Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7#ifndef __MM_INTERNAL_H
8#define __MM_INTERNAL_H
9
10#include <linux/fs.h>
11#include <linux/khugepaged.h>
12#include <linux/mm.h>
13#include <linux/mm_inline.h>
14#include <linux/pagemap.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
17#include <linux/swapops.h>
18#include <linux/swap_cgroup.h>
19#include <linux/tracepoint-defs.h>
20
21/* Internal core VMA manipulation functions. */
22#include "vma.h"
23
24struct folio_batch;
25
26/*
27 * The set of flags that only affect watermark checking and reclaim
28 * behaviour. This is used by the MM to obey the caller constraints
29 * about IO, FS and watermark checking while ignoring placement
30 * hints such as HIGHMEM usage.
31 */
32#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
33 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
34 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
35 __GFP_NOLOCKDEP)
36
37/* The GFP flags allowed during early boot */
38#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
39
40/* Control allocation cpuset and node placement constraints */
41#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
42
43/* Do not use these with a slab allocator */
44#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
45
46/*
47 * Different from WARN_ON_ONCE(), no warning will be issued
48 * when we specify __GFP_NOWARN.
49 */
50#define WARN_ON_ONCE_GFP(cond, gfp) ({ \
51 static bool __section(".data.once") __warned; \
52 int __ret_warn_once = !!(cond); \
53 \
54 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
55 __warned = true; \
56 WARN_ON(1); \
57 } \
58 unlikely(__ret_warn_once); \
59})
60
61void page_writeback_init(void);
62
63/*
64 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
65 * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
66 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
67 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
68 */
69#define ENTIRELY_MAPPED 0x800000
70#define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1)
71
72/*
73 * Flags passed to __show_mem() and show_free_areas() to suppress output in
74 * various contexts.
75 */
76#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
77
78/*
79 * How many individual pages have an elevated _mapcount. Excludes
80 * the folio's entire_mapcount.
81 *
82 * Don't use this function outside of debugging code.
83 */
84static inline int folio_nr_pages_mapped(const struct folio *folio)
85{
86 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
87}
88
89/*
90 * Retrieve the first entry of a folio based on a provided entry within the
91 * folio. We cannot rely on folio->swap as there is no guarantee that it has
92 * been initialized. Used for calling arch_swap_restore()
93 */
94static inline swp_entry_t folio_swap(swp_entry_t entry,
95 const struct folio *folio)
96{
97 swp_entry_t swap = {
98 .val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
99 };
100
101 return swap;
102}
103
104static inline void *folio_raw_mapping(const struct folio *folio)
105{
106 unsigned long mapping = (unsigned long)folio->mapping;
107
108 return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
109}
110
111/*
112 * This is a file-backed mapping, and is about to be memory mapped - invoke its
113 * mmap hook and safely handle error conditions. On error, VMA hooks will be
114 * mutated.
115 *
116 * @file: File which backs the mapping.
117 * @vma: VMA which we are mapping.
118 *
119 * Returns: 0 if success, error otherwise.
120 */
121static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
122{
123 int err = call_mmap(file, vma);
124
125 if (likely(!err))
126 return 0;
127
128 /*
129 * OK, we tried to call the file hook for mmap(), but an error
130 * arose. The mapping is in an inconsistent state and we most not invoke
131 * any further hooks on it.
132 */
133 vma->vm_ops = &vma_dummy_vm_ops;
134
135 return err;
136}
137
138/*
139 * If the VMA has a close hook then close it, and since closing it might leave
140 * it in an inconsistent state which makes the use of any hooks suspect, clear
141 * them down by installing dummy empty hooks.
142 */
143static inline void vma_close(struct vm_area_struct *vma)
144{
145 if (vma->vm_ops && vma->vm_ops->close) {
146 vma->vm_ops->close(vma);
147
148 /*
149 * The mapping is in an inconsistent state, and no further hooks
150 * may be invoked upon it.
151 */
152 vma->vm_ops = &vma_dummy_vm_ops;
153 }
154}
155
156#ifdef CONFIG_MMU
157
158/* Flags for folio_pte_batch(). */
159typedef int __bitwise fpb_t;
160
161/* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
162#define FPB_IGNORE_DIRTY ((__force fpb_t)BIT(0))
163
164/* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
165#define FPB_IGNORE_SOFT_DIRTY ((__force fpb_t)BIT(1))
166
167static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
168{
169 if (flags & FPB_IGNORE_DIRTY)
170 pte = pte_mkclean(pte);
171 if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
172 pte = pte_clear_soft_dirty(pte);
173 return pte_wrprotect(pte_mkold(pte));
174}
175
176/**
177 * folio_pte_batch - detect a PTE batch for a large folio
178 * @folio: The large folio to detect a PTE batch for.
179 * @addr: The user virtual address the first page is mapped at.
180 * @start_ptep: Page table pointer for the first entry.
181 * @pte: Page table entry for the first page.
182 * @max_nr: The maximum number of table entries to consider.
183 * @flags: Flags to modify the PTE batch semantics.
184 * @any_writable: Optional pointer to indicate whether any entry except the
185 * first one is writable.
186 * @any_young: Optional pointer to indicate whether any entry except the
187 * first one is young.
188 * @any_dirty: Optional pointer to indicate whether any entry except the
189 * first one is dirty.
190 *
191 * Detect a PTE batch: consecutive (present) PTEs that map consecutive
192 * pages of the same large folio.
193 *
194 * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
195 * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
196 * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
197 *
198 * start_ptep must map any page of the folio. max_nr must be at least one and
199 * must be limited by the caller so scanning cannot exceed a single page table.
200 *
201 * Return: the number of table entries in the batch.
202 */
203static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
204 pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
205 bool *any_writable, bool *any_young, bool *any_dirty)
206{
207 unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
208 const pte_t *end_ptep = start_ptep + max_nr;
209 pte_t expected_pte, *ptep;
210 bool writable, young, dirty;
211 int nr;
212
213 if (any_writable)
214 *any_writable = false;
215 if (any_young)
216 *any_young = false;
217 if (any_dirty)
218 *any_dirty = false;
219
220 VM_WARN_ON_FOLIO(!pte_present(pte), folio);
221 VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
222 VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
223
224 nr = pte_batch_hint(start_ptep, pte);
225 expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
226 ptep = start_ptep + nr;
227
228 while (ptep < end_ptep) {
229 pte = ptep_get(ptep);
230 if (any_writable)
231 writable = !!pte_write(pte);
232 if (any_young)
233 young = !!pte_young(pte);
234 if (any_dirty)
235 dirty = !!pte_dirty(pte);
236 pte = __pte_batch_clear_ignored(pte, flags);
237
238 if (!pte_same(pte, expected_pte))
239 break;
240
241 /*
242 * Stop immediately once we reached the end of the folio. In
243 * corner cases the next PFN might fall into a different
244 * folio.
245 */
246 if (pte_pfn(pte) >= folio_end_pfn)
247 break;
248
249 if (any_writable)
250 *any_writable |= writable;
251 if (any_young)
252 *any_young |= young;
253 if (any_dirty)
254 *any_dirty |= dirty;
255
256 nr = pte_batch_hint(ptep, pte);
257 expected_pte = pte_advance_pfn(expected_pte, nr);
258 ptep += nr;
259 }
260
261 return min(ptep - start_ptep, max_nr);
262}
263
264/**
265 * pte_move_swp_offset - Move the swap entry offset field of a swap pte
266 * forward or backward by delta
267 * @pte: The initial pte state; is_swap_pte(pte) must be true and
268 * non_swap_entry() must be false.
269 * @delta: The direction and the offset we are moving; forward if delta
270 * is positive; backward if delta is negative
271 *
272 * Moves the swap offset, while maintaining all other fields, including
273 * swap type, and any swp pte bits. The resulting pte is returned.
274 */
275static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
276{
277 swp_entry_t entry = pte_to_swp_entry(pte);
278 pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
279 (swp_offset(entry) + delta)));
280
281 if (pte_swp_soft_dirty(pte))
282 new = pte_swp_mksoft_dirty(new);
283 if (pte_swp_exclusive(pte))
284 new = pte_swp_mkexclusive(new);
285 if (pte_swp_uffd_wp(pte))
286 new = pte_swp_mkuffd_wp(new);
287
288 return new;
289}
290
291
292/**
293 * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
294 * @pte: The initial pte state; is_swap_pte(pte) must be true and
295 * non_swap_entry() must be false.
296 *
297 * Increments the swap offset, while maintaining all other fields, including
298 * swap type, and any swp pte bits. The resulting pte is returned.
299 */
300static inline pte_t pte_next_swp_offset(pte_t pte)
301{
302 return pte_move_swp_offset(pte, 1);
303}
304
305/**
306 * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
307 * @start_ptep: Page table pointer for the first entry.
308 * @max_nr: The maximum number of table entries to consider.
309 * @pte: Page table entry for the first entry.
310 *
311 * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
312 * containing swap entries all with consecutive offsets and targeting the same
313 * swap type, all with matching swp pte bits.
314 *
315 * max_nr must be at least one and must be limited by the caller so scanning
316 * cannot exceed a single page table.
317 *
318 * Return: the number of table entries in the batch.
319 */
320static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
321{
322 pte_t expected_pte = pte_next_swp_offset(pte);
323 const pte_t *end_ptep = start_ptep + max_nr;
324 swp_entry_t entry = pte_to_swp_entry(pte);
325 pte_t *ptep = start_ptep + 1;
326 unsigned short cgroup_id;
327
328 VM_WARN_ON(max_nr < 1);
329 VM_WARN_ON(!is_swap_pte(pte));
330 VM_WARN_ON(non_swap_entry(entry));
331
332 cgroup_id = lookup_swap_cgroup_id(entry);
333 while (ptep < end_ptep) {
334 pte = ptep_get(ptep);
335
336 if (!pte_same(pte, expected_pte))
337 break;
338 if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id)
339 break;
340 expected_pte = pte_next_swp_offset(expected_pte);
341 ptep++;
342 }
343
344 return ptep - start_ptep;
345}
346#endif /* CONFIG_MMU */
347
348void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
349 int nr_throttled);
350static inline void acct_reclaim_writeback(struct folio *folio)
351{
352 pg_data_t *pgdat = folio_pgdat(folio);
353 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
354
355 if (nr_throttled)
356 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
357}
358
359static inline void wake_throttle_isolated(pg_data_t *pgdat)
360{
361 wait_queue_head_t *wqh;
362
363 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
364 if (waitqueue_active(wqh))
365 wake_up(wqh);
366}
367
368vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
369static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
370{
371 vm_fault_t ret = __vmf_anon_prepare(vmf);
372
373 if (unlikely(ret & VM_FAULT_RETRY))
374 vma_end_read(vmf->vma);
375 return ret;
376}
377
378vm_fault_t do_swap_page(struct vm_fault *vmf);
379void folio_rotate_reclaimable(struct folio *folio);
380bool __folio_end_writeback(struct folio *folio);
381void deactivate_file_folio(struct folio *folio);
382void folio_activate(struct folio *folio);
383
384void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
385 struct vm_area_struct *start_vma, unsigned long floor,
386 unsigned long ceiling, bool mm_wr_locked);
387void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
388
389struct zap_details;
390void unmap_page_range(struct mmu_gather *tlb,
391 struct vm_area_struct *vma,
392 unsigned long addr, unsigned long end,
393 struct zap_details *details);
394
395void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
396 unsigned int order);
397void force_page_cache_ra(struct readahead_control *, unsigned long nr);
398static inline void force_page_cache_readahead(struct address_space *mapping,
399 struct file *file, pgoff_t index, unsigned long nr_to_read)
400{
401 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
402 force_page_cache_ra(&ractl, nr_to_read);
403}
404
405unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
406 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
407unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
408 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
409void filemap_free_folio(struct address_space *mapping, struct folio *folio);
410int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
411bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
412 loff_t end);
413long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
414unsigned long mapping_try_invalidate(struct address_space *mapping,
415 pgoff_t start, pgoff_t end, unsigned long *nr_failed);
416
417/**
418 * folio_evictable - Test whether a folio is evictable.
419 * @folio: The folio to test.
420 *
421 * Test whether @folio is evictable -- i.e., should be placed on
422 * active/inactive lists vs unevictable list.
423 *
424 * Reasons folio might not be evictable:
425 * 1. folio's mapping marked unevictable
426 * 2. One of the pages in the folio is part of an mlocked VMA
427 */
428static inline bool folio_evictable(struct folio *folio)
429{
430 bool ret;
431
432 /* Prevent address_space of inode and swap cache from being freed */
433 rcu_read_lock();
434 ret = !mapping_unevictable(folio_mapping(folio)) &&
435 !folio_test_mlocked(folio);
436 rcu_read_unlock();
437 return ret;
438}
439
440/*
441 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
442 * a count of one.
443 */
444static inline void set_page_refcounted(struct page *page)
445{
446 VM_BUG_ON_PAGE(PageTail(page), page);
447 VM_BUG_ON_PAGE(page_ref_count(page), page);
448 set_page_count(page, 1);
449}
450
451/*
452 * Return true if a folio needs ->release_folio() calling upon it.
453 */
454static inline bool folio_needs_release(struct folio *folio)
455{
456 struct address_space *mapping = folio_mapping(folio);
457
458 return folio_has_private(folio) ||
459 (mapping && mapping_release_always(mapping));
460}
461
462extern unsigned long highest_memmap_pfn;
463
464/*
465 * Maximum number of reclaim retries without progress before the OOM
466 * killer is consider the only way forward.
467 */
468#define MAX_RECLAIM_RETRIES 16
469
470/*
471 * in mm/vmscan.c:
472 */
473bool folio_isolate_lru(struct folio *folio);
474void folio_putback_lru(struct folio *folio);
475extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
476
477/*
478 * in mm/rmap.c:
479 */
480pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
481
482/*
483 * in mm/page_alloc.c
484 */
485#define K(x) ((x) << (PAGE_SHIFT-10))
486
487extern char * const zone_names[MAX_NR_ZONES];
488
489/* perform sanity checks on struct pages being allocated or freed */
490DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
491
492extern int min_free_kbytes;
493
494void setup_per_zone_wmarks(void);
495void calculate_min_free_kbytes(void);
496int __meminit init_per_zone_wmark_min(void);
497void page_alloc_sysctl_init(void);
498
499/*
500 * Structure for holding the mostly immutable allocation parameters passed
501 * between functions involved in allocations, including the alloc_pages*
502 * family of functions.
503 *
504 * nodemask, migratetype and highest_zoneidx are initialized only once in
505 * __alloc_pages() and then never change.
506 *
507 * zonelist, preferred_zone and highest_zoneidx are set first in
508 * __alloc_pages() for the fast path, and might be later changed
509 * in __alloc_pages_slowpath(). All other functions pass the whole structure
510 * by a const pointer.
511 */
512struct alloc_context {
513 struct zonelist *zonelist;
514 nodemask_t *nodemask;
515 struct zoneref *preferred_zoneref;
516 int migratetype;
517
518 /*
519 * highest_zoneidx represents highest usable zone index of
520 * the allocation request. Due to the nature of the zone,
521 * memory on lower zone than the highest_zoneidx will be
522 * protected by lowmem_reserve[highest_zoneidx].
523 *
524 * highest_zoneidx is also used by reclaim/compaction to limit
525 * the target zone since higher zone than this index cannot be
526 * usable for this allocation request.
527 */
528 enum zone_type highest_zoneidx;
529 bool spread_dirty_pages;
530};
531
532/*
533 * This function returns the order of a free page in the buddy system. In
534 * general, page_zone(page)->lock must be held by the caller to prevent the
535 * page from being allocated in parallel and returning garbage as the order.
536 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
537 * page cannot be allocated or merged in parallel. Alternatively, it must
538 * handle invalid values gracefully, and use buddy_order_unsafe() below.
539 */
540static inline unsigned int buddy_order(struct page *page)
541{
542 /* PageBuddy() must be checked by the caller */
543 return page_private(page);
544}
545
546/*
547 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
548 * PageBuddy() should be checked first by the caller to minimize race window,
549 * and invalid values must be handled gracefully.
550 *
551 * READ_ONCE is used so that if the caller assigns the result into a local
552 * variable and e.g. tests it for valid range before using, the compiler cannot
553 * decide to remove the variable and inline the page_private(page) multiple
554 * times, potentially observing different values in the tests and the actual
555 * use of the result.
556 */
557#define buddy_order_unsafe(page) READ_ONCE(page_private(page))
558
559/*
560 * This function checks whether a page is free && is the buddy
561 * we can coalesce a page and its buddy if
562 * (a) the buddy is not in a hole (check before calling!) &&
563 * (b) the buddy is in the buddy system &&
564 * (c) a page and its buddy have the same order &&
565 * (d) a page and its buddy are in the same zone.
566 *
567 * For recording whether a page is in the buddy system, we set PageBuddy.
568 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
569 *
570 * For recording page's order, we use page_private(page).
571 */
572static inline bool page_is_buddy(struct page *page, struct page *buddy,
573 unsigned int order)
574{
575 if (!page_is_guard(buddy) && !PageBuddy(buddy))
576 return false;
577
578 if (buddy_order(buddy) != order)
579 return false;
580
581 /*
582 * zone check is done late to avoid uselessly calculating
583 * zone/node ids for pages that could never merge.
584 */
585 if (page_zone_id(page) != page_zone_id(buddy))
586 return false;
587
588 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
589
590 return true;
591}
592
593/*
594 * Locate the struct page for both the matching buddy in our
595 * pair (buddy1) and the combined O(n+1) page they form (page).
596 *
597 * 1) Any buddy B1 will have an order O twin B2 which satisfies
598 * the following equation:
599 * B2 = B1 ^ (1 << O)
600 * For example, if the starting buddy (buddy2) is #8 its order
601 * 1 buddy is #10:
602 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
603 *
604 * 2) Any buddy B will have an order O+1 parent P which
605 * satisfies the following equation:
606 * P = B & ~(1 << O)
607 *
608 * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
609 */
610static inline unsigned long
611__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
612{
613 return page_pfn ^ (1 << order);
614}
615
616/*
617 * Find the buddy of @page and validate it.
618 * @page: The input page
619 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
620 * function is used in the performance-critical __free_one_page().
621 * @order: The order of the page
622 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
623 * page_to_pfn().
624 *
625 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
626 * not the same as @page. The validation is necessary before use it.
627 *
628 * Return: the found buddy page or NULL if not found.
629 */
630static inline struct page *find_buddy_page_pfn(struct page *page,
631 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
632{
633 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
634 struct page *buddy;
635
636 buddy = page + (__buddy_pfn - pfn);
637 if (buddy_pfn)
638 *buddy_pfn = __buddy_pfn;
639
640 if (page_is_buddy(page, buddy, order))
641 return buddy;
642 return NULL;
643}
644
645extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
646 unsigned long end_pfn, struct zone *zone);
647
648static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
649 unsigned long end_pfn, struct zone *zone)
650{
651 if (zone->contiguous)
652 return pfn_to_page(start_pfn);
653
654 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
655}
656
657void set_zone_contiguous(struct zone *zone);
658
659static inline void clear_zone_contiguous(struct zone *zone)
660{
661 zone->contiguous = false;
662}
663
664extern int __isolate_free_page(struct page *page, unsigned int order);
665extern void __putback_isolated_page(struct page *page, unsigned int order,
666 int mt);
667extern void memblock_free_pages(struct page *page, unsigned long pfn,
668 unsigned int order);
669extern void __free_pages_core(struct page *page, unsigned int order,
670 enum meminit_context context);
671
672/*
673 * This will have no effect, other than possibly generating a warning, if the
674 * caller passes in a non-large folio.
675 */
676static inline void folio_set_order(struct folio *folio, unsigned int order)
677{
678 if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
679 return;
680
681 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
682#ifdef CONFIG_64BIT
683 folio->_folio_nr_pages = 1U << order;
684#endif
685}
686
687bool __folio_unqueue_deferred_split(struct folio *folio);
688static inline bool folio_unqueue_deferred_split(struct folio *folio)
689{
690 if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
691 return false;
692
693 /*
694 * At this point, there is no one trying to add the folio to
695 * deferred_list. If folio is not in deferred_list, it's safe
696 * to check without acquiring the split_queue_lock.
697 */
698 if (data_race(list_empty(&folio->_deferred_list)))
699 return false;
700
701 return __folio_unqueue_deferred_split(folio);
702}
703
704static inline struct folio *page_rmappable_folio(struct page *page)
705{
706 struct folio *folio = (struct folio *)page;
707
708 if (folio && folio_test_large(folio))
709 folio_set_large_rmappable(folio);
710 return folio;
711}
712
713static inline void prep_compound_head(struct page *page, unsigned int order)
714{
715 struct folio *folio = (struct folio *)page;
716
717 folio_set_order(folio, order);
718 atomic_set(&folio->_large_mapcount, -1);
719 atomic_set(&folio->_entire_mapcount, -1);
720 atomic_set(&folio->_nr_pages_mapped, 0);
721 atomic_set(&folio->_pincount, 0);
722 if (order > 1)
723 INIT_LIST_HEAD(&folio->_deferred_list);
724}
725
726static inline void prep_compound_tail(struct page *head, int tail_idx)
727{
728 struct page *p = head + tail_idx;
729
730 p->mapping = TAIL_MAPPING;
731 set_compound_head(p, head);
732 set_page_private(p, 0);
733}
734
735extern void prep_compound_page(struct page *page, unsigned int order);
736
737extern void post_alloc_hook(struct page *page, unsigned int order,
738 gfp_t gfp_flags);
739extern bool free_pages_prepare(struct page *page, unsigned int order);
740
741extern int user_min_free_kbytes;
742
743void free_unref_page(struct page *page, unsigned int order);
744void free_unref_folios(struct folio_batch *fbatch);
745
746extern void zone_pcp_reset(struct zone *zone);
747extern void zone_pcp_disable(struct zone *zone);
748extern void zone_pcp_enable(struct zone *zone);
749extern void zone_pcp_init(struct zone *zone);
750
751extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
752 phys_addr_t min_addr,
753 int nid, bool exact_nid);
754
755void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
756 unsigned long, enum meminit_context, struct vmem_altmap *, int);
757
758#if defined CONFIG_COMPACTION || defined CONFIG_CMA
759
760/*
761 * in mm/compaction.c
762 */
763/*
764 * compact_control is used to track pages being migrated and the free pages
765 * they are being migrated to during memory compaction. The free_pfn starts
766 * at the end of a zone and migrate_pfn begins at the start. Movable pages
767 * are moved to the end of a zone during a compaction run and the run
768 * completes when free_pfn <= migrate_pfn
769 */
770struct compact_control {
771 struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */
772 struct list_head migratepages; /* List of pages being migrated */
773 unsigned int nr_freepages; /* Number of isolated free pages */
774 unsigned int nr_migratepages; /* Number of pages to migrate */
775 unsigned long free_pfn; /* isolate_freepages search base */
776 /*
777 * Acts as an in/out parameter to page isolation for migration.
778 * isolate_migratepages uses it as a search base.
779 * isolate_migratepages_block will update the value to the next pfn
780 * after the last isolated one.
781 */
782 unsigned long migrate_pfn;
783 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
784 struct zone *zone;
785 unsigned long total_migrate_scanned;
786 unsigned long total_free_scanned;
787 unsigned short fast_search_fail;/* failures to use free list searches */
788 short search_order; /* order to start a fast search at */
789 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
790 int order; /* order a direct compactor needs */
791 int migratetype; /* migratetype of direct compactor */
792 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
793 const int highest_zoneidx; /* zone index of a direct compactor */
794 enum migrate_mode mode; /* Async or sync migration mode */
795 bool ignore_skip_hint; /* Scan blocks even if marked skip */
796 bool no_set_skip_hint; /* Don't mark blocks for skipping */
797 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
798 bool direct_compaction; /* False from kcompactd or /proc/... */
799 bool proactive_compaction; /* kcompactd proactive compaction */
800 bool whole_zone; /* Whole zone should/has been scanned */
801 bool contended; /* Signal lock contention */
802 bool finish_pageblock; /* Scan the remainder of a pageblock. Used
803 * when there are potentially transient
804 * isolation or migration failures to
805 * ensure forward progress.
806 */
807 bool alloc_contig; /* alloc_contig_range allocation */
808};
809
810/*
811 * Used in direct compaction when a page should be taken from the freelists
812 * immediately when one is created during the free path.
813 */
814struct capture_control {
815 struct compact_control *cc;
816 struct page *page;
817};
818
819unsigned long
820isolate_freepages_range(struct compact_control *cc,
821 unsigned long start_pfn, unsigned long end_pfn);
822int
823isolate_migratepages_range(struct compact_control *cc,
824 unsigned long low_pfn, unsigned long end_pfn);
825
826int __alloc_contig_migrate_range(struct compact_control *cc,
827 unsigned long start, unsigned long end,
828 int migratetype);
829
830/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
831void init_cma_reserved_pageblock(struct page *page);
832
833#endif /* CONFIG_COMPACTION || CONFIG_CMA */
834
835int find_suitable_fallback(struct free_area *area, unsigned int order,
836 int migratetype, bool only_stealable, bool *can_steal);
837
838static inline bool free_area_empty(struct free_area *area, int migratetype)
839{
840 return list_empty(&area->free_list[migratetype]);
841}
842
843/* mm/util.c */
844struct anon_vma *folio_anon_vma(struct folio *folio);
845
846#ifdef CONFIG_MMU
847void unmap_mapping_folio(struct folio *folio);
848extern long populate_vma_page_range(struct vm_area_struct *vma,
849 unsigned long start, unsigned long end, int *locked);
850extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
851 unsigned long end, bool write, int *locked);
852extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
853 unsigned long bytes);
854
855/*
856 * NOTE: This function can't tell whether the folio is "fully mapped" in the
857 * range.
858 * "fully mapped" means all the pages of folio is associated with the page
859 * table of range while this function just check whether the folio range is
860 * within the range [start, end). Function caller needs to do page table
861 * check if it cares about the page table association.
862 *
863 * Typical usage (like mlock or madvise) is:
864 * Caller knows at least 1 page of folio is associated with page table of VMA
865 * and the range [start, end) is intersect with the VMA range. Caller wants
866 * to know whether the folio is fully associated with the range. It calls
867 * this function to check whether the folio is in the range first. Then checks
868 * the page table to know whether the folio is fully mapped to the range.
869 */
870static inline bool
871folio_within_range(struct folio *folio, struct vm_area_struct *vma,
872 unsigned long start, unsigned long end)
873{
874 pgoff_t pgoff, addr;
875 unsigned long vma_pglen = vma_pages(vma);
876
877 VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
878 if (start > end)
879 return false;
880
881 if (start < vma->vm_start)
882 start = vma->vm_start;
883
884 if (end > vma->vm_end)
885 end = vma->vm_end;
886
887 pgoff = folio_pgoff(folio);
888
889 /* if folio start address is not in vma range */
890 if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
891 return false;
892
893 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
894
895 return !(addr < start || end - addr < folio_size(folio));
896}
897
898static inline bool
899folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
900{
901 return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
902}
903
904/*
905 * mlock_vma_folio() and munlock_vma_folio():
906 * should be called with vma's mmap_lock held for read or write,
907 * under page table lock for the pte/pmd being added or removed.
908 *
909 * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
910 * the end of folio_remove_rmap_*(); but new anon folios are managed by
911 * folio_add_lru_vma() calling mlock_new_folio().
912 */
913void mlock_folio(struct folio *folio);
914static inline void mlock_vma_folio(struct folio *folio,
915 struct vm_area_struct *vma)
916{
917 /*
918 * The VM_SPECIAL check here serves two purposes.
919 * 1) VM_IO check prevents migration from double-counting during mlock.
920 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
921 * is never left set on a VM_SPECIAL vma, there is an interval while
922 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
923 * still be set while VM_SPECIAL bits are added: so ignore it then.
924 */
925 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
926 mlock_folio(folio);
927}
928
929void munlock_folio(struct folio *folio);
930static inline void munlock_vma_folio(struct folio *folio,
931 struct vm_area_struct *vma)
932{
933 /*
934 * munlock if the function is called. Ideally, we should only
935 * do munlock if any page of folio is unmapped from VMA and
936 * cause folio not fully mapped to VMA.
937 *
938 * But it's not easy to confirm that's the situation. So we
939 * always munlock the folio and page reclaim will correct it
940 * if it's wrong.
941 */
942 if (unlikely(vma->vm_flags & VM_LOCKED))
943 munlock_folio(folio);
944}
945
946void mlock_new_folio(struct folio *folio);
947bool need_mlock_drain(int cpu);
948void mlock_drain_local(void);
949void mlock_drain_remote(int cpu);
950
951extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
952
953/**
954 * vma_address - Find the virtual address a page range is mapped at
955 * @vma: The vma which maps this object.
956 * @pgoff: The page offset within its object.
957 * @nr_pages: The number of pages to consider.
958 *
959 * If any page in this range is mapped by this VMA, return the first address
960 * where any of these pages appear. Otherwise, return -EFAULT.
961 */
962static inline unsigned long vma_address(struct vm_area_struct *vma,
963 pgoff_t pgoff, unsigned long nr_pages)
964{
965 unsigned long address;
966
967 if (pgoff >= vma->vm_pgoff) {
968 address = vma->vm_start +
969 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
970 /* Check for address beyond vma (or wrapped through 0?) */
971 if (address < vma->vm_start || address >= vma->vm_end)
972 address = -EFAULT;
973 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
974 /* Test above avoids possibility of wrap to 0 on 32-bit */
975 address = vma->vm_start;
976 } else {
977 address = -EFAULT;
978 }
979 return address;
980}
981
982/*
983 * Then at what user virtual address will none of the range be found in vma?
984 * Assumes that vma_address() already returned a good starting address.
985 */
986static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
987{
988 struct vm_area_struct *vma = pvmw->vma;
989 pgoff_t pgoff;
990 unsigned long address;
991
992 /* Common case, plus ->pgoff is invalid for KSM */
993 if (pvmw->nr_pages == 1)
994 return pvmw->address + PAGE_SIZE;
995
996 pgoff = pvmw->pgoff + pvmw->nr_pages;
997 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
998 /* Check for address beyond vma (or wrapped through 0?) */
999 if (address < vma->vm_start || address > vma->vm_end)
1000 address = vma->vm_end;
1001 return address;
1002}
1003
1004static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
1005 struct file *fpin)
1006{
1007 int flags = vmf->flags;
1008
1009 if (fpin)
1010 return fpin;
1011
1012 /*
1013 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
1014 * anything, so we only pin the file and drop the mmap_lock if only
1015 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
1016 */
1017 if (fault_flag_allow_retry_first(flags) &&
1018 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
1019 fpin = get_file(vmf->vma->vm_file);
1020 release_fault_lock(vmf);
1021 }
1022 return fpin;
1023}
1024#else /* !CONFIG_MMU */
1025static inline void unmap_mapping_folio(struct folio *folio) { }
1026static inline void mlock_new_folio(struct folio *folio) { }
1027static inline bool need_mlock_drain(int cpu) { return false; }
1028static inline void mlock_drain_local(void) { }
1029static inline void mlock_drain_remote(int cpu) { }
1030static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
1031{
1032}
1033#endif /* !CONFIG_MMU */
1034
1035/* Memory initialisation debug and verification */
1036#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1037DECLARE_STATIC_KEY_TRUE(deferred_pages);
1038
1039bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
1040#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1041
1042enum mminit_level {
1043 MMINIT_WARNING,
1044 MMINIT_VERIFY,
1045 MMINIT_TRACE
1046};
1047
1048#ifdef CONFIG_DEBUG_MEMORY_INIT
1049
1050extern int mminit_loglevel;
1051
1052#define mminit_dprintk(level, prefix, fmt, arg...) \
1053do { \
1054 if (level < mminit_loglevel) { \
1055 if (level <= MMINIT_WARNING) \
1056 pr_warn("mminit::" prefix " " fmt, ##arg); \
1057 else \
1058 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1059 } \
1060} while (0)
1061
1062extern void mminit_verify_pageflags_layout(void);
1063extern void mminit_verify_zonelist(void);
1064#else
1065
1066static inline void mminit_dprintk(enum mminit_level level,
1067 const char *prefix, const char *fmt, ...)
1068{
1069}
1070
1071static inline void mminit_verify_pageflags_layout(void)
1072{
1073}
1074
1075static inline void mminit_verify_zonelist(void)
1076{
1077}
1078#endif /* CONFIG_DEBUG_MEMORY_INIT */
1079
1080#define NODE_RECLAIM_NOSCAN -2
1081#define NODE_RECLAIM_FULL -1
1082#define NODE_RECLAIM_SOME 0
1083#define NODE_RECLAIM_SUCCESS 1
1084
1085#ifdef CONFIG_NUMA
1086extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1087extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1088#else
1089static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1090 unsigned int order)
1091{
1092 return NODE_RECLAIM_NOSCAN;
1093}
1094static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1095{
1096 return NUMA_NO_NODE;
1097}
1098#endif
1099
1100/*
1101 * mm/memory-failure.c
1102 */
1103#ifdef CONFIG_MEMORY_FAILURE
1104void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu);
1105void shake_folio(struct folio *folio);
1106extern int hwpoison_filter(struct page *p);
1107
1108extern u32 hwpoison_filter_dev_major;
1109extern u32 hwpoison_filter_dev_minor;
1110extern u64 hwpoison_filter_flags_mask;
1111extern u64 hwpoison_filter_flags_value;
1112extern u64 hwpoison_filter_memcg;
1113extern u32 hwpoison_filter_enable;
1114#define MAGIC_HWPOISON 0x48575053U /* HWPS */
1115void SetPageHWPoisonTakenOff(struct page *page);
1116void ClearPageHWPoisonTakenOff(struct page *page);
1117bool take_page_off_buddy(struct page *page);
1118bool put_page_back_buddy(struct page *page);
1119struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1120void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
1121 struct vm_area_struct *vma, struct list_head *to_kill,
1122 unsigned long ksm_addr);
1123unsigned long page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
1124
1125#else
1126static inline void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu)
1127{
1128}
1129#endif
1130
1131extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
1132 unsigned long, unsigned long,
1133 unsigned long, unsigned long);
1134
1135extern void set_pageblock_order(void);
1136struct folio *alloc_migrate_folio(struct folio *src, unsigned long private);
1137unsigned long reclaim_pages(struct list_head *folio_list);
1138unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1139 struct list_head *folio_list);
1140/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1141#define ALLOC_WMARK_MIN WMARK_MIN
1142#define ALLOC_WMARK_LOW WMARK_LOW
1143#define ALLOC_WMARK_HIGH WMARK_HIGH
1144#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1145
1146/* Mask to get the watermark bits */
1147#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1148
1149/*
1150 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1151 * cannot assume a reduced access to memory reserves is sufficient for
1152 * !MMU
1153 */
1154#ifdef CONFIG_MMU
1155#define ALLOC_OOM 0x08
1156#else
1157#define ALLOC_OOM ALLOC_NO_WATERMARKS
1158#endif
1159
1160#define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
1161 * to 25% of the min watermark or
1162 * 62.5% if __GFP_HIGH is set.
1163 */
1164#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
1165 * of the min watermark.
1166 */
1167#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1168#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
1169#ifdef CONFIG_ZONE_DMA32
1170#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
1171#else
1172#define ALLOC_NOFRAGMENT 0x0
1173#endif
1174#define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1175#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1176
1177/* Flags that allow allocations below the min watermark. */
1178#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1179
1180enum ttu_flags;
1181struct tlbflush_unmap_batch;
1182
1183
1184/*
1185 * only for MM internal work items which do not depend on
1186 * any allocations or locks which might depend on allocations
1187 */
1188extern struct workqueue_struct *mm_percpu_wq;
1189
1190#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1191void try_to_unmap_flush(void);
1192void try_to_unmap_flush_dirty(void);
1193void flush_tlb_batched_pending(struct mm_struct *mm);
1194#else
1195static inline void try_to_unmap_flush(void)
1196{
1197}
1198static inline void try_to_unmap_flush_dirty(void)
1199{
1200}
1201static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1202{
1203}
1204#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1205
1206extern const struct trace_print_flags pageflag_names[];
1207extern const struct trace_print_flags vmaflag_names[];
1208extern const struct trace_print_flags gfpflag_names[];
1209
1210static inline bool is_migrate_highatomic(enum migratetype migratetype)
1211{
1212 return migratetype == MIGRATE_HIGHATOMIC;
1213}
1214
1215void setup_zone_pageset(struct zone *zone);
1216
1217struct migration_target_control {
1218 int nid; /* preferred node id */
1219 nodemask_t *nmask;
1220 gfp_t gfp_mask;
1221 enum migrate_reason reason;
1222};
1223
1224/*
1225 * mm/filemap.c
1226 */
1227size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1228 struct folio *folio, loff_t fpos, size_t size);
1229
1230/*
1231 * mm/vmalloc.c
1232 */
1233#ifdef CONFIG_MMU
1234void __init vmalloc_init(void);
1235int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1236 pgprot_t prot, struct page **pages, unsigned int page_shift);
1237#else
1238static inline void vmalloc_init(void)
1239{
1240}
1241
1242static inline
1243int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1244 pgprot_t prot, struct page **pages, unsigned int page_shift)
1245{
1246 return -EINVAL;
1247}
1248#endif
1249
1250int __must_check __vmap_pages_range_noflush(unsigned long addr,
1251 unsigned long end, pgprot_t prot,
1252 struct page **pages, unsigned int page_shift);
1253
1254void vunmap_range_noflush(unsigned long start, unsigned long end);
1255
1256void __vunmap_range_noflush(unsigned long start, unsigned long end);
1257
1258int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1259 unsigned long addr, int *flags, bool writable,
1260 int *last_cpupid);
1261
1262void free_zone_device_folio(struct folio *folio);
1263int migrate_device_coherent_folio(struct folio *folio);
1264
1265/*
1266 * mm/gup.c
1267 */
1268int __must_check try_grab_folio(struct folio *folio, int refs,
1269 unsigned int flags);
1270
1271/*
1272 * mm/huge_memory.c
1273 */
1274void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1275 pud_t *pud, bool write);
1276void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1277 pmd_t *pmd, bool write);
1278
1279enum {
1280 /* mark page accessed */
1281 FOLL_TOUCH = 1 << 16,
1282 /* a retry, previous pass started an IO */
1283 FOLL_TRIED = 1 << 17,
1284 /* we are working on non-current tsk/mm */
1285 FOLL_REMOTE = 1 << 18,
1286 /* pages must be released via unpin_user_page */
1287 FOLL_PIN = 1 << 19,
1288 /* gup_fast: prevent fall-back to slow gup */
1289 FOLL_FAST_ONLY = 1 << 20,
1290 /* allow unlocking the mmap lock */
1291 FOLL_UNLOCKABLE = 1 << 21,
1292 /* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1293 FOLL_MADV_POPULATE = 1 << 22,
1294};
1295
1296#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1297 FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1298 FOLL_MADV_POPULATE)
1299
1300/*
1301 * Indicates for which pages that are write-protected in the page table,
1302 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1303 * GUP pin will remain consistent with the pages mapped into the page tables
1304 * of the MM.
1305 *
1306 * Temporary unmapping of PageAnonExclusive() pages or clearing of
1307 * PageAnonExclusive() has to protect against concurrent GUP:
1308 * * Ordinary GUP: Using the PT lock
1309 * * GUP-fast and fork(): mm->write_protect_seq
1310 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1311 * folio_try_share_anon_rmap_*()
1312 *
1313 * Must be called with the (sub)page that's actually referenced via the
1314 * page table entry, which might not necessarily be the head page for a
1315 * PTE-mapped THP.
1316 *
1317 * If the vma is NULL, we're coming from the GUP-fast path and might have
1318 * to fallback to the slow path just to lookup the vma.
1319 */
1320static inline bool gup_must_unshare(struct vm_area_struct *vma,
1321 unsigned int flags, struct page *page)
1322{
1323 /*
1324 * FOLL_WRITE is implicitly handled correctly as the page table entry
1325 * has to be writable -- and if it references (part of) an anonymous
1326 * folio, that part is required to be marked exclusive.
1327 */
1328 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1329 return false;
1330 /*
1331 * Note: PageAnon(page) is stable until the page is actually getting
1332 * freed.
1333 */
1334 if (!PageAnon(page)) {
1335 /*
1336 * We only care about R/O long-term pining: R/O short-term
1337 * pinning does not have the semantics to observe successive
1338 * changes through the process page tables.
1339 */
1340 if (!(flags & FOLL_LONGTERM))
1341 return false;
1342
1343 /* We really need the vma ... */
1344 if (!vma)
1345 return true;
1346
1347 /*
1348 * ... because we only care about writable private ("COW")
1349 * mappings where we have to break COW early.
1350 */
1351 return is_cow_mapping(vma->vm_flags);
1352 }
1353
1354 /* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1355 if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1356 smp_rmb();
1357
1358 /*
1359 * Note that PageKsm() pages cannot be exclusive, and consequently,
1360 * cannot get pinned.
1361 */
1362 return !PageAnonExclusive(page);
1363}
1364
1365extern bool mirrored_kernelcore;
1366extern bool memblock_has_mirror(void);
1367
1368static __always_inline void vma_set_range(struct vm_area_struct *vma,
1369 unsigned long start, unsigned long end,
1370 pgoff_t pgoff)
1371{
1372 vma->vm_start = start;
1373 vma->vm_end = end;
1374 vma->vm_pgoff = pgoff;
1375}
1376
1377static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1378{
1379 /*
1380 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1381 * enablements, because when without soft-dirty being compiled in,
1382 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1383 * will be constantly true.
1384 */
1385 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1386 return false;
1387
1388 /*
1389 * Soft-dirty is kind of special: its tracking is enabled when the
1390 * vma flags not set.
1391 */
1392 return !(vma->vm_flags & VM_SOFTDIRTY);
1393}
1394
1395static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1396{
1397 return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1398}
1399
1400static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1401{
1402 return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1403}
1404
1405void __meminit __init_single_page(struct page *page, unsigned long pfn,
1406 unsigned long zone, int nid);
1407
1408/* shrinker related functions */
1409unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1410 int priority);
1411
1412#ifdef CONFIG_64BIT
1413static inline int can_do_mseal(unsigned long flags)
1414{
1415 if (flags)
1416 return -EINVAL;
1417
1418 return 0;
1419}
1420
1421#else
1422static inline int can_do_mseal(unsigned long flags)
1423{
1424 return -EPERM;
1425}
1426#endif
1427
1428#ifdef CONFIG_SHRINKER_DEBUG
1429static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1430 struct shrinker *shrinker, const char *fmt, va_list ap)
1431{
1432 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1433
1434 return shrinker->name ? 0 : -ENOMEM;
1435}
1436
1437static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1438{
1439 kfree_const(shrinker->name);
1440 shrinker->name = NULL;
1441}
1442
1443extern int shrinker_debugfs_add(struct shrinker *shrinker);
1444extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1445 int *debugfs_id);
1446extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1447 int debugfs_id);
1448#else /* CONFIG_SHRINKER_DEBUG */
1449static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1450{
1451 return 0;
1452}
1453static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1454 const char *fmt, va_list ap)
1455{
1456 return 0;
1457}
1458static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1459{
1460}
1461static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1462 int *debugfs_id)
1463{
1464 *debugfs_id = -1;
1465 return NULL;
1466}
1467static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1468 int debugfs_id)
1469{
1470}
1471#endif /* CONFIG_SHRINKER_DEBUG */
1472
1473/* Only track the nodes of mappings with shadow entries */
1474void workingset_update_node(struct xa_node *node);
1475extern struct list_lru shadow_nodes;
1476
1477/* mremap.c */
1478unsigned long move_page_tables(struct vm_area_struct *vma,
1479 unsigned long old_addr, struct vm_area_struct *new_vma,
1480 unsigned long new_addr, unsigned long len,
1481 bool need_rmap_locks, bool for_stack);
1482
1483#ifdef CONFIG_UNACCEPTED_MEMORY
1484void accept_page(struct page *page);
1485#else /* CONFIG_UNACCEPTED_MEMORY */
1486static inline void accept_page(struct page *page)
1487{
1488}
1489#endif /* CONFIG_UNACCEPTED_MEMORY */
1490
1491#endif /* __MM_INTERNAL_H */