ 1188extern struct workqueue_struct *mm_percpu_wq; 1189 1190#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1191void try_to_unmap_flush(void); 1192void try_to_unmap_flush_dirty(void); 1193void flush_tlb_batched_pending(struct mm_struct *mm); 1194#else 1195static inline void try_to_unmap_flush(void) 1196{ 1197} 1198static inline void try_to_unmap_flush_dirty(void) 1199{ 1200} 1201static inline void flush_tlb_batched_pending(struct mm_struct *mm) 1202{ 1203} 1204#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 1205 1206extern const struct trace_print_flags pageflag_names[]; 1207extern const struct trace_print_flags vmaflag_names[]; 1208extern const struct trace_print_flags gfpflag_names[]; 1209 1210static inline bool is_migrate_highatomic(enum migratetype migratetype) 1211{ 1212 return migratetype == MIGRATE_HIGHATOMIC; 1213} 1214 1215void setup_zone_pageset(struct zone *zone); 1216 1217struct migration_target_control { 1218 int nid; /* preferred node id */ 1219 nodemask_t *nmask; 1220 gfp_t gfp_mask; 1221 enum migrate_reason reason; 1222}; 1223 1224/* 1225 * mm/filemap.c 1226 */ 1227size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 1228 struct folio *folio, loff_t fpos, size_t size); 1229 1230/* 1231 * mm/vmalloc.c 1232 */ 1233#ifdef CONFIG_MMU 1234void __init vmalloc_init(void); 1235int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 1236 pgprot_t prot, struct page **pages, unsigned int page_shift); 1237#else 1238static inline void vmalloc_init(void) 1239{ 1240} 1241 1242static inline 1243int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 1244 pgprot_t prot, struct page **pages, unsigned int page_shift) 1245{ 1246 return -EINVAL; 1247} 1248#endif 1249 1250int __must_check __vmap_pages_range_noflush(unsigned long addr, 1251 unsigned long end, pgprot_t prot, 1252 struct page **pages, unsigned int page_shift); 1253 1254void vunmap_range_noflush(unsigned long start, unsigned long end); 1255 1256void __vunmap_range_noflush(unsigned long start, unsigned long end); 1257 1258int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 1259 unsigned long addr, int *flags, bool writable, 1260 int *last_cpupid); 1261 1262void free_zone_device_folio(struct folio *folio); 1263int migrate_device_coherent_folio(struct folio *folio); 1264 1265/* 1266 * mm/gup.c 1267 */ 1268int __must_check try_grab_folio(struct folio *folio, int refs, 1269 unsigned int flags); 1270 1271/* 1272 * mm/huge_memory.c 1273 */ 1274void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1275 pud_t *pud, bool write); 1276void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1277 pmd_t *pmd, bool write); 1278 1279enum { 1280 /* mark page accessed */ 1281 FOLL_TOUCH = 1 << 16, 1282 /* a retry, previous pass started an IO */ 1283 FOLL_TRIED = 1 << 17, 1284 /* we are working on non-current tsk/mm */ 1285 FOLL_REMOTE = 1 << 18, 1286 /* pages must be released via unpin_user_page */ 1287 FOLL_PIN = 1 << 19, 1288 /* gup_fast: prevent fall-back to slow gup */ 1289 FOLL_FAST_ONLY = 1 << 20, 1290 /* allow unlocking the mmap lock */ 1291 FOLL_UNLOCKABLE = 1 << 21, 1292 /* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */ 1293 FOLL_MADV_POPULATE = 1 << 22, 1294}; 1295 1296#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \ 1297 FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \ 1298 FOLL_MADV_POPULATE) 1299 1300/* 1301 * Indicates for which pages that are write-protected in the page table, 1302 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 1303 * GUP pin will remain consistent with the pages mapped into the page tables 1304 * of the MM. 1305 * 1306 * Temporary unmapping of PageAnonExclusive() pages or clearing of 1307 * PageAnonExclusive() has to protect against concurrent GUP: 1308 * * Ordinary GUP: Using the PT lock 1309 * * GUP-fast and fork(): mm->write_protect_seq 1310 * * GUP-fast and KSM or temporary unmapping (swap, migration): see 1311 * folio_try_share_anon_rmap_*() 1312 * 1313 * Must be called with the (sub)page that's actually referenced via the 1314 * page table entry, which might not necessarily be the head page for a 1315 * PTE-mapped THP. 1316 * 1317 * If the vma is NULL, we're coming from the GUP-fast path and might have 1318 * to fallback to the slow path just to lookup the vma. 1319 */ 1320static inline bool gup_must_unshare(struct vm_area_struct *vma, 1321 unsigned int flags, struct page *page) 1322{ 1323 /* 1324 * FOLL_WRITE is implicitly handled correctly as the page table entry 1325 * has to be writable -- and if it references (part of) an anonymous 1326 * folio, that part is required to be marked exclusive. 1327 */ 1328 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 1329 return false; 1330 /* 1331 * Note: PageAnon(page) is stable until the page is actually getting 1332 * freed. 1333 */ 1334 if (!PageAnon(page)) { 1335 /* 1336 * We only care about R/O long-term pining: R/O short-term 1337 * pinning does not have the semantics to observe successive 1338 * changes through the process page tables. 1339 */ 1340 if (!(flags & FOLL_LONGTERM)) 1341 return false; 1342 1343 /* We really need the vma ... */ 1344 if (!vma) 1345 return true; 1346 1347 /* 1348 * ... because we only care about writable private ("COW") 1349 * mappings where we have to break COW early. 1350 */ 1351 return is_cow_mapping(vma->vm_flags); 1352 } 1353 1354 /* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */ 1355 if (IS_ENABLED(CONFIG_HAVE_GUP_FAST)) 1356 smp_rmb(); 1357 1358 /* 1359 * Note that PageKsm() pages cannot be exclusive, and consequently, 1360 * cannot get pinned. 1361 */ 1362 return !PageAnonExclusive(page); 1363} 1364 1365extern bool mirrored_kernelcore; 1366extern bool memblock_has_mirror(void); 1367 1368static __always_inline void vma_set_range(struct vm_area_struct *vma, 1369 unsigned long start, unsigned long end, 1370 pgoff_t pgoff) 1371{ 1372 vma->vm_start = start; 1373 vma->vm_end = end; 1374 vma->vm_pgoff = pgoff; 1375} 1376 1377static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) 1378{ 1379 /* 1380 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty 1381 * enablements, because when without soft-dirty being compiled in, 1382 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) 1383 * will be constantly true. 1384 */ 1385 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) 1386 return false; 1387 1388 /* 1389 * Soft-dirty is kind of special: its tracking is enabled when the 1390 * vma flags not set. 1391 */ 1392 return !(vma->vm_flags & VM_SOFTDIRTY); 1393} 1394 1395static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd) 1396{ 1397 return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd); 1398} 1399 1400static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte) 1401{ 1402 return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte); 1403} 1404 1405void __meminit __init_single_page(struct page *page, unsigned long pfn, 1406 unsigned long zone, int nid); 1407 1408/* shrinker related functions */ 1409unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, 1410 int priority); 1411 1412#ifdef CONFIG_64BIT 1413static inline int can_do_mseal(unsigned long flags) 1414{ 1415 if (flags) 1416 return -EINVAL; 1417 1418 return 0; 1419} 1420 1421#else 1422static inline int can_do_mseal(unsigned long flags) 1423{ 1424 return -EPERM; 1425} 1426#endif 1427 1428#ifdef CONFIG_SHRINKER_DEBUG 1429static inline __printf(2, 0) int shrinker_debugfs_name_alloc( 1430 struct shrinker *shrinker, const char *fmt, va_list ap) 1431{ 1432 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 1433 1434 return shrinker->name ? 0 : -ENOMEM; 1435} 1436 1437static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) 1438{ 1439 kfree_const(shrinker->name); 1440 shrinker->name = NULL; 1441} 1442 1443extern int shrinker_debugfs_add(struct shrinker *shrinker); 1444extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, 1445 int *debugfs_id); 1446extern void shrinker_debugfs_remove(struct dentry *debugfs_entry, 1447 int debugfs_id); 1448#else /* CONFIG_SHRINKER_DEBUG */ 1449static inline int shrinker_debugfs_add(struct shrinker *shrinker) 1450{ 1451 return 0; 1452} 1453static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker, 1454 const char *fmt, va_list ap) 1455{ 1456 return 0; 1457} 1458static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) 1459{ 1460} 1461static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, 1462 int *debugfs_id) 1463{ 1464 *debugfs_id = -1; 1465 return NULL; 1466} 1467static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry, 1468 int debugfs_id) 1469{ 1470} 1471#endif /* CONFIG_SHRINKER_DEBUG */ 1472 1473/* Only track the nodes of mappings with shadow entries */ 1474void workingset_update_node(struct xa_node *node); 1475extern struct list_lru shadow_nodes; 1476 1477/* mremap.c */ 1478unsigned long move_page_tables(struct vm_area_struct *vma, 1479 unsigned long old_addr, struct vm_area_struct *new_vma, 1480 unsigned long new_addr, unsigned long len, 1481 bool need_rmap_locks, bool for_stack); 1482 1483#ifdef CONFIG_UNACCEPTED_MEMORY 1484void accept_page(struct page *page); 1485#else /* CONFIG_UNACCEPTED_MEMORY */ 1486static inline void accept_page(struct page *page) 1487{ 1488} 1489#endif /* CONFIG_UNACCEPTED_MEMORY */ 1490 1491#endif /* __MM_INTERNAL_H */