Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/sched/mm.h>
11#include <linux/sched/coredump.h>
12#include <linux/sched/numa_balancing.h>
13#include <linux/highmem.h>
14#include <linux/hugetlb.h>
15#include <linux/mmu_notifier.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
18#include <linux/shrinker.h>
19#include <linux/mm_inline.h>
20#include <linux/swapops.h>
21#include <linux/backing-dev.h>
22#include <linux/dax.h>
23#include <linux/mm_types.h>
24#include <linux/khugepaged.h>
25#include <linux/freezer.h>
26#include <linux/pfn_t.h>
27#include <linux/mman.h>
28#include <linux/memremap.h>
29#include <linux/pagemap.h>
30#include <linux/debugfs.h>
31#include <linux/migrate.h>
32#include <linux/hashtable.h>
33#include <linux/userfaultfd_k.h>
34#include <linux/page_idle.h>
35#include <linux/shmem_fs.h>
36#include <linux/oom.h>
37#include <linux/numa.h>
38#include <linux/page_owner.h>
39#include <linux/sched/sysctl.h>
40#include <linux/memory-tiers.h>
41#include <linux/compat.h>
42#include <linux/pgalloc_tag.h>
43#include <linux/pagewalk.h>
44
45#include <asm/tlb.h>
46#include <asm/pgalloc.h>
47#include "internal.h"
48#include "swap.h"
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/thp.h>
52
53/*
54 * By default, transparent hugepage support is disabled in order to avoid
55 * risking an increased memory footprint for applications that are not
56 * guaranteed to benefit from it. When transparent hugepage support is
57 * enabled, it is for all mappings, and khugepaged scans all mappings.
58 * Defrag is invoked by khugepaged hugepage allocations and by page faults
59 * for all hugepage allocations.
60 */
61unsigned long transparent_hugepage_flags __read_mostly =
62#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
63 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
64#endif
65#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
66 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
67#endif
68 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
69 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
70 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
71
72static struct shrinker *deferred_split_shrinker;
73static unsigned long deferred_split_count(struct shrinker *shrink,
74 struct shrink_control *sc);
75static unsigned long deferred_split_scan(struct shrinker *shrink,
76 struct shrink_control *sc);
77static bool split_underused_thp = true;
78
79static atomic_t huge_zero_refcount;
80struct folio *huge_zero_folio __read_mostly;
81unsigned long huge_zero_pfn __read_mostly = ~0UL;
82unsigned long huge_anon_orders_always __read_mostly;
83unsigned long huge_anon_orders_madvise __read_mostly;
84unsigned long huge_anon_orders_inherit __read_mostly;
85static bool anon_orders_configured __initdata;
86
87unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
88 unsigned long vm_flags,
89 unsigned long tva_flags,
90 unsigned long orders)
91{
92 bool smaps = tva_flags & TVA_SMAPS;
93 bool in_pf = tva_flags & TVA_IN_PF;
94 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
95 unsigned long supported_orders;
96
97 /* Check the intersection of requested and supported orders. */
98 if (vma_is_anonymous(vma))
99 supported_orders = THP_ORDERS_ALL_ANON;
100 else if (vma_is_special_huge(vma))
101 supported_orders = THP_ORDERS_ALL_SPECIAL;
102 else
103 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
104
105 orders &= supported_orders;
106 if (!orders)
107 return 0;
108
109 if (!vma->vm_mm) /* vdso */
110 return 0;
111
112 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags))
113 return 0;
114
115 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
116 if (vma_is_dax(vma))
117 return in_pf ? orders : 0;
118
119 /*
120 * khugepaged special VMA and hugetlb VMA.
121 * Must be checked after dax since some dax mappings may have
122 * VM_MIXEDMAP set.
123 */
124 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
125 return 0;
126
127 /*
128 * Check alignment for file vma and size for both file and anon vma by
129 * filtering out the unsuitable orders.
130 *
131 * Skip the check for page fault. Huge fault does the check in fault
132 * handlers.
133 */
134 if (!in_pf) {
135 int order = highest_order(orders);
136 unsigned long addr;
137
138 while (orders) {
139 addr = vma->vm_end - (PAGE_SIZE << order);
140 if (thp_vma_suitable_order(vma, addr, order))
141 break;
142 order = next_order(&orders, order);
143 }
144
145 if (!orders)
146 return 0;
147 }
148
149 /*
150 * Enabled via shmem mount options or sysfs settings.
151 * Must be done before hugepage flags check since shmem has its
152 * own flags.
153 */
154 if (!in_pf && shmem_file(vma->vm_file))
155 return shmem_allowable_huge_orders(file_inode(vma->vm_file),
156 vma, vma->vm_pgoff, 0,
157 !enforce_sysfs);
158
159 if (!vma_is_anonymous(vma)) {
160 /*
161 * Enforce sysfs THP requirements as necessary. Anonymous vmas
162 * were already handled in thp_vma_allowable_orders().
163 */
164 if (enforce_sysfs &&
165 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
166 !hugepage_global_always())))
167 return 0;
168
169 /*
170 * Trust that ->huge_fault() handlers know what they are doing
171 * in fault path.
172 */
173 if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
174 return orders;
175 /* Only regular file is valid in collapse path */
176 if (((!in_pf || smaps)) && file_thp_enabled(vma))
177 return orders;
178 return 0;
179 }
180
181 if (vma_is_temporary_stack(vma))
182 return 0;
183
184 /*
185 * THPeligible bit of smaps should show 1 for proper VMAs even
186 * though anon_vma is not initialized yet.
187 *
188 * Allow page fault since anon_vma may be not initialized until
189 * the first page fault.
190 */
191 if (!vma->anon_vma)
192 return (smaps || in_pf) ? orders : 0;
193
194 return orders;
195}
196
197static bool get_huge_zero_page(void)
198{
199 struct folio *zero_folio;
200retry:
201 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
202 return true;
203
204 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
205 HPAGE_PMD_ORDER);
206 if (!zero_folio) {
207 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
208 return false;
209 }
210 /* Ensure zero folio won't have large_rmappable flag set. */
211 folio_clear_large_rmappable(zero_folio);
212 preempt_disable();
213 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
214 preempt_enable();
215 folio_put(zero_folio);
216 goto retry;
217 }
218 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
219
220 /* We take additional reference here. It will be put back by shrinker */
221 atomic_set(&huge_zero_refcount, 2);
222 preempt_enable();
223 count_vm_event(THP_ZERO_PAGE_ALLOC);
224 return true;
225}
226
227static void put_huge_zero_page(void)
228{
229 /*
230 * Counter should never go to zero here. Only shrinker can put
231 * last reference.
232 */
233 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
234}
235
236struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
237{
238 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
239 return READ_ONCE(huge_zero_folio);
240
241 if (!get_huge_zero_page())
242 return NULL;
243
244 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
245 put_huge_zero_page();
246
247 return READ_ONCE(huge_zero_folio);
248}
249
250void mm_put_huge_zero_folio(struct mm_struct *mm)
251{
252 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
253 put_huge_zero_page();
254}
255
256static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
257 struct shrink_control *sc)
258{
259 /* we can free zero page only if last reference remains */
260 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
261}
262
263static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
264 struct shrink_control *sc)
265{
266 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
267 struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
268 BUG_ON(zero_folio == NULL);
269 WRITE_ONCE(huge_zero_pfn, ~0UL);
270 folio_put(zero_folio);
271 return HPAGE_PMD_NR;
272 }
273
274 return 0;
275}
276
277static struct shrinker *huge_zero_page_shrinker;
278
279#ifdef CONFIG_SYSFS
280static ssize_t enabled_show(struct kobject *kobj,
281 struct kobj_attribute *attr, char *buf)
282{
283 const char *output;
284
285 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
286 output = "[always] madvise never";
287 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
288 &transparent_hugepage_flags))
289 output = "always [madvise] never";
290 else
291 output = "always madvise [never]";
292
293 return sysfs_emit(buf, "%s\n", output);
294}
295
296static ssize_t enabled_store(struct kobject *kobj,
297 struct kobj_attribute *attr,
298 const char *buf, size_t count)
299{
300 ssize_t ret = count;
301
302 if (sysfs_streq(buf, "always")) {
303 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
304 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
305 } else if (sysfs_streq(buf, "madvise")) {
306 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
307 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
308 } else if (sysfs_streq(buf, "never")) {
309 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
310 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
311 } else
312 ret = -EINVAL;
313
314 if (ret > 0) {
315 int err = start_stop_khugepaged();
316 if (err)
317 ret = err;
318 }
319 return ret;
320}
321
322static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
323
324ssize_t single_hugepage_flag_show(struct kobject *kobj,
325 struct kobj_attribute *attr, char *buf,
326 enum transparent_hugepage_flag flag)
327{
328 return sysfs_emit(buf, "%d\n",
329 !!test_bit(flag, &transparent_hugepage_flags));
330}
331
332ssize_t single_hugepage_flag_store(struct kobject *kobj,
333 struct kobj_attribute *attr,
334 const char *buf, size_t count,
335 enum transparent_hugepage_flag flag)
336{
337 unsigned long value;
338 int ret;
339
340 ret = kstrtoul(buf, 10, &value);
341 if (ret < 0)
342 return ret;
343 if (value > 1)
344 return -EINVAL;
345
346 if (value)
347 set_bit(flag, &transparent_hugepage_flags);
348 else
349 clear_bit(flag, &transparent_hugepage_flags);
350
351 return count;
352}
353
354static ssize_t defrag_show(struct kobject *kobj,
355 struct kobj_attribute *attr, char *buf)
356{
357 const char *output;
358
359 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
360 &transparent_hugepage_flags))
361 output = "[always] defer defer+madvise madvise never";
362 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
363 &transparent_hugepage_flags))
364 output = "always [defer] defer+madvise madvise never";
365 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
366 &transparent_hugepage_flags))
367 output = "always defer [defer+madvise] madvise never";
368 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
369 &transparent_hugepage_flags))
370 output = "always defer defer+madvise [madvise] never";
371 else
372 output = "always defer defer+madvise madvise [never]";
373
374 return sysfs_emit(buf, "%s\n", output);
375}
376
377static ssize_t defrag_store(struct kobject *kobj,
378 struct kobj_attribute *attr,
379 const char *buf, size_t count)
380{
381 if (sysfs_streq(buf, "always")) {
382 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
383 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
384 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
385 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
386 } else if (sysfs_streq(buf, "defer+madvise")) {
387 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
388 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
389 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
390 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
391 } else if (sysfs_streq(buf, "defer")) {
392 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
393 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
394 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
395 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
396 } else if (sysfs_streq(buf, "madvise")) {
397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
399 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
400 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
401 } else if (sysfs_streq(buf, "never")) {
402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
404 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
405 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
406 } else
407 return -EINVAL;
408
409 return count;
410}
411static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
412
413static ssize_t use_zero_page_show(struct kobject *kobj,
414 struct kobj_attribute *attr, char *buf)
415{
416 return single_hugepage_flag_show(kobj, attr, buf,
417 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
418}
419static ssize_t use_zero_page_store(struct kobject *kobj,
420 struct kobj_attribute *attr, const char *buf, size_t count)
421{
422 return single_hugepage_flag_store(kobj, attr, buf, count,
423 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
424}
425static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
426
427static ssize_t hpage_pmd_size_show(struct kobject *kobj,
428 struct kobj_attribute *attr, char *buf)
429{
430 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
431}
432static struct kobj_attribute hpage_pmd_size_attr =
433 __ATTR_RO(hpage_pmd_size);
434
435static ssize_t split_underused_thp_show(struct kobject *kobj,
436 struct kobj_attribute *attr, char *buf)
437{
438 return sysfs_emit(buf, "%d\n", split_underused_thp);
439}
440
441static ssize_t split_underused_thp_store(struct kobject *kobj,
442 struct kobj_attribute *attr,
443 const char *buf, size_t count)
444{
445 int err = kstrtobool(buf, &split_underused_thp);
446
447 if (err < 0)
448 return err;
449
450 return count;
451}
452
453static struct kobj_attribute split_underused_thp_attr = __ATTR(
454 shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
455
456static struct attribute *hugepage_attr[] = {
457 &enabled_attr.attr,
458 &defrag_attr.attr,
459 &use_zero_page_attr.attr,
460 &hpage_pmd_size_attr.attr,
461#ifdef CONFIG_SHMEM
462 &shmem_enabled_attr.attr,
463#endif
464 &split_underused_thp_attr.attr,
465 NULL,
466};
467
468static const struct attribute_group hugepage_attr_group = {
469 .attrs = hugepage_attr,
470};
471
472static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
473static void thpsize_release(struct kobject *kobj);
474static DEFINE_SPINLOCK(huge_anon_orders_lock);
475static LIST_HEAD(thpsize_list);
476
477static ssize_t anon_enabled_show(struct kobject *kobj,
478 struct kobj_attribute *attr, char *buf)
479{
480 int order = to_thpsize(kobj)->order;
481 const char *output;
482
483 if (test_bit(order, &huge_anon_orders_always))
484 output = "[always] inherit madvise never";
485 else if (test_bit(order, &huge_anon_orders_inherit))
486 output = "always [inherit] madvise never";
487 else if (test_bit(order, &huge_anon_orders_madvise))
488 output = "always inherit [madvise] never";
489 else
490 output = "always inherit madvise [never]";
491
492 return sysfs_emit(buf, "%s\n", output);
493}
494
495static ssize_t anon_enabled_store(struct kobject *kobj,
496 struct kobj_attribute *attr,
497 const char *buf, size_t count)
498{
499 int order = to_thpsize(kobj)->order;
500 ssize_t ret = count;
501
502 if (sysfs_streq(buf, "always")) {
503 spin_lock(&huge_anon_orders_lock);
504 clear_bit(order, &huge_anon_orders_inherit);
505 clear_bit(order, &huge_anon_orders_madvise);
506 set_bit(order, &huge_anon_orders_always);
507 spin_unlock(&huge_anon_orders_lock);
508 } else if (sysfs_streq(buf, "inherit")) {
509 spin_lock(&huge_anon_orders_lock);
510 clear_bit(order, &huge_anon_orders_always);
511 clear_bit(order, &huge_anon_orders_madvise);
512 set_bit(order, &huge_anon_orders_inherit);
513 spin_unlock(&huge_anon_orders_lock);
514 } else if (sysfs_streq(buf, "madvise")) {
515 spin_lock(&huge_anon_orders_lock);
516 clear_bit(order, &huge_anon_orders_always);
517 clear_bit(order, &huge_anon_orders_inherit);
518 set_bit(order, &huge_anon_orders_madvise);
519 spin_unlock(&huge_anon_orders_lock);
520 } else if (sysfs_streq(buf, "never")) {
521 spin_lock(&huge_anon_orders_lock);
522 clear_bit(order, &huge_anon_orders_always);
523 clear_bit(order, &huge_anon_orders_inherit);
524 clear_bit(order, &huge_anon_orders_madvise);
525 spin_unlock(&huge_anon_orders_lock);
526 } else
527 ret = -EINVAL;
528
529 if (ret > 0) {
530 int err;
531
532 err = start_stop_khugepaged();
533 if (err)
534 ret = err;
535 }
536 return ret;
537}
538
539static struct kobj_attribute anon_enabled_attr =
540 __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
541
542static struct attribute *anon_ctrl_attrs[] = {
543 &anon_enabled_attr.attr,
544 NULL,
545};
546
547static const struct attribute_group anon_ctrl_attr_grp = {
548 .attrs = anon_ctrl_attrs,
549};
550
551static struct attribute *file_ctrl_attrs[] = {
552#ifdef CONFIG_SHMEM
553 &thpsize_shmem_enabled_attr.attr,
554#endif
555 NULL,
556};
557
558static const struct attribute_group file_ctrl_attr_grp = {
559 .attrs = file_ctrl_attrs,
560};
561
562static struct attribute *any_ctrl_attrs[] = {
563 NULL,
564};
565
566static const struct attribute_group any_ctrl_attr_grp = {
567 .attrs = any_ctrl_attrs,
568};
569
570static const struct kobj_type thpsize_ktype = {
571 .release = &thpsize_release,
572 .sysfs_ops = &kobj_sysfs_ops,
573};
574
575DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
576
577static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
578{
579 unsigned long sum = 0;
580 int cpu;
581
582 for_each_possible_cpu(cpu) {
583 struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
584
585 sum += this->stats[order][item];
586 }
587
588 return sum;
589}
590
591#define DEFINE_MTHP_STAT_ATTR(_name, _index) \
592static ssize_t _name##_show(struct kobject *kobj, \
593 struct kobj_attribute *attr, char *buf) \
594{ \
595 int order = to_thpsize(kobj)->order; \
596 \
597 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \
598} \
599static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
600
601DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
602DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
603DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
604DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
605DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
606#ifdef CONFIG_SHMEM
607DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
608DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
609DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
610#endif
611DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
612DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
613DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
614DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
615DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
616
617static struct attribute *anon_stats_attrs[] = {
618 &anon_fault_alloc_attr.attr,
619 &anon_fault_fallback_attr.attr,
620 &anon_fault_fallback_charge_attr.attr,
621#ifndef CONFIG_SHMEM
622 &swpout_attr.attr,
623 &swpout_fallback_attr.attr,
624#endif
625 &split_deferred_attr.attr,
626 &nr_anon_attr.attr,
627 &nr_anon_partially_mapped_attr.attr,
628 NULL,
629};
630
631static struct attribute_group anon_stats_attr_grp = {
632 .name = "stats",
633 .attrs = anon_stats_attrs,
634};
635
636static struct attribute *file_stats_attrs[] = {
637#ifdef CONFIG_SHMEM
638 &shmem_alloc_attr.attr,
639 &shmem_fallback_attr.attr,
640 &shmem_fallback_charge_attr.attr,
641#endif
642 NULL,
643};
644
645static struct attribute_group file_stats_attr_grp = {
646 .name = "stats",
647 .attrs = file_stats_attrs,
648};
649
650static struct attribute *any_stats_attrs[] = {
651#ifdef CONFIG_SHMEM
652 &swpout_attr.attr,
653 &swpout_fallback_attr.attr,
654#endif
655 &split_attr.attr,
656 &split_failed_attr.attr,
657 NULL,
658};
659
660static struct attribute_group any_stats_attr_grp = {
661 .name = "stats",
662 .attrs = any_stats_attrs,
663};
664
665static int sysfs_add_group(struct kobject *kobj,
666 const struct attribute_group *grp)
667{
668 int ret = -ENOENT;
669
670 /*
671 * If the group is named, try to merge first, assuming the subdirectory
672 * was already created. This avoids the warning emitted by
673 * sysfs_create_group() if the directory already exists.
674 */
675 if (grp->name)
676 ret = sysfs_merge_group(kobj, grp);
677 if (ret)
678 ret = sysfs_create_group(kobj, grp);
679
680 return ret;
681}
682
683static struct thpsize *thpsize_create(int order, struct kobject *parent)
684{
685 unsigned long size = (PAGE_SIZE << order) / SZ_1K;
686 struct thpsize *thpsize;
687 int ret = -ENOMEM;
688
689 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
690 if (!thpsize)
691 goto err;
692
693 thpsize->order = order;
694
695 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
696 "hugepages-%lukB", size);
697 if (ret) {
698 kfree(thpsize);
699 goto err;
700 }
701
702
703 ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
704 if (ret)
705 goto err_put;
706
707 ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
708 if (ret)
709 goto err_put;
710
711 if (BIT(order) & THP_ORDERS_ALL_ANON) {
712 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
713 if (ret)
714 goto err_put;
715
716 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
717 if (ret)
718 goto err_put;
719 }
720
721 if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
722 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
723 if (ret)
724 goto err_put;
725
726 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
727 if (ret)
728 goto err_put;
729 }
730
731 return thpsize;
732err_put:
733 kobject_put(&thpsize->kobj);
734err:
735 return ERR_PTR(ret);
736}
737
738static void thpsize_release(struct kobject *kobj)
739{
740 kfree(to_thpsize(kobj));
741}
742
743static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
744{
745 int err;
746 struct thpsize *thpsize;
747 unsigned long orders;
748 int order;
749
750 /*
751 * Default to setting PMD-sized THP to inherit the global setting and
752 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
753 * constant so we have to do this here.
754 */
755 if (!anon_orders_configured)
756 huge_anon_orders_inherit = BIT(PMD_ORDER);
757
758 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
759 if (unlikely(!*hugepage_kobj)) {
760 pr_err("failed to create transparent hugepage kobject\n");
761 return -ENOMEM;
762 }
763
764 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
765 if (err) {
766 pr_err("failed to register transparent hugepage group\n");
767 goto delete_obj;
768 }
769
770 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
771 if (err) {
772 pr_err("failed to register transparent hugepage group\n");
773 goto remove_hp_group;
774 }
775
776 orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
777 order = highest_order(orders);
778 while (orders) {
779 thpsize = thpsize_create(order, *hugepage_kobj);
780 if (IS_ERR(thpsize)) {
781 pr_err("failed to create thpsize for order %d\n", order);
782 err = PTR_ERR(thpsize);
783 goto remove_all;
784 }
785 list_add(&thpsize->node, &thpsize_list);
786 order = next_order(&orders, order);
787 }
788
789 return 0;
790
791remove_all:
792 hugepage_exit_sysfs(*hugepage_kobj);
793 return err;
794remove_hp_group:
795 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
796delete_obj:
797 kobject_put(*hugepage_kobj);
798 return err;
799}
800
801static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
802{
803 struct thpsize *thpsize, *tmp;
804
805 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
806 list_del(&thpsize->node);
807 kobject_put(&thpsize->kobj);
808 }
809
810 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
811 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
812 kobject_put(hugepage_kobj);
813}
814#else
815static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
816{
817 return 0;
818}
819
820static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
821{
822}
823#endif /* CONFIG_SYSFS */
824
825static int __init thp_shrinker_init(void)
826{
827 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
828 if (!huge_zero_page_shrinker)
829 return -ENOMEM;
830
831 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
832 SHRINKER_MEMCG_AWARE |
833 SHRINKER_NONSLAB,
834 "thp-deferred_split");
835 if (!deferred_split_shrinker) {
836 shrinker_free(huge_zero_page_shrinker);
837 return -ENOMEM;
838 }
839
840 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
841 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
842 shrinker_register(huge_zero_page_shrinker);
843
844 deferred_split_shrinker->count_objects = deferred_split_count;
845 deferred_split_shrinker->scan_objects = deferred_split_scan;
846 shrinker_register(deferred_split_shrinker);
847
848 return 0;
849}
850
851static void __init thp_shrinker_exit(void)
852{
853 shrinker_free(huge_zero_page_shrinker);
854 shrinker_free(deferred_split_shrinker);
855}
856
857static int __init hugepage_init(void)
858{
859 int err;
860 struct kobject *hugepage_kobj;
861
862 if (!has_transparent_hugepage()) {
863 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
864 return -EINVAL;
865 }
866
867 /*
868 * hugepages can't be allocated by the buddy allocator
869 */
870 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
871
872 err = hugepage_init_sysfs(&hugepage_kobj);
873 if (err)
874 goto err_sysfs;
875
876 err = khugepaged_init();
877 if (err)
878 goto err_slab;
879
880 err = thp_shrinker_init();
881 if (err)
882 goto err_shrinker;
883
884 /*
885 * By default disable transparent hugepages on smaller systems,
886 * where the extra memory used could hurt more than TLB overhead
887 * is likely to save. The admin can still enable it through /sys.
888 */
889 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
890 transparent_hugepage_flags = 0;
891 return 0;
892 }
893
894 err = start_stop_khugepaged();
895 if (err)
896 goto err_khugepaged;
897
898 return 0;
899err_khugepaged:
900 thp_shrinker_exit();
901err_shrinker:
902 khugepaged_destroy();
903err_slab:
904 hugepage_exit_sysfs(hugepage_kobj);
905err_sysfs:
906 return err;
907}
908subsys_initcall(hugepage_init);
909
910static int __init setup_transparent_hugepage(char *str)
911{
912 int ret = 0;
913 if (!str)
914 goto out;
915 if (!strcmp(str, "always")) {
916 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
917 &transparent_hugepage_flags);
918 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
919 &transparent_hugepage_flags);
920 ret = 1;
921 } else if (!strcmp(str, "madvise")) {
922 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
923 &transparent_hugepage_flags);
924 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
925 &transparent_hugepage_flags);
926 ret = 1;
927 } else if (!strcmp(str, "never")) {
928 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
929 &transparent_hugepage_flags);
930 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
931 &transparent_hugepage_flags);
932 ret = 1;
933 }
934out:
935 if (!ret)
936 pr_warn("transparent_hugepage= cannot parse, ignored\n");
937 return ret;
938}
939__setup("transparent_hugepage=", setup_transparent_hugepage);
940
941static inline int get_order_from_str(const char *size_str)
942{
943 unsigned long size;
944 char *endptr;
945 int order;
946
947 size = memparse(size_str, &endptr);
948
949 if (!is_power_of_2(size))
950 goto err;
951 order = get_order(size);
952 if (BIT(order) & ~THP_ORDERS_ALL_ANON)
953 goto err;
954
955 return order;
956err:
957 pr_err("invalid size %s in thp_anon boot parameter\n", size_str);
958 return -EINVAL;
959}
960
961static char str_dup[PAGE_SIZE] __initdata;
962static int __init setup_thp_anon(char *str)
963{
964 char *token, *range, *policy, *subtoken;
965 unsigned long always, inherit, madvise;
966 char *start_size, *end_size;
967 int start, end, nr;
968 char *p;
969
970 if (!str || strlen(str) + 1 > PAGE_SIZE)
971 goto err;
972 strcpy(str_dup, str);
973
974 always = huge_anon_orders_always;
975 madvise = huge_anon_orders_madvise;
976 inherit = huge_anon_orders_inherit;
977 p = str_dup;
978 while ((token = strsep(&p, ";")) != NULL) {
979 range = strsep(&token, ":");
980 policy = token;
981
982 if (!policy)
983 goto err;
984
985 while ((subtoken = strsep(&range, ",")) != NULL) {
986 if (strchr(subtoken, '-')) {
987 start_size = strsep(&subtoken, "-");
988 end_size = subtoken;
989
990 start = get_order_from_str(start_size);
991 end = get_order_from_str(end_size);
992 } else {
993 start = end = get_order_from_str(subtoken);
994 }
995
996 if (start < 0 || end < 0 || start > end)
997 goto err;
998
999 nr = end - start + 1;
1000 if (!strcmp(policy, "always")) {
1001 bitmap_set(&always, start, nr);
1002 bitmap_clear(&inherit, start, nr);
1003 bitmap_clear(&madvise, start, nr);
1004 } else if (!strcmp(policy, "madvise")) {
1005 bitmap_set(&madvise, start, nr);
1006 bitmap_clear(&inherit, start, nr);
1007 bitmap_clear(&always, start, nr);
1008 } else if (!strcmp(policy, "inherit")) {
1009 bitmap_set(&inherit, start, nr);
1010 bitmap_clear(&madvise, start, nr);
1011 bitmap_clear(&always, start, nr);
1012 } else if (!strcmp(policy, "never")) {
1013 bitmap_clear(&inherit, start, nr);
1014 bitmap_clear(&madvise, start, nr);
1015 bitmap_clear(&always, start, nr);
1016 } else {
1017 pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1018 goto err;
1019 }
1020 }
1021 }
1022
1023 huge_anon_orders_always = always;
1024 huge_anon_orders_madvise = madvise;
1025 huge_anon_orders_inherit = inherit;
1026 anon_orders_configured = true;
1027 return 1;
1028
1029err:
1030 pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1031 return 0;
1032}
1033__setup("thp_anon=", setup_thp_anon);
1034
1035pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1036{
1037 if (likely(vma->vm_flags & VM_WRITE))
1038 pmd = pmd_mkwrite(pmd, vma);
1039 return pmd;
1040}
1041
1042#ifdef CONFIG_MEMCG
1043static inline
1044struct deferred_split *get_deferred_split_queue(struct folio *folio)
1045{
1046 struct mem_cgroup *memcg = folio_memcg(folio);
1047 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1048
1049 if (memcg)
1050 return &memcg->deferred_split_queue;
1051 else
1052 return &pgdat->deferred_split_queue;
1053}
1054#else
1055static inline
1056struct deferred_split *get_deferred_split_queue(struct folio *folio)
1057{
1058 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1059
1060 return &pgdat->deferred_split_queue;
1061}
1062#endif
1063
1064static inline bool is_transparent_hugepage(const struct folio *folio)
1065{
1066 if (!folio_test_large(folio))
1067 return false;
1068
1069 return is_huge_zero_folio(folio) ||
1070 folio_test_large_rmappable(folio);
1071}
1072
1073static unsigned long __thp_get_unmapped_area(struct file *filp,
1074 unsigned long addr, unsigned long len,
1075 loff_t off, unsigned long flags, unsigned long size,
1076 vm_flags_t vm_flags)
1077{
1078 loff_t off_end = off + len;
1079 loff_t off_align = round_up(off, size);
1080 unsigned long len_pad, ret, off_sub;
1081
1082 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1083 return 0;
1084
1085 if (off_end <= off_align || (off_end - off_align) < size)
1086 return 0;
1087
1088 len_pad = len + size;
1089 if (len_pad < len || (off + len_pad) < off)
1090 return 0;
1091
1092 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1093 off >> PAGE_SHIFT, flags, vm_flags);
1094
1095 /*
1096 * The failure might be due to length padding. The caller will retry
1097 * without the padding.
1098 */
1099 if (IS_ERR_VALUE(ret))
1100 return 0;
1101
1102 /*
1103 * Do not try to align to THP boundary if allocation at the address
1104 * hint succeeds.
1105 */
1106 if (ret == addr)
1107 return addr;
1108
1109 off_sub = (off - ret) & (size - 1);
1110
1111 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub)
1112 return ret + size;
1113
1114 ret += off_sub;
1115 return ret;
1116}
1117
1118unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1119 unsigned long len, unsigned long pgoff, unsigned long flags,
1120 vm_flags_t vm_flags)
1121{
1122 unsigned long ret;
1123 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1124
1125 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1126 if (ret)
1127 return ret;
1128
1129 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1130 vm_flags);
1131}
1132
1133unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1134 unsigned long len, unsigned long pgoff, unsigned long flags)
1135{
1136 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1137}
1138EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1139
1140static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
1141 struct page *page, gfp_t gfp)
1142{
1143 struct vm_area_struct *vma = vmf->vma;
1144 struct folio *folio = page_folio(page);
1145 pgtable_t pgtable;
1146 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1147 vm_fault_t ret = 0;
1148
1149 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1150
1151 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1152 folio_put(folio);
1153 count_vm_event(THP_FAULT_FALLBACK);
1154 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1155 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
1156 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1157 return VM_FAULT_FALLBACK;
1158 }
1159 folio_throttle_swaprate(folio, gfp);
1160
1161 pgtable = pte_alloc_one(vma->vm_mm);
1162 if (unlikely(!pgtable)) {
1163 ret = VM_FAULT_OOM;
1164 goto release;
1165 }
1166
1167 folio_zero_user(folio, vmf->address);
1168 /*
1169 * The memory barrier inside __folio_mark_uptodate makes sure that
1170 * folio_zero_user writes become visible before the set_pmd_at()
1171 * write.
1172 */
1173 __folio_mark_uptodate(folio);
1174
1175 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1176 if (unlikely(!pmd_none(*vmf->pmd))) {
1177 goto unlock_release;
1178 } else {
1179 pmd_t entry;
1180
1181 ret = check_stable_address_space(vma->vm_mm);
1182 if (ret)
1183 goto unlock_release;
1184
1185 /* Deliver the page fault to userland */
1186 if (userfaultfd_missing(vma)) {
1187 spin_unlock(vmf->ptl);
1188 folio_put(folio);
1189 pte_free(vma->vm_mm, pgtable);
1190 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1191 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1192 return ret;
1193 }
1194
1195 entry = mk_huge_pmd(page, vma->vm_page_prot);
1196 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1197 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1198 folio_add_lru_vma(folio, vma);
1199 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1200 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1201 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1202 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1203 mm_inc_nr_ptes(vma->vm_mm);
1204 deferred_split_folio(folio, false);
1205 spin_unlock(vmf->ptl);
1206 count_vm_event(THP_FAULT_ALLOC);
1207 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1208 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1209 }
1210
1211 return 0;
1212unlock_release:
1213 spin_unlock(vmf->ptl);
1214release:
1215 if (pgtable)
1216 pte_free(vma->vm_mm, pgtable);
1217 folio_put(folio);
1218 return ret;
1219
1220}
1221
1222/*
1223 * always: directly stall for all thp allocations
1224 * defer: wake kswapd and fail if not immediately available
1225 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1226 * fail if not immediately available
1227 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1228 * available
1229 * never: never stall for any thp allocation
1230 */
1231gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1232{
1233 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1234
1235 /* Always do synchronous compaction */
1236 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1237 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1238
1239 /* Kick kcompactd and fail quickly */
1240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1241 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1242
1243 /* Synchronous compaction if madvised, otherwise kick kcompactd */
1244 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1245 return GFP_TRANSHUGE_LIGHT |
1246 (vma_madvised ? __GFP_DIRECT_RECLAIM :
1247 __GFP_KSWAPD_RECLAIM);
1248
1249 /* Only do synchronous compaction if madvised */
1250 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1251 return GFP_TRANSHUGE_LIGHT |
1252 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1253
1254 return GFP_TRANSHUGE_LIGHT;
1255}
1256
1257/* Caller must hold page table lock. */
1258static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1259 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1260 struct folio *zero_folio)
1261{
1262 pmd_t entry;
1263 if (!pmd_none(*pmd))
1264 return;
1265 entry = mk_pmd(&zero_folio->page, vma->vm_page_prot);
1266 entry = pmd_mkhuge(entry);
1267 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1268 set_pmd_at(mm, haddr, pmd, entry);
1269 mm_inc_nr_ptes(mm);
1270}
1271
1272vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1273{
1274 struct vm_area_struct *vma = vmf->vma;
1275 gfp_t gfp;
1276 struct folio *folio;
1277 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1278 vm_fault_t ret;
1279
1280 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1281 return VM_FAULT_FALLBACK;
1282 ret = vmf_anon_prepare(vmf);
1283 if (ret)
1284 return ret;
1285 khugepaged_enter_vma(vma, vma->vm_flags);
1286
1287 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1288 !mm_forbids_zeropage(vma->vm_mm) &&
1289 transparent_hugepage_use_zero_page()) {
1290 pgtable_t pgtable;
1291 struct folio *zero_folio;
1292 vm_fault_t ret;
1293
1294 pgtable = pte_alloc_one(vma->vm_mm);
1295 if (unlikely(!pgtable))
1296 return VM_FAULT_OOM;
1297 zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1298 if (unlikely(!zero_folio)) {
1299 pte_free(vma->vm_mm, pgtable);
1300 count_vm_event(THP_FAULT_FALLBACK);
1301 return VM_FAULT_FALLBACK;
1302 }
1303 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1304 ret = 0;
1305 if (pmd_none(*vmf->pmd)) {
1306 ret = check_stable_address_space(vma->vm_mm);
1307 if (ret) {
1308 spin_unlock(vmf->ptl);
1309 pte_free(vma->vm_mm, pgtable);
1310 } else if (userfaultfd_missing(vma)) {
1311 spin_unlock(vmf->ptl);
1312 pte_free(vma->vm_mm, pgtable);
1313 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1314 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1315 } else {
1316 set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1317 haddr, vmf->pmd, zero_folio);
1318 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1319 spin_unlock(vmf->ptl);
1320 }
1321 } else {
1322 spin_unlock(vmf->ptl);
1323 pte_free(vma->vm_mm, pgtable);
1324 }
1325 return ret;
1326 }
1327 gfp = vma_thp_gfp_mask(vma);
1328 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1329 if (unlikely(!folio)) {
1330 count_vm_event(THP_FAULT_FALLBACK);
1331 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
1332 return VM_FAULT_FALLBACK;
1333 }
1334 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1335}
1336
1337static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1338 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1339 pgtable_t pgtable)
1340{
1341 struct mm_struct *mm = vma->vm_mm;
1342 pmd_t entry;
1343 spinlock_t *ptl;
1344
1345 ptl = pmd_lock(mm, pmd);
1346 if (!pmd_none(*pmd)) {
1347 if (write) {
1348 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1349 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1350 goto out_unlock;
1351 }
1352 entry = pmd_mkyoung(*pmd);
1353 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1354 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1355 update_mmu_cache_pmd(vma, addr, pmd);
1356 }
1357
1358 goto out_unlock;
1359 }
1360
1361 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1362 if (pfn_t_devmap(pfn))
1363 entry = pmd_mkdevmap(entry);
1364 else
1365 entry = pmd_mkspecial(entry);
1366 if (write) {
1367 entry = pmd_mkyoung(pmd_mkdirty(entry));
1368 entry = maybe_pmd_mkwrite(entry, vma);
1369 }
1370
1371 if (pgtable) {
1372 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1373 mm_inc_nr_ptes(mm);
1374 pgtable = NULL;
1375 }
1376
1377 set_pmd_at(mm, addr, pmd, entry);
1378 update_mmu_cache_pmd(vma, addr, pmd);
1379
1380out_unlock:
1381 spin_unlock(ptl);
1382 if (pgtable)
1383 pte_free(mm, pgtable);
1384}
1385
1386/**
1387 * vmf_insert_pfn_pmd - insert a pmd size pfn
1388 * @vmf: Structure describing the fault
1389 * @pfn: pfn to insert
1390 * @write: whether it's a write fault
1391 *
1392 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1393 *
1394 * Return: vm_fault_t value.
1395 */
1396vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1397{
1398 unsigned long addr = vmf->address & PMD_MASK;
1399 struct vm_area_struct *vma = vmf->vma;
1400 pgprot_t pgprot = vma->vm_page_prot;
1401 pgtable_t pgtable = NULL;
1402
1403 /*
1404 * If we had pmd_special, we could avoid all these restrictions,
1405 * but we need to be consistent with PTEs and architectures that
1406 * can't support a 'special' bit.
1407 */
1408 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1409 !pfn_t_devmap(pfn));
1410 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1411 (VM_PFNMAP|VM_MIXEDMAP));
1412 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1413
1414 if (addr < vma->vm_start || addr >= vma->vm_end)
1415 return VM_FAULT_SIGBUS;
1416
1417 if (arch_needs_pgtable_deposit()) {
1418 pgtable = pte_alloc_one(vma->vm_mm);
1419 if (!pgtable)
1420 return VM_FAULT_OOM;
1421 }
1422
1423 track_pfn_insert(vma, &pgprot, pfn);
1424
1425 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1426 return VM_FAULT_NOPAGE;
1427}
1428EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1429
1430#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1431static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1432{
1433 if (likely(vma->vm_flags & VM_WRITE))
1434 pud = pud_mkwrite(pud);
1435 return pud;
1436}
1437
1438static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1439 pud_t *pud, pfn_t pfn, bool write)
1440{
1441 struct mm_struct *mm = vma->vm_mm;
1442 pgprot_t prot = vma->vm_page_prot;
1443 pud_t entry;
1444 spinlock_t *ptl;
1445
1446 ptl = pud_lock(mm, pud);
1447 if (!pud_none(*pud)) {
1448 if (write) {
1449 if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn)))
1450 goto out_unlock;
1451 entry = pud_mkyoung(*pud);
1452 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1453 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1454 update_mmu_cache_pud(vma, addr, pud);
1455 }
1456 goto out_unlock;
1457 }
1458
1459 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1460 if (pfn_t_devmap(pfn))
1461 entry = pud_mkdevmap(entry);
1462 else
1463 entry = pud_mkspecial(entry);
1464 if (write) {
1465 entry = pud_mkyoung(pud_mkdirty(entry));
1466 entry = maybe_pud_mkwrite(entry, vma);
1467 }
1468 set_pud_at(mm, addr, pud, entry);
1469 update_mmu_cache_pud(vma, addr, pud);
1470
1471out_unlock:
1472 spin_unlock(ptl);
1473}
1474
1475/**
1476 * vmf_insert_pfn_pud - insert a pud size pfn
1477 * @vmf: Structure describing the fault
1478 * @pfn: pfn to insert
1479 * @write: whether it's a write fault
1480 *
1481 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1482 *
1483 * Return: vm_fault_t value.
1484 */
1485vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1486{
1487 unsigned long addr = vmf->address & PUD_MASK;
1488 struct vm_area_struct *vma = vmf->vma;
1489 pgprot_t pgprot = vma->vm_page_prot;
1490
1491 /*
1492 * If we had pud_special, we could avoid all these restrictions,
1493 * but we need to be consistent with PTEs and architectures that
1494 * can't support a 'special' bit.
1495 */
1496 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1497 !pfn_t_devmap(pfn));
1498 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1499 (VM_PFNMAP|VM_MIXEDMAP));
1500 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1501
1502 if (addr < vma->vm_start || addr >= vma->vm_end)
1503 return VM_FAULT_SIGBUS;
1504
1505 track_pfn_insert(vma, &pgprot, pfn);
1506
1507 insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1508 return VM_FAULT_NOPAGE;
1509}
1510EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1511#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1512
1513void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1514 pmd_t *pmd, bool write)
1515{
1516 pmd_t _pmd;
1517
1518 _pmd = pmd_mkyoung(*pmd);
1519 if (write)
1520 _pmd = pmd_mkdirty(_pmd);
1521 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1522 pmd, _pmd, write))
1523 update_mmu_cache_pmd(vma, addr, pmd);
1524}
1525
1526struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1527 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1528{
1529 unsigned long pfn = pmd_pfn(*pmd);
1530 struct mm_struct *mm = vma->vm_mm;
1531 struct page *page;
1532 int ret;
1533
1534 assert_spin_locked(pmd_lockptr(mm, pmd));
1535
1536 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1537 return NULL;
1538
1539 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1540 /* pass */;
1541 else
1542 return NULL;
1543
1544 if (flags & FOLL_TOUCH)
1545 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1546
1547 /*
1548 * device mapped pages can only be returned if the
1549 * caller will manage the page reference count.
1550 */
1551 if (!(flags & (FOLL_GET | FOLL_PIN)))
1552 return ERR_PTR(-EEXIST);
1553
1554 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1555 *pgmap = get_dev_pagemap(pfn, *pgmap);
1556 if (!*pgmap)
1557 return ERR_PTR(-EFAULT);
1558 page = pfn_to_page(pfn);
1559 ret = try_grab_folio(page_folio(page), 1, flags);
1560 if (ret)
1561 page = ERR_PTR(ret);
1562
1563 return page;
1564}
1565
1566int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1567 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1568 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1569{
1570 spinlock_t *dst_ptl, *src_ptl;
1571 struct page *src_page;
1572 struct folio *src_folio;
1573 pmd_t pmd;
1574 pgtable_t pgtable = NULL;
1575 int ret = -ENOMEM;
1576
1577 pmd = pmdp_get_lockless(src_pmd);
1578 if (unlikely(pmd_present(pmd) && pmd_special(pmd))) {
1579 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1580 src_ptl = pmd_lockptr(src_mm, src_pmd);
1581 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1582 /*
1583 * No need to recheck the pmd, it can't change with write
1584 * mmap lock held here.
1585 *
1586 * Meanwhile, making sure it's not a CoW VMA with writable
1587 * mapping, otherwise it means either the anon page wrongly
1588 * applied special bit, or we made the PRIVATE mapping be
1589 * able to wrongly write to the backend MMIO.
1590 */
1591 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1592 goto set_pmd;
1593 }
1594
1595 /* Skip if can be re-fill on fault */
1596 if (!vma_is_anonymous(dst_vma))
1597 return 0;
1598
1599 pgtable = pte_alloc_one(dst_mm);
1600 if (unlikely(!pgtable))
1601 goto out;
1602
1603 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1604 src_ptl = pmd_lockptr(src_mm, src_pmd);
1605 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1606
1607 ret = -EAGAIN;
1608 pmd = *src_pmd;
1609
1610#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1611 if (unlikely(is_swap_pmd(pmd))) {
1612 swp_entry_t entry = pmd_to_swp_entry(pmd);
1613
1614 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1615 if (!is_readable_migration_entry(entry)) {
1616 entry = make_readable_migration_entry(
1617 swp_offset(entry));
1618 pmd = swp_entry_to_pmd(entry);
1619 if (pmd_swp_soft_dirty(*src_pmd))
1620 pmd = pmd_swp_mksoft_dirty(pmd);
1621 if (pmd_swp_uffd_wp(*src_pmd))
1622 pmd = pmd_swp_mkuffd_wp(pmd);
1623 set_pmd_at(src_mm, addr, src_pmd, pmd);
1624 }
1625 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1626 mm_inc_nr_ptes(dst_mm);
1627 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1628 if (!userfaultfd_wp(dst_vma))
1629 pmd = pmd_swp_clear_uffd_wp(pmd);
1630 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1631 ret = 0;
1632 goto out_unlock;
1633 }
1634#endif
1635
1636 if (unlikely(!pmd_trans_huge(pmd))) {
1637 pte_free(dst_mm, pgtable);
1638 goto out_unlock;
1639 }
1640 /*
1641 * When page table lock is held, the huge zero pmd should not be
1642 * under splitting since we don't split the page itself, only pmd to
1643 * a page table.
1644 */
1645 if (is_huge_zero_pmd(pmd)) {
1646 /*
1647 * mm_get_huge_zero_folio() will never allocate a new
1648 * folio here, since we already have a zero page to
1649 * copy. It just takes a reference.
1650 */
1651 mm_get_huge_zero_folio(dst_mm);
1652 goto out_zero_page;
1653 }
1654
1655 src_page = pmd_page(pmd);
1656 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1657 src_folio = page_folio(src_page);
1658
1659 folio_get(src_folio);
1660 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1661 /* Page maybe pinned: split and retry the fault on PTEs. */
1662 folio_put(src_folio);
1663 pte_free(dst_mm, pgtable);
1664 spin_unlock(src_ptl);
1665 spin_unlock(dst_ptl);
1666 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1667 return -EAGAIN;
1668 }
1669 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1670out_zero_page:
1671 mm_inc_nr_ptes(dst_mm);
1672 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1673 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1674 if (!userfaultfd_wp(dst_vma))
1675 pmd = pmd_clear_uffd_wp(pmd);
1676 pmd = pmd_wrprotect(pmd);
1677set_pmd:
1678 pmd = pmd_mkold(pmd);
1679 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1680
1681 ret = 0;
1682out_unlock:
1683 spin_unlock(src_ptl);
1684 spin_unlock(dst_ptl);
1685out:
1686 return ret;
1687}
1688
1689#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1690void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1691 pud_t *pud, bool write)
1692{
1693 pud_t _pud;
1694
1695 _pud = pud_mkyoung(*pud);
1696 if (write)
1697 _pud = pud_mkdirty(_pud);
1698 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1699 pud, _pud, write))
1700 update_mmu_cache_pud(vma, addr, pud);
1701}
1702
1703int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1704 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1705 struct vm_area_struct *vma)
1706{
1707 spinlock_t *dst_ptl, *src_ptl;
1708 pud_t pud;
1709 int ret;
1710
1711 dst_ptl = pud_lock(dst_mm, dst_pud);
1712 src_ptl = pud_lockptr(src_mm, src_pud);
1713 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1714
1715 ret = -EAGAIN;
1716 pud = *src_pud;
1717 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1718 goto out_unlock;
1719
1720 /*
1721 * TODO: once we support anonymous pages, use
1722 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1723 */
1724 if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1725 pudp_set_wrprotect(src_mm, addr, src_pud);
1726 pud = pud_wrprotect(pud);
1727 }
1728 pud = pud_mkold(pud);
1729 set_pud_at(dst_mm, addr, dst_pud, pud);
1730
1731 ret = 0;
1732out_unlock:
1733 spin_unlock(src_ptl);
1734 spin_unlock(dst_ptl);
1735 return ret;
1736}
1737
1738void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1739{
1740 bool write = vmf->flags & FAULT_FLAG_WRITE;
1741
1742 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1743 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1744 goto unlock;
1745
1746 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1747unlock:
1748 spin_unlock(vmf->ptl);
1749}
1750#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1751
1752void huge_pmd_set_accessed(struct vm_fault *vmf)
1753{
1754 bool write = vmf->flags & FAULT_FLAG_WRITE;
1755
1756 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1757 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1758 goto unlock;
1759
1760 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1761
1762unlock:
1763 spin_unlock(vmf->ptl);
1764}
1765
1766vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1767{
1768 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1769 struct vm_area_struct *vma = vmf->vma;
1770 struct folio *folio;
1771 struct page *page;
1772 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1773 pmd_t orig_pmd = vmf->orig_pmd;
1774
1775 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1776 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1777
1778 if (is_huge_zero_pmd(orig_pmd))
1779 goto fallback;
1780
1781 spin_lock(vmf->ptl);
1782
1783 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1784 spin_unlock(vmf->ptl);
1785 return 0;
1786 }
1787
1788 page = pmd_page(orig_pmd);
1789 folio = page_folio(page);
1790 VM_BUG_ON_PAGE(!PageHead(page), page);
1791
1792 /* Early check when only holding the PT lock. */
1793 if (PageAnonExclusive(page))
1794 goto reuse;
1795
1796 if (!folio_trylock(folio)) {
1797 folio_get(folio);
1798 spin_unlock(vmf->ptl);
1799 folio_lock(folio);
1800 spin_lock(vmf->ptl);
1801 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1802 spin_unlock(vmf->ptl);
1803 folio_unlock(folio);
1804 folio_put(folio);
1805 return 0;
1806 }
1807 folio_put(folio);
1808 }
1809
1810 /* Recheck after temporarily dropping the PT lock. */
1811 if (PageAnonExclusive(page)) {
1812 folio_unlock(folio);
1813 goto reuse;
1814 }
1815
1816 /*
1817 * See do_wp_page(): we can only reuse the folio exclusively if
1818 * there are no additional references. Note that we always drain
1819 * the LRU cache immediately after adding a THP.
1820 */
1821 if (folio_ref_count(folio) >
1822 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1823 goto unlock_fallback;
1824 if (folio_test_swapcache(folio))
1825 folio_free_swap(folio);
1826 if (folio_ref_count(folio) == 1) {
1827 pmd_t entry;
1828
1829 folio_move_anon_rmap(folio, vma);
1830 SetPageAnonExclusive(page);
1831 folio_unlock(folio);
1832reuse:
1833 if (unlikely(unshare)) {
1834 spin_unlock(vmf->ptl);
1835 return 0;
1836 }
1837 entry = pmd_mkyoung(orig_pmd);
1838 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1839 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1840 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1841 spin_unlock(vmf->ptl);
1842 return 0;
1843 }
1844
1845unlock_fallback:
1846 folio_unlock(folio);
1847 spin_unlock(vmf->ptl);
1848fallback:
1849 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1850 return VM_FAULT_FALLBACK;
1851}
1852
1853static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1854 unsigned long addr, pmd_t pmd)
1855{
1856 struct page *page;
1857
1858 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1859 return false;
1860
1861 /* Don't touch entries that are not even readable (NUMA hinting). */
1862 if (pmd_protnone(pmd))
1863 return false;
1864
1865 /* Do we need write faults for softdirty tracking? */
1866 if (pmd_needs_soft_dirty_wp(vma, pmd))
1867 return false;
1868
1869 /* Do we need write faults for uffd-wp tracking? */
1870 if (userfaultfd_huge_pmd_wp(vma, pmd))
1871 return false;
1872
1873 if (!(vma->vm_flags & VM_SHARED)) {
1874 /* See can_change_pte_writable(). */
1875 page = vm_normal_page_pmd(vma, addr, pmd);
1876 return page && PageAnon(page) && PageAnonExclusive(page);
1877 }
1878
1879 /* See can_change_pte_writable(). */
1880 return pmd_dirty(pmd);
1881}
1882
1883/* NUMA hinting page fault entry point for trans huge pmds */
1884vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1885{
1886 struct vm_area_struct *vma = vmf->vma;
1887 struct folio *folio;
1888 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1889 int nid = NUMA_NO_NODE;
1890 int target_nid, last_cpupid;
1891 pmd_t pmd, old_pmd;
1892 bool writable = false;
1893 int flags = 0;
1894
1895 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1896 old_pmd = pmdp_get(vmf->pmd);
1897
1898 if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
1899 spin_unlock(vmf->ptl);
1900 return 0;
1901 }
1902
1903 pmd = pmd_modify(old_pmd, vma->vm_page_prot);
1904
1905 /*
1906 * Detect now whether the PMD could be writable; this information
1907 * is only valid while holding the PT lock.
1908 */
1909 writable = pmd_write(pmd);
1910 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1911 can_change_pmd_writable(vma, vmf->address, pmd))
1912 writable = true;
1913
1914 folio = vm_normal_folio_pmd(vma, haddr, pmd);
1915 if (!folio)
1916 goto out_map;
1917
1918 nid = folio_nid(folio);
1919
1920 target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
1921 &last_cpupid);
1922 if (target_nid == NUMA_NO_NODE)
1923 goto out_map;
1924 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
1925 flags |= TNF_MIGRATE_FAIL;
1926 goto out_map;
1927 }
1928 /* The folio is isolated and isolation code holds a folio reference. */
1929 spin_unlock(vmf->ptl);
1930 writable = false;
1931
1932 if (!migrate_misplaced_folio(folio, vma, target_nid)) {
1933 flags |= TNF_MIGRATED;
1934 nid = target_nid;
1935 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1936 return 0;
1937 }
1938
1939 flags |= TNF_MIGRATE_FAIL;
1940 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1941 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
1942 spin_unlock(vmf->ptl);
1943 return 0;
1944 }
1945out_map:
1946 /* Restore the PMD */
1947 pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
1948 pmd = pmd_mkyoung(pmd);
1949 if (writable)
1950 pmd = pmd_mkwrite(pmd, vma);
1951 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1952 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1953 spin_unlock(vmf->ptl);
1954
1955 if (nid != NUMA_NO_NODE)
1956 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1957 return 0;
1958}
1959
1960/*
1961 * Return true if we do MADV_FREE successfully on entire pmd page.
1962 * Otherwise, return false.
1963 */
1964bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1965 pmd_t *pmd, unsigned long addr, unsigned long next)
1966{
1967 spinlock_t *ptl;
1968 pmd_t orig_pmd;
1969 struct folio *folio;
1970 struct mm_struct *mm = tlb->mm;
1971 bool ret = false;
1972
1973 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1974
1975 ptl = pmd_trans_huge_lock(pmd, vma);
1976 if (!ptl)
1977 goto out_unlocked;
1978
1979 orig_pmd = *pmd;
1980 if (is_huge_zero_pmd(orig_pmd))
1981 goto out;
1982
1983 if (unlikely(!pmd_present(orig_pmd))) {
1984 VM_BUG_ON(thp_migration_supported() &&
1985 !is_pmd_migration_entry(orig_pmd));
1986 goto out;
1987 }
1988
1989 folio = pmd_folio(orig_pmd);
1990 /*
1991 * If other processes are mapping this folio, we couldn't discard
1992 * the folio unless they all do MADV_FREE so let's skip the folio.
1993 */
1994 if (folio_likely_mapped_shared(folio))
1995 goto out;
1996
1997 if (!folio_trylock(folio))
1998 goto out;
1999
2000 /*
2001 * If user want to discard part-pages of THP, split it so MADV_FREE
2002 * will deactivate only them.
2003 */
2004 if (next - addr != HPAGE_PMD_SIZE) {
2005 folio_get(folio);
2006 spin_unlock(ptl);
2007 split_folio(folio);
2008 folio_unlock(folio);
2009 folio_put(folio);
2010 goto out_unlocked;
2011 }
2012
2013 if (folio_test_dirty(folio))
2014 folio_clear_dirty(folio);
2015 folio_unlock(folio);
2016
2017 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2018 pmdp_invalidate(vma, addr, pmd);
2019 orig_pmd = pmd_mkold(orig_pmd);
2020 orig_pmd = pmd_mkclean(orig_pmd);
2021
2022 set_pmd_at(mm, addr, pmd, orig_pmd);
2023 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2024 }
2025
2026 folio_mark_lazyfree(folio);
2027 ret = true;
2028out:
2029 spin_unlock(ptl);
2030out_unlocked:
2031 return ret;
2032}
2033
2034static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2035{
2036 pgtable_t pgtable;
2037
2038 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2039 pte_free(mm, pgtable);
2040 mm_dec_nr_ptes(mm);
2041}
2042
2043int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2044 pmd_t *pmd, unsigned long addr)
2045{
2046 pmd_t orig_pmd;
2047 spinlock_t *ptl;
2048
2049 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2050
2051 ptl = __pmd_trans_huge_lock(pmd, vma);
2052 if (!ptl)
2053 return 0;
2054 /*
2055 * For architectures like ppc64 we look at deposited pgtable
2056 * when calling pmdp_huge_get_and_clear. So do the
2057 * pgtable_trans_huge_withdraw after finishing pmdp related
2058 * operations.
2059 */
2060 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2061 tlb->fullmm);
2062 arch_check_zapped_pmd(vma, orig_pmd);
2063 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2064 if (vma_is_special_huge(vma)) {
2065 if (arch_needs_pgtable_deposit())
2066 zap_deposited_table(tlb->mm, pmd);
2067 spin_unlock(ptl);
2068 } else if (is_huge_zero_pmd(orig_pmd)) {
2069 zap_deposited_table(tlb->mm, pmd);
2070 spin_unlock(ptl);
2071 } else {
2072 struct folio *folio = NULL;
2073 int flush_needed = 1;
2074
2075 if (pmd_present(orig_pmd)) {
2076 struct page *page = pmd_page(orig_pmd);
2077
2078 folio = page_folio(page);
2079 folio_remove_rmap_pmd(folio, page, vma);
2080 WARN_ON_ONCE(folio_mapcount(folio) < 0);
2081 VM_BUG_ON_PAGE(!PageHead(page), page);
2082 } else if (thp_migration_supported()) {
2083 swp_entry_t entry;
2084
2085 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2086 entry = pmd_to_swp_entry(orig_pmd);
2087 folio = pfn_swap_entry_folio(entry);
2088 flush_needed = 0;
2089 } else
2090 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2091
2092 if (folio_test_anon(folio)) {
2093 zap_deposited_table(tlb->mm, pmd);
2094 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2095 } else {
2096 if (arch_needs_pgtable_deposit())
2097 zap_deposited_table(tlb->mm, pmd);
2098 add_mm_counter(tlb->mm, mm_counter_file(folio),
2099 -HPAGE_PMD_NR);
2100 }
2101
2102 spin_unlock(ptl);
2103 if (flush_needed)
2104 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2105 }
2106 return 1;
2107}
2108
2109#ifndef pmd_move_must_withdraw
2110static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2111 spinlock_t *old_pmd_ptl,
2112 struct vm_area_struct *vma)
2113{
2114 /*
2115 * With split pmd lock we also need to move preallocated
2116 * PTE page table if new_pmd is on different PMD page table.
2117 *
2118 * We also don't deposit and withdraw tables for file pages.
2119 */
2120 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2121}
2122#endif
2123
2124static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2125{
2126#ifdef CONFIG_MEM_SOFT_DIRTY
2127 if (unlikely(is_pmd_migration_entry(pmd)))
2128 pmd = pmd_swp_mksoft_dirty(pmd);
2129 else if (pmd_present(pmd))
2130 pmd = pmd_mksoft_dirty(pmd);
2131#endif
2132 return pmd;
2133}
2134
2135bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2136 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2137{
2138 spinlock_t *old_ptl, *new_ptl;
2139 pmd_t pmd;
2140 struct mm_struct *mm = vma->vm_mm;
2141 bool force_flush = false;
2142
2143 /*
2144 * The destination pmd shouldn't be established, free_pgtables()
2145 * should have released it; but move_page_tables() might have already
2146 * inserted a page table, if racing against shmem/file collapse.
2147 */
2148 if (!pmd_none(*new_pmd)) {
2149 VM_BUG_ON(pmd_trans_huge(*new_pmd));
2150 return false;
2151 }
2152
2153 /*
2154 * We don't have to worry about the ordering of src and dst
2155 * ptlocks because exclusive mmap_lock prevents deadlock.
2156 */
2157 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2158 if (old_ptl) {
2159 new_ptl = pmd_lockptr(mm, new_pmd);
2160 if (new_ptl != old_ptl)
2161 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2162 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2163 if (pmd_present(pmd))
2164 force_flush = true;
2165 VM_BUG_ON(!pmd_none(*new_pmd));
2166
2167 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2168 pgtable_t pgtable;
2169 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2170 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2171 }
2172 pmd = move_soft_dirty_pmd(pmd);
2173 set_pmd_at(mm, new_addr, new_pmd, pmd);
2174 if (force_flush)
2175 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2176 if (new_ptl != old_ptl)
2177 spin_unlock(new_ptl);
2178 spin_unlock(old_ptl);
2179 return true;
2180 }
2181 return false;
2182}
2183
2184/*
2185 * Returns
2186 * - 0 if PMD could not be locked
2187 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2188 * or if prot_numa but THP migration is not supported
2189 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
2190 */
2191int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2192 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2193 unsigned long cp_flags)
2194{
2195 struct mm_struct *mm = vma->vm_mm;
2196 spinlock_t *ptl;
2197 pmd_t oldpmd, entry;
2198 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2199 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2200 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2201 int ret = 1;
2202
2203 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2204
2205 if (prot_numa && !thp_migration_supported())
2206 return 1;
2207
2208 ptl = __pmd_trans_huge_lock(pmd, vma);
2209 if (!ptl)
2210 return 0;
2211
2212#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2213 if (is_swap_pmd(*pmd)) {
2214 swp_entry_t entry = pmd_to_swp_entry(*pmd);
2215 struct folio *folio = pfn_swap_entry_folio(entry);
2216 pmd_t newpmd;
2217
2218 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2219 if (is_writable_migration_entry(entry)) {
2220 /*
2221 * A protection check is difficult so
2222 * just be safe and disable write
2223 */
2224 if (folio_test_anon(folio))
2225 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2226 else
2227 entry = make_readable_migration_entry(swp_offset(entry));
2228 newpmd = swp_entry_to_pmd(entry);
2229 if (pmd_swp_soft_dirty(*pmd))
2230 newpmd = pmd_swp_mksoft_dirty(newpmd);
2231 } else {
2232 newpmd = *pmd;
2233 }
2234
2235 if (uffd_wp)
2236 newpmd = pmd_swp_mkuffd_wp(newpmd);
2237 else if (uffd_wp_resolve)
2238 newpmd = pmd_swp_clear_uffd_wp(newpmd);
2239 if (!pmd_same(*pmd, newpmd))
2240 set_pmd_at(mm, addr, pmd, newpmd);
2241 goto unlock;
2242 }
2243#endif
2244
2245 if (prot_numa) {
2246 struct folio *folio;
2247 bool toptier;
2248 /*
2249 * Avoid trapping faults against the zero page. The read-only
2250 * data is likely to be read-cached on the local CPU and
2251 * local/remote hits to the zero page are not interesting.
2252 */
2253 if (is_huge_zero_pmd(*pmd))
2254 goto unlock;
2255
2256 if (pmd_protnone(*pmd))
2257 goto unlock;
2258
2259 folio = pmd_folio(*pmd);
2260 toptier = node_is_toptier(folio_nid(folio));
2261 /*
2262 * Skip scanning top tier node if normal numa
2263 * balancing is disabled
2264 */
2265 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2266 toptier)
2267 goto unlock;
2268
2269 if (folio_use_access_time(folio))
2270 folio_xchg_access_time(folio,
2271 jiffies_to_msecs(jiffies));
2272 }
2273 /*
2274 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2275 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2276 * which is also under mmap_read_lock(mm):
2277 *
2278 * CPU0: CPU1:
2279 * change_huge_pmd(prot_numa=1)
2280 * pmdp_huge_get_and_clear_notify()
2281 * madvise_dontneed()
2282 * zap_pmd_range()
2283 * pmd_trans_huge(*pmd) == 0 (without ptl)
2284 * // skip the pmd
2285 * set_pmd_at();
2286 * // pmd is re-established
2287 *
2288 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2289 * which may break userspace.
2290 *
2291 * pmdp_invalidate_ad() is required to make sure we don't miss
2292 * dirty/young flags set by hardware.
2293 */
2294 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2295
2296 entry = pmd_modify(oldpmd, newprot);
2297 if (uffd_wp)
2298 entry = pmd_mkuffd_wp(entry);
2299 else if (uffd_wp_resolve)
2300 /*
2301 * Leave the write bit to be handled by PF interrupt
2302 * handler, then things like COW could be properly
2303 * handled.
2304 */
2305 entry = pmd_clear_uffd_wp(entry);
2306
2307 /* See change_pte_range(). */
2308 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2309 can_change_pmd_writable(vma, addr, entry))
2310 entry = pmd_mkwrite(entry, vma);
2311
2312 ret = HPAGE_PMD_NR;
2313 set_pmd_at(mm, addr, pmd, entry);
2314
2315 if (huge_pmd_needs_flush(oldpmd, entry))
2316 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2317unlock:
2318 spin_unlock(ptl);
2319 return ret;
2320}
2321
2322/*
2323 * Returns:
2324 *
2325 * - 0: if pud leaf changed from under us
2326 * - 1: if pud can be skipped
2327 * - HPAGE_PUD_NR: if pud was successfully processed
2328 */
2329#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2330int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2331 pud_t *pudp, unsigned long addr, pgprot_t newprot,
2332 unsigned long cp_flags)
2333{
2334 struct mm_struct *mm = vma->vm_mm;
2335 pud_t oldpud, entry;
2336 spinlock_t *ptl;
2337
2338 tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2339
2340 /* NUMA balancing doesn't apply to dax */
2341 if (cp_flags & MM_CP_PROT_NUMA)
2342 return 1;
2343
2344 /*
2345 * Huge entries on userfault-wp only works with anonymous, while we
2346 * don't have anonymous PUDs yet.
2347 */
2348 if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2349 return 1;
2350
2351 ptl = __pud_trans_huge_lock(pudp, vma);
2352 if (!ptl)
2353 return 0;
2354
2355 /*
2356 * Can't clear PUD or it can race with concurrent zapping. See
2357 * change_huge_pmd().
2358 */
2359 oldpud = pudp_invalidate(vma, addr, pudp);
2360 entry = pud_modify(oldpud, newprot);
2361 set_pud_at(mm, addr, pudp, entry);
2362 tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2363
2364 spin_unlock(ptl);
2365 return HPAGE_PUD_NR;
2366}
2367#endif
2368
2369#ifdef CONFIG_USERFAULTFD
2370/*
2371 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2372 * the caller, but it must return after releasing the page_table_lock.
2373 * Just move the page from src_pmd to dst_pmd if possible.
2374 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2375 * repeated by the caller, or other errors in case of failure.
2376 */
2377int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2378 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2379 unsigned long dst_addr, unsigned long src_addr)
2380{
2381 pmd_t _dst_pmd, src_pmdval;
2382 struct page *src_page;
2383 struct folio *src_folio;
2384 struct anon_vma *src_anon_vma;
2385 spinlock_t *src_ptl, *dst_ptl;
2386 pgtable_t src_pgtable;
2387 struct mmu_notifier_range range;
2388 int err = 0;
2389
2390 src_pmdval = *src_pmd;
2391 src_ptl = pmd_lockptr(mm, src_pmd);
2392
2393 lockdep_assert_held(src_ptl);
2394 vma_assert_locked(src_vma);
2395 vma_assert_locked(dst_vma);
2396
2397 /* Sanity checks before the operation */
2398 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2399 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2400 spin_unlock(src_ptl);
2401 return -EINVAL;
2402 }
2403
2404 if (!pmd_trans_huge(src_pmdval)) {
2405 spin_unlock(src_ptl);
2406 if (is_pmd_migration_entry(src_pmdval)) {
2407 pmd_migration_entry_wait(mm, &src_pmdval);
2408 return -EAGAIN;
2409 }
2410 return -ENOENT;
2411 }
2412
2413 src_page = pmd_page(src_pmdval);
2414
2415 if (!is_huge_zero_pmd(src_pmdval)) {
2416 if (unlikely(!PageAnonExclusive(src_page))) {
2417 spin_unlock(src_ptl);
2418 return -EBUSY;
2419 }
2420
2421 src_folio = page_folio(src_page);
2422 folio_get(src_folio);
2423 } else
2424 src_folio = NULL;
2425
2426 spin_unlock(src_ptl);
2427
2428 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2429 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2430 src_addr + HPAGE_PMD_SIZE);
2431 mmu_notifier_invalidate_range_start(&range);
2432
2433 if (src_folio) {
2434 folio_lock(src_folio);
2435
2436 /*
2437 * split_huge_page walks the anon_vma chain without the page
2438 * lock. Serialize against it with the anon_vma lock, the page
2439 * lock is not enough.
2440 */
2441 src_anon_vma = folio_get_anon_vma(src_folio);
2442 if (!src_anon_vma) {
2443 err = -EAGAIN;
2444 goto unlock_folio;
2445 }
2446 anon_vma_lock_write(src_anon_vma);
2447 } else
2448 src_anon_vma = NULL;
2449
2450 dst_ptl = pmd_lockptr(mm, dst_pmd);
2451 double_pt_lock(src_ptl, dst_ptl);
2452 if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2453 !pmd_same(*dst_pmd, dst_pmdval))) {
2454 err = -EAGAIN;
2455 goto unlock_ptls;
2456 }
2457 if (src_folio) {
2458 if (folio_maybe_dma_pinned(src_folio) ||
2459 !PageAnonExclusive(&src_folio->page)) {
2460 err = -EBUSY;
2461 goto unlock_ptls;
2462 }
2463
2464 if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2465 WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2466 err = -EBUSY;
2467 goto unlock_ptls;
2468 }
2469
2470 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2471 /* Folio got pinned from under us. Put it back and fail the move. */
2472 if (folio_maybe_dma_pinned(src_folio)) {
2473 set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2474 err = -EBUSY;
2475 goto unlock_ptls;
2476 }
2477
2478 folio_move_anon_rmap(src_folio, dst_vma);
2479 src_folio->index = linear_page_index(dst_vma, dst_addr);
2480
2481 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2482 /* Follow mremap() behavior and treat the entry dirty after the move */
2483 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2484 } else {
2485 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2486 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
2487 }
2488 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2489
2490 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2491 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2492unlock_ptls:
2493 double_pt_unlock(src_ptl, dst_ptl);
2494 if (src_anon_vma) {
2495 anon_vma_unlock_write(src_anon_vma);
2496 put_anon_vma(src_anon_vma);
2497 }
2498unlock_folio:
2499 /* unblock rmap walks */
2500 if (src_folio)
2501 folio_unlock(src_folio);
2502 mmu_notifier_invalidate_range_end(&range);
2503 if (src_folio)
2504 folio_put(src_folio);
2505 return err;
2506}
2507#endif /* CONFIG_USERFAULTFD */
2508
2509/*
2510 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2511 *
2512 * Note that if it returns page table lock pointer, this routine returns without
2513 * unlocking page table lock. So callers must unlock it.
2514 */
2515spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2516{
2517 spinlock_t *ptl;
2518 ptl = pmd_lock(vma->vm_mm, pmd);
2519 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2520 pmd_devmap(*pmd)))
2521 return ptl;
2522 spin_unlock(ptl);
2523 return NULL;
2524}
2525
2526/*
2527 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2528 *
2529 * Note that if it returns page table lock pointer, this routine returns without
2530 * unlocking page table lock. So callers must unlock it.
2531 */
2532spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2533{
2534 spinlock_t *ptl;
2535
2536 ptl = pud_lock(vma->vm_mm, pud);
2537 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2538 return ptl;
2539 spin_unlock(ptl);
2540 return NULL;
2541}
2542
2543#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2544int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2545 pud_t *pud, unsigned long addr)
2546{
2547 spinlock_t *ptl;
2548 pud_t orig_pud;
2549
2550 ptl = __pud_trans_huge_lock(pud, vma);
2551 if (!ptl)
2552 return 0;
2553
2554 orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2555 arch_check_zapped_pud(vma, orig_pud);
2556 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2557 if (vma_is_special_huge(vma)) {
2558 spin_unlock(ptl);
2559 /* No zero page support yet */
2560 } else {
2561 /* No support for anonymous PUD pages yet */
2562 BUG();
2563 }
2564 return 1;
2565}
2566
2567static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2568 unsigned long haddr)
2569{
2570 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2571 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2572 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2573 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2574
2575 count_vm_event(THP_SPLIT_PUD);
2576
2577 pudp_huge_clear_flush(vma, haddr, pud);
2578}
2579
2580void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2581 unsigned long address)
2582{
2583 spinlock_t *ptl;
2584 struct mmu_notifier_range range;
2585
2586 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2587 address & HPAGE_PUD_MASK,
2588 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2589 mmu_notifier_invalidate_range_start(&range);
2590 ptl = pud_lock(vma->vm_mm, pud);
2591 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2592 goto out;
2593 __split_huge_pud_locked(vma, pud, range.start);
2594
2595out:
2596 spin_unlock(ptl);
2597 mmu_notifier_invalidate_range_end(&range);
2598}
2599#else
2600void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2601 unsigned long address)
2602{
2603}
2604#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2605
2606static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2607 unsigned long haddr, pmd_t *pmd)
2608{
2609 struct mm_struct *mm = vma->vm_mm;
2610 pgtable_t pgtable;
2611 pmd_t _pmd, old_pmd;
2612 unsigned long addr;
2613 pte_t *pte;
2614 int i;
2615
2616 /*
2617 * Leave pmd empty until pte is filled note that it is fine to delay
2618 * notification until mmu_notifier_invalidate_range_end() as we are
2619 * replacing a zero pmd write protected page with a zero pte write
2620 * protected page.
2621 *
2622 * See Documentation/mm/mmu_notifier.rst
2623 */
2624 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2625
2626 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2627 pmd_populate(mm, &_pmd, pgtable);
2628
2629 pte = pte_offset_map(&_pmd, haddr);
2630 VM_BUG_ON(!pte);
2631 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2632 pte_t entry;
2633
2634 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2635 entry = pte_mkspecial(entry);
2636 if (pmd_uffd_wp(old_pmd))
2637 entry = pte_mkuffd_wp(entry);
2638 VM_BUG_ON(!pte_none(ptep_get(pte)));
2639 set_pte_at(mm, addr, pte, entry);
2640 pte++;
2641 }
2642 pte_unmap(pte - 1);
2643 smp_wmb(); /* make pte visible before pmd */
2644 pmd_populate(mm, pmd, pgtable);
2645}
2646
2647static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2648 unsigned long haddr, bool freeze)
2649{
2650 struct mm_struct *mm = vma->vm_mm;
2651 struct folio *folio;
2652 struct page *page;
2653 pgtable_t pgtable;
2654 pmd_t old_pmd, _pmd;
2655 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2656 bool anon_exclusive = false, dirty = false;
2657 unsigned long addr;
2658 pte_t *pte;
2659 int i;
2660
2661 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2662 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2663 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2664 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2665 && !pmd_devmap(*pmd));
2666
2667 count_vm_event(THP_SPLIT_PMD);
2668
2669 if (!vma_is_anonymous(vma)) {
2670 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2671 /*
2672 * We are going to unmap this huge page. So
2673 * just go ahead and zap it
2674 */
2675 if (arch_needs_pgtable_deposit())
2676 zap_deposited_table(mm, pmd);
2677 if (vma_is_special_huge(vma))
2678 return;
2679 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2680 swp_entry_t entry;
2681
2682 entry = pmd_to_swp_entry(old_pmd);
2683 folio = pfn_swap_entry_folio(entry);
2684 } else {
2685 page = pmd_page(old_pmd);
2686 folio = page_folio(page);
2687 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2688 folio_mark_dirty(folio);
2689 if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2690 folio_set_referenced(folio);
2691 folio_remove_rmap_pmd(folio, page, vma);
2692 folio_put(folio);
2693 }
2694 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2695 return;
2696 }
2697
2698 if (is_huge_zero_pmd(*pmd)) {
2699 /*
2700 * FIXME: Do we want to invalidate secondary mmu by calling
2701 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2702 * inside __split_huge_pmd() ?
2703 *
2704 * We are going from a zero huge page write protected to zero
2705 * small page also write protected so it does not seems useful
2706 * to invalidate secondary mmu at this time.
2707 */
2708 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2709 }
2710
2711 pmd_migration = is_pmd_migration_entry(*pmd);
2712 if (unlikely(pmd_migration)) {
2713 swp_entry_t entry;
2714
2715 old_pmd = *pmd;
2716 entry = pmd_to_swp_entry(old_pmd);
2717 page = pfn_swap_entry_to_page(entry);
2718 write = is_writable_migration_entry(entry);
2719 if (PageAnon(page))
2720 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2721 young = is_migration_entry_young(entry);
2722 dirty = is_migration_entry_dirty(entry);
2723 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2724 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2725 } else {
2726 /*
2727 * Up to this point the pmd is present and huge and userland has
2728 * the whole access to the hugepage during the split (which
2729 * happens in place). If we overwrite the pmd with the not-huge
2730 * version pointing to the pte here (which of course we could if
2731 * all CPUs were bug free), userland could trigger a small page
2732 * size TLB miss on the small sized TLB while the hugepage TLB
2733 * entry is still established in the huge TLB. Some CPU doesn't
2734 * like that. See
2735 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2736 * 383 on page 105. Intel should be safe but is also warns that
2737 * it's only safe if the permission and cache attributes of the
2738 * two entries loaded in the two TLB is identical (which should
2739 * be the case here). But it is generally safer to never allow
2740 * small and huge TLB entries for the same virtual address to be
2741 * loaded simultaneously. So instead of doing "pmd_populate();
2742 * flush_pmd_tlb_range();" we first mark the current pmd
2743 * notpresent (atomically because here the pmd_trans_huge must
2744 * remain set at all times on the pmd until the split is
2745 * complete for this pmd), then we flush the SMP TLB and finally
2746 * we write the non-huge version of the pmd entry with
2747 * pmd_populate.
2748 */
2749 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2750 page = pmd_page(old_pmd);
2751 folio = page_folio(page);
2752 if (pmd_dirty(old_pmd)) {
2753 dirty = true;
2754 folio_set_dirty(folio);
2755 }
2756 write = pmd_write(old_pmd);
2757 young = pmd_young(old_pmd);
2758 soft_dirty = pmd_soft_dirty(old_pmd);
2759 uffd_wp = pmd_uffd_wp(old_pmd);
2760
2761 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2762 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2763
2764 /*
2765 * Without "freeze", we'll simply split the PMD, propagating the
2766 * PageAnonExclusive() flag for each PTE by setting it for
2767 * each subpage -- no need to (temporarily) clear.
2768 *
2769 * With "freeze" we want to replace mapped pages by
2770 * migration entries right away. This is only possible if we
2771 * managed to clear PageAnonExclusive() -- see
2772 * set_pmd_migration_entry().
2773 *
2774 * In case we cannot clear PageAnonExclusive(), split the PMD
2775 * only and let try_to_migrate_one() fail later.
2776 *
2777 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2778 */
2779 anon_exclusive = PageAnonExclusive(page);
2780 if (freeze && anon_exclusive &&
2781 folio_try_share_anon_rmap_pmd(folio, page))
2782 freeze = false;
2783 if (!freeze) {
2784 rmap_t rmap_flags = RMAP_NONE;
2785
2786 folio_ref_add(folio, HPAGE_PMD_NR - 1);
2787 if (anon_exclusive)
2788 rmap_flags |= RMAP_EXCLUSIVE;
2789 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2790 vma, haddr, rmap_flags);
2791 }
2792 }
2793
2794 /*
2795 * Withdraw the table only after we mark the pmd entry invalid.
2796 * This's critical for some architectures (Power).
2797 */
2798 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2799 pmd_populate(mm, &_pmd, pgtable);
2800
2801 pte = pte_offset_map(&_pmd, haddr);
2802 VM_BUG_ON(!pte);
2803
2804 /*
2805 * Note that NUMA hinting access restrictions are not transferred to
2806 * avoid any possibility of altering permissions across VMAs.
2807 */
2808 if (freeze || pmd_migration) {
2809 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2810 pte_t entry;
2811 swp_entry_t swp_entry;
2812
2813 if (write)
2814 swp_entry = make_writable_migration_entry(
2815 page_to_pfn(page + i));
2816 else if (anon_exclusive)
2817 swp_entry = make_readable_exclusive_migration_entry(
2818 page_to_pfn(page + i));
2819 else
2820 swp_entry = make_readable_migration_entry(
2821 page_to_pfn(page + i));
2822 if (young)
2823 swp_entry = make_migration_entry_young(swp_entry);
2824 if (dirty)
2825 swp_entry = make_migration_entry_dirty(swp_entry);
2826 entry = swp_entry_to_pte(swp_entry);
2827 if (soft_dirty)
2828 entry = pte_swp_mksoft_dirty(entry);
2829 if (uffd_wp)
2830 entry = pte_swp_mkuffd_wp(entry);
2831
2832 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2833 set_pte_at(mm, addr, pte + i, entry);
2834 }
2835 } else {
2836 pte_t entry;
2837
2838 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
2839 if (write)
2840 entry = pte_mkwrite(entry, vma);
2841 if (!young)
2842 entry = pte_mkold(entry);
2843 /* NOTE: this may set soft-dirty too on some archs */
2844 if (dirty)
2845 entry = pte_mkdirty(entry);
2846 if (soft_dirty)
2847 entry = pte_mksoft_dirty(entry);
2848 if (uffd_wp)
2849 entry = pte_mkuffd_wp(entry);
2850
2851 for (i = 0; i < HPAGE_PMD_NR; i++)
2852 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2853
2854 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
2855 }
2856 pte_unmap(pte);
2857
2858 if (!pmd_migration)
2859 folio_remove_rmap_pmd(folio, page, vma);
2860 if (freeze)
2861 put_page(page);
2862
2863 smp_wmb(); /* make pte visible before pmd */
2864 pmd_populate(mm, pmd, pgtable);
2865}
2866
2867void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
2868 pmd_t *pmd, bool freeze, struct folio *folio)
2869{
2870 VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio));
2871 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
2872 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2873 VM_BUG_ON(freeze && !folio);
2874
2875 /*
2876 * When the caller requests to set up a migration entry, we
2877 * require a folio to check the PMD against. Otherwise, there
2878 * is a risk of replacing the wrong folio.
2879 */
2880 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2881 is_pmd_migration_entry(*pmd)) {
2882 if (folio && folio != pmd_folio(*pmd))
2883 return;
2884 __split_huge_pmd_locked(vma, pmd, address, freeze);
2885 }
2886}
2887
2888void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2889 unsigned long address, bool freeze, struct folio *folio)
2890{
2891 spinlock_t *ptl;
2892 struct mmu_notifier_range range;
2893
2894 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2895 address & HPAGE_PMD_MASK,
2896 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2897 mmu_notifier_invalidate_range_start(&range);
2898 ptl = pmd_lock(vma->vm_mm, pmd);
2899 split_huge_pmd_locked(vma, range.start, pmd, freeze, folio);
2900 spin_unlock(ptl);
2901 mmu_notifier_invalidate_range_end(&range);
2902}
2903
2904void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2905 bool freeze, struct folio *folio)
2906{
2907 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2908
2909 if (!pmd)
2910 return;
2911
2912 __split_huge_pmd(vma, pmd, address, freeze, folio);
2913}
2914
2915static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2916{
2917 /*
2918 * If the new address isn't hpage aligned and it could previously
2919 * contain an hugepage: check if we need to split an huge pmd.
2920 */
2921 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2922 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2923 ALIGN(address, HPAGE_PMD_SIZE)))
2924 split_huge_pmd_address(vma, address, false, NULL);
2925}
2926
2927void vma_adjust_trans_huge(struct vm_area_struct *vma,
2928 unsigned long start,
2929 unsigned long end,
2930 long adjust_next)
2931{
2932 /* Check if we need to split start first. */
2933 split_huge_pmd_if_needed(vma, start);
2934
2935 /* Check if we need to split end next. */
2936 split_huge_pmd_if_needed(vma, end);
2937
2938 /*
2939 * If we're also updating the next vma vm_start,
2940 * check if we need to split it.
2941 */
2942 if (adjust_next > 0) {
2943 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2944 unsigned long nstart = next->vm_start;
2945 nstart += adjust_next;
2946 split_huge_pmd_if_needed(next, nstart);
2947 }
2948}
2949
2950static void unmap_folio(struct folio *folio)
2951{
2952 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
2953 TTU_BATCH_FLUSH;
2954
2955 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2956
2957 if (folio_test_pmd_mappable(folio))
2958 ttu_flags |= TTU_SPLIT_HUGE_PMD;
2959
2960 /*
2961 * Anon pages need migration entries to preserve them, but file
2962 * pages can simply be left unmapped, then faulted back on demand.
2963 * If that is ever changed (perhaps for mlock), update remap_page().
2964 */
2965 if (folio_test_anon(folio))
2966 try_to_migrate(folio, ttu_flags);
2967 else
2968 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2969
2970 try_to_unmap_flush();
2971}
2972
2973static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
2974 unsigned long addr, pmd_t *pmdp,
2975 struct folio *folio)
2976{
2977 struct mm_struct *mm = vma->vm_mm;
2978 int ref_count, map_count;
2979 pmd_t orig_pmd = *pmdp;
2980
2981 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd))
2982 return false;
2983
2984 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
2985
2986 /*
2987 * Syncing against concurrent GUP-fast:
2988 * - clear PMD; barrier; read refcount
2989 * - inc refcount; barrier; read PMD
2990 */
2991 smp_mb();
2992
2993 ref_count = folio_ref_count(folio);
2994 map_count = folio_mapcount(folio);
2995
2996 /*
2997 * Order reads for folio refcount and dirty flag
2998 * (see comments in __remove_mapping()).
2999 */
3000 smp_rmb();
3001
3002 /*
3003 * If the folio or its PMD is redirtied at this point, or if there
3004 * are unexpected references, we will give up to discard this folio
3005 * and remap it.
3006 *
3007 * The only folio refs must be one from isolation plus the rmap(s).
3008 */
3009 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) ||
3010 ref_count != map_count + 1) {
3011 set_pmd_at(mm, addr, pmdp, orig_pmd);
3012 return false;
3013 }
3014
3015 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3016 zap_deposited_table(mm, pmdp);
3017 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3018 if (vma->vm_flags & VM_LOCKED)
3019 mlock_drain_local();
3020 folio_put(folio);
3021
3022 return true;
3023}
3024
3025bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3026 pmd_t *pmdp, struct folio *folio)
3027{
3028 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3029 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3030 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3031
3032 if (folio_test_anon(folio) && !folio_test_swapbacked(folio))
3033 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3034
3035 return false;
3036}
3037
3038static void remap_page(struct folio *folio, unsigned long nr, int flags)
3039{
3040 int i = 0;
3041
3042 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
3043 if (!folio_test_anon(folio))
3044 return;
3045 for (;;) {
3046 remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3047 i += folio_nr_pages(folio);
3048 if (i >= nr)
3049 break;
3050 folio = folio_next(folio);
3051 }
3052}
3053
3054static void lru_add_page_tail(struct folio *folio, struct page *tail,
3055 struct lruvec *lruvec, struct list_head *list)
3056{
3057 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3058 VM_BUG_ON_FOLIO(PageLRU(tail), folio);
3059 lockdep_assert_held(&lruvec->lru_lock);
3060
3061 if (list) {
3062 /* page reclaim is reclaiming a huge page */
3063 VM_WARN_ON(folio_test_lru(folio));
3064 get_page(tail);
3065 list_add_tail(&tail->lru, list);
3066 } else {
3067 /* head is still on lru (and we have it frozen) */
3068 VM_WARN_ON(!folio_test_lru(folio));
3069 if (folio_test_unevictable(folio))
3070 tail->mlock_count = 0;
3071 else
3072 list_add_tail(&tail->lru, &folio->lru);
3073 SetPageLRU(tail);
3074 }
3075}
3076
3077static void __split_huge_page_tail(struct folio *folio, int tail,
3078 struct lruvec *lruvec, struct list_head *list,
3079 unsigned int new_order)
3080{
3081 struct page *head = &folio->page;
3082 struct page *page_tail = head + tail;
3083 /*
3084 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3085 * Don't pass it around before clear_compound_head().
3086 */
3087 struct folio *new_folio = (struct folio *)page_tail;
3088
3089 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3090
3091 /*
3092 * Clone page flags before unfreezing refcount.
3093 *
3094 * After successful get_page_unless_zero() might follow flags change,
3095 * for example lock_page() which set PG_waiters.
3096 *
3097 * Note that for mapped sub-pages of an anonymous THP,
3098 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3099 * the migration entry instead from where remap_page() will restore it.
3100 * We can still have PG_anon_exclusive set on effectively unmapped and
3101 * unreferenced sub-pages of an anonymous THP: we can simply drop
3102 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3103 */
3104 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3105 page_tail->flags |= (head->flags &
3106 ((1L << PG_referenced) |
3107 (1L << PG_swapbacked) |
3108 (1L << PG_swapcache) |
3109 (1L << PG_mlocked) |
3110 (1L << PG_uptodate) |
3111 (1L << PG_active) |
3112 (1L << PG_workingset) |
3113 (1L << PG_locked) |
3114 (1L << PG_unevictable) |
3115#ifdef CONFIG_ARCH_USES_PG_ARCH_2
3116 (1L << PG_arch_2) |
3117#endif
3118#ifdef CONFIG_ARCH_USES_PG_ARCH_3
3119 (1L << PG_arch_3) |
3120#endif
3121 (1L << PG_dirty) |
3122 LRU_GEN_MASK | LRU_REFS_MASK));
3123
3124 /* ->mapping in first and second tail page is replaced by other uses */
3125 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3126 page_tail);
3127 page_tail->mapping = head->mapping;
3128 page_tail->index = head->index + tail;
3129
3130 /*
3131 * page->private should not be set in tail pages. Fix up and warn once
3132 * if private is unexpectedly set.
3133 */
3134 if (unlikely(page_tail->private)) {
3135 VM_WARN_ON_ONCE_PAGE(true, page_tail);
3136 page_tail->private = 0;
3137 }
3138 if (folio_test_swapcache(folio))
3139 new_folio->swap.val = folio->swap.val + tail;
3140
3141 /* Page flags must be visible before we make the page non-compound. */
3142 smp_wmb();
3143
3144 /*
3145 * Clear PageTail before unfreezing page refcount.
3146 *
3147 * After successful get_page_unless_zero() might follow put_page()
3148 * which needs correct compound_head().
3149 */
3150 clear_compound_head(page_tail);
3151 if (new_order) {
3152 prep_compound_page(page_tail, new_order);
3153 folio_set_large_rmappable(new_folio);
3154 }
3155
3156 /* Finally unfreeze refcount. Additional reference from page cache. */
3157 page_ref_unfreeze(page_tail,
3158 1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ?
3159 folio_nr_pages(new_folio) : 0));
3160
3161 if (folio_test_young(folio))
3162 folio_set_young(new_folio);
3163 if (folio_test_idle(folio))
3164 folio_set_idle(new_folio);
3165
3166 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3167
3168 /*
3169 * always add to the tail because some iterators expect new
3170 * pages to show after the currently processed elements - e.g.
3171 * migrate_pages
3172 */
3173 lru_add_page_tail(folio, page_tail, lruvec, list);
3174}
3175
3176static void __split_huge_page(struct page *page, struct list_head *list,
3177 pgoff_t end, unsigned int new_order)
3178{
3179 struct folio *folio = page_folio(page);
3180 struct page *head = &folio->page;
3181 struct lruvec *lruvec;
3182 struct address_space *swap_cache = NULL;
3183 unsigned long offset = 0;
3184 int i, nr_dropped = 0;
3185 unsigned int new_nr = 1 << new_order;
3186 int order = folio_order(folio);
3187 unsigned int nr = 1 << order;
3188
3189 /* complete memcg works before add pages to LRU */
3190 split_page_memcg(head, order, new_order);
3191
3192 if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
3193 offset = swap_cache_index(folio->swap);
3194 swap_cache = swap_address_space(folio->swap);
3195 xa_lock(&swap_cache->i_pages);
3196 }
3197
3198 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3199 lruvec = folio_lruvec_lock(folio);
3200
3201 ClearPageHasHWPoisoned(head);
3202
3203 for (i = nr - new_nr; i >= new_nr; i -= new_nr) {
3204 __split_huge_page_tail(folio, i, lruvec, list, new_order);
3205 /* Some pages can be beyond EOF: drop them from page cache */
3206 if (head[i].index >= end) {
3207 struct folio *tail = page_folio(head + i);
3208
3209 if (shmem_mapping(folio->mapping))
3210 nr_dropped++;
3211 else if (folio_test_clear_dirty(tail))
3212 folio_account_cleaned(tail,
3213 inode_to_wb(folio->mapping->host));
3214 __filemap_remove_folio(tail, NULL);
3215 folio_put(tail);
3216 } else if (!PageAnon(page)) {
3217 __xa_store(&folio->mapping->i_pages, head[i].index,
3218 head + i, 0);
3219 } else if (swap_cache) {
3220 __xa_store(&swap_cache->i_pages, offset + i,
3221 head + i, 0);
3222 }
3223 }
3224
3225 if (!new_order)
3226 ClearPageCompound(head);
3227 else {
3228 struct folio *new_folio = (struct folio *)head;
3229
3230 folio_set_order(new_folio, new_order);
3231 }
3232 unlock_page_lruvec(lruvec);
3233 /* Caller disabled irqs, so they are still disabled here */
3234
3235 split_page_owner(head, order, new_order);
3236 pgalloc_tag_split(folio, order, new_order);
3237
3238 /* See comment in __split_huge_page_tail() */
3239 if (folio_test_anon(folio)) {
3240 /* Additional pin to swap cache */
3241 if (folio_test_swapcache(folio)) {
3242 folio_ref_add(folio, 1 + new_nr);
3243 xa_unlock(&swap_cache->i_pages);
3244 } else {
3245 folio_ref_inc(folio);
3246 }
3247 } else {
3248 /* Additional pin to page cache */
3249 folio_ref_add(folio, 1 + new_nr);
3250 xa_unlock(&folio->mapping->i_pages);
3251 }
3252 local_irq_enable();
3253
3254 if (nr_dropped)
3255 shmem_uncharge(folio->mapping->host, nr_dropped);
3256 remap_page(folio, nr, PageAnon(head) ? RMP_USE_SHARED_ZEROPAGE : 0);
3257
3258 /*
3259 * set page to its compound_head when split to non order-0 pages, so
3260 * we can skip unlocking it below, since PG_locked is transferred to
3261 * the compound_head of the page and the caller will unlock it.
3262 */
3263 if (new_order)
3264 page = compound_head(page);
3265
3266 for (i = 0; i < nr; i += new_nr) {
3267 struct page *subpage = head + i;
3268 struct folio *new_folio = page_folio(subpage);
3269 if (subpage == page)
3270 continue;
3271 folio_unlock(new_folio);
3272
3273 /*
3274 * Subpages may be freed if there wasn't any mapping
3275 * like if add_to_swap() is running on a lru page that
3276 * had its mapping zapped. And freeing these pages
3277 * requires taking the lru_lock so we do the put_page
3278 * of the tail pages after the split is complete.
3279 */
3280 free_page_and_swap_cache(subpage);
3281 }
3282}
3283
3284/* Racy check whether the huge page can be split */
3285bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3286{
3287 int extra_pins;
3288
3289 /* Additional pins from page cache */
3290 if (folio_test_anon(folio))
3291 extra_pins = folio_test_swapcache(folio) ?
3292 folio_nr_pages(folio) : 0;
3293 else
3294 extra_pins = folio_nr_pages(folio);
3295 if (pextra_pins)
3296 *pextra_pins = extra_pins;
3297 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3298 caller_pins;
3299}
3300
3301/*
3302 * This function splits a large folio into smaller folios of order @new_order.
3303 * @page can point to any page of the large folio to split. The split operation
3304 * does not change the position of @page.
3305 *
3306 * Prerequisites:
3307 *
3308 * 1) The caller must hold a reference on the @page's owning folio, also known
3309 * as the large folio.
3310 *
3311 * 2) The large folio must be locked.
3312 *
3313 * 3) The folio must not be pinned. Any unexpected folio references, including
3314 * GUP pins, will result in the folio not getting split; instead, the caller
3315 * will receive an -EAGAIN.
3316 *
3317 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3318 * supported for non-file-backed folios, because folio->_deferred_list, which
3319 * is used by partially mapped folios, is stored in subpage 2, but an order-1
3320 * folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3321 * since they do not use _deferred_list.
3322 *
3323 * After splitting, the caller's folio reference will be transferred to @page,
3324 * resulting in a raised refcount of @page after this call. The other pages may
3325 * be freed if they are not mapped.
3326 *
3327 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3328 *
3329 * Pages in @new_order will inherit the mapping, flags, and so on from the
3330 * huge page.
3331 *
3332 * Returns 0 if the huge page was split successfully.
3333 *
3334 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3335 * the folio was concurrently removed from the page cache.
3336 *
3337 * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3338 * under writeback, if fs-specific folio metadata cannot currently be
3339 * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3340 * truncation).
3341 *
3342 * Callers should ensure that the order respects the address space mapping
3343 * min-order if one is set for non-anonymous folios.
3344 *
3345 * Returns -EINVAL when trying to split to an order that is incompatible
3346 * with the folio. Splitting to order 0 is compatible with all folios.
3347 */
3348int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3349 unsigned int new_order)
3350{
3351 struct folio *folio = page_folio(page);
3352 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3353 /* reset xarray order to new order after split */
3354 XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order);
3355 bool is_anon = folio_test_anon(folio);
3356 struct address_space *mapping = NULL;
3357 struct anon_vma *anon_vma = NULL;
3358 int order = folio_order(folio);
3359 int extra_pins, ret;
3360 pgoff_t end;
3361 bool is_hzp;
3362
3363 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3364 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3365
3366 if (new_order >= folio_order(folio))
3367 return -EINVAL;
3368
3369 if (is_anon) {
3370 /* order-1 is not supported for anonymous THP. */
3371 if (new_order == 1) {
3372 VM_WARN_ONCE(1, "Cannot split to order-1 folio");
3373 return -EINVAL;
3374 }
3375 } else if (new_order) {
3376 /* Split shmem folio to non-zero order not supported */
3377 if (shmem_mapping(folio->mapping)) {
3378 VM_WARN_ONCE(1,
3379 "Cannot split shmem folio to non-0 order");
3380 return -EINVAL;
3381 }
3382 /*
3383 * No split if the file system does not support large folio.
3384 * Note that we might still have THPs in such mappings due to
3385 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3386 * does not actually support large folios properly.
3387 */
3388 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3389 !mapping_large_folio_support(folio->mapping)) {
3390 VM_WARN_ONCE(1,
3391 "Cannot split file folio to non-0 order");
3392 return -EINVAL;
3393 }
3394 }
3395
3396 /* Only swapping a whole PMD-mapped folio is supported */
3397 if (folio_test_swapcache(folio) && new_order)
3398 return -EINVAL;
3399
3400 is_hzp = is_huge_zero_folio(folio);
3401 if (is_hzp) {
3402 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3403 return -EBUSY;
3404 }
3405
3406 if (folio_test_writeback(folio))
3407 return -EBUSY;
3408
3409 if (is_anon) {
3410 /*
3411 * The caller does not necessarily hold an mmap_lock that would
3412 * prevent the anon_vma disappearing so we first we take a
3413 * reference to it and then lock the anon_vma for write. This
3414 * is similar to folio_lock_anon_vma_read except the write lock
3415 * is taken to serialise against parallel split or collapse
3416 * operations.
3417 */
3418 anon_vma = folio_get_anon_vma(folio);
3419 if (!anon_vma) {
3420 ret = -EBUSY;
3421 goto out;
3422 }
3423 end = -1;
3424 mapping = NULL;
3425 anon_vma_lock_write(anon_vma);
3426 } else {
3427 unsigned int min_order;
3428 gfp_t gfp;
3429
3430 mapping = folio->mapping;
3431
3432 /* Truncated ? */
3433 if (!mapping) {
3434 ret = -EBUSY;
3435 goto out;
3436 }
3437
3438 min_order = mapping_min_folio_order(folio->mapping);
3439 if (new_order < min_order) {
3440 VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u",
3441 min_order);
3442 ret = -EINVAL;
3443 goto out;
3444 }
3445
3446 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3447 GFP_RECLAIM_MASK);
3448
3449 if (!filemap_release_folio(folio, gfp)) {
3450 ret = -EBUSY;
3451 goto out;
3452 }
3453
3454 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3455 if (xas_error(&xas)) {
3456 ret = xas_error(&xas);
3457 goto out;
3458 }
3459
3460 anon_vma = NULL;
3461 i_mmap_lock_read(mapping);
3462
3463 /*
3464 *__split_huge_page() may need to trim off pages beyond EOF:
3465 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3466 * which cannot be nested inside the page tree lock. So note
3467 * end now: i_size itself may be changed at any moment, but
3468 * folio lock is good enough to serialize the trimming.
3469 */
3470 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3471 if (shmem_mapping(mapping))
3472 end = shmem_fallocend(mapping->host, end);
3473 }
3474
3475 /*
3476 * Racy check if we can split the page, before unmap_folio() will
3477 * split PMDs
3478 */
3479 if (!can_split_folio(folio, 1, &extra_pins)) {
3480 ret = -EAGAIN;
3481 goto out_unlock;
3482 }
3483
3484 unmap_folio(folio);
3485
3486 /* block interrupt reentry in xa_lock and spinlock */
3487 local_irq_disable();
3488 if (mapping) {
3489 /*
3490 * Check if the folio is present in page cache.
3491 * We assume all tail are present too, if folio is there.
3492 */
3493 xas_lock(&xas);
3494 xas_reset(&xas);
3495 if (xas_load(&xas) != folio)
3496 goto fail;
3497 }
3498
3499 /* Prevent deferred_split_scan() touching ->_refcount */
3500 spin_lock(&ds_queue->split_queue_lock);
3501 if (folio_ref_freeze(folio, 1 + extra_pins)) {
3502 if (folio_order(folio) > 1 &&
3503 !list_empty(&folio->_deferred_list)) {
3504 ds_queue->split_queue_len--;
3505 if (folio_test_partially_mapped(folio)) {
3506 __folio_clear_partially_mapped(folio);
3507 mod_mthp_stat(folio_order(folio),
3508 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3509 }
3510 /*
3511 * Reinitialize page_deferred_list after removing the
3512 * page from the split_queue, otherwise a subsequent
3513 * split will see list corruption when checking the
3514 * page_deferred_list.
3515 */
3516 list_del_init(&folio->_deferred_list);
3517 }
3518 spin_unlock(&ds_queue->split_queue_lock);
3519 if (mapping) {
3520 int nr = folio_nr_pages(folio);
3521
3522 xas_split(&xas, folio, folio_order(folio));
3523 if (folio_test_pmd_mappable(folio) &&
3524 new_order < HPAGE_PMD_ORDER) {
3525 if (folio_test_swapbacked(folio)) {
3526 __lruvec_stat_mod_folio(folio,
3527 NR_SHMEM_THPS, -nr);
3528 } else {
3529 __lruvec_stat_mod_folio(folio,
3530 NR_FILE_THPS, -nr);
3531 filemap_nr_thps_dec(mapping);
3532 }
3533 }
3534 }
3535
3536 if (is_anon) {
3537 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3538 mod_mthp_stat(new_order, MTHP_STAT_NR_ANON, 1 << (order - new_order));
3539 }
3540 __split_huge_page(page, list, end, new_order);
3541 ret = 0;
3542 } else {
3543 spin_unlock(&ds_queue->split_queue_lock);
3544fail:
3545 if (mapping)
3546 xas_unlock(&xas);
3547 local_irq_enable();
3548 remap_page(folio, folio_nr_pages(folio), 0);
3549 ret = -EAGAIN;
3550 }
3551
3552out_unlock:
3553 if (anon_vma) {
3554 anon_vma_unlock_write(anon_vma);
3555 put_anon_vma(anon_vma);
3556 }
3557 if (mapping)
3558 i_mmap_unlock_read(mapping);
3559out:
3560 xas_destroy(&xas);
3561 if (order == HPAGE_PMD_ORDER)
3562 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3563 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3564 return ret;
3565}
3566
3567int min_order_for_split(struct folio *folio)
3568{
3569 if (folio_test_anon(folio))
3570 return 0;
3571
3572 if (!folio->mapping) {
3573 if (folio_test_pmd_mappable(folio))
3574 count_vm_event(THP_SPLIT_PAGE_FAILED);
3575 return -EBUSY;
3576 }
3577
3578 return mapping_min_folio_order(folio->mapping);
3579}
3580
3581int split_folio_to_list(struct folio *folio, struct list_head *list)
3582{
3583 int ret = min_order_for_split(folio);
3584
3585 if (ret < 0)
3586 return ret;
3587
3588 return split_huge_page_to_list_to_order(&folio->page, list, ret);
3589}
3590
3591/*
3592 * __folio_unqueue_deferred_split() is not to be called directly:
3593 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
3594 * limits its calls to those folios which may have a _deferred_list for
3595 * queueing THP splits, and that list is (racily observed to be) non-empty.
3596 *
3597 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
3598 * zero: because even when split_queue_lock is held, a non-empty _deferred_list
3599 * might be in use on deferred_split_scan()'s unlocked on-stack list.
3600 *
3601 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
3602 * therefore important to unqueue deferred split before changing folio memcg.
3603 */
3604bool __folio_unqueue_deferred_split(struct folio *folio)
3605{
3606 struct deferred_split *ds_queue;
3607 unsigned long flags;
3608 bool unqueued = false;
3609
3610 WARN_ON_ONCE(folio_ref_count(folio));
3611 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
3612
3613 ds_queue = get_deferred_split_queue(folio);
3614 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3615 if (!list_empty(&folio->_deferred_list)) {
3616 ds_queue->split_queue_len--;
3617 if (folio_test_partially_mapped(folio)) {
3618 __folio_clear_partially_mapped(folio);
3619 mod_mthp_stat(folio_order(folio),
3620 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3621 }
3622 list_del_init(&folio->_deferred_list);
3623 unqueued = true;
3624 }
3625 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3626
3627 return unqueued; /* useful for debug warnings */
3628}
3629
3630/* partially_mapped=false won't clear PG_partially_mapped folio flag */
3631void deferred_split_folio(struct folio *folio, bool partially_mapped)
3632{
3633 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3634#ifdef CONFIG_MEMCG
3635 struct mem_cgroup *memcg = folio_memcg(folio);
3636#endif
3637 unsigned long flags;
3638
3639 /*
3640 * Order 1 folios have no space for a deferred list, but we also
3641 * won't waste much memory by not adding them to the deferred list.
3642 */
3643 if (folio_order(folio) <= 1)
3644 return;
3645
3646 if (!partially_mapped && !split_underused_thp)
3647 return;
3648
3649 /*
3650 * Exclude swapcache: originally to avoid a corrupt deferred split
3651 * queue. Nowadays that is fully prevented by mem_cgroup_swapout();
3652 * but if page reclaim is already handling the same folio, it is
3653 * unnecessary to handle it again in the shrinker, so excluding
3654 * swapcache here may still be a useful optimization.
3655 */
3656 if (folio_test_swapcache(folio))
3657 return;
3658
3659 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3660 if (partially_mapped) {
3661 if (!folio_test_partially_mapped(folio)) {
3662 __folio_set_partially_mapped(folio);
3663 if (folio_test_pmd_mappable(folio))
3664 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3665 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
3666 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
3667
3668 }
3669 } else {
3670 /* partially mapped folios cannot become non-partially mapped */
3671 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
3672 }
3673 if (list_empty(&folio->_deferred_list)) {
3674 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3675 ds_queue->split_queue_len++;
3676#ifdef CONFIG_MEMCG
3677 if (memcg)
3678 set_shrinker_bit(memcg, folio_nid(folio),
3679 deferred_split_shrinker->id);
3680#endif
3681 }
3682 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3683}
3684
3685static unsigned long deferred_split_count(struct shrinker *shrink,
3686 struct shrink_control *sc)
3687{
3688 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3689 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3690
3691#ifdef CONFIG_MEMCG
3692 if (sc->memcg)
3693 ds_queue = &sc->memcg->deferred_split_queue;
3694#endif
3695 return READ_ONCE(ds_queue->split_queue_len);
3696}
3697
3698static bool thp_underused(struct folio *folio)
3699{
3700 int num_zero_pages = 0, num_filled_pages = 0;
3701 void *kaddr;
3702 int i;
3703
3704 if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
3705 return false;
3706
3707 for (i = 0; i < folio_nr_pages(folio); i++) {
3708 kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
3709 if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
3710 num_zero_pages++;
3711 if (num_zero_pages > khugepaged_max_ptes_none) {
3712 kunmap_local(kaddr);
3713 return true;
3714 }
3715 } else {
3716 /*
3717 * Another path for early exit once the number
3718 * of non-zero filled pages exceeds threshold.
3719 */
3720 num_filled_pages++;
3721 if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
3722 kunmap_local(kaddr);
3723 return false;
3724 }
3725 }
3726 kunmap_local(kaddr);
3727 }
3728 return false;
3729}
3730
3731static unsigned long deferred_split_scan(struct shrinker *shrink,
3732 struct shrink_control *sc)
3733{
3734 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3735 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3736 unsigned long flags;
3737 LIST_HEAD(list);
3738 struct folio *folio, *next, *prev = NULL;
3739 int split = 0, removed = 0;
3740
3741#ifdef CONFIG_MEMCG
3742 if (sc->memcg)
3743 ds_queue = &sc->memcg->deferred_split_queue;
3744#endif
3745
3746 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3747 /* Take pin on all head pages to avoid freeing them under us */
3748 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3749 _deferred_list) {
3750 if (folio_try_get(folio)) {
3751 list_move(&folio->_deferred_list, &list);
3752 } else {
3753 /* We lost race with folio_put() */
3754 if (folio_test_partially_mapped(folio)) {
3755 __folio_clear_partially_mapped(folio);
3756 mod_mthp_stat(folio_order(folio),
3757 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3758 }
3759 list_del_init(&folio->_deferred_list);
3760 ds_queue->split_queue_len--;
3761 }
3762 if (!--sc->nr_to_scan)
3763 break;
3764 }
3765 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3766
3767 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3768 bool did_split = false;
3769 bool underused = false;
3770
3771 if (!folio_test_partially_mapped(folio)) {
3772 underused = thp_underused(folio);
3773 if (!underused)
3774 goto next;
3775 }
3776 if (!folio_trylock(folio))
3777 goto next;
3778 if (!split_folio(folio)) {
3779 did_split = true;
3780 if (underused)
3781 count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
3782 split++;
3783 }
3784 folio_unlock(folio);
3785next:
3786 /*
3787 * split_folio() removes folio from list on success.
3788 * Only add back to the queue if folio is partially mapped.
3789 * If thp_underused returns false, or if split_folio fails
3790 * in the case it was underused, then consider it used and
3791 * don't add it back to split_queue.
3792 */
3793 if (!did_split && !folio_test_partially_mapped(folio)) {
3794 list_del_init(&folio->_deferred_list);
3795 removed++;
3796 } else {
3797 /*
3798 * That unlocked list_del_init() above would be unsafe,
3799 * unless its folio is separated from any earlier folios
3800 * left on the list (which may be concurrently unqueued)
3801 * by one safe folio with refcount still raised.
3802 */
3803 swap(folio, prev);
3804 }
3805 if (folio)
3806 folio_put(folio);
3807 }
3808
3809 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3810 list_splice_tail(&list, &ds_queue->split_queue);
3811 ds_queue->split_queue_len -= removed;
3812 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3813
3814 if (prev)
3815 folio_put(prev);
3816
3817 /*
3818 * Stop shrinker if we didn't split any page, but the queue is empty.
3819 * This can happen if pages were freed under us.
3820 */
3821 if (!split && list_empty(&ds_queue->split_queue))
3822 return SHRINK_STOP;
3823 return split;
3824}
3825
3826#ifdef CONFIG_DEBUG_FS
3827static void split_huge_pages_all(void)
3828{
3829 struct zone *zone;
3830 struct page *page;
3831 struct folio *folio;
3832 unsigned long pfn, max_zone_pfn;
3833 unsigned long total = 0, split = 0;
3834
3835 pr_debug("Split all THPs\n");
3836 for_each_zone(zone) {
3837 if (!managed_zone(zone))
3838 continue;
3839 max_zone_pfn = zone_end_pfn(zone);
3840 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3841 int nr_pages;
3842
3843 page = pfn_to_online_page(pfn);
3844 if (!page || PageTail(page))
3845 continue;
3846 folio = page_folio(page);
3847 if (!folio_try_get(folio))
3848 continue;
3849
3850 if (unlikely(page_folio(page) != folio))
3851 goto next;
3852
3853 if (zone != folio_zone(folio))
3854 goto next;
3855
3856 if (!folio_test_large(folio)
3857 || folio_test_hugetlb(folio)
3858 || !folio_test_lru(folio))
3859 goto next;
3860
3861 total++;
3862 folio_lock(folio);
3863 nr_pages = folio_nr_pages(folio);
3864 if (!split_folio(folio))
3865 split++;
3866 pfn += nr_pages - 1;
3867 folio_unlock(folio);
3868next:
3869 folio_put(folio);
3870 cond_resched();
3871 }
3872 }
3873
3874 pr_debug("%lu of %lu THP split\n", split, total);
3875}
3876
3877static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3878{
3879 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3880 is_vm_hugetlb_page(vma);
3881}
3882
3883static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3884 unsigned long vaddr_end, unsigned int new_order)
3885{
3886 int ret = 0;
3887 struct task_struct *task;
3888 struct mm_struct *mm;
3889 unsigned long total = 0, split = 0;
3890 unsigned long addr;
3891
3892 vaddr_start &= PAGE_MASK;
3893 vaddr_end &= PAGE_MASK;
3894
3895 task = find_get_task_by_vpid(pid);
3896 if (!task) {
3897 ret = -ESRCH;
3898 goto out;
3899 }
3900
3901 /* Find the mm_struct */
3902 mm = get_task_mm(task);
3903 put_task_struct(task);
3904
3905 if (!mm) {
3906 ret = -EINVAL;
3907 goto out;
3908 }
3909
3910 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3911 pid, vaddr_start, vaddr_end);
3912
3913 mmap_read_lock(mm);
3914 /*
3915 * always increase addr by PAGE_SIZE, since we could have a PTE page
3916 * table filled with PTE-mapped THPs, each of which is distinct.
3917 */
3918 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3919 struct vm_area_struct *vma = vma_lookup(mm, addr);
3920 struct folio_walk fw;
3921 struct folio *folio;
3922 struct address_space *mapping;
3923 unsigned int target_order = new_order;
3924
3925 if (!vma)
3926 break;
3927
3928 /* skip special VMA and hugetlb VMA */
3929 if (vma_not_suitable_for_thp_split(vma)) {
3930 addr = vma->vm_end;
3931 continue;
3932 }
3933
3934 folio = folio_walk_start(&fw, vma, addr, 0);
3935 if (!folio)
3936 continue;
3937
3938 if (!is_transparent_hugepage(folio))
3939 goto next;
3940
3941 if (!folio_test_anon(folio)) {
3942 mapping = folio->mapping;
3943 target_order = max(new_order,
3944 mapping_min_folio_order(mapping));
3945 }
3946
3947 if (target_order >= folio_order(folio))
3948 goto next;
3949
3950 total++;
3951 /*
3952 * For folios with private, split_huge_page_to_list_to_order()
3953 * will try to drop it before split and then check if the folio
3954 * can be split or not. So skip the check here.
3955 */
3956 if (!folio_test_private(folio) &&
3957 !can_split_folio(folio, 0, NULL))
3958 goto next;
3959
3960 if (!folio_trylock(folio))
3961 goto next;
3962 folio_get(folio);
3963 folio_walk_end(&fw, vma);
3964
3965 if (!folio_test_anon(folio) && folio->mapping != mapping)
3966 goto unlock;
3967
3968 if (!split_folio_to_order(folio, target_order))
3969 split++;
3970
3971unlock:
3972
3973 folio_unlock(folio);
3974 folio_put(folio);
3975
3976 cond_resched();
3977 continue;
3978next:
3979 folio_walk_end(&fw, vma);
3980 cond_resched();
3981 }
3982 mmap_read_unlock(mm);
3983 mmput(mm);
3984
3985 pr_debug("%lu of %lu THP split\n", split, total);
3986
3987out:
3988 return ret;
3989}
3990
3991static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3992 pgoff_t off_end, unsigned int new_order)
3993{
3994 struct filename *file;
3995 struct file *candidate;
3996 struct address_space *mapping;
3997 int ret = -EINVAL;
3998 pgoff_t index;
3999 int nr_pages = 1;
4000 unsigned long total = 0, split = 0;
4001 unsigned int min_order;
4002 unsigned int target_order;
4003
4004 file = getname_kernel(file_path);
4005 if (IS_ERR(file))
4006 return ret;
4007
4008 candidate = file_open_name(file, O_RDONLY, 0);
4009 if (IS_ERR(candidate))
4010 goto out;
4011
4012 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
4013 file_path, off_start, off_end);
4014
4015 mapping = candidate->f_mapping;
4016 min_order = mapping_min_folio_order(mapping);
4017 target_order = max(new_order, min_order);
4018
4019 for (index = off_start; index < off_end; index += nr_pages) {
4020 struct folio *folio = filemap_get_folio(mapping, index);
4021
4022 nr_pages = 1;
4023 if (IS_ERR(folio))
4024 continue;
4025
4026 if (!folio_test_large(folio))
4027 goto next;
4028
4029 total++;
4030 nr_pages = folio_nr_pages(folio);
4031
4032 if (target_order >= folio_order(folio))
4033 goto next;
4034
4035 if (!folio_trylock(folio))
4036 goto next;
4037
4038 if (folio->mapping != mapping)
4039 goto unlock;
4040
4041 if (!split_folio_to_order(folio, target_order))
4042 split++;
4043
4044unlock:
4045 folio_unlock(folio);
4046next:
4047 folio_put(folio);
4048 cond_resched();
4049 }
4050
4051 filp_close(candidate, NULL);
4052 ret = 0;
4053
4054 pr_debug("%lu of %lu file-backed THP split\n", split, total);
4055out:
4056 putname(file);
4057 return ret;
4058}
4059
4060#define MAX_INPUT_BUF_SZ 255
4061
4062static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4063 size_t count, loff_t *ppops)
4064{
4065 static DEFINE_MUTEX(split_debug_mutex);
4066 ssize_t ret;
4067 /*
4068 * hold pid, start_vaddr, end_vaddr, new_order or
4069 * file_path, off_start, off_end, new_order
4070 */
4071 char input_buf[MAX_INPUT_BUF_SZ];
4072 int pid;
4073 unsigned long vaddr_start, vaddr_end;
4074 unsigned int new_order = 0;
4075
4076 ret = mutex_lock_interruptible(&split_debug_mutex);
4077 if (ret)
4078 return ret;
4079
4080 ret = -EFAULT;
4081
4082 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4083 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4084 goto out;
4085
4086 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4087
4088 if (input_buf[0] == '/') {
4089 char *tok;
4090 char *buf = input_buf;
4091 char file_path[MAX_INPUT_BUF_SZ];
4092 pgoff_t off_start = 0, off_end = 0;
4093 size_t input_len = strlen(input_buf);
4094
4095 tok = strsep(&buf, ",");
4096 if (tok) {
4097 strcpy(file_path, tok);
4098 } else {
4099 ret = -EINVAL;
4100 goto out;
4101 }
4102
4103 ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order);
4104 if (ret != 2 && ret != 3) {
4105 ret = -EINVAL;
4106 goto out;
4107 }
4108 ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order);
4109 if (!ret)
4110 ret = input_len;
4111
4112 goto out;
4113 }
4114
4115 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order);
4116 if (ret == 1 && pid == 1) {
4117 split_huge_pages_all();
4118 ret = strlen(input_buf);
4119 goto out;
4120 } else if (ret != 3 && ret != 4) {
4121 ret = -EINVAL;
4122 goto out;
4123 }
4124
4125 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order);
4126 if (!ret)
4127 ret = strlen(input_buf);
4128out:
4129 mutex_unlock(&split_debug_mutex);
4130 return ret;
4131
4132}
4133
4134static const struct file_operations split_huge_pages_fops = {
4135 .owner = THIS_MODULE,
4136 .write = split_huge_pages_write,
4137};
4138
4139static int __init split_huge_pages_debugfs(void)
4140{
4141 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4142 &split_huge_pages_fops);
4143 return 0;
4144}
4145late_initcall(split_huge_pages_debugfs);
4146#endif
4147
4148#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
4149int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4150 struct page *page)
4151{
4152 struct folio *folio = page_folio(page);
4153 struct vm_area_struct *vma = pvmw->vma;
4154 struct mm_struct *mm = vma->vm_mm;
4155 unsigned long address = pvmw->address;
4156 bool anon_exclusive;
4157 pmd_t pmdval;
4158 swp_entry_t entry;
4159 pmd_t pmdswp;
4160
4161 if (!(pvmw->pmd && !pvmw->pte))
4162 return 0;
4163
4164 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4165 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4166
4167 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4168 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4169 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4170 set_pmd_at(mm, address, pvmw->pmd, pmdval);
4171 return -EBUSY;
4172 }
4173
4174 if (pmd_dirty(pmdval))
4175 folio_mark_dirty(folio);
4176 if (pmd_write(pmdval))
4177 entry = make_writable_migration_entry(page_to_pfn(page));
4178 else if (anon_exclusive)
4179 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4180 else
4181 entry = make_readable_migration_entry(page_to_pfn(page));
4182 if (pmd_young(pmdval))
4183 entry = make_migration_entry_young(entry);
4184 if (pmd_dirty(pmdval))
4185 entry = make_migration_entry_dirty(entry);
4186 pmdswp = swp_entry_to_pmd(entry);
4187 if (pmd_soft_dirty(pmdval))
4188 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4189 if (pmd_uffd_wp(pmdval))
4190 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4191 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4192 folio_remove_rmap_pmd(folio, page, vma);
4193 folio_put(folio);
4194 trace_set_migration_pmd(address, pmd_val(pmdswp));
4195
4196 return 0;
4197}
4198
4199void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4200{
4201 struct folio *folio = page_folio(new);
4202 struct vm_area_struct *vma = pvmw->vma;
4203 struct mm_struct *mm = vma->vm_mm;
4204 unsigned long address = pvmw->address;
4205 unsigned long haddr = address & HPAGE_PMD_MASK;
4206 pmd_t pmde;
4207 swp_entry_t entry;
4208
4209 if (!(pvmw->pmd && !pvmw->pte))
4210 return;
4211
4212 entry = pmd_to_swp_entry(*pvmw->pmd);
4213 folio_get(folio);
4214 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
4215 if (pmd_swp_soft_dirty(*pvmw->pmd))
4216 pmde = pmd_mksoft_dirty(pmde);
4217 if (is_writable_migration_entry(entry))
4218 pmde = pmd_mkwrite(pmde, vma);
4219 if (pmd_swp_uffd_wp(*pvmw->pmd))
4220 pmde = pmd_mkuffd_wp(pmde);
4221 if (!is_migration_entry_young(entry))
4222 pmde = pmd_mkold(pmde);
4223 /* NOTE: this may contain setting soft-dirty on some archs */
4224 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4225 pmde = pmd_mkdirty(pmde);
4226
4227 if (folio_test_anon(folio)) {
4228 rmap_t rmap_flags = RMAP_NONE;
4229
4230 if (!is_readable_migration_entry(entry))
4231 rmap_flags |= RMAP_EXCLUSIVE;
4232
4233 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4234 } else {
4235 folio_add_file_rmap_pmd(folio, new, vma);
4236 }
4237 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4238 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4239
4240 /* No need to invalidate - it was non-present before */
4241 update_mmu_cache_pmd(vma, address, pvmw->pmd);
4242 trace_remove_migration_pmd(address, pmd_val(pmde));
4243}
4244#endif