Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/acpi.h>
12#include <linux/blkdev.h>
13#include <linux/cleanup.h>
14#include <linux/cpufreq.h>
15#include <linux/device.h>
16#include <linux/dma-map-ops.h> /* for dma_default_coherent */
17#include <linux/err.h>
18#include <linux/fwnode.h>
19#include <linux/init.h>
20#include <linux/kdev_t.h>
21#include <linux/kstrtox.h>
22#include <linux/module.h>
23#include <linux/mutex.h>
24#include <linux/netdevice.h>
25#include <linux/notifier.h>
26#include <linux/of.h>
27#include <linux/of_device.h>
28#include <linux/pm_runtime.h>
29#include <linux/rcupdate.h>
30#include <linux/sched/mm.h>
31#include <linux/sched/signal.h>
32#include <linux/slab.h>
33#include <linux/string_helpers.h>
34#include <linux/swiotlb.h>
35#include <linux/sysfs.h>
36
37#include "base.h"
38#include "physical_location.h"
39#include "power/power.h"
40
41/* Device links support. */
42static LIST_HEAD(deferred_sync);
43static unsigned int defer_sync_state_count = 1;
44static DEFINE_MUTEX(fwnode_link_lock);
45static bool fw_devlink_is_permissive(void);
46static void __fw_devlink_link_to_consumers(struct device *dev);
47static bool fw_devlink_drv_reg_done;
48static bool fw_devlink_best_effort;
49static struct workqueue_struct *device_link_wq;
50
51/**
52 * __fwnode_link_add - Create a link between two fwnode_handles.
53 * @con: Consumer end of the link.
54 * @sup: Supplier end of the link.
55 * @flags: Link flags.
56 *
57 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
58 * represents the detail that the firmware lists @sup fwnode as supplying a
59 * resource to @con.
60 *
61 * The driver core will use the fwnode link to create a device link between the
62 * two device objects corresponding to @con and @sup when they are created. The
63 * driver core will automatically delete the fwnode link between @con and @sup
64 * after doing that.
65 *
66 * Attempts to create duplicate links between the same pair of fwnode handles
67 * are ignored and there is no reference counting.
68 */
69static int __fwnode_link_add(struct fwnode_handle *con,
70 struct fwnode_handle *sup, u8 flags)
71{
72 struct fwnode_link *link;
73
74 list_for_each_entry(link, &sup->consumers, s_hook)
75 if (link->consumer == con) {
76 link->flags |= flags;
77 return 0;
78 }
79
80 link = kzalloc(sizeof(*link), GFP_KERNEL);
81 if (!link)
82 return -ENOMEM;
83
84 link->supplier = sup;
85 INIT_LIST_HEAD(&link->s_hook);
86 link->consumer = con;
87 INIT_LIST_HEAD(&link->c_hook);
88 link->flags = flags;
89
90 list_add(&link->s_hook, &sup->consumers);
91 list_add(&link->c_hook, &con->suppliers);
92 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
93 con, sup);
94
95 return 0;
96}
97
98int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
99 u8 flags)
100{
101 guard(mutex)(&fwnode_link_lock);
102
103 return __fwnode_link_add(con, sup, flags);
104}
105
106/**
107 * __fwnode_link_del - Delete a link between two fwnode_handles.
108 * @link: the fwnode_link to be deleted
109 *
110 * The fwnode_link_lock needs to be held when this function is called.
111 */
112static void __fwnode_link_del(struct fwnode_link *link)
113{
114 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
115 link->consumer, link->supplier);
116 list_del(&link->s_hook);
117 list_del(&link->c_hook);
118 kfree(link);
119}
120
121/**
122 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
123 * @link: the fwnode_link to be marked
124 *
125 * The fwnode_link_lock needs to be held when this function is called.
126 */
127static void __fwnode_link_cycle(struct fwnode_link *link)
128{
129 pr_debug("%pfwf: cycle: depends on %pfwf\n",
130 link->consumer, link->supplier);
131 link->flags |= FWLINK_FLAG_CYCLE;
132}
133
134/**
135 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
136 * @fwnode: fwnode whose supplier links need to be deleted
137 *
138 * Deletes all supplier links connecting directly to @fwnode.
139 */
140static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
141{
142 struct fwnode_link *link, *tmp;
143
144 guard(mutex)(&fwnode_link_lock);
145
146 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
147 __fwnode_link_del(link);
148}
149
150/**
151 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
152 * @fwnode: fwnode whose consumer links need to be deleted
153 *
154 * Deletes all consumer links connecting directly to @fwnode.
155 */
156static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
157{
158 struct fwnode_link *link, *tmp;
159
160 guard(mutex)(&fwnode_link_lock);
161
162 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
163 __fwnode_link_del(link);
164}
165
166/**
167 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
168 * @fwnode: fwnode whose links needs to be deleted
169 *
170 * Deletes all links connecting directly to a fwnode.
171 */
172void fwnode_links_purge(struct fwnode_handle *fwnode)
173{
174 fwnode_links_purge_suppliers(fwnode);
175 fwnode_links_purge_consumers(fwnode);
176}
177
178void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
179{
180 struct fwnode_handle *child;
181
182 /* Don't purge consumer links of an added child */
183 if (fwnode->dev)
184 return;
185
186 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
187 fwnode_links_purge_consumers(fwnode);
188
189 fwnode_for_each_available_child_node(fwnode, child)
190 fw_devlink_purge_absent_suppliers(child);
191}
192EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
193
194/**
195 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
196 * @from: move consumers away from this fwnode
197 * @to: move consumers to this fwnode
198 *
199 * Move all consumer links from @from fwnode to @to fwnode.
200 */
201static void __fwnode_links_move_consumers(struct fwnode_handle *from,
202 struct fwnode_handle *to)
203{
204 struct fwnode_link *link, *tmp;
205
206 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
207 __fwnode_link_add(link->consumer, to, link->flags);
208 __fwnode_link_del(link);
209 }
210}
211
212/**
213 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
214 * @fwnode: fwnode from which to pick up dangling consumers
215 * @new_sup: fwnode of new supplier
216 *
217 * If the @fwnode has a corresponding struct device and the device supports
218 * probing (that is, added to a bus), then we want to let fw_devlink create
219 * MANAGED device links to this device, so leave @fwnode and its descendant's
220 * fwnode links alone.
221 *
222 * Otherwise, move its consumers to the new supplier @new_sup.
223 */
224static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
225 struct fwnode_handle *new_sup)
226{
227 struct fwnode_handle *child;
228
229 if (fwnode->dev && fwnode->dev->bus)
230 return;
231
232 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
233 __fwnode_links_move_consumers(fwnode, new_sup);
234
235 fwnode_for_each_available_child_node(fwnode, child)
236 __fw_devlink_pickup_dangling_consumers(child, new_sup);
237}
238
239static DEFINE_MUTEX(device_links_lock);
240DEFINE_STATIC_SRCU(device_links_srcu);
241
242static inline void device_links_write_lock(void)
243{
244 mutex_lock(&device_links_lock);
245}
246
247static inline void device_links_write_unlock(void)
248{
249 mutex_unlock(&device_links_lock);
250}
251
252int device_links_read_lock(void) __acquires(&device_links_srcu)
253{
254 return srcu_read_lock(&device_links_srcu);
255}
256
257void device_links_read_unlock(int idx) __releases(&device_links_srcu)
258{
259 srcu_read_unlock(&device_links_srcu, idx);
260}
261
262int device_links_read_lock_held(void)
263{
264 return srcu_read_lock_held(&device_links_srcu);
265}
266
267static void device_link_synchronize_removal(void)
268{
269 synchronize_srcu(&device_links_srcu);
270}
271
272static void device_link_remove_from_lists(struct device_link *link)
273{
274 list_del_rcu(&link->s_node);
275 list_del_rcu(&link->c_node);
276}
277
278static bool device_is_ancestor(struct device *dev, struct device *target)
279{
280 while (target->parent) {
281 target = target->parent;
282 if (dev == target)
283 return true;
284 }
285 return false;
286}
287
288#define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
289 DL_FLAG_CYCLE | \
290 DL_FLAG_MANAGED)
291static inline bool device_link_flag_is_sync_state_only(u32 flags)
292{
293 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
294}
295
296/**
297 * device_is_dependent - Check if one device depends on another one
298 * @dev: Device to check dependencies for.
299 * @target: Device to check against.
300 *
301 * Check if @target depends on @dev or any device dependent on it (its child or
302 * its consumer etc). Return 1 if that is the case or 0 otherwise.
303 */
304static int device_is_dependent(struct device *dev, void *target)
305{
306 struct device_link *link;
307 int ret;
308
309 /*
310 * The "ancestors" check is needed to catch the case when the target
311 * device has not been completely initialized yet and it is still
312 * missing from the list of children of its parent device.
313 */
314 if (dev == target || device_is_ancestor(dev, target))
315 return 1;
316
317 ret = device_for_each_child(dev, target, device_is_dependent);
318 if (ret)
319 return ret;
320
321 list_for_each_entry(link, &dev->links.consumers, s_node) {
322 if (device_link_flag_is_sync_state_only(link->flags))
323 continue;
324
325 if (link->consumer == target)
326 return 1;
327
328 ret = device_is_dependent(link->consumer, target);
329 if (ret)
330 break;
331 }
332 return ret;
333}
334
335static void device_link_init_status(struct device_link *link,
336 struct device *consumer,
337 struct device *supplier)
338{
339 switch (supplier->links.status) {
340 case DL_DEV_PROBING:
341 switch (consumer->links.status) {
342 case DL_DEV_PROBING:
343 /*
344 * A consumer driver can create a link to a supplier
345 * that has not completed its probing yet as long as it
346 * knows that the supplier is already functional (for
347 * example, it has just acquired some resources from the
348 * supplier).
349 */
350 link->status = DL_STATE_CONSUMER_PROBE;
351 break;
352 default:
353 link->status = DL_STATE_DORMANT;
354 break;
355 }
356 break;
357 case DL_DEV_DRIVER_BOUND:
358 switch (consumer->links.status) {
359 case DL_DEV_PROBING:
360 link->status = DL_STATE_CONSUMER_PROBE;
361 break;
362 case DL_DEV_DRIVER_BOUND:
363 link->status = DL_STATE_ACTIVE;
364 break;
365 default:
366 link->status = DL_STATE_AVAILABLE;
367 break;
368 }
369 break;
370 case DL_DEV_UNBINDING:
371 link->status = DL_STATE_SUPPLIER_UNBIND;
372 break;
373 default:
374 link->status = DL_STATE_DORMANT;
375 break;
376 }
377}
378
379static int device_reorder_to_tail(struct device *dev, void *not_used)
380{
381 struct device_link *link;
382
383 /*
384 * Devices that have not been registered yet will be put to the ends
385 * of the lists during the registration, so skip them here.
386 */
387 if (device_is_registered(dev))
388 devices_kset_move_last(dev);
389
390 if (device_pm_initialized(dev))
391 device_pm_move_last(dev);
392
393 device_for_each_child(dev, NULL, device_reorder_to_tail);
394 list_for_each_entry(link, &dev->links.consumers, s_node) {
395 if (device_link_flag_is_sync_state_only(link->flags))
396 continue;
397 device_reorder_to_tail(link->consumer, NULL);
398 }
399
400 return 0;
401}
402
403/**
404 * device_pm_move_to_tail - Move set of devices to the end of device lists
405 * @dev: Device to move
406 *
407 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
408 *
409 * It moves the @dev along with all of its children and all of its consumers
410 * to the ends of the device_kset and dpm_list, recursively.
411 */
412void device_pm_move_to_tail(struct device *dev)
413{
414 int idx;
415
416 idx = device_links_read_lock();
417 device_pm_lock();
418 device_reorder_to_tail(dev, NULL);
419 device_pm_unlock();
420 device_links_read_unlock(idx);
421}
422
423#define to_devlink(dev) container_of((dev), struct device_link, link_dev)
424
425static ssize_t status_show(struct device *dev,
426 struct device_attribute *attr, char *buf)
427{
428 const char *output;
429
430 switch (to_devlink(dev)->status) {
431 case DL_STATE_NONE:
432 output = "not tracked";
433 break;
434 case DL_STATE_DORMANT:
435 output = "dormant";
436 break;
437 case DL_STATE_AVAILABLE:
438 output = "available";
439 break;
440 case DL_STATE_CONSUMER_PROBE:
441 output = "consumer probing";
442 break;
443 case DL_STATE_ACTIVE:
444 output = "active";
445 break;
446 case DL_STATE_SUPPLIER_UNBIND:
447 output = "supplier unbinding";
448 break;
449 default:
450 output = "unknown";
451 break;
452 }
453
454 return sysfs_emit(buf, "%s\n", output);
455}
456static DEVICE_ATTR_RO(status);
457
458static ssize_t auto_remove_on_show(struct device *dev,
459 struct device_attribute *attr, char *buf)
460{
461 struct device_link *link = to_devlink(dev);
462 const char *output;
463
464 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
465 output = "supplier unbind";
466 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
467 output = "consumer unbind";
468 else
469 output = "never";
470
471 return sysfs_emit(buf, "%s\n", output);
472}
473static DEVICE_ATTR_RO(auto_remove_on);
474
475static ssize_t runtime_pm_show(struct device *dev,
476 struct device_attribute *attr, char *buf)
477{
478 struct device_link *link = to_devlink(dev);
479
480 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
481}
482static DEVICE_ATTR_RO(runtime_pm);
483
484static ssize_t sync_state_only_show(struct device *dev,
485 struct device_attribute *attr, char *buf)
486{
487 struct device_link *link = to_devlink(dev);
488
489 return sysfs_emit(buf, "%d\n",
490 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
491}
492static DEVICE_ATTR_RO(sync_state_only);
493
494static struct attribute *devlink_attrs[] = {
495 &dev_attr_status.attr,
496 &dev_attr_auto_remove_on.attr,
497 &dev_attr_runtime_pm.attr,
498 &dev_attr_sync_state_only.attr,
499 NULL,
500};
501ATTRIBUTE_GROUPS(devlink);
502
503static void device_link_release_fn(struct work_struct *work)
504{
505 struct device_link *link = container_of(work, struct device_link, rm_work);
506
507 /* Ensure that all references to the link object have been dropped. */
508 device_link_synchronize_removal();
509
510 pm_runtime_release_supplier(link);
511 /*
512 * If supplier_preactivated is set, the link has been dropped between
513 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
514 * in __driver_probe_device(). In that case, drop the supplier's
515 * PM-runtime usage counter to remove the reference taken by
516 * pm_runtime_get_suppliers().
517 */
518 if (link->supplier_preactivated)
519 pm_runtime_put_noidle(link->supplier);
520
521 pm_request_idle(link->supplier);
522
523 put_device(link->consumer);
524 put_device(link->supplier);
525 kfree(link);
526}
527
528static void devlink_dev_release(struct device *dev)
529{
530 struct device_link *link = to_devlink(dev);
531
532 INIT_WORK(&link->rm_work, device_link_release_fn);
533 /*
534 * It may take a while to complete this work because of the SRCU
535 * synchronization in device_link_release_fn() and if the consumer or
536 * supplier devices get deleted when it runs, so put it into the
537 * dedicated workqueue.
538 */
539 queue_work(device_link_wq, &link->rm_work);
540}
541
542/**
543 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
544 */
545void device_link_wait_removal(void)
546{
547 /*
548 * devlink removal jobs are queued in the dedicated work queue.
549 * To be sure that all removal jobs are terminated, ensure that any
550 * scheduled work has run to completion.
551 */
552 flush_workqueue(device_link_wq);
553}
554EXPORT_SYMBOL_GPL(device_link_wait_removal);
555
556static struct class devlink_class = {
557 .name = "devlink",
558 .dev_groups = devlink_groups,
559 .dev_release = devlink_dev_release,
560};
561
562static int devlink_add_symlinks(struct device *dev)
563{
564 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
565 int ret;
566 struct device_link *link = to_devlink(dev);
567 struct device *sup = link->supplier;
568 struct device *con = link->consumer;
569
570 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
571 if (ret)
572 goto out;
573
574 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
575 if (ret)
576 goto err_con;
577
578 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
579 if (!buf_con) {
580 ret = -ENOMEM;
581 goto err_con_dev;
582 }
583
584 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
585 if (ret)
586 goto err_con_dev;
587
588 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
589 if (!buf_sup) {
590 ret = -ENOMEM;
591 goto err_sup_dev;
592 }
593
594 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
595 if (ret)
596 goto err_sup_dev;
597
598 goto out;
599
600err_sup_dev:
601 sysfs_remove_link(&sup->kobj, buf_con);
602err_con_dev:
603 sysfs_remove_link(&link->link_dev.kobj, "consumer");
604err_con:
605 sysfs_remove_link(&link->link_dev.kobj, "supplier");
606out:
607 return ret;
608}
609
610static void devlink_remove_symlinks(struct device *dev)
611{
612 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
613 struct device_link *link = to_devlink(dev);
614 struct device *sup = link->supplier;
615 struct device *con = link->consumer;
616
617 sysfs_remove_link(&link->link_dev.kobj, "consumer");
618 sysfs_remove_link(&link->link_dev.kobj, "supplier");
619
620 if (device_is_registered(con)) {
621 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
622 if (!buf_sup)
623 goto out;
624 sysfs_remove_link(&con->kobj, buf_sup);
625 }
626
627 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
628 if (!buf_con)
629 goto out;
630 sysfs_remove_link(&sup->kobj, buf_con);
631
632 return;
633
634out:
635 WARN(1, "Unable to properly free device link symlinks!\n");
636}
637
638static struct class_interface devlink_class_intf = {
639 .class = &devlink_class,
640 .add_dev = devlink_add_symlinks,
641 .remove_dev = devlink_remove_symlinks,
642};
643
644static int __init devlink_class_init(void)
645{
646 int ret;
647
648 ret = class_register(&devlink_class);
649 if (ret)
650 return ret;
651
652 ret = class_interface_register(&devlink_class_intf);
653 if (ret)
654 class_unregister(&devlink_class);
655
656 return ret;
657}
658postcore_initcall(devlink_class_init);
659
660#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
661 DL_FLAG_AUTOREMOVE_SUPPLIER | \
662 DL_FLAG_AUTOPROBE_CONSUMER | \
663 DL_FLAG_SYNC_STATE_ONLY | \
664 DL_FLAG_INFERRED | \
665 DL_FLAG_CYCLE)
666
667#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
668 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
669
670/**
671 * device_link_add - Create a link between two devices.
672 * @consumer: Consumer end of the link.
673 * @supplier: Supplier end of the link.
674 * @flags: Link flags.
675 *
676 * Return: On success, a device_link struct will be returned.
677 * On error or invalid flag settings, NULL will be returned.
678 *
679 * The caller is responsible for the proper synchronization of the link creation
680 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
681 * runtime PM framework to take the link into account. Second, if the
682 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
683 * be forced into the active meta state and reference-counted upon the creation
684 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
685 * ignored.
686 *
687 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
688 * expected to release the link returned by it directly with the help of either
689 * device_link_del() or device_link_remove().
690 *
691 * If that flag is not set, however, the caller of this function is handing the
692 * management of the link over to the driver core entirely and its return value
693 * can only be used to check whether or not the link is present. In that case,
694 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
695 * flags can be used to indicate to the driver core when the link can be safely
696 * deleted. Namely, setting one of them in @flags indicates to the driver core
697 * that the link is not going to be used (by the given caller of this function)
698 * after unbinding the consumer or supplier driver, respectively, from its
699 * device, so the link can be deleted at that point. If none of them is set,
700 * the link will be maintained until one of the devices pointed to by it (either
701 * the consumer or the supplier) is unregistered.
702 *
703 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
704 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
705 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
706 * be used to request the driver core to automatically probe for a consumer
707 * driver after successfully binding a driver to the supplier device.
708 *
709 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
710 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
711 * the same time is invalid and will cause NULL to be returned upfront.
712 * However, if a device link between the given @consumer and @supplier pair
713 * exists already when this function is called for them, the existing link will
714 * be returned regardless of its current type and status (the link's flags may
715 * be modified then). The caller of this function is then expected to treat
716 * the link as though it has just been created, so (in particular) if
717 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
718 * explicitly when not needed any more (as stated above).
719 *
720 * A side effect of the link creation is re-ordering of dpm_list and the
721 * devices_kset list by moving the consumer device and all devices depending
722 * on it to the ends of these lists (that does not happen to devices that have
723 * not been registered when this function is called).
724 *
725 * The supplier device is required to be registered when this function is called
726 * and NULL will be returned if that is not the case. The consumer device need
727 * not be registered, however.
728 */
729struct device_link *device_link_add(struct device *consumer,
730 struct device *supplier, u32 flags)
731{
732 struct device_link *link;
733
734 if (!consumer || !supplier || consumer == supplier ||
735 flags & ~DL_ADD_VALID_FLAGS ||
736 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
737 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
738 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
739 DL_FLAG_AUTOREMOVE_SUPPLIER)))
740 return NULL;
741
742 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
743 if (pm_runtime_get_sync(supplier) < 0) {
744 pm_runtime_put_noidle(supplier);
745 return NULL;
746 }
747 }
748
749 if (!(flags & DL_FLAG_STATELESS))
750 flags |= DL_FLAG_MANAGED;
751
752 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
753 !device_link_flag_is_sync_state_only(flags))
754 return NULL;
755
756 device_links_write_lock();
757 device_pm_lock();
758
759 /*
760 * If the supplier has not been fully registered yet or there is a
761 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
762 * the supplier already in the graph, return NULL. If the link is a
763 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
764 * because it only affects sync_state() callbacks.
765 */
766 if (!device_pm_initialized(supplier)
767 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
768 device_is_dependent(consumer, supplier))) {
769 link = NULL;
770 goto out;
771 }
772
773 /*
774 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
775 * So, only create it if the consumer hasn't probed yet.
776 */
777 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
778 consumer->links.status != DL_DEV_NO_DRIVER &&
779 consumer->links.status != DL_DEV_PROBING) {
780 link = NULL;
781 goto out;
782 }
783
784 /*
785 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
786 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
787 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
788 */
789 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
790 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
791
792 list_for_each_entry(link, &supplier->links.consumers, s_node) {
793 if (link->consumer != consumer)
794 continue;
795
796 if (link->flags & DL_FLAG_INFERRED &&
797 !(flags & DL_FLAG_INFERRED))
798 link->flags &= ~DL_FLAG_INFERRED;
799
800 if (flags & DL_FLAG_PM_RUNTIME) {
801 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
802 pm_runtime_new_link(consumer);
803 link->flags |= DL_FLAG_PM_RUNTIME;
804 }
805 if (flags & DL_FLAG_RPM_ACTIVE)
806 refcount_inc(&link->rpm_active);
807 }
808
809 if (flags & DL_FLAG_STATELESS) {
810 kref_get(&link->kref);
811 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
812 !(link->flags & DL_FLAG_STATELESS)) {
813 link->flags |= DL_FLAG_STATELESS;
814 goto reorder;
815 } else {
816 link->flags |= DL_FLAG_STATELESS;
817 goto out;
818 }
819 }
820
821 /*
822 * If the life time of the link following from the new flags is
823 * longer than indicated by the flags of the existing link,
824 * update the existing link to stay around longer.
825 */
826 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
827 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
828 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
829 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
830 }
831 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
832 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
833 DL_FLAG_AUTOREMOVE_SUPPLIER);
834 }
835 if (!(link->flags & DL_FLAG_MANAGED)) {
836 kref_get(&link->kref);
837 link->flags |= DL_FLAG_MANAGED;
838 device_link_init_status(link, consumer, supplier);
839 }
840 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
841 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
842 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
843 goto reorder;
844 }
845
846 goto out;
847 }
848
849 link = kzalloc(sizeof(*link), GFP_KERNEL);
850 if (!link)
851 goto out;
852
853 refcount_set(&link->rpm_active, 1);
854
855 get_device(supplier);
856 link->supplier = supplier;
857 INIT_LIST_HEAD(&link->s_node);
858 get_device(consumer);
859 link->consumer = consumer;
860 INIT_LIST_HEAD(&link->c_node);
861 link->flags = flags;
862 kref_init(&link->kref);
863
864 link->link_dev.class = &devlink_class;
865 device_set_pm_not_required(&link->link_dev);
866 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
867 dev_bus_name(supplier), dev_name(supplier),
868 dev_bus_name(consumer), dev_name(consumer));
869 if (device_register(&link->link_dev)) {
870 put_device(&link->link_dev);
871 link = NULL;
872 goto out;
873 }
874
875 if (flags & DL_FLAG_PM_RUNTIME) {
876 if (flags & DL_FLAG_RPM_ACTIVE)
877 refcount_inc(&link->rpm_active);
878
879 pm_runtime_new_link(consumer);
880 }
881
882 /* Determine the initial link state. */
883 if (flags & DL_FLAG_STATELESS)
884 link->status = DL_STATE_NONE;
885 else
886 device_link_init_status(link, consumer, supplier);
887
888 /*
889 * Some callers expect the link creation during consumer driver probe to
890 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
891 */
892 if (link->status == DL_STATE_CONSUMER_PROBE &&
893 flags & DL_FLAG_PM_RUNTIME)
894 pm_runtime_resume(supplier);
895
896 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
897 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
898
899 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
900 dev_dbg(consumer,
901 "Linked as a sync state only consumer to %s\n",
902 dev_name(supplier));
903 goto out;
904 }
905
906reorder:
907 /*
908 * Move the consumer and all of the devices depending on it to the end
909 * of dpm_list and the devices_kset list.
910 *
911 * It is necessary to hold dpm_list locked throughout all that or else
912 * we may end up suspending with a wrong ordering of it.
913 */
914 device_reorder_to_tail(consumer, NULL);
915
916 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
917
918out:
919 device_pm_unlock();
920 device_links_write_unlock();
921
922 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
923 pm_runtime_put(supplier);
924
925 return link;
926}
927EXPORT_SYMBOL_GPL(device_link_add);
928
929static void __device_link_del(struct kref *kref)
930{
931 struct device_link *link = container_of(kref, struct device_link, kref);
932
933 dev_dbg(link->consumer, "Dropping the link to %s\n",
934 dev_name(link->supplier));
935
936 pm_runtime_drop_link(link);
937
938 device_link_remove_from_lists(link);
939 device_unregister(&link->link_dev);
940}
941
942static void device_link_put_kref(struct device_link *link)
943{
944 if (link->flags & DL_FLAG_STATELESS)
945 kref_put(&link->kref, __device_link_del);
946 else if (!device_is_registered(link->consumer))
947 __device_link_del(&link->kref);
948 else
949 WARN(1, "Unable to drop a managed device link reference\n");
950}
951
952/**
953 * device_link_del - Delete a stateless link between two devices.
954 * @link: Device link to delete.
955 *
956 * The caller must ensure proper synchronization of this function with runtime
957 * PM. If the link was added multiple times, it needs to be deleted as often.
958 * Care is required for hotplugged devices: Their links are purged on removal
959 * and calling device_link_del() is then no longer allowed.
960 */
961void device_link_del(struct device_link *link)
962{
963 device_links_write_lock();
964 device_link_put_kref(link);
965 device_links_write_unlock();
966}
967EXPORT_SYMBOL_GPL(device_link_del);
968
969/**
970 * device_link_remove - Delete a stateless link between two devices.
971 * @consumer: Consumer end of the link.
972 * @supplier: Supplier end of the link.
973 *
974 * The caller must ensure proper synchronization of this function with runtime
975 * PM.
976 */
977void device_link_remove(void *consumer, struct device *supplier)
978{
979 struct device_link *link;
980
981 if (WARN_ON(consumer == supplier))
982 return;
983
984 device_links_write_lock();
985
986 list_for_each_entry(link, &supplier->links.consumers, s_node) {
987 if (link->consumer == consumer) {
988 device_link_put_kref(link);
989 break;
990 }
991 }
992
993 device_links_write_unlock();
994}
995EXPORT_SYMBOL_GPL(device_link_remove);
996
997static void device_links_missing_supplier(struct device *dev)
998{
999 struct device_link *link;
1000
1001 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1002 if (link->status != DL_STATE_CONSUMER_PROBE)
1003 continue;
1004
1005 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1006 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1007 } else {
1008 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1009 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1010 }
1011 }
1012}
1013
1014static bool dev_is_best_effort(struct device *dev)
1015{
1016 return (fw_devlink_best_effort && dev->can_match) ||
1017 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1018}
1019
1020static struct fwnode_handle *fwnode_links_check_suppliers(
1021 struct fwnode_handle *fwnode)
1022{
1023 struct fwnode_link *link;
1024
1025 if (!fwnode || fw_devlink_is_permissive())
1026 return NULL;
1027
1028 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1029 if (!(link->flags &
1030 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1031 return link->supplier;
1032
1033 return NULL;
1034}
1035
1036/**
1037 * device_links_check_suppliers - Check presence of supplier drivers.
1038 * @dev: Consumer device.
1039 *
1040 * Check links from this device to any suppliers. Walk the list of the device's
1041 * links to suppliers and see if all of them are available. If not, simply
1042 * return -EPROBE_DEFER.
1043 *
1044 * We need to guarantee that the supplier will not go away after the check has
1045 * been positive here. It only can go away in __device_release_driver() and
1046 * that function checks the device's links to consumers. This means we need to
1047 * mark the link as "consumer probe in progress" to make the supplier removal
1048 * wait for us to complete (or bad things may happen).
1049 *
1050 * Links without the DL_FLAG_MANAGED flag set are ignored.
1051 */
1052int device_links_check_suppliers(struct device *dev)
1053{
1054 struct device_link *link;
1055 int ret = 0, fwnode_ret = 0;
1056 struct fwnode_handle *sup_fw;
1057
1058 /*
1059 * Device waiting for supplier to become available is not allowed to
1060 * probe.
1061 */
1062 scoped_guard(mutex, &fwnode_link_lock) {
1063 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1064 if (sup_fw) {
1065 if (dev_is_best_effort(dev))
1066 fwnode_ret = -EAGAIN;
1067 else
1068 return dev_err_probe(dev, -EPROBE_DEFER,
1069 "wait for supplier %pfwf\n", sup_fw);
1070 }
1071 }
1072
1073 device_links_write_lock();
1074
1075 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1076 if (!(link->flags & DL_FLAG_MANAGED))
1077 continue;
1078
1079 if (link->status != DL_STATE_AVAILABLE &&
1080 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1081
1082 if (dev_is_best_effort(dev) &&
1083 link->flags & DL_FLAG_INFERRED &&
1084 !link->supplier->can_match) {
1085 ret = -EAGAIN;
1086 continue;
1087 }
1088
1089 device_links_missing_supplier(dev);
1090 ret = dev_err_probe(dev, -EPROBE_DEFER,
1091 "supplier %s not ready\n", dev_name(link->supplier));
1092 break;
1093 }
1094 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1095 }
1096 dev->links.status = DL_DEV_PROBING;
1097
1098 device_links_write_unlock();
1099
1100 return ret ? ret : fwnode_ret;
1101}
1102
1103/**
1104 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1105 * @dev: Device to call sync_state() on
1106 * @list: List head to queue the @dev on
1107 *
1108 * Queues a device for a sync_state() callback when the device links write lock
1109 * isn't held. This allows the sync_state() execution flow to use device links
1110 * APIs. The caller must ensure this function is called with
1111 * device_links_write_lock() held.
1112 *
1113 * This function does a get_device() to make sure the device is not freed while
1114 * on this list.
1115 *
1116 * So the caller must also ensure that device_links_flush_sync_list() is called
1117 * as soon as the caller releases device_links_write_lock(). This is necessary
1118 * to make sure the sync_state() is called in a timely fashion and the
1119 * put_device() is called on this device.
1120 */
1121static void __device_links_queue_sync_state(struct device *dev,
1122 struct list_head *list)
1123{
1124 struct device_link *link;
1125
1126 if (!dev_has_sync_state(dev))
1127 return;
1128 if (dev->state_synced)
1129 return;
1130
1131 list_for_each_entry(link, &dev->links.consumers, s_node) {
1132 if (!(link->flags & DL_FLAG_MANAGED))
1133 continue;
1134 if (link->status != DL_STATE_ACTIVE)
1135 return;
1136 }
1137
1138 /*
1139 * Set the flag here to avoid adding the same device to a list more
1140 * than once. This can happen if new consumers get added to the device
1141 * and probed before the list is flushed.
1142 */
1143 dev->state_synced = true;
1144
1145 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1146 return;
1147
1148 get_device(dev);
1149 list_add_tail(&dev->links.defer_sync, list);
1150}
1151
1152/**
1153 * device_links_flush_sync_list - Call sync_state() on a list of devices
1154 * @list: List of devices to call sync_state() on
1155 * @dont_lock_dev: Device for which lock is already held by the caller
1156 *
1157 * Calls sync_state() on all the devices that have been queued for it. This
1158 * function is used in conjunction with __device_links_queue_sync_state(). The
1159 * @dont_lock_dev parameter is useful when this function is called from a
1160 * context where a device lock is already held.
1161 */
1162static void device_links_flush_sync_list(struct list_head *list,
1163 struct device *dont_lock_dev)
1164{
1165 struct device *dev, *tmp;
1166
1167 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1168 list_del_init(&dev->links.defer_sync);
1169
1170 if (dev != dont_lock_dev)
1171 device_lock(dev);
1172
1173 dev_sync_state(dev);
1174
1175 if (dev != dont_lock_dev)
1176 device_unlock(dev);
1177
1178 put_device(dev);
1179 }
1180}
1181
1182void device_links_supplier_sync_state_pause(void)
1183{
1184 device_links_write_lock();
1185 defer_sync_state_count++;
1186 device_links_write_unlock();
1187}
1188
1189void device_links_supplier_sync_state_resume(void)
1190{
1191 struct device *dev, *tmp;
1192 LIST_HEAD(sync_list);
1193
1194 device_links_write_lock();
1195 if (!defer_sync_state_count) {
1196 WARN(true, "Unmatched sync_state pause/resume!");
1197 goto out;
1198 }
1199 defer_sync_state_count--;
1200 if (defer_sync_state_count)
1201 goto out;
1202
1203 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1204 /*
1205 * Delete from deferred_sync list before queuing it to
1206 * sync_list because defer_sync is used for both lists.
1207 */
1208 list_del_init(&dev->links.defer_sync);
1209 __device_links_queue_sync_state(dev, &sync_list);
1210 }
1211out:
1212 device_links_write_unlock();
1213
1214 device_links_flush_sync_list(&sync_list, NULL);
1215}
1216
1217static int sync_state_resume_initcall(void)
1218{
1219 device_links_supplier_sync_state_resume();
1220 return 0;
1221}
1222late_initcall(sync_state_resume_initcall);
1223
1224static void __device_links_supplier_defer_sync(struct device *sup)
1225{
1226 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1227 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1228}
1229
1230static void device_link_drop_managed(struct device_link *link)
1231{
1232 link->flags &= ~DL_FLAG_MANAGED;
1233 WRITE_ONCE(link->status, DL_STATE_NONE);
1234 kref_put(&link->kref, __device_link_del);
1235}
1236
1237static ssize_t waiting_for_supplier_show(struct device *dev,
1238 struct device_attribute *attr,
1239 char *buf)
1240{
1241 bool val;
1242
1243 device_lock(dev);
1244 scoped_guard(mutex, &fwnode_link_lock)
1245 val = !!fwnode_links_check_suppliers(dev->fwnode);
1246 device_unlock(dev);
1247 return sysfs_emit(buf, "%u\n", val);
1248}
1249static DEVICE_ATTR_RO(waiting_for_supplier);
1250
1251/**
1252 * device_links_force_bind - Prepares device to be force bound
1253 * @dev: Consumer device.
1254 *
1255 * device_bind_driver() force binds a device to a driver without calling any
1256 * driver probe functions. So the consumer really isn't going to wait for any
1257 * supplier before it's bound to the driver. We still want the device link
1258 * states to be sensible when this happens.
1259 *
1260 * In preparation for device_bind_driver(), this function goes through each
1261 * supplier device links and checks if the supplier is bound. If it is, then
1262 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1263 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1264 */
1265void device_links_force_bind(struct device *dev)
1266{
1267 struct device_link *link, *ln;
1268
1269 device_links_write_lock();
1270
1271 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1272 if (!(link->flags & DL_FLAG_MANAGED))
1273 continue;
1274
1275 if (link->status != DL_STATE_AVAILABLE) {
1276 device_link_drop_managed(link);
1277 continue;
1278 }
1279 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1280 }
1281 dev->links.status = DL_DEV_PROBING;
1282
1283 device_links_write_unlock();
1284}
1285
1286/**
1287 * device_links_driver_bound - Update device links after probing its driver.
1288 * @dev: Device to update the links for.
1289 *
1290 * The probe has been successful, so update links from this device to any
1291 * consumers by changing their status to "available".
1292 *
1293 * Also change the status of @dev's links to suppliers to "active".
1294 *
1295 * Links without the DL_FLAG_MANAGED flag set are ignored.
1296 */
1297void device_links_driver_bound(struct device *dev)
1298{
1299 struct device_link *link, *ln;
1300 LIST_HEAD(sync_list);
1301
1302 /*
1303 * If a device binds successfully, it's expected to have created all
1304 * the device links it needs to or make new device links as it needs
1305 * them. So, fw_devlink no longer needs to create device links to any
1306 * of the device's suppliers.
1307 *
1308 * Also, if a child firmware node of this bound device is not added as a
1309 * device by now, assume it is never going to be added. Make this bound
1310 * device the fallback supplier to the dangling consumers of the child
1311 * firmware node because this bound device is probably implementing the
1312 * child firmware node functionality and we don't want the dangling
1313 * consumers to defer probe indefinitely waiting for a device for the
1314 * child firmware node.
1315 */
1316 if (dev->fwnode && dev->fwnode->dev == dev) {
1317 struct fwnode_handle *child;
1318
1319 fwnode_links_purge_suppliers(dev->fwnode);
1320
1321 guard(mutex)(&fwnode_link_lock);
1322
1323 fwnode_for_each_available_child_node(dev->fwnode, child)
1324 __fw_devlink_pickup_dangling_consumers(child,
1325 dev->fwnode);
1326 __fw_devlink_link_to_consumers(dev);
1327 }
1328 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1329
1330 device_links_write_lock();
1331
1332 list_for_each_entry(link, &dev->links.consumers, s_node) {
1333 if (!(link->flags & DL_FLAG_MANAGED))
1334 continue;
1335
1336 /*
1337 * Links created during consumer probe may be in the "consumer
1338 * probe" state to start with if the supplier is still probing
1339 * when they are created and they may become "active" if the
1340 * consumer probe returns first. Skip them here.
1341 */
1342 if (link->status == DL_STATE_CONSUMER_PROBE ||
1343 link->status == DL_STATE_ACTIVE)
1344 continue;
1345
1346 WARN_ON(link->status != DL_STATE_DORMANT);
1347 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1348
1349 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1350 driver_deferred_probe_add(link->consumer);
1351 }
1352
1353 if (defer_sync_state_count)
1354 __device_links_supplier_defer_sync(dev);
1355 else
1356 __device_links_queue_sync_state(dev, &sync_list);
1357
1358 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1359 struct device *supplier;
1360
1361 if (!(link->flags & DL_FLAG_MANAGED))
1362 continue;
1363
1364 supplier = link->supplier;
1365 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1366 /*
1367 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1368 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1369 * save to drop the managed link completely.
1370 */
1371 device_link_drop_managed(link);
1372 } else if (dev_is_best_effort(dev) &&
1373 link->flags & DL_FLAG_INFERRED &&
1374 link->status != DL_STATE_CONSUMER_PROBE &&
1375 !link->supplier->can_match) {
1376 /*
1377 * When dev_is_best_effort() is true, we ignore device
1378 * links to suppliers that don't have a driver. If the
1379 * consumer device still managed to probe, there's no
1380 * point in maintaining a device link in a weird state
1381 * (consumer probed before supplier). So delete it.
1382 */
1383 device_link_drop_managed(link);
1384 } else {
1385 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1386 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1387 }
1388
1389 /*
1390 * This needs to be done even for the deleted
1391 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1392 * device link that was preventing the supplier from getting a
1393 * sync_state() call.
1394 */
1395 if (defer_sync_state_count)
1396 __device_links_supplier_defer_sync(supplier);
1397 else
1398 __device_links_queue_sync_state(supplier, &sync_list);
1399 }
1400
1401 dev->links.status = DL_DEV_DRIVER_BOUND;
1402
1403 device_links_write_unlock();
1404
1405 device_links_flush_sync_list(&sync_list, dev);
1406}
1407
1408/**
1409 * __device_links_no_driver - Update links of a device without a driver.
1410 * @dev: Device without a drvier.
1411 *
1412 * Delete all non-persistent links from this device to any suppliers.
1413 *
1414 * Persistent links stay around, but their status is changed to "available",
1415 * unless they already are in the "supplier unbind in progress" state in which
1416 * case they need not be updated.
1417 *
1418 * Links without the DL_FLAG_MANAGED flag set are ignored.
1419 */
1420static void __device_links_no_driver(struct device *dev)
1421{
1422 struct device_link *link, *ln;
1423
1424 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1425 if (!(link->flags & DL_FLAG_MANAGED))
1426 continue;
1427
1428 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1429 device_link_drop_managed(link);
1430 continue;
1431 }
1432
1433 if (link->status != DL_STATE_CONSUMER_PROBE &&
1434 link->status != DL_STATE_ACTIVE)
1435 continue;
1436
1437 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1438 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1439 } else {
1440 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1441 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1442 }
1443 }
1444
1445 dev->links.status = DL_DEV_NO_DRIVER;
1446}
1447
1448/**
1449 * device_links_no_driver - Update links after failing driver probe.
1450 * @dev: Device whose driver has just failed to probe.
1451 *
1452 * Clean up leftover links to consumers for @dev and invoke
1453 * %__device_links_no_driver() to update links to suppliers for it as
1454 * appropriate.
1455 *
1456 * Links without the DL_FLAG_MANAGED flag set are ignored.
1457 */
1458void device_links_no_driver(struct device *dev)
1459{
1460 struct device_link *link;
1461
1462 device_links_write_lock();
1463
1464 list_for_each_entry(link, &dev->links.consumers, s_node) {
1465 if (!(link->flags & DL_FLAG_MANAGED))
1466 continue;
1467
1468 /*
1469 * The probe has failed, so if the status of the link is
1470 * "consumer probe" or "active", it must have been added by
1471 * a probing consumer while this device was still probing.
1472 * Change its state to "dormant", as it represents a valid
1473 * relationship, but it is not functionally meaningful.
1474 */
1475 if (link->status == DL_STATE_CONSUMER_PROBE ||
1476 link->status == DL_STATE_ACTIVE)
1477 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1478 }
1479
1480 __device_links_no_driver(dev);
1481
1482 device_links_write_unlock();
1483}
1484
1485/**
1486 * device_links_driver_cleanup - Update links after driver removal.
1487 * @dev: Device whose driver has just gone away.
1488 *
1489 * Update links to consumers for @dev by changing their status to "dormant" and
1490 * invoke %__device_links_no_driver() to update links to suppliers for it as
1491 * appropriate.
1492 *
1493 * Links without the DL_FLAG_MANAGED flag set are ignored.
1494 */
1495void device_links_driver_cleanup(struct device *dev)
1496{
1497 struct device_link *link, *ln;
1498
1499 device_links_write_lock();
1500
1501 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1502 if (!(link->flags & DL_FLAG_MANAGED))
1503 continue;
1504
1505 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1506 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1507
1508 /*
1509 * autoremove the links between this @dev and its consumer
1510 * devices that are not active, i.e. where the link state
1511 * has moved to DL_STATE_SUPPLIER_UNBIND.
1512 */
1513 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1514 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1515 device_link_drop_managed(link);
1516
1517 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1518 }
1519
1520 list_del_init(&dev->links.defer_sync);
1521 __device_links_no_driver(dev);
1522
1523 device_links_write_unlock();
1524}
1525
1526/**
1527 * device_links_busy - Check if there are any busy links to consumers.
1528 * @dev: Device to check.
1529 *
1530 * Check each consumer of the device and return 'true' if its link's status
1531 * is one of "consumer probe" or "active" (meaning that the given consumer is
1532 * probing right now or its driver is present). Otherwise, change the link
1533 * state to "supplier unbind" to prevent the consumer from being probed
1534 * successfully going forward.
1535 *
1536 * Return 'false' if there are no probing or active consumers.
1537 *
1538 * Links without the DL_FLAG_MANAGED flag set are ignored.
1539 */
1540bool device_links_busy(struct device *dev)
1541{
1542 struct device_link *link;
1543 bool ret = false;
1544
1545 device_links_write_lock();
1546
1547 list_for_each_entry(link, &dev->links.consumers, s_node) {
1548 if (!(link->flags & DL_FLAG_MANAGED))
1549 continue;
1550
1551 if (link->status == DL_STATE_CONSUMER_PROBE
1552 || link->status == DL_STATE_ACTIVE) {
1553 ret = true;
1554 break;
1555 }
1556 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1557 }
1558
1559 dev->links.status = DL_DEV_UNBINDING;
1560
1561 device_links_write_unlock();
1562 return ret;
1563}
1564
1565/**
1566 * device_links_unbind_consumers - Force unbind consumers of the given device.
1567 * @dev: Device to unbind the consumers of.
1568 *
1569 * Walk the list of links to consumers for @dev and if any of them is in the
1570 * "consumer probe" state, wait for all device probes in progress to complete
1571 * and start over.
1572 *
1573 * If that's not the case, change the status of the link to "supplier unbind"
1574 * and check if the link was in the "active" state. If so, force the consumer
1575 * driver to unbind and start over (the consumer will not re-probe as we have
1576 * changed the state of the link already).
1577 *
1578 * Links without the DL_FLAG_MANAGED flag set are ignored.
1579 */
1580void device_links_unbind_consumers(struct device *dev)
1581{
1582 struct device_link *link;
1583
1584 start:
1585 device_links_write_lock();
1586
1587 list_for_each_entry(link, &dev->links.consumers, s_node) {
1588 enum device_link_state status;
1589
1590 if (!(link->flags & DL_FLAG_MANAGED) ||
1591 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1592 continue;
1593
1594 status = link->status;
1595 if (status == DL_STATE_CONSUMER_PROBE) {
1596 device_links_write_unlock();
1597
1598 wait_for_device_probe();
1599 goto start;
1600 }
1601 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1602 if (status == DL_STATE_ACTIVE) {
1603 struct device *consumer = link->consumer;
1604
1605 get_device(consumer);
1606
1607 device_links_write_unlock();
1608
1609 device_release_driver_internal(consumer, NULL,
1610 consumer->parent);
1611 put_device(consumer);
1612 goto start;
1613 }
1614 }
1615
1616 device_links_write_unlock();
1617}
1618
1619/**
1620 * device_links_purge - Delete existing links to other devices.
1621 * @dev: Target device.
1622 */
1623static void device_links_purge(struct device *dev)
1624{
1625 struct device_link *link, *ln;
1626
1627 if (dev->class == &devlink_class)
1628 return;
1629
1630 /*
1631 * Delete all of the remaining links from this device to any other
1632 * devices (either consumers or suppliers).
1633 */
1634 device_links_write_lock();
1635
1636 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1637 WARN_ON(link->status == DL_STATE_ACTIVE);
1638 __device_link_del(&link->kref);
1639 }
1640
1641 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1642 WARN_ON(link->status != DL_STATE_DORMANT &&
1643 link->status != DL_STATE_NONE);
1644 __device_link_del(&link->kref);
1645 }
1646
1647 device_links_write_unlock();
1648}
1649
1650#define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1651 DL_FLAG_SYNC_STATE_ONLY)
1652#define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1653 DL_FLAG_AUTOPROBE_CONSUMER)
1654#define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1655 DL_FLAG_PM_RUNTIME)
1656
1657static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1658static int __init fw_devlink_setup(char *arg)
1659{
1660 if (!arg)
1661 return -EINVAL;
1662
1663 if (strcmp(arg, "off") == 0) {
1664 fw_devlink_flags = 0;
1665 } else if (strcmp(arg, "permissive") == 0) {
1666 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1667 } else if (strcmp(arg, "on") == 0) {
1668 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1669 } else if (strcmp(arg, "rpm") == 0) {
1670 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1671 }
1672 return 0;
1673}
1674early_param("fw_devlink", fw_devlink_setup);
1675
1676static bool fw_devlink_strict;
1677static int __init fw_devlink_strict_setup(char *arg)
1678{
1679 return kstrtobool(arg, &fw_devlink_strict);
1680}
1681early_param("fw_devlink.strict", fw_devlink_strict_setup);
1682
1683#define FW_DEVLINK_SYNC_STATE_STRICT 0
1684#define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1685
1686#ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1687static int fw_devlink_sync_state;
1688#else
1689static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1690#endif
1691
1692static int __init fw_devlink_sync_state_setup(char *arg)
1693{
1694 if (!arg)
1695 return -EINVAL;
1696
1697 if (strcmp(arg, "strict") == 0) {
1698 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1699 return 0;
1700 } else if (strcmp(arg, "timeout") == 0) {
1701 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1702 return 0;
1703 }
1704 return -EINVAL;
1705}
1706early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1707
1708static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1709{
1710 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1711 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1712
1713 return fw_devlink_flags;
1714}
1715
1716static bool fw_devlink_is_permissive(void)
1717{
1718 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1719}
1720
1721bool fw_devlink_is_strict(void)
1722{
1723 return fw_devlink_strict && !fw_devlink_is_permissive();
1724}
1725
1726static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1727{
1728 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1729 return;
1730
1731 fwnode_call_int_op(fwnode, add_links);
1732 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1733}
1734
1735static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1736{
1737 struct fwnode_handle *child = NULL;
1738
1739 fw_devlink_parse_fwnode(fwnode);
1740
1741 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1742 fw_devlink_parse_fwtree(child);
1743}
1744
1745static void fw_devlink_relax_link(struct device_link *link)
1746{
1747 if (!(link->flags & DL_FLAG_INFERRED))
1748 return;
1749
1750 if (device_link_flag_is_sync_state_only(link->flags))
1751 return;
1752
1753 pm_runtime_drop_link(link);
1754 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1755 dev_dbg(link->consumer, "Relaxing link with %s\n",
1756 dev_name(link->supplier));
1757}
1758
1759static int fw_devlink_no_driver(struct device *dev, void *data)
1760{
1761 struct device_link *link = to_devlink(dev);
1762
1763 if (!link->supplier->can_match)
1764 fw_devlink_relax_link(link);
1765
1766 return 0;
1767}
1768
1769void fw_devlink_drivers_done(void)
1770{
1771 fw_devlink_drv_reg_done = true;
1772 device_links_write_lock();
1773 class_for_each_device(&devlink_class, NULL, NULL,
1774 fw_devlink_no_driver);
1775 device_links_write_unlock();
1776}
1777
1778static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1779{
1780 struct device_link *link = to_devlink(dev);
1781 struct device *sup = link->supplier;
1782
1783 if (!(link->flags & DL_FLAG_MANAGED) ||
1784 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1785 !dev_has_sync_state(sup))
1786 return 0;
1787
1788 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1789 dev_warn(sup, "sync_state() pending due to %s\n",
1790 dev_name(link->consumer));
1791 return 0;
1792 }
1793
1794 if (!list_empty(&sup->links.defer_sync))
1795 return 0;
1796
1797 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1798 sup->state_synced = true;
1799 get_device(sup);
1800 list_add_tail(&sup->links.defer_sync, data);
1801
1802 return 0;
1803}
1804
1805void fw_devlink_probing_done(void)
1806{
1807 LIST_HEAD(sync_list);
1808
1809 device_links_write_lock();
1810 class_for_each_device(&devlink_class, NULL, &sync_list,
1811 fw_devlink_dev_sync_state);
1812 device_links_write_unlock();
1813 device_links_flush_sync_list(&sync_list, NULL);
1814}
1815
1816/**
1817 * wait_for_init_devices_probe - Try to probe any device needed for init
1818 *
1819 * Some devices might need to be probed and bound successfully before the kernel
1820 * boot sequence can finish and move on to init/userspace. For example, a
1821 * network interface might need to be bound to be able to mount a NFS rootfs.
1822 *
1823 * With fw_devlink=on by default, some of these devices might be blocked from
1824 * probing because they are waiting on a optional supplier that doesn't have a
1825 * driver. While fw_devlink will eventually identify such devices and unblock
1826 * the probing automatically, it might be too late by the time it unblocks the
1827 * probing of devices. For example, the IP4 autoconfig might timeout before
1828 * fw_devlink unblocks probing of the network interface.
1829 *
1830 * This function is available to temporarily try and probe all devices that have
1831 * a driver even if some of their suppliers haven't been added or don't have
1832 * drivers.
1833 *
1834 * The drivers can then decide which of the suppliers are optional vs mandatory
1835 * and probe the device if possible. By the time this function returns, all such
1836 * "best effort" probes are guaranteed to be completed. If a device successfully
1837 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1838 * device where the supplier hasn't yet probed successfully because they have to
1839 * be optional dependencies.
1840 *
1841 * Any devices that didn't successfully probe go back to being treated as if
1842 * this function was never called.
1843 *
1844 * This also means that some devices that aren't needed for init and could have
1845 * waited for their optional supplier to probe (when the supplier's module is
1846 * loaded later on) would end up probing prematurely with limited functionality.
1847 * So call this function only when boot would fail without it.
1848 */
1849void __init wait_for_init_devices_probe(void)
1850{
1851 if (!fw_devlink_flags || fw_devlink_is_permissive())
1852 return;
1853
1854 /*
1855 * Wait for all ongoing probes to finish so that the "best effort" is
1856 * only applied to devices that can't probe otherwise.
1857 */
1858 wait_for_device_probe();
1859
1860 pr_info("Trying to probe devices needed for running init ...\n");
1861 fw_devlink_best_effort = true;
1862 driver_deferred_probe_trigger();
1863
1864 /*
1865 * Wait for all "best effort" probes to finish before going back to
1866 * normal enforcement.
1867 */
1868 wait_for_device_probe();
1869 fw_devlink_best_effort = false;
1870}
1871
1872static void fw_devlink_unblock_consumers(struct device *dev)
1873{
1874 struct device_link *link;
1875
1876 if (!fw_devlink_flags || fw_devlink_is_permissive())
1877 return;
1878
1879 device_links_write_lock();
1880 list_for_each_entry(link, &dev->links.consumers, s_node)
1881 fw_devlink_relax_link(link);
1882 device_links_write_unlock();
1883}
1884
1885#define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev)
1886
1887static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1888{
1889 struct device *dev;
1890 bool ret;
1891
1892 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1893 return false;
1894
1895 dev = get_dev_from_fwnode(fwnode);
1896 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1897 put_device(dev);
1898
1899 return ret;
1900}
1901
1902static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1903{
1904 struct fwnode_handle *parent;
1905
1906 fwnode_for_each_parent_node(fwnode, parent) {
1907 if (fwnode_init_without_drv(parent)) {
1908 fwnode_handle_put(parent);
1909 return true;
1910 }
1911 }
1912
1913 return false;
1914}
1915
1916/**
1917 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1918 * @ancestor: Firmware which is tested for being an ancestor
1919 * @child: Firmware which is tested for being the child
1920 *
1921 * A node is considered an ancestor of itself too.
1922 *
1923 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1924 */
1925static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1926 const struct fwnode_handle *child)
1927{
1928 struct fwnode_handle *parent;
1929
1930 if (IS_ERR_OR_NULL(ancestor))
1931 return false;
1932
1933 if (child == ancestor)
1934 return true;
1935
1936 fwnode_for_each_parent_node(child, parent) {
1937 if (parent == ancestor) {
1938 fwnode_handle_put(parent);
1939 return true;
1940 }
1941 }
1942 return false;
1943}
1944
1945/**
1946 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1947 * @fwnode: firmware node
1948 *
1949 * Given a firmware node (@fwnode), this function finds its closest ancestor
1950 * firmware node that has a corresponding struct device and returns that struct
1951 * device.
1952 *
1953 * The caller is responsible for calling put_device() on the returned device
1954 * pointer.
1955 *
1956 * Return: a pointer to the device of the @fwnode's closest ancestor.
1957 */
1958static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1959{
1960 struct fwnode_handle *parent;
1961 struct device *dev;
1962
1963 fwnode_for_each_parent_node(fwnode, parent) {
1964 dev = get_dev_from_fwnode(parent);
1965 if (dev) {
1966 fwnode_handle_put(parent);
1967 return dev;
1968 }
1969 }
1970 return NULL;
1971}
1972
1973/**
1974 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1975 * @con: Potential consumer device.
1976 * @sup_handle: Potential supplier's fwnode.
1977 *
1978 * Needs to be called with fwnode_lock and device link lock held.
1979 *
1980 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1981 * depend on @con. This function can detect multiple cyles between @sup_handle
1982 * and @con. When such dependency cycles are found, convert all device links
1983 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1984 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1985 * converted into a device link in the future, they are created as
1986 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1987 * fw_devlink=permissive just between the devices in the cycle. We need to do
1988 * this because, at this point, fw_devlink can't tell which of these
1989 * dependencies is not a real dependency.
1990 *
1991 * Return true if one or more cycles were found. Otherwise, return false.
1992 */
1993static bool __fw_devlink_relax_cycles(struct device *con,
1994 struct fwnode_handle *sup_handle)
1995{
1996 struct device *sup_dev = NULL, *par_dev = NULL;
1997 struct fwnode_link *link;
1998 struct device_link *dev_link;
1999 bool ret = false;
2000
2001 if (!sup_handle)
2002 return false;
2003
2004 /*
2005 * We aren't trying to find all cycles. Just a cycle between con and
2006 * sup_handle.
2007 */
2008 if (sup_handle->flags & FWNODE_FLAG_VISITED)
2009 return false;
2010
2011 sup_handle->flags |= FWNODE_FLAG_VISITED;
2012
2013 sup_dev = get_dev_from_fwnode(sup_handle);
2014
2015 /* Termination condition. */
2016 if (sup_dev == con) {
2017 pr_debug("----- cycle: start -----\n");
2018 ret = true;
2019 goto out;
2020 }
2021
2022 /*
2023 * If sup_dev is bound to a driver and @con hasn't started binding to a
2024 * driver, sup_dev can't be a consumer of @con. So, no need to check
2025 * further.
2026 */
2027 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
2028 con->links.status == DL_DEV_NO_DRIVER) {
2029 ret = false;
2030 goto out;
2031 }
2032
2033 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2034 if (link->flags & FWLINK_FLAG_IGNORE)
2035 continue;
2036
2037 if (__fw_devlink_relax_cycles(con, link->supplier)) {
2038 __fwnode_link_cycle(link);
2039 ret = true;
2040 }
2041 }
2042
2043 /*
2044 * Give priority to device parent over fwnode parent to account for any
2045 * quirks in how fwnodes are converted to devices.
2046 */
2047 if (sup_dev)
2048 par_dev = get_device(sup_dev->parent);
2049 else
2050 par_dev = fwnode_get_next_parent_dev(sup_handle);
2051
2052 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) {
2053 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2054 par_dev->fwnode);
2055 ret = true;
2056 }
2057
2058 if (!sup_dev)
2059 goto out;
2060
2061 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2062 /*
2063 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2064 * such due to a cycle.
2065 */
2066 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2067 !(dev_link->flags & DL_FLAG_CYCLE))
2068 continue;
2069
2070 if (__fw_devlink_relax_cycles(con,
2071 dev_link->supplier->fwnode)) {
2072 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2073 dev_link->supplier->fwnode);
2074 fw_devlink_relax_link(dev_link);
2075 dev_link->flags |= DL_FLAG_CYCLE;
2076 ret = true;
2077 }
2078 }
2079
2080out:
2081 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2082 put_device(sup_dev);
2083 put_device(par_dev);
2084 return ret;
2085}
2086
2087/**
2088 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2089 * @con: consumer device for the device link
2090 * @sup_handle: fwnode handle of supplier
2091 * @link: fwnode link that's being converted to a device link
2092 *
2093 * This function will try to create a device link between the consumer device
2094 * @con and the supplier device represented by @sup_handle.
2095 *
2096 * The supplier has to be provided as a fwnode because incorrect cycles in
2097 * fwnode links can sometimes cause the supplier device to never be created.
2098 * This function detects such cases and returns an error if it cannot create a
2099 * device link from the consumer to a missing supplier.
2100 *
2101 * Returns,
2102 * 0 on successfully creating a device link
2103 * -EINVAL if the device link cannot be created as expected
2104 * -EAGAIN if the device link cannot be created right now, but it may be
2105 * possible to do that in the future
2106 */
2107static int fw_devlink_create_devlink(struct device *con,
2108 struct fwnode_handle *sup_handle,
2109 struct fwnode_link *link)
2110{
2111 struct device *sup_dev;
2112 int ret = 0;
2113 u32 flags;
2114
2115 if (link->flags & FWLINK_FLAG_IGNORE)
2116 return 0;
2117
2118 if (con->fwnode == link->consumer)
2119 flags = fw_devlink_get_flags(link->flags);
2120 else
2121 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2122
2123 /*
2124 * In some cases, a device P might also be a supplier to its child node
2125 * C. However, this would defer the probe of C until the probe of P
2126 * completes successfully. This is perfectly fine in the device driver
2127 * model. device_add() doesn't guarantee probe completion of the device
2128 * by the time it returns.
2129 *
2130 * However, there are a few drivers that assume C will finish probing
2131 * as soon as it's added and before P finishes probing. So, we provide
2132 * a flag to let fw_devlink know not to delay the probe of C until the
2133 * probe of P completes successfully.
2134 *
2135 * When such a flag is set, we can't create device links where P is the
2136 * supplier of C as that would delay the probe of C.
2137 */
2138 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2139 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2140 return -EINVAL;
2141
2142 /*
2143 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2144 * So, one might expect that cycle detection isn't necessary for them.
2145 * However, if the device link was marked as SYNC_STATE_ONLY because
2146 * it's part of a cycle, then we still need to do cycle detection. This
2147 * is because the consumer and supplier might be part of multiple cycles
2148 * and we need to detect all those cycles.
2149 */
2150 if (!device_link_flag_is_sync_state_only(flags) ||
2151 flags & DL_FLAG_CYCLE) {
2152 device_links_write_lock();
2153 if (__fw_devlink_relax_cycles(con, sup_handle)) {
2154 __fwnode_link_cycle(link);
2155 flags = fw_devlink_get_flags(link->flags);
2156 pr_debug("----- cycle: end -----\n");
2157 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2158 sup_handle);
2159 }
2160 device_links_write_unlock();
2161 }
2162
2163 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2164 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2165 else
2166 sup_dev = get_dev_from_fwnode(sup_handle);
2167
2168 if (sup_dev) {
2169 /*
2170 * If it's one of those drivers that don't actually bind to
2171 * their device using driver core, then don't wait on this
2172 * supplier device indefinitely.
2173 */
2174 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2175 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2176 dev_dbg(con,
2177 "Not linking %pfwf - dev might never probe\n",
2178 sup_handle);
2179 ret = -EINVAL;
2180 goto out;
2181 }
2182
2183 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2184 dev_err(con, "Failed to create device link (0x%x) with %s\n",
2185 flags, dev_name(sup_dev));
2186 ret = -EINVAL;
2187 }
2188
2189 goto out;
2190 }
2191
2192 /*
2193 * Supplier or supplier's ancestor already initialized without a struct
2194 * device or being probed by a driver.
2195 */
2196 if (fwnode_init_without_drv(sup_handle) ||
2197 fwnode_ancestor_init_without_drv(sup_handle)) {
2198 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2199 sup_handle);
2200 return -EINVAL;
2201 }
2202
2203 ret = -EAGAIN;
2204out:
2205 put_device(sup_dev);
2206 return ret;
2207}
2208
2209/**
2210 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2211 * @dev: Device that needs to be linked to its consumers
2212 *
2213 * This function looks at all the consumer fwnodes of @dev and creates device
2214 * links between the consumer device and @dev (supplier).
2215 *
2216 * If the consumer device has not been added yet, then this function creates a
2217 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2218 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2219 * sync_state() callback before the real consumer device gets to be added and
2220 * then probed.
2221 *
2222 * Once device links are created from the real consumer to @dev (supplier), the
2223 * fwnode links are deleted.
2224 */
2225static void __fw_devlink_link_to_consumers(struct device *dev)
2226{
2227 struct fwnode_handle *fwnode = dev->fwnode;
2228 struct fwnode_link *link, *tmp;
2229
2230 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2231 struct device *con_dev;
2232 bool own_link = true;
2233 int ret;
2234
2235 con_dev = get_dev_from_fwnode(link->consumer);
2236 /*
2237 * If consumer device is not available yet, make a "proxy"
2238 * SYNC_STATE_ONLY link from the consumer's parent device to
2239 * the supplier device. This is necessary to make sure the
2240 * supplier doesn't get a sync_state() callback before the real
2241 * consumer can create a device link to the supplier.
2242 *
2243 * This proxy link step is needed to handle the case where the
2244 * consumer's parent device is added before the supplier.
2245 */
2246 if (!con_dev) {
2247 con_dev = fwnode_get_next_parent_dev(link->consumer);
2248 /*
2249 * However, if the consumer's parent device is also the
2250 * parent of the supplier, don't create a
2251 * consumer-supplier link from the parent to its child
2252 * device. Such a dependency is impossible.
2253 */
2254 if (con_dev &&
2255 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2256 put_device(con_dev);
2257 con_dev = NULL;
2258 } else {
2259 own_link = false;
2260 }
2261 }
2262
2263 if (!con_dev)
2264 continue;
2265
2266 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2267 put_device(con_dev);
2268 if (!own_link || ret == -EAGAIN)
2269 continue;
2270
2271 __fwnode_link_del(link);
2272 }
2273}
2274
2275/**
2276 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2277 * @dev: The consumer device that needs to be linked to its suppliers
2278 * @fwnode: Root of the fwnode tree that is used to create device links
2279 *
2280 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2281 * @fwnode and creates device links between @dev (consumer) and all the
2282 * supplier devices of the entire fwnode tree at @fwnode.
2283 *
2284 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2285 * and the real suppliers of @dev. Once these device links are created, the
2286 * fwnode links are deleted.
2287 *
2288 * In addition, it also looks at all the suppliers of the entire fwnode tree
2289 * because some of the child devices of @dev that have not been added yet
2290 * (because @dev hasn't probed) might already have their suppliers added to
2291 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2292 * @dev (consumer) and these suppliers to make sure they don't execute their
2293 * sync_state() callbacks before these child devices have a chance to create
2294 * their device links. The fwnode links that correspond to the child devices
2295 * aren't delete because they are needed later to create the device links
2296 * between the real consumer and supplier devices.
2297 */
2298static void __fw_devlink_link_to_suppliers(struct device *dev,
2299 struct fwnode_handle *fwnode)
2300{
2301 bool own_link = (dev->fwnode == fwnode);
2302 struct fwnode_link *link, *tmp;
2303 struct fwnode_handle *child = NULL;
2304
2305 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2306 int ret;
2307 struct fwnode_handle *sup = link->supplier;
2308
2309 ret = fw_devlink_create_devlink(dev, sup, link);
2310 if (!own_link || ret == -EAGAIN)
2311 continue;
2312
2313 __fwnode_link_del(link);
2314 }
2315
2316 /*
2317 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2318 * all the descendants. This proxy link step is needed to handle the
2319 * case where the supplier is added before the consumer's parent device
2320 * (@dev).
2321 */
2322 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2323 __fw_devlink_link_to_suppliers(dev, child);
2324}
2325
2326static void fw_devlink_link_device(struct device *dev)
2327{
2328 struct fwnode_handle *fwnode = dev->fwnode;
2329
2330 if (!fw_devlink_flags)
2331 return;
2332
2333 fw_devlink_parse_fwtree(fwnode);
2334
2335 guard(mutex)(&fwnode_link_lock);
2336
2337 __fw_devlink_link_to_consumers(dev);
2338 __fw_devlink_link_to_suppliers(dev, fwnode);
2339}
2340
2341/* Device links support end. */
2342
2343static struct kobject *dev_kobj;
2344
2345/* /sys/dev/char */
2346static struct kobject *sysfs_dev_char_kobj;
2347
2348/* /sys/dev/block */
2349static struct kobject *sysfs_dev_block_kobj;
2350
2351static DEFINE_MUTEX(device_hotplug_lock);
2352
2353void lock_device_hotplug(void)
2354{
2355 mutex_lock(&device_hotplug_lock);
2356}
2357
2358void unlock_device_hotplug(void)
2359{
2360 mutex_unlock(&device_hotplug_lock);
2361}
2362
2363int lock_device_hotplug_sysfs(void)
2364{
2365 if (mutex_trylock(&device_hotplug_lock))
2366 return 0;
2367
2368 /* Avoid busy looping (5 ms of sleep should do). */
2369 msleep(5);
2370 return restart_syscall();
2371}
2372
2373#ifdef CONFIG_BLOCK
2374static inline int device_is_not_partition(struct device *dev)
2375{
2376 return !(dev->type == &part_type);
2377}
2378#else
2379static inline int device_is_not_partition(struct device *dev)
2380{
2381 return 1;
2382}
2383#endif
2384
2385static void device_platform_notify(struct device *dev)
2386{
2387 acpi_device_notify(dev);
2388
2389 software_node_notify(dev);
2390}
2391
2392static void device_platform_notify_remove(struct device *dev)
2393{
2394 software_node_notify_remove(dev);
2395
2396 acpi_device_notify_remove(dev);
2397}
2398
2399/**
2400 * dev_driver_string - Return a device's driver name, if at all possible
2401 * @dev: struct device to get the name of
2402 *
2403 * Will return the device's driver's name if it is bound to a device. If
2404 * the device is not bound to a driver, it will return the name of the bus
2405 * it is attached to. If it is not attached to a bus either, an empty
2406 * string will be returned.
2407 */
2408const char *dev_driver_string(const struct device *dev)
2409{
2410 struct device_driver *drv;
2411
2412 /* dev->driver can change to NULL underneath us because of unbinding,
2413 * so be careful about accessing it. dev->bus and dev->class should
2414 * never change once they are set, so they don't need special care.
2415 */
2416 drv = READ_ONCE(dev->driver);
2417 return drv ? drv->name : dev_bus_name(dev);
2418}
2419EXPORT_SYMBOL(dev_driver_string);
2420
2421#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2422
2423static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2424 char *buf)
2425{
2426 struct device_attribute *dev_attr = to_dev_attr(attr);
2427 struct device *dev = kobj_to_dev(kobj);
2428 ssize_t ret = -EIO;
2429
2430 if (dev_attr->show)
2431 ret = dev_attr->show(dev, dev_attr, buf);
2432 if (ret >= (ssize_t)PAGE_SIZE) {
2433 printk("dev_attr_show: %pS returned bad count\n",
2434 dev_attr->show);
2435 }
2436 return ret;
2437}
2438
2439static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2440 const char *buf, size_t count)
2441{
2442 struct device_attribute *dev_attr = to_dev_attr(attr);
2443 struct device *dev = kobj_to_dev(kobj);
2444 ssize_t ret = -EIO;
2445
2446 if (dev_attr->store)
2447 ret = dev_attr->store(dev, dev_attr, buf, count);
2448 return ret;
2449}
2450
2451static const struct sysfs_ops dev_sysfs_ops = {
2452 .show = dev_attr_show,
2453 .store = dev_attr_store,
2454};
2455
2456#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2457
2458ssize_t device_store_ulong(struct device *dev,
2459 struct device_attribute *attr,
2460 const char *buf, size_t size)
2461{
2462 struct dev_ext_attribute *ea = to_ext_attr(attr);
2463 int ret;
2464 unsigned long new;
2465
2466 ret = kstrtoul(buf, 0, &new);
2467 if (ret)
2468 return ret;
2469 *(unsigned long *)(ea->var) = new;
2470 /* Always return full write size even if we didn't consume all */
2471 return size;
2472}
2473EXPORT_SYMBOL_GPL(device_store_ulong);
2474
2475ssize_t device_show_ulong(struct device *dev,
2476 struct device_attribute *attr,
2477 char *buf)
2478{
2479 struct dev_ext_attribute *ea = to_ext_attr(attr);
2480 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2481}
2482EXPORT_SYMBOL_GPL(device_show_ulong);
2483
2484ssize_t device_store_int(struct device *dev,
2485 struct device_attribute *attr,
2486 const char *buf, size_t size)
2487{
2488 struct dev_ext_attribute *ea = to_ext_attr(attr);
2489 int ret;
2490 long new;
2491
2492 ret = kstrtol(buf, 0, &new);
2493 if (ret)
2494 return ret;
2495
2496 if (new > INT_MAX || new < INT_MIN)
2497 return -EINVAL;
2498 *(int *)(ea->var) = new;
2499 /* Always return full write size even if we didn't consume all */
2500 return size;
2501}
2502EXPORT_SYMBOL_GPL(device_store_int);
2503
2504ssize_t device_show_int(struct device *dev,
2505 struct device_attribute *attr,
2506 char *buf)
2507{
2508 struct dev_ext_attribute *ea = to_ext_attr(attr);
2509
2510 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2511}
2512EXPORT_SYMBOL_GPL(device_show_int);
2513
2514ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2515 const char *buf, size_t size)
2516{
2517 struct dev_ext_attribute *ea = to_ext_attr(attr);
2518
2519 if (kstrtobool(buf, ea->var) < 0)
2520 return -EINVAL;
2521
2522 return size;
2523}
2524EXPORT_SYMBOL_GPL(device_store_bool);
2525
2526ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2527 char *buf)
2528{
2529 struct dev_ext_attribute *ea = to_ext_attr(attr);
2530
2531 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2532}
2533EXPORT_SYMBOL_GPL(device_show_bool);
2534
2535ssize_t device_show_string(struct device *dev,
2536 struct device_attribute *attr, char *buf)
2537{
2538 struct dev_ext_attribute *ea = to_ext_attr(attr);
2539
2540 return sysfs_emit(buf, "%s\n", (char *)ea->var);
2541}
2542EXPORT_SYMBOL_GPL(device_show_string);
2543
2544/**
2545 * device_release - free device structure.
2546 * @kobj: device's kobject.
2547 *
2548 * This is called once the reference count for the object
2549 * reaches 0. We forward the call to the device's release
2550 * method, which should handle actually freeing the structure.
2551 */
2552static void device_release(struct kobject *kobj)
2553{
2554 struct device *dev = kobj_to_dev(kobj);
2555 struct device_private *p = dev->p;
2556
2557 /*
2558 * Some platform devices are driven without driver attached
2559 * and managed resources may have been acquired. Make sure
2560 * all resources are released.
2561 *
2562 * Drivers still can add resources into device after device
2563 * is deleted but alive, so release devres here to avoid
2564 * possible memory leak.
2565 */
2566 devres_release_all(dev);
2567
2568 kfree(dev->dma_range_map);
2569
2570 if (dev->release)
2571 dev->release(dev);
2572 else if (dev->type && dev->type->release)
2573 dev->type->release(dev);
2574 else if (dev->class && dev->class->dev_release)
2575 dev->class->dev_release(dev);
2576 else
2577 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2578 dev_name(dev));
2579 kfree(p);
2580}
2581
2582static const void *device_namespace(const struct kobject *kobj)
2583{
2584 const struct device *dev = kobj_to_dev(kobj);
2585 const void *ns = NULL;
2586
2587 if (dev->class && dev->class->namespace)
2588 ns = dev->class->namespace(dev);
2589
2590 return ns;
2591}
2592
2593static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2594{
2595 const struct device *dev = kobj_to_dev(kobj);
2596
2597 if (dev->class && dev->class->get_ownership)
2598 dev->class->get_ownership(dev, uid, gid);
2599}
2600
2601static const struct kobj_type device_ktype = {
2602 .release = device_release,
2603 .sysfs_ops = &dev_sysfs_ops,
2604 .namespace = device_namespace,
2605 .get_ownership = device_get_ownership,
2606};
2607
2608
2609static int dev_uevent_filter(const struct kobject *kobj)
2610{
2611 const struct kobj_type *ktype = get_ktype(kobj);
2612
2613 if (ktype == &device_ktype) {
2614 const struct device *dev = kobj_to_dev(kobj);
2615 if (dev->bus)
2616 return 1;
2617 if (dev->class)
2618 return 1;
2619 }
2620 return 0;
2621}
2622
2623static const char *dev_uevent_name(const struct kobject *kobj)
2624{
2625 const struct device *dev = kobj_to_dev(kobj);
2626
2627 if (dev->bus)
2628 return dev->bus->name;
2629 if (dev->class)
2630 return dev->class->name;
2631 return NULL;
2632}
2633
2634static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2635{
2636 const struct device *dev = kobj_to_dev(kobj);
2637 struct device_driver *driver;
2638 int retval = 0;
2639
2640 /* add device node properties if present */
2641 if (MAJOR(dev->devt)) {
2642 const char *tmp;
2643 const char *name;
2644 umode_t mode = 0;
2645 kuid_t uid = GLOBAL_ROOT_UID;
2646 kgid_t gid = GLOBAL_ROOT_GID;
2647
2648 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2649 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2650 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2651 if (name) {
2652 add_uevent_var(env, "DEVNAME=%s", name);
2653 if (mode)
2654 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2655 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2656 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2657 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2658 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2659 kfree(tmp);
2660 }
2661 }
2662
2663 if (dev->type && dev->type->name)
2664 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2665
2666 /* Synchronize with module_remove_driver() */
2667 rcu_read_lock();
2668 driver = READ_ONCE(dev->driver);
2669 if (driver)
2670 add_uevent_var(env, "DRIVER=%s", driver->name);
2671 rcu_read_unlock();
2672
2673 /* Add common DT information about the device */
2674 of_device_uevent(dev, env);
2675
2676 /* have the bus specific function add its stuff */
2677 if (dev->bus && dev->bus->uevent) {
2678 retval = dev->bus->uevent(dev, env);
2679 if (retval)
2680 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2681 dev_name(dev), __func__, retval);
2682 }
2683
2684 /* have the class specific function add its stuff */
2685 if (dev->class && dev->class->dev_uevent) {
2686 retval = dev->class->dev_uevent(dev, env);
2687 if (retval)
2688 pr_debug("device: '%s': %s: class uevent() "
2689 "returned %d\n", dev_name(dev),
2690 __func__, retval);
2691 }
2692
2693 /* have the device type specific function add its stuff */
2694 if (dev->type && dev->type->uevent) {
2695 retval = dev->type->uevent(dev, env);
2696 if (retval)
2697 pr_debug("device: '%s': %s: dev_type uevent() "
2698 "returned %d\n", dev_name(dev),
2699 __func__, retval);
2700 }
2701
2702 return retval;
2703}
2704
2705static const struct kset_uevent_ops device_uevent_ops = {
2706 .filter = dev_uevent_filter,
2707 .name = dev_uevent_name,
2708 .uevent = dev_uevent,
2709};
2710
2711static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2712 char *buf)
2713{
2714 struct kobject *top_kobj;
2715 struct kset *kset;
2716 struct kobj_uevent_env *env = NULL;
2717 int i;
2718 int len = 0;
2719 int retval;
2720
2721 /* search the kset, the device belongs to */
2722 top_kobj = &dev->kobj;
2723 while (!top_kobj->kset && top_kobj->parent)
2724 top_kobj = top_kobj->parent;
2725 if (!top_kobj->kset)
2726 goto out;
2727
2728 kset = top_kobj->kset;
2729 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2730 goto out;
2731
2732 /* respect filter */
2733 if (kset->uevent_ops && kset->uevent_ops->filter)
2734 if (!kset->uevent_ops->filter(&dev->kobj))
2735 goto out;
2736
2737 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2738 if (!env)
2739 return -ENOMEM;
2740
2741 /* let the kset specific function add its keys */
2742 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2743 if (retval)
2744 goto out;
2745
2746 /* copy keys to file */
2747 for (i = 0; i < env->envp_idx; i++)
2748 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2749out:
2750 kfree(env);
2751 return len;
2752}
2753
2754static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2755 const char *buf, size_t count)
2756{
2757 int rc;
2758
2759 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2760
2761 if (rc) {
2762 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2763 return rc;
2764 }
2765
2766 return count;
2767}
2768static DEVICE_ATTR_RW(uevent);
2769
2770static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2771 char *buf)
2772{
2773 bool val;
2774
2775 device_lock(dev);
2776 val = !dev->offline;
2777 device_unlock(dev);
2778 return sysfs_emit(buf, "%u\n", val);
2779}
2780
2781static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2782 const char *buf, size_t count)
2783{
2784 bool val;
2785 int ret;
2786
2787 ret = kstrtobool(buf, &val);
2788 if (ret < 0)
2789 return ret;
2790
2791 ret = lock_device_hotplug_sysfs();
2792 if (ret)
2793 return ret;
2794
2795 ret = val ? device_online(dev) : device_offline(dev);
2796 unlock_device_hotplug();
2797 return ret < 0 ? ret : count;
2798}
2799static DEVICE_ATTR_RW(online);
2800
2801static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2802 char *buf)
2803{
2804 const char *loc;
2805
2806 switch (dev->removable) {
2807 case DEVICE_REMOVABLE:
2808 loc = "removable";
2809 break;
2810 case DEVICE_FIXED:
2811 loc = "fixed";
2812 break;
2813 default:
2814 loc = "unknown";
2815 }
2816 return sysfs_emit(buf, "%s\n", loc);
2817}
2818static DEVICE_ATTR_RO(removable);
2819
2820int device_add_groups(struct device *dev, const struct attribute_group **groups)
2821{
2822 return sysfs_create_groups(&dev->kobj, groups);
2823}
2824EXPORT_SYMBOL_GPL(device_add_groups);
2825
2826void device_remove_groups(struct device *dev,
2827 const struct attribute_group **groups)
2828{
2829 sysfs_remove_groups(&dev->kobj, groups);
2830}
2831EXPORT_SYMBOL_GPL(device_remove_groups);
2832
2833union device_attr_group_devres {
2834 const struct attribute_group *group;
2835 const struct attribute_group **groups;
2836};
2837
2838static void devm_attr_group_remove(struct device *dev, void *res)
2839{
2840 union device_attr_group_devres *devres = res;
2841 const struct attribute_group *group = devres->group;
2842
2843 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2844 sysfs_remove_group(&dev->kobj, group);
2845}
2846
2847/**
2848 * devm_device_add_group - given a device, create a managed attribute group
2849 * @dev: The device to create the group for
2850 * @grp: The attribute group to create
2851 *
2852 * This function creates a group for the first time. It will explicitly
2853 * warn and error if any of the attribute files being created already exist.
2854 *
2855 * Returns 0 on success or error code on failure.
2856 */
2857int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2858{
2859 union device_attr_group_devres *devres;
2860 int error;
2861
2862 devres = devres_alloc(devm_attr_group_remove,
2863 sizeof(*devres), GFP_KERNEL);
2864 if (!devres)
2865 return -ENOMEM;
2866
2867 error = sysfs_create_group(&dev->kobj, grp);
2868 if (error) {
2869 devres_free(devres);
2870 return error;
2871 }
2872
2873 devres->group = grp;
2874 devres_add(dev, devres);
2875 return 0;
2876}
2877EXPORT_SYMBOL_GPL(devm_device_add_group);
2878
2879static int device_add_attrs(struct device *dev)
2880{
2881 const struct class *class = dev->class;
2882 const struct device_type *type = dev->type;
2883 int error;
2884
2885 if (class) {
2886 error = device_add_groups(dev, class->dev_groups);
2887 if (error)
2888 return error;
2889 }
2890
2891 if (type) {
2892 error = device_add_groups(dev, type->groups);
2893 if (error)
2894 goto err_remove_class_groups;
2895 }
2896
2897 error = device_add_groups(dev, dev->groups);
2898 if (error)
2899 goto err_remove_type_groups;
2900
2901 if (device_supports_offline(dev) && !dev->offline_disabled) {
2902 error = device_create_file(dev, &dev_attr_online);
2903 if (error)
2904 goto err_remove_dev_groups;
2905 }
2906
2907 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2908 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2909 if (error)
2910 goto err_remove_dev_online;
2911 }
2912
2913 if (dev_removable_is_valid(dev)) {
2914 error = device_create_file(dev, &dev_attr_removable);
2915 if (error)
2916 goto err_remove_dev_waiting_for_supplier;
2917 }
2918
2919 if (dev_add_physical_location(dev)) {
2920 error = device_add_group(dev,
2921 &dev_attr_physical_location_group);
2922 if (error)
2923 goto err_remove_dev_removable;
2924 }
2925
2926 return 0;
2927
2928 err_remove_dev_removable:
2929 device_remove_file(dev, &dev_attr_removable);
2930 err_remove_dev_waiting_for_supplier:
2931 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2932 err_remove_dev_online:
2933 device_remove_file(dev, &dev_attr_online);
2934 err_remove_dev_groups:
2935 device_remove_groups(dev, dev->groups);
2936 err_remove_type_groups:
2937 if (type)
2938 device_remove_groups(dev, type->groups);
2939 err_remove_class_groups:
2940 if (class)
2941 device_remove_groups(dev, class->dev_groups);
2942
2943 return error;
2944}
2945
2946static void device_remove_attrs(struct device *dev)
2947{
2948 const struct class *class = dev->class;
2949 const struct device_type *type = dev->type;
2950
2951 if (dev->physical_location) {
2952 device_remove_group(dev, &dev_attr_physical_location_group);
2953 kfree(dev->physical_location);
2954 }
2955
2956 device_remove_file(dev, &dev_attr_removable);
2957 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2958 device_remove_file(dev, &dev_attr_online);
2959 device_remove_groups(dev, dev->groups);
2960
2961 if (type)
2962 device_remove_groups(dev, type->groups);
2963
2964 if (class)
2965 device_remove_groups(dev, class->dev_groups);
2966}
2967
2968static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2969 char *buf)
2970{
2971 return print_dev_t(buf, dev->devt);
2972}
2973static DEVICE_ATTR_RO(dev);
2974
2975/* /sys/devices/ */
2976struct kset *devices_kset;
2977
2978/**
2979 * devices_kset_move_before - Move device in the devices_kset's list.
2980 * @deva: Device to move.
2981 * @devb: Device @deva should come before.
2982 */
2983static void devices_kset_move_before(struct device *deva, struct device *devb)
2984{
2985 if (!devices_kset)
2986 return;
2987 pr_debug("devices_kset: Moving %s before %s\n",
2988 dev_name(deva), dev_name(devb));
2989 spin_lock(&devices_kset->list_lock);
2990 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2991 spin_unlock(&devices_kset->list_lock);
2992}
2993
2994/**
2995 * devices_kset_move_after - Move device in the devices_kset's list.
2996 * @deva: Device to move
2997 * @devb: Device @deva should come after.
2998 */
2999static void devices_kset_move_after(struct device *deva, struct device *devb)
3000{
3001 if (!devices_kset)
3002 return;
3003 pr_debug("devices_kset: Moving %s after %s\n",
3004 dev_name(deva), dev_name(devb));
3005 spin_lock(&devices_kset->list_lock);
3006 list_move(&deva->kobj.entry, &devb->kobj.entry);
3007 spin_unlock(&devices_kset->list_lock);
3008}
3009
3010/**
3011 * devices_kset_move_last - move the device to the end of devices_kset's list.
3012 * @dev: device to move
3013 */
3014void devices_kset_move_last(struct device *dev)
3015{
3016 if (!devices_kset)
3017 return;
3018 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3019 spin_lock(&devices_kset->list_lock);
3020 list_move_tail(&dev->kobj.entry, &devices_kset->list);
3021 spin_unlock(&devices_kset->list_lock);
3022}
3023
3024/**
3025 * device_create_file - create sysfs attribute file for device.
3026 * @dev: device.
3027 * @attr: device attribute descriptor.
3028 */
3029int device_create_file(struct device *dev,
3030 const struct device_attribute *attr)
3031{
3032 int error = 0;
3033
3034 if (dev) {
3035 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3036 "Attribute %s: write permission without 'store'\n",
3037 attr->attr.name);
3038 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3039 "Attribute %s: read permission without 'show'\n",
3040 attr->attr.name);
3041 error = sysfs_create_file(&dev->kobj, &attr->attr);
3042 }
3043
3044 return error;
3045}
3046EXPORT_SYMBOL_GPL(device_create_file);
3047
3048/**
3049 * device_remove_file - remove sysfs attribute file.
3050 * @dev: device.
3051 * @attr: device attribute descriptor.
3052 */
3053void device_remove_file(struct device *dev,
3054 const struct device_attribute *attr)
3055{
3056 if (dev)
3057 sysfs_remove_file(&dev->kobj, &attr->attr);
3058}
3059EXPORT_SYMBOL_GPL(device_remove_file);
3060
3061/**
3062 * device_remove_file_self - remove sysfs attribute file from its own method.
3063 * @dev: device.
3064 * @attr: device attribute descriptor.
3065 *
3066 * See kernfs_remove_self() for details.
3067 */
3068bool device_remove_file_self(struct device *dev,
3069 const struct device_attribute *attr)
3070{
3071 if (dev)
3072 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3073 else
3074 return false;
3075}
3076EXPORT_SYMBOL_GPL(device_remove_file_self);
3077
3078/**
3079 * device_create_bin_file - create sysfs binary attribute file for device.
3080 * @dev: device.
3081 * @attr: device binary attribute descriptor.
3082 */
3083int device_create_bin_file(struct device *dev,
3084 const struct bin_attribute *attr)
3085{
3086 int error = -EINVAL;
3087 if (dev)
3088 error = sysfs_create_bin_file(&dev->kobj, attr);
3089 return error;
3090}
3091EXPORT_SYMBOL_GPL(device_create_bin_file);
3092
3093/**
3094 * device_remove_bin_file - remove sysfs binary attribute file
3095 * @dev: device.
3096 * @attr: device binary attribute descriptor.
3097 */
3098void device_remove_bin_file(struct device *dev,
3099 const struct bin_attribute *attr)
3100{
3101 if (dev)
3102 sysfs_remove_bin_file(&dev->kobj, attr);
3103}
3104EXPORT_SYMBOL_GPL(device_remove_bin_file);
3105
3106static void klist_children_get(struct klist_node *n)
3107{
3108 struct device_private *p = to_device_private_parent(n);
3109 struct device *dev = p->device;
3110
3111 get_device(dev);
3112}
3113
3114static void klist_children_put(struct klist_node *n)
3115{
3116 struct device_private *p = to_device_private_parent(n);
3117 struct device *dev = p->device;
3118
3119 put_device(dev);
3120}
3121
3122/**
3123 * device_initialize - init device structure.
3124 * @dev: device.
3125 *
3126 * This prepares the device for use by other layers by initializing
3127 * its fields.
3128 * It is the first half of device_register(), if called by
3129 * that function, though it can also be called separately, so one
3130 * may use @dev's fields. In particular, get_device()/put_device()
3131 * may be used for reference counting of @dev after calling this
3132 * function.
3133 *
3134 * All fields in @dev must be initialized by the caller to 0, except
3135 * for those explicitly set to some other value. The simplest
3136 * approach is to use kzalloc() to allocate the structure containing
3137 * @dev.
3138 *
3139 * NOTE: Use put_device() to give up your reference instead of freeing
3140 * @dev directly once you have called this function.
3141 */
3142void device_initialize(struct device *dev)
3143{
3144 dev->kobj.kset = devices_kset;
3145 kobject_init(&dev->kobj, &device_ktype);
3146 INIT_LIST_HEAD(&dev->dma_pools);
3147 mutex_init(&dev->mutex);
3148 lockdep_set_novalidate_class(&dev->mutex);
3149 spin_lock_init(&dev->devres_lock);
3150 INIT_LIST_HEAD(&dev->devres_head);
3151 device_pm_init(dev);
3152 set_dev_node(dev, NUMA_NO_NODE);
3153 INIT_LIST_HEAD(&dev->links.consumers);
3154 INIT_LIST_HEAD(&dev->links.suppliers);
3155 INIT_LIST_HEAD(&dev->links.defer_sync);
3156 dev->links.status = DL_DEV_NO_DRIVER;
3157#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3158 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3159 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3160 dev->dma_coherent = dma_default_coherent;
3161#endif
3162 swiotlb_dev_init(dev);
3163}
3164EXPORT_SYMBOL_GPL(device_initialize);
3165
3166struct kobject *virtual_device_parent(void)
3167{
3168 static struct kobject *virtual_dir = NULL;
3169
3170 if (!virtual_dir)
3171 virtual_dir = kobject_create_and_add("virtual",
3172 &devices_kset->kobj);
3173
3174 return virtual_dir;
3175}
3176
3177struct class_dir {
3178 struct kobject kobj;
3179 const struct class *class;
3180};
3181
3182#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3183
3184static void class_dir_release(struct kobject *kobj)
3185{
3186 struct class_dir *dir = to_class_dir(kobj);
3187 kfree(dir);
3188}
3189
3190static const
3191struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3192{
3193 const struct class_dir *dir = to_class_dir(kobj);
3194 return dir->class->ns_type;
3195}
3196
3197static const struct kobj_type class_dir_ktype = {
3198 .release = class_dir_release,
3199 .sysfs_ops = &kobj_sysfs_ops,
3200 .child_ns_type = class_dir_child_ns_type
3201};
3202
3203static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3204 struct kobject *parent_kobj)
3205{
3206 struct class_dir *dir;
3207 int retval;
3208
3209 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3210 if (!dir)
3211 return ERR_PTR(-ENOMEM);
3212
3213 dir->class = sp->class;
3214 kobject_init(&dir->kobj, &class_dir_ktype);
3215
3216 dir->kobj.kset = &sp->glue_dirs;
3217
3218 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3219 if (retval < 0) {
3220 kobject_put(&dir->kobj);
3221 return ERR_PTR(retval);
3222 }
3223 return &dir->kobj;
3224}
3225
3226static DEFINE_MUTEX(gdp_mutex);
3227
3228static struct kobject *get_device_parent(struct device *dev,
3229 struct device *parent)
3230{
3231 struct subsys_private *sp = class_to_subsys(dev->class);
3232 struct kobject *kobj = NULL;
3233
3234 if (sp) {
3235 struct kobject *parent_kobj;
3236 struct kobject *k;
3237
3238 /*
3239 * If we have no parent, we live in "virtual".
3240 * Class-devices with a non class-device as parent, live
3241 * in a "glue" directory to prevent namespace collisions.
3242 */
3243 if (parent == NULL)
3244 parent_kobj = virtual_device_parent();
3245 else if (parent->class && !dev->class->ns_type) {
3246 subsys_put(sp);
3247 return &parent->kobj;
3248 } else {
3249 parent_kobj = &parent->kobj;
3250 }
3251
3252 mutex_lock(&gdp_mutex);
3253
3254 /* find our class-directory at the parent and reference it */
3255 spin_lock(&sp->glue_dirs.list_lock);
3256 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3257 if (k->parent == parent_kobj) {
3258 kobj = kobject_get(k);
3259 break;
3260 }
3261 spin_unlock(&sp->glue_dirs.list_lock);
3262 if (kobj) {
3263 mutex_unlock(&gdp_mutex);
3264 subsys_put(sp);
3265 return kobj;
3266 }
3267
3268 /* or create a new class-directory at the parent device */
3269 k = class_dir_create_and_add(sp, parent_kobj);
3270 /* do not emit an uevent for this simple "glue" directory */
3271 mutex_unlock(&gdp_mutex);
3272 subsys_put(sp);
3273 return k;
3274 }
3275
3276 /* subsystems can specify a default root directory for their devices */
3277 if (!parent && dev->bus) {
3278 struct device *dev_root = bus_get_dev_root(dev->bus);
3279
3280 if (dev_root) {
3281 kobj = &dev_root->kobj;
3282 put_device(dev_root);
3283 return kobj;
3284 }
3285 }
3286
3287 if (parent)
3288 return &parent->kobj;
3289 return NULL;
3290}
3291
3292static inline bool live_in_glue_dir(struct kobject *kobj,
3293 struct device *dev)
3294{
3295 struct subsys_private *sp;
3296 bool retval;
3297
3298 if (!kobj || !dev->class)
3299 return false;
3300
3301 sp = class_to_subsys(dev->class);
3302 if (!sp)
3303 return false;
3304
3305 if (kobj->kset == &sp->glue_dirs)
3306 retval = true;
3307 else
3308 retval = false;
3309
3310 subsys_put(sp);
3311 return retval;
3312}
3313
3314static inline struct kobject *get_glue_dir(struct device *dev)
3315{
3316 return dev->kobj.parent;
3317}
3318
3319/**
3320 * kobject_has_children - Returns whether a kobject has children.
3321 * @kobj: the object to test
3322 *
3323 * This will return whether a kobject has other kobjects as children.
3324 *
3325 * It does NOT account for the presence of attribute files, only sub
3326 * directories. It also assumes there is no concurrent addition or
3327 * removal of such children, and thus relies on external locking.
3328 */
3329static inline bool kobject_has_children(struct kobject *kobj)
3330{
3331 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3332
3333 return kobj->sd && kobj->sd->dir.subdirs;
3334}
3335
3336/*
3337 * make sure cleaning up dir as the last step, we need to make
3338 * sure .release handler of kobject is run with holding the
3339 * global lock
3340 */
3341static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3342{
3343 unsigned int ref;
3344
3345 /* see if we live in a "glue" directory */
3346 if (!live_in_glue_dir(glue_dir, dev))
3347 return;
3348
3349 mutex_lock(&gdp_mutex);
3350 /**
3351 * There is a race condition between removing glue directory
3352 * and adding a new device under the glue directory.
3353 *
3354 * CPU1: CPU2:
3355 *
3356 * device_add()
3357 * get_device_parent()
3358 * class_dir_create_and_add()
3359 * kobject_add_internal()
3360 * create_dir() // create glue_dir
3361 *
3362 * device_add()
3363 * get_device_parent()
3364 * kobject_get() // get glue_dir
3365 *
3366 * device_del()
3367 * cleanup_glue_dir()
3368 * kobject_del(glue_dir)
3369 *
3370 * kobject_add()
3371 * kobject_add_internal()
3372 * create_dir() // in glue_dir
3373 * sysfs_create_dir_ns()
3374 * kernfs_create_dir_ns(sd)
3375 *
3376 * sysfs_remove_dir() // glue_dir->sd=NULL
3377 * sysfs_put() // free glue_dir->sd
3378 *
3379 * // sd is freed
3380 * kernfs_new_node(sd)
3381 * kernfs_get(glue_dir)
3382 * kernfs_add_one()
3383 * kernfs_put()
3384 *
3385 * Before CPU1 remove last child device under glue dir, if CPU2 add
3386 * a new device under glue dir, the glue_dir kobject reference count
3387 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3388 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3389 * and sysfs_put(). This result in glue_dir->sd is freed.
3390 *
3391 * Then the CPU2 will see a stale "empty" but still potentially used
3392 * glue dir around in kernfs_new_node().
3393 *
3394 * In order to avoid this happening, we also should make sure that
3395 * kernfs_node for glue_dir is released in CPU1 only when refcount
3396 * for glue_dir kobj is 1.
3397 */
3398 ref = kref_read(&glue_dir->kref);
3399 if (!kobject_has_children(glue_dir) && !--ref)
3400 kobject_del(glue_dir);
3401 kobject_put(glue_dir);
3402 mutex_unlock(&gdp_mutex);
3403}
3404
3405static int device_add_class_symlinks(struct device *dev)
3406{
3407 struct device_node *of_node = dev_of_node(dev);
3408 struct subsys_private *sp;
3409 int error;
3410
3411 if (of_node) {
3412 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3413 if (error)
3414 dev_warn(dev, "Error %d creating of_node link\n",error);
3415 /* An error here doesn't warrant bringing down the device */
3416 }
3417
3418 sp = class_to_subsys(dev->class);
3419 if (!sp)
3420 return 0;
3421
3422 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3423 if (error)
3424 goto out_devnode;
3425
3426 if (dev->parent && device_is_not_partition(dev)) {
3427 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3428 "device");
3429 if (error)
3430 goto out_subsys;
3431 }
3432
3433 /* link in the class directory pointing to the device */
3434 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3435 if (error)
3436 goto out_device;
3437 goto exit;
3438
3439out_device:
3440 sysfs_remove_link(&dev->kobj, "device");
3441out_subsys:
3442 sysfs_remove_link(&dev->kobj, "subsystem");
3443out_devnode:
3444 sysfs_remove_link(&dev->kobj, "of_node");
3445exit:
3446 subsys_put(sp);
3447 return error;
3448}
3449
3450static void device_remove_class_symlinks(struct device *dev)
3451{
3452 struct subsys_private *sp = class_to_subsys(dev->class);
3453
3454 if (dev_of_node(dev))
3455 sysfs_remove_link(&dev->kobj, "of_node");
3456
3457 if (!sp)
3458 return;
3459
3460 if (dev->parent && device_is_not_partition(dev))
3461 sysfs_remove_link(&dev->kobj, "device");
3462 sysfs_remove_link(&dev->kobj, "subsystem");
3463 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3464 subsys_put(sp);
3465}
3466
3467/**
3468 * dev_set_name - set a device name
3469 * @dev: device
3470 * @fmt: format string for the device's name
3471 */
3472int dev_set_name(struct device *dev, const char *fmt, ...)
3473{
3474 va_list vargs;
3475 int err;
3476
3477 va_start(vargs, fmt);
3478 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3479 va_end(vargs);
3480 return err;
3481}
3482EXPORT_SYMBOL_GPL(dev_set_name);
3483
3484/* select a /sys/dev/ directory for the device */
3485static struct kobject *device_to_dev_kobj(struct device *dev)
3486{
3487 if (is_blockdev(dev))
3488 return sysfs_dev_block_kobj;
3489 else
3490 return sysfs_dev_char_kobj;
3491}
3492
3493static int device_create_sys_dev_entry(struct device *dev)
3494{
3495 struct kobject *kobj = device_to_dev_kobj(dev);
3496 int error = 0;
3497 char devt_str[15];
3498
3499 if (kobj) {
3500 format_dev_t(devt_str, dev->devt);
3501 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3502 }
3503
3504 return error;
3505}
3506
3507static void device_remove_sys_dev_entry(struct device *dev)
3508{
3509 struct kobject *kobj = device_to_dev_kobj(dev);
3510 char devt_str[15];
3511
3512 if (kobj) {
3513 format_dev_t(devt_str, dev->devt);
3514 sysfs_remove_link(kobj, devt_str);
3515 }
3516}
3517
3518static int device_private_init(struct device *dev)
3519{
3520 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3521 if (!dev->p)
3522 return -ENOMEM;
3523 dev->p->device = dev;
3524 klist_init(&dev->p->klist_children, klist_children_get,
3525 klist_children_put);
3526 INIT_LIST_HEAD(&dev->p->deferred_probe);
3527 return 0;
3528}
3529
3530/**
3531 * device_add - add device to device hierarchy.
3532 * @dev: device.
3533 *
3534 * This is part 2 of device_register(), though may be called
3535 * separately _iff_ device_initialize() has been called separately.
3536 *
3537 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3538 * to the global and sibling lists for the device, then
3539 * adds it to the other relevant subsystems of the driver model.
3540 *
3541 * Do not call this routine or device_register() more than once for
3542 * any device structure. The driver model core is not designed to work
3543 * with devices that get unregistered and then spring back to life.
3544 * (Among other things, it's very hard to guarantee that all references
3545 * to the previous incarnation of @dev have been dropped.) Allocate
3546 * and register a fresh new struct device instead.
3547 *
3548 * NOTE: _Never_ directly free @dev after calling this function, even
3549 * if it returned an error! Always use put_device() to give up your
3550 * reference instead.
3551 *
3552 * Rule of thumb is: if device_add() succeeds, you should call
3553 * device_del() when you want to get rid of it. If device_add() has
3554 * *not* succeeded, use *only* put_device() to drop the reference
3555 * count.
3556 */
3557int device_add(struct device *dev)
3558{
3559 struct subsys_private *sp;
3560 struct device *parent;
3561 struct kobject *kobj;
3562 struct class_interface *class_intf;
3563 int error = -EINVAL;
3564 struct kobject *glue_dir = NULL;
3565
3566 dev = get_device(dev);
3567 if (!dev)
3568 goto done;
3569
3570 if (!dev->p) {
3571 error = device_private_init(dev);
3572 if (error)
3573 goto done;
3574 }
3575
3576 /*
3577 * for statically allocated devices, which should all be converted
3578 * some day, we need to initialize the name. We prevent reading back
3579 * the name, and force the use of dev_name()
3580 */
3581 if (dev->init_name) {
3582 error = dev_set_name(dev, "%s", dev->init_name);
3583 dev->init_name = NULL;
3584 }
3585
3586 if (dev_name(dev))
3587 error = 0;
3588 /* subsystems can specify simple device enumeration */
3589 else if (dev->bus && dev->bus->dev_name)
3590 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3591 else
3592 error = -EINVAL;
3593 if (error)
3594 goto name_error;
3595
3596 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3597
3598 parent = get_device(dev->parent);
3599 kobj = get_device_parent(dev, parent);
3600 if (IS_ERR(kobj)) {
3601 error = PTR_ERR(kobj);
3602 goto parent_error;
3603 }
3604 if (kobj)
3605 dev->kobj.parent = kobj;
3606
3607 /* use parent numa_node */
3608 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3609 set_dev_node(dev, dev_to_node(parent));
3610
3611 /* first, register with generic layer. */
3612 /* we require the name to be set before, and pass NULL */
3613 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3614 if (error) {
3615 glue_dir = kobj;
3616 goto Error;
3617 }
3618
3619 /* notify platform of device entry */
3620 device_platform_notify(dev);
3621
3622 error = device_create_file(dev, &dev_attr_uevent);
3623 if (error)
3624 goto attrError;
3625
3626 error = device_add_class_symlinks(dev);
3627 if (error)
3628 goto SymlinkError;
3629 error = device_add_attrs(dev);
3630 if (error)
3631 goto AttrsError;
3632 error = bus_add_device(dev);
3633 if (error)
3634 goto BusError;
3635 error = dpm_sysfs_add(dev);
3636 if (error)
3637 goto DPMError;
3638 device_pm_add(dev);
3639
3640 if (MAJOR(dev->devt)) {
3641 error = device_create_file(dev, &dev_attr_dev);
3642 if (error)
3643 goto DevAttrError;
3644
3645 error = device_create_sys_dev_entry(dev);
3646 if (error)
3647 goto SysEntryError;
3648
3649 devtmpfs_create_node(dev);
3650 }
3651
3652 /* Notify clients of device addition. This call must come
3653 * after dpm_sysfs_add() and before kobject_uevent().
3654 */
3655 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3656 kobject_uevent(&dev->kobj, KOBJ_ADD);
3657
3658 /*
3659 * Check if any of the other devices (consumers) have been waiting for
3660 * this device (supplier) to be added so that they can create a device
3661 * link to it.
3662 *
3663 * This needs to happen after device_pm_add() because device_link_add()
3664 * requires the supplier be registered before it's called.
3665 *
3666 * But this also needs to happen before bus_probe_device() to make sure
3667 * waiting consumers can link to it before the driver is bound to the
3668 * device and the driver sync_state callback is called for this device.
3669 */
3670 if (dev->fwnode && !dev->fwnode->dev) {
3671 dev->fwnode->dev = dev;
3672 fw_devlink_link_device(dev);
3673 }
3674
3675 bus_probe_device(dev);
3676
3677 /*
3678 * If all driver registration is done and a newly added device doesn't
3679 * match with any driver, don't block its consumers from probing in
3680 * case the consumer device is able to operate without this supplier.
3681 */
3682 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3683 fw_devlink_unblock_consumers(dev);
3684
3685 if (parent)
3686 klist_add_tail(&dev->p->knode_parent,
3687 &parent->p->klist_children);
3688
3689 sp = class_to_subsys(dev->class);
3690 if (sp) {
3691 mutex_lock(&sp->mutex);
3692 /* tie the class to the device */
3693 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3694
3695 /* notify any interfaces that the device is here */
3696 list_for_each_entry(class_intf, &sp->interfaces, node)
3697 if (class_intf->add_dev)
3698 class_intf->add_dev(dev);
3699 mutex_unlock(&sp->mutex);
3700 subsys_put(sp);
3701 }
3702done:
3703 put_device(dev);
3704 return error;
3705 SysEntryError:
3706 if (MAJOR(dev->devt))
3707 device_remove_file(dev, &dev_attr_dev);
3708 DevAttrError:
3709 device_pm_remove(dev);
3710 dpm_sysfs_remove(dev);
3711 DPMError:
3712 dev->driver = NULL;
3713 bus_remove_device(dev);
3714 BusError:
3715 device_remove_attrs(dev);
3716 AttrsError:
3717 device_remove_class_symlinks(dev);
3718 SymlinkError:
3719 device_remove_file(dev, &dev_attr_uevent);
3720 attrError:
3721 device_platform_notify_remove(dev);
3722 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3723 glue_dir = get_glue_dir(dev);
3724 kobject_del(&dev->kobj);
3725 Error:
3726 cleanup_glue_dir(dev, glue_dir);
3727parent_error:
3728 put_device(parent);
3729name_error:
3730 kfree(dev->p);
3731 dev->p = NULL;
3732 goto done;
3733}
3734EXPORT_SYMBOL_GPL(device_add);
3735
3736/**
3737 * device_register - register a device with the system.
3738 * @dev: pointer to the device structure
3739 *
3740 * This happens in two clean steps - initialize the device
3741 * and add it to the system. The two steps can be called
3742 * separately, but this is the easiest and most common.
3743 * I.e. you should only call the two helpers separately if
3744 * have a clearly defined need to use and refcount the device
3745 * before it is added to the hierarchy.
3746 *
3747 * For more information, see the kerneldoc for device_initialize()
3748 * and device_add().
3749 *
3750 * NOTE: _Never_ directly free @dev after calling this function, even
3751 * if it returned an error! Always use put_device() to give up the
3752 * reference initialized in this function instead.
3753 */
3754int device_register(struct device *dev)
3755{
3756 device_initialize(dev);
3757 return device_add(dev);
3758}
3759EXPORT_SYMBOL_GPL(device_register);
3760
3761/**
3762 * get_device - increment reference count for device.
3763 * @dev: device.
3764 *
3765 * This simply forwards the call to kobject_get(), though
3766 * we do take care to provide for the case that we get a NULL
3767 * pointer passed in.
3768 */
3769struct device *get_device(struct device *dev)
3770{
3771 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3772}
3773EXPORT_SYMBOL_GPL(get_device);
3774
3775/**
3776 * put_device - decrement reference count.
3777 * @dev: device in question.
3778 */
3779void put_device(struct device *dev)
3780{
3781 /* might_sleep(); */
3782 if (dev)
3783 kobject_put(&dev->kobj);
3784}
3785EXPORT_SYMBOL_GPL(put_device);
3786
3787bool kill_device(struct device *dev)
3788{
3789 /*
3790 * Require the device lock and set the "dead" flag to guarantee that
3791 * the update behavior is consistent with the other bitfields near
3792 * it and that we cannot have an asynchronous probe routine trying
3793 * to run while we are tearing out the bus/class/sysfs from
3794 * underneath the device.
3795 */
3796 device_lock_assert(dev);
3797
3798 if (dev->p->dead)
3799 return false;
3800 dev->p->dead = true;
3801 return true;
3802}
3803EXPORT_SYMBOL_GPL(kill_device);
3804
3805/**
3806 * device_del - delete device from system.
3807 * @dev: device.
3808 *
3809 * This is the first part of the device unregistration
3810 * sequence. This removes the device from the lists we control
3811 * from here, has it removed from the other driver model
3812 * subsystems it was added to in device_add(), and removes it
3813 * from the kobject hierarchy.
3814 *
3815 * NOTE: this should be called manually _iff_ device_add() was
3816 * also called manually.
3817 */
3818void device_del(struct device *dev)
3819{
3820 struct subsys_private *sp;
3821 struct device *parent = dev->parent;
3822 struct kobject *glue_dir = NULL;
3823 struct class_interface *class_intf;
3824 unsigned int noio_flag;
3825
3826 device_lock(dev);
3827 kill_device(dev);
3828 device_unlock(dev);
3829
3830 if (dev->fwnode && dev->fwnode->dev == dev)
3831 dev->fwnode->dev = NULL;
3832
3833 /* Notify clients of device removal. This call must come
3834 * before dpm_sysfs_remove().
3835 */
3836 noio_flag = memalloc_noio_save();
3837 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3838
3839 dpm_sysfs_remove(dev);
3840 if (parent)
3841 klist_del(&dev->p->knode_parent);
3842 if (MAJOR(dev->devt)) {
3843 devtmpfs_delete_node(dev);
3844 device_remove_sys_dev_entry(dev);
3845 device_remove_file(dev, &dev_attr_dev);
3846 }
3847
3848 sp = class_to_subsys(dev->class);
3849 if (sp) {
3850 device_remove_class_symlinks(dev);
3851
3852 mutex_lock(&sp->mutex);
3853 /* notify any interfaces that the device is now gone */
3854 list_for_each_entry(class_intf, &sp->interfaces, node)
3855 if (class_intf->remove_dev)
3856 class_intf->remove_dev(dev);
3857 /* remove the device from the class list */
3858 klist_del(&dev->p->knode_class);
3859 mutex_unlock(&sp->mutex);
3860 subsys_put(sp);
3861 }
3862 device_remove_file(dev, &dev_attr_uevent);
3863 device_remove_attrs(dev);
3864 bus_remove_device(dev);
3865 device_pm_remove(dev);
3866 driver_deferred_probe_del(dev);
3867 device_platform_notify_remove(dev);
3868 device_links_purge(dev);
3869
3870 /*
3871 * If a device does not have a driver attached, we need to clean
3872 * up any managed resources. We do this in device_release(), but
3873 * it's never called (and we leak the device) if a managed
3874 * resource holds a reference to the device. So release all
3875 * managed resources here, like we do in driver_detach(). We
3876 * still need to do so again in device_release() in case someone
3877 * adds a new resource after this point, though.
3878 */
3879 devres_release_all(dev);
3880
3881 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3882 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3883 glue_dir = get_glue_dir(dev);
3884 kobject_del(&dev->kobj);
3885 cleanup_glue_dir(dev, glue_dir);
3886 memalloc_noio_restore(noio_flag);
3887 put_device(parent);
3888}
3889EXPORT_SYMBOL_GPL(device_del);
3890
3891/**
3892 * device_unregister - unregister device from system.
3893 * @dev: device going away.
3894 *
3895 * We do this in two parts, like we do device_register(). First,
3896 * we remove it from all the subsystems with device_del(), then
3897 * we decrement the reference count via put_device(). If that
3898 * is the final reference count, the device will be cleaned up
3899 * via device_release() above. Otherwise, the structure will
3900 * stick around until the final reference to the device is dropped.
3901 */
3902void device_unregister(struct device *dev)
3903{
3904 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3905 device_del(dev);
3906 put_device(dev);
3907}
3908EXPORT_SYMBOL_GPL(device_unregister);
3909
3910static struct device *prev_device(struct klist_iter *i)
3911{
3912 struct klist_node *n = klist_prev(i);
3913 struct device *dev = NULL;
3914 struct device_private *p;
3915
3916 if (n) {
3917 p = to_device_private_parent(n);
3918 dev = p->device;
3919 }
3920 return dev;
3921}
3922
3923static struct device *next_device(struct klist_iter *i)
3924{
3925 struct klist_node *n = klist_next(i);
3926 struct device *dev = NULL;
3927 struct device_private *p;
3928
3929 if (n) {
3930 p = to_device_private_parent(n);
3931 dev = p->device;
3932 }
3933 return dev;
3934}
3935
3936/**
3937 * device_get_devnode - path of device node file
3938 * @dev: device
3939 * @mode: returned file access mode
3940 * @uid: returned file owner
3941 * @gid: returned file group
3942 * @tmp: possibly allocated string
3943 *
3944 * Return the relative path of a possible device node.
3945 * Non-default names may need to allocate a memory to compose
3946 * a name. This memory is returned in tmp and needs to be
3947 * freed by the caller.
3948 */
3949const char *device_get_devnode(const struct device *dev,
3950 umode_t *mode, kuid_t *uid, kgid_t *gid,
3951 const char **tmp)
3952{
3953 char *s;
3954
3955 *tmp = NULL;
3956
3957 /* the device type may provide a specific name */
3958 if (dev->type && dev->type->devnode)
3959 *tmp = dev->type->devnode(dev, mode, uid, gid);
3960 if (*tmp)
3961 return *tmp;
3962
3963 /* the class may provide a specific name */
3964 if (dev->class && dev->class->devnode)
3965 *tmp = dev->class->devnode(dev, mode);
3966 if (*tmp)
3967 return *tmp;
3968
3969 /* return name without allocation, tmp == NULL */
3970 if (strchr(dev_name(dev), '!') == NULL)
3971 return dev_name(dev);
3972
3973 /* replace '!' in the name with '/' */
3974 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3975 if (!s)
3976 return NULL;
3977 return *tmp = s;
3978}
3979
3980/**
3981 * device_for_each_child - device child iterator.
3982 * @parent: parent struct device.
3983 * @fn: function to be called for each device.
3984 * @data: data for the callback.
3985 *
3986 * Iterate over @parent's child devices, and call @fn for each,
3987 * passing it @data.
3988 *
3989 * We check the return of @fn each time. If it returns anything
3990 * other than 0, we break out and return that value.
3991 */
3992int device_for_each_child(struct device *parent, void *data,
3993 int (*fn)(struct device *dev, void *data))
3994{
3995 struct klist_iter i;
3996 struct device *child;
3997 int error = 0;
3998
3999 if (!parent || !parent->p)
4000 return 0;
4001
4002 klist_iter_init(&parent->p->klist_children, &i);
4003 while (!error && (child = next_device(&i)))
4004 error = fn(child, data);
4005 klist_iter_exit(&i);
4006 return error;
4007}
4008EXPORT_SYMBOL_GPL(device_for_each_child);
4009
4010/**
4011 * device_for_each_child_reverse - device child iterator in reversed order.
4012 * @parent: parent struct device.
4013 * @fn: function to be called for each device.
4014 * @data: data for the callback.
4015 *
4016 * Iterate over @parent's child devices, and call @fn for each,
4017 * passing it @data.
4018 *
4019 * We check the return of @fn each time. If it returns anything
4020 * other than 0, we break out and return that value.
4021 */
4022int device_for_each_child_reverse(struct device *parent, void *data,
4023 int (*fn)(struct device *dev, void *data))
4024{
4025 struct klist_iter i;
4026 struct device *child;
4027 int error = 0;
4028
4029 if (!parent || !parent->p)
4030 return 0;
4031
4032 klist_iter_init(&parent->p->klist_children, &i);
4033 while ((child = prev_device(&i)) && !error)
4034 error = fn(child, data);
4035 klist_iter_exit(&i);
4036 return error;
4037}
4038EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4039
4040/**
4041 * device_find_child - device iterator for locating a particular device.
4042 * @parent: parent struct device
4043 * @match: Callback function to check device
4044 * @data: Data to pass to match function
4045 *
4046 * This is similar to the device_for_each_child() function above, but it
4047 * returns a reference to a device that is 'found' for later use, as
4048 * determined by the @match callback.
4049 *
4050 * The callback should return 0 if the device doesn't match and non-zero
4051 * if it does. If the callback returns non-zero and a reference to the
4052 * current device can be obtained, this function will return to the caller
4053 * and not iterate over any more devices.
4054 *
4055 * NOTE: you will need to drop the reference with put_device() after use.
4056 */
4057struct device *device_find_child(struct device *parent, void *data,
4058 int (*match)(struct device *dev, void *data))
4059{
4060 struct klist_iter i;
4061 struct device *child;
4062
4063 if (!parent || !parent->p)
4064 return NULL;
4065
4066 klist_iter_init(&parent->p->klist_children, &i);
4067 while ((child = next_device(&i)))
4068 if (match(child, data) && get_device(child))
4069 break;
4070 klist_iter_exit(&i);
4071 return child;
4072}
4073EXPORT_SYMBOL_GPL(device_find_child);
4074
4075/**
4076 * device_find_child_by_name - device iterator for locating a child device.
4077 * @parent: parent struct device
4078 * @name: name of the child device
4079 *
4080 * This is similar to the device_find_child() function above, but it
4081 * returns a reference to a device that has the name @name.
4082 *
4083 * NOTE: you will need to drop the reference with put_device() after use.
4084 */
4085struct device *device_find_child_by_name(struct device *parent,
4086 const char *name)
4087{
4088 struct klist_iter i;
4089 struct device *child;
4090
4091 if (!parent)
4092 return NULL;
4093
4094 klist_iter_init(&parent->p->klist_children, &i);
4095 while ((child = next_device(&i)))
4096 if (sysfs_streq(dev_name(child), name) && get_device(child))
4097 break;
4098 klist_iter_exit(&i);
4099 return child;
4100}
4101EXPORT_SYMBOL_GPL(device_find_child_by_name);
4102
4103static int match_any(struct device *dev, void *unused)
4104{
4105 return 1;
4106}
4107
4108/**
4109 * device_find_any_child - device iterator for locating a child device, if any.
4110 * @parent: parent struct device
4111 *
4112 * This is similar to the device_find_child() function above, but it
4113 * returns a reference to a child device, if any.
4114 *
4115 * NOTE: you will need to drop the reference with put_device() after use.
4116 */
4117struct device *device_find_any_child(struct device *parent)
4118{
4119 return device_find_child(parent, NULL, match_any);
4120}
4121EXPORT_SYMBOL_GPL(device_find_any_child);
4122
4123int __init devices_init(void)
4124{
4125 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4126 if (!devices_kset)
4127 return -ENOMEM;
4128 dev_kobj = kobject_create_and_add("dev", NULL);
4129 if (!dev_kobj)
4130 goto dev_kobj_err;
4131 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4132 if (!sysfs_dev_block_kobj)
4133 goto block_kobj_err;
4134 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4135 if (!sysfs_dev_char_kobj)
4136 goto char_kobj_err;
4137 device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4138 if (!device_link_wq)
4139 goto wq_err;
4140
4141 return 0;
4142
4143 wq_err:
4144 kobject_put(sysfs_dev_char_kobj);
4145 char_kobj_err:
4146 kobject_put(sysfs_dev_block_kobj);
4147 block_kobj_err:
4148 kobject_put(dev_kobj);
4149 dev_kobj_err:
4150 kset_unregister(devices_kset);
4151 return -ENOMEM;
4152}
4153
4154static int device_check_offline(struct device *dev, void *not_used)
4155{
4156 int ret;
4157
4158 ret = device_for_each_child(dev, NULL, device_check_offline);
4159 if (ret)
4160 return ret;
4161
4162 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4163}
4164
4165/**
4166 * device_offline - Prepare the device for hot-removal.
4167 * @dev: Device to be put offline.
4168 *
4169 * Execute the device bus type's .offline() callback, if present, to prepare
4170 * the device for a subsequent hot-removal. If that succeeds, the device must
4171 * not be used until either it is removed or its bus type's .online() callback
4172 * is executed.
4173 *
4174 * Call under device_hotplug_lock.
4175 */
4176int device_offline(struct device *dev)
4177{
4178 int ret;
4179
4180 if (dev->offline_disabled)
4181 return -EPERM;
4182
4183 ret = device_for_each_child(dev, NULL, device_check_offline);
4184 if (ret)
4185 return ret;
4186
4187 device_lock(dev);
4188 if (device_supports_offline(dev)) {
4189 if (dev->offline) {
4190 ret = 1;
4191 } else {
4192 ret = dev->bus->offline(dev);
4193 if (!ret) {
4194 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4195 dev->offline = true;
4196 }
4197 }
4198 }
4199 device_unlock(dev);
4200
4201 return ret;
4202}
4203
4204/**
4205 * device_online - Put the device back online after successful device_offline().
4206 * @dev: Device to be put back online.
4207 *
4208 * If device_offline() has been successfully executed for @dev, but the device
4209 * has not been removed subsequently, execute its bus type's .online() callback
4210 * to indicate that the device can be used again.
4211 *
4212 * Call under device_hotplug_lock.
4213 */
4214int device_online(struct device *dev)
4215{
4216 int ret = 0;
4217
4218 device_lock(dev);
4219 if (device_supports_offline(dev)) {
4220 if (dev->offline) {
4221 ret = dev->bus->online(dev);
4222 if (!ret) {
4223 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4224 dev->offline = false;
4225 }
4226 } else {
4227 ret = 1;
4228 }
4229 }
4230 device_unlock(dev);
4231
4232 return ret;
4233}
4234
4235struct root_device {
4236 struct device dev;
4237 struct module *owner;
4238};
4239
4240static inline struct root_device *to_root_device(struct device *d)
4241{
4242 return container_of(d, struct root_device, dev);
4243}
4244
4245static void root_device_release(struct device *dev)
4246{
4247 kfree(to_root_device(dev));
4248}
4249
4250/**
4251 * __root_device_register - allocate and register a root device
4252 * @name: root device name
4253 * @owner: owner module of the root device, usually THIS_MODULE
4254 *
4255 * This function allocates a root device and registers it
4256 * using device_register(). In order to free the returned
4257 * device, use root_device_unregister().
4258 *
4259 * Root devices are dummy devices which allow other devices
4260 * to be grouped under /sys/devices. Use this function to
4261 * allocate a root device and then use it as the parent of
4262 * any device which should appear under /sys/devices/{name}
4263 *
4264 * The /sys/devices/{name} directory will also contain a
4265 * 'module' symlink which points to the @owner directory
4266 * in sysfs.
4267 *
4268 * Returns &struct device pointer on success, or ERR_PTR() on error.
4269 *
4270 * Note: You probably want to use root_device_register().
4271 */
4272struct device *__root_device_register(const char *name, struct module *owner)
4273{
4274 struct root_device *root;
4275 int err = -ENOMEM;
4276
4277 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4278 if (!root)
4279 return ERR_PTR(err);
4280
4281 err = dev_set_name(&root->dev, "%s", name);
4282 if (err) {
4283 kfree(root);
4284 return ERR_PTR(err);
4285 }
4286
4287 root->dev.release = root_device_release;
4288
4289 err = device_register(&root->dev);
4290 if (err) {
4291 put_device(&root->dev);
4292 return ERR_PTR(err);
4293 }
4294
4295#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4296 if (owner) {
4297 struct module_kobject *mk = &owner->mkobj;
4298
4299 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4300 if (err) {
4301 device_unregister(&root->dev);
4302 return ERR_PTR(err);
4303 }
4304 root->owner = owner;
4305 }
4306#endif
4307
4308 return &root->dev;
4309}
4310EXPORT_SYMBOL_GPL(__root_device_register);
4311
4312/**
4313 * root_device_unregister - unregister and free a root device
4314 * @dev: device going away
4315 *
4316 * This function unregisters and cleans up a device that was created by
4317 * root_device_register().
4318 */
4319void root_device_unregister(struct device *dev)
4320{
4321 struct root_device *root = to_root_device(dev);
4322
4323 if (root->owner)
4324 sysfs_remove_link(&root->dev.kobj, "module");
4325
4326 device_unregister(dev);
4327}
4328EXPORT_SYMBOL_GPL(root_device_unregister);
4329
4330
4331static void device_create_release(struct device *dev)
4332{
4333 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4334 kfree(dev);
4335}
4336
4337static __printf(6, 0) struct device *
4338device_create_groups_vargs(const struct class *class, struct device *parent,
4339 dev_t devt, void *drvdata,
4340 const struct attribute_group **groups,
4341 const char *fmt, va_list args)
4342{
4343 struct device *dev = NULL;
4344 int retval = -ENODEV;
4345
4346 if (IS_ERR_OR_NULL(class))
4347 goto error;
4348
4349 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4350 if (!dev) {
4351 retval = -ENOMEM;
4352 goto error;
4353 }
4354
4355 device_initialize(dev);
4356 dev->devt = devt;
4357 dev->class = class;
4358 dev->parent = parent;
4359 dev->groups = groups;
4360 dev->release = device_create_release;
4361 dev_set_drvdata(dev, drvdata);
4362
4363 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4364 if (retval)
4365 goto error;
4366
4367 retval = device_add(dev);
4368 if (retval)
4369 goto error;
4370
4371 return dev;
4372
4373error:
4374 put_device(dev);
4375 return ERR_PTR(retval);
4376}
4377
4378/**
4379 * device_create - creates a device and registers it with sysfs
4380 * @class: pointer to the struct class that this device should be registered to
4381 * @parent: pointer to the parent struct device of this new device, if any
4382 * @devt: the dev_t for the char device to be added
4383 * @drvdata: the data to be added to the device for callbacks
4384 * @fmt: string for the device's name
4385 *
4386 * This function can be used by char device classes. A struct device
4387 * will be created in sysfs, registered to the specified class.
4388 *
4389 * A "dev" file will be created, showing the dev_t for the device, if
4390 * the dev_t is not 0,0.
4391 * If a pointer to a parent struct device is passed in, the newly created
4392 * struct device will be a child of that device in sysfs.
4393 * The pointer to the struct device will be returned from the call.
4394 * Any further sysfs files that might be required can be created using this
4395 * pointer.
4396 *
4397 * Returns &struct device pointer on success, or ERR_PTR() on error.
4398 */
4399struct device *device_create(const struct class *class, struct device *parent,
4400 dev_t devt, void *drvdata, const char *fmt, ...)
4401{
4402 va_list vargs;
4403 struct device *dev;
4404
4405 va_start(vargs, fmt);
4406 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4407 fmt, vargs);
4408 va_end(vargs);
4409 return dev;
4410}
4411EXPORT_SYMBOL_GPL(device_create);
4412
4413/**
4414 * device_create_with_groups - creates a device and registers it with sysfs
4415 * @class: pointer to the struct class that this device should be registered to
4416 * @parent: pointer to the parent struct device of this new device, if any
4417 * @devt: the dev_t for the char device to be added
4418 * @drvdata: the data to be added to the device for callbacks
4419 * @groups: NULL-terminated list of attribute groups to be created
4420 * @fmt: string for the device's name
4421 *
4422 * This function can be used by char device classes. A struct device
4423 * will be created in sysfs, registered to the specified class.
4424 * Additional attributes specified in the groups parameter will also
4425 * be created automatically.
4426 *
4427 * A "dev" file will be created, showing the dev_t for the device, if
4428 * the dev_t is not 0,0.
4429 * If a pointer to a parent struct device is passed in, the newly created
4430 * struct device will be a child of that device in sysfs.
4431 * The pointer to the struct device will be returned from the call.
4432 * Any further sysfs files that might be required can be created using this
4433 * pointer.
4434 *
4435 * Returns &struct device pointer on success, or ERR_PTR() on error.
4436 */
4437struct device *device_create_with_groups(const struct class *class,
4438 struct device *parent, dev_t devt,
4439 void *drvdata,
4440 const struct attribute_group **groups,
4441 const char *fmt, ...)
4442{
4443 va_list vargs;
4444 struct device *dev;
4445
4446 va_start(vargs, fmt);
4447 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4448 fmt, vargs);
4449 va_end(vargs);
4450 return dev;
4451}
4452EXPORT_SYMBOL_GPL(device_create_with_groups);
4453
4454/**
4455 * device_destroy - removes a device that was created with device_create()
4456 * @class: pointer to the struct class that this device was registered with
4457 * @devt: the dev_t of the device that was previously registered
4458 *
4459 * This call unregisters and cleans up a device that was created with a
4460 * call to device_create().
4461 */
4462void device_destroy(const struct class *class, dev_t devt)
4463{
4464 struct device *dev;
4465
4466 dev = class_find_device_by_devt(class, devt);
4467 if (dev) {
4468 put_device(dev);
4469 device_unregister(dev);
4470 }
4471}
4472EXPORT_SYMBOL_GPL(device_destroy);
4473
4474/**
4475 * device_rename - renames a device
4476 * @dev: the pointer to the struct device to be renamed
4477 * @new_name: the new name of the device
4478 *
4479 * It is the responsibility of the caller to provide mutual
4480 * exclusion between two different calls of device_rename
4481 * on the same device to ensure that new_name is valid and
4482 * won't conflict with other devices.
4483 *
4484 * Note: given that some subsystems (networking and infiniband) use this
4485 * function, with no immediate plans for this to change, we cannot assume or
4486 * require that this function not be called at all.
4487 *
4488 * However, if you're writing new code, do not call this function. The following
4489 * text from Kay Sievers offers some insight:
4490 *
4491 * Renaming devices is racy at many levels, symlinks and other stuff are not
4492 * replaced atomically, and you get a "move" uevent, but it's not easy to
4493 * connect the event to the old and new device. Device nodes are not renamed at
4494 * all, there isn't even support for that in the kernel now.
4495 *
4496 * In the meantime, during renaming, your target name might be taken by another
4497 * driver, creating conflicts. Or the old name is taken directly after you
4498 * renamed it -- then you get events for the same DEVPATH, before you even see
4499 * the "move" event. It's just a mess, and nothing new should ever rely on
4500 * kernel device renaming. Besides that, it's not even implemented now for
4501 * other things than (driver-core wise very simple) network devices.
4502 *
4503 * Make up a "real" name in the driver before you register anything, or add
4504 * some other attributes for userspace to find the device, or use udev to add
4505 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4506 * don't even want to get into that and try to implement the missing pieces in
4507 * the core. We really have other pieces to fix in the driver core mess. :)
4508 */
4509int device_rename(struct device *dev, const char *new_name)
4510{
4511 struct subsys_private *sp = NULL;
4512 struct kobject *kobj = &dev->kobj;
4513 char *old_device_name = NULL;
4514 int error;
4515 bool is_link_renamed = false;
4516
4517 dev = get_device(dev);
4518 if (!dev)
4519 return -EINVAL;
4520
4521 dev_dbg(dev, "renaming to %s\n", new_name);
4522
4523 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4524 if (!old_device_name) {
4525 error = -ENOMEM;
4526 goto out;
4527 }
4528
4529 if (dev->class) {
4530 sp = class_to_subsys(dev->class);
4531
4532 if (!sp) {
4533 error = -EINVAL;
4534 goto out;
4535 }
4536
4537 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4538 new_name, kobject_namespace(kobj));
4539 if (error)
4540 goto out;
4541
4542 is_link_renamed = true;
4543 }
4544
4545 error = kobject_rename(kobj, new_name);
4546out:
4547 if (error && is_link_renamed)
4548 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4549 old_device_name, kobject_namespace(kobj));
4550 subsys_put(sp);
4551
4552 put_device(dev);
4553
4554 kfree(old_device_name);
4555
4556 return error;
4557}
4558EXPORT_SYMBOL_GPL(device_rename);
4559
4560static int device_move_class_links(struct device *dev,
4561 struct device *old_parent,
4562 struct device *new_parent)
4563{
4564 int error = 0;
4565
4566 if (old_parent)
4567 sysfs_remove_link(&dev->kobj, "device");
4568 if (new_parent)
4569 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4570 "device");
4571 return error;
4572}
4573
4574/**
4575 * device_move - moves a device to a new parent
4576 * @dev: the pointer to the struct device to be moved
4577 * @new_parent: the new parent of the device (can be NULL)
4578 * @dpm_order: how to reorder the dpm_list
4579 */
4580int device_move(struct device *dev, struct device *new_parent,
4581 enum dpm_order dpm_order)
4582{
4583 int error;
4584 struct device *old_parent;
4585 struct kobject *new_parent_kobj;
4586
4587 dev = get_device(dev);
4588 if (!dev)
4589 return -EINVAL;
4590
4591 device_pm_lock();
4592 new_parent = get_device(new_parent);
4593 new_parent_kobj = get_device_parent(dev, new_parent);
4594 if (IS_ERR(new_parent_kobj)) {
4595 error = PTR_ERR(new_parent_kobj);
4596 put_device(new_parent);
4597 goto out;
4598 }
4599
4600 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4601 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4602 error = kobject_move(&dev->kobj, new_parent_kobj);
4603 if (error) {
4604 cleanup_glue_dir(dev, new_parent_kobj);
4605 put_device(new_parent);
4606 goto out;
4607 }
4608 old_parent = dev->parent;
4609 dev->parent = new_parent;
4610 if (old_parent)
4611 klist_remove(&dev->p->knode_parent);
4612 if (new_parent) {
4613 klist_add_tail(&dev->p->knode_parent,
4614 &new_parent->p->klist_children);
4615 set_dev_node(dev, dev_to_node(new_parent));
4616 }
4617
4618 if (dev->class) {
4619 error = device_move_class_links(dev, old_parent, new_parent);
4620 if (error) {
4621 /* We ignore errors on cleanup since we're hosed anyway... */
4622 device_move_class_links(dev, new_parent, old_parent);
4623 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4624 if (new_parent)
4625 klist_remove(&dev->p->knode_parent);
4626 dev->parent = old_parent;
4627 if (old_parent) {
4628 klist_add_tail(&dev->p->knode_parent,
4629 &old_parent->p->klist_children);
4630 set_dev_node(dev, dev_to_node(old_parent));
4631 }
4632 }
4633 cleanup_glue_dir(dev, new_parent_kobj);
4634 put_device(new_parent);
4635 goto out;
4636 }
4637 }
4638 switch (dpm_order) {
4639 case DPM_ORDER_NONE:
4640 break;
4641 case DPM_ORDER_DEV_AFTER_PARENT:
4642 device_pm_move_after(dev, new_parent);
4643 devices_kset_move_after(dev, new_parent);
4644 break;
4645 case DPM_ORDER_PARENT_BEFORE_DEV:
4646 device_pm_move_before(new_parent, dev);
4647 devices_kset_move_before(new_parent, dev);
4648 break;
4649 case DPM_ORDER_DEV_LAST:
4650 device_pm_move_last(dev);
4651 devices_kset_move_last(dev);
4652 break;
4653 }
4654
4655 put_device(old_parent);
4656out:
4657 device_pm_unlock();
4658 put_device(dev);
4659 return error;
4660}
4661EXPORT_SYMBOL_GPL(device_move);
4662
4663static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4664 kgid_t kgid)
4665{
4666 struct kobject *kobj = &dev->kobj;
4667 const struct class *class = dev->class;
4668 const struct device_type *type = dev->type;
4669 int error;
4670
4671 if (class) {
4672 /*
4673 * Change the device groups of the device class for @dev to
4674 * @kuid/@kgid.
4675 */
4676 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4677 kgid);
4678 if (error)
4679 return error;
4680 }
4681
4682 if (type) {
4683 /*
4684 * Change the device groups of the device type for @dev to
4685 * @kuid/@kgid.
4686 */
4687 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4688 kgid);
4689 if (error)
4690 return error;
4691 }
4692
4693 /* Change the device groups of @dev to @kuid/@kgid. */
4694 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4695 if (error)
4696 return error;
4697
4698 if (device_supports_offline(dev) && !dev->offline_disabled) {
4699 /* Change online device attributes of @dev to @kuid/@kgid. */
4700 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4701 kuid, kgid);
4702 if (error)
4703 return error;
4704 }
4705
4706 return 0;
4707}
4708
4709/**
4710 * device_change_owner - change the owner of an existing device.
4711 * @dev: device.
4712 * @kuid: new owner's kuid
4713 * @kgid: new owner's kgid
4714 *
4715 * This changes the owner of @dev and its corresponding sysfs entries to
4716 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4717 * core.
4718 *
4719 * Returns 0 on success or error code on failure.
4720 */
4721int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4722{
4723 int error;
4724 struct kobject *kobj = &dev->kobj;
4725 struct subsys_private *sp;
4726
4727 dev = get_device(dev);
4728 if (!dev)
4729 return -EINVAL;
4730
4731 /*
4732 * Change the kobject and the default attributes and groups of the
4733 * ktype associated with it to @kuid/@kgid.
4734 */
4735 error = sysfs_change_owner(kobj, kuid, kgid);
4736 if (error)
4737 goto out;
4738
4739 /*
4740 * Change the uevent file for @dev to the new owner. The uevent file
4741 * was created in a separate step when @dev got added and we mirror
4742 * that step here.
4743 */
4744 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4745 kgid);
4746 if (error)
4747 goto out;
4748
4749 /*
4750 * Change the device groups, the device groups associated with the
4751 * device class, and the groups associated with the device type of @dev
4752 * to @kuid/@kgid.
4753 */
4754 error = device_attrs_change_owner(dev, kuid, kgid);
4755 if (error)
4756 goto out;
4757
4758 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4759 if (error)
4760 goto out;
4761
4762 /*
4763 * Change the owner of the symlink located in the class directory of
4764 * the device class associated with @dev which points to the actual
4765 * directory entry for @dev to @kuid/@kgid. This ensures that the
4766 * symlink shows the same permissions as its target.
4767 */
4768 sp = class_to_subsys(dev->class);
4769 if (!sp) {
4770 error = -EINVAL;
4771 goto out;
4772 }
4773 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4774 subsys_put(sp);
4775
4776out:
4777 put_device(dev);
4778 return error;
4779}
4780EXPORT_SYMBOL_GPL(device_change_owner);
4781
4782/**
4783 * device_shutdown - call ->shutdown() on each device to shutdown.
4784 */
4785void device_shutdown(void)
4786{
4787 struct device *dev, *parent;
4788
4789 wait_for_device_probe();
4790 device_block_probing();
4791
4792 cpufreq_suspend();
4793
4794 spin_lock(&devices_kset->list_lock);
4795 /*
4796 * Walk the devices list backward, shutting down each in turn.
4797 * Beware that device unplug events may also start pulling
4798 * devices offline, even as the system is shutting down.
4799 */
4800 while (!list_empty(&devices_kset->list)) {
4801 dev = list_entry(devices_kset->list.prev, struct device,
4802 kobj.entry);
4803
4804 /*
4805 * hold reference count of device's parent to
4806 * prevent it from being freed because parent's
4807 * lock is to be held
4808 */
4809 parent = get_device(dev->parent);
4810 get_device(dev);
4811 /*
4812 * Make sure the device is off the kset list, in the
4813 * event that dev->*->shutdown() doesn't remove it.
4814 */
4815 list_del_init(&dev->kobj.entry);
4816 spin_unlock(&devices_kset->list_lock);
4817
4818 /* hold lock to avoid race with probe/release */
4819 if (parent)
4820 device_lock(parent);
4821 device_lock(dev);
4822
4823 /* Don't allow any more runtime suspends */
4824 pm_runtime_get_noresume(dev);
4825 pm_runtime_barrier(dev);
4826
4827 if (dev->class && dev->class->shutdown_pre) {
4828 if (initcall_debug)
4829 dev_info(dev, "shutdown_pre\n");
4830 dev->class->shutdown_pre(dev);
4831 }
4832 if (dev->bus && dev->bus->shutdown) {
4833 if (initcall_debug)
4834 dev_info(dev, "shutdown\n");
4835 dev->bus->shutdown(dev);
4836 } else if (dev->driver && dev->driver->shutdown) {
4837 if (initcall_debug)
4838 dev_info(dev, "shutdown\n");
4839 dev->driver->shutdown(dev);
4840 }
4841
4842 device_unlock(dev);
4843 if (parent)
4844 device_unlock(parent);
4845
4846 put_device(dev);
4847 put_device(parent);
4848
4849 spin_lock(&devices_kset->list_lock);
4850 }
4851 spin_unlock(&devices_kset->list_lock);
4852}
4853
4854/*
4855 * Device logging functions
4856 */
4857
4858#ifdef CONFIG_PRINTK
4859static void
4860set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4861{
4862 const char *subsys;
4863
4864 memset(dev_info, 0, sizeof(*dev_info));
4865
4866 if (dev->class)
4867 subsys = dev->class->name;
4868 else if (dev->bus)
4869 subsys = dev->bus->name;
4870 else
4871 return;
4872
4873 strscpy(dev_info->subsystem, subsys);
4874
4875 /*
4876 * Add device identifier DEVICE=:
4877 * b12:8 block dev_t
4878 * c127:3 char dev_t
4879 * n8 netdev ifindex
4880 * +sound:card0 subsystem:devname
4881 */
4882 if (MAJOR(dev->devt)) {
4883 char c;
4884
4885 if (strcmp(subsys, "block") == 0)
4886 c = 'b';
4887 else
4888 c = 'c';
4889
4890 snprintf(dev_info->device, sizeof(dev_info->device),
4891 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4892 } else if (strcmp(subsys, "net") == 0) {
4893 struct net_device *net = to_net_dev(dev);
4894
4895 snprintf(dev_info->device, sizeof(dev_info->device),
4896 "n%u", net->ifindex);
4897 } else {
4898 snprintf(dev_info->device, sizeof(dev_info->device),
4899 "+%s:%s", subsys, dev_name(dev));
4900 }
4901}
4902
4903int dev_vprintk_emit(int level, const struct device *dev,
4904 const char *fmt, va_list args)
4905{
4906 struct dev_printk_info dev_info;
4907
4908 set_dev_info(dev, &dev_info);
4909
4910 return vprintk_emit(0, level, &dev_info, fmt, args);
4911}
4912EXPORT_SYMBOL(dev_vprintk_emit);
4913
4914int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4915{
4916 va_list args;
4917 int r;
4918
4919 va_start(args, fmt);
4920
4921 r = dev_vprintk_emit(level, dev, fmt, args);
4922
4923 va_end(args);
4924
4925 return r;
4926}
4927EXPORT_SYMBOL(dev_printk_emit);
4928
4929static void __dev_printk(const char *level, const struct device *dev,
4930 struct va_format *vaf)
4931{
4932 if (dev)
4933 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4934 dev_driver_string(dev), dev_name(dev), vaf);
4935 else
4936 printk("%s(NULL device *): %pV", level, vaf);
4937}
4938
4939void _dev_printk(const char *level, const struct device *dev,
4940 const char *fmt, ...)
4941{
4942 struct va_format vaf;
4943 va_list args;
4944
4945 va_start(args, fmt);
4946
4947 vaf.fmt = fmt;
4948 vaf.va = &args;
4949
4950 __dev_printk(level, dev, &vaf);
4951
4952 va_end(args);
4953}
4954EXPORT_SYMBOL(_dev_printk);
4955
4956#define define_dev_printk_level(func, kern_level) \
4957void func(const struct device *dev, const char *fmt, ...) \
4958{ \
4959 struct va_format vaf; \
4960 va_list args; \
4961 \
4962 va_start(args, fmt); \
4963 \
4964 vaf.fmt = fmt; \
4965 vaf.va = &args; \
4966 \
4967 __dev_printk(kern_level, dev, &vaf); \
4968 \
4969 va_end(args); \
4970} \
4971EXPORT_SYMBOL(func);
4972
4973define_dev_printk_level(_dev_emerg, KERN_EMERG);
4974define_dev_printk_level(_dev_alert, KERN_ALERT);
4975define_dev_printk_level(_dev_crit, KERN_CRIT);
4976define_dev_printk_level(_dev_err, KERN_ERR);
4977define_dev_printk_level(_dev_warn, KERN_WARNING);
4978define_dev_printk_level(_dev_notice, KERN_NOTICE);
4979define_dev_printk_level(_dev_info, KERN_INFO);
4980
4981#endif
4982
4983/**
4984 * dev_err_probe - probe error check and log helper
4985 * @dev: the pointer to the struct device
4986 * @err: error value to test
4987 * @fmt: printf-style format string
4988 * @...: arguments as specified in the format string
4989 *
4990 * This helper implements common pattern present in probe functions for error
4991 * checking: print debug or error message depending if the error value is
4992 * -EPROBE_DEFER and propagate error upwards.
4993 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4994 * checked later by reading devices_deferred debugfs attribute.
4995 * It replaces code sequence::
4996 *
4997 * if (err != -EPROBE_DEFER)
4998 * dev_err(dev, ...);
4999 * else
5000 * dev_dbg(dev, ...);
5001 * return err;
5002 *
5003 * with::
5004 *
5005 * return dev_err_probe(dev, err, ...);
5006 *
5007 * Using this helper in your probe function is totally fine even if @err is
5008 * known to never be -EPROBE_DEFER.
5009 * The benefit compared to a normal dev_err() is the standardized format
5010 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN"
5011 * instead of "-35") and the fact that the error code is returned which allows
5012 * more compact error paths.
5013 *
5014 * Returns @err.
5015 */
5016int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5017{
5018 struct va_format vaf;
5019 va_list args;
5020
5021 va_start(args, fmt);
5022 vaf.fmt = fmt;
5023 vaf.va = &args;
5024
5025 switch (err) {
5026 case -EPROBE_DEFER:
5027 device_set_deferred_probe_reason(dev, &vaf);
5028 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5029 break;
5030
5031 case -ENOMEM:
5032 /*
5033 * We don't print anything on -ENOMEM, there is already enough
5034 * output.
5035 */
5036 break;
5037
5038 default:
5039 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5040 break;
5041 }
5042
5043 va_end(args);
5044
5045 return err;
5046}
5047EXPORT_SYMBOL_GPL(dev_err_probe);
5048
5049static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5050{
5051 return fwnode && !IS_ERR(fwnode->secondary);
5052}
5053
5054/**
5055 * set_primary_fwnode - Change the primary firmware node of a given device.
5056 * @dev: Device to handle.
5057 * @fwnode: New primary firmware node of the device.
5058 *
5059 * Set the device's firmware node pointer to @fwnode, but if a secondary
5060 * firmware node of the device is present, preserve it.
5061 *
5062 * Valid fwnode cases are:
5063 * - primary --> secondary --> -ENODEV
5064 * - primary --> NULL
5065 * - secondary --> -ENODEV
5066 * - NULL
5067 */
5068void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5069{
5070 struct device *parent = dev->parent;
5071 struct fwnode_handle *fn = dev->fwnode;
5072
5073 if (fwnode) {
5074 if (fwnode_is_primary(fn))
5075 fn = fn->secondary;
5076
5077 if (fn) {
5078 WARN_ON(fwnode->secondary);
5079 fwnode->secondary = fn;
5080 }
5081 dev->fwnode = fwnode;
5082 } else {
5083 if (fwnode_is_primary(fn)) {
5084 dev->fwnode = fn->secondary;
5085
5086 /* Skip nullifying fn->secondary if the primary is shared */
5087 if (parent && fn == parent->fwnode)
5088 return;
5089
5090 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5091 fn->secondary = NULL;
5092 } else {
5093 dev->fwnode = NULL;
5094 }
5095 }
5096}
5097EXPORT_SYMBOL_GPL(set_primary_fwnode);
5098
5099/**
5100 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5101 * @dev: Device to handle.
5102 * @fwnode: New secondary firmware node of the device.
5103 *
5104 * If a primary firmware node of the device is present, set its secondary
5105 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5106 * @fwnode.
5107 */
5108void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5109{
5110 if (fwnode)
5111 fwnode->secondary = ERR_PTR(-ENODEV);
5112
5113 if (fwnode_is_primary(dev->fwnode))
5114 dev->fwnode->secondary = fwnode;
5115 else
5116 dev->fwnode = fwnode;
5117}
5118EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5119
5120/**
5121 * device_set_of_node_from_dev - reuse device-tree node of another device
5122 * @dev: device whose device-tree node is being set
5123 * @dev2: device whose device-tree node is being reused
5124 *
5125 * Takes another reference to the new device-tree node after first dropping
5126 * any reference held to the old node.
5127 */
5128void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5129{
5130 of_node_put(dev->of_node);
5131 dev->of_node = of_node_get(dev2->of_node);
5132 dev->of_node_reused = true;
5133}
5134EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5135
5136void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5137{
5138 dev->fwnode = fwnode;
5139 dev->of_node = to_of_node(fwnode);
5140}
5141EXPORT_SYMBOL_GPL(device_set_node);
5142
5143int device_match_name(struct device *dev, const void *name)
5144{
5145 return sysfs_streq(dev_name(dev), name);
5146}
5147EXPORT_SYMBOL_GPL(device_match_name);
5148
5149int device_match_of_node(struct device *dev, const void *np)
5150{
5151 return dev->of_node == np;
5152}
5153EXPORT_SYMBOL_GPL(device_match_of_node);
5154
5155int device_match_fwnode(struct device *dev, const void *fwnode)
5156{
5157 return dev_fwnode(dev) == fwnode;
5158}
5159EXPORT_SYMBOL_GPL(device_match_fwnode);
5160
5161int device_match_devt(struct device *dev, const void *pdevt)
5162{
5163 return dev->devt == *(dev_t *)pdevt;
5164}
5165EXPORT_SYMBOL_GPL(device_match_devt);
5166
5167int device_match_acpi_dev(struct device *dev, const void *adev)
5168{
5169 return ACPI_COMPANION(dev) == adev;
5170}
5171EXPORT_SYMBOL(device_match_acpi_dev);
5172
5173int device_match_acpi_handle(struct device *dev, const void *handle)
5174{
5175 return ACPI_HANDLE(dev) == handle;
5176}
5177EXPORT_SYMBOL(device_match_acpi_handle);
5178
5179int device_match_any(struct device *dev, const void *unused)
5180{
5181 return 1;
5182}
5183EXPORT_SYMBOL_GPL(device_match_any);